IARIA

ICSEA 2012

The Seventh International Conference on Software Engineering Advances

ISBN: 978-1-61208-230-1

November 18-23, 2012

Lisbon, Portugal

ICSEA 2012 Editors

Herwig Mannaert, University of Antwerp, Belgium
Luigi Lavazza, Universita dell'Insubria - Varese, Italy
Roy Oberhauser, Aalen University, Germany
Elena Troubitsyna, Abo Akademi University, Finland
Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) —
Ishikawa, Japan

ICSEA 2012

Forward

The Seventh International Conference on Software Engineering Advances (ICSEA 2012), held on November 18-23,
2012 in Lisbon, Portugal, continued a series of events covering a broad spectrum of software-related topics.

The conference covered fundamentals on designing, implementing, testing, validating and maintaining various
kinds of software. The tracks treated the topics from theory to practice, in terms of methodologies, design,
implementation, testing, use cases, tools, and lessons learnt. The conference topics covered classical and advanced
methodologies, open source, agile software, as well as software deployment and software economics and
education.

The conference had the following tracks:

e Advances in fundamentals for software development
e Advanced mechanisms for software development

e Advanced design tools for developing software

e Advanced facilities for accessing software

e Software performance

e Software security, privacy, safeness

e Advances in software testing

e Specialized software advanced applications

e Open source software

e Agile software techniques

e Software deployment and maintenance

e Software engineering techniques, metrics, and formalisms
e Software economics, adoption, and education

e Business technology

e Improving research productivity

Similar to the previous edition, this event continued to be very competitive in its selection process and very well
perceived by the international software engineering community. As such, it is attracting excellent contributions
and active participation from all over the world. We were very pleased to receive a large amount of top quality

contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2012 technical program committee as
well as the numerous reviewers. The creation of such a broad and high quality conference program would not have
been possible without their involvement. We also kindly thank all the authors that dedicated much of their time
and efforts to contribute to the ICSEA 2012. We truly believe that thanks to all these efforts, the final conference
program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals, organizations and sponsors.
We also gratefully thank the members of the ICSEA 2012 organizing committee for their help in handling the
logistics and for their work that is making this professional meeting a success.

We hope the ICSEA 2012 was a successful international forum for the exchange of ideas and results between
academia and industry and to promote further progress in software engineering research.

We hope Lisbon provided a pleasant environment during the conference and everyone saved some time for
exploring this beautiful city.

ICSEA 2012 Chairs

ICSEA Advisory Chairs

Herwig Mannaert, University of Antwerp, Belgium

Jon G. Hall, The Open University - Milton Keynes, UK

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Luigi Lavazza, Universita dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Elena Troubitsyna, Abo Akademi University, Finland

Luis Fernandez-Sanz, Universidad de Alcala, Spain

Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

ICSEA 2012 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) — Ishikawa, Japan

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

Simon Tsang, Telcordia - Piscataway, USA

ICSEA 2012 Industry/Research Chairs
Herman Hartmann, University of Groningen, The Netherlands
Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2012 Special Area Chairs

Formal Methods
Paul J. Gibson, Telecom & Management SudParis, France

Business and process techniques
Maribel Yasmina Santos, University of Minho, Portugal

Testing and Validation
Florian Barth, University of Mannheim, Germany

ICSEA 2012

Committee

ICSEA Advisory Chairs

Herwig Mannaert, University of Antwerp, Belgium

Jon G. Hall, The Open University - Milton Keynes, UK

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Luigi Lavazza, Universita dell'lnsubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Elena Troubitsyna, Abo Akademi University, Finland

Luis Fernandez-Sanz, Universidad de Alcala, Spain

Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

ICSEA 2012 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) — Ishikawa, Japan

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

Simon Tsang, Telcordia - Piscataway, USA

ICSEA 2012 Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands
Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2012 Special Area Chairs

Formal Methods
Paul J. Gibson, Telecom & Management SudParis, France

Business and process techniques
Maribel Yasmina Santos, University of Minho, Portugal

Testing and Validation
Florian Barth, University of Mannheim, Germany

ICSEA 2012 Technical Program Committee

Shahliza Abd Halim, Universiti of Technologi Malaysia (UTM) - Skudai, Malaysia
Mohammad Abdallah, Durham University, UK

Adla Abdelkader, University of Oran, Algeria

Moataz A. Ahmed, King Fahd University of Petroleum & Minerals — Dhahran, Saudi Arabia

Syed Nadeem Ahsan, TU-Graz, Austria

Mehmet Aksit, University of Twente, The Netherlands

Ahmed Al-Moayed, Hochschule Furtwangen University, Germany
Zakarya Alzamil, Riydh College of Technology, Saudi Arabia

Vincenzo Ambriola, Universita di Pisa, Italy

Buzzi Andreas, Credit Suisse AG — Zirich, Switzerland

Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus
Maria Anjum, Durham University, UK

Rodrigo Assad, CESAR, Brazil

Paulo Asterio de Castro Guerra, Tapijara Programacao de Sistemas Ltda. - Lambari, Brazil
Colin Atkinson, University of Mannheim, Germany

Robert Azarbod, Oracle Corporation, USA

Gilbert Babin, HEC Montréal, Canada

Muneera Bano, International Islamic University - Islamabad, Pakistan
Jorge Barreiros, CITI/UNL: Center of Informatics and Information Technology - UNL || ISEC/IPC: ISEC -
Polytechnic Institute of Coimbra, Portugal

Florian Barth, University of Mannheim, Germany

Gabriele Bavota, University of Salerno, Italy

Assia Belbachir, IFSTTAR - Versailles, France

Noureddine Belkhatir, University of Grenoble, France

Simona Bernardi, Centro Universitario de la Defensa / Academia General Militar - Zaragoza, Spain
Celestina Bianco, Systelab Technologies - Barcelona, Spain

Christian Bird, Microsoft, USA

Kenneth Boness, Reading University, UK

Marko Boskovic, Forschungsgesellschaft mbH — Wien, Austria

Mina Bostrom Nakicenovic, Sungard Front Arena, Stockholm, Sweden
Hongyu Pei Breivold, ABB Corporate Research, Sweden

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Luigi Buglione, ETS Montréal / Engineering.IT S.p.A., Canada

David W. Bustard, University of Ulster - Coleraine, UK

Fabio Calefato, University of Bari, Italy

José Carlos Metrélho, Polytechnic Institute of Castelo Branco, Portugal
Bengt Carlsson, Blekinge Institute of Technology — Karlskrona, Sweden
Rocio Castafio Mayo, Universidad de Oviedo, Spain

Antonin Chazalet, Orange France

Yoonsik Cheon, The University of Texas at El Paso, USA

Vanea Chiprianov, Telecom-Bretagne, France

Morakot Choetkiertikul, Mahidol University, Thailand

Antonio Cicchetti, Malardalen University, Sweden

Andrew Connor, Auckland University of Technology, New Zealand
Rebeca Cortazar, University of Deusto - Bilbao, Spain

Oliver Creighton, Siemens AG, Germany

Carlos E. Cuesta, Rey Juan Carlos University - Madrid, Spain

Beata Czarnacka-Chrobot, Warsaw School of Economics, Poland

Darren Dalcher, Middlesex University - London, UK

Ferruccio Damiani, Universita degli Studi di Torino, Italy

Claudio de la Riva, Universidad de Oviedo - Gijon, Spain

Peter De Bruyn, University of Antwerp, Belgium

Onur Demirors, Middle East Technical University, Turkey

Giovanni Denaro, Universita degli Studi di Milano - Bicocca, Italy
Steven A. Demurjian, The University of Connecticut - Storrs, USA
Antinisca Di Marco, University of L'Aquila - Coppito (AQ), Italy

Tadashi Dohi, Hiroshima University, Japan

Lydie du Bousquet, J. Fourier-Grenoble | University, LIG labs, France
Juan Carlos Duefias Lopez, Universidad Politécnica de Madrid, Spain
Lars Ebrecht, German Aerospace Centre (DLR), Germany

Holger Eichelberger, University of Hildesheim, Germany

Younes El Amrani, Université Mohammed V - Agdal, Morocco
Mohamed El-Attar, King Fahd University of Petroleum and Minerals - Al Dhahran, Kingdom of Saudi
Arabia

Vladimir Estivill-Castro, Griffith University - Nathan, Australia

Fausto Fasano, University of Molise - Pesche, Italy

Sérgio Adriano Fernandes Lopes, University of Minho, Portugal

Feipre Ferraz, CESAR / CIN-UFPE, Brazil

Jicheng Fu, University of Central Oklahoma, USA

G.R. Gangadharan, IDRBT, India

Stoyan Garbatov, Instituto de Engenharia de Sistemas e Computadores Investigacdo e Desenvolvimento
- Lisboa, Portugal

Kiev Gama, CESAR - Recife Center for Advance Studies, Brazil

Antonio Javier Garcia Sdnchez, Technical University of Cartagena, Spain
José Garcia-Fanjul, University of Oviedo, Spain

Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

Paul J. Gibson, Telecom & Management SudParis, France

Rainer Gimnich, IBM Deutschland — Frankfurt, Germany

Ignacio Gonzdlez Alonso, University of Oviedo, Spain

Mohamed Graiet, ISIMS, MIRACL, Monastir, Tunisia

Gregor Grambow, University of Ulm, Germany

Vic Grout, Glyndwr University - Wrexham, UK

Bidyut Gupta, Southern lllinois University, USA

Ensar Gul, Marmara University - Istanbul, Turkey

Zhensheng Guo, Siemens AG - Erlangen, Germany

Wagas Haider Khan Bangyal, IUl Islamabad, Pakistan

Herman Hartmann, University of Groningen, The Netherlands

Zeljko Hocenski, University Josip Juraj Strossmayer of Osijek, Croatia
Bernhard Hollunder, Furtwangen University of Applied Sciences, Germany
Siv Hilde Houmb, Secure-NOK AS, Norway

