
ICSEA 2012

The Seventh International Conference on Software Engineering Advances

ISBN: 978-1-61208-230-1

November 18-23, 2012

Lisbon, Portugal

ICSEA 2012 Editors

Herwig Mannaert, University of Antwerp, Belgium

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Elena Troubitsyna, Åbo Akademi University, Finland

Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) –

Ishikawa, Japan

 1 / 729

ICSEA 2012

Forward

The Seventh International Conference on Software Engineering Advances (ICSEA 2012), held on November 18-23,
2012 in Lisbon, Portugal, continued a series of events covering a broad spectrum of software-related topics.

The conference covered fundamentals on designing, implementing, testing, validating and maintaining various
kinds of software. The tracks treated the topics from theory to practice, in terms of methodologies, design,
implementation, testing, use cases, tools, and lessons learnt. The conference topics covered classical and advanced
methodologies, open source, agile software, as well as software deployment and software economics and
education.

The conference had the following tracks:

 Advances in fundamentals for software development

 Advanced mechanisms for software development

 Advanced design tools for developing software

 Advanced facilities for accessing software

 Software performance

 Software security, privacy, safeness

 Advances in software testing

 Specialized software advanced applications

 Open source software

 Agile software techniques

 Software deployment and maintenance

 Software engineering techniques, metrics, and formalisms

 Software economics, adoption, and education

 Business technology

 Improving research productivity

Similar to the previous edition, this event continued to be very competitive in its selection process and very well
perceived by the international software engineering community. As such, it is attracting excellent contributions
and active participation from all over the world. We were very pleased to receive a large amount of top quality
contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2012 technical program committee as
well as the numerous reviewers. The creation of such a broad and high quality conference program would not have
been possible without their involvement. We also kindly thank all the authors that dedicated much of their time
and efforts to contribute to the ICSEA 2012. We truly believe that thanks to all these efforts, the final conference
program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals, organizations and sponsors.
We also gratefully thank the members of the ICSEA 2012 organizing committee for their help in handling the
logistics and for their work that is making this professional meeting a success.

We hope the ICSEA 2012 was a successful international forum for the exchange of ideas and results between
academia and industry and to promote further progress in software engineering research.

We hope Lisbon provided a pleasant environment during the conference and everyone saved some time for
exploring this beautiful city.

 2 / 729

ICSEA 2012 Chairs

ICSEA Advisory Chairs
Herwig Mannaert, University of Antwerp, Belgium
Jon G. Hall, The Open University - Milton Keynes, UK
Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Roy Oberhauser, Aalen University, Germany
Elena Troubitsyna, Åbo Akademi University, Finland
Luis Fernandez-Sanz, Universidad de Alcala, Spain
Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

ICSEA 2012 Research Institute Liaison Chairs
Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) – Ishikawa, Japan
Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Simon Tsang, Telcordia - Piscataway, USA

ICSEA 2012 Industry/Research Chairs
Herman Hartmann, University of Groningen, The Netherlands
Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2012 Special Area Chairs

Formal Methods
Paul J. Gibson, Telecom & Management SudParis, France

Business and process techniques
Maribel Yasmina Santos, University of Minho, Portugal

Testing and Validation
Florian Barth, University of Mannheim, Germany

 3 / 729

ICSEA 2012

Committee

ICSEA Advisory Chairs

Herwig Mannaert, University of Antwerp, Belgium
Jon G. Hall, The Open University - Milton Keynes, UK
Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Roy Oberhauser, Aalen University, Germany
Elena Troubitsyna, Åbo Akademi University, Finland
Luis Fernandez-Sanz, Universidad de Alcala, Spain
Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

ICSEA 2012 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) – Ishikawa, Japan
Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Simon Tsang, Telcordia - Piscataway, USA

ICSEA 2012 Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands
Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2012 Special Area Chairs

Formal Methods
Paul J. Gibson, Telecom & Management SudParis, France

Business and process techniques
Maribel Yasmina Santos, University of Minho, Portugal

Testing and Validation
Florian Barth, University of Mannheim, Germany

ICSEA 2012 Technical Program Committee

Shahliza Abd Halim, Universiti of Technologi Malaysia (UTM) - Skudai, Malaysia
Mohammad Abdallah, Durham University, UK
Adla Abdelkader, University of Oran, Algeria
Moataz A. Ahmed, King Fahd University of Petroleum & Minerals – Dhahran, Saudi Arabia

 4 / 729

Syed Nadeem Ahsan, TU-Graz, Austria
Mehmet Aksit, University of Twente, The Netherlands
Ahmed Al-Moayed, Hochschule Furtwangen University, Germany
Zakarya Alzamil, Riydh College of Technology, Saudi Arabia
Vincenzo Ambriola, Università di Pisa, Italy
Buzzi Andreas, Credit Suisse AG – Zürich, Switzerland
Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus
Maria Anjum, Durham University, UK
Rodrigo Assad, CESAR, Brazil
Paulo Asterio de Castro Guerra, Tapijara Programação de Sistemas Ltda. - Lambari, Brazil
Colin Atkinson, University of Mannheim, Germany
Robert Azarbod, Oracle Corporation, USA
Gilbert Babin, HEC Montréal, Canada
Muneera Bano, International Islamic University - Islamabad, Pakistan
Jorge Barreiros, CITI/UNL: Center of Informatics and Information Technology - UNL || ISEC/IPC: ISEC -
Polytechnic Institute of Coimbra, Portugal
Florian Barth, University of Mannheim, Germany
Gabriele Bavota, University of Salerno, Italy
Assia Belbachir, IFSTTAR - Versailles, France
Noureddine Belkhatir, University of Grenoble, France
Simona Bernardi, Centro Universitario de la Defensa / Academia General Militar - Zaragoza, Spain
Celestina Bianco, Systelab Technologies - Barcelona, Spain
Christian Bird, Microsoft, USA
Kenneth Boness, Reading University, UK
Marko Boskovic, Forschungsgesellschaft mbH – Wien, Austria
Mina Boström Nakicenovic, Sungard Front Arena, Stockholm, Sweden
Hongyu Pei Breivold, ABB Corporate Research, Sweden
Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Luigi Buglione, ETS Montréal / Engineering.IT S.p.A., Canada
David W. Bustard, University of Ulster - Coleraine, UK
Fabio Calefato, University of Bari, Italy
José Carlos Metrôlho, Polytechnic Institute of Castelo Branco, Portugal
Bengt Carlsson, Blekinge Institute of Technology – Karlskrona, Sweden
Rocío Castaño Mayo, Universidad de Oviedo, Spain
Antonin Chazalet, Orange France
Yoonsik Cheon, The University of Texas at El Paso, USA
Vanea Chiprianov, Telecom-Bretagne, France
Morakot Choetkiertikul, Mahidol University, Thailand
Antonio Cicchetti, Mälardalen University, Sweden
Andrew Connor, Auckland University of Technology, New Zealand
Rebeca Cortázar, University of Deusto - Bilbao, Spain
Oliver Creighton, Siemens AG, Germany
Carlos E. Cuesta, Rey Juan Carlos University - Madrid, Spain
Beata Czarnacka-Chrobot, Warsaw School of Economics, Poland
Darren Dalcher, Middlesex University - London, UK
Ferruccio Damiani, Università degli Studi di Torino, Italy
Claudio de la Riva, Universidad de Oviedo - Gijon, Spain
Peter De Bruyn, University of Antwerp, Belgium

 5 / 729

Onur Demirors, Middle East Technical University, Turkey
Giovanni Denaro, Università degli Studi di Milano - Bicocca, Italy
Steven A. Demurjian, The University of Connecticut - Storrs, USA
Antinisca Di Marco, University of L'Aquila - Coppito (AQ), Italy
Tadashi Dohi, Hiroshima University, Japan
Lydie du Bousquet, J. Fourier-Grenoble I University, LIG labs, France
Juan Carlos Dueñas López, Universidad Politécnica de Madrid, Spain
Lars Ebrecht, German Aerospace Centre (DLR), Germany
Holger Eichelberger, University of Hildesheim, Germany
Younès El Amrani, Université Mohammed V - Agdal, Morocco
Mohamed El-Attar, King Fahd University of Petroleum and Minerals - Al Dhahran, Kingdom of Saudi
Arabia
Vladimir Estivill-Castro, Griffith University - Nathan, Australia
Fausto Fasano, University of Molise - Pesche, Italy
Sérgio Adriano Fernandes Lopes, University of Minho, Portugal
Feipre Ferraz, CESAR / CIN-UFPE, Brazil
Jicheng Fu, University of Central Oklahoma, USA
G.R. Gangadharan, IDRBT, India
Stoyan Garbatov, Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento
- Lisboa, Portugal
Kiev Gama, CESAR - Recife Center for Advance Studies, Brazil
Antonio Javier García Sánchez, Technical University of Cartagena, Spain
José García-Fanjul, University of Oviedo, Spain
Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany
Paul J. Gibson, Telecom & Management SudParis, France
Rainer Gimnich, IBM Deutschland – Frankfurt, Germany
Ignacio González Alonso, University of Oviedo, Spain
Mohamed Graiet, ISIMS, MIRACL, Monastir, Tunisia
Gregor Grambow, University of Ulm, Germany
Vic Grout, Glyndwr University - Wrexham, UK
Bidyut Gupta, Southern Illinois University, USA
Ensar Gul, Marmara University - Istanbul, Turkey
Zhensheng Guo, Siemens AG - Erlangen, Germany
Waqas Haider Khan Bangyal, IUI Islamabad, Pakistan
Herman Hartmann, University of Groningen, The Netherlands
Željko Hocenski, University Josip Juraj Strossmayer of Osijek, Croatia
Bernhard Hollunder, Furtwangen University of Applied Sciences, Germany
Siv Hilde Houmb, Secure-NOK AS, Norway
Noraini Ibrahim, University of Technology Malaysia (UTM), Malaysia
Jun Iio, Mitsubishi Research Institute, Inc. - Tokyo, Japan
Naveed Ikram, Riphah International University – Islamabad, Pakistan
Emilio Insfran, Universitat Politècnica de València, Spain
Shareeful Islam, University of East London, UK
Slinger Jansen (Roijackers), Utrecht University, The Netherlands
Hermann Kaindl, TU-Wien, Austria
Mira Kajko-Mattsson, Stockholm University and Royal Institute of Technology, Sweden
Yasutaka Kamei, Kyushu University, Japan
Ahmed Kamel, Concordia College - Moorhead, USA

 6 / 729

Dariusz W. Kaminski, The Open University, UK
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
Lucia Kapova, Karlsruhe Institute of Technology, Germany
Tatjana Kapus, University of Maribor, Slovenia
Thorsten Keuler, Fraunhofer Institute for Experimental Software Engineering - Kaiserslautern, Germany
Foutse Khomh, Queen's University, Canada
Holger Kienle, Mälardalen University, Sweden
Mourad Kmimech, l’Institut Supérieur d’informatique de Mahdia (ISIMA), Tunisia
Jens Knodel, Fraunhofer IESE, Germany
William Knottenbelt, Imperial College London, UK
Radek Kocí, Brno University of Technology, Czech Republic
Christian Kop, Alpen-Adria-Universität Klagenfur, Austria
Georges Edouard Kouamou, National Advanced School of Engineering - Yaoundé, Cameroon
Sègla Kpodjedo, Ecole Polytechnique de Montréal, Canada
Ondrej Krejcar, University of Hradec Kralove, Czech Republic
Natalia Kryvinska, University of Vienna, Austria
Sukhamay Kundu, Louisiana State University - Baton Rouge, USA
Eugenijus Kurilovas, Vilnius University and Vilnius Gediminas Technical University, Lithuania
Alla Lake, LInfo Systems, LLC - Greenbelt, USA
Einar Landre, Statiol ASA, Norway
Jannik Laval, University Bordeaux 1, France
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Luka Lednicki, University of Zagreb, Croatia
Plinio Sá Leitão-Junior, Federal University of Goias, Brazil
Jörg Liebig, University of Passau, Germany
Maria Teresa Llano Rodriguez, Heriot-Watt University, UK
Juan Pablo López-Grao, University of Zaragoza, Spain
Marcelo Luna, LiveWare, Argentina
Ricardo J. Machado, University of Minho, Portugal
Nicos Malevris, Athens University of Economics and Business, Greece
Herwig Mannaert, University of Antwerp, Belgium
Eda Marchetti, ISTI-CNR - Pisa Italy
Alexandre Marcos Lins de Vasconcelos, Federal University of Pernambuco, Brazil
Leonardo Mariani, University of Milano-Bicocca, Italy
Adriana Martín, National University of Patagonia Austral - Santa Cruz & GIISCo Research Group, National
University of Comahue - Neuquén, Argentina
Miriam Martínez Muñoz, Universidad de Alcalá de Henares, Spain
Karl Meinke, KTH Royal Institute of Technology, Sweden
Igor Melatti, Sapienza Università di Roma, Italy
Jose Merseguer, Universidad de Zaragoza, Spain
Markus Meyer, University of Applied Sciences Ingolstadt, Germany
João Miguel Fernandes, Universidade do Minho - Braga, Portugal
Hassan Mountassir, University of Besançon, France
Henry Muccini, University of L'Aquila, Italy
Oksana Nikiforova, Riga Technical University, Latvia
Natalja Nikitina, KTH Royal Institute of Technology - Stockholm, Sweden
Mara Nikolaidou, Harokopio University of Athens, Greece
Marcellin Julius Nkenlifack, Univeristé de Dschang - Bandjoun, Cameroun

 7 / 729

Tetsuo Noda, Shimane University, Japan
Marc Novakouski, Software Engineering Institute/Carnegie Mellon University, USA
Roy Oberhauser, Aalen University, Germany
Pablo Oliveira Antonino de Assis, Fraunhofer Institute for Experimental Software Engineering - IESE,
Germany
Flavio Oquendo, European University of Brittany - UBS/VALORIA, France
Baris Ozkan, Middle East Technical University, Turkey
Claus Pahl, Dublin City University, Ireland
Marcos Palacios, University of Oviedo, Spain
Kai Pan, University of North Carolina at Charlotte, USA
Päivi Parviainen, VTT, Software Technologies Center, Finland
Aljosa Pasic, ATOS Research, Spain
Fabrizio Pastore, University of Milano - Bicocca, Italy
Asier Perallos, University of Deusto, Spain
Óscar Pereira, Instituto de Telecomunicações-DETI: University of Aveiro, Portugal
David Pheanis, Arizona State University, USA
Pasqualina Potena, Università degli Studi di Bergamo, Italy
Christian Prehofer, Ludwig-Maximilians-Universität München, Germany
Abdallah Qusef, University of Salerno, Italy
Claudia Raibulet, Università degli Studi di Milano-Bicocca, Italy
Muthu Ramachandran, Leeds Metropolitan University, UK
Amar Ramdane-Cherif, University of Versailles, France
Gianna Reggio, DIBRIS - University of Genova, Italy
Hassan Reza, University of North Dakota - School of Aerospace, USA
Samir Ribic, University of Sarajevo, Bosnia and Herzegovina
Elvinia Riccobene, University of Milan, Italy
Daniel Riesco, National University of San Luis, Argentina
Daniel Rodríguez, University of Alcalá, Madrid, Spain
María Luisa Rodríguez Almendros, Universidad de Granada, Spain
Siegfried Rouvrais, TELECOM Bretagne, France
Sébastien Salva, LIMOS-CNRS / Auvergne University / IUT d'Aubière, France
Luca Santillo, Agile Metrics, Italy
Maribel Yasmina Santos, University of Minho, Portugal
Patrizia Scandurra, University of Bergamo - Dalmine, Italy
Giuseppe Scanniello, Università degli Studi della Basilicata - Potenza, Italy
Klaus Schmid, University of Hildesheim, Germany
Rainer Schmidt, HTW-Aalen, Germany
Christelle Scharff, Pace University, USA
István Siket, University of Szeged, Hungary
Thomas Stocker, University of Freiburg, Germany
Mahbubur R. Syed, Minnesota State University – Mankato, USA
Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST), Japan
Wasif Tanveer, University of Engineering and Technology - Lahore, Pakistan
Pierre Tiako, Langston University, USA
Maarit Tihinen, VTT Technical Research Centre of Finland - Oulu, Finland
Maria Tortorella, University of Sannnio - Benevento Italy
Davide Tosi, Università degli studi dell'Insubria - Varese, Italy
Peter Trapp, Ingolstadt, Germany

 8 / 729

Elena Troubitsyna, Åbo Akademi University, Finland
Mariusz Trzaska, Polish Japanese Institute of Information Technology - Warsaw, Poland
Simon Tsang, Applied Research Telcordia - Piscataway
George A. Tsihrintzis, University of Piraeus, Greece
Masateru Tsunoda, Toyo University, Japan
Javier Tuya, Universidad de Oviedo - Gijón, Spain
Christelle Urtado, LGI2P / Ecole des Mines d'Alès - Nîmes, France
Dieter Van Nuffel, University of Antwerp, Belgium
Sergiy Vilkomir, East Carolina University - Greenville, USA
Hironori Washizaki, Waseda University, Japan
Rainer Weinreich, Johannes Kepler University Linz, Austria
Victor Winter, University of Nebraska-Omaha, USA
Martin Wojtczyk, Technische Universität München, Germany & Bayer HealthCare, USA
Haibo Yu, Shanghai Jiao Tong University, China
Saad Zafar, Riphah International University - Islamabad, Pakistan
Amir Zeid, American University of Kuwait, Kuwait
Michal Zemlicka, Charles University – Prague, Czech Republic
Qiang Zhu, The University of Michigan - Dearborn, USA

 9 / 729

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 10 / 729

Table of Contents

Enhancing Contexts for Automated Debugging Techniques
Yan Lei, Chengsong Wang, Xiaoguang Mao, and Quanyuan Wu

1

Leveraging Traceability between Code and Tasks for Code Review and Release Management
Nitesh Narayan, Alexander Delater, Jan Finis, and Yang Li

8

A Multiple View Environment for Collaborative Software Comprehension
Glauco de F Carneiro, Carlos F. R. Conceicao, and Jose M N David

15

Assisting bug Triage in Large Open Source Projects Using Approximate String Matching
Amir H. Moin and Gunter Neumann

22

Using Normalized Systems Patterns as Knowledge Management
Peter De Bruyn, Philip Huysmans, Gilles Oorts, Dieter Van Nuffel, Herwig Mannaert, Jan Verelst, and Arco Oost

28

An UML-based Authoring Approach of S1000D Procedural Data Modules and Tool Support
Youhee Choi, Jeong-Ho Park, Byungtae Jang, and DongSun Lim

34

Algorithmic Software Adaptation Approach in Mobile Augmented Reality Systems
Oleksii Vekshyn and Mykola Tkachuk

40

A Case Study in Modeling a Fault-tolerant Satellite System Through Implementation of Dynamic Reconfiguration
via Handshake
Kashif Javed and Elena Troubitsyna

44

Transformation of Medical Service Ontology to Relational Data Models
Osamu Takaki, Izumi Takeuti, Koichi Takahashi, Noriaki Izumi, Koichiro Murata, Mitsuru Ikeda, and Koiti
Hasida

50

BrainTool A Tool for Generation of the UML Class Diagrams
Oksana Nikiforova, Konstantins Gusarovs, Olegs Gorbiks, and Natalja Pavlova

60

Decoupled Model-Based Elicitation of Stakeholder Scenarios
Gregor Gabrysiak, Regina Hebig, and Holger Giese

70

A Formal High-level Modeling Approach to Develop Reliable Components in Vision-based Robotics
Andrea Luzzana, Mattia Rossetti, and Patrizia Scandurra

78

Aligning the Normalized Systems Theorems with Existing Heuristic Software Engineering Knowledge
Peter De Bruyn, Geert Dierckx, and Herwig Mannaert

84

 1 / 8 11 / 729

A Description Language for QoS Properties and a Framework for Service Composition Using QoS Properties
Chiaen Lin, Krishna Kavi, and Sagarika Adepu

90

Context Awareness in Learning Human Habits
Szymon Bobek and Weronika Adrian

98

Automated Construction of Data Integration Solutions for Tool Chains
Matthias Biehl, Jiarui Hong, and Frederic Loiret

102

A Neurolinguistic Method for Identifying OSS Developers’ Context-Specific Preferred Representational Systems
Methanias Colaco Junior, Manoel Mendonca, Mario Farias, Paulo Henrique, and Daniela Corumba

112

Architecture Centric Tradeoff - A Decision Support Method for COTS Selection and Life Cycle Management
Subhankar Sarkar

122

Implementation of Business Processes in Service Oriented Architecture
Krzysztof Sacha and Andrzej Ratkowski

129

On Re-Architecting Legacy Software Systems: The Case of Systems at Umm Al-Qura University
Basem Alkazemi

137

Business Process Modeling in Object-Oriented Declarative Workflow
Marcin Dabrowski, Michal Drabik, Mariusz Trzaska, and Kazimierz Subieta

141

Data Transformations Using QVT Between Industrial Workflows and Business Models in BPMN2
Corina Abdelahad, Daniel Riesco, Alessandro Carrara, Carlo Comin, and Carlos Kavka

147

A Data-driven Workflow Based on Structured Tokens Petri Net
Nahla Haddar, Mohamed Tmar, and Faiez Gargouri

154

Bankruptcy and Financial Standing Models Application for SMEs
David Plandor and Lenka Landryova

161

Automated Test Code Generation Based on Formalized Natural Language Business Rules
Christian Bacherler, Ben Moszkowski, Christian Facchi, and Andreas Huebner

165

Using SSUCD to Develop Consistent Use Case Models: An Industrial Case Study
Mohamed El-Attar

172

A Systematic Mapping Study on Domain-Specific Languages
Leandro Nascimento, Daniel Viana, Paulo Silveira Neto, Dhiego Martins, Vinicius Garcia, and Silvio Meira

179

Specifying and Designing Exception Handling with FMEA 188

 2 / 8 12 / 729

Tsuneo Nakanishi, Kenji Hisazumi, and Akira Fukuda

Orchestration Definition from Business Specification
Charif Mahmoudi and Fabrice Mourlin

197

Value-Based Technical Debt Model and Its Application
Marek G. Stochel, Mariusz R. Wawrowski, and Magdalena Rabiej

205

An Advanced Interactive Visualization Approach for Component-Based Software: A User Study
Jaroslav Snajberk, Lukas Holy, Kamil Jezek, and Premek Brada

213

Representing Topic Event-Based Systems using Pluggable Units
Fernando Barros

220

Towards an Approach to Represent Safety Patterns
Pablo Oliveira Antonino, Thorsten Keuler, and Elisa Yumi Nakagawa

228

Process Modeling-based Assessment of Software Release Planning
Jos Trienekens and Robbert Slooten

238

Distributed Software Framework: For Biosphere 2 Land Evolution Observatory (LEO) Autonomic Cyber-Physical
System (ACPS)
Shafiul Islam

243

Understanding the Relationships Within the Medi SPICE Framework
Derek Flood, Fergal Mc Caffery, and Valentine Casey

254

Mapping Between Service Designs Based on SoaML and Web Service Implementation Artifacts
Michael Gebhart and Jaouad Bouras

260

Constructing Tool Chains Based on SPEM Process Models
Matthias Biehl and Martin Torngren

267

Tracing Requirements and Source Code during Software Development
Alexander Delater, Nitesh Narayan, and Barbara Paech

274

An Empirical Study Identifying High Perceived Value Requirements Engineering Practices in Global Software
Development Projects
Mahmood Niazi, Mohamed El-Attar, Muhammad Usman, and Naveed Ikram

283

Towards Automated Process Assessment in Software Engineering
Gregor Grambow, Roy Oberhauser, and Manfred Reichert

289

 3 / 8 13 / 729

Specification of Formalized Software Patterns for the Development of User Interfaces
Danny Ammon, Stefan Wendler, Teodora Kikova, and Ilka Philippow

296

Lowering Visual Clutter of Clusters in Component Diagrams
Lukas Holy, Jaroslav Snajberk, and Premek Brada

304

A Framework for Characterizing Usability Requirements Elicitation and Analysis Methodologies (UREAM)
Jos Trienekens and Rob Kusters

308

A Multilevel Contract Model for Quality-Driven Service Component Architecture
Maryem Rhanoui and Bouchra El Asri

314

Call for Software Tenders: Features and Research Problems
Jorge Hochstetter and Carlos Cares

320

BPEL-RF Tool: An Automatic Translation from WS-BPEL/WSRF Specifications to Petri Nets
Maria Diaz, Valetin Valero, Hermenegilda Macia, Jose Antonio Mateo, and Gregorio Diaz

325

Automated Reuse of Software Reuse Activities in an Industrial Environment – Case Study Results
Marcus Zinn, Klaus-Peter Fischer-Hellmann, and Ronald Schoop

331

Learning Best K analogies from Data Distribution for Case-Based Software Effort Estimation
Mohammad Azzeh and Yousef Elsheikg

341

Predicting Risky Program Source Files
Syed Nadeem Ahsan, Syed Haider Abbas Naqvi, and Kamran Raza

348

Supporting Time Planning Aligned with CMMI-DEV and PMBOK
Rafael Goncalves, Andre Pereira, and Christiane Wangenheim

352

Specification of UML Classes by Object Oriented Petri Nets
Radek Koci and Vladimir Janousek

361

A Report on Using Simplified Function Point Measurement Processes
Luigi Lavazza and Geng Liu

367

An Empirical Evaluation of Effort Prediction Models Based on Functional Size Measures
Luigi Lavazza, Sandro Morasca, and Gabriela Robiolo

373

Mapping ASM Specifications to Spec Explorer: Guidelines, Benefits and Challenges
Jameleddine Hassine

380

Object Segmentation by Edges Features of Graph Cuts 388

 4 / 8 14 / 729

Weiwei Du, Yuki Masumoto, and Nobuyuki Nakamori

Product Development Time Improvement with Requirements Reuse
Semra Yilmaz Tastekin, Yusuf Murat Erten, and Semih Bilgen

394

Specifying Class Hierarchies and Moose Metrics in Z
Younes El Amrani

401

Applying Algebraic Specification To Cloud Computing -- A Case Study of Infrastructure-as-a-Service GoGrid
Dongmei Liu, Hong Zhu, and Ian Bayley

407

A Holistic Approach to Energy Efficiency Management Systems
Ignacio Gonzalez, Maria Rodriguez Fernandez, Juan Jacobo Peralta, and Adolfo Cortes

415

Structuring Software Reusability Metrics for Component-Based Software Development
Danail Hristov, Oliver Hummel, Mahmudul Huq, and Werner Janjic

421

Dreiving Do-178C Requirements Within the Appropriate Level of Hierarchy
Jamie White and Hassan Reza

430

Abstract State Machines Mutation Operators
Jameleddine Hassine

436

Towards a Knowledge-Based Representation of Non-Functional Requirements
Mohamad Kassab and Ghizlane El-Boussaidi

442

Towards Better Comparability of Software Retrieval Approaches Through a Standard Collection of Reusable
Artifacts
Oliver Hummel and Werner Janjic

450

Improving IT Infrastructures Representation: A UML Profile
Luis Ferreira da Silva, Fernando Brito e Abreu, and Victor Moreira

459

An Investigation into Reference Architectures for Mobile Robotic Systems
Daniel Feitosa and Elisa Yumi Nakagawa

465

Human Computer Interaction Teaching Method to Encourage Creativity
Deller Ferreira

472

Future Chances of Software Customization: An Empirical Evaluation
Michaela Weiss and Norbert Heidenbluth

479

Experimentation Package for Evaluation of Problems Applied to the Software Project Subject Using PBL 486

 5 / 8 15 / 729

Jacson Rodrigues Barbosa, Fabrizzio Alphonsus Alves de Melo Nunes Soares, and Auri Marcelo Rizzo Vincenzi

Improving Undergraduate Students' Programming Skills
Sukhamay Kundu

493

Requirements Engineering: A Process Model and Case Study to Promote Standardization and Quality Increase
Jose Andre Dorigan and Rodolfo Miranda Barros

499

Annotated Component-Based Description for Application Composition
Christian Brel, Philippe Renevier, Anne-Marie Pinna-Dery, and Michel Riveill

506

Cognitive Engineering meets Requirements Engineering, Bridging the Traceability Gap
Alexandra Mazak and Horst Kargl

512

Knowledge Management Practices in GSD: A Systematic Literature Review
Smeea Arshad, Muhammad Usman, and Naveed Ikram

516

Modelling the Strategic Alignment of Software Requirements using Goal Graphs
Richard Ellis-Braithwaite, Russell Lock, Ray Dawson, and Badr Haque

524

A Constraint-based Method to Compute Semantics of Channel-based Coordination Models
Behnaz Changizi, Natallia Kokash, and Farhad Arbab

530

Predicting Quality Requirements Necessary for a Functional Requirement Based on Machine Learning
Ken Tanaka, Haruhiko Kaiya, and Atsushi Ohnishi

540

Abductive Logic Programming with Tabled Abduction
Luis Moniz Pereira and Ari Saptawijaya

548

Towards a Methodology for Hardware and Software Design Separation in Embedded Systems
Gaetana Sapienza, Tiberiu Seceleanu, and Ivica Crnkovic

557

Automatic Synthesis of Hardware-Specific Code in Component-Based Embedded Systems
Luka Lednicki, Ivica Crnkovic, and Mario Zagar

563

Modeling Crosscutting Concerns with Roles
Fernando Barbosa and Ademar Aguiar

571

Towards a Glue-Code Specification Framework for Component-Based Systems
Sajjad Mahmood and Mohammed AlQadhi

577

AO-WAD: A Generalized Approach for Accessible Design within the Development of Web-based Systems
Adriana Martin, Viviana Saldano, Gabriela Miranda, and Gabriela Gaetan

581

 6 / 8 16 / 729

An Evaluation Framework for Requirements Elicitation in Agile Methods
Waleed Helmy, Amr Kamel, and Osman Hegazy

588

An Evaluation Framework for Requirements Envisioning in Agile Methods
Waleed Helmy, Amr Kamel, and Osman Hegazy

594

AgileKDD: An Agile Business Intelligence Process Model
Givanildo Nascimento and Adicineia Oliveira

598

The Dilemma of Tool Selection for Agile Project Management
Gayane Azizyan, Miganoush Magarian, and Mira Kajko-Mattsson

605

Framework for Better Efficiency of Automated Testing
Martin Filipsky, Miroslav Bures, and Ivan Jelinek

615

MobiTest: A Cross-Platform Tool for Testing Mobile Applications
Ian Bayley, Derek Flood, Rachel Harrison, and Clare Martin

619

Requirement-based Software Testing With the UML: A Systematic Mapping Study
Nesa Asoudeh and Yvan Labiche

623

Simulation-Based Management for Software Dynamic Testing Processes
Mercedes Ruiz, Javier Tuya, and Daniel Crespo

630

A Systematic Approach to Risk-Based Testing Using Risk-annotated Requirements Models
Marc-Florian Wendland, Marco Kranz, and Ina Schieferdecker

636

An Automatic Security Testing approach of Android Applications
Stassia Resondry Zafimiharisoa, Sebastien Salva, and Patrice Laurencot

643

An Integrated Process for Developing Safety-critical Systems using Agile Development Methods
Zhensheng Guo and Claudia Hirschmann

647

ESAC-BPM: Early Security Access Control in Business Process Management
Mahmoud F. Ayoub, Riham Hassan, and Hicham G. Elmongui

650

Intrusion Detection Using Ensembles
Alexandre Balon-Perin, Bjorn Gamback, and Lillian Rostad

656

Linear Constraints as a Modeling Language for Discrete Time Hybrid Systems
Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci

664

 7 / 8 17 / 729

ME-DiTV: A Middleware Extension for Digital TV
Victor Hazin da Rocha, Felipe Silva Ferraz, Heitor Nascimento de Souza, and Carlos Ferraz

672

The Dynamic Composition of Independent Adaptations including Interferences Management
Sana Fathallah Ben Abdenneji, Stephane Lavirotte, Jean-Yves Tigli, Gaetan Rey, and Michel Riveill

678

Mission-oriented Autonomic Configuration of Pervasive Systems
Guillaume Grondin, Matthieu Faure, Christelle Urtado, and Sylvain Vauttier

685

The Consolidated Enterprise Java Beans Design Pattern for Accelerating Large-Data J2EE Applications
Reinhard Klemm

691

Explicit use of Working-set Correlation for Load-balancing in Clustered Web Servers
Stoyan Garbatov and Joao Cachopo

699

Evaluating Performance of Distributed Systems With MapReduce and Network Traffic Analysis
Thiago Vieira, Paulo Soares, Marco Machado, Rodrigo Assad, and Vinicius Garcia

705

Powered by TCPDF (www.tcpdf.org)

 8 / 8 18 / 729

Enhancing Contexts for Automated Debugging Techniques

Yan Lei, Chengsong Wang, Xiaoguang Mao and Quanyuan Wu

School of Computer

National University of Defense Technology

Changsha, China

yanlei@nudt.edu.cn, jameschen186@gmail.com, xgmao@nudt.edu.cn, quanyuanwu@nudt.edu.cn

Abstract—Most existing automated debugging techniques just

focus on selecting a set of suspicious statements that may cause

failures and ranking them in terms of suspiciousness.

Therefore, these techniques always ignore the contextual

information of how suspicious statements behave and

propagate in the program. However, the contextual

information is useful for discovering and understanding bugs.

Hence, this paper proposes a novel approach to enhance

contexts for automated debugging techniques. Based on

localization results obtained from automated debugging

techniques, our approach utilizes program slicing to classify

suspicious statements into different contexts, and assigns

different suspiciousness to the contexts and their elements. The

experimental study shows that our approach can substantially

improve debugging effectiveness.

Keywords-automate debugging; program spectra; program

slicing; statistical analysis.

I. INTRODUCTION

Software debugging has been recognized as one of the
most time-consuming tasks in the development and
maintenance of software [5]. With the aim at reducing the
cost of debugging, a great number of research techniques are
proposed to support automating or semi-automating the
process of debugging and improve its performance [3-25].

However, existing automated debugging techniques just
focus on selecting a subset of statements potentially
responsible for failures and ranking them according to some
criterion. Therefore, they ignore the contextual information
of how suspicious statements behave and propagate in the
program. The recent research [1] has found that the lack of
contextual information may affect the activity of discovering
and understanding bugs. For example, the faulty statement is
included in the set of suspicious statements, and developers
inspect the statements in this set. Due to the lack of
contextual information, developers may judge the faulty
statement is not responsible for program failures and just
ignore this statement when inspecting it. Hence, it is vital to
enhance the contexts for automated debugging techniques.

Program slicing technique [14-16] utilizes data and
control dependence to identify the set of program statements
that may affect or be affected by the values at some
statement of a program. The set of statements is referred to
as a program slice. A program slice can be essentially
regarded as a context that shows a causal chain of how data
and control propagates in a program. However, program

slicing treats the statements of a program slice with the same
suspiciousness to be faulty and thus lacks the guidance as to
how the statements in a slice should be examined. That
always leads developers to be frustrated and tiresome as the
size of a slice can substantially increase with the increasing
size and complexity of today's software [1]. One possible
way to address this issue is to use the promising ability of
some automated debugging techniques to assign different
suspiciousness to the statements of a slice. More importantly,
it implies that automated debugging techniques can adopt
program slicing to enhance contexts for themselves.

Among current research, one promising automated
debugging technique exploits the correlations between
program entities and program failures via statistically
analyzing coverage information [3-13]. This technique is
generally referred to as spectrum-based fault localization
(SFL). SFL usually collects coverage information and test
results from dynamic executions to construct program
spectra from passed and failed executions. After gathering
spectra information, SFL adopts a ranking metric to evaluate
the suspiciousness of program entities to be faulty and gives
a ranking list of all entities in terms of suspiciousness. The
research [3-13] has shown that SFL has a promising structure
of evaluating the suspiciousness of an entity to be faulty.
Nevertheless, SFL just outputs a ranking list of isolated
entities and fails to provide the contextual information for
discovering and understanding these suspicious statements.

Considering the popularity and ability, this paper chooses
SFL and enhances contexts for it by using program slicing
technique. Hence, we propose a debugging approach which
uses program slicing to enhance contexts for SFL. Our
approach utilizes SFL to compute the suspiciousness of each
statement to be faulty. Then, the approach uses program
slicing to identify the most suspicious statement and its
relevant statements as a context showing how the most
suspicious statement behaves in a program. Finally, except
for the statements of all constructed contexts, the most
suspicious statement of the remaining statements and its
relevant statements constitute a new context, and this step
would be iterated until each statement is classified into a
particular context. Because a context is constructed from the
most suspicious statement in it, our approach assigns the
suspiciousness of this statement to the context. For each
statement, its suspiciousness keeps unchanged. In addition,
our approach offers two modes to developers with different
experiences, and utilizes visualization and program

1Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 19 / 729

dependence to further assist developers. It can be seen that
our approach provides useful contexts and recommends
examining guidance of all contexts and their elements in
terms of suspiciousness.

This paper conducts an experimental study on two
standard benchmarks: the Siemens suite and Space [28], and
compares our approach with nine ranking metrics of SFL:
Ochiai [3], Jaccard [4], Tarantula [5], Wong2 [6], Wong3 [6],
Ample [7], CBI [8], Optimal and OptimalP [9]. The results
demonstrate that the proposed approach outperforms all nine
ranking metrics of SFL.

The remainder of this paper is organized as follows.
Section II introduces the background of SFL. Section III
describes our approach. Section IV conducts an experimental
study. Related work is introduced in Section V and
conclusions are given in Section VI.

II. BACKGROUND OF SFL

Figure 1. Input to SFL.

Spectrum-based fault localization (SFL) [3] is a dynamic
program analysis technique. It typically uses coverage
information of passed and failed runs to rank program
entities whose activity correlates most with the failures.
Passed runs are executions of a program that output as
expected, whereas failed runs are executions of a program
that output as unexpected. There are various types of entities,
such as blocks, functions, branches, paths, etc. This study
adopts statements as the entities.

First, we assume that a program P comprises a set of
statements S and runs against a set of test cases T that
contains at least one failed test case, with N=|S| and M=|T|,
respectively (see Fig. 1). The above matrix M×(N+1)
represents the input to SFL. An element xij is equal to 1 if
statement j is covered by the execution of test run i, and 0
otherwise. The error vector e at the rightmost column of the
matrix represents the test results. The element ei is equal to 1
if run i failed, and 0 otherwise. Except the error vector, the
rest of the matrix is expressed in terms of matrix A. The ith
row of A indicates whether a statement was covered by run i.
The jth column of A indicates statement j was covered by
which runs.

SFL usually measures the suspiciousness of a statement
to be faulty from similarity between its statement spectra and
error vector in the above matrix (see Fig. 1), and finally
outputs a ranking list of all statements in descending order of
suspiciousness. The similarity is quantified by ranking
metrics.

TABLE I shows nine ranking metrics of SFL and how
the suspiciousness of statement j was computed by the

corresponding ranking metrics. apq(j)=|{i|xij=p∧ei=q}|, and

p, q∈{0,1}. a0q(j) represents the number of passed (q=0) or

failed (q=1) test cases that do not execute statement j. a1q(j)

TABLE I. FORMULAS OF SFL

Name Formula Name Formula

Ochiai
11

11 01 11 10

()

(() ()) * (() ())

a j

a j a j a j a j 

Jaccard

11

11 01 10

()

() () ()

a j

a j a j a j 

Tarantula

11

11 01

1011

11 01 10 00

()

() ()

()()

() () () ()

a j

a j a j

a ja j

a j a j a j a j




 

Ample 
 

1011

01 11 00 10

()()

() () () ()

a ja j

a j a j a j a j

CBI



   

11 0111

11 10 11 01 00 10

() ()()

() () () () () ()

a j a ja j

a j a j a j a j a j a j

Wong2 11 10() ()a j a j

Optimal
 




01

00 01

1 if () 0

() if () 0

a j

a j a j

OptimalP

 
 

10
11

10 00

()
()

() () 1

a j
a j

a j a j

Wong3




     
   

10 10

11 10 10

10 10

() if () 2

() , where 2 0.1* (() 2) if 2 () 10

2.8 0.001* (() 10) if () 10

a j a j

a j h h a j a j

a j a j

denotes the number of passed (q=0) or failed (q=1) test cases
that execute statement j.

SFL is widely accepted and studied as a promising
automated technique in the debugging community, and the
research has empirically proven that SFL is effective to
correlate faulty statements with failures in terms of
suspiciousness [3-13]. According to the popularity and
ability, this study chooses SFL to evaluate the suspiciousness
of contexts and their elements.

III. THE APPROACH

Program slicing as a debugging aid was introduced by
Mark Weiser [14]. Korel and Laski afterwards proposed
dynamic slicing to focus on an execution in a specific input
[15]. Because the localization result of SFL is based on the
executions of a set of test cases instead of a specific
execution, this study adopts static slices for our approach.
There are two types of static slices: static backward slices
(SBS) and static forward slices (SFS). The SBS of a variable
at a statement includes all those statements which affect the
value of the variable at that statement through chains of static
data and/or control dependence [14]. In contrast, the SFS of a
variable at a statement includes all those statements that are
affected by the value of the variable at that statement through
chains of static data and/or control dependence [19]. It can
be seen that SBS can find a set of statements affecting a
statement while SFS can identify a set of statements affected
by a statement.

The basic idea of our approach is to apply program
slicing to SFL by constructing different suspicious contexts
and their elements for discovering and understanding faults.
Our approach uses both SBS and SFS to construct a context
showing how a statement affects and is affected by other
statements in a program, and then utilizes SFL to evaluate
the suspiciousness of each context and its elements.

The Algorithm 1 describes our approach. First, there are
some explanations for Algorithm 1. This section adopts the
program P and set of test cases T defined in Section II. The
program P consists of a set of statements S that is denoted as
{s1, s2, …, sN}. FSlice(si) represents the union of the SFS of
each variable at statement si. BSlice(si) denotes the union of
SBS of each variable at statement si. contextSet stores all
constructed contexts.

2Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 20 / 729

Algorithm 1 The proposed approach

1: Step 1: Compute the suspiciousness of each statement.

2: SFLAnalyze(S,T);

3: Step 2: Construct different suspicious contexts and their statements.

4: while(S is not empty){

5: stmSet=GetMostSuspiciousStm(S);

6: context=Φ;

7: for(i=0; i<stmSet.size; i++)

8: context=context∪BSlice(stmSet[i])∪FSlice(stmSet[i])∪stmSet[i];

9: context.suspiciousness=stmSet[0].suspiciousness;

10: S=S−context;

11: if(mode=="weak-contexts")

12: for(i=0;i<contextSet.size;i++)

13: context=context−contextSet[i];

14: Add(context,contextSet);

15: }

16: Step 3: Output the localization results.

17: if(visualization == true)

18: Visualize(contextSet);

19: else

20: Text(contextSet);
Step 1: Compute the suspiciousness of each statement.

The function SFLAnalyze(S,T) analyzes the statement
coverage information and test results of test cases T, and
adopts SFL to compute the suspiciousness of each statement
in S. The format of statement coverage information and test
results of test cases T is a matrix as shown in Fig. 1. In this
study, for the statements with the same assigned
suspiciousness, SFL ranks them in descending order of their
line numbers in the source code. This strategy is also adopted
by the text-form of localization results mentioned in the
following step 3.

Step 2: Construct different suspicious contexts and
their elements. This step iteratively constructs suspicious
contexts until each statement is classified into a specific
context. As the suspiciousness of some statements may be
the same, the function GetMostSuspiciousStm(S) may return
a set of most suspicious statements in S more than one
statement. Lines 6 to 8 represent that besides the most
suspicious statements, context consists of a set of statements
that can affect or are affected by at least one of the most
suspicious statements in S. As a context is constructed from
the most suspicious statements in S, line 9 assigns the
suspiciousness of the most suspicious statements to its
corresponding context. Line 10 excludes the statements of
the new context from the set of statements S.

There are two modes in our approach: weak-contexts and
strong-contexts. The mode of weak-contexts demands that a
statement can be only classified into one context. Therefore,
it can cause some less suspicious contexts miss those
statements presented in a more suspicious context. Lines 11
to 13 exclude those statements of all constructed contexts
from the new context when the mode is weak-contexts. In
contrast, the mode of strong-contexts maintains the integrity
of each context. In this mode, a statement may be classified
into different contexts. The step 3 presents a strategy to give
some hints of the repetitive appearance of a statement in
different contexts. Line 14 inserts the new context into
contextSet that contains all constructed contexts.

Step 3: Output the localization results. This step
outputs localization results in two different forms. One is
text-form and the other is visualization-form. The functions
Text(contextSet) and Visualize(contextSet) process the text-
form and visualization-form of the localization results
contextSet respectively. The text-form firstly ranks all

contexts in descending order of their suspiciousness and then
sequences the statements of each context in descending order
of suspiciousness given by SFL. The ranking list is outputted
in a text form. The visualization-form uses program
dependence graphs [26,27] or lists the statements in a context
along the program dependence edges from the starting point
to show each context and its statements, and maps color to
them according to the suspiciousness. This form can visually
assist developers in understanding and locating faults. Some
information is attached to each statement, such as
suspiciousness and role. There are three types of role,
namely "root", "affect" or "affected". The "root" denotes the
statement is chosen to be sliced to construct the context. The
"affect" and "affected" represents the statement affects or is
affected by the "root" statement respectively. As mentioned
in step 2, a context may be constructed from several
statements with the same highest suspiciousness. Hence, a
context may contain several "root" statements. In this case,
the algorithm will number "root" statements to associate
each "root" statement with its corresponding "affect" and
"affected" statements.

The key idea of the color mapping algorithm is based on
the visualization algorithm of Tarantula [5]. The color of a
context or statement can be anywhere in the continuous
spectrum of colors from red to yellow to green in descending
order of suspiciousness. The contexts or statements are
colored red to denote "danger" and indicate high likelihood
of containing faults; those contexts or statements are
specified green to denote "safety" and suggest little
correlation with the failure; the contexts or statements are
marked yellow to denote "caution" and imply a medium
circumstance between "danger" and "safety". The
visualization algorithm of Tarantula is implemented by
GIMP and limits the suspiciousness to belong to [0, 1].
However, some metrics of SFL can produce a value of
suspiciousness out of this range, such as Wong2, Wong3 and
Optimal. In addition, this study chooses GTK+ to implement
the color mapping algorithm. Hence, a new color mapping
equation is defined in Eq. (1).



()

, if 0.5

 0
() * 2* * , if 0.5

0.5

1
() * (2 2*) * , if 0.5

0.5

, if

color s

Range Rate

Red Rate
Range Rate Range Rate

Rate
Range Rate Range Rate

Green

Range Rate






 
 




  



.

0.5

0

, =

s suspici

Blue

where Rate




 



 and 65535
ousness minSuspiciousness

maxSuspiciousness minSuspiciousness
Range
















 




In Eq. (1), s represents a context or statement and
s.suspiciousness denotes the suspiciousness of s. The
minSuspiciousness and maxSuspiciousness are the minimum
and maximum suspiciousness in all statements respectively.
GTK+ uses RGB model to produce different colors and
specifies the values of each of the three basic colors at the
range from 0 to 65535. In addition, the color mapping
algorithm just needs red and green to generate the spectrum
of colors for contexts and statements. As a result, Range and

3Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 21 / 729

Blue equal to 65535 and 0 in Eq. (1) respectively. It can be
found that Eq. (1) can handle any range of the suspiciousness
and map color to contexts and statements from red to yellow
to green in descending order of suspiciousness. Note that if
maxSuspiciousness equals to minSuspiciousness, all contexts
and their statements will be colored green by the color
mapping algorithm.

As mentioned in the step 2, although the mode of strong-
contexts maintains the integrity of each context, checking
those repetitive statements in different contexts may increase
the workload of developers. A strategy is proposed to
address this problem. Following the ranking list of all
contexts in descending order of suspiciousness, this strategy
examines the statements of each context in turn. When
checking the statements of a context, some additional
information is attached to those statements presented in
previous examined contexts, such as rank/total and pre-
contexts. The rank/total means the rank of the statement in
total statements of the program in descending order of
suspiciousness. The pre-contexts denote the set of higher
ranked contexts that contains the statement before this
context. The rank/total shows an indication of how
suspicious a repetitive statement is in total statements of the
program and the pre-contexts provides the connections of a
repetitive statement in different contexts. In addition, the
visualization-form colors gray to the repetitive statements.
The above strategy offers some useful information of the
repetitive statements and can alleviate the burden on
developers for checking those repetitive statements.

As described above, it can be found that our approach
can construct different suspicious contexts and their
statements, and offer examining guidance of these contexts
and statements in both text-form and visualization-form. It
implies that the proposed approach equips SFL with contexts
to further assist in discovering and understanding bugs.

IV. AN EXPERIMENTAL STUDY

A. Experimental Setup

As SFL outputs a ranking list of all statements without
repetition, this experiment use the weak-contexts mode of
our approach to be compared to SFL. More concretely, the
experiment study compares our approach in the weak-
contexts mode with nine ranking metrics of SFL, namely
Ochiai [3], Jaccard [4], Tarantula [5], Wong2 [6], Wong3 [6],
Ample [7], CBI [8], Optimal and OptimalP [9]. The formulas
of these metrics are illustrated in TABLE I. This study
chooses the Siemens suite and Space as the benchmarks
because they are two widely used benchmarks in the field of
software debugging with high quality. The two benchmarks
can be obtained from the Software artifact Infrastructure
Repository [28]. The Siemens suite contains 7 programs and
132 faulty versions of these programs. The Space contains
38 faulty versions. We select "universe" suite that contains
all test cases in TABLE II. TABLE II lists the programs, the
number of faulty versions of each program, lines of
statements, lines of executable statements, number of all test
cases, as well as the functional descriptions of the
corresponding program.

TABLE II. DESCRIPTION OF THE SIEMENS SUITE AND SPACE

Program Versions LOC Ex Test Description

print_tokens 7 563 203 4130 Lexical analyzer

print_tokens2 10 508 203 4115 Lexical analyzer

replace 32 563 289 5542 Pattern recognition

schedule 9 410 162 2650 Priority scheduler

schedule2 10 307 144 2710 Priority scheduler

tcas 41 173 67 1608 Altitude separation

tot_info 23 406 136 1052 Information measure

Space 38 9564 6218 13585 ADL interpreter

Although there are 170 versions in total, we were unable
to adopt all of them. Because there was no failed test case in
version 32 of replace, version 9 of schedule2 and versions 1,
2, 34 of Space, we excluded the five versions. Additionally,
we focus on executable statements, so the modifications of
header files and definition/declaration errors were ignored.
Hence, versions 4 and 6 of print_tokens, version 12 of
replace, versions 13, 14, 36, 38 of tcas and versions 6, 10, 19,
21 of tot_info were also discarded. Finally, 154 faulty
versions were used for the experiment.

In the experiment, the coverage information is gathered
by using Gcov tool. We use FEMA (Failure Modes and
Effects Analysis) slicing tool [26] developed by our group to
perform program slicing. In addition, we adopt the GTK+ to
implement the algorithm of the visualization of our approach.

B. Evaluation metrics

The effectiveness of debugging techniques is widely
evaluated by the percentage of code that needs to be
examined (or not examined) to find the fault [6]. This
evaluation assumes that developers will follow the ranking
list to examine all statements from top to bottom until they
encounter the faulty statement. Following this notion, we
define fault-localization accuracy (referred as Acc) as the
percentage of executable statements to be examined before
finding the actual faulty statement [10]. A lower value of Acc
indicates higher effectiveness.

For a more detailed comparison, we adopt relative
improvement (referred as Imp) [10]. The Imp is to compare
the total number of statements that need to be examined to
find all faults using our approach versus the number that
need to be examined by using the SFL. A lower value of Imp
shows better improvement that our approach obtains.

C. Results and analysis

Figure 2 illustrates the Acc comparison between SFL

and our approach in all faulty versions. The x-axis

represents the percentage of executable statements to be

examined. The y-axis denotes the percentage of faulty

versions. A point in Fig. 2 represents when a percentage of

executable statements is examined in each faulty version,

the percentage of faulty versions has located their faults.

As shown in Fig. 2, the curves of our approach are

usually higher than those of the corresponding metrics of

SFL. It suggests that our approach improves the

effectiveness of the nine metrics of SFL.

For a more detailed comparison, Fig. 3 presents the Imp

of our approach over each metric of SFL in each program.

The x-axis represents the name of each program. The y-axis

4Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 22 / 729

 Figure 2. Acc comparison between SFL and our approach. Figure 3. Imp of our approach over each metric of SFL on each program.

Figure 4. The maximum, minimum and average saving of our approach

over each program.

denotes the Imp in a specific metric of SFL. The tables in Fig.
3 show the detailed values of Imp on each program. If the
value of Imp is less 100%, it means that our approach
promotes the effectiveness of SFL. Otherwise it indicates our
approach decreases the effectiveness of SFL.

As shown in Fig. 3, the values of Imp over each metric of
SFL are less than 100% in most of programs. This indicates
that the effectiveness of SFL is improved by our approach in
most of programs. Take Ochiai as an example. The lowest
Imp is 39.1% in print_tokens. This implies that our approach

obtains the maximum improvement over Ochiai in
print_tokens. It also means that when locating all faults in
print_tokens, our approach only requires the examination of
39.1% of the number of statements that Ochiai requires the
examination of. This represents a 60.9% saving in terms of
effort, which is the maximum saving that our approach
obtains in Ochiai. However, the highest Imp is 103.5% in
Schedule, which implies that our approach requires an extra
3.5% effort to locate all faults in Schedule compared to
Ochiai. This represents the minimum saving, -3.5%, that our
approach obtains in Ochiai.

Fig. 4 illustrates the maximum, minimum and average
saving of our approach in each program. As shown in Fig. 4,
the average maximum saving that our approach obtains is
41.7% and the average minimum saving is 8.6%. On average,
the saving of our approach is 22.7%, which indicates our
approach is more effective than SFL.

Because the high suspicious statements evaluated by SFL
are usually relevant to the faulty statements, our approach
can classify the faulty statements into more suspicious
contexts and they finally obtain higher ranks compared to
those ranks in SFL. However, the high suspicious statements
sometimes may be irrelevant to the faulty statements. Thus,

5Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 23 / 729

it can cause some less suspicious statements that are relevant
to the high suspicious statements surpass the faulty
statements in more suspicious contexts. This reveals the
reason why our approach slightly decreases the effectiveness
of some metrics of SFL in several programs.

We also found that the decrease of effectiveness, to some
extent, is caused by the vulnerability of SFL. For example,
SFL utilizes coverage information that cannot identify those
statements whose execution affects the program output.
Suppose that a non-faulty statement that is irrelevant to the
faulty statement and has little contribution to the faulty
output. Suppose further that the number of failed test runs
executing the non-faulty statement is larger than that of
failed test runs covering the faulty statement, whereas the
number of passed test runs covering the non-faulty statement
is less than that of passed test runs executing the faulty
statement. In this case, SFL usually assigns higher
suspiciousness to the non-faulty statement than that to the
faulty statement. If a context is constructed from this non-
faulty statement, it is more probable for some less suspicious
statements associated with this non-faulty statement to
surpass the faulty statement in this more suspicious context.
However, if SFL can identify those statements whose
execution affects the program output, SFL can rank this non-
faulty statement lower than the faulty statement. Under this
circumstance, it reduces the possibility of decreasing the
effectiveness of SFL when using our approach.

D. Threats to Validity

A threat to the validity of our experiment is the subject
programs used by the study. The experiment chooses the
Siemens suite and Space because they are two de-facto
benchmarks in the field of software debugging. Apparently,
the results obtained may not apply to all programs. For
instance, a program, in reality, usually ships with multiple
faults rather than a single fault as used in our experiment.
The recent research [2] has found that multiple faults pose a
negligible effect on the effectiveness of fault localization,
and even in the presence of many faults, at least one fault is
found by the fault localization technique with high
effectiveness. Although these findings increase our
confidence in the effectiveness of our approach for locating
multiple faults, they cannot guarantee that multiple faults
create a negligible effect on the effectiveness of our
approach. It is necessary to use more subject programs to
further investigate the effectiveness of our approach.

Another threat is the metrics of SFL adopted by our
experiments. The experimental study selects nine metrics of
SFL to empirically evaluate the effectiveness and
applicability of our approach. However, SFL is a big family
and contains many metrics [3-13]. Our approach may not be
applicable to some other metrics of SFL. It is vital to apply
our approach to a much broader spectrum of SFL to further
evaluate its effectiveness and applicability.

V. RELATED WORK

Spectrum-based fault localization (SFL) has motivated
plenty of debugging techniques over recent years. The
effectiveness of SFL highly depends on the ranking metrics

that measure the correlations between program entities and
failures. Hence, many metrics of SFL are proposed, such as
the nine metrics of SFL adopted by the experiment [3-9]. In
addition, there are many types of program entities presented
for SFL, such as statements [5,6,9,10], blocks [3,7], branches
[8], etc. Some new complex coverage types of program
entities using dependences or flow are also proposed to
strengthen the relationship among the elements of a program
entity, such as mixed coverage [11], information flow
coverage [12] and control flow edge coverage [13]. Although
all of the above approaches have delivered the promising
ability in correlating program entities and failures, they
usually ignore the fact that the contextual information is
useful for discovering and understanding the bugs. To
enhance contexts for SFL, our approach applies program
slicing to SFL to construct different suspicious contexts and
their statements.

Program slicing technique [14-16] has also been widely
studied in the field of debugging. Kusumoto et al. [17]
conducted an experimental evaluation of program slicing for
fault localization and Zhang et al. [18] investigate the
effectiveness of dynamic slicing in locating faults. Their
research shows program slicing is useful for fault
localization. To further narrow down the searching scope,
Gupta et al. [19] present failure inducing chops that intersect
the forward dynamic slices of inputs with the backward
dynamic slices of outputs. Zhang et al. [20] study the
probable missing dependencies in dynamic slices and use an
effective slicing approach to locate execution omission errors.
Xin et al. [21] present a data-centric dynamic slicing
technique that focuses on the dependencies in memory
locations. Zhang et al. [22] propose an event-centric dynamic
slicing technique that removes the irrelevant events from the
sets of events to narrow down the searching scope of events.
Although slicing-based debugging techniques have made
great progress in these years, the size of a slice is still large.
In addition, the elements of a slice are always treated with
same suspiciousness to be faulty and no checking order is
recommended to developers. Therefore, the slicing-based
debugging techniques are rarely used in practice [2]. To
alleviate this problem, our approach uses SFL to quantify the
suspiciousness of a slice and its statements, and provides the
guidance as to how the statements in a slice should be
examined.

Baah et al. [23] uses the conditional probability in a
dependence graph of a failed run to compute the
suspiciousness of each node, and associate a state
configuration with each node to construct a context and
understand the problem. In contrast to their approach, our
approach uses program slicing to iteratively construct
different suspicious contexts and their statements according
to the location results given by SFL.

Jiang et al. [24] proposes a context-aware statistical
debugging approach by constructing and ranking the control-
flow paths. The control-flow path is a context showing how a
faulty predicate behave in a program. HOLMES [25]
statistically analyzes path profiles of both passed runs and
failed runs to isolate bugs that correlate with failure, and also
uses paths to show a context where bugs occur. Unlike these

6Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 24 / 729

two approaches, our approach uses program slicing
constructs contexts and their elements, and utilizes SFL to
assign suspiciousness to them. A context in our approach is
essentially a slice showing how the most suspicious
statement affects and is affected by other statements.

VI. CONCLUSION

This paper proposes a debugging approach to enhance
contexts for a promising automated debugging technique,
namely spectrum-based fault localization (SFL). The
proposed approach applies program slicing to SFL by
constructing different suspicious contexts and their elements
for assist in understanding and locating faults. In addition,
our approach offers two modes to different experienced
developers, and uses the visualization and program
dependence to further help understand the problem. The
experimental study on two standard benchmarks shows that
the proposed approach outperforms all nine metrics of SFL.

In future work, we plan to evaluate the effectiveness of
our approach across a much broader spectrum of programs.
We will also further study the applicability of our approach
to more metrics of SFL and other automated debugging
techniques.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China under Grant No.91118007,
90818024 and 61133001, the National High Technology
Research and Development Program of China (863 program)
under Grant No.2011AA010106 and 2012AA011201 and the
Program for New Century Excellent Talents in University.

REFERENCES

[1] C. Parnin and A. Orso, "Are automated debugging techniques actually
helping programmers?," in the 2011 International Symposium on
Software Testing and Analysis, Toronto, Canada, 2011, pp. 199-209.

[2] N. DiGiuseppe and J. Jones, "On the influence of multiple faults on
coverage-based fault localization," in the 2011 International
Symposium on Software Testing and Analysis, Toronto, Canada, 2011.

[3] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, "On the accuracy
of spectrum-based fault localization," in Testing: Academic and
Industrial Conference Practice and Research Techniques -
MUTATION, Windsor, UK, 2007, pp. 89-98.

[4] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, "Pinpoint:
Problem determination in large, dynamic internet services," in the
32nd International Conference on Dependable Systems and Networks,
Maryland, USA, 2002, pp. 595-604.

[5] J. A. Jones, M. J. Harrold, and J. Stasko, "Visualization of test
information to assist fault localization," in the 24th International
Conference on Software Engineering, Orlando, USA, 2002, pp. 467-
477.

[6] W. E. Wong, Y. Qi, L. Zhao, and K. Y. Cai, "Effective fault
localization using code coverage," in the 31st Annual International
Computer Software and Applications Conference, Beijing, China,
2007, pp. 449-456.

[7] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, "An evaluation of
similarity coefficients for software fault localization," in the 12th
Pacific Rim International Symposium on Dependable Computing,
Riverside, USA, 2006, pp. 39-46.

[8] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
"Scalable statistical bug isolation," in the ACM SIGPLAN Conference

on Programming Language Design and Implementation, NY, USA,
2005, pp. 15-26.

[9] L. Naish, H. J. Lee, and K. Ramamohanarao, "A model for spectra-
based software diagnosis," ACM Transactions on Software
Engineering and Methodology, vol. 20, p. 11, 2011.

[10] V. Debroy, W. E. Wong, X. Xu, and B. Choi, "A Grouping-Based
Strategy to Improve the Effectiveness of Fault Localization
Techniques," in the 10th International Conference on Quality
Software, Zhangjiajie, China, 2010, pp. 13-22.

[11] R. Santelices and J. A. Jones, "Lightweight fault-localization using
multiple coverage types," in the 31st International Conference on
Software Engineering, Vancouver, Canada, 2009, pp. 56-66.

[12] W. Masri, "Fault localization based on information flow coverage,"
Software Testing, Verification and Reliability, vol. 20, pp. 121-147,
2010.

[13] Z. Zhang, W. Chan, T. Tse, B. Jiang, and X. Wang, "Capturing
propagation of infected program states," in the ESEC/FSE 2009,
Amsterdam, The Netherlands, 2009, pp. 43-52.

[14] M. Weiser, "Program slicing," IEEE Transactions on Software
Engineering, vol. 10, pp. 352-357, 1984.

[15] B. Korel and J. Laski, "Dynamic Program Slicing," Information
Processing Letters, vol. 29, pp. 155-163, 1988.

[16] T. Gyimóthy, Á. Beszédes, and I. Forgács, "An efficient relevant
slicing method for debugging," in the ESEC/FSE 1999, Toulouse,
France, 1999, pp. 303-321.

[17] S. Kusumoto, A. Nishimatsu, K. Nishie, and K. Inoue, "Experimental
evaluation of program slicing for fault localization," Empirical
Software Engineering, vol. 7, pp. 49-76, 2002.

[18] X. Zhang, N. Gupta, and R. Gupta, "A study of effectiveness of
dynamic slicing in locating real faults," Empirical Software
Engineering, vol. 12, pp. 143-160, 2007.

[19] N. Gupta, H. He, X. Zhang, and R. Gupta, "Locating faulty code
using failure-inducing chops," in the 20th International Conference
on Automated Software Engineering, Long Beach, USA, 2005, pp.
263-272.

[20] X. Zhang, S. Tallam, N. Gupta, and R. Gupta, "Towards locating
execution omission errors," ACM Sigplan Notices, vol. 42, pp. 415-
424, 2007.

[21] B. Xin and X. Zhang, "Memory slicing," in the 18th International
Symposium on Software Testing and Analysis, Chicago, USA, 2009,
pp. 165-176.

[22] X. Zhang, S. Tallam, and R. Gupta, "Dynamic slicing long running
programs through execution fast forwarding," in the 14th
International Symposium on Foundations of Software Engineering,
Portland, USA, 2006, pp. 81-91.

[23] G. K. Baah, A. Podgurski, and M. J. Harrold, "The probabilistic
program dependence graph and its application to fault diagnosis,"
IEEE Transactions on Software Engineering, vol. 36, pp. 528-545,
2009.

[24] L. Jiang and Z. Su, "Context-aware statistical debugging: from bug
predictors to faulty control flow paths," in the 22nd International
Conference on Automated Software Engineering, Atlanta, Georgia,
2007, pp. 184-193.

[25] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani,
"HOLMES: Effective statistical debugging via efficient path
profiling," in the 31st International Conference on Software
Engineering, Vancouver, Canada, 2009, pp. 34-44.

[26] W. Dong, J. Wang, C. Zhao, X. Zhang, and J. Tian, "Automating
software FMEA via formal analysis of dependence relations," in the
32nd Annual International Computer Software and Applications
Conference, Turku, Finland, 2008, pp. 490-491.

[27] J. Ferrante, K. J. Ottenstein, and J. D. Warren, "The program
dependence graph and its use in optimization," ACM Transactions on
Programming Languages and Systems, vol. 9, pp. 319-349, 1987.

[28] SIR, http://sir.unl.edu/portal/index.php

7Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 25 / 729

Leveraging Traceability between Code and Tasks
for Code Review and Release Management

Nitesh Narayan, Jan Finis, Yang Li
Institute of Computer Science

Technical University of Munich
Boltzmannstrasse 3, 85748 Garching, Germany

{narayan, finis, liya}@in.tum.de

Alexander Delater
Institute of Computer Science

University of Heidelberg
Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

delater@informatik.uni-heidelberg.de

Abstract—The software maintenance process relies on trace-
ability information captured throughout the development of a
software product. Traceability from code to software engineer-
ing artifacts like features or requirements has been extensively
researched. In this paper, we focus on traceability links between
code and tasks. Tasks can be further linked to other artifacts
such as features or requirements. In this paper, we present an
approach for (semi-) automatic creation of traceability links
between code and tasks. The core idea is to let the developers
create the links themselves while they use a version control
system. We use these traceability links to improve the processes
of code review and release management. A prototype based
on this work has been implemented and integrated into the
model-based CASE tool UNICASE. We applied the developed
prototype in the open-source project UNICASE itself and
report about our significant experiences.

Keywords-traceability; code review; release management;
patch; branch.

I. INTRODUCTION

Software configuration management (SCM) is the dis-
cipline of managing the evolution of large and complex
software systems to assist software development and main-
tenance processes [1]. According to the IEEE standard [2],
SCM covers several activities such as identification of
product components and their versions, audit, review, as
well as change control (by establishing procedures to be
followed when performing a change). Practicing SCM in
a software project has several benefits, including increased
productivity, better project control, identification and fixes
of bugs, and improved customer satisfaction [3]. Especially
in projects with increased complexity, efficient handling
of SCM requires tool support. Standard SCM tools exist
for various activities e.g. version control systems (VCS).
However, other SCM activities still lack proper tool support
because of the involved traceability challenges, especially
the review of changes during a code review and the building
of a software product during release management. In this
paper, we present an approach for (semi-) automatic creation
of traceability links between code and tasks to improve
the processes of code review and release management by
providing tool support. Tasks represent a unit of work, which

describe changes to be performed to the code or new devel-
opments and they are used in many software development
projects. In the remainder of the paper, we use the term
work item instead of task to avoid misunderstandings with
the term task used in requirements engineering.

The paper is structured as follows: in Section II, we
provide background information. In Section III, we describe
the processes of code review and release management and
benefits from using traceability links between code and work
items. The approach is presented in Section IV and the
prototype implementation is shown in Section V. In Section
VI, we describe our experiences in using the prototype in the
open-source project UNICASE. Related work is presented
in Section VII and a discussion and future work conclude
the paper in Section VIII and Section IX, respectively.

II. BACKGROUND

Traceability links between requirements and work items
have previously been researched in the MUSE model
(Management-based Unified Software Engineering) [4],
which integrates the system model and the project model.
The system model describes the system under construction,
such as requirements, features, use cases or UML artifacts.
The project model describes the on-going project, such as
work items, the organizational structure, sprints or meetings.
The MUSE model is implemented in the model-based CASE
tool UNICASE [5] [6], which we use to implement our
approach.

The presented approach in this paper is dealing with
the (semi-) automatic creation of traceability links between
work items and code. Previous studies have shown that
links between system elements and project elements provide
useful information for the work (by shortening the naviga-
tion paths of the developers) and that based on such links
system elements are kept more up-to-date [7]. Thus, we
are extending the MUSE model by introducing traceability
to code. Various development activities can benefit from
the traceability links between requirements, work items and
code. In this work, we concentrate on code review and
release management activities.

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 26 / 729

III. CODE REVIEW AND RELEASE MANAGEMENT

This section explains the processes of code review and
release management. We discuss how these two processes
could be improved by using traceability links between
requirements, work items and code. Furthermore, we specify
requirements for an approach improving these two processes.

A. Code Review

Code review is a process where a team member reviews
code written by another member to ensure quality and
consistency, as well as to share knowledge in a software
development project. It assists in improving the quality by
identifying defects at an early stage. However, code review
by its nature is a labour-intensive process. This is further
affected by the lack of effective tool support. The problem
is not overwhelming tool complexity, as the goals of such a
tool are rather simple. Goals of such a tool are:

• Enable the reviewer to quickly transfer the changes to
be reviewed to his local workspace as well as highlight
the changes so that s/he can review the interplay of the
changes with the entire code base.

• After the code review, it should allow the reviewer to
add a review summary to the associated work item.

A specific question during requirements validation is to
ensure that the implementation of every requirement or
feature is reviewed. Thus, one needs to be able to associate
changes in the code to its corresponding work item in
the project management documents. Therefore, work items
themselves are associated to a requirement or feature as well
as to the changes in the code. This requires extended tool
support to aid the code review process.

B. Release Management

Another important activity in SCM is the release man-
agement process. This process involves deciding on which
configuration a product is released and which features it
includes. During the release management it needs to be
verified that the code, from which the release is actually
built, includes all features or requirements the release should
embody.

Most of the existing literature fails to highlight this
activity and its importance in release management. Van
der Hoek et al. [8] even describe the release management
as a “poorly understood and underdeveloped part of the
software process”. Instead, it is generally assumed that a
configuration of code already exists and that it contains all
required content. Thus, two important aspects are:

• Is the implementation of each feature or requirement,
which are part of this release, included in the code? Is
the implementation not finished, or finished but only
stored in the local workspace of the implementor?

• Are there any other changes in the code e.g. undocu-
mented bug fixes or accidentally introduced changes?

If it can be validated which features or requirements are
included in the code of a release, the release management
process can further benefit from extended functionalities
provided by the tool. For example, assembling the code for
the release autonomously. By specifying the base version of
code and a set of features or requirements to be included
into the release, the system should be able to merge the
implementation of all features or requirements into the code,
ignoring already included features or requirements.

Other activities can also benefit from tracking the changes
in the release. During release management, there is a need
to capture a list of features and included bug fixes in the
form of a change log for every release. This log is usually
shipped with the product and/or published to inform users
about changes. However, the change log could be assembled
automatically as it is possible to identify the list of features
or bug fixes implemented in the code.

C. Leveraging Traceability between Code and Work Items

For the purpose of improving the processes of code review
and release management, we capture all changes made to the
code in a so-called change package. The change package is
created by accumulating the changes a developer performs
in the code within the context of a certain work item. Hence,
every change package is associated with only one work item.

During a code review, the reviewer needs to quickly trans-
fer all changes to be reviewed to his/her local workspace.
Suppose the reviewer has to review some changes in the
code. For this task, s/he gets assigned a work item to be re-
viewed. The original work item was linked by a developer to
a change package containing all changes that s/he performed
to the code. So, while viewing the work item, the reviewer
could quickly apply all the changes in the change package
to his/her local workspace. After applying the changes, the
reviewer could start immediately with the code review. The
code review process would be improved due to automatic
transfer of all changes to the local workspace and reduced
setup time. Previously, these tasks had to be performed
manually.

For the release management process, the base version of
code and a set of features or requirements to be included
into the release need to be specified. Using our approach, it
is possible to merge all the change packages for every work
item associated with the selected features or requirements
over the base version of the code, ignoring already included
change packages. Furthermore, it needs to be validated
whether a change package is already included in the given
code. Additionally, one could assemble the change log for
the release automatically, as it is possible to identify the
set of features, requirements or bug fixes implemented in
the code. The release management process would benefit
from automated assembling of code and change log creation.
Previously, these tasks had to be performed manually, as
well.

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 27 / 729

D. Requirements

Based on the ideas above on how to improve the processes
of code review and release management, we have identified
the following three requirements for a change package:

1) Change package creation: A change package must be
producible from the current changes the developer has
in his/her workspace.

2) Change package application: A change package must
be applicable to a given set of code files.

3) Change package validation: It must be possible to
validate if the changes in a package are already applied
to a given code configuration.

In the following section, we discuss how to satisfy these
three requirements to improve the processes of code review
and release management.

IV. APPROACH

This work proposes an approach to (semi-) automatically
establish traceability links between code and work items.
Our approach links the exact changes which were made in
the code to a work item. We assume that developers only
work on one work item at a time and do not switch between
different work items. The core idea for (semi-) automatically
creating traceability links is letting the developer build the
links himself/herself while using a VCS within the project.
Whenever s/he finishes the implementation of a work item,
the developer does not immediately commit the changes to
the repository. Instead, before the commit, s/he orders the
system to create a change package containing all changes in
the code and associate it to a work item (see Figure 1).

Changes in Code

Associate
Change

Package to
Work Item

Create
Change
Package

Commit to VCSFinish Implemen-
tation of Work Item

Figure 1. Process of creating Change Packages

The following subsections describe the proposed approach
in detail with regard to two different ways of change package
representation: a patch and a branch.

A. Patches as Change Packages

A patch is a file containing a set of changes between two
versions of the code. The changes are stored in a specified
format (e.g., unified diff) which allows to apply the changes
contained in them to files (e.g., code), thus reproducing
the patched version. Patches can be created and applied by
almost all VCSs and even without a VCS, common programs
like diff and patch under Unix can be used to create

patches. The following mechanisms are used to fulfill the
requirements for a change package:

1) Change package creation: A change package is cre-
ated by creating the patch file.

2) Change package application: A change package is
applied by applying the patch.

3) Change package validation: This is where patches
reach their limits: It is rather difficult to check if a
patch is already included in a given code. If the code
was not changed afterwards, a simple check for the
changes in the patch file can yield a result. However,
if the code was changed afterwards (which is the more
common case), comparing the content and the changes
in the patch will not yield a result. Thus, relying only
on a comparison of the patch content with the current
file content is not suitable.

While the first two requirements are straightforward, the
last requirement is challenging. There exist several possible
approaches to implement the last requirement. For example,
one is keeping a list of patches applied onto the code and
linking this list with the version history in the repository. The
problem with this approach is that it only works if all patches
are applied using the system which tracks their application.
If a patch is applied using common tools like the patch
Unix command or the commands provided by the used VCS,
this patch will be un-tracked.

A prototype for the patch representation of change pack-
ages was implemented. It is based on Subversion. Because
it only uses the functionality of patch creation, it can also
be adapted to other VCSs. The prototype currently does not
support the check whether a patch is contained in the current
version of the code. Therefore, the patch-based approach
can only support the code review process, but not the release
management process.

B. Lightweight Branches as Change Packages

VCSs ensure that no changes, besides the ones introduced
by commits (and reliably logged), are done to the repository.
Thus, a good approach for providing change package vali-
dation is to make them reside directly in the repository. By
tying the representation closer to the repository, more of its
tracking features can be leveraged.

The obvious choice for a change package representation
which resides in the repository is a branch. A branch
represents changes done to the code since the revision from
which the branch started to diverge. The three required
properties could be implemented for branches as follows:

1) Change package creation: A branch is created and
changes are committed to this branch.

2) Change package application: A branch can be applied
onto another branch of the repository by merging it
into the other one.

3) Change package validation: By checking the revision
graph, it can be deducted whether a branch has been

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 28 / 729

merged into another one (see details below). However,
the repository has to support a revision graph to allow
this approach.

The basic idea of checking if a change package is already
merged into a given branch is using the revision graph
and performing a backward search (i.e., a search from a
revision into the direction of its predecessor revisions). The
search starts from the head revision of the given base branch
which is to be checked for included change packages. If
a revision identifying a change package branch (hereinafter
called indicator revision) is found, a positive answer is given.
If the search does not yield the indicator revision of a change
package, a negative answer for this package is given. The
representation of the indicator revision depends on the VCS.
If the branch head of a merged-in branch is kept, this branch
head can be used as indicator revision and stored in the
change package. Otherwise, for example, the first commit
on the branch can be used.

A drawback of this approach is that it restricts the VCS
to be used. First, the VCS must support branches. This is no
big restriction as most modern VCS do support this feature.
The next limitation is more severe: The VCS must support
a revision graph which reveals all predecessors of a revision
which was created by merging. Subversion, for example,
is not able to deliver this information and is therefore
unsuitable for this approach. Finally, the branches must be
lightweight: Since one change package is represented by one
branch, numerous branches will exist concurrently in the
repository. A branch is considered lightweight, if a large
number of branches can be created without reducing the
performance of the system and without taking too much
space in the VCS. Additionally, the creation and merging
of branches should be fast and the merge algorithms used
should be sophisticated. It must be able to resolve most
conflicts automatically, because this is cumbersome and
error-prone.

One system that actively advertises its ability to maintain
a large number of lightweight branches is Git. It also
incorporates the use of sophisticated merge algorithms which
reduce the amounts of conflicts propagated to the user. Thus,
Git was chosen for the prototype implementation of the
lightweight branch representation of change packages. In
contrast to the patch-based prototype, the branch-based one
is able to support all required three requirements. Thus, the
branch-based approach can support both processes of code
review and release management.

V. PROTOTYPE

A prototype of the presented approach has been imple-
mented and integrated into UNICASE. After performing
changes to the code, the developer selects a work item for the
created change package (see Figure 2). For the code review,
a reviewer gets assigned a work item to be reviewed. S/he
can easily apply the linked change packages to his/her local

Figure 2. Choosing a Work Item to associate to a Change Package

workspace. This process is eased in UNICASE by providing
user-specific change notifications [9]. Once the developer
finishes his/her work, the reviewer gets notified whether s/he
can start with the review process. After the review, s/he can
add a review summary to this work item and share it with
the developer.

Figure 3. Release Management Support in Prototype: Overview

Figure 4. Release Management in Prototype: Release Content

In Figures 3-5, an insight into the prototype implementa-
tion in UNICASE for the support of the release management

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 29 / 729

Figure 5. Release Management Support in Prototype: Changelog

is provided. The tool is able to show the progress of the
build process as well as all already merged, not merged
or erroneous change packages (see Figure 3). The release
content tab shows all included work items in this particular
release and their linked change packages (see Figure 4). The
change log is automatically created (see Figure 5).

VI. APPLICATION OF PROTOTYPE

We used the prototype during one sprint (4 weeks) in
the development of the UNICASE project. In the following,
we report on the processes of code review and release
management with and without using the prototype as well
as our experiences.

A. Code Review

The code review process without using the prototype was
as follows: a developer got assigned a work item describ-
ing his/her work for implementation. After implementation,
the developer created manually a patch file containing all
changes. Then s/he send the patch via e-mail to a reviewer
for code review. The reviewer downloaded the patch and
applied it manually to his/her local workspace. Afterwards,
the reviewer had to find the work item belonging to the
patch. After the reviewer had reviewed all changes and
agreed to all performed changes, s/he committed the changes
to the VCS. Finally, the reviewer had to write a review
comment to the work item indicating that the changes have
been reviewed and applied.

The code review process with using the prototype was as
follows: a developer got assigned a work item describing
his/her work for implementation. After implementation, the
developer selected the assigned work item (see Figure 2). If
no work item existed for the performed changes, e.g., for a
hot fix, the developer just created a work item on demand.
After that, the changes were committed to the VCS in a
separate branch. A change package was created containing
a link to a branch and it was linked to the selected work item.
The developer marked the work item as done and assigned
a reviewer to it. The reviewer was automatically notified

that new code changes were waiting for review using user-
specific change notifications [9] in UNICASE. S/he opened
the work item and selected the option to automatically
download and apply the linked change package. All changes
were automatically fetched/pulled from the branch in the
VCS and applied to the local workspace of the reviewer.
After reviewing all changes, the reviewer committed the
changes to the main trunk of the VCS. Finally, the reviewer
had to write a review comment to the work item indicating
that the changes have been reviewed and applied.

B. Release Management

The release management process without the prototype
was as follows: A release manager went through the list
of all the work items and their linked features/requirements
that the release should embody. Subsequently, the release
manager went through each work item based on their priority
and verified if their is a corresponding commit from the
developer in the VCS assigned to the work item (switching
back and forth between two different tools). Often, s/he
also noticed that the patches were not applied to the branch
from where the new release has to be made but rather at
other place. In this scenario, s/he would have created a diff
and applied it to the release branch that was checked out
in his/her local workspace. If s/he was unsure whether a
commit belongs to a work item, s/he first tried to contact
and confirm with the assignee of the work item. Once the
branch is ready by including all the code changes, the release
manager committed all the local changes to the VCS and
moved on to do the release manually or using a build server.

The release management process with the prototype was
as follows: A release manager created a release model
and added all the features/requirements the release should
embody. Once s/he was done with a VCS checkout of the
latest version for the release branch, s/he selected the “Build
Release” option provided in the prototype. The prototype
applied all change packages linked with every work item
that are related to the features/requirements included in the
release model automatically. Next, the prototype presented a
release checking report to the release manager that showed
a summary of the release process with various information,
e.g. whether all the work items are resolved (Figure 3), all
change packages merged to the release branch (Figure 4)
and the automatically created change log from the work item
descriptions (Figure 5). Once the release manager selected
to do the release, all the change packages were merged and
committed to the VCS repository.

C. Experiences

We noticed several advantages while using the prototype.
First, the developers were able to automatically assemble all
code belonging to the sprint and its planned work items and
check if code could be assembled successfully. Second, if
problems occurred during the release, these problems were

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 30 / 729

reported. An overview about already merged, not merged or
erroneous change packages helped the developers looking
into the specific change packages. Third, the change log
was automatically assembled. We learned that the presented
approach significantly increased the productivity of our
development team, e.g. the release management process
using the prototype is now up to 4 times faster than before
(30 minutes with and 2 hours without prototype).

VII. RELATED WORK

In the following, related work for code traceability, code
review and release management is discussed.

A. Code Traceability

Maintaining traceability links between code and other
artifacts is a challenging task and therefore a field of intense
research. Most approaches relate structures in the code like
classes, methods, modules, files, or lines of code to other
artifacts like requirements or features. Our approach tracks
changes instead of structures in the code, instead.

A very simple, yet effective approach is presented by
Treude et al. [10] embedding the links directly into code
comments, which can be read by their proposed tool
TagSEA. They use tags in comments to refer to other
artifacts. They go further into the direction by creating links
between tasks (equal to our definition of work item) and
code. This is accomplished by connecting their tool with
MyLyn [11], which can be used to express tasks. They
connect code to MyLyn tasks by using special tags. A major
drawback of using tags in the source code is the overhead
of keeping the tags updated. In a complex project with a
large number of artifacts it gets difficult for a developer
to recall which code files should be connected to which
work item. In our approach, we use the abstraction of
patches over individual code artifacts to overcome this issue.
Fischer et al. [12] link VCS with release data, which is in
contrast to our approach. They use the version history in the
repository, in addition to bug tracking data, to automatically
build the release history of a project and allow viewing and
querying it to retrieve information about the evolution of the
project. While they do post-mortem analysis, our approach
is focused on creating links between code and tasks during
development to benefit code review and release management.

Marcus et al. [13] establish links between code and the
corresponding documentation. In contrast to the approaches
mentioned above, they try to recover the links automatically
using information retrieval, namely Latent Semantic Index-
ing (LSI). This is different to our approach, as we establish
links between code and work items (semi-) automatically
while the developers use a VCS. Qusef et al. [14] use their
SCOTCH tool for dynamic slicing and conceptual coupling
to recover traceability links between unit tests and tested
classes. Antoniol et al. [15] link code locations to object-
oriented design artifacts. Like Marcus et al., they establish

all the links without additional information, by performing
different static and dynamic analyses. They use, amongst
others, vector space indexing and probabilistic indexing
techniques (comparable to LSI). All these methods are based
on the textual similarity of artifact content, code identifiers
and comments. This results in unreliable traceability links, as
the created traceability links cannot ensure a high precision
as well as a high recall at the same time.

B. Code Review
Several researchers contributed to the tool support of

code review. Brothers et al. [16] proposed the ICICLE
tool, which embodies different functionalities aiding code
reviews. Examples are a human interface for preparing
comments on the code under inspection and hypertext-
based browsers for referring to various kinds of knowledge
associated with code inspection, thus achieving a certain
degree of traceability. Harjumaa et al. [17] proposed a web
based tool, which features the distribution of the docu-
ment to be inspected, annotation of it, searching of related
documents, a checklist, and inspection statistics. Belli et
al. [18] described an approach for the automatic handling,
checking, and updating of check lists used in reviews. A
similar approach of improving artifact quality by distributed
artifact inspection was presented by De Lucia et al. [19].
They focused on general aspects of the artifacts life-cycle
and presented a distributed inspection process consisting of
seven phases implemented in a tool called WAIT.

All these approaches are in contrast to ours, as we are
able to transfer the changes to be reviewed automatically as
well as providing traceability from the code over work items
to other artifacts, e.g., features or requirements. There are
further tools for code review which can do a lot of other
things that our tool does not support. However, these tools
do not support the functionality discussed here.

C. Release Management
Among numerous research work aiming at improving

the release management process, we identified two major
contributions related within the scope of our work. Van
der Hoek et al. [8] identified the basic issues in release
management and developed a tool to aid the release man-
agement process. In contrast to our approach, their approach
does not include assembling and building components to be
released. It is merely a database of releases, components
to be released and their dependencies among each other.
Saliu et al. [20] contributed research in the field of release
planning, especially for evolving systems which are built
incrementally. Our approach supports release planning as
well, since work items linked to changes in the code are
included in a release.

VIII. DISCUSSION

The proposed approach works with certain constraints
and assumptions. For example, it is also possible that a

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 31 / 729

change belonging to a work item has been committed to
the repository without the creation of a change package.
This can happen if the code is committed with the sources
of another change package, which happens if a developer
was working on two work items and committed the changes
for both in one change package only. However, this can be
noticed by the developer if s/he realizes that one of the work
items has a missing change package. The approach leaves the
task of creating links between the code changes and the work
items to the developer himself/herself. So, the approach
suffers from mistakes a developer does while performing
this activity (like linking code to the wrong work item). The
general problem is that artifacts in human readable text or
code can not be linked together with full reliability using any
existing technique. Our approach of letting the developers
create the links themselves as part of their usual work is
expected to be better in comparison to automatic approaches.

IX. CONCLUSION

This paper proposed an approach for (semi-) automatically
creating traceability links between code and work items by
using VCSs. The created traceability links were used to im-
prove the processes of code review and release management.
The idea to automate the code review process was to use
traceability links between code and work items to apply the
code to the reviewers machine, highlight the changes and
add the reviewers feedback to the work items. For the release
management, the traceability links between code and work
items were used to check which work items are contained
in the code of a release and to build a release automatically
by merging in the missing features or requirements.

The techniques and applications discussed in this paper,
like the establishment of links between code and work items,
are still not explored in depth. Therefore, there are a lot of
possibilities for future research in this area. We are aware
that our approach currently only allows developers to work
at one work item at a time. Therefore, support for working
on several work items at once is subject to future work.
Furthermore, we want to study further possibilities for the
application of our proposed approach. The work presented
in this paper has been evaluated so far only with a small
user group during one sprint in the UNICASE project. Thus,
we plan to conduct a representative user experiment. A
study where the prototype is used throughout a development
project would be very beneficial to evaluate the benefits
offered by the proposed approach to the code review and
release management processes.