Noraini Ibrahim, University of Technology Malaysia (UTM), Malaysia
Jun lio, Mitsubishi Research Institute, Inc. - Tokyo, Japan

Naveed lkram, Riphah International University — Islamabad, Pakistan
Emilio Insfran, Universitat Politecnica de Valéncia, Spain

Shareeful Islam, University of East London, UK

Slinger Jansen (Roijackers), Utrecht University, The Netherlands
Hermann Kaindl, TU-Wien, Austria

Mira Kajko-Mattsson, Stockholm University and Royal Institute of Technology, Sweden
Yasutaka Kamei, Kyushu University, Japan

Ahmed Kamel, Concordia College - Moorhead, USA

Dariusz W. Kaminski, The Open University, UK

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Lucia Kapova, Karlsruhe Institute of Technology, Germany

Tatjana Kapus, University of Maribor, Slovenia

Thorsten Keuler, Fraunhofer Institute for Experimental Software Engineering - Kaiserslautern, Germany
Foutse Khomh, Queen's University, Canada

Holger Kienle, Malardalen University, Sweden

Mourad Kmimech, I'Institut Supérieur d’informatique de Mahdia (ISIMA), Tunisia
Jens Knodel, Fraunhofer IESE, Germany

William Knottenbelt, Imperial College London, UK

Radek Koci, Brno University of Technology, Czech Republic

Christian Kop, Alpen-Adria-Universitat Klagenfur, Austria

Georges Edouard Kouamou, National Advanced School of Engineering - Yaoundé, Cameroon
Segla Kpodjedo, Ecole Polytechnique de Montréal, Canada

Ondrej Krejcar, University of Hradec Kralove, Czech Republic

Natalia Kryvinska, University of Vienna, Austria

Sukhamay Kundu, Louisiana State University - Baton Rouge, USA

Eugenijus Kurilovas, Vilnius University and Vilnius Gediminas Technical University, Lithuania
Alla Lake, Linfo Systems, LLC - Greenbelt, USA

Einar Landre, Statiol ASA, Norway

Jannik Laval, University Bordeaux 1, France

Luigi Lavazza, Universita dell'lnsubria - Varese, Italy

Luka Lednicki, University of Zagreb, Croatia

Plinio Sa Leitdo-Junior, Federal University of Goias, Brazil

Jorg Liebig, University of Passau, Germany

Maria Teresa Llano Rodriguez, Heriot-Watt University, UK

Juan Pablo Lépez-Grao, University of Zaragoza, Spain

Marcelo Luna, LiveWare, Argentina

Ricardo J. Machado, University of Minho, Portugal

Nicos Malevris, Athens University of Economics and Business, Greece

Herwig Mannaert, University of Antwerp, Belgium

Eda Marchetti, ISTI-CNR - Pisa Italy

Alexandre Marcos Lins de Vasconcelos, Federal University of Pernambuco, Brazil
Leonardo Mariani, University of Milano-Bicocca, Italy

Adriana Martin, National University of Patagonia Austral - Santa Cruz & GIISCo Research Group, National
University of Comahue - Neuquén, Argentina

Miriam Martinez Mufioz, Universidad de Alcala de Henares, Spain

Karl Meinke, KTH Royal Institute of Technology, Sweden

Igor Melatti, Sapienza Universita di Roma, Italy

Jose Merseguer, Universidad de Zaragoza, Spain

Markus Meyer, University of Applied Sciences Ingolstadt, Germany

Jodao Miguel Fernandes, Universidade do Minho - Braga, Portugal

Hassan Mountassir, University of Besangon, France

Henry Muccini, University of L'Aquila, Italy

Oksana Nikiforova, Riga Technical University, Latvia

Natalja Nikitina, KTH Royal Institute of Technology - Stockholm, Sweden

Mara Nikolaidou, Harokopio University of Athens, Greece

Marcellin Julius Nkenlifack, Univeristé de Dschang - Bandjoun, Cameroun

Tetsuo Noda, Shimane University, Japan

Marc Novakouski, Software Engineering Institute/Carnegie Mellon University, USA
Roy Oberhauser, Aalen University, Germany

Pablo Oliveira Antonino de Assis, Fraunhofer Institute for Experimental Software Engineering - IESE,
Germany

Flavio Oquendo, European University of Brittany - UBS/VALORIA, France
Baris Ozkan, Middle East Technical University, Turkey

Claus Pahl, Dublin City University, Ireland

Marcos Palacios, University of Oviedo, Spain

Kai Pan, University of North Carolina at Charlotte, USA

Paivi Parviainen, VTT, Software Technologies Center, Finland

Aljosa Pasic, ATOS Research, Spain

Fabrizio Pastore, University of Milano - Bicocca, Italy

Asier Perallos, University of Deusto, Spain

Oscar Pereira, Instituto de Telecomunica¢des-DETI: University of Aveiro, Portugal
David Pheanis, Arizona State University, USA

Pasqualina Potena, Universita degli Studi di Bergamo, Italy

Christian Prehofer, Ludwig-Maximilians-Universitat Miinchen, Germany
Abdallah Qusef, University of Salerno, Italy

Claudia Raibulet, Universita degli Studi di Milano-Bicocca, Italy

Muthu Ramachandran, Leeds Metropolitan University, UK

Amar Ramdane-Cherif, University of Versailles, France

Gianna Reggio, DIBRIS - University of Genova, Italy

Hassan Reza, University of North Dakota - School of Aerospace, USA

Samir Ribic, University of Sarajevo, Bosnia and Herzegovina

Elvinia Riccobene, University of Milan, Italy

Daniel Riesco, National University of San Luis, Argentina

Daniel Rodriguez, University of Alcala, Madrid, Spain

Maria Luisa Rodriguez Almendros, Universidad de Granada, Spain

Siegfried Rouvrais, TELECOM Bretagne, France

Sébastien Salva, LIMOS-CNRS / Auvergne University / IUT d'Aubiére, France
Luca Santillo, Agile Metrics, Italy

Maribel Yasmina Santos, University of Minho, Portugal

Patrizia Scandurra, University of Bergamo - Dalmine, Italy

Giuseppe Scanniello, Universita degli Studi della Basilicata - Potenza, Italy
Klaus Schmid, University of Hildesheim, Germany

Rainer Schmidt, HTW-Aalen, Germany

Christelle Scharff, Pace University, USA

Istvan Siket, University of Szeged, Hungary

Thomas Stocker, University of Freiburg, Germany

Mahbubur R. Syed, Minnesota State University — Mankato, USA

Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST), Japan
Wasif Tanveer, University of Engineering and Technology - Lahore, Pakistan
Pierre Tiako, Langston University, USA

Maarit Tihinen, VTT Technical Research Centre of Finland - Oulu, Finland
Maria Tortorella, University of Sannnio - Benevento Italy

Davide Tosi, Universita degli studi dell'Insubria - Varese, Italy

Peter Trapp, Ingolstadt, Germany

Elena Troubitsyna, Abo Akademi University, Finland

Mariusz Trzaska, Polish Japanese Institute of Information Technology - Warsaw, Poland
Simon Tsang, Applied Research Telcordia - Piscataway

George A. Tsihrintzis, University of Piraeus, Greece

Masateru Tsunoda, Toyo University, Japan

Javier Tuya, Universidad de Oviedo - Gijén, Spain

Christelle Urtado, LGI2P / Ecole des Mines d'Alés - Nimes, France

Dieter Van Nuffel, University of Antwerp, Belgium

Sergiy Vilkomir, East Carolina University - Greenville, USA

Hironori Washizaki, Waseda University, Japan

Rainer Weinreich, Johannes Kepler University Linz, Austria

Victor Winter, University of Nebraska-Omaha, USA

Martin Wojtczyk, Technische Universitat Miinchen, Germany & Bayer HealthCare, USA
Haibo Yu, Shanghai Jiao Tong University, China

Saad Zafar, Riphah International University - Islamabad, Pakistan

Amir Zeid, American University of Kuwait, Kuwait

Michal Zemlicka, Charles University — Prague, Czech Republic

Qiang Zhu, The University of Michigan - Dearborn, USA

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the
dissemination of the published material. This allows IARIA to give articles increased visibility via
distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that | represent the authors of this article in
the copyright release matters. If this work has been done as work-for-hire, | have obtained all necessary
clearances to execute a copyright release. | hereby irrevocably transfer exclusive copyright for this
material to IARIA. | give IARIA permission or reproduce the work in any media format such as, but not
limited to, print, digital, or electronic. | give IARIA permission to distribute the materials without
restriction to any institutions or individuals. | give IARIA permission to submit the work for inclusion in
article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or
otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and
any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above
provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any
individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of
manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without
limitation, negligence), pre-contract or other representations (other than fraudulent
misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that
case, copyright to the material remains with the said government. The rightful owners (authors and
government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and
IARIA's partners to further distribute the work.

Table of Contents

Enhancing Contexts for Automated Debugging Techniques
Yan Lei, Chengsong Wang, Xiaoguang Mao, and Quanyuan \Wu

Leveraging Traceability between Code and Tasks for Code Review and Release M anagement
Nitesh Narayan, Alexander Delater, Jan Finis, and Yang Li

A Multiple View Environment for Collaborative Software Comprehension
Glauco de F Carneiro, Carlos F. R. Conceicao, and Jose M N David

Assisting bug Triage in Large Open Source Projects Using Approximate String Matching
Amir H. Moin and Gunter Neumann

Using Normalized Systems Patterns as Knowledge Management
Peter De Bruyn, Philip Huysmans, Gilles Oorts, Dieter Van Nuffel, Herwig Mannaert, Jan Verelst, and Arco Oost

An UML-based Authoring Approach of S1000D Procedural Data Modules and Tool Support
Youhee Choi, Jeong-Ho Park, Byungtae Jang, and DongSun Lim

Algorithmic Software Adaptation Approach in Mobile Augmented Reality Systems
Oleksii Vekshyn and Mykola Tkachuk

A Case Study in Modeling a Fault-tolerant Satellite System Through I mplementation of Dynamic Reconfiguration
via Handshake
Kashif Javed and Elena Troubitsyna

Transformation of Medical Service Ontology to Relational Data Models
Osamu Takaki, |zumi Takeuti, Koichi Takahashi, Noriaki |zumi, Koichiro Murata, Mitsuru Ikeda, and Koiti
Hasida

BrainTool A Tool for Generation of the UML Class Diagrams
Oksana Nikiforova, Konstantins Gusarovs, Olegs Gorbiks, and Natalja Paviova

Decoupled Model-Based Elicitation of Stakeholder Scenarios
Gregor Gabrysiak, Regina Hebig, and Holger Giese

A Formal High-level Modeling Approach to Devel op Reliable Components in Vision-based Robotics
Andrea Luzzana, Mattia Rossetti, and Patrizia Scandurra

Aligning the Normalized Systems Theorems with Existing Heuristic Software Engineering Knowledge
Peter De Bruyn, Geert Dierckx, and Herwig Mannaert

15

22

28

40

44

50

60

70

78

A Description Language for QoS Properties and a Framework for Service Composition Using QoS Properties 90
Chiaen Lin, Krishna Kavi, and Sagarika Adepu

Context Awareness in Learning Human Habits 98
Szymon Bobek and Weronika Adrian

Automated Construction of Data Integration Solutions for Tool Chains 102
Matthias Biehl, Jiarui Hong, and Frederic Loiret

A Neurolinguistic Method for Identifying OSS Developers Context-Specific Preferred Representational Systems 112
Methanias Colaco Junior, Manoel Mendonca, Mario Farias, Paulo Henrigue, and Daniela Corumba

Architecture Centric Tradeoff - A Decision Support Method for COTS Selection and Life Cycle Management 122
Subhankar Sarkar

Implementation of Business Processesin Service Oriented Architecture 129
Krzysztof Sacha and Andrzej Ratkowski

On Re-Architecting Legacy Software Systems: The Case of Systems at Umm Al-Qura University 137
Basem Alkazemi
Business Process Modeling in Object-Oriented Declarative Workflow 141

Marcin Dabrowski, Michal Drabik, Mariusz Trzaska, and Kazimierz Subieta

Data Transformations Using QV T Between Industrial Workflows and Business Modelsin BPMN2 147
Corina Abdelahad, Daniel Riesco, Alessandro Carrara, Carlo Comin, and Carlos Kavka

A Data-driven Workflow Based on Structured Tokens Petri Net 154
Nahla Haddar, Mohamed Tmar, and Faiez Gargouri

Bankruptcy and Financial Standing Models Application for SMEs 161
David Plandor and Lenka Landryova

Automated Test Code Generation Based on Formalized Natural Language Business Rules 165
Christian Bacherler, Ben Moszkowski, Christian Facchi, and Andreas Huebner

Using SSUCD to Develop Consistent Use Case Models: An Industrial Case Study 172
Mohamed El-Attar

A Systematic Mapping Study on Domain-Specific Languages 179
Leandro Nascimento, Daniel Viana, Paulo Siveira Neto, Dhiego Martins, Vinicius Garcia, and Slvio Meira

Specifying and Designing Exception Handling with FMEA 188

Tsuneo Nakanishi, Kenji Hisazumi, and Akira Fukuda

Orchestration Definition from Business Specification
Charif Mahmoudi and Fabrice Mourlin

Value-Based Technical Debt Model and Its Application
Marek G. Sochel, Mariusz R. Wawrowski, and Magdalena Rabiegj

An Advanced Interactive Visualization Approach for Component-Based Software: A User Study
Jaroslav Shajberk, Lukas Holy, Kamil Jezek, and Premek Brada

Representing Topic Event-Based Systems using Pluggable Units
Fernando Barros

Towards an Approach to Represent Safety Patterns
Pablo Oliveira Antonino, Thorsten Keuler, and Elisa Yumi Nakagawa

Process M odeling-based Assessment of Software Release Planning
Jos Trienekens and Robbert Sooten

Distributed Software Framework: For Biosphere 2 Land Evolution Observatory (LEO) Autonomic Cyber-Physical

System (ACPS)
Shafiul Islam

Understanding the Relationships Within the Medi SPICE Framework
Derek Flood, Fergal Mc Caffery, and Valentine Casey

Mapping Between Service Designs Based on SoaML and Web Service |mplementation Artifacts
Michael Gebhart and Jaouad Bouras

Constructing Tool Chains Based on SPEM Process Models
Matthias Biehl and Martin Torngren

Tracing Requirements and Source Code during Software Development
Alexander Delater, Nitesh Narayan, and Barbara Paech

An Empirical Study Identifying High Perceived Value Requirements Engineering Practices in Globa Software
Development Projects
Mahmood Niazi, Mohamed El-Attar, Muhammad Usman, and Naveed Ikram

Towards Automated Process Assessment in Software Engineering
Gregor Grambow, Roy Oberhauser, and Manfred Reichert

197

205

213

220

228

238

243

254

260

267

274

283

289

Specification of Formalized Software Patterns for the Development of User Interfaces
Danny Ammon, Stefan Wendler, Teodora Kikova, and Ilka Philippow

Lowering Visual Clutter of Clustersin Component Diagrams
Lukas Holy, Jaroslav Shajberk, and Premek Brada

A Framework for Characterizing Usability Requirements Elicitation and Analysis Methodologies (UREAM)
Jos Trienekens and Rob Kusters

A Multilevel Contract Model for Quality-Driven Service Component Architecture
Maryem Rhanoui and Bouchra El Asri

Call for Software Tenders. Features and Research Problems
Jorge Hochstetter and Carlos Cares

BPEL-RF Tool: An Automatic Translation from WS-BPEL/WSRF Specifications to Petri Nets
Maria Diaz, Valetin Valero, Hermenegilda Macia, Jose Antonio Mateo, and Gregorio Diaz

Automated Reuse of Software Reuse Activitiesin an Industrial Environment — Case Study Results
Marcus Zinn, Klaus-Peter Fischer-Hellmann, and Ronald Schoop

Learning Best K analogies from Data Distribution for Case-Based Software Effort Estimation
Mohammad Azzeh and Yousef Elsheikg

Predicting Risky Program Source Files
Syed Nadeem Ahsan, Syed Haider Abbas Naqvi, and Kamran Raza

Supporting Time Planning Aligned with CMMI-DEV and PMBOK
Rafael Goncalves, Andre Pereira, and Christiane Wangenheim

Specification of UML Classes by Object Oriented Petri Nets
Radek Koci and Vladimir Janousek

A Report on Using Simplified Function Point Measurement Processes
Luigi Lavazza and Geng Liu

An Empirical Evaluation of Effort Prediction Models Based on Functional Size Measures
Luigi Lavazza, Sandro Morasca, and Gabriela Robiolo

Mapping ASM Specifications to Spec Explorer: Guidelines, Benefits and Challenges
Jameleddine Hassine

Object Segmentation by Edges Features of Graph Cuts

296

304

308

314

320

325

331

341

352

361

367

373

380

388

Weiwei Du, Yuki Masumoto, and Nobuyuki Nakamori

Product Development Time I mprovement with Requirements Reuse
Senmra Yilmaz Tastekin, Yusuf Murat Erten, and Semih Bilgen

Specifying Class Hierarchies and Moose Metricsin Z
Younes El Amrani

Applying Algebraic Specification To Cloud Computing -- A Case Study of Infrastructure-as-a-Service GoGrid
Dongmei Liu, Hong Zhu, and lan Bayley

A Holistic Approach to Energy Efficiency Management Systems
Ignacio Gonzalez, Maria Rodriguez Fernandez, Juan Jacobo Peralta, and Adolfo Cortes

Structuring Software Reusability Metrics for Component-Based Software Devel opment
Danail Hristov, Oliver Hummel, Mahmudul Hug, and Werner Janjic

Dreiving Do-178C Requirements Within the Appropriate Level of Hierarchy
Jamie White and Hassan Reza

Abstract State Machines Mutation Operators
Jameleddine Hassine

Towards a Knowledge-Based Representation of Non-Functional Requirements
Mohamad Kassab and Ghizlane El-Boussaidi

Towards Better Comparability of Software Retrieval Approaches Through a Standard Collection of Reusable
Artifacts
Oliver Hummel and Werner Janjic

Improving I T Infrastructures Representation: A UML Profile
Luis Ferreira da Slva, Fernando Brito e Abreu, and Victor Moreira