REFERENCES

[1] Tichy, W.F. Tools for software configuration management.
In Proceedings of the International Workshop on Software
Version and Configuration Control, pp. 1-20 (1988)

[2] IEEE. IEEE standard for software configuration management
plans: ANSI/IEEE std. 828-1983 (1983)

[3] Leon, A. Software configuration management handbook.
Artech House, Inc. Norwood, MA, USA (2004)

[4] Helming, J., Koegel, M., and Naughton, H. Towards traceabil-
ity from project management to system models. In TEFSE 09:
Proceedings of the 2009 ICSE Workshop on Traceability in
Emerging Forms of Software Engineering, pp. 11-15, IEEE
Computer Society (2009)

[5] Bruegge, B., Creighton, O., Helming, J., and Koegel, M.
Unicase - an Ecosystem for Unified Software, In ICGSE 08:
Distributed software development: methods and tools for risk
management, pp. 12-17 (2008)

[6] UNICASE Open Source Project. http://www.unicase.org/
[7] Helming, J., David, J., Koegel, M., and Naughton, H. Inte-

grating System Modeling with Project Management - A Case
Study. In COMPSAC 09: International Computer Software
and Applications Conference, pp. 571-578 (2009)

[8] Van der Hoek, A., Hall, R., Heimbigner, D., and Wolf,
A. Software release management. Software Engineering -
ESEC/FSE, pp. 159-175 (1997)

[9] Helming, J., Koegel, M., Naughton, H., David, J., and Shterev,
A. Traceability-Based Change Awareness. In MODELS 09:
International Conference on Model Driven Engineering Lan-
guages and Systems, pp. 372-376 (2009)

[10] Treude C. and M.A. Storey. How tagging helps bridge the
gap between social and technical aspects in software devel-
opment. In ICSE 09: International Conference on Software
Engineering, pp. 12-22 (2009)

[11] Eclipse MyLyn. http://www.eclipse.org/mylyn/ [retrieved:
September, 2012]

[12] Fischer, M., Pinzger, M., and Gall, H. Populating a Release
History Database from version control and bug tracking
systems. In ICSM 03: International Conference on Software
Maintenance, pp. 23-32 (2003)

[13] Marcus, A., Maletic, J.I., and Sergeyev, A. Recovery of
traceability links between software documentation and source
code. International Journal of Software Engineering and
Knowledge Engineering, vol. 15, no. 5, pp. 811-836 (2005)

[14] Qusef, A., Bavota, G., Oliveto, R., De Lucia, A., and Binkley,
D. SCOTCH: Slicing and Coupling Based Test to Code Trace
Hunter. In 18th Working Conference on Reverse Engineering
(WCRE), pp. 443-444 (2011)

[15] Antoniol, G., Canfora, G., Casazza, G., and De Lucia, A.
Maintaining traceability links during object-oriented software
evolution. Software: Practice and Experience, vol. 31, no. 4,
pp. 331-355 (2001)

[16] Brothers, L.R. Multimedia groupware for code inspection.
International Conference on Discovering a New World of
Communications (ICC), pp. 1076-1081 (1992)

[17] Harjumaa, L. and Tervonen, I. A WWW-based tool for soft-
ware inspection. In HICSS, Published by the IEEE Computer
Society, pp. 379-388 (1998)

[18] Belli, F. and Crisan, R. Towards automation of checklist-
based code-reviews. In ISSRE 96: International Symposium
on Software Reliability Engineering, IEEE Computer Society,
pp. 24-33 (1996)

[19] De Lucia, A., Fasano, F., Scanniello, G., and Tortora, G.
Improving artefact quality management in advanced artefact
management system with distributed inspection. Software,
IET, vol. 5, no. 6, pp. 510-527 (2011)

[20] Saliu, O. and Ruhe, G. Supporting software release planning
decisions for evolving systems. 29th Annual IEEE/NASA
Software Engineering Workshop, pp. 14-26 (2005)

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 32 / 729

A Multiple View Environment for Collaborative Software Comprehension

Glauco de F. Carneiro
Computer Science Department

Salvador University (UNIFACS)
Salvador, Bahia, Brazil

glauco.carneiro@unifacs.br

Carlos F. R. Conceição
Computer Science Department

Salvador University (UNIFACS)
Salvador, Bahia, Brazil

carlos.conceicao@unifacs.br

José Maria N. David
Computer Science Department

Federal University of Juiz de Fora
Juiz de Fora, Minas Gerais, Brazil

jose.david@ufjf.edu.br

Abstract—Collaboration is an important issue for software
comprehension activities which are performed in distributed
development environments. Several studies have pointed to the
relevance of visualization to provide support to these activities.
Enriching visual metaphors with awareness elements can
enhance collaboration in such environments. This paper
presents a multiple view interactive environment to support
collaborative software comprehension. A case study was
carried out to analyze the effectiveness of the proposed
environment considering that awareness elements are visually
represented to support the collaborative software
comprehension.

Keywords- collaboration; software comprehension; software
visualization; distributed development environments.

I. INTRODUCTION

Humans rely more on vision than all the other senses
[25]. For this reason, the use of visual resources is relevant
for software engineering. Software visualization uses
perceptible cues to visually represent several software
systems properties. The goal is to unveil patterns and
structures that otherwise would remain hidden during
software comprehension activities [24]. Software
comprehension in distributed development environments
requires collaboration support. Awareness plays an important
role in software comprehension activities in a collaborative
environment since it supports programmers to find
meaningful information to their activities [11]. Supporting
awareness in a distributed environment enables, for example,
the identification of who is working in the project, what
participants are doing, why they are doing, which artifacts
they are manipulating and how their actions might impact
others [16].

Visual resources have been used to support programmers
to perform their activities in distributed development
environments [1][2]. However, there are still some open
questions in this area, specially related to awareness. In this
paper we focus on two of these questions. The first is related
to the inclusion of visual representation of awareness
elements in integrated development environments (IDEs) in
order to increase the effectiveness of software
comprehension. The goal is to provide programmers with
information related to what has been done in the context of a

given project. The second question is related to the use of
multiple view interactive environments as a mean to enhance
software comprehension. The goal is to support awareness
due to the use of three important concepts used in the
information visualization domain: i) navigational slaving –
multiple views systems should enable actions in one view to
be automatically propagated to the others [22]; linking –
multiple views systems should connect data in one view with
data in the other views [17]; brushing – multiple views
should enable corresponding data items in different views to
be simultaneously highlighted [17].

A view is a particular visual representation of a data set.
Complex data sets typically require multiple views, each
revealing a different aspect of the data [19]. Multiple view
systems have been proposed to support the investigation of a
wide range of information visualization topics [20].
SourceMiner [3][28] is a multiple view interactive
environment (MVIE) from which the collaborative
environment was developed and now is described in this
paper. It was implemented as an Eclipse IDE plug-in to
interactively visualize Java projects, complementing the
native views and resources provided by the IDE. It uses code
as its main data source and provides a set of features to
support programmers to configure the visual scenario that
best fit a software comprehension goal. Examples of features
to interact with the views are: (i) filters to visually present
information that match filtering criteria; (ii) semantic and
geometric zooming to better adjust views to the canvas; (iii)
flexibility to arrange views in accordance with the preference
of the programmer; and (iv) transparent navigation from the
visual representation to the source code. SourceMiner has
been used in different software engineering studies such as
code smells identification [3] and characterization of
strategies adopted by programmers in software
comprehension activities [4].

The Collaborative SourceMiner [5] is a collaborative
version of SourceMiner. It combines the use of a multiple
view interactive environment with collaboration elements
such as chat and bullets that inform which parts of the
software have been analyzed by each programmer . This
paper focuses on awareness support of the environment. The
goal is to enhance software comprehension in distributed
development, for this reason we use the term collaborative
software comprehension.

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 33 / 729

This paper is structured as follows. In Section II we
briefly review concepts related to collaborative software
comprehension. Next, we present the proposed conceptual
model of Collaborative SourceMiner. In Section IV we
present a case study to analyze the effectiveness of the use of
awareness elements in MVIEs to support collaborative
software comprehension. Finally, in Section V, a discussion
is presented, followed by conclusions about our work and
avenues for future work

II. COLLABORATIVE SOFTWARE COMPREHENSION

In distributed software development environments, the
geographic distance can hinder and limit the interaction
opportunities due to the temporal distance [6]. It also
hampers the understanding level of actions and efforts of
group participants due to the cultural differences [7].
Moreover, the fact that the participants could have different
native languages is a potential obstacle to communication
[8]. According to Dix [9], two important aspects that benefit
programmers in distributed development environment are: (i)
explicit communication, where one programmer can inform
others about his or her activities, and (ii) consequential
communication where programmers can obtain useful
information to accomplish activities by observing others´
actions.

The approach used in this paper is based on a
collaboration model known as 3C+P (communication,
coordination and cooperation plus perception) proposed in
[17]. According to Fuks and Assis [12], awareness is the key
element to support collaboration activities. However, the
way these elements interact with each other depends on the
project in which they have been used [18]. Awareness
provides information to enhance collaboration due to the
following: a) it enables the coordination of activities; b) it
promotes the discussion of tasks through communication; c)
it enhances interaction with others participants in the shared
workspace through cooperation [10][13]. The workspace has
an important role in collaboration activities [14]. Through
the shared workspace participants can gain knowledge about
group activities. This fact enhances awareness. The way
awareness is supported in shared workspaces is essential in
the cases where time and space need to be considered in the
collaboration process definition [15].

In a distributed context, visual resources could also
support awareness. These resources can be combined with
collaboration elements (communication, coordination and
cooperation) represented in the IDE to enhance software
comprehension. This results in the proposed conceptual
model that is discussed in the next section.

Researchers have already used visualization to support
awareness. For example, Lanza et all. [26] proposed an
approach to augment awareness by recovering development
information in real time and broadcasting it to developers in
the form of three lightweight visualizations. Treude and
Storey [27] conducted a study about the use of a community
portal by software project members. However, to the best of
our knowledge, these researches do not consider examples of
the use of awareness elements associated with collaboration

elements in order to support software comprehension
activities in MVIEs.

III. THE PROPOSED CONCEPTUAL MODEL

The proposed conceptual model was based on the
definition of awareness presented in [11]. The main goal is to
enable programmers from the same group to collaborate in a
shared workspace and hence obtain knowledge to perform
software comprehension activities. The conceptual model
has as its start point the scenario illustrated in Figure 1.
According to the figure, programmers perform software
comprehension activities in different places. In the figure, the
circle illustrates programmers accessing the source code
(triangle) using the IDE (square). Considering this situation,
we can conclude that collaboration occurs using resources
(for example, chat on line) that are not integrated into the
IDE. This scenario does not necessarily explore the
potentiality of visual resources to support software
comprehension activities. Moreover, a considerable
cognitive effort will be needed due to the fact that the
collaboration resources are not integrated into the IDE. This
situation can also hinder convergence to perform a
collaborative software comprehension.

Based on the scenario illustrated in Figure 1, we present
the Figure 2 with the proposed conceptual model for
collaborative software comprehension. The difference
between Figure 1 and the part A of Figure 2 is that the IDE
now has the Collaborative SourceMiner plug-in, represented
by the red circle in the Figure 2. Moreover, the visual
resources provided by the Collaborative SourceMiner have
the goal to support awareness in a distributed software
development. The views are enriched by awareness elements
to enhance communication, coordination and cooperation.

Figure 1. Collaborative Software Comprehension

For example, consider a set of classes that had its source
code most frequently accessed by the members of a team
while performing a given task. The result is that they can
have its visual representation highlighted in the views. In this
same example, a programmer can add a note to the visual
representations of a class reporting information that needs to
be considered relevant to the execution of the same task.

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 34 / 729

(A)

(B)

Filters
RANGE

SLIDERS
CHECK

BOX
RADIO

BUTTONS
TEXT

FIELDS (D)

METRICS

LOC CC COUPLING COHESION (C)SOFTWARE
ATTRIBUTES

MESSAGES FROM THE
USERS

MESSAGES FROM THE
SYSTEM

AWARENESS (E)

SOFTWARE DOMAIN ANALYSIS

SOFTWARE VISUALIZATION AND AWARENESS DOMAIN

V1

V2

V3

V5

V4

V8

V7

Collaborative
Software

Comprehension
Activities

JAVA
SOURCE

CODE

ECLIPSE
IDE V6

Coordenation

Communication

Cooperation

Awareness

1 2

3

4

56

Collaborative
Software

Comprehension
Activities

JAVA
SOURCE

CODE

ECLIPSE
IDE

JAVA
SOURCE

CODE

ECLIPSE
IDE

Figure 2. The Proposed Conceptual Model for Collaborative Software Comprehension

The fact that the representation of a set of entities is
highlighted by awareness elements does not necessarily
imply that these entities are relevant. These awareness
elements are an initial suggestion of what should be analyzed
by the group. For this end, the group can use the shared
workspace to discuss and converge to the set of entities that
are really of interest to the task at hand.

The combined use of multiple views enriched by
awareness elements is conveyed in the part B of the Figure 2.
Each view is represented by a colored circle (V1 to V8, for
example). These views when used together and combined
aim at providing features of a multiple view interactive
environment (MVIE). The awareness elements are the result
of information that programmers find useful to share with
others from the same team (marked as messages from the
user in the Figure 2 and implemented in Figure 6) and
information regarding classes and methods accessed while
performing a specific task (marked as messages from the
system in the Figure 2 and implemented in Figure 7). These
messages are represented in the views using visual attributes
such as icons and colors that can vary in tonality depending
on the type and numbers of messages related to a specific
software entity (see Figure 7). The part C of the figure shows
that software entities (packages, classes, methods, attributes
and interfaces) obtained from the Abstract Syntax Tree
(AST) are enriched by metrics such as size, cyclomatic
complexity, and coupling. The model allows the inclusion of
new metrics that appear to be relevant in the shared
workspace. The part D illustrates that the interaction with the
multiple views is supported by the filters, semantic and
geometric zooms and other interaction resources.

In fact, the model considers the influence of
coordination, cooperation and communication elements to
enrich the shared workspace with awareness information.
This is represented in part E of Figure 2, where the result is a
visual scenario composed of multiple views and their
corresponding awareness elements.

The model considers both synchronous and asynchronous
interaction support. Interactions in Collaborative
SourceMiner result from two types of messages: those from
the user (Figure 6) and messages that are automatically
collected by the system registering what programmers are
doing in the IDE. The first one is the kind of messages that
can be sent by the programmers to register information that
is considered relevant to a specific task asynchronously. The
second type of message is sent automatically by the
Collaborative SourceMiner. The goal of this set of messages
is to enrich the visual representation in the multiple views in
order to contextualize programmers synchronously. When a
programmer starts the execution of a task his or her actions
are registered and automatically sent to a server, as
illustrated in Figure 3.

Figure 3. Implemented Topology of the Conceptual Model

A web service is available to receive and send messages
from and to the Collaborative SourceMiner clients which are
configured in the team. The client of this service is the IDE
Eclipse with the Collaborative SourceMiner plug-in. The
messages contain the following parameters: project, user,
and, optionally, the activity in which the programmer is
working. Before recording the message, Collaborative
SourceMiner checks if the user who sent the message is in
fact registered in the project.

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 35 / 729

Figure 4. Messages from the System Registering Actions Executed by a Programmerc

C

A

D B

Figure 5. Polymetric View enriched by Messages from the System

Registering Actions Executed by a Programmer

Figure 6. Communication among Participants through the Polymetric

View

Figure 7. Treemap View displaying Icons to represent Messages from the

System

Figure 4 displays examples of messages that are
automatically registered (marked as A in the Figure). Each
register has the following format: programmer, date/hour,
activity, entity (class, interface, or method) and view. The
messages can be filtered using as a parameter the
programmer(s) that performed the actions (marked as C in

the figure) and the task that it was associated with (marked
as B in the figure).

Another possibility to filter messages is by the period in
days that it occurred (marked as D). These data aim at
characterizing actions performed by programmers while
performing a specific task. When a software entity is
modified, an icon is presented. Different versions of this
entity can be shown if the programmer click in this icon. In
Figure 5 the polymetric view [3] illustrates the inheritance
hierarchy of entities (classes and interfaces) of a software
system. It portrays inheritance relationships between the
software entities (class/interface) as a forest of round
rectangles.

Originally proposed for this purpose, polymetric views
help to understand the structure and detect problems of a
software system in the initial phases of a reverse engineering
process [3]. Interfaces are represented as green circles (arrow
A) and classes as blue rectangles (arrow B). In the same
figure, arrows C and D indicate icons that represent
messages that can be relevant to the understanding of a
specific entity. In this case, arrow C indicates messages from
system while arrow D indicates messages from the users.
The icons can vary in tonality to highlight software entities
with which programmers most interacted. This is related to
the coordination support. It has the goal to indicate entities
that at first glance are somehow related to the activity
performed by the group. This can, for example, motivate the
group to know which entities programmers with more
experience were interacting with. In this case, specific pieces
of code are relevant when the team knows that experienced
programmers worked on them.

This can promote faster convergence for the
identification of these parts of the code that are probably
related to the software comprehension activity. Moreover,
this scenario can also be used to stimulate interactions
among participants so that they can make a decision. The
difference between this scenario and the one described in
Figure 1 is that now collaboration occurs through the use of
the Collaborative SourceMiner shared workspace. Another
difference is that the collaborative software comprehension
is based in a multiple view interactive environment.

As already discussed, visual resources have the potential
to support collaborative software comprehension. This
potential can be better exploited when the views are enriched

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 36 / 729

with information from every participant. For example, the
way the shared workspace has been used by group members
of the group (part B of conceptual model presented in Figure
2) encourage the sharing of knowledge.

Another example is related to the importance of expert
programmers in a team. They can lead the convergence to
the strategy to be applied in a given activity. This fact can
occur when the shared workspace indicates software entities
that expert programmers have selected to perform the
activity. This enables other programmers to analyze the same
entities through the same views as suggested and registered
by the experts. Moreover, this situation motivates interaction
among programmers so that decisions can be taken together
and the group has access to a wider pool of ideas and
possibilities regarding the activity to be performed then they
would have when working alone. The expected result is the
combined use of collaboration elements (communication,
coordination and cooperation) in a multiple view interactive
environment to support software comprehension activities.
This is represented in Part E of Figure 2.

IV. THE CASE STUDY

A case study was conducted to analyze the following
research question: “How awareness elements provided by
Collaborative SourceMiner support software comprehension
considering that programmers work collaboratively in a
distributed environment?”

Null hypothesis: Awareness elements provided by
Collaborative SourceMiner do not effectively support the
identification of code smells considering that the participants
work collaboratively in a distributed environment.

Alternative hypothesis: Awareness elements provided by
Collaborative SourceMiner effectively support the
identification of code smells considering that the participants
work collaboratively in a distributed environment.

Six participants took part in the study. They worked in
two groups of three participants each. This number of
participants offered a reasonable tradeoff between the cost of
the study and detailed qualitative analysis and the
generalizability of the results. To be eligible for inclusion,
participants were required to have the following skills:
experience with the object-oriented programming Java; and
in the use of the Eclipse IDE. This experience was verified
by asking them to fill in questionnaire forms. No current
member of our research groups took part in this study. They
were all volunteers and no compensation was provided for
their participation in this study.

Prior to the study tasks, the participants were required to
complete a tutorial session on how to use the multiple views
approach implemented by Collaborative SourceMiner. In this
training session, the participants had 24 hours to familiarize
themselves with the tool. They were asked to analyze a
program, called Health Watcher [21], and to answer 28 basic
questions regarding the tool functionalities. During the
tutorial session, the second author of this paper was available
online (email and chat) to provide complementary guidance
and detailed explanation on how to use Collaborative

SourceMiner. After the tutorial participants were asked to
execute the code smells identification.

This study relies on a software product line, called
MobileMedia (MM) [22] that manipulates photo, music, and
video on mobile devices, such as mobile phones. It has about
4 KLOC distributed in 18 packages and 50 classes. We
selected MobileMedia due to several reasons. First, its Java
implementation is available. Second, its key concerns were
previously identified by the developers and mapped to the
source code [22].

We relied on two experts to build a reference list for each
analyzed code smell (Feature Envy - FE, God Class - GC,
and Divergent Change - DC[23]). The experts are
researchers that participated in the development,
maintenance, and assessment of the target system. The goal
was to detect actual instances of each code smell in versions
3 to 7 of MobileMedia.

We collected direct and indirect data based on
questionnaires answered by the participants and provided by
an instrumentation system. The questionnaires described the
MobileMedia main functionalities, the code smells with
examples, and the tasks to be performed by the participants.
Participants were asked to list classes suspected of
manifesting code smells as well as the strategies they use to
identify them. They were also asked to describe which of the
Collaborative SourceMiner resources, such as views,
concerns, filters, and colors, they found helpful to perform
the task at hand. A logging functionality of Collaborative
SourceMiner automatically records data describing the
environment usage at a fine-grained detailing level. This
functionality sends the data automatically to the server (see
Figure 3) and is used to monitor how frequently a view or a
feature of the tool is used, the transitions among views, and
the time each action happened. The goal is a better
understanding of the participants’ strategies based on their
recorded actions.

Two important roles of this study were the coordinator
and programmer. The first had the following responsibilities:
register the project to be analyzed, the activities to be
performed and the participants of the study. The goal was to
configure the environment for the study. The coordinator did
not perform any of the software comprehension activities.
Each team had 48 hours to perform the asked tasks. Each
group was asked to identify the code smells Feature Envy,
God Class and Divergent Change [23] in a software system
called Mobile Media.

Table 1 presents the values of precision (p) and recall (r)
of the identification of code smells of each participant. The
precision metric quantifies the rate of correctly identified
code smells by the number of detected code smell
candidates. Recall quantifies the rate of correctly identified
code smells by the totally number of actual code smells.
PA1, PA2, and PA3 represent the participants 1, 2 and 3
from the first group. PA4, PA5, and PA6 represent the
participants 1, 2, and 3 from the second group. The values of
PA5 were not considered in the study due to the fact that he
did not answer the questionnaires.

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 37 / 729

TABLE I. PRECISION AND RECALL IN CODE SMELLS IDENTIFICATION

 PA1 PA2 PA3 PA4 PA6
r p r p r p r p r p

GC 0,9 1,0 0,8 0,9 0,9 0,7 0,2 0,7 0,2 0,7
DC 0,2 0,6 0,1 0,4 0,1 0,1 0,1 0,1 0,1 0,4
FE 0,4 0,3 0,1 0,1 0,2 0,2 0,2 0,4 0,2 0,6

The analysis of the data from Table 1 shows that

participants from the first group had greater variation of
precision and recall than participants from group 2. The
lesser variation of precision and recall of group 2 can be
justified by the collaboration among participants. All the
participants obtained higher values and lesser variation of
precision and recall in the God Class identification when
compared with the other two code smells. The analysis of the
messages provided by the Collaborative SourceMiner and
the questionnaires show that participants used the
communication feature (internal chat) provided by the
proposed plug-in to indicate the code smells candidates.

Messages among participants revealed evidences of

communication during the execution of the asked tasks.
Figure 6, for example, shows evidences of this
communication where PA1 and PA2 comment the case of
the class BaseController as a God Class candidate. PA2 also
informed us in the questionnaires that s/he had clicked in the
icons in the views to read messages sent by others about the
relationship of specific software entities and the asked task.

PA2 also mentioned that used the filters presented in
Figure 4 to analyze the messages of interest to the task.
According to PA2, “when I noticed that PA1 interacted
several times with the class
UnavailablePhotoAlbumException, I analyzed the class in
more details in order to verify if it should be a Feature Envy
candidate. However, after this analysis I concluded that it
was not a Feature Envy occurrence”. PA1 registered in the
questionnaire that “the comments from the other participants
helped me to identify certain particularities in the classes and
methods of the analyzed software system that I would not be
able to identify without collaboration”. PA3 informed that:
“The messages, especially the ones from PA1, were of great
relevance to guide me in the execution of the asked tasks.
PA4 also mentioned that: “the indication of the
BaseController class was in accordance with the suggestion
of PA6”. This comments provided by the participants show
initial evidences that enriching the visual representations
with Information provided by the participants of a group
contributed to the convergence of which should be done in
the asked tasks.

Due to the values of precision and recall obtained by PA1
and the comments registered in the questionnaires, there are
initial evidences that PA1 guided PA2 and PA3 in the tasks
execution using the collaboration resources provided by the
Collaborative SourceMiner.

Based on the analysis of the research questions analysis,
we present the observations as follows. Observation 1:
during the execution of the asked activities programmers
collaborated among themselves and to some extent

converged in the indication of code smells. Observation 2:
there are initial evidences that participants considered the
actions and comments of others from the same group to
decide how to proceed in the asked activities. Observation 3:
there are initial evidences that participants adopted similar
strategies to identify code smells, hence they collaborate
while performing the asked tasks. These observations and the
results obtained in the study presented in this paper show
evidences that the alternative hypothesis is true.

A. Threads to Validity

The use of only one object (Mobile Media) as well as its
size and complexity are far inferior when compared with
typical software systems. However, MobileMedia has
already been used in other studies to characterize the use of
software visualization tools. An important limit to the
generalizability of our findings comes from the fact that we
have based our observations on the analysis of the behavior
of only five subjects. However, as already mentioned, the
number of participants accepted in the study was based on a
tradeoff between the cost of the study and qualitative
analysis of the results to derive the observations.

V. CONCLUSION AND FUTURE WORK

This paper presented a multiple view environment to
support collaborative software comprehension. The
coordinated views integrated into the IDE provide
mechanisms that enable the use of awareness to perform
software comprehension activities in a distributed
development. The results of the study presented in this paper
show initial evidences about how programmers use
Collaborative SourceMiner to perform code smells
identification. Moreover, the results showed how the features
provided by the proposed environment enable the use of
awareness elements to perform software comprehension
activities. Another important result was the use of visual
representation of software entities combined with awareness
elements in the context of software comprehension.
Differently from other studies like the ones presented in [26]
and [27], the focus of this paper was to present initial
evidences on how programmers could interact and
collaborate to foster software comprehension using the visual
metaphors available in SourceMiner. We are planning the
inclusion of other mechanisms of cooperation,
communication and coordination in the Collaborative
SourceMiner to support software comprehension activities in
a distributed development.

A version of CollaborativeSourceMiner is available at
[28] as well as instructions to configure its environment.

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 38 / 729

REFERENCES
[1] Biehl, J.T., Czerwinski, M., Smith, G., and Robertson, G.G. (2007)

"Fastdash: a visual dashboard for fostering awareness in software
teams". In: Proceedings of the SIGCHI conference on Human factors
in computing systems, ACM 1313-1322.

[2] de Souza, C.R.B., Quirk, S., Trainer, E. and Redmiles, D. Supporting
Collaborative Software Development through the Visualization of
Socio-Technical Dependencies. ACM Conference on Supporting
Group Work, ACM Press, Sanibel Island, FL, 2007.

[3] Carneiro, G., Silva, M., Mara, L., Figueiredo, E., Sant'Anna, C.,
Garcia, A., and Mendonca, M. Identifying Code Smells with Multiple
Concern Views. In proceedings of the 24th Brazilian Symposium on
Software Engineering (SBES), 2010.

[4] Fernandes, J. M.; Carneiro, G. Strategies and Profiles of Novice
Programmers while Identifying Code Smells. In: IX Brazilian
Workshop on Software Maintenance (WMSWM 2012), Fortaleza/CE.
In portuguese.

[5] Conceição, C.F.R. Analyzing the Use of Awareness Elements to
Support Software Comprehension Activities in a Distributed
Development Environment. Master Thesis. Computer Science
Department. Salvador University (UNIFACS), 2012. In portuguese.

[6] Gerfalk, P. J. Fitzgerald B. Flexible and distributed software
processes: old petunias in new bowls? Communications of the ACM,
v. 49, n.10, p.26-34, 2006.

[7] Casey V. Leveraging or exploiting cultural difference? In: IEEE
International Conference on Global Software Engineering (ICGSE
2009), Limerick, Ireland: IEEE Computer Society, 2009. p. 8-17.

[8] Carmel, E.; Tjia, P. Offshoring Information tecnhnology: sourcing
and outsourcing to a global workforce. Cambridge: Cambridge
University Press, Cambridge, U.K., 2005.

[9] Dix, A.; Finlay, J.; Abowd, G.; and Beale, R. Human-Computer
Interaction, Prentice Hall. 1993.

[10] Ellis, C. A.; Gibbs, S. J.; and Rein, G. L. Groupware - Some Issues
and Experiences. Communications of the ACM, v. 34, n. 1, p. 38-58,
1991.

[11] Dourish, P.; Bellotti, V. Awareness and coordination in shared
workspace. Conference on Computer-Supported Cooperative Work.
pp. 107-114, Toronto, Canada, Nov. 1992.

[12] Fuks, H.; Assis, R. L. Facilitating perception on virtual learningware-
based environments. The Journal of Systems and Information
Technology. Edith Cowan University. Austrália, v. 5, n. 1, p. 93-113,
2001.

[13] Gutwin, C.; Greenberg, S. A descriptive framework of workspace
awareness for real-time groupware. Journal of Computer-Supported
Cooperative Work. Issue 3-4, p. 411-446, 2002.

[14] Gutwin, C. Workspace awareness in real-time distributed groupware.
1997. PhD Thesis. Department of Computer Science, University of
Calgary, 1997.

[15] Omoronyia, J. Ferguson, M. Roper, and M. Wood. A Review of
Awareness in Distributed Collaborative Software Engineering.
Software Practice and Experience, 40 (12). November 2010. pp.
1107-1133.

[16] Storey,M. Theories, Tools and Research Methods in Program
Comprehension: Past, Present and Future. Software Quality Journal,
2006.

[17] Fuks, H.; Raposo, A.; Gerosa, M.A.; Pimentel, M.; and Lucena,
C.J.P. The 3C Collaboration Model. The Encyclopedia of E-
Collaboration, Ned Kock (org), 2007, pp. 637-644.

[18] Fuks, H., Raposo, A., Gerosa, M.A., Pimentel, M., Filippo, D., and
Lucena, C.J.P. Inter- and Intra-relations among Communication,
Coordination and Cooperation. In IV Brasilian Symposium on
Collaborative Systems, Rio de Janeiro – RJ. 2007, pp. 57-68. (In
Portuguese).

[19] Pattison, T. and Phillips, M. View Coordination Architecture for
Information Visualization. In Proceedings of the Australian
Symposium on Information Visualization, 2001, Sydney, Australia.
pages 165-171.

[20] M. Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for Using
Multiple Views in Information Visualization. In ACM AVI 2000;
Palermo, Italy. 110-119.

[21] Greenwood, P. On the Impact of Aspectual Decompositions on
Design Stability: An Empirical Study. ECOOP, Germany, 2007.

[22] Figueiredo, E. Evolving Software Product Lines with Aspects: An
Empirical Study on Design Stability. ICSE, May 2008.

[23] Fowler, M. Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

[24] Petre, M. Mental imagery and software visualization in high-
performance software development teams. J. Vis. Lang. Comput., v.
21, n. 3, p. 171-183, 2010.

[25] Ware, C. Information Visualization, Second Edition: Perception for
Design (Interactive Technologies). 2. ed.Morgan Kaufmann, 2004.

[26] Lanza, M., Hattori, L., and Guzzi, A. Supporting Collaboration
Awareness with Real-time Visualization of Development Activity. In
Proceedings of the 14th IEEE European Conference on Software
Maintenance and Reengineering (CSMR), pp. 207 - 216. IEEE CS
Press, 2010.

[27] C. Treude and M.-A. Storey. Effective Communication of Software
Development Knowledge Through Community Portals. In
Proceedings of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE ’11). ACM, New York, NY, 91-101.

[28] SourceMiner. A Multiple View Interactive Environment Implemented
as an Eclipse Plug-in. Available at http://www.sourceminer.org.

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 39 / 729

Assisting bug Triage in Large Open Source Projects
Using Approximate String Matching

Amir H. Moin and Günter Neumann
Language Technology (LT) Lab.

German Research Center for Artificial Intelligence (DFKI)
Saarbr̈ucken, Saarland, Germany
{amir.moin, neumann}@dfki.de

Abstract—In this paper, we propose a novel approach for
assisting human bug triagers in large open source software
projects by semi-automating the bug assignment process. Our
approach employs a simple and efficient n-gram-based algo-
rithm for approximate string matching on the character level.
We propose and implement a recommender prototype which
collects the natural language textual information available in
the summary and description fields of the previously resolved
bug reports and classifies that information in a number of
separate inverted lists with respect to the resolver of each
issue. These inverted lists are considered as vocabulary-based
expertise and interest models of the developers. Given a new
bug report, the recommender creates all possible n-grams
of the strings, evaluates their similarities to the available
expertise models concerning a number of well-known string
similarity measures, namely Cosine, Dice, Jaccard and Overlap
coefficients. Finally, the top three developers are recommended
as proper candidates for resolving this new issue. Experimental
results on 5200 bug reports of the Eclipse JDT project show
weighted average precision value of90.1% and weighted
average recall value of45.5%.

Keywords-software deployment and maintenance; semi-
automated bug triage; approximate string retrieval; open source
software.

I. I NTRODUCTION

Open source software projects often provide their devel-
oper and user communities with an open bug repository for
reporting the software defects in order to be tracked by
developers and users. Each bug report usually undergoes
a triage process in which a group of developers, known
as triagers, check whether it contains sufficient amount of
information for the developers, whether it is not a duplicate
of a previously reported bug and if the bug is reported at
the right place. Only if the bug report passes these filters
successfully then they would assign a priority degree and a
severity degree to it from the business perspective and from
the technical point of view, respectively. Last but not least,
the triagers should assign each bug report to a developer in
order to hopefully resolve the issue. This latter part, i.e., bug
report assignment defines the scope of our work.

In large open source projects where hundreds or thousands
of developers are collaborating with each other the main
question is which person would be the best candidate for

fixing a newly reported bug. Human triagers often take
developers’ fields of expertise and interest into consideration
in order to reduce the bug resolution cost for the project.
However, since the number of bug reports and the rate of
their production could become very large, the bug triage
process itself might become labor intensive when performed
manually.

In recent years, there have been a number of valuable
contributions in order to address this problem. We overview
most of the works which we are aware of in Section IV. One
common approach for semi-automated bug assignment is to
employ a supervised machine learning algorithm through
which a classifier is trained and used to categorize new bug
reports. In such text categorization problems, documents are
usually considered as word vectors and the term weights
(Term Frequency-Inverse Document Frequencies, abbrevi-
ated as TF-IDF) are calculated. Support Vector Machines
(SVMs) have turned out to be the best supervised machine
learning algorithms in applying such an approach [1]. Fur-
thermore, there have been other approaches already applied
to several subfields of the bug triage problem area such as
the duplicate bug report recognition problem [2] based on
the natural language processing techniques.

However, we clearly make several distinctions between
our work and those contributions. Our approach is novel
in that it considers n-gram representations for strings and
works on the character level rather than on the token
level (term level). Furthermore, we perform approximate
string matching, i.e., approximate vocabulary look-up, with
a flexible similarity threshold parameter rather than a fixed
exact match. Considering the application domain, this brings
in a noticeable capability. For example, one does not have
to concern about the misspelled words in the bug reports
too much anymore. Finally, we do not directly consider
the similarity between the vector representation of two text
documents, but, instead, the approximate similarity between
the n-gram representations of strings are taken into account.

Regardless of the applied techniques, almost all prior work
in this field could be categorized in three main groups based
on the source of information which they use in order to
extract the developers’ expertise and interest models. One

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 40 / 729

major source of information is the previously resolved bug
reports which are archived in the repositories of bug tracking
systems like Bugzilla [3], JIRA [4], etc. ([5] [6] [1] [7]).
Another one is the log information of the source code
revision control system, i.e., comments of developers in each
source code commit (for example to the Subversion [8] or
CVS [9] source code repository) ([10] [6] [7]). Finally, one
could explicitly use the vocabulary of the committed source
code by each developer as a means of extracting such an
expertise model ([11]).

Our recommender is efficient and powerful enough to ben-
efit from all of the above mentioned resources in large scales
in order to make its recommendation more precise while
performing fast. However, in the current implementation we
have only included the first one, i.e., the previously resolved
bug reports in the open bug repository.

This paper makes two main contributions:

1) It proposes a novel approach which employs a simple
and efficient approximate string matching algorithm
[12] in order to find appropriate developers who are
more likely to have sufficient expertise and interest
levels to resolve a new issue.

2) It provides an implementation of the proposed ap-
proach as well as experimental results on a large
dataset of5200 bug reports from the Eclipse Java De-
velopment Tools (JDT) project including the achieved
information retrieval evaluation metrics, namely, ac-
curacy, weighted average precision, weighted average
recall and F-measure for the top three developers
recommendation.

The paper is structured as follows: Section II presents
the proposed approach. In Section III, we describe the
implementation of our recommender prototype and present
experimental results. Related work in this field are discussed
in Section IV. Finally, conclusion and possible future work
are stated in Section V.

II. T HE PROPOSEDAPPROACH

The core idea is to apply an n-gram vocabulary-based
approach with approximate string matching. We start with
a dataset of previously resolved bug reports where each
instance contains the free text available in the summary
and description of the bug report and the name of the
developer who has resolved the bug. For each developerpi
we automatically extract a vocabulary from all bug reports
assigned topi. This gives us a setD of vocabulariesdi
(1 ≤ i ≤ n, wheren is the number of different developers
pi). Then, for a new bug report, we automatically extract its
vocabularydj , and compute its overlap withD. We compute
a ranked list of names of developers{pi} with respect to the
degree of overlap ofdj and the corresponding vocabulary
di ∈ D, and finally recommend the top three developers as
possibly good candidates for resolving this new bug.

Our approach is semi-automated, since a human triager
would need to choose one of the recommended developers
by our system in order to finally assign the bug to that
person.

A. Background: SimString

Since our approach is vocabulary-based, we need to ad-
dress the problem of spelling variations (e.g., spelling errors
like “Pyhton” instead of “Python” or name variations like
“FileOpenDialog” vs. “’File Open’ Dialog”). Furthermore,
since we are extracting a number of different large-scale
vocabularies, we need fast and scalable approximate string
matching algorithms.

SimString [13] is a C++ library that uses the CPMerge
algorithm [12] for fast approximate string matching. The
idea is to construct an n-gram-based inverted index from
the entries of a vocabulary (basically a list of strings of
instances of some common semantic class). The n-gram
representation of a strings is just the set of all substrings
of length n of s. For example, for n=3, the n-grams for
the string “python” are{pyt, yth, tho, hon}, and for the
string “pathon” they are{pat, ath, tho, hon}. Matching is
then realized by defining a similarity function that applies
a τ -overlap join between the n-gram representation of a
query and the n-gram representation of the inverted index
of the vocabulary. Actually,τ is a function of the given
approximate similarity threshold (a value between 0 and
1.0), the given query string, and the provided vocabulary. For
example, for the cosine function, when using the similarity
threshold of 1.0, the two above entries would not match.
However, setting the similarity threshold to 0.7, they would
match.

For our purpose, the most important properties of Sim-
String are:

1) It allows finding matches in a collection of millions of
entries in only a few milliseconds, e.g., using cosine
similarity function and a similarity threshold of 0.7
only about 1 millisecond is needed for a query on
standard PC hardware.

2) Beside the cosine similarity function, SimString
utilizes additional well-known similarity functions,
namely, Jaccard, Dice and Overlap coefficients [12].

3) When constructing the n-gram-based inverted index,
the exact value of n can be parametrized.

4) SimString uses efficient disk-based hashing for main-
taining the inverted index, and hence, it has a very
good memory footprint.

We will now describe in detail how we are employing
SimString in our recommender prototype, which is called
Approxricom.

B. Our Bug Resolver Recommender: Approxricom

A bug report, i.e., an issue, in an open bug repository,
i.e., an issue tracking system, often has a life-cycle. It

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 41 / 729

is initially created by any registered user or developer.
In this very beginning stage, its status is set to NEW.
Later, during its life-cycle, its status might change to other
possible values such as ASSIGNED, RESOLVED DU-
PLICATE, RESOLVED INVALID, RESOLVED WORKS-
FORME, RESOLVED WONTFIX, RESOLVED FIXED,
VERIFIED FIXED or CLOSED FIXED. No matter the bug
is currently at which state, it always resides in the open bug
repository of the open source project. Our recommender only
uses issues which are currently in the RESOLVED FIXED,
VERIFIED FIXED and CLOSED FIXED states in order to
create its vocabulary-based expertise and interest model.

Furthermore, each bug report is a structured file which
consists of a number of fields in addition to its current
state, such as the bug ID, summary, description, product,
component, importance, assignee, reporter, date of report,
date of the latest modification, CC (Carbon Copy) list (i.e.,
the list of people who are interested in being updated about
this issue), comments, etc. Among all these fields, our
recommender is only concerned with the bug ID, product
name, status, summary and description of the bug reports.

As depicted in figure 1, the workflow of our recommender
comprises three main parts:

1) Collecting and preprocessing the required data includ-
ing the bug IDs, the resolver developer for each bug
and the summary and description text of each bug
report in order to create the vocabulary-based expertise
and interest models (corresponds to step 1 in Figure
1).

2) Creating the n-gram-based inverted lists of the textual
information in summaries and descriptions of previ-
ously resolved bug reports (corresponds to step 2 in
Figure 1).

3) Recommending the three most similar vocabulary
databases to each query which contains the textual in-
formation extracted from the summary and description
of a newly reported bug (corresponds to steps 3 to 5
in Figure 1).

Concerning the first part, our recommender connects to
the open bug repository of an open source project and
retrieves a large set of successfully resolved bug reports for
a specific product. The second and third parts of the recom-
mendation workflow deal with employing a fast approximate
string matching algorithm to store the inverted lists (inverted
indexes) in an efficient way and later retrieve them w.r.t.
the similarity level of the query, i.e., the vocabulary of the
new bug report to each of those lists which we actually
consider them as the vocabulary-based expertise and interest
models of developers. Given a new bug report as a query,
our recommender assigns a score to each vocabulary-based
expertise model database, i.e., to each developer, and finally,
recommends the top three databases (developers) as proper
candidates for this query, i.e., for the resolution of this new

Figure 1. Bug Resolver Recommendation by Approxricom usingSim-
String

bug report.

III. I MPLEMENTATION & EXPERIMENTAL RESULTS

We implement our prototype using Java, C++ and Python.
The interface for interacting with the open bug repository
is developed in Java using XML Remote Procedure Call
(XML-RPC) [14]. The core of Approxricom which employs
SimString is developed in C++. Finally, we take advantage
of Python for our data preparation using the python-based
Natural Language Toolkit (NLTK) [15].

A. Parameters

The approximate string matching algorithm which we
have employed in Approxricom, i.e., SimString is config-
urable with various parameters. In particular, one could set
the parametern for n-gram size, the similarity measure
for vocabulary look-up (Cosine, Dice, Jaccard and Overlap
coefficients) and the degree of flexibility in the approximate
matching, known as the similarity threshold which is be-
tween 0 and 1.0 (1.0 corresponds to exact matching instead
of approximate matching).

After doing some experiments with various values of
configuration parameters, we decided to use the following
setting for our recommender:

1) The size of n-grams (n) is5. In other words, all
possible 5-grams are created for string representations.

2) All these four similarity measures are taken into
account: Cosine, Dice, Jaccard, Overlap.

3) The similarity threshold is set to0.95. While main-
taining a high degree of accuracy (since it is close to

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 42 / 729

Table I
EVALUATION USING WELL -KNOWN INFORMATION RETRIEVAL METRICS

(W.A. STANDS FORWEIGHTED AVERAGE)

Fold / Accuracy / W.A. Precision / W.A. Recall / F-measure

1 50.19 85.8 46.02 59.91
2 50.86 83.16 44.39 57.89
3 46.73 75.05 42.62 54.37
4 49.8 86.35 41.46 56.03
5 51.92 94.98 44.81 60.89
6 55 96.85 50.4 66.3
7 57.11 97.16 50.25 66.24
8 57.11 93.76 53.29 67.95
9 55.57 100 42 59.15
10 53.37 88.14 39.82 54.86
Average 52.76 90.12 45.50 60.35

1.0) this value prevents the recommender from trivially
doing exact string matching, which is in contrast to our
core idea of approximate string matching in order to
handle spelling errors and different writing forms.

B. Scoring Strategy

In order to rank our inverted lists based on the degree of
their similarity to a query, we store the maximum number of
similarities which are reported by each of the four similarity
functions, Cosine, Dice, Jaccard and Overlap coefficients.
This maximum number is considered as the score of that
inverted list, given a query string and a similarity threshold.

C. Experimental Results

In order to evaluate our approach, we did experiments on
5200 resolved bug reports of the Eclipse JDT project [16].
This project has been chosen because of its popularity and
rich history of bug resolution. After preparing the dataset,
we performed a10-folded random cross validation on this
dataset which led to the results of Table I (values are in
percent). As shown in the table, we have achieved average
weighted precision of90.12% and average weighted recall
of 45.50%. Moreover, the accuracy is52.76% on average.

We consider the top three developers, which are rec-
ommended by our bug resolver recommender as proper
candidates for resolving a new bug report. Therefore, it is
clear that if the developer who has already fixed a bug in
practice is present among the three top-ranked developers
which are recommend by Approxricom, we consider this as
a success. Otherwise, it is considered as a failure.

The True Positive (TP) rate, also known as recall, is a
measure of completeness which shows how much part of
a specific class is captured. In other words, recall is the
proportion of the bug reports, which are recommended to
be assigned to developer p, among all bug reports which
have been resolved by p in practice.

The precision of our recommendation is reflected by the
proportion of the bug reports which have been resolved by
developer p in practice, among all those bug reports which
are recommended to be assigned to p.

Since there is often a trade-off between precision and
recall, it is common to measure the final performance via a
mixture of both, called F-Measure.
F −Measure = 2∗Precision∗Recall

Precision+Recall

Finally, accuracy is the proportion of the total number of
correctly assigned bug reports among all of the bug reports
in the test dataset.

IV. RELATED WORK

One related contribution is Mockus and Herbsleb’s Exper-
tise Browser [10]. They have introduced a tool which uses
source code change data from a revision control repository to
determine appropriate experts to work on various elements
of software projects.

Cubranic and Murphy [5] have trained a Bayesian clas-
sifier using descriptions of fixed bug reports in open bug
repositories as machine learning features, and names of
developers as class labels. They have reported the accuracy
value of 30% for Eclipse projects. However, they fairly
believe that even this level of classification accuracy could
significantly lighten the load that the human triagers face in
large open source projects.

Canfora and Cerulo [6] have proposed an information re-
trieval approach. They have used textual descriptions of fixed
change requests stored in open source software repositories,
both bug repository and revision control system (Bugzilla
and CVS), to index developers and source files as documents
in an information retrieval system. The indices are utilized
to suggest the most appropriate developers to resolve a new
change request. They have reported recall values of 10-20%
and 30-50% for Mozilla projects and KDE, respectively.

Their approach is similar to ours in that they also index
documents and developers to solve an information retrieval
problem. However, from their very brief explanation it is
clear that they do not apply any approximate n-gram-based
string retrieval algorithm.