An Investigation into Reference Architectures for Mobile Robotic Systems
Daniel Feitosa and Elisa Yumi Nakagawa

Human Computer Interaction Teaching Method to Encourage Crestivity
Deller Ferreira

Future Chances of Software Customization: An Empirical Evaluation
Michaela Weiss and Norbert Heidenbluth

Experimentation Package for Evaluation of Problems Applied to the Software Project Subject Using PBL

394

401

407

415

421

430

436

442

450

459

465

472

479

486

Jacson Rodrigues Barbosa, Fabrizzio Alphonsus Alves de Melo Nunes Soares, and Auri Marcelo Rizzo Vincenz

Improving Undergraduate Students' Programming Skills 493
Sukhamay Kundu
Requirements Engineering: A Process Model and Case Study to Promote Standardization and Quality Increase 499

Jose Andre Dorigan and Rodolfo Miranda Barros

Annotated Component-Based Description for Application Composition 506
Christian Brel, Philippe Renevier, Anne-Marie Pinna-Dery, and Michel Riveill

Cognitive Engineering meets Requirements Engineering, Bridging the Traceability Gap 512
Alexandra Mazak and Horst Kargl
Knowledge Management Practicesin GSD: A Systematic Literature Review 516

Smeea Arshad, Muhammad Usman, and Naveed Ikram

Modelling the Strategic Alignment of Software Requirements using Goal Graphs 524
Richard Ellis-Braithwaite, Russell Lock, Ray Dawson, and Badr Haque

A Constraint-based Method to Compute Semantics of Channel-based Coordination Models 530
Behnaz Changiz, Natallia Kokash, and Farhad Arbab

Predicting Quality Requirements Necessary for a Functional Requirement Based on Machine Learning 540
Ken Tanaka, Haruhiko Kaiya, and Atsushi Ohnishi

Abductive Logic Programming with Tabled Abduction 548
Luis Moniz Pereira and Ari Saptawijaya

Towards a Methodology for Hardware and Software Design Separation in Embedded Systems 557
Gaetana Sapienza, Tiberiu Seceleanu, and Ivica Crnkovic

Automatic Synthesis of Hardware-Specific Code in Component-Based Embedded Systems 563
Luka Lednicki, Ivica Crnkovic, and Mario Zagar

Modeling Crosscutting Concerns with Roles 571
Fernando Barbosa and Ademar Aguiar

Towards a Glue-Code Specification Framework for Component-Based Systems 577
Sajjad Mahmood and Mohammed AlQadhi

AO-WAD: A Generalized Approach for Accessible Design within the Development of Web-based Systems 581
Adriana Martin, Viviana Saldano, Gabriela Miranda, and Gabriela Gaetan

An Evaluation Framework for Requirements Elicitation in Agile Methods
Waleed Helmy, Amr Kamel, and Osman Hegazy

An Evaluation Framework for Requirements Envisioning in Agile Methods
Waleed Helmy, Amr Kamel, and Osman Hegazy

AgileKDD: An Agile Business Intelligence Process Model
Givanildo Nascimento and Adicineia Oliveira

The Dilemma of Tool Selection for Agile Project Management
Gayane Az zyan, Miganoush Magarian, and Mira Kajko-Mattsson

Framework for Better Efficiency of Automated Testing
Martin Filipsky, Miroslav Bures, and Ivan Jelinek

MobiTest: A Cross-Platform Tool for Testing Mobile Applications
lan Bayley, Derek Flood, Rachel Harrison, and Clare Martin

Requirement-based Software Testing With the UML: A Systematic Mapping Study
Nesa Asoudeh and Yvan Labiche

Simulation-Based M anagement for Software Dynamic Testing Processes
Mercedes Ruiz, Javier Tuya, and Daniel Crespo

A Systematic Approach to Risk-Based Testing Using Risk-annotated Requirements Models
Marc-Florian Wendland, Marco Kranz, and Ina Schieferdecker

An Automatic Security Testing approach of Android Applications
Sassia Resondry Zafimiharisoa, Sebastien Salva, and Patrice Laurencot

An Integrated Process for Developing Safety-critical Systems using Agile Devel opment Methods
Zhensheng Guo and Claudia Hirschmann

ESAC-BPM: Early Security Access Control in Business Process Management
Mahmoud F. Ayoub, Riham Hassan, and Hicham G. Elmongui

Intrusion Detection Using Ensembles
Alexandre Balon-Perin, Bjorn Gamback, and Lillian Rostad

Linear Constraints as a Modeling Language for Discrete Time Hybrid Systems
Federico Mari, Igor Mélatti, Ivano Salvo, and Enrico Tronci

588

594

598

605

615

619

623

630

636

647

650

656

664

ME-DiTV: A Middleware Extension for Digital TV
Victor Hazin da Rocha, Felipe Slva Ferraz, Heitor Nascimento de Souza, and Carlos Ferraz

The Dynamic Composition of Independent Adaptations including I nterferences Management
Sana Fathallah Ben Abdennegi, Siephane Lavirotte, Jean-Yves Tigli, Gaetan Rey, and Michel Riveill

Mission-oriented Autonomic Configuration of Pervasive Systems
Guillaume Grondin, Matthieu Faure, Christelle Urtado, and Sylvain Vauttier

The Consolidated Enterprise Java Beans Design Pattern for Accelerating Large-Data J2EE Applications
Reinhard Klemm

Explicit use of Working-set Correlation for Load-balancing in Clustered Web Servers
Soyan Garbatov and Joao Cachopo

Evaluating Performance of Distributed Systems With MapReduce and Network Traffic Analysis
Thiago Vieira, Paulo Soares, Marco Machado, Rodrigo Assad, and Vinicius Garcia

672

678

685

691

699

705

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Enhancing Contexts for Automated Debugging Techniques

Yan Lei, Chengsong Wang, Xiaoguang Mao and Quanyuan Wu

School of Computer
National University of Defense Technology
Changsha, China
yanlei@nudt.edu.cn, jameschen186@gmail.com, xgmao@nudt.edu.cn, quanyuanwu@nudt.edu.cn

Abstract—Most existing automated debugging techniques just
focus on selecting a set of suspicious statements that may cause
failures and ranking them in terms of suspiciousness.
Therefore, these techniques always ignore the contextual
information of how suspicious statements behave and
propagate in the program. However, the contextual
information is useful for discovering and understanding bugs.
Hence, this paper proposes a novel approach to enhance
contexts for automated debugging techniques. Based on
localization results obtained from automated debugging
techniques, our approach utilizes program slicing to classify
suspicious statements into different contexts, and assigns
different suspiciousness to the contexts and their elements. The
experimental study shows that our approach can substantially
improve debugging effectiveness.

Keywords-automate debugging; program spectra; program
slicing; statistical analysis.

I. INTRODUCTION

Software debugging has been recognized as one of the
most time-consuming tasks in the development and
maintenance of software [5]. With the aim at reducing the
cost of debugging, a great number of research techniques are
proposed to support automating or semi-automating the
process of debugging and improve its performance [3-25].

However, existing automated debugging techniques just
focus on selecting a subset of statements potentially
responsible for failures and ranking them according to some
criterion. Therefore, they ignore the contextual information
of how suspicious statements behave and propagate in the
program. The recent research [1] has found that the lack of
contextual information may affect the activity of discovering
and understanding bugs. For example, the faulty statement is
included in the set of suspicious statements, and developers
inspect the statements in this set. Due to the lack of
contextual information, developers may judge the faulty
statement is not responsible for program failures and just
ignore this statement when inspecting it. Hence, it is vital to
enhance the contexts for automated debugging techniques.

Program slicing technique [14-16] utilizes data and
control dependence to identify the set of program statements
that may affect or be affected by the values at some
statement of a program. The set of statements is referred to
as a program slice. A program slice can be essentially
regarded as a context that shows a causal chain of how data
and control propagates in a program. However, program

Copyright (c) The Government of China, 2012. Used by permission to IARIA.

slicing treats the statements of a program slice with the same
suspiciousness to be faulty and thus lacks the guidance as to
how the statements in a slice should be examined. That
always leads developers to be frustrated and tiresome as the
size of a slice can substantially increase with the increasing
size and complexity of today's software [1]. One possible
way to address this issue is to use the promising ability of
some automated debugging techniques to assign different
suspiciousness to the statements of a slice. More importantly,
it implies that automated debugging techniques can adopt
program slicing to enhance contexts for themselves.

Among current research, one promising automated
debugging technique exploits the correlations between
program entities and program failures via statistically
analyzing coverage information [3-13]. This technique is
generally referred to as spectrum-based fault localization
(SFL). SFL usually collects coverage information and test
results from dynamic executions to construct program
spectra from passed and failed executions. After gathering
spectra information, SFL adopts a ranking metric to evaluate
the suspiciousness of program entities to be faulty and gives
a ranking list of all entities in terms of suspiciousness. The
research [3-13] has shown that SFL has a promising structure
of evaluating the suspiciousness of an entity to be faulty.
Nevertheless, SFL just outputs a ranking list of isolated
entities and fails to provide the contextual information for
discovering and understanding these suspicious statements.