Anvik et al. [1] have presented an approach which expands
on Cubranic and Murphy’s previous work [5]. They have
used additional textual information of bug reports beyond the
bug description, to form the machine learning features. They
have also applied a non-linear Support Vector Machines
(SVMs) and C4.5 algorithms in addition to the Naive Bayes
classifier which their predecessor work had used. They have
compared the achieved results using the three classifiers and
found SVM the best one for this purpose.

Anvik and Murphy [7] have presented an empirical eval-
uation of two approaches for determining who has the
implementation expertise for a bug report using data from
two types of repositories: The source repository check-in
logs and the bug repository. They have found that different
repositories are useful in different situations, based on what
is wanted.

Jeong et al. [17] have introduced a graph model based on
Markov chains to capture bug tossing history. Bug tossing

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 43 / 729

refers to the process of re-assignment of bug reports among
the developers of an open source project. The model could
be used both to reveal team structures to find suitable experts
for a new task and also to better assign developers to bug
reports. Their model has reduced bug tossing by up to 72%
and improved the accuracy of automatic bug assignment by
23% comparing the common manual bug triage process.

Baysal et al. [18] have presented a theoretic framework for
automating assignment of bug-fixing tasks with an emphasis
on learning developer preferences. They have proposed to
apply a vector space model to recommend experts for
resolving bug reports based on the level of expertise, current
workload and preference of developers which are inferred
from the previously fixed bugs by each developer. Imple-
mentation of their novel model has remained as future work.

Matter et al. [11] have stood in an outstanding position,
since they model developer expertise by explicitly compar-
ing the vocabulary found in the source code contributions
of developers with the vocabulary of bug reports. The
advantage of their approach is that no previous activity of
a developer in the current project is necessarily required.
Instead, any prior activity of a developer through interacting
with a source code revision control system would be enough
to model his or her expertise. They report33.6% top-1
precision and71% top-10 recall.

Bhattacharya and Neamtiu [19] have improved triaging
accuracy and reduced tossing path lengths by employing
several techniques such as refined classification using ad-
ditional attributes and intra-fold updates during training.

Finally, Servant and Jones [20] have presented a new
technique which automatically selects the most appropriate
developers for fixing the fault represented by a failing test
case. Their technique is the first to assign developers to
execution failures without the need for textual bug reports.
On one hand, they do fault localization to map the current
software bug to the corresponding line of code. On he other
hand, they perform history mining to find out who has com-
mitted that buggy line of code. They have reported81% of
success (accuracy) for the top-three developer suggestions.

While their contribution is a valuable one, it is basically
different than our point of view. Actually, they try to find
the developer who has introduced a bug to the software, so
that he himself fixes the bug too. In contrast, we believe that
the developer who has caused a bug might not necessarily
be the best one to resolve it.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach to semi-
automate the bug assignment task of human triagers in large
open source projects using an expert recommender system.
We create vocabulary-based expertise and interest model of
developers based on the history of their contributions in
resolving previous bug reports. Using a fast and efficient
algorithm for approximate string matching, we store inverted

lists of the mentioned vocabulary-based models and effi-
ciently query them to find the most similar ones to a new
bug report.

Our promising experimental results transparently show
that our proposed approach is competitive with other ap-
proaches and our recommender system performs more effi-
ciently than prior semi-automated bug triagers.

Our approach is novel in that it uses the n-gram-based
string representation and works on the character level rather
than on the token (term) level. Moreover, it performs approx-
imate string matching rather than an exact match. Therefore,
it is capable of handling spelling errors and different forms
of writing, and it is extremely fast and efficient.

In the current implementation, before using the textual
information of the summaries and descriptions of the bug
reports, some kind of data preparation is performed. This
step comprises setting all characters to lower case, removing
all stop-words, and performing lemmatization. However,
since we are working on the character-level rather than
the token-level, one should further investigate whether these
steps, especially removing the stop-words and lemmatisation
are necessary in practice or not.

Also, one may use more textual information such as
the archives of the mailing lists or the comments in the
bug reports which are often produced during the bug toss-
ing processes among the developers in order to make the
expertise and interest models richer and thus, make the
recommendation more efficient.

Like other related works, the implicit assumption is that
for a resolved bug report, the person who has finally resolved
the issue in practice is the one whose name is mentioned as
the assignee of that bug report. While this assumption is in
most cases true, there exist open source projects in which
this is not always the case.

Similar to many other related works, one limitation of our
approach is that it needs the history of previously resolved
bug reports in order to be able to perform well. One future
work could be to use the history of bug resolution for other
similar products which are hosted in the same bug repository
and have several developers in common with each other, in
order to suggest bug resolvers for a new project which does
not yet have such a rich bug resolution history.

Furthermore, the prototype which we have implemented
currently works only with the Bugzilla open bug repositories
[3], which support the XML-RPC protocol [14]. Extending
our prototype to support more bug tracking systems and
evaluating our approach with other open source projects
could be done as future work.

Applying this approach on other parts of the bug triage
problem such as duplicate bug reports detection remains as
a possible future work. In addition, empirical research work
is needed to find the best parameter configurations for the
approximate string matching algorithm as well as the effect
of those parameter values on the achieved values for the

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 44 / 729

information retrieval evaluation metrics. Further, we believe
that the scoring strategy which we have proposed in Section
III is itself a matter of further research work. It might turn
out that one could rank the databases based on the results
of the similarity measures in a smarter way.

Finally, we plan to investigate deeper text exploration
methods for our vocabulary-based modeling approach,
namely to explore textual entailment technology to gain bet-
ter text understanding. Textual entailment can be understood
as a mechanism to deal with the variability of expressions,
where the same meaning can be expressed by, or inferred
from different texts. This might lead to a better degree of
text similarity and hence, a better modeling and comparison
of new and existing bug reports.

ACKNOWLEDGMENT

This work has been partially funded by the European
Union (EU) project EXCITEMENT (FP7-IST) [21].

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Morphy, “Who should fix this
bug?” in Proceedings of the 28th International Conference
on Software Engineering (ICSE), 2006.

[2] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An
approach to detecting duplicate bug reports using natural
language and execution information,” inProceedings of the
30th international conference on Software engineering, ser.
ICSE ’08. New York, NY, USA: ACM, 2008, pp. 461–470.

[3] (2012, July) The official website of bugzilla. [Online].
Available: http://www.bugzilla.org/

[4] (2012, July) The official website of jira. [Online]. Available:
http://www.atlassian.com/software/jira/overview/

[5] D. Cubranic and G. C. Murphy, “Automatic bug triage using
text categorization,” inProceedings of the Sixteenth Inter-
national Conference on Software Engineering & Knowledge
Engineering (SEKE 2004), 2004.

[6] G. Canfora and L. Cerulo, “How software repositories can
help in resolving a new change request,” inProceedings of
the workshop on Empirical Studies in Reverse Engineering,
2005.

[7] J. Anvik and G. C. Morphy, “Determining implementation
expertise from bug reports,” inProceedings of the 4th Inter-
national Workshop on Mining Software Repositories (MSR),
2007.

[8] (2012, July) The official website of the apache subversion
project. [Online]. Available: http://subversion.apache.org/

[9] (2012, July) The official website of cvs. [Online]. Available:
http://www.nongnu.org/cvs/

[10] A. Mockus and J. D. Herbsleb, “Expertise browser: A quanti-
tative approach to identifying expertise,” inProceedings of the
International Conference on Software Engineering (ICSE),
2002.

[11] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports
using a vocabulary-based expertise model of developers,” in
Proceedings of the 2009 6th IEEE International Working
Conference on Mining Software Repositories, ser. MSR ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
131–140.

[12] N. Okazaki and J. Tsujii, “Simple and efficient algorithm
for approximate dictionary matching,” inProceedings of the
23rd International Conference on Computational Linguistics
(Coling 2010), Beijing, China, August 2010, pp. 851–859.

[13] (2012, July) Naoaki okazaki’s website. [Online]. Available:
http://www.chokkan.org/software/simstring/

[14] (2012, July) The xml-rpc website. [Online]. Available:
http://xmlrpc.scripting.com/

[15] (2012, July) The official website of nltk. [Online]. Available:
http://nltk.org/

[16] (2012, July) The official website of the eclipse jdt project.
[Online]. Available: http://www.eclipse.org/jdt/

[17] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage
with bug tossing graphs,” inProceedings of the 7th joint meet-
ing of the European Software Engineering Conference (ESEC)
and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE), 2009.

[18] O. Baysal, M. W. Godfrey, and R. Cohen, “A bug you
like: A framework for automated assignment of bugs,” in
Proceedings of the 17th IEEE International Conference on
Program Comprehension (ICPC), 2009.

[19] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental
learning and multi-feature tossing graphs to improve bug
triaging,” in Proceedings of the 2010 IEEE International
Conference on Software Maintenance, ser. ICSM ’10. Wash-
ington, DC, USA: IEEE Computer Society, 2010, pp. 1–10.

[20] F. Servant and J. A. Jones, “Whosefault: automatic developer-
to-fault assignment through fault localization,” inProceedings
of the 2012 International Conference on Software Engineer-
ing, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press,
2012, pp. 36–46.

[21] (2012, July) The official website of project excitement.
[Online]. Available: http://www.excitement-project.eu/

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 45 / 729

Using Normalized Systems Patterns as Knowledge Management

Peter De Bruyn, Philip Huysmans, Gilles Oorts,
Dieter Van Nuffel, Herwig Mannaert and Jan Verelst

Normalized Systems Institute (NSI)
University of Antwerp

Antwerp, Belgium
{peter.debruyn,philip.huysmans,gilles.oorts,dieter.vannuffel,

herwig.mannaert,jan.verelst}@ua.ac.be

Arco Oost
Normalized Systems eXpanders factory (NSX)

Antwerp, Belgium
{arco.oost}@nsx.normalizedsystems.org

Abstract—The knowledge residing inside a firm is frequently
considered to be one of its most important internal assets to
obtain a sustainable competitive advantage. Also in software
engineering, a substantial amount of technical know-how is
required in order to successfully deploy the organizational
adoption of the technology. In this paper, we focus on the
wide-spread approach of using design patterns for knowledge
management purposes. It is discussed how they facilitate the
transfer and (re)use of state-of-the-art knowledge in three
dimensions: (1) more efficient documentation, (2) the devel-
opment of new applications, and (3) the incorporation of new
knowledge in existing applications. More specifically, we show
how the use of Normalized Systems elements can be considered
as an advanced form of design patterns for the development
of highly evolvable software architectures, further enhancing
the inherent design patterns advantages. Normalized Systems
captures software engineering knowledge in a limited set of
theorems and patterns, and enables the application of this
knowledge through systematic pattern expansion. Because of
the highly structured way of working, the reuse of knowledge
can be significantly improved.

Keywords-Normalized Systems; Design Patters; Knowledge
Management.

I. INTRODUCTION

As an important movement within the strategic manage-
ment literature, the resource-based view of the firm (RBV)
states that internal resources (e.g., money, patents, buildings,
geographical location, etcetera) are the key elements for
organizations in order to obtain a sustainable competitive
advantage [1]. More specifically, the knowledge residing
inside a firm is frequently considered to be its most im-
portant internal asset [2]. Further, focusing on the case of
software adoption and development within organizations, the
prevalence of the available knowledge becomes even more
clear and the need for knowledge management practices in
this respect have been acknowledged frequently [3]. Indeed,
information technology in general can be considered as
a knowledge-intensive or complex technology innovation,
requiring a substantial amount of know-how and technical
knowledge by the adopting firm [4]. As such, the degree of
expertise or advanced knowledge of best-practices regarding
a certain software technology becomes a decisive factor

in the chances for an organization to successfully deploy
and manage it. Consequently, a firm should either already
(i.e., prior to the adoption) possess the advanced knowledge
required to operate the software technology or engage in
organizational learning during exploitation.

Organizational learning is generally regarded as the re-
sult of individual learning experiences of members of an
organization, which become incorporated into the behavior,
routines and practices of the organization the individuals
belong to [4]. According to Levitt and March [5], such an
organizational learning can occur in two general ways: (1)
“learning by doing”, which involves a learning process by
self-experienced trial-and-error and (2) learning from the
direct experiences of other people. While the first type of
learning is typically a very profound and thorough way of
knowledge gathering, it can be time-consuming, expensive
and error-prone in the earliest stages. At this point, know-
how, experiences and best-practices formulated by other
users (i.e., the second type of organizational learning) come
into play. Inside organizations, such knowledge transfers in
software development can occur in many different ways,
including for example explicit knowledge bases or experi-
ence repositories [6], “yellow pages” enabling search actions
for accessible knowledgeable people [7] and mentoring
programs [8]. At the inter-organizational or industrial level,
the gathered knowledge can benefit from experience based
on many different development projects. Design patterns are
a wide-spread approach to achieve this goal [9]. In this paper,
we explore three types of benefits when using knowledge
captured by design patterns:

• Improved documentation;
• Using the captured knowledge to build new applica-

tions;
• and Incorporating new knowledge into existing appli-

cations.

We introduce the Normalized Systems (NS) theory, which
proposes more concrete and structured patterns. We argue
that the use of knowledge captured in such patterns can
further enhance the discussed benefits of applying design

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 46 / 729

patterns.

II. KNOWLEDGE MANAGEMENT IN SOFTWARE
ENGINEERING

The specific use of design patterns in object-orientation
during the 90’s, exemplified by the seminal work of Gamma
et al. [10], was incited by the fact that modern com-
puter literature regularly failed to make tacit (but success
determining) knowledge regarding low-level principles of
good software design explicit [11]. Patterns provide high-
level solution templates for often-occurring problems. The
patterns proposed by Gamma et al. [10] were conceived as
the bundling of a set of generally accepted high-quality and
best-practice solutions to frequently occurring problems in
object-orientation programming environments. For instance,
in order to create an one-to-many dependency between
objects so that when the state of one object changes, all
its dependents are notified and automatically updated, the
observer pattern (i.e., an overall structure of classes giving
a description or template of how to solve the concerned
problem) was proposed [10]. As a consequence, the use of
these patterns can be considered as specifically aimed at
facilitating (inter-)organizational learning by learning from
direct experiences of other people — in this case experi-
enced software engineers —, and being one specific way of
knowledge base distribution.

According to Schmidt [12], design patterns have been so
successful because they explicitly capture knowledge that
experienced developers already understand implicitly. The
captured knowledge is called implicit because it is often
not captured adequately with design methods and notations.
Instead, it has been accumulated through timely processes of
trial and error. Capturing this expertise allows other devel-
opers to avoid spending time rediscovering these solutions.
Moreover, the captured knowledge has been claimed to
provide benefits in several areas [13]. In this paper, we focus
on the usage of patterns to (a) document software code, (b)
build new applications, and (c) incorporate new knowledge
in existing software applications.

A. Documentation

Patterns provide developers with a vocabulary which can
be used to document a design in a more concise way
[10], [13], [14]. For example, pattern-based communication
can be used to preserve design decisions without elaborate
descriptions. By delineating and naming groups of classes
which belong to the same pattern, the descriptive complexity
of the design documentation (e.g., a UML class diagram)
can be reduced [14]. Consequently, the vocabulary offered
by patterns allows a shift in the abstraction level of the
discussions. This usage of design patterns is mostly applied
at the conceptual level, and neglects the source code docu-
mentation. However, the abstract nature of patterns, i.e., as
a solution template, means that it is possible to implement a

certain design pattern using different alternatives. Therefore,
it has been argued that the addition of source-code level
documentation of the pattern usage is required to perform
coding and maintenance tasks faster and with fewer errors
[15].

B. Using knowledge to build new applications

Several authors propose the usage of design patterns to
create new software applications (e.g., [16]). We discussed
above how patterns provide high-level solution templates,
and, as such, do not dictate the actual source code. Conse-
quently, knowledge concerning the implementation platform
remains important. A correct and efficient implementation
of a design pattern requires a careful selection of language
features [12]. Clearly, design patterns alone are not suf-
ficient to build software. As a result, the implementation
of a design pattern during a software development process
remains essentially a complex and activity [12]. Developing
software for a concrete application then requires the concrete
experience of a domain and the specifics of the programming
language, as well as the ability to abstract away from details
and adhere to the structure prescribed by the design pattern.
Nevertheless, certain companies and researchers attempt to
integrate the knowledge available in design patterns in other
approaches, in order to create automated code generation.
For example, so-called software factories attempt to create
software similar to automated manufacturing plants [17].
This should drastically improve software development pro-
ductivity. However, such approaches have not yet reached
wide-spread adoption.

C. Incorporating new knowledge in existing applications

Because of the increasing change in the organizational
environment in which software applications are used, adapt-
ability is considered to be an important characteristic. How-
ever, adapting software remains a complex task. Various
studies have shown that the main part of the software
development cost is spent after the initial deployment [18].
Several design patterns focus on incorporating adaptability
into their solution template. Empirical observations have
been reported which confirm the increased adaptability when
using design patterns [19]. Adaptations could be made easier
in comparison with an alternative which was programmed
using no design patterns, and achieved adaptability was
retained more successfully because of the prescribed struc-
ture. Nevertheless, some researchers also report negative
effects on adaptability, caused by the added complexity
of the design patterns. By prescribing additional classes
in comparison to simpler solution, more errors have been
introduced in some cases [19].

III. NORMALIZED SYSTEMS

The Normalized Systems (NS) theory starts from the pos-
tulate that software architectures should exhibit evolvability

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 47 / 729

due to ever changing business requirements, while many
indications are present that most current software imple-
mentations do not conform with this evolvability requisite.
Evolvability in this theory is operationalized as being the
absence of so-called combinatorial effects: changes to the
system of which the impact is related to the size of the sys-
tem, not only to the kind of the change which is performed.
As the assumption is made that software systems are subject
to unlimited evolution (i.e., both additional and changing re-
quirements), such combinatorial effects are obviously highly
undesirable. In case changes are dependent on the size of
the system and the system itself keeps on growing, changes
proportional to the systems size become ever more difficult
to cope with (i.e., requiring more efforts) and hence hamper-
ing evolvability. Normalized Systems theory further captures
its software engineering knowledge by offering a set of four
theorems and five elements, and enables the application of
this knowledge through pattern expansion of the elements.
The theorems consist of a set of formally proven principles
which offer a set of necessary conditions which should be
strictly adhered to, in order to obtain an evolvable software
architecture (i.e., in absence of combinatorial effects). The
elements offer a set of predefined higher-level structures,
primitives or “building blocks” offering an unambiguous
blueprint for the implementation of the core functionalities
of realistic information systems, adhering to the four stated
principles.

A. Theorems

Normalized Systems theory proposes four theorems,
which have been proven to be necessary conditions to obtain
software architectures in absence of combinatorial effects:

• Separation of Concerns, requiring that every change
driver (concern) is separated from other concerns in its
own construct;

• Action Version Transparency, requiring that data enti-
ties can be updated without impacting the entities using
it as an input or producing it as an output;

• Data Version Transparency, requiring that an action
entity can be upgraded without impacting its calling
components;

• Separation of States, requiring that each step in a work-
flow is separated from the others in time by keeping
state after every step.

In terms of knowledge management, as mentioned ex-
plicitly in [20], it must clearly be noted that the design
theorems proposed are not new themselves; in fact, they
relate to well-known (but often tacit or implicit) heuristic
design knowledge of experienced software developers. For
instance, well-known concepts such as an integration bus, a
separated external workflow or the use of multiple tiers can
all be seen as manifestations of the Separation of Concerns
theorem [20]. As such, the added value of the theorems
should then rather be situated in the fact that they (1)

make certain aspects of that heuristic design knowledge
explicit, (2) offer this knowledge in an unambiguous way
(i.e., violations against the theorems can be proven), (3)
are unified based on one single postulate (i.e., the need
for evolvable software architectures having no combinatorial
effects) and (4) have all been proven in a formal way.

B. Normalized Systems Elements as Patterns

The above stated theorems illustrate that typical software
primitives do not offer explicit mechanisms to incorporate
the principles. Also, the systematic application of the prin-
ciples leads to a very fine-grained modular structure, which
could form an additional design complexity on its own when
performed “from scratch”. Therefore, NS theory proposes a
set of five elements as encapsulated higher-level patterns
complying with the four theorems:

• data elements, being the structured encapsulation of a
data construct into a data element (having get- and set-
methods, exhibiting version transparency, etcetera);

• action elements, being the structured encapsulation of
an action construct into an action element;

• workflow elements, being the structured encapsulation
of software constructs into a workflow element describ-
ing the sequence in which a set of action elements
should be performed in order to fulfill a flow;

• connector elements, being the structured encapsulation
of software constructs into a connector element allow-
ing external systems to interact with the NS system
without calling components in a stateless way;

• trigger elements, being the structured encapsulation of
software constructs into a trigger element controlling
the states of the system and checking whether any
action element should be triggered accordingly.

Each of the elements is a pattern as they represent a re-
curring set of constructs: besides the intended, encapsulated
core construct, also a set of relevant cross-cutting concerns
(such as remote access, logging, access control, etcetera)
is incorporated in each of these elements. For each of the
patterns, it is further described in [20] how they facilitate a
set of anticipated changes in a stable way. In essence, these
elements offer a set of building blocks, offering the core
functionalities for contemporary information systems.

Regarding these patterns, it can be noted that their sepa-
rate definition and identification is based on the implications
of the set of theorems. For instance, the theorems Sepa-
ration of Concerns and Separation of States indicate the
need to formulate a workflow element next to an action
element, in order to allow for the stateful invocation of
action elements in a (workflow) construct other than action
elements containing functional tasks. Next, each of the five
patterns themselves contain knowledge concerning all the
implications of the theorems referred to in Section III-A.
Finally, each of these patterns has been described in a very
detailed way. Consider for instance a data element in a JEE

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 48 / 729

implementation [21]. In [20] it is discussed how a data
element Obj is associated with a bean class ObjBean,
interfaces ObjLocal and ObjRemote, home interfaces
ObjHomeLocal and ObjHomeRemote, transport classes
ObjDetails and ObjInfo, deployment descriptors and
EJB-QL for finder methods. Additionally, methods to ma-
nipulate a data element’s bean class (create, delete, etcetera)
and to retrieve the two serializable transport classes are
incorporated. Finally, to provide remote access, an agent
class ObjAgent with several lifecycle manipulation and
details retrieval methods is included. It can be argued that
these elements incorporate the main concerns which are
relevant for their function.

Moreover, the complete set of elements covers the core
functionality of an information system. Consequently, as
such detailed description is provided for each of the
five elements, an NS application can be considered as
an aggregation of a set of instantiations of the ele-
ments. Consider for example the implementation of an
observer design pattern [10]. In order to implement this
pattern in NS, three data elements (i.e., Subscriber,
Subscription and Notification) are required. A
Notifier connector element will observe the subject,
and create instances of the Notification data element.
These Notification data elements will be sent to ev-
ery Subscriber that has a Subscription through a
Publisher connector element. The sending is triggered by
a PublishEngine trigger element which will periodically
activate a PublishFlow workflow element. Consider that
each (NS) element consists of around ten classes [22]. The
seven identified elements therefore result in around seventy
classes used to implement the design pattern, whereas the
original implementation of the design pattern consists of two
classes and two interfaces. Consequently, it is clear that, in
order to prevent combinatorial effects, a very fine-grained
modular structure needs to be adhered to.

C. Pattern Expansion

As stated before, in practice, the very fine-grained mod-
ular structure implied by the NS principles seems very
unlikely to arrive at without the use of higher-level primitives
or patterns. Consequently, as NS proposes a set of five
elements which serve for this purpose, the actual software ar-
chitecture of NS conform software applications can actually
be generated relatively straightforward. For example, in case
of the data element pattern structure, the pattern expansion
mechanism would need a set of parameters including the
basic name of the data element (e.g., Invoice), context
information (e.g., component and package name) and data
field information (e.g., data type). Next, based on these pa-
rameters, the pattern expansion mechanism will generate the
predefined structured (i.e., the set of classes and data fields)
as illustrated above: the bean class InvoiceBean, inter-
faces InvoiceLocal and InvoiceRemote, etcetera.

However, in terms of knowledge management, it should
be noted that the patterns and the expansion mechanism
should not be considered as separate knowledge reuse mech-
anisms: rather, the pattern expansion facilitates the re-use of
knowledge embedded in the patterns, as each expansion of
the patterns results in a new application of the knowledge
encapsulated in the pattern. Through this, pattern expansion
facilitates both types of learning discussed earlier (i.e.,
“learning by doing” and learning from experience of other
people) by utilizing the knowledge contained in the patterns.

Also, the information codified in a pattern may not be
sufficient to adequately transfer the intended knowledge.
This was already the case when using the design patterns
proposed by Gamma et al. [10]. For example, it has been
claimed that the Dependency Inversion Principle helps to
gain a better understanding of the Abstract Factory pattern
[23]. Similarly, the structure of the NS patterns can only be
understood when the NS theorems are taken into account.

IV. NORMALIZED SYSTEMS PATTERNS AS KNOWLEDGE
MANAGEMENT

In the previous sections, we explained how traditional de-
sign patterns entail knowledge management related benefits
regarding documentation, the development of new applica-
tions and the adaptation of existing applications. We also
argued how NS patterns represent a fine-grained modular
structure which can be expanded to provide an evolvable
software architecture. In this section, we discuss how the use
of NS patterns seems to even further enhance the reported
design pattern benefits, when compared to design patterns.

A. Documentation

As NS-compliant applications based on the NS elements
have basically five recurrent elementary structures, only
these five elements have to be understood to grasp the
structure of each instantiated element throughout the ap-
plication. Because the patterns are detailed enough to be
instantiated, no manual implementation of the patterns (as
is the case with the design patterns proposed by Gamma
et al. [10]) is required. Consequently, an identical code
structure reoccurs in every application which is created using
the NS expanders. The commonality of the structure of the
patterns makes that once one understands the patterns, one
understands all its instantiations as well. In this way, it could
be argued that — at least partially — the pattern structure
becomes the documentation. Therefore, no source code level
documentation is required.

B. Using knowledge to build new applications

As (1) each violation of the NS theorems during any
stage of the development stage results in a combinatorial
effect, and (2) the systematic application of these theorems
results in very fine-grained structures, it becomes extremely
challenging for a human developer to consistently obtain

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 49 / 729

such modular structures. Indeed, the fine-grained modular
structure might become a complexity-issue on its own. In
this sense, the NS patterns might offer the necessary sim-
plification by offering pre-constructed structures (“building
blocks”), which can be parameterized during implementation
efforts. This way the NS patterns do dictate the source code
for implementing the pattern, contrary to the patterns of
Gamma et al. [10].

An important characteristic of these structures is that
they separate technology-dependent aspects from the actual
implementation, resulting in the fact that one can easily
switch the underlying technology stack of the software.
One transition that has been performed, is changing the
underlying implementation architecture from EJB 2 to EJB
3. Because these standards use a different way of commu-
nicating between agents and beans, this transition normally
is a labor-intensive and difficult task. Using the architec-
ture described in this paper, this transition can however
be achieved rather easily by using the pattern expansion
mechanism. This is because the expanders that perform
the expansion are very similar for different technologies.
This is done by clearly separating functional requirements
of the system (i.e., input variables, transfer functions and
output variables) from constructional aspects of the system
(i.e., composition of the system). Whereas all constructional
aspects are described in patterns and expanders, functional
aspects are separately included in descriptor files (such
as data elements, action elements, etc.). As each pattern
can be conceived a recurring structure of programming
constructs in a particular programming environment (e.g.,
classes), one can conclude that the functional/constructional
transformation then becomes located at one abstraction level
higher than before.

C. Incorporating new knowledge in existing applications

The purpose is to easily incorporate new knowledge of im-
provements, intrinsically by the use of the elements. This can
be interpreted from two distinct perspectives. First, improve-
ments or changes (e.g., typical bug fixing or a new kind of
algorithm) regarding the actual functional parts of the system
(i.e., the so-called ‘tasks’) are easily to be incorporated in the
whole system as the properly separated change driver is the
only place where any modifications have to be made and the
remainder of the system can easily interact with the new task
(and hence, use this knowledge). In NS terms, we could call
these kind of changes and expertise inclusions, knowledge
dispersion at the “sub-modular level” as only changes and
new knowledge are incorporated at the sub-modular level of
the tasks (and not in the modular structure of the elements).
Second, however, knowledge can be incorporated at the
“modular level” as well. This kind of knowledge inclusion
would include change (e.g., an extra separated class in
the pattern) and modifications (e.g., improved persistence
mechanism) regarding the internal structure of an element

(the pattern). Indeed, once the basic structure or cross-
cutting concern implementation of an element is changed
due to a certain identified need or improvement, the new
best-practice knowledge can be expanded throughout the
whole (existing) modular structure and used for new (i.e.,
additional) instantiations of the elements. In order to further
illustrate this second kind of knowledge dispersion based
on NS patterns, consider the following example, based on
real-life experience from developers using NS.

For instance, one way to adopt a model-view-controller
(MVC) architecture in a JEE distributed programming envi-
ronment is by adopting (amongst others) the Struts frame-
work. In such MVC architecture, a separated controller
is responsible for handling an incoming request from the
client (e.g., a user via a web interface) and will invoke
(based on this request) the appropriate model (i.e., business
logic) and view (i.e., presentation format), after which the
result will eventually be returned to the client. Struts is
a framework providing the controller (ActionServlet) and
enabling the creation of templates for the presentation layer.
Obviously, security issues need to be handled properly in
such architecture as well. Applied to our example, these
security issues in Struts were handled in the implementation
of the Struts Action itself in a previous implementation
of our elements. In other words, the implementation class
itself was responsible for determining whether or not a
particular operation was allowed to be executed (based on
information such as the user’s access rights, the screen
in which the action was called, etcetera). As such, this
“security function” became present in all instantiations of
an action element type (i.e., each session). Moreover, this
resulted in a combinatorial effect as the impact of a change
such as switching towards an equivalent framework (i.e.,
handling similar functions as Struts), would entail a set
of changes dependent on the number of instantiated action
elements (and hence, on the size of the system). In order
to solve the identified combinatorial effect, the Separation
of Concern theorem has to be applied: separating the part
of the implementation class responsible for the discussed
security issues (i.e., a separate change driver) in its own
module within the action element. In our example, a separate
interceptor module was implemented, next to the already
existing implementation class. This way, not only the com-
binatorial effect was excluded, but the new knowledge in
terms of a separate interceptor class was applied to all action
elements after isolating the relevant implementation class
parts and executing the pattern expansion. Additionally, all
new applications using the new action element structure
automatically incorporate this new knowledge.

Hence, compared to traditional design patterns, the NS
patterns offer a formally proven evolvable software archi-
tecture as well as an convenient knowledge distribution
mechanism.

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 50 / 729

V. CONCLUSION AND FUTURE WORK

In this paper, we indicated the application and usefulness
of patterns in software development. It was also shown
that Normalized Systems theory can readily be considered
as a method of building stable and large-scale information
systems. Furthermore it has been demonstrated how Normal-
ized Systems theory uses patterns to facilitate the transfer
and use of knowledge on software development. But far
most we showed in this paper that the NS elements can
be considered to be enhanced patterns for software devel-
opment with benefits on three dimensions (i.e., less need
for explicit documentation, more deterministic development
of new applications and more convenient incorporation of
new knowledge into existing applications). From interviews
with developers, these benefits have shown to enhance the
transfer of knowledge, success rate and the overall quality
of NS developments. Although the discussion in this paper
was limited to Normalized Systems theory for software, the
theory has recently been applied to both Business Process
Management and Enterprise Architecture domains. As part
of future research, the possible formulation of patterns on
the level of business processes and enterprise architecture
will be studied.

ACKNOWLEDGMENT

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] B. Wernerfelt, “A resource-based view of the firm,” Strategic
Management Journal, vol. 5, no. 2, pp. 171–180, 1984.

[2] R. M. Grant, “Toward a Knowledge-Based Theory of the
Firm,” Strategic Management Journal, vol. 17, pp. 109–122,
1996.

[3] F. O. Bjørnson and T. Dingsøyr, “Knowledge management
in software engineering: A systematic review of studied
concepts, findings and research methods used,” Information
and Software Technology, vol. 50, no. 11, pp. 1055–1068,
2008.

[4] P. Attewell, “Technology diffusion and organizational learn-
ing: The case of business computing,” Organization Science,
vol. 3, no. 1, pp. 1–19, 1992.

[5] B. Levitt and J. G. March, “Organizational learning,” Annual
Review of Sociology, vol. 14, pp. 319–340, 1988.

[6] C. Chewar and D. McCrickaerd, “Links for a human-centered
science of design: integrated design knowledge environments
for a software development process,” in Proceedings of the
Hawaii International Conference on System Sciences, 2005.

[7] T. Dingsøyr, H. K. Djarraya, and E. Røyrvik, “Practical
knowledge management tool use in a software consulting
company,” Communications of the ACM, vol. 48, no. 12, pp.
96–100, 2005.

[8] F. Bjørnson and T. Dingsøyr, “A study of a mentoring pro-
gram for knowledge transfer in a small software consultancy
company,” in Product Focused Software Process Improve-
ment, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2005, vol. 3547, pp. 245–256.

[9] I. Rus and M. Lindvall, “Knowledge management in software
engineering,” IEEE Software, vol. 19, pp. 26–38, 2002.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley Professional, 1994.

[11] J. Coplien, “The culture of patterns,” Computer Science and
Information Systems, vol. 1, no. 2, pp. 1–26, 2004.

[12] D. C. Schmidt, “Using design patterns to develop reusable
object-oriented communication software,” Commun. ACM,
vol. 38, no. 10, pp. 65–74, Oct. 1995.

[13] D. Riehle, “Transactions on pattern languages of program-
ming ii,” J. Noble and R. Johnson, Eds. Berlin, Heidelberg:
Springer-Verlag, 2011, ch. Lessons learned from using design
patterns in industry projects, pp. 1–15.

[14] G. Odenthal and K. Quibeldey-Cirkel, “Using patterns for
design and documentation,” in ECOOP, 1997, pp. 511–529.

[15] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F.
Tichy, “Two controlled experiments assessing the usefulness
of design pattern documentation in program maintenance,”
IEEE Trans. Softw. Eng., vol. 28, no. 6, pp. 595–606, 2002.

[16] C. Larman, Applying UML and Patterns. Prentice Hall, 1997.

[17] J. Greenfield and K. Short, “Software factories: assembling
applications with patterns, models, frameworks and tools,” in
Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications, ser. OOPSLA ’03, 2003, pp. 16–27.

[18] R. L. Glass, “Maintenance: Less is not more,” IEEE Software,
vol. 15, no. 4, pp. 67–68, 1998.

[19] L. Prechelt, B. Unger, W. Tichy, P. Brossler, and L. Votta,
“A controlled experiment in maintenance: comparing design
patterns to simpler solutions,” Software Engineering, IEEE
Transactions on, vol. 27, no. 12, pp. 1134 –1144, dec 2001.

[20] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable
software architectures based on systems theoretic stability,”
Software: Practice and Experience, vol. 42, pp. 89–116, 2011.

[21] Oracle. Java platform, enterprise edition. [Online].
Available: http://www.oracle.com/technetwork/java/javaee/
overview/index.html

[22] H. Mannaert and J. Verelst, Normalized systems: re-creating
information technology based on laws for software evolvabil-
ity. Koppa, 2009.

[23] L. Welicki, J. Manuel, C. Lovelle, and L. J. Aguilar, “Patterns
meta-specification and cataloging: towards knowledge man-
agement in software engineering,” in Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, ser. OOPSLA ’06,
2006, pp. 679–680.

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 51 / 729

An UML-based Authoring Approach of S1000D Procedural Data Modules and Tool

Support

Youhee Choi, Jeong-Ho Park, Byungtae Jang, DongSun Lim

Vehicle&Defense-IT Convergence Research Department, ETRI

Daejeon, KOREA

e-mail: {yhchoi, parkjh, jbt, dslim}@etri.re.kr

Abstract— The S1000D specification is developed as the

standard format to describe technical publications in

aerospace and military field. The S1000D supports

systematically classifying technical information about various

equipments in XML format. Most technical information about

equipments contains procedural information about installation,

operation, and maintenance. The procedural information can

be effectively described using graphical description methods

rather than using textual description like XML. Also, In UML,

activity diagrams can be used to describe the business and

operation step-by-step workflows. In the S1000D, there are

many types of data modules and procedural data modules

regarding procedural information. In this paper, we propose

an approach to authoring S1000D procedural data modules

using UML.

Keywords- S1000D; XML; UML; Shipdex.

I. INTRODUCTION

The “S1000D International Specification for technical
publication utilizing a common source database” is an
international specification for the procurement and
production of technical publications [1]. The S1000D covers
technical publication activities in support of any airline
projects and military projects. However, in the shipbuilding
field, most technical manuals are supplied today on paper or
in different formats, different structures and different data
quality. This situation caused several problems in terms of
information comprehension and electronic usage. Therefore,
to utilize enterprise resource planning (ERP) and manage
various technical manuals effectively, a common and
standardized protocol for exchanging technical data was
deemed necessary. For this reason, some European shipping
companies agreed to develop the Shipdex protocol that is a
common and shared data exchange protocol based on ASD
S1000D issue 2.3 [2]. The Shipdex protocol allows data
exchange, update, and search by standardizing technical
information publication format.

The S1000D that is the basis of the Shipdex defines a
“Data Module” which is defined as “the smallest self
contained information unit” and a data module is described
in XML format. XML is a markup language that defines a
set of rules for encoding documents [3]. It is a textual data

format with strong support via Unicode. XML was designed
to carry data, not to display data and XML tags are not
predefined. Naturally, there are various XML editors that
have facilities like tag completion and on-the-fly XML
validation with XML schema [4, 5, 6, 7]. Also, some XML
editors allow rendering XML documents using XSLT
stylesheets to show them close to the final output. However,
producing an XML document using these XML editors
requires learning XML schemas or DTDs. In the same way,
due to these features of XML, it means that producing a
S1000D data module requires pre-learning the S1000D
schemas or tags. Also, it is difficult to understand data
contained in data modules for non-technical users without
transforming data modules supplied in XML format into
other format. In addition, there are many studies to model
XML with UML[10, 11, 12, 13, 14]. However, the existing
researches focus on representing static structures of XML
schema elements. There are few studies to model contents of
XML using UML in view of semantics of XML elements.

We note that most technical publications for equipments
are manuals that contain procedural information about
installation, operation, and maintenance. The procedural
information can be effectively described using graphical
description methods. In this respect, we propose an approach
to authoring a S1000D procedural data module using
behavioral modeling method of UML that is the de facto
standard modeling language. Applying our approach to
describing S1000D procedural data modules, it allows to
easily produce S1000D data modules and to easily
understand contents of the S1000D data modules without
knowing XML DTD schema and tags.

The remainder of this paper is organized as follows. The
outline of the S1000D and the Shipdex is presented in
Section 2. Section 3 presents our approach to authoring
S1000D XML data using UML. The approach is applied to
an example in section 4. The paper concludes with future
work and conclusions in section 5.

II. S1000D AND SHIPDEX

A. S1000D

The S1000D is an international standard for the
production and procurement of technical publications. It has

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 52 / 729

been initially developed by the AeroSpace and Defence
Industries Association of Europe (ASD). In the S1000D, a
data module is the smallest information unit. Data modules
may be stored and managed in the CSDB(Common Source
Data Base). The purpose of the CSDB is to manage the data
modules so that information is not duplicated, link
relationships are maintained, and version control is applied
to content [8]. Because S1000D is modular, it facilitates
content reuse and seamless data interchange between
organizations [9]. There are many data module types which
are appropriate for use in the production of all technical
information required in operation and maintenance of the
product. The S1000D defined various types of data modules-
Descriptive, Procedural, Crew/Operator, Fault information,
Maintenance planning, Illustrated parts data, Process, Wiring
data, Wiring data description, Technical repository,
Container, Product cross-reference table, Technical
conditions cross-reference table, Business rules exchange. A
data module has a basic structure which is comprised of two
sections:

•Identification and status (IDSTATUS) section
•Content section
The IDSTATUS section of all data modules contains

identification data (data module code, title, issue number,
issue date, language) and status data (security classification,
responsible partner company and originator, applicability,
technical standard, quality assurance status, skill, reason for
update). The Content section of a data module must be
structured in accordance with data module types. The
Content section of a procedural data module that we focus on
contains the following elements.

•Data module title (<dmtitle>)
•Table of contents
•References (<refs>)
•Preliminary requirements (<prelreqs>) including safety

conditions(<safety>)
•Procedure (<step>)
•Requirements after job completion (<closereqs>)

B. Shipdex

The Shipdex protocol is the international business rules
developed to standardize the development and the exchange
of technical and logistic data within the shipping community.
It applies to ASD S1000D at issue 2.3. The Shipdex protocol
has been developed by the following companies- Grimaldi
Compagnia di Navigazione s.p.a, Intership Navigation Co.
Ltd., Alfa Laval, MacGREGOR a part of Cargotec Group,
MAN Diesel & Turbo, SpecTec Group Holdings Ltd.,
Yanmar Co. Ltd. The scope of this protocol is to cover the
data exchange related to the information currently supplied
in the form of technical manuals. The reason to develop the
protocol is that shipping companies are receiving from
manufactures technical manuals in different formats,
different structures and different data quality. The data
module types that the Shipdex protocol makes use are
Descriptive, Procedural, and Illustrated parts data (IPD).

C. Modeling XML schemas with conceptual models

Several approaches of modeling XML schemas by using
existing conceptual models, such as ER, UML have been
proposed [10, 11, 12, 13, 14]. The goals of most researches
are to represent a XML schema using a UML class diagram,
even if the modeler has no familiarity with the XML schema
syntax. In this respect, the authors have used the UML
extension mechanisms to represent XML schema elements.
They focus on representing static structures and data
relationships of XML schema elements. The existing
researches hardly consider semantics of values which would
be represented using XML schema elements.

III. AN UML-BASED AUTHORING APPROACH OF S1000D

PROCEDURAL DATA MODULES AND TOOL SUPPORT

A. Process for authoring S1000D procedural data

modules

This section describes the process for authoring the
content section of S1000D procedural data modules as
shown in Fig. 1.

Define a title of a data module

Define preconditions for the whole procedure

Define safety information for the whole procedure

Define postconditions for entire procedures

Define branching conditions

Define
Procedures

Define

Subprocedures

Define

References

Define

Safety info.

Define

Branching

Conditions

Figure 1 The process for authoring the S1000D procedural data modules

First of all, the title of a data module that represents the
whole procedure must be defined. Second, preconditions for
the whole procedure that are carried out before starting the
procedure must be defined. Third, safety information such as
warnings, cautions for the whole procedure must be defined.
Then, the main procedure must be defined. To define the
main procedure, a subprocedure that is a unit of an action
must be defined. For each subprocedure, if they exist,
referenced elements that the subprocedure refers and safety
information that is related to the subprocedure should be
defined. Then, if conditional flows are needed, branching
conditions that determine which actions are carried out
should be defined. Lastly, postconditions for the whole
procedure must be defined.

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 53 / 729

B. Method for describing S1000D procedural data

modules

This section describes the method for describing the
content section of S1000D procedural data modules using
UML. The procedural data module is used to describe
procedural information. In the UML, activity diagrams can
be used to describe the business and operation step-by-step
workflows of components in a system [15]. Thus, we suggest
using activity diagrams to describe procedural data modules.

Major elements and attributes of the procedural data
module can be classified as shown in Table I.

TABLE I. MAJOR ELEMENTS AND ATTRIBUTES OF THE PROCEDURAL

DATA MODULE

Procedural data module DTD/Schema

Element Subelement Subelement Attribute

<dmtitle> <techname>

<refs> <refdm> or <reftp>

<avee> or <pubcode>
<dmtitle> or <pubtitle>

<issno> or <pubdate>

<prelreqs> <supequip>
<supplies>

<spares>

<nomen>
<qty>

id
uom

<safety>
<warning>
<caution>

<step>

<closereqs>

<xref>
xidtype

xrefid

Firstly, the ‘Data module title (<dmtitle>)’ must give
meaning to identification of the product and it has the
mandatory element <techname>. The content of the element
<techname> must reflect name of the hardware or function.
Since a procedural data module can be described as a unit of
activity diagram, the element <techname> can be described
with the name of the activity diagram or an activity that
represents the whole procedure without extending the UML.

Secondly, the ‘Table of contents’ element doesn’t contain
specific contents of the data module. Thus, we can exclude it.

Thirdly, in case of the ‘References’ element, there are
two types of references used in the S1000D.

•Internal references: References to other places within

the same data module(<xref>)

•External references: References to other data modules

(<refdm>) or other technical publications (<reftp>)

The former (<xref>) type of references corresponds to

Figures, tables, multimedia, procedures (steps), and so on.
Although, in the DTD/Schema, this type is optional, it gives
the detail information about the referenced targets. In this
respect, it is necessary to describe this type of references, so
identification information about the referenced target should
be described. Thus, we define the stereotype
<<InternalReference>> by extending UML Comment
element with tags that represent ID and type of the
referenced target as shown in Fig. 2.