Considering the popularity and ability, this paper chooses
SFL and enhances contexts for it by using program slicing
technique. Hence, we propose a debugging approach which
uses program slicing to enhance contexts for SFL. Our
approach utilizes SFL to compute the suspiciousness of each
statement to be faulty. Then, the approach uses program
slicing to identify the most suspicious statement and its
relevant statements as a context showing how the most
suspicious statement behaves in a program. Finally, except
for the statements of all constructed contexts, the most
suspicious statement of the remaining statements and its
relevant statements constitute a new context, and this step
would be iterated until each statement is classified into a
particular context. Because a context is constructed from the
most suspicious statement in it, our approach assigns the
suspiciousness of this statement to the context. For each
statement, its suspiciousness keeps unchanged. In addition,
our approach offers two modes to developers with different
experiences, and utilizes visualization and program

ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

dependence to further assist developers. It can be seen that
our approach provides useful contexts and recommends
examining guidance of all contexts and their elements in
terms of suspiciousness.

This paper conducts an experimental study on two
standard benchmarks: the Siemens suite and Space [28], and
compares our approach with nine ranking metrics of SFL:
Ochiai [3], Jaccard [4], Tarantula [5], Wong2 [6], Wong3 [6],
Ample [7], CBI [8], Optimal and Optimal” [9]. The results
demonstrate that the proposed approach outperforms all nine
ranking metrics of SFL.

The remainder of this paper is organized as follows.
Section II introduces the background of SFL. Section III
describes our approach. Section IV conducts an experimental
study. Related work is introduced in Section V and
conclusions are given in Section VI.

II. BACKGROUND OF SFL

N statements errors

X1 X - Xy €
Xoy X --- Xon €,
M spectra N . -
Xu1 Xyo - Xy €y
Figure 1. Input to SFL.

Spectrum-based fault localization (SFL) [3] is a dynamic
program analysis technique. It typically uses coverage
information of passed and failed runs to rank program
entities whose activity correlates most with the failures.
Passed runs are executions of a program that output as
expected, whereas failed runs are executions of a program
that output as unexpected. There are various types of entities,
such as blocks, functions, branches, paths, etc. This study
adopts statements as the entities.

First, we assume that a program P comprises a set of
statements S and runs against a set of test cases 7 that
contains at least one failed test case, with N=|S| and M=|T],
respectively (see Fig. 1). The above matrix MX(N+1)
represents the input to SFL. An element x; is equal to 1 if
statement j is covered by the execution of test run i, and 0
otherwise. The error vector e at the rightmost column of the
matrix represents the test results. The element ¢; is equal to 1
if run 7 failed, and 0 otherwise. Except the error vector, the
rest of the matrix is expressed in terms of matrix 4. The i
row of A indicates whether a statement was covered by run i.
The ;" column of A indicates statement j was covered by
which runs.

SFL usually measures the suspiciousness of a statement
to be faulty from similarity between its statement spectra and
error vector in the above matrix (see Fig. 1), and finally
outputs a ranking list of all statements in descending order of
suspiciousness. The similarity is quantified by ranking
metrics.

TABLE I shows nine ranking metrics of SFL and how
the suspiciousness of statement ; was computed by the
corresponding ranking metrics. a,,())=|{ilx;=p/\e;/=q}|, and
D, 4€ {0,1}. ay,(j) represents the number of passed (¢=0) or
failed (g=1) test cases that do not execute statement j. a,,(j)

Copyright (c) The Government of China, 2012. Used by permission to IARIA.

TABLE L. FORMULAS OF SFL
Name Formula Name Formula
. a,(/) ay(J)
Ochia: - —~ - - Jaccard | ————
. \/(an(./)'*'am(f)) (au(i)+a,(/) ay(f)+ay(i)+ao(i)
a(J) ‘
ay,(J) +ay (/) ay(f) ay(/)
Tarantul S TRnd Ampl P
A a,(J) n ay()) e ay(j)+a()) aoo(/)*‘awo(/)‘
ay()+an(f) an(i)+ayn())
ay()) ay(/)+ay()) : ,
CBI o e ~ Wong2 a,(f)-a
ay(f)tao(j) @) +ay()+an(i)+ag()) ong (/) =800
. -1 if a,,(j)>0 . P ; a,(J)
t 1 . . . a, TN . N a4
Optima {am,(/) if 2,(/) < 0 Optimal’} &0)=2) i+
a10(j) Ifa‘\O(j)Sz
Wong3 a,,(j)—h, where h=12+0.1%(a,(j)-2) if 2<a,(j)<10

2.8+0.001*(a,,(j)-10) if a,(j)>10

denotes the number of passed (¢=0) or failed (¢g=1) test cases
that execute statement ;.

SFL is widely accepted and studied as a promising
automated technique in the debugging community, and the
research has empirically proven that SFL is effective to
correlate faulty statements with failures in terms of
suspiciousness [3-13]. According to the popularity and
ability, this study chooses SFL to evaluate the suspiciousness
of contexts and their elements.

III. THE APPROACH

Program slicing as a debugging aid was introduced by
Mark Weiser [14]. Korel and Laski afterwards proposed
dynamic slicing to focus on an execution in a specific input
[15]. Because the localization result of SFL is based on the
executions of a set of test cases instead of a specific
execution, this study adopts static slices for our approach.
There are two types of static slices: static backward slices
(SBS) and static forward slices (SFS). The SBS of a variable
at a statement includes all those statements which affect the
value of the variable at that statement through chains of static
data and/or control dependence [14]. In contrast, the SFS of a
variable at a statement includes all those statements that are
affected by the value of the variable at that statement through
chains of static data and/or control dependence [19]. It can
be seen that SBS can find a set of statements affecting a
statement while SFS can identify a set of statements affected
by a statement.

The basic idea of our approach is to apply program
slicing to SFL by constructing different suspicious contexts
and their elements for discovering and understanding faults.
Our approach uses both SBS and SFS to construct a context
showing how a statement affects and is affected by other
statements in a program, and then utilizes SFL to evaluate
the suspiciousness of each context and its elements.

The Algorithm 1 describes our approach. First, there are
some explanations for Algorithm 1. This section adopts the
program P and set of test cases T defined in Section II. The
program P consists of a set of statements S that is denoted as
{s1, 82, .-, Sn}- FSlice(s;) represents the union of the SFS of
each variable at statement s;. BSlice(s;) denotes the union of
SBS of each variable at statement s;. contextSet stores all
constructed contexts.

ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Algorithm 1 The proposed approach
1: Step 1: Compute the suspiciousness of each statement.
2: SFLAnalyze(S,T);
: Step 2: Construct different suspicious contexts and their statements.
while(S is not empty){

stmSet=GetMostSuspiciousStm(S);

context=ao;

for(i=0; i<stmSet.size; i++)

context=context U BSlice(stmSet[i]) U FSlice(stmSet[i]) U stmSet/[i];

9: context.suspiciousness=stmSet[0].suspiciousness;
10: S=S—context,
11: if(mode=="weak-contexts")
12: for(i=0;i<contextSet.size;i++)
13: context=context—contextSet[i];
14: Add(context,contextSet);
15: }
16: Step 3: Output the localization results.

17: if(visualization == true)
18: Visualize(contextSet);
19: else

20: Text(contextSet);

Step 1: Compute the suspiciousness of each statement.
The function SFLAnalyze(S,T) analyzes the statement
coverage information and test results of test cases 7, and
adopts SFL to compute the suspiciousness of each statement
in S. The format of statement coverage information and test
results of test cases 7 is a matrix as shown in Fig. 1. In this
study, for the statements with the same assigned
suspiciousness, SFL ranks them in descending order of their
line numbers in the source code. This strategy is also adopted
by the ftext-form of localization results mentioned in the
following step 3.

Step 2: Construct different suspicious contexts and
their elements. This step iteratively constructs suspicious
contexts until each statement is classified into a specific
context. As the suspiciousness of some statements may be
the same, the function GetMostSuspiciousStm(S) may return
a set of most suspicious statements in S more than one
statement. Lines 6 to 8 represent that besides the most
suspicious statements, confext consists of a set of statements
that can affect or are affected by at least one of the most
suspicious statements in S. As a context is constructed from
the most suspicious statements in S, line 9 assigns the
suspiciousness of the most suspicious statements to its
corresponding context. Line 10 excludes the statements of
the new context from the set of statements S.

There are two modes in our approach: weak-contexts and
strong-contexts. The mode of weak-contexts demands that a
statement can be only classified into one context. Therefore,
it can cause some less suspicious contexts miss those
statements presented in a more suspicious context. Lines 11
to 13 exclude those statements of all constructed contexts
from the new context when the mode is weak-contexts. In
contrast, the mode of strong-contexts maintains the integrity
of each context. In this mode, a statement may be classified
into different contexts. The step 3 presents a strategy to give
some hints of the repetitive appearance of a statement in
different contexts. Line 14 inserts the new context into
contextSet that contains all constructed contexts.

Step 3: Output the localization results. This step
outputs localization results in two different forms. One is
text-form and the other is visualization-form. The functions
Text(contextSet) and Visualize(contextSet) process the text-
form and visualization-form of the localization results
contextSet rtespectively. The text-form firstly ranks all

Copyright (c) The Government of China, 2012. Used by permission to IARIA.

contexts in descending order of their suspiciousness and then
sequences the statements of each context in descending order
of suspiciousness given by SFL. The ranking list is outputted
in a text form. The visualization-form uses program
dependence graphs [26,27] or lists the statements in a context
along the program dependence edges from the starting point
to show each context and its statements, and maps color to
them according to the suspiciousness. This form can visually
assist developers in understanding and locating faults. Some
information is attached to each statement, such as
suspiciousness and role. There are three types of role,
namely "root", "affect" or "affected". The "root" denotes the
statement is chosen to be sliced to construct the context. The
"affect" and "affected" represents the statement affects or is
affected by the "root" statement respectively. As mentioned
in step 2, a context may be constructed from several
statements with the same highest suspiciousness. Hence, a
context may contain several "root" statements. In this case,
the algorithm will number "root" statements to associate
each "root" statement with its corresponding "affect" and
"affected" statements.