In case of the latter (<refdm> or <reftp>) type of
references, these references are the mandatory elements and

they should be presented on the references table. The table
presents the data module/technical publication code, data
module/technical publication title, and issue number. Thus,
we define the stereotype <<ExternalReference>> by
extending UML Comment element with tag definitions that
represent code, title, and issue number as shown in Fig. 2.

<<stereotype>>

ExternalReference

<<metaclass>>

Comment

+Code: String

+IssueNum: String

<<stereotype>>

InternalReference

+Type: String

S1000D UML element

Element Subelement Subelement Attribute Stereotype Tag Properties

<refs> <refdm> or <reftp> ExternalReference

<dmtitle> or

<pubtitle>
body

<avee> or

<pubcode>

Code

<issno> or

<pubdate>
IssueNum

<xref> InternalReference

xrefid body

xidtype Type

Figure 2 S1000D references element vs. UML elements

In turn, the ‘Preliminary requirements’ element consists

of the following sub-elements.
•Required Conditions: actions to be done and/or

conditions that must be satisfied before doing
procedure(<prelreqs>) and any actions that are required after
the procedure is complete(<closereqs>)

•Support equipment: A list of any support equipment
including special tools, required to accomplish the
procedure(<supequip>)

•Supplies: A list of any consumables, materials and
expendables required to accomplish the
procedure(<supplies>)

•Spares: A list of any spares required to accomplish the
procedure(<spares>)

•Safety: A list of any safety requirements(<safety>)

Firstly, in case of the ‘Required Conditions’, there are

two types of Required Conditions.
•Required Conditions with no reference(<reqcond>)
•Required Conditions with external

references(<reqcondm>, <reqcontp>)

In case of the former (<reqcond>) type of the ‘Required

Conditions’, since the semantics of the sub-element
(<prelreqs>) corresponds to the semantics of the pre-defined
stereotype <<precondition>> for the activity, the sub-
element (<prelreqs>) can be described with the stereotype
<<precondition>> for the activity that represents the whole
procedure. In case of the latter (<reqcondm>, <reqcontp>)
type of the ‘Required Conditions’, we define the stereotype
<<PreconditionRef>> for precondition and the stereotype
<<PostconditionRef>> for postcondition by extending the
UML Comment element. In addition, relationships between
‘References’ and ‘Required Conditions’ can be described as
the linkage between the UML Comment element with the

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 54 / 729

stereotype <<PreconditionRef>> or <<PostconditionRef>>
and the UML Comment element with the stereotype
<<ExternalReference>>.

Secondly, in case of the sub-elements (<supequip>,
<supplies>, <spares>), each element is mandatory in
procedural data modules and can be referenced within the
same data module. And each element has a <nomen>
element which indicates the functional item nomenclature
and a <qty> element which is used to identify the quantity of
items. Also, each element has an ‘id’ attribute and an ‘uom’
attribute that indicates the unit of measure. To describe each
element, we define the stereotype <<SupportedEquipment>>,
<<Supply>>, and <<Spare>> by extending the UML Class
element with tags that indicate ID, the quantity of items, and
the unit of measure as shown in Fig. 3.

<<stereotype>>

SupportedEquipment

<<metaclass>>

Class

+ID: String

+Quantity: Integer

+UnitOfMeasure: String

<<stereotype>>

Supply

<<stereotype>>

Spare

+ID: String

+Quantity: Integer

+UnitOfMeasure: String

+ID: String

+Quantity: Integer

+UnitOfMeasure: String

S1000D UML element

Element Subelement Subelement Attribute Stereotype Tag Properties

<prelreqs>

<supequip> SupportedEquipment

<supplies> Supply

<spares> Spare

<nomen> Class Name

<qty> Quantity

id ID

uom UnitOfMeasure

 Figure 3 S1000D 'Preliminary requirements' elements vs. UML elements

In case of the sub-element (<safety>), the type of safety
conditions can be warnings or cautions. Thus, we define the
stereotype <<Warning>> and <<Caution>> by extending the
UML Comment element and body of the comment can be
safety conditions as shown in Fig. 4.

<<metaclass>>

Comment

<<stereotype>>

Warning

+SafetyCondition: String

<<stereotype>>

Caution

+SafetyCondition: String

Figure 4 The stereotypes for S1000D 'Safety' elements

In case of the ‘Procedure (<step>)’, each sub-procedure
(step) can be described with an UML Activity or an UML
Action element. If a step is broken down into sub-steps, this
step should be described with an UML Activity element that
can include other activities that are sub-steps. Otherwise, a
step can be described with an UML Action element. In
addition, conditional flows of procedure should be described.
First of all, to describe conditions, the type of condition
should be classified. If the condition affects selecting

resources that are required to accomplish a procedure, the
condition can be described using an UML Comment element
with the stereotype <<selection>> on the UML ObjectFlow.
Otherwise, the condition affects selecting the next procedure
(step), the condition can be described using an UML
DecisionNode.

Finally, since the semantics of the ‘Requirements after
job completion (<closereqs>)’ corresponds to the semantics
of the pre-defined stereotype <<postcondition>> for the
activity, the element (<closereqs>) can be described with
stereotype <<postcondition>> for the activity that represents
the whole procedure.

Table II shows that each rows’ items of the left part
(S1000D) can be described using the right part (UML)’s
items .

TABLE II. SUMMARIES OF S1000D ELEMENTS VS. UML ELEMENTS

S1000D UML

Element Subelement Subelement Attribute Element Stereotype Tag

<dmtitle> <techname> Activity name

<refs>

<refdm> or <reftp> Comment ExternalReference

<dmtitle> or

<pubtitle>
Comment body

<avee> or

<pubcode>
Code

<issno> or

<pubdate>
IssueNum

<xref>

Comment InternalReference

xrefid Comment body

xidtype Type

<prelreqs>

<reqcond> Activity precondition

<reqcondm> or <reqcontp> Comment PreconditionRef

<supequip> Class SupportedEquipment

<supplies> Class Supply

<spares> Class Spare

<nomen> Class name

<qty> Quantity

id ID

uom UnitOfMeasure

<step> Activity or

Action

Conditional flow

DecisionNode

or

Comment with

the stereotype

<<selection>>

<safety>

<warning> Commnet Warning

<caution> Comment Caution

<closereqs

>

<reqcond> Activity postcondition

<reqcondm> or <reqcontp> Comment PostconditionRef

C. Transformation rules

This section describes the rules that transform from an
UML model to a S1000D procedural data module XML file
according to the proposed UML metamodel.

•The name of the outermost Activity can be transformed
into the <techname> value of the <dmtitle> tag.

•The body of the stereotype <<precondition>> can be
transformed into the <reqcond> values of the
<prelreqs>/<reqconds> tag.

•The body of the stereotype <<postcondition>> can be
transformed into the <reqcond> values of the
<closereqs>/<reqconds> tag.

•In case of the stereotype <<PreconditionRef>> or
<<PostconditionRef>>, the body of the stereotype
<<PreconditionRef>> or <<PostconditionRef>> can be
transformed into a value of the <reqcond> tag and if the tag
<code> value of the linked <<ExternalReference>> element

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 55 / 729

is a data module code, it can be transformed as follows:

Otherwise, it can be transformed as follows:

•In case of the stereotype <<ExternalReference>>, if the

tag <code> value is a data module code, it can be
transformed as follows:

Otherwise, it can be transformed as follows:

Also, if the <<ExternalReference>> element is linked

with Activity or Action element, it can be transformed as
follows:

or

•In case of the stereotype <<InternalReference>>, the

part that the <<InternalReference>> element is used can be
transformed as follows:

•In case of the stereotype <<Warning>> or <<Caution>>,

if the element is linked with the outermost Activity, it can be
transformed as follows:

 or

If the element is linked with other Activity elements or

Action elements, it can be transformed as follows:

•In case of Activity elements and Action elements, it can

be transformed as follows:

If the source end of an incoming control flow is the UML
DecisionNode, it can be transformed as follows:

D. Structure of the S1000D Procedural Data Module

Authoring Tool

This section shows the structure of the S1000D
Procedural Data Module Authoring Tool. The tool supports
automatically generating major contents of a S1000D

procedural data module XML file by modeling an UML
activity diagram.

Fig. 5 shows the relationships between subblocks of the
tool and their artifacts. First of all, contents of primary
S1000D procedural elements can be defined using a S1000D
procedural data module editor even though not knowing the
particular S1000D procedural data module structure or the
UML diagram syntax. Then, an UML model generator
generates an UML activity diagram on the basis of the
primary S1000D procedural elements’ contents. An UML
model property editor allows a user to define additional
specific properties of the UML activity diagram that don’t
have to be externally represented. A S1000D procedural data
module XML file generator generates a S1000D procedural
data module XML file on the basis of the UML activity
diagram. A S1000D procedural data module XML file editor
allows a user to define optional elements’ contents.

UML model

property editor

S1000D procedural

data module

XML file generator

S1000D procedural data module authoring tool

UML model

generator

UML activity diagram

S1000D procedural

data module

XML file editor

S1000D procedural data module

XML file

S1000D procedural

data module

editor

Contents of

major S1000D elements

Figure 5. Subblocks of S1000D procedural data module authoring tool

IV. AN EXAMPLE

To address the practical applicability and features of our
approach, we have chosen the procedure of lubricating the
bicycle chain that is a typical example of the S1000D
specification.

Fig. 6 shows the mark-up example of the S1000D
procedural data module. In Fig. 6, the part (a) indicates the
sub-element (<prelreqs>) of the ‘Preliminary requirements’
element. The part (b) of Fig. 6 indicates the sub-element
(<supplies>) of the ‘Preliminary requirements’ element. The
part (c) of Fig. 6 indicates the sub-element (<safety>) of the
‘Preliminary requirements’ element. The parts (d) ~ (k) of
Fig. 6 indicate the ‘Procedure (<step>)’ elements.

Fig. 7 shows the UML activity diagram that describes the
major elements of the mark-up example in Fig. 6. The part
(a) of Fig. 6 can be described using the pre-defined
stereotype <<precondition>> as shown in the part (a) of Fig.
7. The part (b) of Fig. 6 can be described using the UML
Class element with the stereotype <<Supply>> as shown in
the part (b) of Fig. 7. The part (c) of Fig. 6 can be described
using the UML Comment element with the stereotype
<<Warning>> as shown in the part (c) of Fig. 7. As shown in
the part (d) of Fig. 7, the part (d) of Fig. 6 can be described
using the UML Action element because it doesn’t have any
sub-step. On the other hand, since the part (e) has sub-steps,
it can be described using the UML Activity element as
shown in Fig. 7. In case of the part (g) of Fig. 7, since the

<step~>

<para>[guard condition of the control flow],

[Activity body|Action body]</para>

</step~>

<step~><para>[Activity body|Action

body]</para></step~>

<step~><warning>……</warning></step~>

<safety><safecond><warning>……</warning><

/safecond></safety>

<safety><safecond><caution>……</caution></s

afecond></safety>

<step~><para>…<xref xrefid=….

xidtype=…>…</para></step~>

<step~><para> …….

<refdm>……</refdm></para></step~>

<step~><para> …….

<reftp>……</reftp></para></step~>

<refs><refdm>……</refdm></refs>

<refs><reftp>……</reftp></refs>

<reqconds><reqcondtp><reqcond>……</reqcond>

<reqtp>……</reqtp></recondtp></reqconds>

<reqconds><reqcondm><reqcond>….</reqcond>

<reqdm><avee>

….</avee></reqdm></recondm></reqconds>

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 56 / 729

step needs the supported equipment (Floor covering), the
step can be described using the UML action element linking
with the stereotyped object (<<SupportedEquipment>>). The
part (h) of Fig. 7 shows that the step contains the condition
affects determining the next procedure (step). As shown in
the part (h) of Fig. 7, the condition can be described using an
UML DecisionNode. The part (i) of Fig. 7 shows that the
step with the internal reference can be described using an
UML action element linking with the stereotyped comment
element (<<InternalReference>>). The part (k) of Fig. 7
shows that safety condition can be described using an UML
Comment element with the stereotype <<Caution>>.

<proced>
<prelreqs>
<reqconds>
<reqcond>The bicycle chain is clean and
dry</reqcond>
</reqconds>
..
<supequi id ="seq-0002"><nomen>Floor
covering</nomen>
..
<supply id ="sup-0001"><nomen>Wet lube</nomen>
</supply>
<supply id ="sup-0002"><nomen>Dry lube</nomen>
</supply>
</supplyli>
..
<safety>
<safecond>
<warning mark ="1" change ="add">
<para>Dry Lube is a very dangerous substance. Do not
get it onto
your skin. Use it in a well ventilated area. If you swallow
it seek immediate medical advice. If it gets into your
eyes
wash your eyes in clean water and seek medical
advice.</para>
</warning>
..
</safecond>
</safety>
</prelreqs>
<mainfunc>
<step1>
<para>Apply the penetrating lubricant into all the parts
of the bike that move. </para>
..
</step1>
<step1 id ="stp-0001"><para>Lubricate the
chain.</para>

<step2><para>Make sure the chain is clean and dry.</para>
</step2>
<step2 mark ="1" change ="modify" rfc ="New floor cover used">
<para>Put the
<xref xrefid ="seq-0002" xidtype ="supequip"></xref> on
the floor below the chain.</para>
</step2>
<step2>
<para>Use a
<xref xrefid ="sup-0002" xidtype ="supply"></xref> for dry
conditions.</para>
</step2>
<step2>
<para>Use a
<xref xrefid ="sup-0001" xidtype ="supply"></xref> for wet
conditions</para>
</step2>
<step2>
<para>Apply the lubricant to each roller of the chain (refer to
<xref xrefid ="fig-0004" xidtype ="figure"></xref>) but only
apply a small quantity.</para>
<figure id ="fig-0004">
<title>Lubricate the chain</title>
</figure>
</step2>
<step2>
<para>Hold the nozzle of the container above the front of the
chain ring and slowly turn the cranks rearwards.</para>
</step2>
<step2>
<caution mark ="1" change ="modify" rfc ="Hazard report">
<para>Do not get lubrication oil into the brake system.
Oil in the break system can affect the efficiency of the bake
system. Do not get oil onto the floor where it can easily get
transferred onto the brake system.</para>
</caution>
<para>Let the lubricant soak into chain before you clean the
unwanted lubricant from the chain.</para>
</step2>

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(g)

(j)

(k)

 Figure 6 The S1000D mark-up example

Chain <<precondition>> The bicycle chain is clean and dry
<<postcondition>> None

Apply the penetrating
lubricant into all the
parts of the bike that
move.

Lubricate the chain

Make sure the
chain is clean
and dry

Put the floor
covering on the
floor below the
chain

Floor covering
<<SupportedEquipment>>

Apply the
lubricant to each
roller of the chain
(refer to Fig-0004)
but only apply a
small quantity.

Dry Lube
<<Supply>>

Wet Lube
<<Supply>>

Hold the nozzle of
the container above
the front of the chain
ring and slowly turn
the cranks rearwards.

<<Caution>>
Do not get lubrication oil
into the brake system

<<InternalReference>>

Fig-0004

<<Warning>>

Dry Lube is a very dangerous substance. Do not get it onto
your skin. Use it in a well ventilated area. If you swallow
it seek immediate medical advice. If it gets into your eyes
wash your eyes in clean water and seek medical advice.

(b)

(a)

(c)

(e)

(d)

(f) (j)(g) (h)
Let the lubricant soak
into chain before you
clean the
unwanted lubricant
from the chain

(k)

Use a
dry
lube

(i)

Use a
wet
lube

[dry cond]

[wet cond]

(b)

Figure 7 The example UML activity diagram

V. CONCLUSIONS

S1000D specification is developed as the standard XML
format to describe technical publication. It is difficult to
author XML documents without learning XML schemas or
tags. Most technical publications for equipments are manuals
that contain procedural information. In this respect, we
proposed an approach to authoring S1000D procedural data
modules using behavioral modeling method of UML. The
proposed approach allows to easily produce S1000D data

modules and to easily understand contents of the S1000D
data modules without knowing XML DTD schema and tags.
In the future, we will evaluate the proposed approach’s
substantiality by applying to more practical examples.

ACKNOWLEDGMENT

This work was supported by the IT R&D program of
MKE/KEIT.[KI10038619, Development of Solution for Ship
Safety Navigation based Maritime Ad-hoc Network].

REFERENCES

[1] ATA, ASD, and AIA, “S1000D: International Specification

for Technical Publications Utilizing A Common Source

Database“, Issue 2.3, Air Transport Association, AeroSpace

and Defence Industries Association of Europe, AreoSpace

Industries Association[S], 2007.

[2] Shipdex Organization, http://www.shipdex.com [retrieved:

Sep, 2012]

[3] W3C, “XML Tutorial”, Available:

http://www.w3schools.com/xml/default.asp [retrieved: Sep.,

2012]

[4] PTC, Arbotext CSDB for S1000D, Available:

http://www.ptc.com/product/arbortext/csdb-for-s1000d/

[retrieved: Sep., 2012]

[5] CORENA, CORENA S1000D solutions, Available:

http://www.corena.com/what_we_offer/products/corena_s100

0d/ [retrieved: Sep., 2012]

[6] Web-x, UltraCSDB S1000D suite, Available:

http://www.webxsystems.com/. [retrieved: Sep., 2012]

[7] Siberlogic, SiberSafe S1000D Edition,

http://www.siberlogic.com/index.html. [retrieved: Sep., 2012]

[8] Crowell Solutions, “S1000D introduction”,

http://www.crowsol.com/s1000d/s1000d-introduction

[retrieved: Sep., 2012]

[9] CORENA, “Understanding S1000D business rules”,

CORENA white paper, 2010.

[10] Carlson, D. A., “Modeling XML Vocabularies with UML:

Part 1”, XML.com, Aug. 2001. Available:

http://www.xml.com/pub/a/2001/08/22/uml.htm [retrieved:

Sep., 2012]

[11] Carlson, D. A., “Modeling XML Vocabularies with UML:

Part 2”, XML.com, Sep., 2001. Available:

http://www.xml.com/pub/a/2001/09/19/uml.html [retrieved:

Sep., 2012]

[12] Carlson, D. A., “Modeling XML Vocabularies with UML:

Part 3”, XML.com, Oct., 2001. Available:

http://www.xml.com/pub/a/2001/10/10/uml.html [retrieved:

Sep., 2012]

[13] Booch, G., Christerson, M., Fuchs, M., and Koistinen, J.,

“UML for XML Schema Mapping Specification. Rational

White Paper, Dec. 1999.

[14] Conrad, R., Scheffner, D., and Freytag. J., “XML conceptual

modeling using UML”, Proceedings of ER'2000, pp. 558-571,

2000.

[15] Farhad, J., "The UML Extension Mechanisms", Department

of Computer Science, University College London, Dec., 2002.

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 57 / 729

Algorithmic Software Adaptation Approach in

Mobile Augmented Reality Systems

Oleksii Vekshyn

Computer Aided Management Systems department
National Technical University “Kharkov Polytechnic

Institute”
Kharkov, Ukraine

alexeyvekshin@gmail.com

Mykola Tkachuk

Computer Aided Management Systems department
National Technical University “Kharkov Polytechnic

Institute”
Kharkov, Ukraine

tka@kpi.kharkov.ua

Abstract—Growing complexity of mobile software systems

leads to problems with productivity and multiple devices

support in such applications, especially in augmented reality

systems. In this paper, the new approach to algorithmic

adaptation for mobile augmented reality systems is proposed.

This approach is based on complexity estimation of business

logic and separation of computation loading between client and

server sides that increases software performance and usability

in augmented reality systems. This paper illustrates the main

concept and provides some design issues of the proposed

approach.

Keywords-augmented reality; software; mobile systems;

algorithmic adaptation

I. INTRODUCTION

Nowadays, mobile information systems become more
and more popular. One of the most complex and dynamically
grown type of these systems are augmented reality systems
(ARS) [1]. Such systems require more hardware resources
than standard mobile applications for social networks, and
this fact leads to supporting problems of different devices
such as mobile phones and tablets. One of the possible
solutions is an execution of complex business logic on the
server side, where computational capabilities are higher than
on the mobile client side; but on the other hand this, could
lead to problems with application response time and energy
efficiency because of more intensive usage of wireless
networking technologies. In this paper we, propose an
approach which is based on computational complexity
estimation on design-time and analysis of ARS (Augmented
Reality System) [1] state in run-time for algorithmic
adaptation of mobile ARS. The elaborated approach helps to
define which part of business logic should be executed on
mobile the client side, and which one on the server side,
depends on CPU-performance (Central Processing Unit) of a
mobile device.

The paper is structured in the following way: Section 2
depicts briefly some modern trends in this research domain,
w.r.t. software adaptation issues; Section 3 provides the
review of mobile ARS reference architectures; the formal
definitions of the proposed approach are introduced in

Section 4; in Section 5, the elaborated algorithm and the
appropriate software architectural solution for proposed
approach are represented. Finally, Section 6 concludes the
paper and gives a short outlook on some future works on this
research.

II. SURVEY OF AUGMENTED REALITY SYSTEMS AND

ADAPTATIONAL SOLUTIONS FOR MOBILE SYSTEMS

An Augmented reality (AR) is a representational form for
a real physical environment, which is extended by adding of
computer generated data [2]. AR registers physical objects in
three dimensions and combines them with the virtual ones.
Unlike the concept of virtual reality, which completely
replaces the real world with the virtual one, AR uses a
combination of them both.

The ARS operate with such data sources as: two-
dimensional markers; data received from GPS-modules
(Global Positioning System) [3] and from build-in
gyroscopes; they use technologies like images recognition
without any markers and GPS data [4].

For implementation of mobile ARS’s several frameworks
could be used, e.g., Metaio Mobile SDK (Software
Development Kit) [5], D’Fusion Mobile [6] and
Qualcomm [7].

Nowadays, software adaptation is one of the common
trends in modern software engineering (see, e.g., in [8]), and
especially in mobile application development. There are
several approaches to adaptation in mobile systems, some of
them are represented in projects like Q-CAD (QoS and
Context Aware Discovery), MADAM (Mobility and
Adaptation Enabling Middleware), IST-MUSIC (Self-
Adapting Applications for Mobile Users in Ubiquitous
Computing Environments), etc [9].

Q-CAD is a resource discovery framework which
enables mobile applications to discover and to select
resources best satisfied the user’s needs. MADAM and ITS-
MUSIC frameworks provide model-driven development
approach enabling to assemble applications through a
recursive composition process. In this case, variability is
achieved by plugging into the same component type different
component's implementation with similar functional
behavior [9]. In [10], a new approach to the composition of

40Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 58 / 729

mismatching components in context-aware systems is
introduced.

Summarizing the described approaches, we can conclude
they do not take into account possibility of ARS algorithmic
adaptation based on their complexity business logic
estimation. This way, it is possible to separate computation
loading between client and server sides in order to increase
ARS productivity in run-time mode.

III. REFERENCE ARCHITECTURES FOR MOBILE ARS WITH

RESPECT TO ADAPTATION ISSUES

Nowadays, mobile ARS could have two types of
reference architectures. The simplest type of Mobile ARS
architecture is Standalone architecture [11], which is
presented in Figure 1. Such systems work in the following
way: mobile devices register the environment using the
camera, camera handler processes obtained images and adds
data to images with information from local database or GPS-
data. This architecture contains several components as: 1)
Camera handler is a component, which process data from
mobile device’s camera; 2) AR objects handler is a
component, which processes data from the Camera handler
and injects information in images; 3) GPS component is a
component, which provides information from GPS controller
of the mobile device; 4) Local Database is a component,
which provides access to application-specific data stored on
mobile devices locally. Standalone architecture has the
following features: problems with scalability,
maintainability, updating information and extensibility;
denial of a whole system in case of single element’s denial,
high performance in case of low-complex calculations and
on the other hand: low performances in case of high
computational load; low level of security and easier to
manage.

Figure 1. Stand-alone architecture of mobile ARS [11]

Second type of Mobile ARS implementation is Two-tier
client-server architecture [12] which is shown in Figure 2 as
a UML 2.0 [13] deployment diagram. There are two tiers in
this architecture: application or user interacts with client-side
software, in which most cases just provides interface to a
server-side application. The client side application invokes
server on demand, in some cases for modern systems (e.g.,
all necessary data are available in local database) data could
be processed on the mobile client side. For mobile system's
client node is a mobile device, which in case of standalone
architecture registers objects from an environment. Two-tier
architecture in addition to standalone contains following

components: 1) AR objects processing web-service is a
component witch provides functionality to process AR object
on the server side with better productivity; 2) Server-side
Database is a centralized storage of AR objects. Two-tier
architecture have the following features: high scalability,
maintainability, update of information and extensibility, high
performance in case of complex calculations and on the other
hand: low performance in case of slow network connection.

All ARS types could be designed with either Standalone
or Two-tier architecture, so, the reference architecture for
Mobile ARS could be selected with respect to software
requirements and available resources.

Figure 2. Two-tier architecture of mobile ARS [12]

To design and implement the proposed approach, we
choose Two-tier architecture, because of some constraints of
Standalone architecture such as: scalability problems and
server node’s absence, where complex business logic should
be executed and where the centralized database should be
deployed.

IV. FORMAL DEFINITION OF ALGORITHMIC ADAPTATION

FOR MOBILE ARS

The proposed approach to algorithmic adaptation of
Mobile ARS can be represented in a formal way using the
following definitions.

To measure time of processor work the special
parameter: CPU-time has been used. One of the
measurement units of CPU-time is MIPS (Million
Instructions per Second) [14]. This value has some
restrictions, but it could be used in the proposed approach
because it is necessary to compare performance of
algorithms on the one and the same device.

Definition 1. Precision of calculation for AR is a
parameters vector

 ()sr,f,=a , (1)

where f – a number of decimal places after comma;
r – image resolution (in pixels);
s – ratio of image compression (possible values are from

0 to 1).

41Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 59 / 729

These values should be taken into account in the
procedure of computation complexity estimation. They
implicitly describe possible amount of data for business
methods and these influence on amount of operations and
calculation time.

Definition 2. A calculation complexity is a vector

 ()
t
c,c=c

0
, (2)

where
0
c – estimated amount of operations;

t
c – estimated calculation time (is seconds).

Definition 3. A coefficient of a mobile device loading
can be estimated with following expression:

t

P

c

c

D
=P

0

6
10⋅

, (3)

where
p

D – estimated mobile device performance,

MIPS.

Need to notice, that
p

D is measured in MIPS, so this

value should be multiplied with 6
10 to transform its value to

0
c measurement. This equation illustrates the coefficient of

a mobile device load as a ratio of device performance to
required amounts of operations in a second.

We consider two different client side application types,
which can be classified with UML class-diagram given in
Figure 3.

Figure 3. Client-side applications classification

In case of resource-critical applications, we consider the
availability of resources for execution of application on the
mobile device. For this type of application a calculation on a

the mobile device is possible if and only if 1≥P ; otherwise
it is necessary to execute this on a server side.

The second type of client applications, namely so-called
time-limited applications (see Figure 3) could be executed on
client side with respect to existing recourses, but due to, time
constraints they have to be transferred to server side. In case
of time-limited applications calculation on a mobile device
side possible if the equation (4) is satisfied.

0
t>)a(t

mobile
, (4)

where)a(t
mobile

– data processing time on mobile client

side (in seconds);

0
t – time constraint for calculation (in seconds).

Additionally, for time-limited applications time efforts
should be estimated for network communication. If a
network connection speed is slow, transferred calculations
could reduce application performance. To estimate the time
in such a situation, equation (5) is introduced:

)a(t+)a(t+)a(t>)a(t responseserverrequestmobile (5)

where)a(t
mobile

– data processing time on mobile client

side (in seconds);

)a(t
request

 – time for request sending (in seconds);

)a(t
server

– data processing time on server side (in

seconds);

)a(t
response

– time for response getting (in seconds).

Taking into account the time constraints in time-limited
applications we can make the conclusion: calculation transfer
is possible if and only if then the equation (4) and the
equation (5) are both satisfied.

Below, we consider only resource-critical applications,
the time-limited applications and its constraints do not take
into account in the proposed algorithm and approach.

V. ALGORITHM OF ADAPTATION PROCESS AND

PROTOTYPE ARCHITECTURE

Based on the given definitions (see Definition (1) - (3))
the algorithm of the adaptation process in mobile ARS has
been elaborated and presented as UML 2.0 activity diagram
in Figure 4.

Figure 4. Algorithm of the adaptation process

42Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 60 / 729

This algorithm illustrates the process of a node selection
where calculation will be executed.

With respect to proposed algorithm, environment’s
parameters should be obtained and evaluated. Basing on
values of this parameters complexity estimation should be
calculated (see definition (2)). If complexity estimation
requires more resources, than the mobile device performance
(see definition (3)), calculations should be transferred to AR
Application Server, in other case calculations should be
executed on mobile client side. After execution a result will
be prepared to visualization and presented to an user.

In case of mobile system, it is possible to apply
algorithmic adaptation for selection of node where business
logic should be executed. This could improve data
processing speed because of complex calculations will be
transferred to web-service which provides better
computational facilities.

Additionally, it should be noticed that the transfer of
calculations requires an estimation of business logic
complexity and definition of possibility to execute these
calculations on the mobile client side.

Figure 5. Adaptive mobile ARS architecture prototype

From an architectural point of view, the proposed
approach is shown in Figure 5 in the form of UML 2.0
deployment diagram.

The selected two-tier reference architecture has been
extended with new two components: 1) Service manager,
which analyses context of mobile device, obtains data about
business logic complexity and basing on these values
generates decision about suitable target node (mobile client
or server) for given calculations, and 2) Complexity
Estimation, which calculates business logic complexity
based on time complexity estimation gathered on mobile
application’s design time.

To prove the proposed approach, the following example

could be used: let CPU-time’s value is MIPSD
p

00961.0= ,

the precision of calculations is ()0.6960003, ,=a , and

the estimated complexity of algorithm calculated by

Complexity Estimation component is ()0.43241,=c . In

this case, according to the equation (3), value of coefficient

of mobile device load is 1.186=P , according to proposed
approach this calculation could be executed on the mobile
client side.

VI. CONCLUSION AND FUTURE WORK

We have presented the approach to algorithmic
adaptation in mobile ARS, which increases performance and
usability of mobile ARS. The proposed approach allows use
of mobile systems in more efficient way with respect to
system resources. For now, it is not a fully specified process
to measure complexity of business logic in application
design time and component to fetch complexity estimation
on run-time is considered as “black box”. In future work, we
plan to specify the procedure to estimate a computational
complexity of business logic for mobile ARS and integrate it
in the proposed approach. Also, formal definitions will be
extended with such mobile device characteristics, like free
Random-Access Memory (RAM) size and battery capacity.

REFERENCES

[1] H. Lopez, A. Navarro, J. Relano, An Analysis of Augmented Reality
Systems", Proc. of the 2010 Fifth International Multi-conference on
Computing in the Global Information Technology (ICCGI '10), 2010,
pp. 245-250

[2] B. Furth, Handbook of Augmented Reality, Springer New York
Dordrecht Heidelberg London, 2011, p. 746.

[3] Official U.S. Government information about the Global Positioning
System (GPS) and related topics, http://www.gps.gov/ 01.11.2012

[4] A. A. Macwilliams Decentralized Adaptive Architecture for
Ubiquitous Augmented Reality Systems, 2005, 186 p.

[5] Metaio Mobile SDK, http://www.metaio.com/software/mobile-sdk/
23.09.2012.

[6] D’Fusion Mobile, http://www.t-immersion.com/products/dfusion-
suite/dfusion-mobile 23.09.2012.

[7] Qualcomm AR SDK,
http://www.qualcomm.com/solutions/augmented-reality 23.09.2012.

[8] S. Kell, A Survey of Practical Software Adaptation Techniques,
J.UCS, vol. 14, 2008, pp. 2110-2157.

[9] K. Kakousis, N. Paspallis, G. A. Papadopoulos, “A survey of
software adaptation in mobile and ubiquitous computing,” Enterprise
Information Systems, vol. 4, Nov. 2010, pp. 355–
389, doi:10.1080/17517575.2010.509814.

[10] J. Camara, G. Salaun, C. Canal: “On run-time behavioural adaptation
in context-aware systems,” Proc. 1st Workshop on Model-driven
Software Adaptation (M-ADAPT’07 at ECOOP 2007), 2007, pp. 26–
34.

[11] B. Butchart: “Architectural Styles for Augmented Reality in
Smartphones”, Third International AR Standards Meeting, 2011.

[12] C. Woodward, M. Hakkarainen, M.Billinghurst, “A Client/Server
Architecture for Augmented Assembly on Mobile Phones”, Research
on Mobile Software Engineering: Design Implementation and
Emergent Applications, IGI Global Publishing, 2010.

[13] UML 2.0 Specification, http://www.omg.org/spec/UML/2.0/
23.09.2012.

[14] D. J. Lilja, Measuring Computer Performance: A Practitioner's Guide,
Cambridge University Press, 2005, p. 278.

43Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 61 / 729

A Case Study in Modeling a Fault-tolerant Satellite System
through Implementation of Dynamic Reconfiguration via Handshake

Kashif Javed
Turku Centre for Computer Science (TUCS)

Department of Information Technologies
Abo Akademi University

Turku, FIN-20520, Finland
Kashif.Javed@abo.fi

Elena Troubitsyna
Department of Information Technologies

Abo Akademi University
Turku, FIN-20520, Finland
Elena.Troubitsyna@abo.fi

Abstract— Fault tolerance of satellite systems is critical for
ensuring the success of the space mission. To minimize
redundancy of the on-board equipment, the satellite systems
should rely on dynamic reconfiguration in case of failures of
some of their components. In this paper, modeling and
implementation of a handshake procedure has been presented
that becomes a crucial part of the dynamic reconfiguration
process of a satellite subsystem for data processing. The model
for handshake methodology is specialized software for quickly
and successfully recovering from the crisis and failure situation
of the satellite system.

Keywords – dynamic reconfiguration; fault tolerance; advanced
software for handshake procedure; modeling and verification.

I. INTRODUCTION
To ensure high reliability during long-term missions, the

satellite systems rely on redundancy to achieve fault
tolerance and guarantee that the system would be able to
deliver its services despite component failures. However,
the use of redundancy in the satellites is restricted by the
constraints put on the weight and volume of the on-board
equipment.

Despite a careful analysis performed to ensure the
desired degree of reliability, recently one of the satellites
has experienced a double-failure problem with a system that
samples and packages scientific data [6]. The system
consisted of two identical modules. When one of the
subcomponents of the first module failed, the system
switched to the use of the second module. However, after a
while a subcomponent of the spare module also failed, so it
became impossible to produce scientific data. In order to
avoid failure of the entire mission, the company controlling
the operation of the system has invented a solution that
relies on healthy subcomponents of both modules and
provides complex communication mechanism based on the
handshake procedure to restore functioning and to resume
production of scientific data.

In this paper, we present a case study in modeling and
implementation of Control and Data Management Unit
(CDMU) [1] - a generic subsystem of satellites. In
particular, we focus on modeling fault tolerance aspect of
the system that is implemented as a handshake procedure
between two redundant systems. This mechanism is

introduced to achieve the dynamic reconfiguration. For this
purpose, a formal model of the handshake procedure has
been designed and implemented in Promela. Handshake
modeling is an advanced software application to deal with
dynamic reconfiguration for ensuring fault-tolerance when
the mission-critical satellite system encounters faults in its
component and errors in data communication.

This paper is structured as follows. Section II describes
the state-of-the-art model of CDMU and Section III presents
the architecture of the control and data management unit.
Section IV describes the handshake procedure performed to
reconfigure the system from simple redundant two-module
architecture to the Master-Slave architecture. The proposed
system model for handshake is explained in Section V
covering all relevant details of master and slave modules.
Section VI discusses the handshake model between the two
reconfiguration modules that has been implemented and
verified using SPIN/PROMELA. Finally, conclusions and
future work are summarized in Section VII.

II. STATE-OF-THE-ART MODEL
CDMU is a state-of-the-art platform to monitor and

control the satellites system and to organize the collected
on-board data. The major objective of CDMU is to acquire
and transmit the data to the ground after carrying out
appropriate processing. Moreover, it also distributes and
decodes the given commands to its all redundant systems
consisting of processor, reconfiguration and telemetry
modules. Whenever any failure or data error takes place
during the operation of the satellite system, there is an
emergent requirement to dynamically reconfigure the
components of CDMU for its smooth and crisis-free control
and data management. Processing and storing of satellite
data at the right time is of top-most importance during the
working and recovery procedure of the proposed system. In
case of experiencing any failure, the implemented CDMU
structure and the developed model of handshake procedure
immediately adapts to the well-defined and specialized
switchover mechanism for shifting from one redundant
processor to another in order to reconfigure and provide safe
operation of the satellite system during its critical mission.

44Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 62 / 729

III. ARCHITECTURE
The CDMU consists of two Processor Modules (PM1

and PM2), two Reconfiguration Modules (RM1 and RM2),
and two Telemetry Modules (TMM1 and TMM2). It their
own turns, each PM consists of Random Access Memory
(RAM), Integer Unit (IU), Floating Point Unit (FPU), and
Erasable Electrically Programmable Memory (EEPROM).
Each Reconfiguration Module (RM) has two components --
Mass Memory (MM) and On-Board Reference Time
(OBRT). Telemetry Modules generate Telemetries (TMs)
that are processed by Processor Modules.

In CDMU, only one Processor Module (PM1 or PM2) is
in active mode and can access one or both RM1 and RM2.
TMs are received by the active processor module and
accumulated only in MM of its local RM. However, TMs
can be retrieved from the MM of partner RM after switching
is done from one processor module to another. When each
particular PM has experienced a failure, the Master and
Slave policy is introduced for error recovery. It aims at
ensuring that the CDMU functionality can be preserved
even when failures are present in the system.

In our case study, we consider the following two
consecutive errors in CDMU that might occur during the
execution of the system:

1) PM1 fails due to the failure in FPU.
2) TM ceases to function due to the failure in the link

between TMM2 and PM2.

The basis of the Master and the Slave is to prepare a
work-around in order to address above mentioned failures.
In this case, PM1 and PM2 are converted into the Slave and
the Master respectively. Similarly, Master and Slave
comprise of the functional program running in PM2 and
PM1 respectively and it is mainly established to execute the
system without the FPU and connection link.

At a time, both the Master and the Slave interface with
RM1 and RM2, respectively, as shown in the CDMU
structure. However, RM1 and RM2 are not capable to hold
simultaneous access to both of them.

Despite the error in the connection link of PM2, the PM2
is still in operational mode and stores TM in the MM.
Similarly, PM1 is also in operational mode by using only IU
program (without FPU) that recovers TM from the MM and
sends to the operator. The operator interacts with the Master
and the Slave by sending Tele-Commands (TCs). Figure 1
shows that each processor module is connected to both RM1
and RM2 and to both TMM1 and TMM2. The
TeleCommand (TC) receiver is also linked to both PM1 and
PM2.

Figure 1: CDMU Structure [1]

IV. FACTORS CONTRIBUTING IN HANDSHAKE
The important key factors that are involved in the

handshake procedure are as follows:

1) Time Event Register (TER) is used for messaging

between the Master and the Slave. As there is no
direct link between the Master and the Slave, so
TER is used as a shared device. Both can access
TER to read and write messages. RM1 and RM2
have their own TER devices.

2) The two interrupts -- Time Event Interrupt (TEI)
and Time Synchronization Interrupt (TSI) caused
by RM1 and RM2 are sent to the Slave and the
Master respectively. If the Master uses RM1 and
interrupt triggers, then interrupt is only sent to the
Slave because it is a local processor module of
RM1.

3) The interrupts can be used as a signal from the
Master to the Slave for the acknowledgement of
the messages because the Master has a charge of
the interrupt timing.

4) OBRT Status Register is used to find out that
interrupt has triggered in the system. The Master
holds the check of this register and clears the
interrupt flag for allowing the coming up
interrupts.

5) The Master and the Slave cannot use the same RM
at a time. However, both the Master and the Slave
are informed through handshake procedure in order
to choose required RM at a given time interval.

6) Handshaking is done through Communication
Channel (CCH) between the Master and the Slave.
RM1 or RM2 is used as CCH. The TER in the
CCH is expressed as Communication Time Event
Register (CTER).

7) The selection of RM1 or RM2 as CCH depends on
the Master as it utilizes both RM1 and RM2. On
getting the TC instruction from the operator, it

45Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 63 / 729

switches to one module of RM (RM1 or RM2) and
releases the other RM for CCH. If the Master is
using only one RM module initially, the unused
RM will be selected as CCH. The Master can
switch the RM at the end of the handshake
procedure.

8) The handshake message contains the phase content
and timing of the message that is encoded in the
CTER. The timing of the interrupt is slightly
affected by the phase content that is encoded in the
four Least Significant Bits (LSB) of the CTER, but
this affect of interrupt timing is less than 0.3 ms
and is, therefore, ignored.

9) The phase content in the four least significant bits
of the CTER is as under:

i. When 4 LSB of CTER has value ‘1’, then
the Master informs the Slave to
communicate through RM1. Similarly,
when 4 LSB of CTER has value ‘2’, then
the Master informs the Slave to
communicate through RM2. This phase is
known as “Select Communication RM”.

ii. If the value is ‘4’ in the 4 LSB of CTER,
the Slave updates the Master to confirm the
communication through RM1. Likewise, if
the value is ‘5’ in the 4 LSB of CTER, then
the Slave informs the Master that it
confirms the communication through RM2.
This phase of the handshake procedure is
called “Confirm Communication RM”.

iii. Upon setting the value of ‘10’ in 4 LSB of
CTER, the Slave is informed by the Master
that if RM1 is not in use then switch to it
and use it. For the value ‘11’, the Slave has
to switch to use RM2. When the value is
‘14’, then the Master instructs the Slave to
release both RM1 and RM2. This phase is
named as “Command Slave”.

iv. The Master sends a message to the Slave in
which it verifies the RM1 or RM2 selection
by putting the value ‘8’ in 4 LSB of CTER.
This phase is entitled as “Confirm
Command”.

10) The encoding of the handshake messages is done

within one second (s) - Pulse Per Second (PPS).
The interrupts according to the PPS time slot are
given below:

i. When interrupts occur from 0.10 to 0.40 s,
RM1 and RM2 are not selected in this time
slot. It means that the Master instructs the
Slave to confirm the change to use no RM.

ii. For the selection of RM1, interrupts take
place in the time slot ranging from 0.42 to
0.70 s. The Master orders the Slave either
to communicate with RM1 or confirm

change to use RM1 during the handshake
procedure.

iii. In the 0.72 - 1.00 s time slot, interrupts are
taken into account. This selection is
encoded for RM2 where master notifies the
Slave either to communicate with RM2 or
confirm change to use RM2 during the
handshake procedure.

iv. The purpose of the remaining unused slots
0.00 – 0.10 s, 0.40 – 0.42 s and 0.70 – 0.72
s is to avoid overlaps. Any interrupts
appearing in these timing slots will be
ignored.

11) The minimum time between two TSIs is greater

than 0.3s to ensure that two TSIs do not trigger
during the same time slot. On the other hand,
interrupt can be triggered two times during the
same time slot.

V. PROPOSED SYSTEM MODEL FOR HANDSHAKE
The handshake procedure [2] has been modeled for the

Master and the Slave as shown in Figure 2. Handshake is a
procedure in which the Master communicates with the Slave
to update the selection of RM1 and RM2. It is a complicated
process as there is no direct communication link between
them.

Figure 2: Model of Handshake Procedure

A. Master Handshake Procedure

The handshake procedure that is executed by the Master
Module is shown in Figure 2. Below we give its brief
description:

Upon the reception of TC from the operator, the
handshake procedure is started by the Master. The Master

46Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 64 / 729

informs the Slave that other RM will be used as CCH by
updating the value of 4 LSB TER. If the Master is using
RM2 and storing TM, then the Slave will be informed to
make RM1 as CCH. Likewise, if RM1 is operated by the
Master, then the Slave has to use RM2 as CCH. When CCH
is RM1, then system operation is performed from 0.42 to
0.70 s PPS slot. Similarly, for RM2, 0.72 to 1.00 s, PPS slot
is used for the system operation. System has to wait for
starting of the right PPS slot according to the CCH.

In order to send information to Slave, interrupts are
triggered from the Master after setting the value of OBRT
Status Register to zero. For accuracy, the value of TER for
the Slave RM is set to 0.04 s. The interval between two
interrupts is 0.06 s. The Master ensures by reading the
CTER value from the Slave that selection of CCH is done.
The Master can swap the CCH selection at the end of
handshake procedure. The Master commands the Slave by
setting the future CCH selection value in the 4 LSB CTER
and triggers a TEI only. The time value of TEI is not
relevant to the CTER, so the time slot of TEI makes no
changes in the end result of the system. Only operator is
responsible for the new RM selection and determining
which RM is used as CCH as stated in Section IV. In the
system, operator initially notifies the RM selection to the
Master, it changes CCH selection from used RM to other
RM according to the swapping information that is encoded
in 4 LSB CTER and also confirms the RM selection. The
confirmation message is also forwarded to the Slave by
sending two interrupts within the correct time slot. At this
moment, the Master ends the handshake procedure and
updates the operator for successful working by sending the
corresponding TM.

B. Handshake Procedure: Slave Behaviour
When the operator starts the handshake, the following

operations are carried out by the Slave as shown in Figure 2.
If the Slave is using RM1 or RM2, then it will deselect

the current RM on the reception of TC command from the
operator. When RM is discontinued from the Slave, then
OBRT Status Register will be set to zero and no more
interrupts will be triggered. The Slave waits for 0.03 s to get
the new command along with two interrupts (i.e. TEI and
TSI) which will be generated from the Master during the
expected PPS slot. When the Slave receives a message from
the Master, then it decodes it from the interrupts time slot as
mentioned in Section IV (para # 10). For verification, the
Slave also interprets the value of 4 LSB CTER as described
in Section IV (para # 9). If the values derived from the
interrupts time slot and 4 LSB CTER are the same, then the
Slave achieves the specified CCH selection. After that, the
Slave sends acknowledgement of confirmation to the Master
by setting the value of 4 LSB CTER according to Section
IV. Now, the Slave has to wait again for 0.02 s for the new
response or interrupt from the Master according to the PPS
slot. On the arrival of message from the Master, the Slave is
triggered by TEI. The Slave has no opportunity to change

the decision of new selection and waits for 10s for the
confirmation message from the Master. Again, the Slave
receives two interrupts with the CTER message and
compares the time slot of interrupts with previous CTER
value. If both are same, then the Slave begins the operation
with released RM. Finally, the Slave also completes the
handshake procedure by sending TM to the operator.

VI. VERIFICATION OF THE HANDSHAKE MODEL
The handshake model has been implemented by using

PROMELA (PROcess MEta LAnguage) high level
modeling language with SPIN model checker for verifying
the required results. SPIN [3,4] is extensively used in formal
verification of distributed and parallel processing systems.
SPIN has greatly facilitated the process of verification in the
areas of mission-critical algorithmic applications, message
and data communication in the client-server environment,
synchronization and coordination of large number of
processes in the parallel and distributed systems, deadlock
handling methodologies in the modern multi-tasking
operating systems, verification of the mission-oriented
control models for space aircrafts, utilization of intelligent
models for determining most suitable and economical paths
over wide area networks, checking performance of routing
protocols [5], testing of fault-tolerant strategies and
implementation of a wide variety of switching techniques.
The literature review reveals that most of the software-based
systems/models are checked and verified by the SPIN model
checker.

The handshake model between two processors in control
and data management unit has been successfully
implemented and verified using SPIN/PROMELA. The
flow chart for handshake procedure model is shown in
Figure 3. The following algorithm along with description of
each condition of the processes shows part of the
implemented SPIN/PROMELA model.
/*Variable Declarations */
active proctype Slave_starts_HP()
{S_TC=true;
if
::(S_TC==true)->RM1=0;RM2=0;
::(S_TC!=true)-> printf("\n\nExit Handshake Procedure.\n\n");
fi
S_TM=true;}

The above code depicts that when TC command is
received to Slave from the operator, Slave starts handshake
procedure by deselecting the RM selection. After successful
execution of the TC command, Slave sends TM to operator
and waits for Master’s response. In any other condition,
handshake procedure will be terminated.
active proctype Master_starts_HP()// time value is taken in (ms)
{M_TC=true; RM1=0;RM2=1; // set by the operator
if
::(RM1==0 && RM2==1)->// I_time denotes timing of interrupts
{CTER_4_LSB=1;I_time=500;TEI=true;TSI=true;OBRT_SR=1;
run Slave_read_wrtie_operation(CTER_4_LSB,I_time,TEI,TSI);}
::(RM1==1 && RM2==0)->
{CTER_4_LSB=2;I_time=800;TEI=true;TSI=true;OBRT_SR=1;

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 65 / 729

run Slave_read_wrtie_operation(CTER_4_LSB,I_time,TEI,TSI);}
fi}

The code associated with the above process describes
that Master starts handshake on the operator command.
When operator selects RM2 for Master, then Master uses
RM2 and notifies Slave (by sending CTER and interrupts)
to use RM1 as CCH. Likewise, if operator selects RM1,
then Master uses RM1 and updates the Slave (through
CTER and interrupts) to use RM2 as CCH. After that, it
waits for Slave’s response.
proctype Slave_read_wrtie_operation(int CTER_4_LSB,I_time;bool
TEI,TSI)
{if
::((CTER_4_LSB==1) && (TEI==true && TSI==true) && (I_time>=420
&& I_time<=700))->
{CTER_4_LSB=4;run Master_decides_future_selection(CTER_4_LSB);}
::((CTER_4_LSB==2) && (TEI==true && TSI==true) && (I_time>=720
&& I_time<=1000))->
{CTER_4_LSB=5;run Master_decides_future_selection(CTER_4_LSB);}
::((CTER_4_LSB!=1) || !(I_time>=420 && I_time<=700))->
{printf("\n\nExit Handshake Procedure.\n\n");}
::((CTER_4_LSB!=2) || !(I_time>=720 && I_time<=1000))->
{printf("\n\nExit Handshake Procedure.\n\n");}
fi}

The above piece of code illustrates that when timing of
interrupts is in line with the information that is encoded in
CTER 4 LSB, then Slave confirms the selection to Master
and waits for 0.02 s in order to get Master’s response. So,
when interrupts occurs between 0.42 to 0.70 s time slot and
CTER 4 LSB is ‘1’, it means Slave confirms to use RM1 as
CCH by encoding the value ‘4’ in CTER 4 LSB. Similarly,
if time slot for interrupt is 0.72 to 1.00 s and CTER 4 LSB is
‘2’ then RM2 is confirmed as CCH by the Slave through
updating the value ‘5’ in CTER 4 LSB. If timing of the
interrupts is not compatible with the encoded information in
CTER 4 LSB, handshake procedure exits at this stage.
proctype Master_decides_future_selection(int CTER_4_LSB)
{if
::(CTER_4_LSB==4)->
{OBRT_SR=0;CTER_4_LSB=11;TEI=true;OBRT_SR=1;
if
::(CTER_4_LSB==11)->
{RM1=1;RM2=0;aa= CTER_4_LSB;OBRT_SR=0;CTER_4_LSB=8;
I_time=800;TEI=true;TSI=true;OBRT_SR=1;M_TM=true;
run Slave_interprets_message(aa,I_time,TEI,TSI);}
::(CTER_4_LSB==14)->
{RM1=0;RM2=0;OBRT_SR=0;aa=CTER_4_LSB;CTER_4_LSB=8;
I_time=200;TEI=true;TSI=true;OBRT_SR = 1;M_TM=true;
run Slave_interprets_message(aa,I_time,TEI,TSI);}
fi;}

The above fragment of the code describes that when
Slave is using RM1, Master updates the up-coming
selection of RM by placing the value ‘11’ or ‘14’ in CTER 4
LSB with only TEI. If Master selects RM1, it releases RM2
to be used as CCH by putting the value ‘11’ in CTER 4
LSB. When Master picks RM1 and does not release RM2 to
be used as CCH, it writes the value ‘14’ in CTER 4 LSB.
After a half second to give the Slave sufficient time to read
value of CTER, the Master confirms the selection to the
Slave by encoding the value ‘8’ in CTER 4 LSB on the
specified time

Figure 3: Flow Chart of Handshake Procedure Model

slot according to Section IV and exits the handshake
procedure.

48Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 66 / 729

::(CTER_4_LSB==5)->
{OBRT_SR=0;CTER_4_LSB=10;TEI=true;OBRT_SR=1;
The associated code with above condition illustrates this.
if
::(CTER_4_LSB==10)->
{RM1=0;RM2=1;OBRT_SR=0;bb=CTER_4_LSB;CTER_4_LSB=8;
I_time=800;TEI=true;TSI=true;OBRT_SR=1;M_TM=true;
run Slave_interprets_message(bb,I_time,TEI,TSI);}
::(CTER_4_LSB==14)->
{RM1=0;RM2=0;OBRT_SR=0;bb=CTER_4_LSB;CTER_4_LSB=8;
I_time=200;TEI=true;TSI=true;OBRT_SR = 1;M_TM=true;
run Slave_interprets_message(bb,I_time,TEI,TSI);}
fi;}
fi}

The above part of the code shows that when the Master
is using RM1, it updates the up-coming selection of RM by
setting the value ‘10’ or ‘14’ in CTER 4 LSB with only TEI.
If the Master selects RM2, it releases RM1 to be used as
CCH by putting the value ‘10’ in CTER 4 LSB. When the
Master picks RM2 and does not release RM1 to be used as
CCH, it writes the value ‘14’ in CTER 4 LSB. After a half
second to give the Slave sufficient time to read value of
CTER, the Master confirms the selection to the Slave by
encoding the value ‘8’ in CTER 4 LSB on the specified time
slot according to Section IV and exits the handshake
procedure.
proctype Slave_interprets_message(int previous_CTER,I_time;bool
TEI,TSI)
{if
::((I_time>=420 && I_time<=700) && (previous_CTER==10) &&
(TEI==true && TSI==true))->
{S_TM=true;}
::((I_time>=720 && I_time<=1000) && (previous_CTER==11) &&
(TEI==true && TSI==true))->
{S_TM=true;}s
::((I_time>=100 && I_time<=400) && (previous_CTER==14) &&
(TEI==true && TSI==true))->
{S_TM=true;}
::(!(I_time>=420 && I_time<=700) || (previous_CTER!=10))->
{ printf("\n\nExit Handshake Procedure.\n\n");}
::(!(I_time>=720 && I_time<=1000) || (previous_CTER!=11))->
{ printf("\n\nExit Handshake Procedure.\n\n");}
::(!(I_time>=100 && I_time<=400) || (previous_CTER!=14))->
{ printf("\n\nExit Handshake Procedure.\n\n");}
fi}
init
{atomic// Atomic is used to reduce the complexity.
{run Slave_starts_HP();
run Master_starts_HP();}
}

The code given above indicates that after waiting for 10
s, Slave receives the confirmation message with two
interrupts from Master. The timing of interrupts is matched
with the information that is encoded in previous CTER 4
LSB as mentioned in Section IV. Therefore, when timing of
the interrupts lies between 0.42 to 0.70 s time slot and
previous CTER 4 LSB is ‘10’, it notifies that Slave uses
RM1 as CCH that is released by the Master. Similarly,
timing of the interrupts lies between 0.72 to 1.00 s time slot
and previous CTER 4 LSB is ‘11’, it notifies that Slave uses
RM2 as CCH that is released by the Master. Also, when
interrupts timing lies between 0.10 to 0.40 s and the value of
previous CTER 4 LSB is ‘14’, then Slave uses neither RM1

nor RM2 as CCH. After then Slave exits the handshake
procedure. If interrupts timing is not in line with the
information that is encoded in earlier CTER 4 LSB,
handshake procedure exits at this stage too.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a formal approach for

modeling a fault-tolerant satellite system that relies on the
handshake procedure for dynamic reconfiguration. We have
demonstrated how to create a Promela model of the
handshake and carry out its analysis. Since the handshake
procedure has a number of non-trivial properties caused by
the distributed nature of the system, such a model allows the
designers to ensure correctness of the handshake
implementation. In our future work, we are planning to
extend the proposed approach to derive the generic
modeling patterns. Moreover, it would be interesting to
explore the handshake in the presence of more complex
network architecture.

REFERENCES

[1] “DEPLOY – Software Requirement Specification,
Master/Slave Software”, Space Systems Finland, Ltd., July
2011.

[2] J. Kashif, and E. Troubitsyna, “Designing a Fault-Tolerant
Satellite System in SystemC”, ICONS 2012, The Seventh
International Conference on Systems, IEEE Computer Press,
pp. 49–54, March 2012.

[3] C.Baier and J.-P. Katoen. “Principles of Model Checking”.
MIT Press, 2008.

[4] N. A. S. A. Larc, “What is Formal Methods?", NASA
Langley Methods, http://shemesh.larc.nasa.gov/fm/fmwhat.
html, formal methods program, 2001.

[5] J. Kashif, A. Kashif, and E. Troubitsyna,, “Implementation of
SPIN Model Checker for Formal Verification of Distance
Vector Routing Protocol”, International Journal of Computer
Science and Information Security (IJCSIS), Vol 8, No 3,
USA, ISSN 1947-5500, pp. 1-6, June 2010.

[6] A. Tarasyuk, I. Pereverzeva, E. Troubitsyna, T. Latvala, and
L. Nummila, Formal Development and Assessment of a
Reconfigurable On-board Satellite System, In: Frank
Ortmeier, Peter Daniel (Eds.), Proceedings of 31st
International Conference on Computer Safety, Reliability and
Security (SAFECOMP 2012), LNCS 7612, pp.210-222,
Springer, 2012.

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 67 / 729

Transformation of Medical Service Ontology to

Relational Data Models

Osamu Takakia, Izumi Takeutib, Koichi Takahashib, Noriaki Izumib,

Koichiro Muratac, Mitsuru Ikedaa and Kôiti Hasidab
aSchool of Knowledge Science, Japan Advanced Institute of Science and Technology (JAIST),

Nomi, Japan, {takaki, ikeda}@jaist.ac.jp
bNational Institute of Advanced Industrial Science and Technology (AIST),

Ibaraki, Japan, {takeuti.i, k.takahashi, n.izumi, hasida.k}@aist.go.jp
cSchool of Medicine, Kitasato University, Sagamihara, Japan, murata-k@kitasato-u.ac.jp

Abstract—For assessment of medical service quality in

hospitals, it is important to define quality indicators for

evaluating medical services and to calculate their values based

on data in hospitals databases. Thus, one needs a proper

method to correctly calculate the value of a given quality

indicator based on data in medical databases. This paper

introduces a method to transform Medical Service Ontology

(MSO) to relational data models in medical databases, where

MSO is an ontology that provides vocabulary words for

developing quality indicators. To this end, this paper defines a

virtual data model called the Global Data Model (GDM) and a

transformation of MSO to GDM by grouping concepts and

properties in MSO. Based on the transformation, a quality

indicator defined with MSO can be transformed into queries

on GDM automatically. Moreover, by developing mappings

from GDM to relational data models in medical databases, a

quality indicator on MSO can be transformed into queries on

the data models, using which the value of the quality indicator

is calculated based on data in medical databases.

Keywords-component; quality indicator; ontology; data

model; medical database

I. INTRODUCTION

A quality indicator is a measure of medical service
quality that is represented numerically. For example, “in-
hospital mortality after stomach cancer surgery” is a quality
indicator that indicates the quality of surgeries of stomach
cancers in a hospital [1, 2]. For assessment of medical
service quality in hospitals, it is important to define quality
indicators for evaluating medical services and to calculate
their values based on data in hospital databases. Many
hospitals and institutes in medical science have developed
and published quality indicators and their data [1, 2, 3, 4, 5].

However, despite these efforts, an established framework
to develop or maintain quality indicators has not yet been
developed. In fact, even though certain groups of hospitals
have begun to give quality indicators to collaborating
hospitals, to gather their data, and to compare them, it is not
easy to compare them fairly. For example, mortality, re-
hospitalization rate, incidence of bedsores, and incidence of
complications are difficult to compare, since there are no
suitable standard definitions of related concepts. Moreover,

there often exist various types of gaps in the development of
quality indicators and in the calculation of their values. Such
gaps arise from a difference in the vocabulary of medical
services and/or its interpretations, and they often make the
results of evaluations of the quality of medical services
unsuitable.

To realize sharing of quality indicators among multiple
hospitals and to compare data fairly, a proper framework that
helps develop and/or improve quality indicators according to
their own environment is needed. We call such a framework
QI-framework and describe it by QI-FW. To realize QI-FW,
it is desirable to develop a system that creates quality
indicators with self-checking vocabulary words and
constructs quality indicators and their interpretations. To this
end, we developed a representation system of quality
indicators, which we describe by QI-RS [6, 7, 8]. QI-RS
gives a graph-based representation of a quality indicator that
is rigorous and easily understandable, and the system is
based on an ontology called “Medical Service Ontology
(MSO).” QI-FW helps to develop quality indicators in QI-RS
and to calculate their values based on medical databases.

The main purpose of this paper is to present a method to
calculate the value of a given quality indicator in QI-RS
based on data in medical databases. To this end, this paper
introduces a method to transform MSO to data models for
relational databases, where MSO is an ontology that provides
vocabulary words to define quality indicators. We first
define a virtual data model called the Global Data Model
(GDM) as a standard model for calculating the values of
quality indicators, and introduce transformation of MSO to
GDM by grouping concepts and properties in MSO. Based
on the transformation, a quality indicator defined using MSO
is transformed to queries in the GDM. Moreover, by
developing mappings from GDM to data models on given
medical databases, a quality indicator in MSO is transformed
to queries on the data models, and the value of the quality
indicator can be calculated based on the data in the given
medical databases.

The remainder of this paper is organized as follows.
Section II explains quality indicators and an overview of the
QI-FW. Section III explains QI-RS based on our previous
studies. Section IV explains a method to transform MSO to
GDM and to generate queries on GDM from quality

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 68 / 729

indicators in QI-RS. This section contains the main
contribution of the paper. Section V extends the method to
transform quality indicators in QI-RS to queries on data
models of medical databases. The last section explains
related works and conclusions.

II. OUTLINE OF QI-FRAMEWORK

A. Quality Indicator

A quality indicator consists of a name (or a label) and a
calculating formula. For example, “five-year survival rate of
stomach cancer patients” is the name of a quality indicator,
and its calculating formula is given as follows [2].
Calculating Formula: Data for the above quality indicator

is obtained by calculating the rate of the following

numerical values.

Numerator: Number of inpatients that satisfy the condition

defined in the denominator and that survived more than five

years since they were diagnosed with stomach cancer

Denominator: Number of patients that were diagnosed with

stomach cancer

 The value that is obtained from a quality indicator by

using the calculating formula and data in a hospital (or

hospitals) is called “the value of a quality indicator (in a

hospital (or hospitals))” or “the data of a quality indicator

(in a hospital (or hospitals)).” We assume that the values of

quality indicators are essentially calculated from data in

medical databases.

 Even though herein we distinguish between a quality

indicator and its calculating formula, we will often refer to

the calculating formula of a quality indicator simply as “a

quality indicator,” unless stated otherwise.

B. Overview of the QI-Framework

Here, we briefly explain an overview of the framework
QI-FW to develop quality indicators and to calculate their
values based on medical databases.

As mentioned in Section I, proper sharing of the
definition of a quality indicator is not straightforward. To
address the above problems, it is significant to establish a
way to unify the vocabulary of quality indicators and their
interpretation including their whole structures. Thus, toward
solving this problem, we are in the process of developing QI-
FW. (At this time, QI-FW has not yet been completed
implementation, and it is currently under development.)

QI-FW consists of (1) a representation system QI-RS of
quality indicators (Section III), (2) medical databases in
hospitals, and (3) mapping systems (Section V). Moreover,
QI-RS has MSO as its main component (Section III.A).
Medical staff and system engineers who administrate
medical databases (and knowledge engineers, if necessary)
collaborate in developing and improving MSO.

QI-FW users are assessors of the medical service quality
of a hospital (or hospitals) based on data in medical
databases, who are patients, medical staff, and so forth (Fig.
1). They can develop quality indicators in QI-RS via some
interface of QI-FW. A quality indicator Q in QI-RS is

expressed as a graph (Section III.B). Some nodes in Q are
concepts in MSO, while edges in Q are properties in MSO.

On the other hand, system engineers who manage
medical databases are responsible for developing and
improving mapping systems between GDM and data models
in medical databases. Concepts and properties in MSO are
translated to tables in the Global Data-Model (GDM), which
is a virtual relational data model (Section IV). According to
the translation and mapping systems described above, Q is
translated to queries on the data models and an algorithm on
the data retrieved by the queries. Through the queries and the
algorithm, the user can calculate the value of Q based on data
in the medical databases.

Figure 1. Overview of QI-framework.

III. REPRESENTATION BASED ON MSO

In this section, we explain a graph-based representation
system of quality indicators, which we call QI-RS. QI-RS is
developed based on the concept of considering a quality
indicator as a combination of the quantification target and
the quantification and development method of the target and
the method independently. We represent the target of the
calculation or quantification as a graph that we call an
objective graph, and we represent the way to calculate or
quantify it by a concept that we call a quantifying concept.
Furthermore, objective graphs are constructed based on
ontology that we call Medical Service Ontology (MSO).

A. Medical Service Ontology

In this sub-section, we define MSO as a vocabulary for
calculating formulas of quality indicators. For example, the
formal calculation in Section II.A uses the words “patients,”
“hospitalize (hospitalization),” and “aged.” In fact, to define
quality indicators, we need words for describing
characteristics of patients, events (medical services) in
hospitals, predicates about patients, and so forth. MSO is
developed in the ontology developing tool Semantic Editor
[9].

1) Patients
First, we describe the basic concepts related to patients

and their attributes in Fig. 2. Yellow rounded rectangles
denote concepts, and pink rounded rectangles denote
attributes. In general, pink rounded rectangles in diagrams in
Semantic Editor denote properties.

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 69 / 729

Figure 2. Basic concepts and attributes related to patients.

In this paper, we classify properties between concepts

into attributes of concepts and relations between concepts.
The concept [patient] has attributes ⟨blood type⟩, ⟨sex⟩,
⟨name⟩, and ⟨birth⟩, where we describe a concept by brackets
and labels and an attribute by angle brackets and labels. The
values of these attributes are supposed to be immutable for a
patient.

2) Events
Next, we explain concepts related to events in a hospital.

An event is defined to be what a medical staff or a hospital
executes for a patient or what happens to him/her (Fig. 3).

Figure 3. Basis concepts and attributes related to events (partial).

 Events are classified into long-term and short-term events.

While a long-term event such as a hospital stay

(hospitalization) usually takes multiple days, a short-term

event does not usually take more than two days. Moreover,

short-term events are further classified into scheduled and

unscheduled events. Usual medical services are regarded as

scheduled events, while accidents such as deaths are

regarded as unscheduled events. For example, “admission,”

“discharge,” “diagnosis,” “examination,” and “operation

(surgery)” are typical scheduled short-term events, while

“death,” “falling,” and “bone fracture” are typical

unscheduled short-term events. Each typical event is further

classified into detailed classes. For example, examination

events are classified into about thirty types of examinations.

 Each long-term event has attributes including the subject

(target patient), purposes, the starting date, and the ending

date, while each short-term event has attributes including

the subject and occurring time (Fig. 3). We omit a detailed

explanation of them due to space limitations.

3) States of Patients

The state of a patient denotes the health state or a condition

of a patient at a time point. The diagram in Fig. 4 defines the

following main states: age, state of life or death, state of

disease that a patient suffers from, and basic body properties.

These states are used to describe a feature of a patient as a

target of a medical service or an outcome of a patient that

cannot be represented by any event.

Figure 4. Basis concepts and attributes related to states of patients.

Remark. We often identify a concept with its extension,

which is the set of instances of the concept. For example, in a
hospital H, the concept “patient” is identified with the set of
patients of H.

4) Main Relations in MSO
In this sub-section, we define properties in MSO that are

not attributes. We call them relations. We define the primary
relations between concepts as follows.
Relations of patients and events: These relations are

defined between the concept [patient] and concepts of

events. For example, the following relation denotes the

relations between patients and their diagnosis (we describe a

relation by angle brackets and a label).
⟨subject (of an event)⟩ ⊆ [diagnosis] × [patient].

Note that these relations share the same name, “subject
(of an event).” We omit the explanation of the relations
between patients and other events due to limitations of space.
Relations of patients and states: These relations are

defined between [patient] and concepts of patients’ states.

For example, the following relation denotes the relationship

between patients and their state of disease.
〈subject (of a state)⟩ ⊆ [patient] × [state of disease].

These relations also share the same name “subject (of a

state)” and all concepts of patients’ states have the common

attributes of starting time points and terminating time points.

We omit the explanation of the relations between patients

and other states.

Relations of time ordering: These relations are defined

between the concepts of events and patients’ states. For

example, the following relations denote the relationships

between operations.
〈before more than <p>〉 ⊆ [operation] × [operation],
〈before less than <p>〉 ⊆ [operation] × [operation],
〈after less than <p>〉 ⊆ [operation] × [operation], and
〈after more than <p>〉 ⊆ [operation] × [operation].

52Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 70 / 729

Here, “<p>” denotes a parameter. For example, the relation

〈before more than <2 weeks>〉 consists of a pair <op1, op2> if

op1 and op2 are performed and if op1 is performed more than

two weeks before op2.

Belonging relations of events: These relations are defined

between concepts of events with no term and events with

terms. For example, the following relation denotes the

relations between operations and hospital stays that have

operations.
〈belonging〉 ⊆ [operation] × [hospital stay].

The relation contains a pair (op, sty) of an event of an

operation op and that of a hospital stay sty if op is

performed in the duration of sty.

5) Special property OR

MSO has a special property with the label “OR.” The

domain and range of the OR property is the most general

concept “class,” which is a superclass of all concepts in

MSO. Thus, we can give this property to all pairs of

concepts in MSO. The property is used in the definition of

objective graphs in the next section (Case 3 for the

definition).

B. Objective Graphs

In the first part of Section III, we explained that QI-RS
represents a quality indicator as a combination of a target
concept of quantification and a quantification method. In this
sub-section, we define the representation of a quantification
target as a graph.

To define a quality indicator such as the example in
Section II.A, one needs to define special concepts such as
“inpatients that were diagnosed with stomach cancer and that
survived more than five years since they received the
diagnosis” as a quantification target. In most cases, such a
special concept can be defined with a basic concept [patient]
or [event] and some conditions on it that specializes the basic
concept. Furthermore, such conditions can be defined with
properties and (other) basic and/or special concepts. MSO
defines the basic concepts and properties, while objective
graphs represent special concepts and conditions to define
special concepts based on MSO.

1) Syntax of Objective Graphs

Definition 1. An objective graph 𝔾 consists of five

components (N(𝔾), R(𝔾), E(𝔾), L(𝔾), C(𝔾)), where

(i) N(𝔾) is a set of nodes,

(ii) R(𝔾) is the root node,

(iii) E(𝔾) is a set of edges,

(iv) L(𝔾) is a label function on N(𝔾)∪E(𝔾), and

(v) C(𝔾) is a concept.

 We define 𝔾 by the induction on the structure of the

node labels, as follows.

Case 1. Assume that the following data are given:

(a) concept C,

(b) attributes A1,…, An of C, and

(c) values a1,…, an of A1,…, An, respectively.

Then, we define an objective graph 𝔾, as follows.

(i) N(𝔾) := {*0, …, *n},

(ii) R(𝔾) := *0,

(iii) E(𝔾) := {f1,…, fn}, where each fi is an edge from *0 to *i.

(iv) L(𝔾)(*0) := C,

 L(𝔾)(*i) := ai for i = 1,…, n, and,

 L(𝔾)(fi) := Ai for i = 1,…, n,

(v) C(𝔾) := C.

Note that if n = 0, then N(𝔾) is the singleton set {*0} and

E(𝔾) is an empty set.

Case 2. Assume that the following data are given:

(a) an integer n with n ≧ 1,

(b) a set of objective graphs {𝔾0, …, 𝔾n},

(c) a set of relations {R1,…, Rn}, where each Ri is a relation

between C(𝔾i) and C(𝔾0),

(d) a function n(i,j): {1,…,n}2 → ℕ, where ℕ is the set of
integers.
(e) a set of relations {Ri,j

1,…, Ri,j
n(i,j)}, where 0 ≦ i ≦ n

and j with 0 ≦ j ≦ n, and each Ri,j
k is a relation between

C(𝔾i) and C(𝔾j). (Note: if n(i,j) = 0, then {Ri,j
1,…, Ri,j

n(i,j)} is

an empty set).

Then, we define an objective graph 𝔾, as follows.

(i) N(𝔾) := {*0, …, *n},

(ii) R(𝔾) := *0,

(iii) E(𝔾) := {f1,…, f n}∪(∪0≦i≦n, 0≦j≦n{f i,j
1,…, f i,j

n(i,j)}),

where each fi is an edge from *i to *0 and each f i,j
k is an edge

from *i to *j.

(iv) L(𝔾)(*i) := 𝔾i (i = 0,…, n),

 L(𝔾)(f i) := Ri (i = 1,…, n) and,

 L(𝔾)(f i,j
k) := Ri,j

k (i,j = 0,…, n and k = 1,…, n(i, j)).

(v) C(𝔾) := C(𝔾0).

Case 3. Assume that the following data are given:

(a) an integer n with n≧1,

(b) a set of objective graphs {𝔾0, …, 𝔾n}, where each C(𝔾i)

(i = 1,…, n) is a subclass of C(𝔾0).

Then, we define an objective graph 𝔾, as follows.

(i) N(𝔾) := {*0, …, *n},

(ii) R(𝔾) := *0,

(iii) E(𝔾) := {f 1,…, f n}, where each f i is an edge from *0 to

*i.

(iv) L(𝔾)(*i):=𝔾i (i=0,…, n) and

 L(𝔾)(f i):= OR (i=1,…, n), where OR is a special

property defined in Section IV.

(v) C(𝔾):= C(𝔾0).

 Each f i and each f i,j
k in Case 2.(iii) are called a main edge

of 𝔾 and an optional edge of 𝔾, respectively.

 Let 𝔾 be an objective graph. If 𝔾 is defined in Case 1 of

the above definition, then it is called an atomic objective

graph. If 𝔾 is defined in Case 2, then it is called a complex

objective graph. Finally, if 𝔾 is defined in Case 3, then it is

called an OR-type objective graph.

2) Example of an Objective Graph

Here, we give an example of an objective graph. Let us

consider the quality indicator “five-year survival rate of

stomach cancer patients”. The definition of the quality

indicator is the ratio of the number of patients surviving five

years to all stomach cancer patients, where a “stomach

53Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 71 / 729

cancer patient” is a patient who was diagnosed with stomach

cancer, and a “five-year surviving patient” is a patient

diagnosed with stomach cancer but who is alive five years

after the diagnosis. Thus, we will first express the set of

five-year surviving patients in Fig.5. To this end, we

construct three objective graphs 𝔾0, 𝔾1, and 𝔾2, as follows.

(1) 𝔾0 = ({*}, *, ∅ (empty set), L0, [patient]), where L0(*) =

[patient].

(2) 𝔾1 = ({*0, *1}, *1, {f1:*0→*1}, L1, [diagnosis]), where

L1(*0) = [diagnosis], L1(*1) = ⟪stomach cancer⟫, L1(f1) =

⟨result⟩ and [diagnosis] denotes an event concept, ⟪stomach

cancer⟫ denotes an instance of the concept of diseases, and

⟨result⟩ denotes an attribute of the concept [diagnosis]. Note

that the range of ⟨result⟩ is the concept of diseases.

(3) 𝔾2 = ({*0, *1}, *1, {f1:*0→*1}, L2, [state of life or death]),

where L2(*0) = [state of life or death], L2(*1) = ⟪true⟫, L2(f1)

= ⟨survive⟩, [state of life or death] denotes the viability

status of a patient, ⟪stomach cancer⟫ denotes an instance of

the concept of diseases, and ⟨result⟩ denotes an attribute of

the concept [diagnosis]. Note that the range of ⟨result⟩ is the

concept of diseases.

(1) 𝔾0=

(2) 𝔾1=

(3) 𝔾2=

We next construct an objective graph 𝔾 of “five-year

surviving stomach cancer patients”, as follows.

(i) N(𝔾) = {*0, *1, *2},

(ii) R(𝔾) = *0,

(iii) E(𝔾) = {f
1:*1→*0, f

 2:*2→*0, f
 21:*2→*1},

(iv) L(𝔾)(*i) = 𝔾i (i = 0, 1, 2),

 L(𝔾)(f 1) = ⟨subject (of the event)⟩,
 L(𝔾)(f 2) = ⟨subject (of the state) ⟩,
 L(𝔾)(f 21) = ⟨after more than <5 years>⟩,
(v) C(𝔾) = C(𝔾0) = [patient].

Figure 5. Objective graph 𝔾 describing five-year surviving patients with

stomach cancer.

3) Semantics of Objective Graphs
An objective graph 𝔾 can be regarded as a concept

denoted by C(𝔾) and modified by other concepts and
properties that are denoted by L(𝔾). If each concept is
identified with its extension, i.e., the set of instances of the
concept, an objective graph can be identified with a subset of
the set denoted by C(𝔾) that is obtained from C(𝔾) by
restricting it by sets and functions denoted by L(𝔾). To
clarify this identification, we define an interpretation of an
objective graph, as follows.

Definition 2. For an objective graph 𝔾, we define a set

[[𝔾]], which is called the interpretation of 𝔾, as follows.

Case 1. Let 𝔾 be an atomic objective graph. Then,

[[𝔾]] := {c ∈ C(𝔾)|c.A1 = a1 ⋀ …⋀ c.An = an},

where c.Ai is the value of the attribute Ai on c, and symbol ⋀

denotes the logical connective symbol “and.”

Case 2. Let 𝔾 be a complex objective graph. Then,

[[𝔾]] := {x0 ∈ [[𝔾0]]|∃x1 ∈ [[𝔾1]],…, ∃xn ∈ [[𝔾n]]

(⋀ i=1,…,n R
i(xi, x0)) ⋀ (⋀ i,j=0,…,n (⋀ k=1,…, n(i,j) R

 i,j
k (xi, xj)))}.

Case 3. Let 𝔾 be an OR-type objective graph. Then,

[[𝔾]] := [[𝔾0]] ⋂ ([[𝔾1]] ⋃…⋃ [[𝔾n]]).

 Note that for all concepts C and D we assume that if D is

a subclass of C then the extension of D is a subset of that of

C.

4) Segments of an Objective Graph
To define some quantifying concepts in the next section,

we will use an objective graph 𝔾*, which is a kind of a
subgraph of 𝔾. We call such an objective graph a segment of
𝔾 and describe it by 𝔾*. 𝔾* is obtained from 𝔾 by reducing
some conditions of 𝔾 that are represented by nodes or edges

in 𝔾. In fact, 𝔾* satisfies that [[𝔾]]⊆ [[𝔾*]].

Due to space limitations, we omit the definition of
segments, and just give an example in Fig.6, which is a
segment of the objective graph 𝔾 in Fig.5.

Figure 6. Segment 𝔾* of 𝔾.

C. Graph Representation of Quality Indicators

The main purpose of this study is to introduce
transformation of MSO to relational data models and a
method to transform quality indicators in QI-RS to queries
on the relational data models. However, we will focus on
only the transformations of MSO and objective graphs (see
Sections IV and V for the reason). Thus, we explain
quantification concepts and quality indicators in QI-RS very
briefly.

1) Quantifying Concepts
A quantifying concept is a function that extracts the value

from a given target that is expressed to be an objective graph.
The function may have input data that are some attributes of
the base concept of a given objective graph and another
function on the values of the above attributes. Here, each
concept is regarded as a set obtained from the concept under
some situation. For example, in a hospital A, the concept
“inpatient” is regarded as the set of inpatients in A.

There are generally three types of quantifying concepts:

a) Total Numbers

For a finite set S, the summation of numbers obtained
from elements of S is called the total number of S. For
example, if each element is assigned 1 denoting its existence,
then the total number is the same as the cardinality of S. The
quantifying concept ⫷cardinality⫸ is regarded as a function
that has an objective graph 𝔾 as input data and that outputs
the cardinality of [[𝔾]].

 For a concept S and attributes A1, …, An of S, a real-

valued function on the product set of (extensions of) A1,…,

An is called an attribute-quantifying function. Moreover, for

a concept S, attributes A1,…, An of S, and an attribute-

54Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 72 / 729

quantifying function f of A1,…, An, the summation Σ s∈S

f(s.A1,..., s.An) is called the total attribute number of S with

respect to A1,…, An and f, where s.Ai denotes the value of an

instance s with respect to Ai.

 The quantifying concept ⫷total attribute number⫸ is

regarded as a function that has the following data as input

data:

1. an objective graph 𝔾,

2. attributes A1,..., An of C(𝔾), and

3. an attribute-quantifying function f of A1,..., An.

Moreover, the ⫷total attribute number⫸ outputs the total

attribute number of [[𝔾]] with respect to A1,..., An and f.

b) Rate

For a finite set S and its subset S*, the rate of the total
number of S* among the total numbers of S is obtained in the
same way as that of calculating the total number of S* is
called a rate of S* among S. In particular, the rate of the
cardinality of S* among that of S is called the cardinality rate
of S* among S. Moreover, the rate of the total attribute
number of S* with respect to A1,..., An and f among that of S
with respect to the same attributes and the same attribute-
quantifying function is called the total attribute number rate.

 The quantifying concept ⫷cardinality rate⫸ is regarded

as a function that has the following data as inputs:

1. an objective graph 𝔾, and

2. a segment 𝔾* of 𝔾.

 In contrast, the quantifying concept ⫷total attribute

number rate⫸ is regarded as a function that has the

following data as inputs:

1. an objective graph 𝔾,

2. a segment 𝔾* of 𝔾,

3. attributes A1,..., An of C(𝔾), and

4. an attribute quantifying function f of A1,..., An.

Moreover, ⫷total attribute number rate⫸ outputs the rate

of the total attribute number of [[𝔾]] with respect to A1,...,

An and f among that of [[𝔾*]] with respect to the same

attributes and the same attribute-quantifying function.

c) Average

For concept S, attributes A1,..., An of S, and the attribute-

quantifying function f, the ratio of the total attribute number

of S with respect to A1,..., An and f and the cardinality of S is

called the average of the value of S with respect to A1,..., An

of f. The quantifying concept ⫷average⫸ is regarded as a

function that has the same input data as that of ⫷total

attribute number⫸ and that outputs the average of the value

of S with respect to A1,..., An of f.

2) Outline of Quality Indicator Graphs
We now explain the graph representation of a quality

indicator in QI-RS by showing examples of quality indicator
graphs. We call such a graph-represented quality indicator a
quality indicator graph.

In Figs. 6 and 7, we showed an objective graph 𝔾
representing five-year surviving patients with stomach
cancer and its segment 𝔾*, respectively. Now, we connect
them with a quantifying concept ⫷cardinality rate⫸ in Fig.7.

Then, the labeled graph that consists of 𝔾, 𝔾*, and the new
node is a quality indicator graph that represents the quality
indicator in Section II.A.

Figure 7. Quality indicator graph of five-year survival rate of stomach

cancer patients.

IV. TRANSFORMATION OF MSO TO GDM

In this section, we introduce a transformation of MSO to
GDM.

A. GDM and Transformation of MSO to GDM

GDM is a relational data model [10] that is obtained from
MSO by transforming MSO with a standard technique,
where MSO is regarded as an entity relationship model
(ERM) [11] in the following manner.

1) Classification of Concepts in MSO
Concepts in MSO are grouped into entity-type and

dataset-type, as follows. Let C be a concept in MSO.
i. If C has some attribute(s), then C is an entity-type

concept.
ii. Otherwise, C is a dataset-type concept.

Basically, a concept that is an objective of quantification
is an entity-type concept. For example, subclasses of [actor]
(essentially [patient]), [event], and [state (of a patient)] are
entity-type concepts. In fact, there exist entity-type concepts
that are not objectives of quantification but are used for
defining quality indicators, but we do not explain them in
this paper. For example, the concept [disease] in Fig.8 below
is an auxiliary concept that has attributes, and hence, it is an
entity-type concept.

Figure 8. Concepts related to diseases.

On the other hand, a dataset-type concept is basically

defined as a range of attributes of other concepts. Dataset-
type concepts are further classified into general dataset-type
and medical knowledge-type. For example, the concept
[patient] has four attributes ⟨name⟩, ⟨birth⟩, ⟨sex⟩, and ⟨blood
type⟩, while [disease] has two attributes ⟨name⟩ and ⟨degree⟩.
The ranges of the attributes are concepts [human name],
[birth], [sex], [blood type], [disease name], and [degree],
respectively. These concepts are dataset-type. Specifically,
[blood type] and [disease name] are medical knowledge-type
concepts, while the others are general dataset-type concepts.
The extension of a dataset-type concept is the same across
hospitals. For example, the extensions of the above concepts
are the same in every hospital. On the other hand, the
extension of an entity-type concept such as [patient] is
considered different among hospitals.

2) Classification of Properties in MSO

55Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 73 / 729

Properties in MSO are grouped into relationship-type and
attribute-type, as follows. Let P be a property in MSO.

i. If P is a relation defined in Section III.A.4, then P is
a relationship-type.

ii. If P is an attribute of a concept C in MSO and for
every instance c contained in the extension of C c
has at most one value with respect to P, then P is an
attribute-type property.

iii. Otherwise, P is a relationship-type property.
From the MSO that can be regarded as the ERM by the

above groupings, one can obtain a relational data model,
which we describe by GDMMSO or simply GDM, using the
standard transformation of ERMs to relational data models
[11]. In fact, the relational data model GDM can be obtained
from MSO by the following transformation of concepts and
properties in MSO. We describe the transformation by | - |.

1. An entity-type concept C is transformed to an entity
table |C|. Here, we set the primary key of |C|, which
we describe by C-ID.

2. A dataset-type concept D, which has some
concept(s) having attributes whose range is D, is
transformed to a dataset (data-type) |D|.

3. A relationship-type property R between concepts C1
and C2 is transformed to a relationship table |R|.
Here, we set a pair of C1* and C2* as the primary
key of |R|, where, for i = 1 or 2, Ci* is Ci-ID (if Ci is
an entity-type concept) or |Ci| (if Ci is a dataset-type
concept).

4. An attribute-type property A, which has a concept C
having A as its attribute, is transformed to an
attribute |A| of the entity table |C|. Here, the data-
type of |A| is the dataset |D| of the range D of A (if D
is a dataset-type concept) or the set of values of the
primary key of |D| (if D is an entity-type concept).

3) Example of Tables in GDM
We consider the concepts [patient] in Fig. 2 and

[diagnosis] in Fig.9 below.

Figure 9. Diagnosis-related Concepts.

In Fig.9, the label “dom1” of the edge between ⟨objective

patient⟩ and [diagnosis] indicates that each diagnosis, which
is an instance d of [diagnosis], has a single patient that is the
value of d with respect to ⟨objective patient⟩. Therefore,
⟨objective patient⟩ is an attribute-type property. Similarly,
⟨agent⟩ and ⟨occurring time point⟩ are attribute-type
properties. On the other hand, ⟨result⟩ is a relationship-type
property, since the label “domain” indicates that it is possible
that some diagnosis has multiple diseases. On the other hand,
[diagnosis], [patient] [medical staff] and [disease] are entity-
type concepts, while [date] is a dataset-type concept.

From the above concepts and properties, one obtains the
following entity and relationship types.

(Entity table of [diagnosis])
diagnosis-ID
objective patient: patient-ID
agent: medical staff-ID
occurring time point: |date|

(Entity table of [patient])
patient-ID
name: |name|
sex: |sex|
birth date: |date|
blood type: |blood type|

(Entity table of [medical staff])
Medical staff-ID
name: | human name|
sex: |sex|
birth date: |date|
affiliation: |department|

(Entity table of [disease])
disease-ID
name: |disease name|
degree: |degree|

(Relationship table of [result])
diagnosis-ID
disease-ID

Here, the keys with an underscore denote primary keys of

tables. Moreover, “objective patient: patient-ID” indicates
that the attribute “objective patient” has the data-type that is
the set of values of patient-ID as a foreign key, while
“occurring time point: |date|” indicates that the attribute
“occurring time point” has the data-type |date| that is the
dataset obtained from [date]. Other attributes have similar
data-types.

In what follows, we often abbreviate brackets “[” and “]”.
For example, we abbreviate “[patient]-ID” as “patient-ID”
and “|[date]|” as “|date|.”

B. Transformation of QI to Queries on GDM

In this sub-section, we define a method of generating
queries from quality indicators in QI-RS based on the
transformation in the previous section and the semantics of
objective graphs in Definition 2. A quality indicator graph
consists of (an) objective graph(s) and a quantifying concept,
and an objective graph represents a set of patients or events
that is a target of the quantification represented by the
quantifying concept. On the other hand, a quantifying
concept represents a method of calculating numerical values
from sets of patients or events represented by objective
graphs. The calculation method is simple and independent of
objective graphs. Thus, the transformation of a quantifying
concept to the corresponding algorithm can be performed
uniquely. Due to limitations of space, we define only a
transformation of an objective graph to a query on GDM.

Definition 3. For an objective graph 𝔾 = (N, R, E, L, C), we

56Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 74 / 729

define an SQL query on GDM, which is described by Q𝔾, as

follows.

Case 1. Let 𝔾 be an atomic objective graph with attributes

A1,…, An of C and values a1,…, an of A1,…, An, respectively.

Then, Q𝔾 := SELECT * FROM |C(𝔾)|

 WHERE cond1 AND … AND condn.

Here, condi is defined as follows.

i. If | Ai | is an attribute of |C(𝔾)|, then condi is defined to

be (| Ai | = ai).

ii. Otherwise, condi is defined to be

(ai IN (SELECT | Di | FROM | Ai |)),

where | Ai | is a relationship table obtained from Ai and

| Di | is a data-type obtained from the range of Ai.

Case 2. Let 𝔾 be a complex objective graph with the same

components as those in Case 2 of Definition 1. Then,

Q𝔾 := SELECT * FROM |C(𝔾)|

 WHERE

 EXISTS(SELECT * FROM | Q𝔾1 |,…, | Q𝔾n |

 WHERE (

 cond1 AND … AND condn

 AND

 (cond0,0,1 AND … AND cond0,0,n(0,0))

 AND

 (cond0,1,1 AND … AND cond0,1,n(0,1))

 AND … AND

 (condn,n,1 AND … AND condn,n,n(n,n)))).