The key idea of the color mapping algorithm is based on
the visualization algorithm of Tarantula [5]. The color of a
context or statement can be anywhere in the continuous
spectrum of colors from red to yellow to green in descending
order of suspiciousness. The contexts or statements are
colored red to denote "danger" and indicate high likelihood
of containing faults; those contexts or statements are
specified green to denote "safety" and suggest little
correlation with the failure; the contexts or statements are
marked yellow to denote "caution" and imply a medium
circumstance between ‘"danger" and ‘"safety". The
visualization algorithm of Tarantula is implemented by
GIMP and limits the suspiciousness to belong to [0, 1].
However, some metrics of SFL can produce a value of
suspiciousness out of this range, such as Wong2, Wong3 and
Optimal. In addition, this study chooses GTK+ to implement
the color mapping algorithm. Hence, a new color mapping
equation is defined in Eq. (1).

Rate—0

Range, if Rate > 0.5
Red = .
(T) * Range = 2* Rate* Range, if Rate < 0.5

(1)

1 - Rate
*R =(2-2*Rate)* R , if Rate > 0.5
color(s) = Green = (05)* Range = (ate) * Range, if Rate
Range, if Rate <0.5
Blue=0
where, Rate= s.suspiciousness — minSuspiciousness and Range = 65535

maxSuspici — minSuspici

In Eq. (1), s represents a context or statement and
s.suspiciousness denotes the suspiciousness of s. The
minSuspiciousness and maxSuspiciousness are the minimum
and maximum suspiciousness in all statements respectively.
GTK+ uses RGB model to produce different colors and
specifies the values of each of the three basic colors at the
range from 0 to 65535. In addition, the color mapping
algorithm just needs red and green to generate the spectrum
of colors for contexts and statements. As a result, Range and

ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Blue equal to 65535 and 0 in Eq. (1) respectively. It can be
found that Eq. (1) can handle any range of the suspiciousness
and map color to contexts and statements from red to yellow
to green in descending order of suspiciousness. Note that if
maxSuspiciousness equals to minSuspiciousness, all contexts
and their statements will be colored green by the color
mapping algorithm.

As mentioned in the step 2, although the mode of strong-
contexts maintains the integrity of each context, checking
those repetitive statements in different contexts may increase
the workload of developers. A strategy is proposed to
address this problem. Following the ranking list of all
contexts in descending order of suspiciousness, this strategy
examines the statements of each context in turn. When
checking the statements of a context, some additional
information is attached to those statements presented in
previous examined contexts, such as rank/total and pre-
contexts. The rank/total means the rank of the statement in
total statements of the program in descending order of
suspiciousness. The pre-contexts denote the set of higher
ranked contexts that contains the statement before this
context. The rank/total shows an indication of how
suspicious a repetitive statement is in total statements of the
program and the pre-contexts provides the connections of a
repetitive statement in different contexts. In addition, the
visualization-form colors gray to the repetitive statements.
The above strategy offers some useful information of the
repetitive statements and can alleviate the burden on
developers for checking those repetitive statements.

As described above, it can be found that our approach
can construct different suspicious contexts and their
statements, and offer examining guidance of these contexts
and statements in both fext-form and visualization-form. It
implies that the proposed approach equips SFL with contexts
to further assist in discovering and understanding bugs.

IV. AN EXPERIMENTAL STUDY

A. Experimental Setup

As SFL outputs a ranking list of all statements without
repetition, this experiment use the weak-contexts mode of
our approach to be compared to SFL. More concretely, the
experiment study compares our approach in the weak-
contexts mode with nine ranking metrics of SFL, namely
Ochiai [3], Jaccard [4], Tarantula [5], Wong2 [6], Wong3 [6],
Ample [7], CBI [8], Optimal and Optimal” [9]. The formulas
of these metrics are illustrated in TABLE 1. This study
chooses the Siemens suite and Space as the benchmarks
because they are two widely used benchmarks in the field of
software debugging with high quality. The two benchmarks
can be obtained from the Software artifact Infrastructure
Repository [28]. The Siemens suite contains 7 programs and
132 faulty versions of these programs. The Space contains
38 faulty versions. We select "universe" suite that contains
all test cases in TABLE II. TABLE II lists the programs, the
number of faulty versions of each program, lines of
statements, lines of executable statements, number of all test
cases, as well as the functional descriptions of the
corresponding program.

Copyright (c) The Government of China, 2012. Used by permission to IARIA.

TABLE II. DESCRIPTION OF THE SIEMENS SUITE AND SPACE
Program |Versions| LOC | Ex | Test Description
print_tokens 7 563 203 | 4130 Lexical analyzer
print_tokens2 10 508 203 | 4115 Lexical analyzer
replace 32 563 289 | 5542 | Pattern recognition
schedule 9 410 162 | 2650 | Priority scheduler
schedule2 10 307 144 | 2710 | Priority scheduler
tcas 41 173 67 | 1608 | Altitude separation
tot_info 23 406 136 | 1052 | Information measure
Space 38 9564 |6218|13585| ADL interpreter

Although there are 170 versions in total, we were unable
to adopt all of them. Because there was no failed test case in
version 32 of replace, version 9 of schedule? and versions 1,
2, 34 of Space, we excluded the five versions. Additionally,
we focus on executable statements, so the modifications of
header files and definition/declaration errors were ignored.
Hence, versions 4 and 6 of print tokens, version 12 of
replace, versions 13, 14, 36, 38 of fcas and versions 6, 10, 19,
21 of tot info were also discarded. Finally, 154 faulty
versions were used for the experiment.

In the experiment, the coverage information is gathered
by using Gcov tool. We use FEMA (Failure Modes and
Effects Analysis) slicing tool [26] developed by our group to
perform program slicing. In addition, we adopt the GTK+ to
implement the algorithm of the visualization of our approach.

B. Evaluation metrics

The effectiveness of debugging techniques is widely
evaluated by the percentage of code that needs to be
examined (or not examined) to find the fault [6]. This
evaluation assumes that developers will follow the ranking
list to examine all statements from top to bottom until they
encounter the faulty statement. Following this notion, we
define fault-localization accuracy (referred as Acc) as the
percentage of executable statements to be examined before
finding the actual faulty statement [10]. A lower value of Acc
indicates higher effectiveness.

For a more detailed comparison, we adopt relative
improvement (referred as Imp) [10]. The Imp is to compare
the total number of statements that need to be examined to
find all faults using our approach versus the number that
need to be examined by using the SFL. A lower value of Imp
shows better improvement that our approach obtains.

C. Results and analysis

Figure 2 illustrates the Acc comparison between SFL
and our approach in all faulty versions. The x-axis
represents the percentage of executable statements to be
examined. The y-axis denotes the percentage of faulty
versions. A point in Fig. 2 represents when a percentage of
executable statements is examined in each faulty version,
the percentage of faulty versions has located their faults.

As shown in Fig. 2, the curves of our approach are
usually higher than those of the corresponding metrics of
SFL. It suggests that our approach improves the
effectiveness of the nine metrics of SFL.

For a more detailed comparison, Fig. 3 presents the /mp
of our approach over each metric of SFL in each program.
The x-axis represents the name of each program. The y-axis

ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

-&-Ochiai(context) B
-4 Jaccard(context) b
-B-Tarantula(context)

30% - —

percentage of faulty versions
g
F
T
L

5% 10% 15% 20% 25% 30% 35% 40% 45% B60% 55% 60% 6a% 70% 75% B80% B5% 90% 05% 100%
percentage of executable statements that need to be examined

> -&-Ample

_A.»-“ -A-\Waong2
a7 -8-Wong3
A -&-Ample(context) B
A/ -A-Wong2(context) s
- -8 Wong3(context)

percentage of faulty versions
g
F

5% 10% 15% 20% 25% 30% 35% 40% 45% B60% 55% 60% 6a% 70% 75% B80% B5% 90% 05% 100%
percentage of executable statements that need to be examined
100% T T T (I - .

-©-CBI

-4 Optimal
’B'Optlmalp
-&-CBl(context)

-4 Optimal(context)
fFOptlm.eul’:'(n:cmtem)

percentage of faulty versions
g
F

L I L I I |
5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% B80% B85% 0% 95% 100%
percentage of executable statements that need to be examined

Figure 2. Acc comparison between SFL and our approach.

100.0%

80.0%

60.0%

40.0%
20.0%

0.0%

-20.0% it it
print_ print_ replac | sched | sched tot_in
token | token tcas Space
e ule ule2 fo
s s2
ESaving(Max) | 88.8% | 56.7% | 39.6% | 10.6% | 21.6% | 35.4% | 41.7% | 38.9%
BSaving(Min) | 36.0% | -4.4% | 10.9% | -3.5% | 15.6% | -0.3% | 9.7% 5.2%
E Saving(Avg) | 59.9% | 26.7% | 20.2% | 2.1% | 18.5% | 9.8% | 21.6% | 22.4%

Figure 4. The maximum, minimum and average saving of our approach
over each program.

denotes the /mp in a specific metric of SFL. The tables in Fig.

3 show the detailed values of /mp on each program. If the
value of Imp is less 100%, it means that our approach
promotes the effectiveness of SFL. Otherwise it indicates our
approach decreases the effectiveness of SFL.