Here,

 | Q𝔾i | is the table obtained by the query Q𝔾i,

 condi := (|C(𝔾)|.C(𝔾)-ID = |Ri|. C(𝔾)-ID AND

 | Q𝔾i |.C(𝔾i)-ID = |Ri|. C(𝔾i)-ID)

and

 condi,j,k := (| Q𝔾i |.C(𝔾i)-ID = | R i,j
k |. C(𝔾i)-ID AND

 | Q𝔾j |.C(𝔾j)-ID = | R i,j
k |. C(𝔾j)-ID).

Case 3. Let 𝔾 be an OR-type objective graph with the same

components as those in Case 3 of Definition 1. Then,

Q𝔾 := SELECT * FROM |C(𝔾)|

 WHERE

 EXISTS(SELECT * FROM | Q𝔾1 |,…, | Q𝔾n |

 WHERE (cond1 OR …OR condn)).

Here, | Q𝔾i | is the table obtained from the query Q𝔾i and

condi := (|C(𝔾)|.C(𝔾)-ID = | Q𝔾i |.C(𝔾i)-ID).

Note that C(𝔾) = C(𝔾0) in the above Cases 2 and 3.
Remark. The relation of time ordering defined in Section

III.A.4 has a parameter of time length. Thus, in Case 2 of
Definition 3, if Ri or Ri,j

k is a relation of time ordering, condi
or condi,j,k may have the third condition for such a parameter.
For example, if | R i | is a relation of time ordering with a year
parameter, then condi may have an additional condition

| R i |.|year parameter| = p,

where p has the value of year length.

1) Example of queries on GDM
We now construct a query on GDM from the objective

graph 𝔾 in Example 0 by Definition 3. By the transformation
| - |, we obtain the following tables from the concept [state of
life or death] and relations ⟨subject (of an event)⟩, ⟨state
object⟩, and ⟨after more than <p>⟩ (Section 3.A.4), which are

used to compose 𝔾.

(Entity table of [state of life or death])
state of life or death-ID
subject (of a state): patient-ID
starting event: short term event-ID
terminating event: short term event-ID
starting time point: |time point|
terminating time point: |time point|
survive: |truth|

 (Relationship table of ⟨subject (of an event)⟩)
diagnosis-ID
patient-ID

(Relationship table of ⟨state object⟩)
state of life or death-ID (We abbreviate it as “LorD-ID.”)
patient-ID

 (Relationship table of ⟨after more than <p>⟩)
diagnosis-ID
state of life or death-ID
year parameter: |number|

By using the above tables and Example 1, we can obtain the
query Q𝔾 as follows.

Q𝔾 := SELECT * FROM |patient|

 WHERE

 EXISTS(

 SELECT * FROM | Q𝔾1 |,| Q𝔾2 |

 WHERE

 |patient|.patient-ID=|subject (of event)|.patient-ID

 AND

 |Q𝔾1|.diagnosis-ID=|subject (of event)|.diagnosis-ID

 AND

 |patient|.patient-ID=|state object|.patient-ID

 AND
 |Q𝔾2|.LorD-ID=|state object|.LorD-ID

 AND

 |Q𝔾1|.diagnosis-ID

 =|after more than <p>|.diagnosis-ID

 AND
 |Q𝔾2|.LorD-ID=|after more than <p>|.LorD-ID

 AND
 |after more than <p>|.|year parameter|=5)

57Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 75 / 729

Q𝔾1 := SELECT * FROM |diagnosis|

 WHERE

 EXISTS(

 SELECT * FROM | Q𝔾11 |

 WHERE

 |diagnosis|.diagnosis-ID=|result|.diagnosis-ID

 AND

 |Q𝔾11|.disease-ID=|result|.disease-ID)

Q𝔾11 := SELECT * FROM |disease|

 WHERE name = “stomach cancer”

Q𝔾2 := SELECT * FROM |state of life or death|

 WHERE survive = “true”

C. Elimination of Relationship Tables Obtained from

MSO-Relations

Let us call a relationship table in GDM that is obtained
from a relation in MSO an MSO-relation-based table. In this
sub-section, we explain how MSO-relation-based tables can
be eliminated. In fact, one can give a relation in MSO a
canonical definition by using the attributes of domain
concepts, as follows.
1. Relations of patients and events are determined by

using the attribute ⟨objective patient⟩ of events.
2. Relations of patients and states are determined by using

the attribute ⟨subject (of a state)⟩ of patient states.
3. Relations of time ordering are determined by using the

attributes of starting, terminating, and occurring time
points of events and patient states.

4. Belonging relations of events are determined by the
attributes of time points, objective patients, and types of
events.

Thus, one can regard MSO-relation-based tables as view
tables defined by using other tables in GDM, and hence, for
a query Q𝔾 in Definition 3, one can replace all conditions in
Q defined using relation-based tables from other conditions
without an MSO-relation-based table.

However, it is still meaningful to consider MSO-relation-
based tables. The reason is that some hospitals may need
their own definitions of such relations. Especially, it is
possible that the definitions of belonging relations of events
have slight differences across hospitals that need to modify
the conditions for the table to contain an instance. To
calculate proper indicators of medical service quality, it
would be useful to consider a framework of both canonical
ways and special ways to deal with it.

V. TRANSFORMATION OF MSO TO A LOCAL DATA

MODEL

Based on the transformation of MSO to GDM, we
briefly explain a transformation of MSO to a data model on
a medical database in a hospital. We call such a data model
a Local Data Model (LDM). To realize transformation of
MSO to LDM, it is necessary to develop a mapping between
GDM and LDM. From the remark in the previous section,
one can effectively omit MSO-relation-based tables from

GDM. Thus, to develop a mapping between GDM and
LDM, we need to develop entity tables and relationship
tables (besides MSO-relation-based tables) as view tables on
LDM, which we call proper relationship tables. Through the
queries on LDM that are definitions of the view tables, one
can obtain queries on LDM to calculate the value of a given
quality indicator in QI-RS. In fact, for a given ℚ consisting
of one or two objective graph(s) 𝔾 (and 𝔾*), one can obtain
a query Q+

𝔾 (and Q+
𝔾*), as follows.

1. First, obtain a query Q𝔾 on GDM, which is defined
based on entity tables and proper relationship tables.

2. Then, replace the tables above by sub-queries on LDM
that define the tables as view tables on LDM.

3. Then, one can obtain a nested query Q+
𝔾 on LDM to

calculate the values of the objective graph 𝔾.
On the other hand, one can easily define an algorithm

that is obtained from the quantifying concept in ℚ. For
example, if the quantifying concept is ⫷cardinality rate⫸,
the algorithm only counts the numbers of rows in the tables
that are calculated by Q+

𝔾 and Q+
𝔾*, respectively, and shows

the ratio between the numbers. Such an algorithm can be
defined independently from the input data, the objective
graphs. Thus, one can obtain the value of ℚ from the
algorithm above based on Q+

𝔾 and Q+
𝔾*.

VI. RELATED WORKS

A. Transformation of Queries on GDM into Those on

LDM

The concept of a GDM and the transformation of GDM
into LDMs in this paper have already been developed in
previous research on distributed databases. Especially in the
1990s, many productive algorithms were developed for the
transformation of queries on a GDM into those on LDMs
(see, for example, chapter 9 of [12] or [13]). However, we
need a representation system of quality indicators that
satisfies compatibility of formality and understandability of
quality indicator representation. Moreover, to guarantee the
formality of the representation system, one needs to
establish a concrete way to calculate values of quality
indicators represented by the system. This paper shows a
solution to the problem by transforming quality indicators
(more precisely, objective graphs) in QI-RS into queries on
LDMs.

B. Ontology-Based Information Retrieval

Ontology-based information retrieval has been actively
investigated. In particular, research results on
transformations between ontologies in RDF and relational
data models on RDBs (see, for example, [14] or [15]) are
closely related to the results in this paper. Moreover,
ontology-matching (see, for example, [16] or [17]) has been
investigated as the basis of ontology-based information
retrieval.

The results of this paper are based on the transformation
of MSO into GDM, and previous research can be consulted
to reproduce these results. However, in order to actually
realize a transformation from ontology such as MSO, which
is developed for a special purpose such as the assessment of

58Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 76 / 729

medical services, to a suitable data model, one still requires
special techniques. For example, although D2RQ [18] is one
of most useful tools to connect ontologies in RDF with
relational data models, we found that it requires
considerable customization and extension of the functions to
translate MSO into GDM. The results in this paper can be
regarded as the special requirements based on common
techniques of transformation on RDF-ontologies into
relational data models to transform MSO into GDM (or
LDMs).

Moreover, to calculate the value of a quality indicator in
QI-RS based on medical databases, one also needs to deal
with the transformation of objective graphs and quantifying
concepts, particularly the transformation of objective graphs
into queries on GDM (and LDMs). This paper solves this
problem by employing the semantics (interpretations) of
objective graphs (Definitions 3 and 4).

VII. CONCLUSION AND FUTURE WORK

This paper introduces a method to transform a quality
indicator represented by Medical Service Ontology (MSO) to
queries on a virtual relational data model called a Global
Data Model (GDM). To this end, concepts and properties in
MSO are grouped and accordingly transformed to entity and
relationship tables in GDM. Moreover, based on a mapping
from GDM to each relational data model on a medical
database in a hospital, this study extends the method to
transform a quality indicator to queries on the data models on
medical databases. Thus, the value of the quality indicator
based on MSO is automatically calculated based on data in
the medical databases.

We have still not explained any method to perform
mapping between GDM and the relational data model on a
given medical database in detail. Moreover, we need to
develop a method of generating queries on relational data
models that are efficient from the viewpoint of computation.
These issues will be solved in future works.

ACKNOWLEDGMENT

This work was supported by a JSPS KAKENHI Grant
Number 24500167.

REFERENCES

[1] OECD: Health Care Indicators Project Initial Indicators Report,
OECD Health Working Papers 22 (2006).

[2] Nihon Hospital Organization: Clinical Indicators 2009,
http://www.hosp.go.jp/7,7018,61.html, (in Japanese), [retrieved: 9,
2012].

[3] B. T. Collopy: Clinical indicators in accreditation: An effective
stimulus to improve patient care, International Journal for Quality in
Health Care 12(3) (2000), pp.211-216.

[4] J. Mainz, B. R. Krog, B, Bjørnshave, and P. Bartels: Nationwide
continuous quality improvement using clinical indicators: The Danish
national indicator project, International Journal for Quality in Health
Care 16(1) (2004), pp.i45-i50.

[5] J. Mainz, A. M. Hansen, T. Palshof, and P. D. Bartels: National
quality measurement using clinical indicators: The Danish national
indicator project, Journal of Surgical Oncology 99(8) (2009), pp.500-
504.

[6] O. Takaki, I. Takeuti, K. Takahashi, N. Izumi, K. Murata, and K.
Hasida: Representation system of quality indicators towards accurate
evaluation of medical services based on medical databases,
Proceedings of the 4th International Conference on eHealth,
Telemedicine, and Social Medicine (eTELEMED2012) (2012),
pp.249-255.

[7] O. Takaki, I. Takeuti, K. Takahashi, N. Izumi, K. Murata, and K.
Hasida: Representation system for quality indicators by ontology,
Semantics - Advances in Theories and Mathematical Models, InTech,
April (2012), pp.193-212.

[8] O. Takaki, I. Takeuti, K. Takahashi, N. Izumi, K. Murata, M. Ikeda,
and K. Hasida: Evaluation of a representation system of quality
indicators, Proceedings of the 10th Conference on Knowledge-Based
Software Engineering (JCKBSE2012), Frontiers in Artificial
Intelligence and Applications 240, IOS Press, (2012), pp.144-153.

[9] K. Hasida: Introduction to Semantic Editor, http://i-content.org/
semauth/intro/index.html, (in Japanese), [retrieved: 9, 2012].

[10] E. F. Codd: A relational model of data for large shared data banks,
Commun. ACM 26, 1 (1983), pp.64-69.

[11] P. P. S. Chen: The entity-relationship model: A basis for the
enterprise view of data, In Proceedings of National Computer
Conference (AFIPS '77), ACM, (1977), pp.77-84.

[12] M. T. Özsu and P. Valduriez: Principles of Distributed Database
Systems (3rd Ed.), Springer, (2011).

[13] A. Y. Halevy: Answering queries using views: A survey, The VLDB
Journal 10 (2001), pp.270-294.

[14] N. Konstantinou, D.-E. Spanos, and N. Mitrou: Ontology and
database mapping: A survey of current implementations and future
directions. J. Web Eng., 7(1) (2008), pp.1-24.

[15] S. S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. Thibodeau Jr, S.
Auer, J. Sequeda, and A. Ezzat: A Survey of Current Approaches for
Mapping of Relational Databases to RDF,
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport
.pdf, (2009), [retrieved: 9, 2012].

[16] N. F. Noy: Semantic integration: A survey of ontology-based
approaches. SIGMOD Record, 33(4) (2004), pp.65-70.

[17] J. Euzenat and P. Shvaiko: Ontology Matching. Springer (2007).

[18] D2RQ: Accessing Relational Databases as Virtual RDF Graph,
http://d2rq.org, [retrieved: 9, 2012].

59Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 77 / 729

BrainTool

A Tool for Generation of the UML Class Diagrams

Oksana Nikiforova, Konstantins Gusarovs, Olegs Gorbiks, Natalja Pavlova

Faculty of Computer Science and Information Technology
Riga Technical University

Riga, Latvia

e-mail: oksana.nikiforova@rtu.lv, konstantins.gusarovs@rtu.lv, olegs.gorbiks@rtu.lv, natalja.pavlova@rtu.lv

Abstract—Object-oriented system modeling enables the

sharing of responsibilities between system objects at a high

level of system abstraction. The UML class diagram is the

central part of the object-oriented system model and serves as

a "bridge" between the information about the problem domain

at the customer's side and the software components at the

developer's side. However, UML is not a methodology for how

to model the system, but just a notation for "drawing" of

model elements. This paper demonstrates the functionality of

the BrainTool, which enables the generation of the UML class

diagram from the so called two-hemisphere model, where the

problem domain is presented as a concatenation of the

problem domain processes, incoming and outgoing information

flows and their types. BrainTool is developed using Visual

Studio .NET for modeling of the two-hemisphere model, the

Python programming language for definition of

transformation rules and XMI for model interchange with
Sparx Enterprise Architect.

Keywords-BrainTool v1.0; UML class diagram; two-

hemisphere model; model transformation.

I. INTRODUCTION

The object-oriented approach is widely used in software
development. One of the tasks of software development is to
present different aspects of the system for the
implementation of the software solution for the required
system. In solving this task, system modeling became an
important activity in software development. The goal of
system modeling is to represent the system graphically, in a
form understandable to analysts, developers and at least
partly understandable to the customer. A systematic
approach to the derivation of the system model from
information about the problem domain plays an important
role in completing the task of system modeling.

K. Vollmer, C. Richardson, and Clair C. research [1]
confirms that tools to support models and modeling at the
initial stage of software development are the modern trend in
business process modeling and analysis. Therefore, the focus
of the automation of software development is shifted from
automatic code generation from the UML diagrams to the
automatic modeling of the UML diagrams and further code
generation from them. Here, the valuable diagram became
the UML class diagram, which specifies the structure of the

developed system and static information about system
behavior.

Moreover, the increasing interest towards software
development within the framework of Model Driven
Development (MDD) [2] turns the focus again to the area of
model transformation at different levels of abstraction.
Unified Modeling Language (UML) [3] is an industry
standard for software specification and modeling in an
object-oriented manner. The UML class diagram is used to
model class specification and serve as a "bridge" between the
information about the problem domain and the information
required for definition of the software components and their
architecture. Researchers are trying to achieve a high enough
level of automation in creation of the UML class diagram
and derivation of the diagram from information about the
problem domain. Currently, an increasing number of
developers admits the necessity to model system at the initial
stage of the software development project, and the models
are increasingly used to specify the system and its processes
at the business level [1], [4].

BrainTool [5], developed by researchers of the Riga
Technical University, is a step forward in the area of
automation of the modeling process. There exist a number of
tools which generate the UML class diagram. Some of them
enable to define several elements of class structure based on
data presentation of the problem domain. Others generate a
class diagram from existing source code, to display the
structure of the developed system. However, the problem of
automatic generation of the UML class diagram from the
formal and still customer-friendly presentation of problem
domain is not solved yet. Authors of BrainTool propose to
generate UML class diagram from the so-called two-
hemisphere model [6] of the problem domain, which
presents information about processes, information flows
between these processes and pre-defined types of these
information flows.

In 2004, when the main idea of the two-hemisphere
model were published, the lack of the appropriate languages
and standards eliminated the ability to support the two-
hemisphere modeling of the system and to implement the
transformations defined for it by tool. The evolution of the
idea of model driven software development and appearance
of different techniques for development of such modeling
environment with embedded abilities for implementation of

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 78 / 729

transformations gave us a powerful means to create such the
tool.

The goal of this paper is to solve the task of tool
development to support generation of the UML diagram
from the initial model of the problem domain expressed in
terms of the two-hemisphere model and to discuss about
technical abilities of current solutions to create such a tool.

The paper is structured as follows. The next section
describes the related work in the area of UML class diagram
generation and tools supporting this generation. Section 3
explains the main principles of the transformations used for
generation of the UML class diagram from the two-
hemisphere model. The essence of the two-hemisphere
model is also described in the third section. Section 4 gives
several explanations on the solutions used for
implementation of BrainTool and shows its main
components. Several conclusions on the application of
BrainTool and directions for future research are stated in the
fifth section.

II. RELATED WORK

Since the beginning of the 1980s, a great number of
modeling tools and model generating software systems have
been offered to attack problems regarding software
productivity and quality [7]. Modeling tools developed since
that time were oversold on their "complete code-generation
capabilities" [8]. Nowadays, similar situation is observed in
modeling tools, using and integrating UML models at
different levels of abstraction and automation of software
development [9].

Most of today's tools combine a number of modeling and
code generation functions in a more or less open fashion.
The traditional modeling tools provide a model editor and a
model repository. A code generator based on a scripting
language and plugged into a modeling tool provides the
transformation tool and transformation definition editor. In
that case, the transformation repository is simply text files
[10].

The variety of the "model-driven" tools can be divided
into tools created for defining the system model itself and
tools to support code generation from the UML model. The
first group of tools is so-called "UML editors", where the
developers of these tools provide different levels of
automation of the actual model creation. BrainTool
demonstrated in this paper can be classified as a tool for
automatic creation of UML class diagrams, where the result
of the generation – the UML class diagram – is importable
either into UML editors for further refinement and working
with model or into code generation tools for further
generation of software components.

Loniewski et al. in [11] describe the results of a survey
about different approaches used for transformation of system
requirements to system design and implementation. The
survey shows the result of analysis of different approaches to
transformation of the problem domain description into the
UML class diagram during the last 10 years, published in
four digital libraries (IEEEXplore, ACM, Science Direct,
Springerlink). The survey states that there exist many
approaches with different types of solutions for the

generation of a UML class diagram. Moreover, the authors
analyze the approach based on several criteria, one of them is
tool support. Analysis of the automation level in these
approaches shows that 25 out of 71 approaches described in
corresponding papers are supported with a tool. However,
Loniewski et al. stress that these tools are academic tools and
are not widely practically used as far as they are created to
approve the automation level of the approach offered by their
vendors [11].

One more kind of the related tools are tools that generate
the class diagram from a data structure or a data model.
These tools require a solid contribution from a software
specialist to define all these structures. It is already the
modeling of the UML class diagram itself. In contrast to
these tools, BrainTool generates the class diagram from
initial information about the system, which is understandable
for the business analyst and doesn't require software
knowledge for its modeling. Therefore, a tool that generates
the class diagram in the initial stages of the project is very
useful. It allows to automatically create a static structure of
the developed system and serves as a base for further code,
avoiding mistakes and mismatches between requirements
and implementation.

As far as for the evolution of the two-hemisphere model,
which is a base model for generation of the UML class
diagram in BrainTool, the main idea of displaying the initial
information about the system with two interrelated models–
the business process model and the concept model – and the
hypothesis about how to use two interrelated model to share
the responsibilities between object classes was demonstrated
on the abstract example in [6] and later in several real
projects. In all cases, the two-hemisphere model was created
manually, in the first one by authors and in others by an
independent problem domain expert. Successful application
of two-hemisphere model transformation into the UML class
diagram served as a motivation to support these
transformations by software system. The first software
prototype of tool supporting two-hemisphere model based
transformation was introduced in 2008 [12]. The prototype
used textual information in special format as a source and
produced a text file containing description of the resulting
UML class diagram as a specification, where classes,
attributes, methods and relationships were listed in pre-
defined format. Analysis of these generated text files gave
authors an ability to refine transformations for definition of
relationships between classes; the results are published in
[13]. Currently, the ability to apply the two-hemisphere
model for generation of the UML sequence diagram with
attention to the timing aspect is investigated and preliminary
results are published in [14]. So far, the continuing research
in the area of model-driven software development and an
increasing demand in the industry for automation of the
ability to bridge the gap between problem domain and
software components, can serve as a motivation to develop
the first version of BrainTool, which gives an ability to draw
the two-hemisphere model in the manner suitable for the
problem domain expert and to generate the UML class
diagram from it.

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 79 / 729

Moreover, instead of manual creation of the UML class
diagram directly from information about problem domain
based on principles of object-oriented analysis, the proposed
BrainTool gives an ability to use already existing business
artifact – a business process diagram is widely used in many
enterprises, and the structure of information flows between
processes is definable under description of user stories. A lot
of organizations are using different tools for business process
analysis and therefore they have complete and consistent
models of their organizational structure, employer
responsibilities, business processes and the structure of
documentation flows, in other words, well-structured initial
business knowledge, which can serve as a basis for even
automatic creation of the two-hemisphere model.

The main benefit of the two-hemisphere model is that it
can be created and often already is created by the business
analyst at the customer's side. A Standish group survey
shows that about 83% of companies are engaged in business
process improvement and redesign. This implies that many
companies are very familiar with business process modeling
techniques or at least they employ particular business process
description frameworks [4], [15]. On the other hand, the
practice of software development shows that functional
requirements can be derived from the problem domain
description as much as 7 times faster than if trying to elicit
them directly from users [16]. Both facts mentioned above
and the existence of many commercial and open source
business modeling tools are a strong motivation to base
software development on the business process model, rather
than on any other soft or hard models.

Therefore, with minimal efforts, the two-hemisphere
model, which is created and intuitively understandable by the
customer, can be used to automatically generate class
diagram prototypes that can be later reviewed and used in
software development.

III. TRANSFORMATION OF TWO-HEMISPHERE MODEL TO

THE UML CLASS DIAGRAM

The two-hemisphere model driven approach uses the
transformation of graphs, where nodes of one graph become
the edges of the other graph, and edges of the first graph
become the nodes of the other. These two initial interrelated
graphs are: business process model (shortly – process
model), which displays behavior of the system and the model
of conceptual classes (shortly – concept model), which
displays a skeleton of system’s static structure. The meaning
of objects in an object-oriented philosophy gives a possibility
to share responsibilities between objects based on the direct
graph transformation, where the data flow outgoing from the
internal process in the process model becomes the owner of
this process for performing it as an operation in object
communication.

The essence of the transformation is illustrated on the left
side of Figure 1. The business process model (graph G1 in
Figure 1) is interrelated with the concept model (graph G2 in
Figure 1) as follows. A certain concept in the concept model
defines the data type for one or several data flows between
business processes. The business process model is
transformed into an object communication diagram (graph
G3 in Figure 1), where edges (i.e., data flows) of the
business process model became nodes (i.e., objects) of
communication diagram, and nodes of business process
model (i.e., processes) became edges (i.e., messages to
perform the operation) of the communication diagram. The
communication diagram itself serves as a base for the
definition of classes-owners of methods in the UML class
diagram. Details about the application of the two-hemisphere
model are expressed in [12].

The right side of Figure 1 shows the interpretation of the
transformations defined by the approach after the
transformations have been studied for the implementation.

Process Model Concept Model

Concept A

Concept B

b1

b2External Process 2

External Process 1

Internal Process

Data Flow A : Concept A

Data Flow B : Concept B

Communication

Diagram

Data Flow A:Concept A

Data Flow B:Concept B

Class Diagram

Class A

external_process1()

Class B

b1

b2

internal_process()

external_process_1()

internal_process()

external_process_2()

Class Diagram

Class A

external_process1()

Class B

b1

b2

internal_process()

Process Model Concept Model

Concept A

Concept B

b1

b2External Process 2

External Process 1

Internal Process

Data Flow A : Concept A

Data Flow B : Concept B

G1 G2

G3

G4

G1 G2

G4

Figure 1. Interpretation of the transformations from two-hemisphere model to the UML class diagram.

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 80 / 729

Therefore, the left side of Figure 1 shows the
transformations defined by the approach of the theoretical
investigation of the sharing responsibilities among objects
and the right side of Figure 1 shows the situation as it is
simplified for tool development. The elements of the
business process model are transformed into the UML class
diagram directly. The edges of the business process model
became the nodes of the UML class diagram. The nodes of
the business process model became the methods of the
classes, which were the outgoing data flows of the exact
business process.

The analysis of different situations, which may appear in
drawing the process model, i.e., a number of incoming and
outgoing data flows, a variety of their types and so on, has
given a possibility to define various transformation cases
depending on the number of input and output processes and
cardinality (a set of different concepts assigned to a certain
data flow). These transformation cases are implemented
according to the definition of relationships between
generated classes, which are expressed in [13].

IV. IMPLEMENTATION OF TWO-HEMISPHERE MODEL IN

BRAINTOOL

The goal of the prototype tool implementation in 2008
[12] was to examine the efficiency of the proposed method
and to confirm that transformations offered by the two-
hemisphere model driven approach can be automated. The
current version of the implementation of the two-hemisphere
model driven approach can be stated as a standalone tool
entitled BrainTool in correspondence with the title of the

approach, which in turn is derived from cognitive
psychology [17] by analogy with human brain consisting of
two interrelated hemispheres.

According to [10], a modern trend in system modeling
tools is having the components to implement a model editor,
a repository, its validation and transformation to another
model. BrainTool gives a possibility to create the two-
hemisphere model, to save it in the defined repository, to
apply all the defined transformations for generation of the
UML diagram and to export it in XMI format.

The Model Editor is a part of the tool providing model
creation and modification possibilities. Model Repository is
the "database" for models, where they are stored. The
Transformation Definition Editor is used for transformation
definition construction and modification. Currently, the
Python interpreter is being used to support this component.
However, it is possible to define the transformation in any
programming language.

Finally, The Model Validator is a component used to
check if the model is well-enough defined and has no
potential problems that can affect the transformation result.
This component is implemented as a standalone
transformation using the Python programming language. The
next subsections describe the main components of BrainTool
and technical solutions for their implementation in detail.

A. Model Editor

The two-hemisphere model can be designed and then
transformed using BrainTool model editor shown in Figure
2.

Figure 2. Model editor view in BrainTool.

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 81 / 729

The screen of BrainTool is divided into three parts. The
information panel (highlighted as H in Figure 2 on the left
side of the screenshot) shows the list of elements defined by
the two-hemisphere model, where panel (A) provides basic
information on the currently selected element.

The central part is divided into three drawing frames –
the process model (I), the concept model (J) and the resulting
class diagram (F). Any element of the two-hemisphere model
can be entitled (highlighted as B for processes and D for
attributes in Figure 2) or commented (C). The tree view of all
objects defined in all models (including the resulting model)
is shown in the right part of the screen shot under the letter E
in Figure 2. The diagram elements causing transformation
problems are listed at the bottom of the screen (G). Such
problematic elements are also highlighted in the model
perspective.

The simplified version of the business process for the
driving school is reflected in Figure 3, where the process
model is presented on the top side and the model of
conceptual classes (so called concept model) is presented on
the bottom side of the figure, which presently is the screen
shot from BrainTool.

B. Transformation Definition

According to the transformation definition – a
transformation is the automatic generation of a target model
from a source model [10]. In the case of BrainTool, the
source model is presented as a two-hemisphere model
consisting of the process diagram, a set of concepts and
concepts assigned to data flows. The target is the UML class
diagram, which is a set of classes, class methods, class
attributes, interfaces and relationships between classes and
interfaces. The first transformation task is to generate classes
of the resulting UML class model. Classes are created from
concepts and retain their attributes. Cardinalities (number of
different concepts linked to separate data flows) of process'
inputs and outputs are used to determine different types of
the relationships between classes in the UML class diagram.

For example, outgoing multiple data flows assigned to
the same concept give an ability to define the generalization.
The transformation rules give a possibility also to define
aggregation, dependency or at least simple association. The
following high-level pseudocode expresses the idea of the
transformation for class creation:

Figure 3. Two-hemisphere model of a driving school.

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 82 / 729

Processes from the process model become the class

methods as a result of the transformation expressed in such
pseudocode fragment:

The method assignment to classes allows to also define
interfaces and realization relationships in the UML class
diagram. So, as a result, the target model consists of classes
with methods and attributes, interfaces with methods and
five kinds of relationships: generalization, dependency,
aggregation, association and realization. An example of
generated UML class diagram for the problem domain of a
driving school described in Section 4.1 is shown in Figure 4.

C. Export of the UML Class Diagram to the UML

Compliant Tool

After elements of the two-hemisphere model are
transformed into the class diagram, BrainTool gives the
possibility to export it in XMI format to be later used in other
UML editor or code generators that are able to import UML
class diagrams in XMI format. Currently, most UML
compatible tools use their own modifications of the XMI
format and a developer cannot be sure about the result of
import/export [18]. Therefore, the authors were forced to
adjust the exported XMI for the requirements of a specific
corresponding tool. The Sparx Enterprise Architect [19] is
selected for the experiment, and the result of the
implemented chain is shown in Figure 5. It is not a problem
to define the elements of the UML class diagram according
to the specific requirements for import in any other UML
tool.

Figure 4. Resulting UML class model for driving school.

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 83 / 729

Figure 5. Export to SPARX Enterprise Architect.

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 84 / 729

D. Model Validator

The two-hemisphere model driven approach has several
limitations in definition of the UML class diagram. They are
expressed in several combinations of incoming and outgoing
data flows of certain process. In this case, BrainTool
highlights the problematic process in the two-hemisphere
model and the potential owner in the UML class diagram.

The modeler is then required to create the sub-process
diagram for the highlighted process, as it is shown in Figure
6.

The problematic process is being detailed in the
following manner:
A – identify the problem.
B – receive the working area for creation of sub-process
diagram
C – create sub-process diagram.
D – confirm sub-process diagram.
E – transfer sub-process diagram into main model.

For example, if there are at least two data flows outgoing

from the process, which are typified by different conceptual
classes and are differently typified from incoming data
flows, the two-hemisphere model driven approach offers to
refine the problematic process by dividing it into sub-
processes. In order to support these treatments BrainTool
gives the possibility to validate the two-hemisphere model
developed by the modeler and to define processes, which do
not give the clear ability to define a corresponding method's
owner for the UML class diagram.

What is more the preliminary structure of the sub-process
diagram already contains the incoming and outgoing
information flows derived from the main model and the
concerned external processes. The modeler is asked to divide
the problematic process into a number of separated sub-
processes and to define outgoing information flows more
precisely (see area B in Figure 6).

Figure 6. Model validation for the necessity to define the sub-process diagram.

67Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 85 / 729

V. CONCLUSION

Nowadays, the usage of model transformations has
become a widespread practice and tools supporting such
transformations have become increasingly popular. The main
goal of the research presented in this paper was to implement
a tool, which can generate the UML class diagram from the
initial presentation of problem domain. BrainTool gives a
possibility to automatically generate the UML class diagram
and to export it to any UML compliant modeling
environment supporting the XMI [20] format for model
interchange. Due to the fact that modern modeling tools use
their own variations for model interchange, the authors this
time have chosen SPARX Enterprise Architect for
integration with BrainTool in XMI import domain and have
tuned the output of BrainTool suitable to import it into
SPARX Enterprise Architect. The wide use of the unified
standard for model interchange in modeling tools will
increase the number of tools that can be integrated with
BrainTool.

When the essence of the transformation from the source
model to the target model is clearly defined, the creation of a
tool supporting such a transformation becomes a
programming task and it can be solved in two ways. The first
way is to use a special transformation language and
environments supporting model-driven software
development. Another way, which was applied by authors of
this paper, is to use general purpose programming languages
for regular software implementation and consider the task of
developing such a tool as a software development task. The
tool specification, including description of the required use
cases, was defined.

The definition of source and target models was used to
define corresponding data structures; transformation
definition was automated using a scripting language. As a
result, the authors have implemented a tool that supports
creation, editing and validation of the two-hemisphere model
and its transformation into the UML class model, where the
generated class diagram can further be imported into some
UML editor or code generator.

Despite the successful project and the expected result of
having a working tool, which enables to draw the initial
information about problem domain in the form of the two-
hemisphere model and to generate from it the UML class
diagram, several problems are left unresolved. One of these
problems is a cross-tool model exchange. Various modeling
tools support XMI export and import, but, unfortunately, in
most cases, the tool defines its own XMI-based format and
thus common model interchange standard needs to be
defined and implemented. As for BrainTool, the problem
was temporarily solved by choosing one concrete tool,
namely, Sparx Enterprise Architect, and adjusting the
exported XMI schema in correspondence with its
requirements.

Another unresolved problem is the layout of the
generated diagram. There is no complete algorithm for
automatic layout of the UML class diagram, therefore for
now BrainTool requires manual layout of the resulting UML
class diagram. However, this problem is not tool-specific and

the layout algorithm can be integrated with BrainTool at any
moment.

The main contributions of the research in comparison
with authors’ previous papers in the area are as follows:

1) BrainTool has a standalone modeling editor for the

two-hemisphere model. We improved the lack of supporting

software prototypes developed in 2008, which required

import of text files describing the elements of the model.

2) A set of transformations for identification of the

elements of the UML class diagram from the two-

hemisphere model was refined during the programming to

simplify the transition from processed in the process model

into operations in classes. Several corrections of the

transformation for relationships identification were made

during implementation. The approach was improved by the

implementation of transformations into the tool.

3) BrainTool has its own model validator, which had

not been implemented in the software prototype. It allows

identifying processes needed to be refined to complete

transformations. This ability gave authors a base for further

research of transformation capacity from the two-

hemisphere model.

4) An import of the developed UML class diagram into

the UML compatible tools bridges the gap between

computation independent modeling of the system and

software components could be generated from the UML

class diagram.
Within the development process, several new

possibilities of two-hemisphere approach were investigated.
Authors believe that current transformation rules can be
improved in order to reduce the number of limitations
currently existing in the two-hemisphere model driven
approach, to generate a more precise UML class model and
more complete set of the class diagram elements for further
using this model for code generation. In turn, several new
facilities of code generation directly from the two-
hemisphere model were also stated.

Authors' future work will be focused on the
implementation of a refined version of BrainTool with
respect to creation of two-hemisphere model of BrainTool
itself and generating the UML class diagram for its
development. We expect interesting results in comparison of
the UML class diagram “as is” in the current version of
BrainTool with the one generated by the tool.

ACKNOWLEDGMENT

The research presented in the paper is partly supported by
Grant of Latvian Council of Science No. 09.1245 "Methods,
models and tools for developing and governance of agile
information systems".

The travel costs and participation fee to conference was
supported by the European Regional Development Fund
project «Development of international cooperation projects
and capacity in science and technology Riga Technical
University», Nr. 2DP/2.1.1.2.0/10/APIA/VIAA/003

68Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 86 / 729

REFERENCES

[1] K.Vollmer, C. Richardson, and C. Clair, “The importance of
matching BPM tools to the process,” 2010. Available at:
http://www.forrester.com/ (last access in March, 2012).

[2] T. Stahl and M. Volter, “Model-Driven Software
Development,” Wiley & Sons, 2006.

[3] OMG “UML Unified Modeling Language Specification”.
2011. Retrieved from: http://www.omg.org (last access in
March, 2012).

[4] P. Rittgen, “Quality and perceived usefulness of process
models,” 25th Symposium On Applied Computing. ACM,
2010, pp. 65-72.

[5] Website of BrainTool. Available at http://brain-tool.org/ (last
access in March, 2012).

[6] O. Nikiforova and M. Kirikova, “Two-Hemisphere Model
Driven Approach: Engineering Based Software
Development,” CAiSE 2004 16th International Conference on
Advanced Information Systems Engineering June 7-11,
Proceedings, 2004, pp. 219-233. Riga, Latvia.

[7] R. Balzer, “A 15 year perspective on automatic
programming,” IEEE Transactions on Software Engineering,
11 (No 11), 1985, pp. 1257-1268.

[8] J. Krogstie, “Integrating enterprise and IS development using
a model driven approach,” 13th International Conference on
Information Systems Development – Advances in Theory,
Practice and Education. Vasilecas O. et al. (Eds). 2005.
Springer Science+Business media, Inc. pp.43-53.

[9] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, “MDA Distilled.
Principles of Model-Driven Architecture,” Addison-Wesley,
2004.

[10] A. Kleppe, J. Warmer, and W. Bast, “MDA Explained: The
Model Driven Architecture – Practise and Promise,” Addison-
Wesley, 2003.

[11] G. Loniewski, E. Insfran, and S. Abrahao, “A Systematic
Review of the Use of Requirements Techniques in Model-
Driven Development,” 13th Conference, MODELS 2010,
Model Driven Engineering Languages and Systems, Part II,
Oslo, Norway, 2010, pp. 213—227.

[12] O. Nikiforova and N. Pavlova, “Development of the Tool for
Generation of UML Class Diagram from Two-Hemisphere
Model,” Proceedings of The Third International Conference
on Software Engineering Advances (ICSEA), International
Workshop on Enterprise Information Systems (ENTISY).
Mannaert H., Dini P., Ohta T., Pellerin R. (Eds.), Published
by IEEE Computer Society, Conference Proceedings Services
(CPS), 2008, pp. 105-112.

[13] O. Nikiforova and N. Pavlova, “Foundations on generation of
relationships between classes based on initial business
knowledge,” Information Systems Development: Towards a
Service Provision Society. Springer US, 2009, pp. 289–297.

[14] O.Nikiforova, “Object Interaction as a Central Component of
Object-Oriented System Analysis,” International Conference
„Evaluation of Novel Approaches to Software Engineering”
(ENASE 2010), Proceedings of the 2nd International
Workshop „Model Driven Architecture and Modeling Theory
Driven Development” (MDA&MTDD 2010), Osis J.,
Nikiforova O. (Eds.), Greece, 2010, pp. 3-12. SciTePress.

[15] H. Peyret and D. Miers, “The Shifting Market For Business
Process Analysis Tools,” Forester research, 2010.

[16] W. M. P. van der Aalst, “Trends in business process analysis:
From validation to process mining,” International Conference
on Enterprise Information Systems, 2007.

[17] J. Anderson, “Cognitive psychology and its implications,”
W.H. Freeman and Company, New York, 1995.

[18] O.Nikiforova, N. Pavlova, A. Cernickins, and T. Jakona,
“Certification of Model-Driven Architecture Tools: Vision
and Application,” Proceedings of the ICSEA 2011 - The Sixth
International Conference on Software Engineering Advances.
Lavazza L. et al (eds.), IARIA ©, Barcelona, Spain, October
23-29, 2011, pp. 393-398.

[19] Sparx, 2012. Sparx Enterprise Architect. Official page of
Sparx Enterprise Architect tool. Available at:
http://www.sparxsystems.com (last access in March, 2012).

[20] Information Technology, 2005. XML Metadata Interchange
(XMI), International Standard ISO/IEC 19503:2005(E),
ISO/IEC.

69Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 87 / 729

Decoupled Model-Based Elicitation of Stakeholder Scenarios

Gregor Gabrysiak, Regina Hebig, and Holger Giese
Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

{gregor.gabrysiak|regina.hebig|holger.giese}@hpi.uni-potsdam.de

Abstract— Requirements engineers iteratively elicit scenarios
by capturing and combining individual stakeholder perspec-
tives into a consistent overall scenario model. This model has
to be validated to exclude elicitation errors and check whether
all alternatives are covered. While involving all stakeholders at
once is considered beneficial, it is usually not feasible due to
scheduling and resource constraints. Consequently, techniques
that permit all stakeholders to be involved in the elicitation
and validation independently, i.e., temporally and locally de-
coupled, are required. In this paper, we present an approach
that enables stakeholders to participate in the elicitation of
their collaborative scenarios remotely and decoupled from
other stakeholders. The resulting fragmentation of the elicited
scenarios is overcome by allowing stakeholders to express their
expectation on how a scenario is usually complemented by
activities of other stakeholders. Our approach systematically
combines these decoupled perspectives to establish the overall
scenario model.

Keywords-decoupled requirements elicitation; scenario synthe-
sis; incomplete scenarios.

I. INTRODUCTION

A requirements engineer gets people to tell the stories
of what their systems are meant to do, as pointed out
by Alexander and Maiden [2]. For complex systems with
multiple, collaborating stakeholder groups, a requirements
engineer needs to listen to all of their stories and to synthe-
size these stories into suitable scenario models. Among other
aspects, these scenarios have to capture how the involved
stakeholders interact to achieve their common goals.

The requirements engineers start by eliciting scenarios
from individual stakeholder perspectives. After combining
these separate scenarios into a consistent overall scenario
model, they validate this model to exclude elicitation errors
and check whether they covered all alternatives. Then,
these initial activities continue iteratively with additional
elicitation activities, updates of the scenario model, and
subsequent validation activities until the result stabilizes.
The overall scenario model is the crucial element to ensure
that a consistent understanding of the different stakeholder
perspectives can be established.

The elicitation and validation of such scenarios requires
less effort if all stakeholders are involved simultaneously.
By directly commenting on whether they agree with the
statements of other stakeholders, the requirements engineer
might obtain a commonly agreed-upon scenario model di-
rectly within an elicitation session [15]. However, due to

scheduling and resource constraints such a setting is usually
not feasible, if not less efficient compared to elicitations with
individual stakeholders [17]. Also, experience shows that in
case of group meetings social effects can result in suppress-
ing opinions and observations of stakeholders positioned
lower in the hierarchy. Furthermore, the stakeholders who
participate are sometimes chosen based on who is noncritical
for the daily work to continue without interruptions [1]. To
limit such effects, techniques that permit all stakeholders
to be involved in the elicitation, consistency, and validation
without the necessity to be present in person at the same
location and at the same time are required.

In our former work we developed a model-based approach
[9]. After initial elicitation interviews, an overall scenario
model is set up and can be validated by stakeholders in
an interactive simulation (play-out, cf. [12]). Stakeholders
can complement each other’s activities through refinement
or playing in additional activities, which result in consistent
model updates. Still, the initial elicitation of new scenarios
remained a problem. Since the simulator cannot know how
to react if no suitable response was observed before, stake-
holders run into dead ends during their elicitation sessions
(referred to as stalemates). Arrange a meeting of all involved
stakeholders to elicit the new scenarios in one simulation
session is a complex, time-consuming solution. If this is
not feasible, the only alternative is to perform multiple
simulation sessions with individual stakeholders. To play-
in her parts of one scenario, a stakeholder is enforced to
participate in multiple sessions, waiting in-between for other
stakeholders to play-in their continuations for the scenario.
Especially for stakeholders playing coordinating roles, this
can lead to numerous sessions.

In this paper, we present an extension of the simulation
approach, that overcomes this challenge and can reduce the
number of necessary sessions. Therefore, we use the simula-
tor’s property to not capture scenarios in an explicit process
view, but in form of reachable states and possible transitions
between them. The idea is to empower stakeholders to
explicitly express the responses they usually expect when
interacting with other stakeholders in form of partial states.
Based on a partial state, a stakeholder can continue playing-
in her parts of the scenario, without requiring additional
elicitation sessions. The extension of the simulator is able
to recognize the fulfillment of such expectations, thus, iden-

70Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 88 / 729

Role

Artifact

Boat Notifier Communications
OperativeBoatman

ArtifactState

Overturned
State

isIn

isAt

isAt

Communications OverturnedBoat
Notification

sender

receiver

isOn

Location
next

WalkieTalkie
Message

GoTo
Message

EstimatedArrival
Message

Successful
RescueMessage

RescueFailed
Message

LowOnFuel
Message

Figure 1. (Abridged) ontology DW elicited from a lifeguard service

tifying a suitable continuation of incomplete interactions.
Consequently, the results of multiple simulation sessions can
be combined automatically.

The paper is structured as follows: At first, we present
our model-based approach for the validation, additional
elicitation and model update of scenario models and discuss
its limits in Section II. Based on practical examples elicited
from a lifeguard service, we discuss our approach on how
stakeholders can describe their expected continuations by
simply answering three questions, thereby overcoming these
limitations in Section III. Then, two different types of
triggers are presented in Section IV. Section V explains
how such triggers are fulfilled and how the overall scenarios
can be synthesized automatically. The paper closes with a
discussion of related work in Section VI and a conclusion.