As shown in Fig. 3, the values of Imp over each metric of
SFL are less than 100% in most of programs. This indicates
that the effectiveness of SFL is improved by our approach in
most of programs. Take Ochiai as an example. The lowest
Imp is 39.1% in print _tokens. This implies that our approach

Copyright (c) The Government of China, 2012. Used by permission to IARIA.

120.0%
100.0%
80.0%
60.0%
40.0%
20.0% L
0.0% int_t | print_t [hed hed tot_inf
print_t | print_t | replac | schedu | schedu ot_in
okens |okens2 e le le2 teas o Space
A Ochiai 39.1% | 69.4% | 83.7% | 103.5%| 82.6% | 98.8% | 73.9% | 94.8%
BJaccard 15.9% | 64.1% | 80.7% | 101.7%| 83.8% |100.3%| 87.4% | 92.1%
HETarantula| 16.9% | 65.1% | 80.0% | 102.7%| 83.9% |100.2%| 83.5% | 75.3%
120.0%
100.0% s
80.0%
60.0% =
40.0% :
20.0%
0.0% : = :
print_t | print_t I schedu | schedu t tot_inf s
okens | okensz |"€P1C® le le2 cas o pace
BAAmple | 58.8% | 44.6% | 60.4% | 89.4% 84.4% | 88.2% | 58.3% | 65.1%
BWong2| 27.0% | 43.3% | 70.8% | 94.2% | 79.8% 64.6% | 61.6% | 61.1%
BWong3| 64.0% |104.3%| 84.1% | 93.8% | 78.4% | 85.2% | 83.3% | 76.1%
120.0%
100.0%
80.0% %
60.0%
40.0%
20.0%
0.0% -
print_t | print_t | replac | schedu | schedu tot_inf
tcas Space
okens |okens2 e le le2 [}
@A csl 11.2% | 62.3% | 81.1% |102.7% | 83.9% 100.2% | 90.3% | 81.6%
B Optimal 64.0% |102.2%| 87.9% | 99.7% | 78.4% | 86.7% | 85.4% | 79.4%
E OptimalP | 64.0% |104.4%| 89.1% | 93.8% | 78.4% | 87.3% | 81.9% | 72.5%

Figure 3. Imp of our approach over each metric of SFL on each program.

obtains the maximum improvement over Ochiai in
print_tokens. 1t also means that when locating all faults in
print_tokens, our approach only requires the examination of
39.1% of the number of statements that Ochiai requires the
examination of. This represents a 60.9% saving in terms of
effort, which is the maximum saving that our approach
obtains in Ochiai. However, the highest /mp is 103.5% in
Schedule, which implies that our approach requires an extra
3.5% effort to locate all faults in Schedule compared to
Ochiai. This represents the minimum saving, -3.5%, that our
approach obtains in Ochiai.

Fig. 4 illustrates the maximum, minimum and average
saving of our approach in each program. As shown in Fig. 4,
the average maximum saving that our approach obtains is
41.7% and the average minimum saving is 8.6%. On average,
the saving of our approach is 22.7%, which indicates our
approach is more effective than SFL.

Because the high suspicious statements evaluated by SFL
are usually relevant to the faulty statements, our approach
can classify the faulty statements into more suspicious
contexts and they finally obtain higher ranks compared to
those ranks in SFL. However, the high suspicious statements
sometimes may be irrelevant to the faulty statements. Thus,

ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

it can cause some less suspicious statements that are relevant
to the high suspicious statements surpass the faulty
statements in more suspicious contexts. This reveals the
reason why our approach slightly decreases the effectiveness
of some metrics of SFL in several programs.

We also found that the decrease of effectiveness, to some
extent, is caused by the vulnerability of SFL. For example,
SFL utilizes coverage information that cannot identify those
statements whose execution affects the program output.
Suppose that a non-faulty statement that is irrelevant to the
faulty statement and has little contribution to the faulty
output. Suppose further that the number of failed test runs
executing the non-faulty statement is larger than that of
failed test runs covering the faulty statement, whereas the
number of passed test runs covering the non-faulty statement
is less than that of passed test runs executing the faulty
statement. In this case, SFL wusually assigns higher
suspiciousness to the non-faulty statement than that to the
faulty statement. If a context is constructed from this non-
faulty statement, it is more probable for some less suspicious
statements associated with this non-faulty statement to
surpass the faulty statement in this more suspicious context.
However, if SFL can identify those statements whose
execution affects the program output, SFL can rank this non-
faulty statement lower than the faulty statement. Under this
circumstance, it reduces the possibility of decreasing the
effectiveness of SFL when using our approach.

D. Threats to Validity

A threat to the validity of our experiment is the subject
programs used by the study. The experiment chooses the
Siemens suite and Space because they are two de-facto
benchmarks in the field of software debugging. Apparently,
the results obtained may not apply to all programs. For
instance, a program, in reality, usually ships with multiple
faults rather than a single fault as used in our experiment.
The recent research [2] has found that multiple faults pose a
negligible effect on the effectiveness of fault localization,
and even in the presence of many faults, at least one fault is
found by the fault localization technique with high
effectiveness. Although these findings increase our
confidence in the effectiveness of our approach for locating
multiple faults, they cannot guarantee that multiple faults
create a negligible effect on the effectiveness of our
approach. It is necessary to use more subject programs to
further investigate the effectiveness of our approach.

Another threat is the metrics of SFL adopted by our
experiments. The experimental study selects nine metrics of
SFL to empirically evaluate the effectiveness and
applicability of our approach. However, SFL is a big family
and contains many metrics [3-13]. Our approach may not be
applicable to some other metrics of SFL. It is vital to apply
our approach to a much broader spectrum of SFL to further
evaluate its effectiveness and applicability.

V. RELATED WORK

Spectrum-based fault localization (SFL) has motivated
plenty of debugging techniques over recent years. The
effectiveness of SFL highly depends on the ranking metrics

Copyright (c) The Government of China, 2012. Used by permission to IARIA.

that measure the correlations between program entities and
failures. Hence, many metrics of SFL are proposed, such as
the nine metrics of SFL adopted by the experiment [3-9]. In
addition, there are many types of program entities presented
for SFL, such as statements [5,6,9,10], blocks [3,7], branches
[8], etc. Some new complex coverage types of program
entities using dependences or flow are also proposed to
strengthen the relationship among the elements of a program
entity, such as mixed coverage [11], information flow
coverage [12] and control flow edge coverage [13]. Although
all of the above approaches have delivered the promising
ability in correlating program entities and failures, they
usually ignore the fact that the contextual information is
useful for discovering and understanding the bugs. To
enhance contexts for SFL, our approach applies program
slicing to SFL to construct different suspicious contexts and
their statements.

Program slicing technique [14-16] has also been widely
studied in the field of debugging. Kusumoto et al. [17]
conducted an experimental evaluation of program slicing for
fault localization and Zhang et al. [18] investigate the
effectiveness of dynamic slicing in locating faults. Their
research shows program slicing is wuseful for fault
localization. To further narrow down the searching scope,
Gupta et al. [19] present failure inducing chops that intersect
the forward dynamic slices of inputs with the backward
dynamic slices of outputs. Zhang et al. [20] study the
probable missing dependencies in dynamic slices and use an
effective slicing approach to locate execution omission errors.
Xin et al. [21] present a data-centric dynamic slicing
technique that focuses on the dependencies in memory
locations. Zhang et al. [22] propose an event-centric dynamic
slicing technique that removes the irrelevant events from the
sets of events to narrow down the searching scope of events.
Although slicing-based debugging techniques have made
great progress in these years, the size of a slice is still large.
In addition, the elements of a slice are always treated with
same suspiciousness to be faulty and no checking order is
recommended to developers. Therefore, the slicing-based
debugging techniques are rarely used in practice [2]. To
alleviate this problem, our approach uses SFL to quantify the
suspiciousness of a slice and its statements, and provides the
guidance as to how the statements in a slice should be
examined.

Baah et al. [23] uses the conditional probability in a
dependence graph of a failed run to compute the
suspiciousness of each node, and associate a state
configuration with each node to construct a context and
understand the problem. In contrast to their approach, our
approach uses program slicing to iteratively construct
different suspicious contexts and their statements according
to the location results given by SFL.

Jiang et al. [24] proposes a context-aware statistical
debugging approach by constructing and ranking the control-
flow paths. The control-flow path is a context showing how a
faulty predicate behave in a program. HOLMES [25]
statistically analyzes path profiles of both passed runs and
failed runs to isolate bugs that correlate with failure, and also
uses paths to show a context where bugs occur. Unlike these

ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

two approaches, our approach uses program slicing
constructs contexts and their elements, and utilizes SFL to
assign suspiciousness to them. A context in our approach is
essentially a slice showing how the most suspicious
statement affects and is affected by other statements.

VI. CONCLUSION

This paper proposes a debugging approach to enhance
contexts for a promising automated debugging technique,
namely spectrum-based fault localization (SFL). The
proposed approach applies program slicing to SFL by
constructing different suspicious contexts and their elements
for assist in understanding and locating faults. In addition,
our approach offers two modes to different experienced
developers, and uses the visualization and program
dependence to further help understand the problem. The
experimental study on two standard benchmarks shows that
the proposed approach outperforms all nine metrics of SFL.

In future work, we plan to evaluate the effectiveness of
our approach across a much broader spectrum of programs.
We will also further study the applicability of our approach
to more metrics of SFL and other automated debugging
techniques.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China under Grant No.91118007,
90818024 and 61133001, the National High Technology
Research and Development Program of China (863 program)
under Grant No.2011AA010106 and 2012AA011201 and the
Program for New Century Excellent Talents in University.

REFERENCES

[11 C.Parnin and A. Orso, "Are automated debugging techniques actually
helping programmers?," in the 2011 International Symposium on
Software Testing and Analysis, Toronto, Canada, 2011, pp. 199-209.

[2] N. DiGiuseppe and J. Jones, "On the influence of multiple faults on
coverage-based fault localization," in the 2011 International
Symposium on Software Testing and Analysis, Toronto, Canada, 2011.

[31 R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, "On the accuracy
of spectrum-based fault localization," in Testing: Academic and
Industrial Conference Practice and Research Techniques -
MUTATION, Windsor, UK, 2007, pp. 89-98.

[4] M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, "Pinpoint:
Problem determination in large, dynamic internet services," in the
32nd International Conference on Dependable Systems and Networks,
Maryland, USA, 2002, pp. 595-604.

[51 J. A. Jones, M. J. Harrold, and J. Stasko, "Visualization of test
information to assist fault localization," in the 24th International
Conference on Software Engineering, Orlando, USA, 2002, pp. 467-
477.

[6] W. E. Wong, Y. Qi, L. Zhao, and K. Y. Cai, "Effective fault
localization using code coverage," in the 31st Annual International
Computer Software and Applications Conference, Beijing, China,
2007, pp. 449-456.

[71 R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, "An evaluation of
similarity coefficients for software fault localization," in the 12th
Pacific Rim International Symposium on Dependable Computing,
Riverside, USA, 2006, pp. 39-46.

[8] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
"Scalable statistical bug isolation," in the ACM SIGPLAN Conference

Copyright (c) The Government of China, 2012. Used by permission to IARIA.

on Programming Language Design and Implementation, NY, USA,
2005, pp. 15-26.

[9]1 L. Naish, H. J. Lee, and K. Ramamohanarao, "A model for spectra-
based software diagnosis," ACM Transactions on Software
Engineering and Methodology, vol. 20, p. 11, 2011.

[10] V. Debroy, W. E. Wong, X. Xu, and B. Choi, "A Grouping-Based
Strategy to Improve the Effectiveness of Fault Localization
Techniques," in the 10th International Conference on Quality
Software, Zhangjiajie, China, 2010, pp. 13-22.

[11] R. Santelices and J. A. Jones, "Lightweight fault-localization using
multiple coverage types," in the 31Ist International Conference on
Software Engineering, Vancouver, Canada, 2009, pp. 56-66.

[12] W. Masri, "Fault localization based on information flow coverage,"
Software Testing, Verification and Reliability, vol. 20, pp. 121-147,
2010.

[13] Z. Zhang, W. Chan, T. Tse, B. Jiang, and X. Wang, "Capturing
propagation of infected program states," in the ESEC/FSE 2009,
Amsterdam, The Netherlands, 2009, pp. 43-52.

[14] M. Weiser, "Program slicing," [EEE Transactions on Sofiware
Engineering, vol. 10, pp. 352-357, 1984.

[15] B. Korel and J. Laski, "Dynamic Program Slicing," Information
Processing Letters, vol. 29, pp. 155-163, 1988.

[16] T. Gyimothy, A. Beszédes, and I. Forgacs, "An efficient relevant
slicing method for debugging," in the ESEC/FSE 1999, Toulouse,
France, 1999, pp. 303-321.

[17] S. Kusumoto, A. Nishimatsu, K. Nishie, and K. Inoue, "Experimental
evaluation of program slicing for fault localization," Empirical
Software Engineering, vol. 7, pp. 49-76, 2002.

[18] X. Zhang, N. Gupta, and R. Gupta, "A study of effectiveness of
dynamic slicing in locating real faults," Empirical Sofiware
Engineering, vol. 12, pp. 143-160, 2007.

[19] N. Gupta, H. He, X. Zhang, and R. Gupta, "Locating faulty code
using failure-inducing chops," in the 20th International Conference
on Automated Software Engineering, Long Beach, USA, 2005, pp.
263-272.

[20] X. Zhang, S. Tallam, N. Gupta, and R. Gupta, "Towards locating
execution omission errors," ACM Sigplan Notices, vol. 42, pp. 415-
424, 2007.

[21] B. Xin and X. Zhang, "Memory slicing," in the 18th International
Symposium on Software Testing and Analysis, Chicago, USA, 2009,
pp. 165-176.

[22] X. Zhang, S. Tallam, and R. Gupta, "Dynamic slicing long running
programs through execution fast forwarding," in the [4th
International Symposium on Foundations of Software Engineering,
Portland, USA, 2006, pp. 81-91.

[23] G. K. Baah, A. Podgurski, and M. J. Harrold, "The probabilistic
program dependence graph and its application to fault diagnosis,"
IEEE Transactions on Software Engineering, vol. 36, pp. 528-545,
2009.

[24] L. Jiang and Z. Su, "Context-aware statistical debugging: from bug
predictors to faulty control flow paths," in the 22nd International
Conference on Automated Software Engineering, Atlanta, Georgia,
2007, pp. 184-193.

[25] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani,
"HOLMES: Effective statistical debugging via efficient path
profiling," in the 3Ist International Conference on Software
Engineering, Vancouver, Canada, 2009, pp. 34-44.

[26] W. Dong, J. Wang, C. Zhao, X. Zhang, and J. Tian, "Automating
software FMEA via formal analysis of dependence relations," in the
32nd Annual International Computer Software and Applications
Conference, Turku, Finland, 2008, pp. 490-491.

[27] J. Ferrante, K. J. Ottenstein, and J. D. Warren, "The program
dependence graph and its use in optimization," ACM Transactions on
Programming Languages and Systems, vol. 9, pp. 319-349, 1987.

[28] SIR, http://sir.unl.edu/portal/index.php

ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Leveraging Traceability between Code and Tasks
for Code Review and Release Management

Nitesh Narayan, Jan Finis, Yang Li
Institute of Computer Science
Technical University of Munich
Boltzmannstrasse 3, 85748 Garching, Germany
{narayan, finis, liya} @in.tum.de

Abstract—The software maintenance process relies on trace-
ability information captured throughout the development of a
software product. Traceability from code to software engineer-
ing artifacts like features or requirements has been extensively
researched. In this paper, we focus on traceability links between
code and tasks. Tasks can be further linked to other artifacts
such as features or requirements. In this paper, we present an
approach for (semi-) automatic creation of traceability links
between code and tasks. The core idea is to let the developers
create the links themselves while they use a version control
system. We use these traceability links to improve the processes
of code review and release management. A prototype based
on this work has been implemented and integrated into the
model-based CASE tool UNICASE. We applied the developed
prototype in the open-source project UNICASE itself and
report about our significant experiences.

Keywords-traceability; code review; release management;
patch; branch.

I. INTRODUCTION

Software configuration management (SCM) is the dis-
cipline of managing the evolution of large and complex
software systems to assist software development and main-
tenance processes [1]. According to the IEEE standard [2],
SCM covers several activities such as identification of
product components and their versions, audit, review, as
well as change control (by establishing procedures to be
followed when performing a change). Practicing SCM in
a software project has several benefits, including increased
productivity, better project control, identification and fixes
of bugs, and improved customer satisfaction [3]. Especially
in projects with increased complexity, efficient handling
of SCM requires tool support. Standard SCM tools exist
for various activities e.g. version control systems (VCS).
However, other SCM activities still lack proper tool support
because of the involved traceability challenges, especially
the review of changes during a code review and the building
of a software product during release management. In this
paper, we present an approach for (semi-) automatic creation
of traceability links between code and tasks to improve
the processes of code review and release management by
providing tool support. Tasks represent a unit of work, which

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

Alexander Delater
Institute of Computer Science
University of Heidelberg

Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

delater @informatik.uni-heidelberg.de

describe changes to be performed to the code or new devel-
opments and they are used in many software development
projects. In the remainder of the paper, we use the term
work item instead of task to avoid misunderstandings with
the term task used in requirements engineering.

The paper is structured as follows: in Section II, we
provide background information. In Section III, we describe
the processes of code review and release management and
benefits from using traceability links between code and work
items. The approach is presented in Section IV and the
prototype implementation is shown in Section V. In Section
VI, we describe our experiences in using the prototype in the
open-source project UNICASE. Related work is presented
in Section VII and a discussion and future work conclude
the paper in Section VIII and Section IX, respectively.

II. BACKGROUND

Traceability links between requirements and work items
have previously been researched in the MUSE model
(Management-based Unified Software Engineering) [4],
which integrates the system model and the project model.
The system model describes the system under construction,
such as requirements, features, use cases or UML artifacts.
The project model describes the on-going project, such as
work items, the organizational structure, sprints or meetings.
The MUSE model is implemented in the model-based CASE
tool UNICASE [5] [6], which we use to implement our
approach.

The presented approach in this paper is dealing with
the (semi-) automatic creation of traceability links between
work items and code. Previous studies have shown that
links between system elements and project elements provide
useful information for the work (by shortening the naviga-
tion paths of the developers) and that based on such links
system elements are kept more up-to-date [7]. Thus, we
are extending the MUSE model by introducing traceability
to code. Various development activities can benefit from
the traceability links between requirements, work items and
code. In this work, we concentrate on code review and
release management activities.

ICSEA 2012 : The Seventh Interna