II. MODEL-BASED REQUIREMENTS VALIDATION

Requirements engineers can hope to solve the stakehold-
ers’ problems only if they capture the concepts of the
stakeholders’ domain correctly [4]. This can be achieved
by a domain ontology D, which is gathered by the re-
quirements engineers similar to a glossary of commonly
agreed upon definitions of concepts. By collecting all con-
cepts of the domain under investigation, the requirements
engineers obtain a model suitable to describe scenarios
in that domain. Similar to Artifact Models [3], D also
captures how these concepts relate to each other. As outlined
in [7], a domain ontology D contains the roles involved
and identified from their scenarios, the artifacts that they
use, and the specific information that they share. For our
example, Figure 1 illustrates the abridged version DW of
the domain ontology elicited from a lifeguard service. In this
example, the communication between a bystander notifying
the lifeguards (referred to as Notifier) about an emergency,
the corresponding communications operative (ComOp), and
a boatman are elicited.

Kühne [14] argues, that metamodels such as D specify a
language that can be used to describe instance situations.
Thus, DW provides a language for describing states as
they can be observed during the scenarios of the lifeguards.

someBoat
:Boat a:Location b:Location d:Location

:Notifier :Communications
Operative

c:Location

:Overturned
State :Boatman lifeGuard

:Boat

isAt

isAt isAt

isOn

isIn isAt

Figure 2. An initial state sinit of the lifeguard service scenarios

Figure 3. An example of a workplace visualization that allows stakeholders
to interact with other, simulated roles to validate their interactions [6]

Similar to a Unified Modeling Language (UML) Class Di-
agram, DW prescribes all possible states of the scenarios.
States, in turn, can be specified using UML Object Dia-
grams. Such a state is illustrated in Figure 2. It is also
the initial state sinit referred to in the sequence diagrams
throughout the paper. In the following, all state labels
in sequence diagrams refer to complete or partial states
represented by such object diagrams.

Based on the idea of Harel and Marelly’s play-out [12],
our approach includes a simulator, which is able to play-out
behavioral specifications to simulate the behavior observed
beforehand from specific stakeholders. This simulator allows
participating stakeholders to experience interactions with
other stakeholders who are not participating in the same
simulation session. Our simulator [9] decouples these inter-
actions temporally by replaying them using the specifications
to complement activities of participating stakeholders and,
thus, allows stakeholders to validate each other’s behavior
without having to be in the same session or the same room.

Each stakeholder participating in our simulation has an
individual interactive visualization (Figure 3, cf. [6]) of their
distinct perspective on the current state of the simulation.
Depending on the considered domain, different concepts are
visible at different points in time. In case of the lifeguards,
boats can only be seen if the stakeholder is at the same
location (cf. Figure 1). The same holds for different artifacts
or even other stakeholders. Thus, what has to be visualized
to reproduce a distinct stakeholder’s individual perspective
is domain-specific. However, the requirements engineers can
prototype what has to be shown to quickly get the details
right. Then, the same rules usually apply for all stakeholders.

By using the visualization to interact with the simula-
tion, participating stakeholders can change the state of the
simulation according to what they would normally do in
a corresponding situation, e.g., a boatman might move on
to the next location or upturn an overturned boat. This
visualization allows stakeholders to play through scenarios
by interacting either directly with their colleagues or with
roles that are simulated based on prior observations. In a
related experiment, the state visualization has been evaluated
successfully [8]. Thus, the play-out enables stakeholders to
validate what has been observed and captured so far.

71Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 89 / 729

someBoat
:Boat a:Location

this
:Notifier

:Overturned
State

:Communications
Operative

isIn

isAt

isAt

++sender

++receiver
:OverturnedBoat

Notification

(a) Notifying the life guard service (b) Going to the next location

:Location :Location

--isAt

this
:Boatman

lifeGuard
:Boat isOn

++isAt

next

Figure 4. Story patterns of a Notifier informing a CommunicationsOp-
erative about an overturned boat he sees (a) and of a Boatman going from
one location to the next (b)

After stakeholders have played through one of the valid
scenarios, all states observed in-between their initial state
sinit and the final state describe the activities of individual
stakeholders and how they interacted. To formally capture
what happened between succeeding states, our approach
relies on graph transformations (specifically story patterns).
Graph transformations, as described by Heckel [13], consist
of a precondition and a postcondition. Similar to an object
diagram, the precondition is a structural specification. If
a state contains an exact match for the precondition of a
story pattern, the matching elements are restructured through
the addition or deletion of the corresponding elements
and associations to match the story pattern’s postcondition,
which is also a structural specification. In story patterns, the
elements that need to change are color-coded. Additions,
i.e., instances and associations which have to be added, are
marked using green and “++”, while “– –” in red indicates
removals. For example, Figure 4 illustrates a Notifier noti-
fying a ComOp (a) and a Boatman changing locations (b).

By observing scenarios, i.e., sequences of states, the
simulator can automatically derive story patterns based on
the changes between two succeeding states. Each story
pattern is then assigned to a specific role, i.e., to the one
represented by the stakeholder, who was observed executing
the behavior that changed the state of the simulation. In each
story pattern, the instance of the specific role it belongs to
is named this (cf. Figure 4).

As mentioned before, each stakeholder participating in a
simulation has a unique perspective on a state si during a
simulation session. After each activity of another role, the
stakeholder might be affected by the result. Still, only some
of these activities and their results are even visible to the role
that this stakeholder represents. Consequently, every time a
stakeholder participating in the simulation is affected by a
change of the current state of the simulation, e.g., when a
boat arrives at his location or an artifact is brought to his
attention, this change has to be reflected in the stakeholder’s
visualization. This visualization illustrates the current state
si of the simulation reduced to what a stakeholder’s role
is able to perceive. We refer to the reduction of a state si
to what is visible for a role RoleT as projection. Thus, a
partial state si|RoleT can be derived from a state si using
the visibility information, which apply for a domain while
si|RoleT ⊆ si has to hold. Per default, si|RoleT contains
an instance of RoleT itself as well as all artifacts and
information this role has access to in si.

Lo
ca

l C
ha

ng
es

 fo
r N

ot
ifie

r

:Communications
Operative:Notifier

?
?

sinit

sm

sm|Notifiers'

What has to happen next?
> After [you (Notifier)]
 sent [OverturnedBoatNotification]
 to [CommunicationsOperative] ...

> [Communications Operative]
 sends [EstimatedArrivalMessage]
 to [you (Notifier)]

(unknown sequence of activities and
interactions between other roles)

Lo
ca

l C
ha

ng
es

 fo
r N

ot
ifie

r

s m
| N
ot
ifi
er

s m
| N
ot
ifi
er

s'

OverturnedBoatNotification

EstimatedArrival

Message

Figure 5. While the Notifier knows how she informs the ComOp (green),
she does not know how the ComOp continues this scenario (gray); still,
the Notifier can validate his expectations, i.e., how he is affected (yellow),
in a natural language representation (right)

To allow stakeholders to comment on story patterns or
describe what they can perceive or expect directly, the
underlying object diagrams offer a Natural Language rep-
resentation that is easier to understand for stakeholders as
illustrated in Figure 5.

Based on stakeholder observations of what they do and
how they do it, the story patterns derived from these ob-
servations can be used to replay and simulate the behavior
observed from the individual stakeholders. This, in turn,
enables the simulator to employ strategies to simulate other
stakeholders and, thus, to steer the simulation into conflicting
or unresolved states. Consequently, stakeholders can validate
the behavior of other stakeholders by either agreeing to it or
pointing out errors. Through the simulation of other roles,
it becomes unnecessary to get all interacting stakeholders
together in one room at the same time. Attending the simula-
tion does not even require the attendees to be at the same lo-
cation, since the visualization is web-based and, thus, allows
for remote sessions [6]. Since the stakeholders can play-in
incomplete scenarios, which can then be used to simulate
them during simulation sessions with other stakeholders, the
simulator also decouples the stakeholders temporally. By
providing a model-based validation for behavioral models
describing collaborative scenarios, our simulator tries to
solve the problem of elicitation and validation for complex
systems with multiple collaborating stakeholders.

If a stakeholder is observed starting an alternative scenario
the simulator cannot respond appropriately, i.e., cannot offer
any reasonable continuations. Since no behavior is available
that completes this unknown situation, the requirements
engineers have to talk to other stakeholders first to get
to know a reasonable continuation for this scenario. Still,
the remainder of the scenario might be unknown as well.
Consequently, in the worst case, the requirements engineers
have to go back and forth between different stakeholders to
complete this scenario. In the worst case, to elicit a simple
scenario between two stakeholders, each of them might have
to be interviewed once for each interaction they have.

III. APPROACH: CHANGES IN PARTIAL STATES

As illustrated in Figure 6, the requirements engineers have
to deal with individual perspectives as well as handovers. It

72Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 90 / 729

:Boatman
:Communications

Operative

:Communications
Operative :Boatman

: Notifier
:Communications

Operative

?

Estimated Arrival
Message

Overturned Boat
Notification

?

Figure 6. The scenario on the left (a Notifier calling in an emergency)
is incomplete and the Notifier cannot know, which of the possible contin-
uations (right) will occur

TABLE I
BY ANSWERING THESE QUESTIONS, STAKEHOLDERS DESCRIBE, WHICH

INTERACTIONS USUALLY OCCUR AND HOW THEY END

Question for Stakeholder Answer of Notifier Named
Q1 Who did you interact with? CommunicationsOperative RoleReq

Q2 Who, if not [RoleReq], do
you expect to get an answer
from?

CommunicationsOperative
(default: RoleReq)

RoleResp

Q3 How are you affected by
the outcome? What do you
expect [to get]?

“An Estimated Arrival
Message is sent to me”

s′m|RoleT

happens quite often, that a stakeholder RoleT telling his
story cannot continue after he hands over a critical artifact,
requests information or starts any other form of interaction
with another stakeholder RoleReq . Since RoleT does not
know what Desai et al. [5] refer to as local and usually
private policies, which dictate how RoleReq acts or reacts
in a specific situation, we can never be completely sure
what happens. We refer to such a potential dead end during
the elicitation as a stalemate – without information on how
another role continues the scenario, requirements engineers
and the stakeholder can only guess what happens next.

Generally, a stalemate can only be overcome if the
requirements engineers gather the other side of the story.
Similar to a black box, we can only assume how RoleReq

continues after being triggered. Still, while RoleReq’s ac-
tions are not yet known, RoleT can describe most of the
possible outcomes, i.e., how he is affected by the result,
based on experience. Similar to a jigsaw puzzle, many pieces
of information exist, however, only few of them are required
to complete individual scenarios. Thus, it is essential that
individual stakeholders do not give up at the first stalemate,
but are able to continue to describe their expectation(s) as
well as their follow-up actions. Even if a stalemate occurs
during an elicitation of a scenario, a stakeholder can still
answer the questions in Table I.

Q1 provides the requirements engineers with the informa-
tion of who to talk to next to complete the scenario. Only
a stakeholder identified as role RoleReq , i.e., someone who
usually receives RoleT ’s request, knows how to continue.
For the Notifier, this would be the CommunicationsOperative
(ComOp) who he notifies about an emergency (Figure 6).
After this operative passed on the information, the Notifier
expects to hear from her again – consequently, the Q2 would

be answered the same. Still, in other cases, the person being
interacted with is not the one who responds. To be able
to distinguish between different responses from different
stakeholders, Q2 provides information on who else might
provide a response RoleT expects.

The simulation has a specific state sm, in which the
stalemate occurred. In this state, an interaction has been
started that results in a change for RoleT – although he
does not know how anyone else might be affected as a side
effect, the stakeholder can still describe what changes for
him (Q3). Since stakeholders can only describe changes
that affect them directly and that are visible for them,
the expectation can only be a partial state based on the
perspective of an individual stakeholder. In the example
provided in Table I, the Notifier expects to receive an
estimation on when someone will arrive. Thus, using the
vocabulary already established as part of the domain model
DW , this expectation can be described explicitly.

IV. EXPECTATION TRIGGERS & FOLLOW-UP ACTIONS

We define an expectation as the partial state a role expects
to perceive between a pair of states sm and s′m. Since a
single stakeholder cannot know how the overall state of all
stakeholders changed in-between, he can only specify his
perspectives of the respective states. Thus, in case of the No-
tifier, he expects sm|Notifier and s′m|Notifier to be identical,
except that he has to receive an EstimatedArrivalMessage
from a CommunicationsOperative. Whether a boat already
departed to his location or whether another emergency hap-
pened somewhere else is unknown to the Notifier, as long as
none of those things are visible to him. The expected follow-
up state can be represented and described in different ways to
be suitable for stakeholders. While Figure 7 (right) illustrates
it as a partial state in an object diagram, Figure 5 (right)
presents a natural language representation that can easily
be understood and modified: [CommunicationsOperative]
sends [EstimatedArrivalMessage] to [you (Notifier)].

In Section III, a stalemate sm occurred and the partic-
ipating stakeholder representing a Notifier was asked to
verbalize his expectations on how another stakeholder he
interacted with might respond or, more generally, how his
context might change. From his answers to the questions in
Table I, a trigger for the other stakeholder can be generated.
A trigger is a tuple (ssm, RoleT , RoleReq, RoleResp,
s′sm|RoleT). It contains the stalemate state ssm as it occurred
during the simulation. Further, the role of the participant
who defined the trigger (RoleT) is included. Additionally,
to resolve the trigger, it is essential to know, which role
is expected to continue the scenario and which role di-
rectly interacts with RoleT next (RoleReq and RoleResp,
respectively). Finally, the partial state s′sm|RoleT that RoleT
expects to observe afterwards is included as well. Based
on the answers of Notifier in Section III, the resulting

73Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 91 / 729

someBoat
:Boat

a:Location b:Location d:Location

:Notifier :Communications
Operative

c:Location

:Overturned
State

:Boatman lifeGuard
:Boat

isAt

isAt isAt

isOn

isIn

isAt

sender receiver
:OverturnedBoat

Notification

t1

:Notifier

:Communications
Operative

sender

receiver

:EstimatedArrival
Message

?

?

?

?
?

?

?

Figure 7. Based on sm (left, Notifier’s visibility is highlighted in blue),
the Notifier can describe changes he expects as a partial state s′m|Notifier

(right) in DW ’s vocabulary, leading to trigger t1

:Location

:Notifier

this:Communications
Operative

:Boatman

isAt

--sender

--receiver

:Estimated
ArrivalMessage

++sender
++receiver :Estimated

ArrivalMessage

?

?
?
?

?

?

?

isAt

isAt

isIn

:Notifier

someBoat
:Boat

a:Location

:Overturned
State

lifeGuard
:Boat:Boatman

isAt

isOn

(a) Story pattern x based on follow-up
action f1

(b) Eventually, the Notifier expects a lifeguard
boat to arrive at his location

Figure 8. While the ComOp defines a follow-up action f1, which leads
to story pattern x (a), the Notifier expects to see a lifeguard boat (b).

trigger would be t1 =(sm, Notifier , ComOp, ComOp,
s′m|Notifier), as illustrated in Figure 7.

A. Triggers and Alternatives
After the ComOp’s GoTo message sending a Boat-

man to another location in response to the noti-
fication, ComOp expects that the Boatman responds
with an EstimatedArrivalTime as prescribed by their
protocol. Consequently, the ComOp defines a trigger
t2 = (sn,ComOp,Boatman,Boatman, s′n|ComOp) expect-
ing this message. While the ComOp might usually get an
EstimatedArrival message, she might also be confronted
with a LowOnFuel message, indicating that the boat needs
to refuel first (Figure 9). Of course, the ComOp knows that
all boats are fueled up at the beginning of each weekend.
However, she does not know how much gas each boat may
have left after several hours of service – an information
only available to each respective Boatman. Thus, although
a ComOp knows both possible outcomes, she cannot know,
which one she will be confronted with, since she has no
access to the information required for this decision.

From sn, as for most stalemates, multiple continuations
are possible from ComOp’s point of view. Consequently,
the LowOnFuel alternative can re-use sn and is defined as
trigger t3 = (sn,ComOp,Boatman,Boatman, s′′n|ComOp)
(cf. Figure 9).

B. Follow-Up Actions
A follow-up action f is an activity of a role, which

is expected to apply if a specific precondition is fulfilled.
It is characterized by a pair of states, the first being a
precondition (sF |RoleT), which has to be fulfilled to execute
the changes specified in the second (s′F |RoleT). As sketched
in Table II, a follow-up action is the answer on how a
role would continue after a stalemate has been overcome,

alt

:Communications
Operative :Boatman

What has to happen next?
> When [you (CommunicationsOperative)]
 sent [GoToMessage] to [Boatman] ...

> [you (CommunicationsOperative)]
 receive [EstimatedArrivalMessage]
 from [Boatman]

Expectation 1

> [you (CommunicationsOperative)]
 receive [LowOnFuelMessage]
 from [Boatman]

Expectation 2

sm

sn
?

GoToMessage

EstimatedArrival
Message

?

LowOnFuel
Message

?

sn|ComOp '

sn|ComOp ''

Figure 9. Both expectations on how a Boatman may react to a GoTo
message as experienced before and, thus, expected by a ComOp

TABLE II
BY ANSWERING THESE QUESTIONS, A STAKEHOLDER SPECIFIES A

DISTINCT STATE AND HOW HE OR SHE FOLLOWS UP ON IT

Question for Stakeholder Answer of ComOp Named
QA When do you become

active?
“After the Boatman
sent me an Estimated-
ArrivalMessage”

sF |RoleT

QB How do you continue af-
ter [sF |RoleT]?

“I send the Notifier an
EstimatedArrivalMes-
sage”

s′F |RoleT

i.e., after the expectation has been fulfilled. After ComOp’s
expectations have been captured in t2, the participating
stakeholder can still describe how she as a ComOp would
continue after her expectation (s′n|ComOp) is fulfilled. Con-
sequently, s′n|ComOp is presented to the stakeholder, either
in an interactive visualization or in a textual representation.
Based on this perspective, the stakeholder is able to specify
the differences that her follow-up actions result in. In our
example, the answer would be: “I send the Notifier an
EstimatedArrivalMessage” (s′′′n |ComOp, cf. Table II). Since
the trigger has to be resolved for the stakeholder to follow
up, the current state of the simulation needs to match the
postcondition of the trigger. Thus, the postcondition of this
trigger can be used as the precondition of the follow-up
action. Combined with the follow-up state, this leads to the
follow-up action f1 = (s′n|ComOp, s

′′′
n |ComOp). Similar to a

pair of complete states, these two partial states can be used
to derive a story pattern x (Figure 8a), which captures what
the ComOp wants to achieve from her perspective.

In case of the ComOp, the precondition was already de-
fined and was reused. If no trigger was defined beforehand,
the stakeholder may still describe both situations, i.e., answer
QA and QB , using natural language as sketched in Figure 5
(right). Of course, after having defined a follow-up action,
additional follow-up actions can be defined.

V. RESOLVING TRIGGERS – SYNTHESIS

After the requirements engineer elicited an incomplete
scenario ending in a stalemate ssm and at least one trigger
tm =(ssm, RoleT , RoleReq, RoleResp, s′sm|RoleT), the
next stakeholder to talk to is already predetermined. To
complete this scenario, a stakeholder of the corresponding
role RoleReq needs to participate to continue the interaction
with RoleT . The requirements engineer starts a simula-

74Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 92 / 729

(a) Incomplete scenario after a Notifier session (b) Same scenario after a ComOp follows up

t1

:Communications
Operative :Boatman

sm

sinit

sn|ComOp '

x

?
?

t2

sn

sn |ComOp '''

f1

:Notifier

sm|Notifier '

:Communications
Operative :Boatman

?

?

t1

:Notifier

sm|Notifier '

sm

sinit

Figure 10. The expectation described in t1 (a) might be fulfilled after t2
has been resolved and follow-up action f1 was executed (b)

tion session by loading the state ssm for RoleReq . The
visualization of ssm corresponding to RoleReq’s perspective
should visualize the last interaction with RoleT in such a
way, that the participating stakeholder is able to identify,
which scenario the requirements engineers are currently
interested in. By explicitly loading ssm, inconsistencies
between different triggers and their continuations can be
avoided, since all follow-up activities are direct responses
leading towards the expectation s′sm|RoleT .

In a simple case, RoleReq is also the responding role
RoleResp, which can answer directly and fulfill RoleT ’s
expectation immediately with a suitable response. In case of
t1, however, ComOp cannot yet fulfill Notifier’s expectation
(s′m|Notifier). During the simulation for t1, all activities of
ComOp (RoleReq and RoleResp) and any other role involved
(Boatman) within the interactive visualization of sm lead to
a state sx, in which ComOp responded as expected.

An expectation is fulfilled, if its partial state s′sm|RoleT

expected by RoleT can be found in sx. Since s′sm|RoleT

and sx are structural specifications conforming to DW , the
simulator can try to match the expectation s′sm|RoleT to a
part of sx. If such a match can be identified, the context of
RoleT in sx is as expected: sx ⊇ sx|RoleT ⊇ s′sm|RoleT .
Consequently, if RoleResp’s activities led to such a state,
these observed activities are a suitable continuation for the
scenario from the point of views of RoleT and RoleResp.

To resolve the trigger t1, that Notifier created in a first
session (1st row in Figure 12), its stalemate sm (illustrated in
Figure 7) is loaded and the participating ComOp stakeholder
receives Notifier’s notification of an overturned boat in the
corresponding visualization of sm. As always, the ComOp
continues by starting an interaction with a Boatman by send-
ing a GoToMessage, thereby bringing the simulation into the
state sn (2nd row). At this point, the ComOp cannot continue
to play-in what needs to be done, since a stalemate sn is
reached in which she cannot deterministically predict how
the Boatman will react. As outlined in Section IV-A, two
different scenarios are possible. After the ComOp defined

someBoat
:Boat a:Location b:Location d:Location

:Notifier :Communications
Operative

c:Location

:Overturned
State

:BoatmanlifeGuard
:Boat

isAt

isAt
isAt

isOn
isIn

isAt

senderreceiver
:Estimated

ArrivalMessage

Figure 11. After ComOp is simulated using the story pattern x, the
simulation is in state sx with sx ⊃ s′m|Notifier = s′′′n |ComOp (fulfilling
the highlighted expectation in Figure 7)

both corresponding expectations (t2 and t3), she also defines
the follow-up action f1 (cf. Section IV-B), which leads to
the story pattern x (cf. Figure 8a) of how she continues after
the expectation of t2 has been fulfilled.

As specified in t2 and t3, the next role to talk to is
Boatman, who needs to continue from sn. After the stake-
holder reviewed sn in his visualization, he responds with
an estimated arrival time (3rd row), thereby leading the
simulation into state sq in which Boatman fulfilled ComOp’s
expectation as defined in t2. In sq , ComOp’s follow-up
action f1 is applicable since its precondition is identical to
t2’s postcondition (s′n|ComOp). Consequently, by resolving
t2, the story pattern x is executed to simulate ComOp’s
follow-up action, leading the simulation into the follow-up
state sx (4th row). More importantly, the initial expectation
of Notifier, i.e., the partial state s′m|Notifier , can be matched
since the expected answer was provided through ComOp’s
follow-up action (cf. Figure 11). Thus, the requirements
engineers end up with a completed scenario (5th row). Also,
the story patterns necessary to reproduce and simulate it
for other stakeholders can be derived from observations
or follow-up actions. Now, the requirements engineers can
continue by collecting alternatives, e.g., what has to happen
when a Boatman fulfills the expectation described in t3?

All triggers that are collected along the way are stored
next to the story patterns, which are derived from observed
scenarios. To resolve them, the simulator simply checks
whether the expected outcome of an interaction (s′sm|RoleT)
can be matched in the current state si of the simulation.
Based on this algorithm, scenarios are completed step by
step from stakeholder to stakeholder as illustrated for the
notification example in Figure 12. The possibility remains,
that no state sx ⊇ s′m|Notifier can be reached – even after
multiple sessions of the role that is expected to reply. In
this case, the requirements engineer has to be notified and
two options are present: directly intervene and either talk to
RoleResp to ask, e.g., what needs to be true for the Boatman
to not answer as expected or talk to Notifier (RoleT) to
check whether the expectation that was described is correct.

VI. RELATED WORK

One of the main contributions of Harel and Marelly’s
Play-approach [11], [12], is the possibility not only replaying
captured system behavior (play-out), but the possibility
to capture additional system behavior (play-in) and, thus,

75Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 93 / 729

sm|Notifier '

sm|Notifier '

sx

sn |ComOp '''

sn|ComOp '
sq

sq

sn|ComOp '
t2=(sn, ComOp, Boatman, Boatman, sn|ComOp)
and t3 (not shown) are defined along with the
follow-up action f1

 '

Boatman
Session:
Execute

ComOp's
Follow-up

sm m
sinit snn

t1
q

t1 is fulfilled since sx|Notifier = sm|Notifier '

Notifier
Session

sm m
sinit

t1
sm|Notifier ' t1=(sm, Notifier, ComOp, ComOp, sm|Notifier)

is defined
 '

ComOp
Session

sm m
sinit snn

t1

t2

Boatman
Session

t2 is fulfilled since sq|ComOp = sn|ComOp
and story pattern x (derived from f1) can be
executed on sq to simulate ComOp

 '
sm m

sinit snn

t1

t2

q

sm|Notifier '

sn |ComOp '''
f1

sn |ComOp '''
f1

x

sxsq
Complete
Scenario

sm m
sinit snn xq

Results:
- complete scenario which can be simulated
- 5 story patterns (m,n,p,q,x) which may
 already cover alternative scenarios

a partial state as expected
by a ComOp (based on sn)

sn t2
a trigger connecting a
stalemate and its
corresponding expectation

sn|ComOp '

sn|ComOp '

sn |ComOp '''

f1 a follow-up action defining
what ComOp does after an
expectation is fulfilled

si
simulation session starting
in si and ending in si+1

si+1

a state sq fulfilling an
expectation of a ComOp

sn|ComOp '
sq

a state snsn

f1

t2
sn

KEY

Figure 12. After only three stakeholder sessions, the scenario has been completed with two triggers and one follow-up action

new scenarios while doing so. Their approach, however, is
centered around user interfaces – for each input the user
provides, she can play-in how the system should react.
While this might suffice to capture the interaction between
individual stakeholders and a software system, i.e., its user
interface (UI), the elicitation of interactions between differ-
ent stakeholders is more complex.

Still, the play-engine [12] can be used to enable stakehold-
ers to perceive the complete state the system is in, reduced
to what is presented in the UI. The similar visualization
approach is used by Ponsard et al. for specific goals such as
whether a door of a train is closed when its moving [21] or
even to represent domain-specific UI elements and how they
affect each other from the point of view of a specific stake-
holder [16]. However, these approaches are limited to single
stakeholders and their interaction with a software system
only – collaborative processes with information asymmetry
cannot be elicited or validated.

Scenario-based approaches have been researched quite
broadly, most notably by Uchitel et al. [18][19][20]. Starting
with sets of potentially incomplete, implied or negative sce-
narios, they are able to derive state machines for the involved
components that are suitable for all of these scenarios, in
case of Whittleetal. even hierarchical ones [23]. Still, these
approaches are not suitable to elicit human interactions,
which are limited by what stakeholders can perceive from
their individual context. To obtain behavioral models of
what the stakeholders do, it does not suffice to know,
which messages arrived at a stakeholder in which sequence,
but rather, which artifacts and information they can see
or access. For instance, the Notifier’s expectation, that a
lifeguard boat arrives (Figure 8b) can only be fulfilled by
the Boatman moving to the corresponding location (Figure
4b). Only by eliciting and validating them in a state-based
manner, it becomes viable to visualize the current state a

stakeholder is in based on what she has access to.
Similar to our approach, Ghezzi et al. [10] compare pairs

of succeeding states to derive the behavior of Java classes as
graph transformations. While their method of automatically
eliciting behavior is identical, their approach is restricted to a
single actor, i.e., an instance of a class, and cannot cope with
information asymmetry. The same goes for van der Aalst’s
ProM approach [22], which is able to derive a process model
of how people can achieve their goals collaboratively based
on log files detailing different scenarios. However, ProM is
only able to use the information that is available in these
logs, provided a logging system is already in place and
analog interactions cannot be captured.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that reduces
the effort necessary to elicit and validate new collabora-
tive scenarios. Thereby, the number of sessions necessary
to elicit a stakeholder’s actions within a scenario can be
reduced. In case of stalemates, stakeholders can express
their expectations on interaction results in form of par-
tial states. Based on these partial scenarios, stakeholders
are then able to play-in continuing behavior decoupled
from one another. Our simulator synthesizes the captured
individual perspectives to obtain the complete scenarios,
thereby overcoming the inherent fragmentation of different
perspectives. We discussed how this technique extends our
model-based validation approach to be applicable for model-
based elicitation, too. The method was illustrated on a real
life example of a lifeguard service.

Using the old approach, the requirements engineer would
have to go back and forth between two or more stakeholders
for each interaction. Thus, the total number of sessions
required to elicit a complete scenario related to the number
of stalemates the stakeholders ran into during the elicitation,

76Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 94 / 729

since an additional session is necessary for each stalemate
that occurred. Generally, the number of stalemates per role
can vary strongly. Especially for the role ComOp in the
lifeguard example, at least ten interactions need to be elicited
for each scenario, which leads to the same number of
sessions to resolve the implied stalemates. However, by
being able to express her expectations and, thus, triggers
intuitively, the ComOp is now able to defer the completion
of all scenarios to other stakeholders later on. Consequently,
instead of ten sessions to overcome ComOp’s stalemates
only, ComOp can express all her contributions to the collab-
orative scenarios in just one session. Decoupled from her,
the other stakeholders can then complement the scenarios
accordingly. By systematically completing these scenarios,
the total number of elicitation sessions no longer depends on
the number of interactions and stalemates, but on the number
of roles and their ability to express their expectations. In
this case, our approach can end up with only one elicitation
session per role.

For future work, we want to evaluate whether stakeholders
are able to describe all of their interactions in the proposed
way and investigate, for which domains and scenarios this
technique works best. Our approach currently focuses on
completing one scenario at a time. We plan to investigate
how the overall number of sessions can be further reduced
by taking into account how stakeholders interact in multiple
scenarios. For instance, the resolution of triggers from
multiple scenarios might be handled in the same session.

REFERENCES

[1] A. Al-Rawas and S. Easterbrook. Communication Problems
in Requirements Engineering: A Field Study. In Proc. of the
First Westminster Conference on Professional Awareness in
Software Engineering. Royal Society, London, 1996.

[2] I. Alexander and N. Maiden, editors. Scenarios, Stories, Use
Cases: Through the Systems Development Life-Cycle. John
Wiley, New York, 2004.

[3] B. Berenbach, D. Paulish, J. Kazmeier, and A. Rudorfer.
Software & Systems Requirements Engineering: In Practice.
McGraw-Hill, Inc., New York, NY, USA, 2009.

[4] A. Davis and K. Nori. Requirements, plato’s cave, and
perceptions of reality. Computer Software and Applications
Conference, Annual Int., 2:487–492, 2007.

[5] N. Desai, A. Mallya, A. Chopra, and M. Singh. Interaction
protocols as design abstractions for business processes. IEEE
Transactions on Software Engineering, 31:1015–1027, 2005.

[6] G. Gabrysiak, H. Giese, and A. Seibel. Interactive Visual-
ization for Elicitation and Validation of Requirements with
Scenario-Based Prototyping. In Proc. of the 4th International
Workshop on Requirements Engineering Visualization, pages
41–45, Los Alamitos, USA, 2009. IEEE Computer Society.

[7] G. Gabrysiak, H. Giese, and A. Seibel. Using Ontologies for
Flexibly Specifying Multi-User Processes. In Proc. of ICSE
2010 Workshop on Flexible Modeling Tools, Cape Town,
South Africa, 2010.

[8] G. Gabrysiak, H. Giese, and A. Seibel. Towards Next-
Generation Design Thinking II: Virtual Multi-User Software
Prototypes. In H. Plattner, C. Meinel, and L. Leifer, editors,
Design Thinking Research, Understanding Innovation, pages
107–126. Springer, 2012.

[9] G. Gabrysiak, R. Hebig, and H. Giese. Simulation-assisted
elicitation and validation of behavioral specifications for
multiple stakeholders. In Proc. of the 21st IEEE International
Conference on Collaboration Technologies and Infrastruc-
tures, Toulouse, France, June 2012.

[10] C. Ghezzi, A. Mocci, and M. Monga. Synthesizing intensional
behavior models by graph transformation. In Proc. of the
IEEE International Conference on Software Engineering,
pages430–440, Washington, USA, 2009. IEEE.

[11] D. Harel, H. Kugler, and A. Pnueli. Synthesis revisited: Gen-
erating statechart models from scenario-based requirements.
In H.-J. Kreowski, U. Montanari, F. Orejas, G. Rozenberg,
and G. Taentzer, editors, Formal Methods in Software and
Systems Modeling, pages 309–324. Springer, 2005.

[12] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSC’s and the Play-Engine. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[13] R. Heckel. Graph transformation in a nutshell. Electronic
Notes in Theoretical Computer Science, 148(1):187 – 198,
2006. Proc. of the School of SegraVis Research Training
Network on Foundations of Visual Modelling Techniques.

[14] T. Kühne. Matters of (meta-) modeling. Software and Systems
Modeling, 5:369–385, 2006.

[15] A. Luebbe and M. Weske. Tangible media in process
modeling – a controlled experiment. In H. Mouratidis and
C. Roland, editors, 23th Conference on Advanced Information
Systems Engineering (CAiSE 2011), pages 283–298, 2011.

[16] C. Ponsard, N. Balych, P. Massonet, J. Vanderdonckt, and A.
van Lamsweerde. Goal-Oriented Design of Domain Control
Panels. In S. W. Gilroy and M. D. Harrison, editors, DSV-IS,
volume 3941 of LNCS, pages 249–260. Springer, 2005.

[17] N. Seyff, N. Maiden, K. Karlsen, J. Lockerbie, P. Grünbacher,
F. Graf, and C. Ncube. Exploring how to use scenarios to
discover requirements. Requirements Engineering, 14(2):91–
111, 2009.

[18] S. Uchitel, G. Brunet, and M. Chechik. Synthesis of Partial
Behavior Models from Properties and Scenarios. IEEE
Transactions on Software Engineering, 35(3):384–406, 2009.

[19] S. Uchitel, J. Kramer, and J. Magee. Detecting implied
scenarios in message sequence chart specifications. SIGSOFT
Softw. Eng. Notes, 26:74–82, September 2001.

[20] S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration
of scenario-based specifications and behavior models using
implied scenarios. ACM Trans. Softw. Eng. Methodol., 13:37–
85, 2004.

[21] H. T. Van, A. van Lamsweerde, P. Massonet, and C. Ponsard.
Goal-oriented requirements animation. Requirements Engi-
neering, IEEE International Conference on, 218–228, 2004.

[22] W.M.P. van der Aalst. Trends in business process analysis:
Fromvalidation toprocessmining. In International Conference
onEnterprise InformationSystems, Funchal, Portugal, 2007.

[23] J. Whittle and P. Jayaraman. Synthesizing hierarchical state
machines from expressive scenario descriptions. ACM Trans.
Softw. Eng. Methodol., 19:8:1–8:45, 2010.

77Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 95 / 729

A Formal High-level Modeling Approach to Develop Reliable Components in
Vision-based Robotics

Andrea Luzzana, Mattia Rossetti, and Patrizia Scandurra
Università degli Studi di Bergamo, DIIMM, 24044 Dalmine (BG), Italy

andrea.luzzana@unibg.it mattia.rossetti@unibg.it patrizia.scandurra@unibg.it

Abstract—This paper proposes the use of the control-state
Abstract State Machines for a rigorous foundation in high-
level modeling and validating component-based applications
in Vision-Based Robotics. In particular, an extension of the
classical flowchart notation for control-state ASMs is proposed
to support modularization and reuse in a direct way. The
resulting ASM models are to be intended as “ground models”
that can be used as basis or patterns to practically model
and formally validate the behavior of typical robotic control
tasks, and to link (via successive refinements) these high-level
models of components to their implementation code by making
their functional correctness mathematically controllable. The
proposed flowchart extension and the availability of reusable
and validated ground models allow a better system design and
speed up the development of the system.

Keywords-components; abstract state machines; ground mod-
eling; robotic control tasks.

I. INTRODUCTION

Vision-based robotics is a challenging research field [1].
One of the open and commonly stated problems in the
field is the need for exchange of experiences, best practices,
and high-level models of robust, reliable and flexible robot
control applications with visual servoing functions.

Recently, we investigated [2] the use of the Abstract State
Machine (ASM) formal method [3] for a systematic study
and a rigorous foundation of modeling and validating Visual
Servoing (VS) applications. The ASM method is a discipline
for reliable system development, which allows to bridge the
gap between informal requirements and executable code.
The ASM formalism supports concurrency, heterogeneous
state and modularity (compositional design and verification
techniques). These features are essential to tailor ground
models of control tasks definitions and associated syn-
chronization/communication patterns of VS applications in
rigorous, compositional and abstract terms. Ground models
are blueprints of the to-be-implemented piece of “real world”
that “ground the design in the reality” [4]. In particular, we
exploit the notion of control state ASMs (a class of ASMs
[3]) as a natural extension of Finite State Machines.

In this paper, we present an extension – called pattern-
oriented control-state ASMs – of the classical flowchart
notation for control-state ASMs to support modularization
and reuse in a direct way. The proposed notation is useful
to denote explicitly modeling elements to be further refined,

to allow the definition/instantiation of recurring design so-
lutions or patterns, to perform initial validation of separate
high-level models and to improve model traceability between
the flowchart diagrams and their concrete (textual) ASM
specifications during the ground modeling and development
process. In this context, the term “pattern” is to be intended
to have its classical meaning, i.e., as a schema of a recurring
solution, rather than the meaning of “design pattern” as in
the book of the GoF (Gang of Four).

We here repeat our previous experience in the embedded
system-on-a-chip domain [5][6] to shift the focus from
implementation to design through high-level modeling. Our
approach combines the expressive power and accuracy of
control state ASMs with the intuition provided by visual
flowchart descriptions to capture the behavioral view of
task-level control of VS applications. As starting point, we
manually extracted from the structure of existing (basically
C/C++) code architectural descriptions (in terms of UML
component diagrams) of high-level models of component
control tasks and also recurring synchronization/communica-
tion patterns between tasks that could be used for the ground
modeling and analysis in ASM. We then defined these ASM
abstract models using the pattern-oriented control-state ASM
notation, transformed such models into executable ASM
models using the notation ASMETA/AsmetaL [7][8], and
then validated them through basic formal analysis techniques
(simulation and scenario-based simulation) [9]. The resulting
and validated ASM models are used as basis or patterns
for high-level modeling and validating typical control tasks
of VS applications in a formal way, thus leading from the
abstract models to executable (C/C++) code by making their
functional correctness mathematically controllable.

This paper focuses on presenting the extended control-
state ASM notation and it is organized as follows. Section
II introduces the reader to the field of vision guided robotics
by illustrating the synchronization/communication issues at
control task-level covered in the paper. Section III provides
background notions on the ASMs. Section IV presents the
pattern-oriented control-state ASMs. Section V presents the
ASM ground modeling of some control tasks synchroniza-
tion/communication patterns and, as major case study, their
instantiation to model a VS application. Section VI provides
some details on implementation issues. Section VII presents

78Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 96 / 729

some related works. Finally, Section VIII concludes the
paper and sketches future directions.

II. APPLICATION DOMAIN

This section discusses about modeling issues in visual
assisted robotic control architectures, with emphasis on
synchronization/communication of control tasks.

Robot control applications with VS features: The main
task of a robot automatic control system is to drive robot
actuators (typically electrical motors) in order to follow a
trajectory passed to the controller by higher level applica-
tions of the control architecture, such as motion planners,
production cell controllers, visual systems, etc.

Encoder

Controller

Encoder

Device

Comm.

Channel

Robot

Controller

Comm.

Channel

Motor

Controller

Motor

Device

Comm.

Channel

Encoder
data

Encoder
data

Encoder
data

Set-
point

Set-
point

Control
outputEncoder

data
Encoder

data

Figure 1. A Robot controller architecture.

The UML component diagram in Figure 1 shows a typical
architecture of a robot control application. A robot controller
sends set-point values to a motor controller. The encoder
controller acquires data from encoders in order to send them
to both the robot controller and the motor controller. This
last task has to read also the data (motors set-point) produced
by the robot controller in order to drive motors. The motor
and the encoder controllers communicate directly with their
respective devices through physical interconnections. This
control scheme presents non-trivial issues related to the
timing and the synchronization of the involved controllers
since all the tasks have to exchange data periodically.

The need for strict periodic tasks makes it necessary to
encapsulate the communication functionality in a separate
component, the communication channel, thus decoupling
the producer (or sender) from the consumer (or receiver).
A communication channel can be implemented on top of
several protocols. For data exchange among tasks, real-time
programming guides (e.g., [10]) typically suggest the use of
a shared memory (e.g., a FIFO, a ring buffer, a stack, etc.) in
order to ensure lower memory usage and better performance.
In this work, we will focus on the use of the Swinging Buffer
[10] (described below) as shared memory.

A robot builds a representation of the surrounding en-
vironment by acquiring data from several sensors. Visual
servoing [1] is a technique that uses feedback information
extracted from a vision sensor to control the motion of a
robot. A closed-loop control of a vision-based robotic system
usually consists of two intertwined processes: tracking and
control. This architecture (see Figure 2) performs the control
of the robot in two separate stages: first, the vision system
provides input to the robot controller by acquiring and
elaborating images; then, the robot controller uses joint

feedback to internally stabilize the robot. Optionally, set-
point computation can require the acquisition of robot data
via another communication channel.

Visual

Servoing

Comm.

Channel

Camera

Device

Comm.

Channel

Image
data

Image
data

Raw
data

Robot

Controller

Camera

Controller

Set-point

Set-point

Figure 2. A Visual Servoing Robot architecture.

Using parallelism can improve the performance of the
system, but it introduces new non-trivial issues due to VS
functions. First, the visual servoing task can be exploited
only at the presence of an image, so it is the only non-
periodic (asynchronous) task in the control scheme. Second,
the time required for elaboration is not constant because
computer vision algorithms efficiency is strongly affected
by aspects like quality of images, complexity of the envi-
ronment and so on. Finally, the visual servoing task is both
a producer and a consumer because it requires images from
camera for its elaboration and then needs to transmit the
set-point information to the robot.

Synchronization and Communication issues: Basically,
control tasks can be classified in asynchronous and syn-
chronous. Asynchronous tasks are data-driven, because their
elaboration starts when there are data to be consumed and
ends with data transfer. Synchronous tasks are, instead, time-
driven, as they are periodic and have deadlines to respect.
Figure 3 summarizes the possible communication types that
we cover in our work, as collected from visual servoing
and robot control applications (such as pick and place,
object tracking and micro-assembly). The analyzed solutions
involve the use of swinging buffers for the communication
between tasks operating at different frequencies. A swinging
buffer can be viewed as an advanced circular buffer using
two or more shared memory arrays instead of the single
array adopted by a circular buffer. While the producer task
fills up one of the buffers, the consumer empties another one.
When a task reaches the end of the buffer that it is using, it
starts operating from the beginning of another unused array.
Since tasks works on different memory locations, no lock
for the mutual exclusion is needed to access to the data on
the buffer, but only for updating the read/write indexes.

Producer
Consumer

Asynchronous Synchronous

Asynchronous
Asynchronous Message Passing

typical Producer-Consumer
Swinging Buffer Communication

Visual Servoing TO Robot Controller

Synchronous
Swinging Buffer Communication

Robot Controller TO Visual Servoing
Swinging Buffer Communication

Sensor TO Robot Controller TO Motor

Figure 3. Task communication types.

79Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 97 / 729

III. BACKGROUND ON ASMS

ASMs are an extension of Finite State Machines (FSMs)
[3] where unstructured control states are replaced by states
of arbitrary complex data. The states of an ASM are multi-
sorted first-order structures, i.e., domains of objects with
functions and predicates (boolean functions) defined on
them. The transition relation is specified by named rules
describing how functions change from one state to the next.
A transition rule has the basic form of guarded update
“if Condition then Updates” where Updates is a set of
function updates of the form f(t1, . . . , tn) := t, which
are simultaneously executed when Condition is true. f is
an arbitrary n-ary function and t1, . . . , tn, t are first-order
terms. Essentially, to fire this rule in a state Si, i ≥ 0,
evaluate all terms t1, . . . , tn, t at Si and update f to t
on parameters t1, . . . , tn. This produces another state Si+1,
which differs from Si only in the new interpretation of f .
A set of rule constructors allows to express simultaneous
parallel actions (par), sequential actions (seq), iterations
(iterate, while, recwhile), and submachine invoca-
tions returning values. Non-determinism (existential quan-
tification choose) and unrestricted synchronous parallelism
(universal quantification forall) are also supported.

Control-state ASMs are a class of ASMs used to model
some overall status or mode, guiding the execution of
guarded synchronous parallel updates of the underlying
state. Figure 4 (slightly adapted from [3]) shows on the
left the conventional flowchart notation that include three
basic symbols. It also shows on the right the corresponding
ASM rule scheme (in textual notation) for control state
ASMs. Circles denote phases (also called control states or
internal states), hexagons (optional) denote test predicates
(also called conditions or guards), and rectangles denote
update actions (i.e., application of ASM rules, including
rule invocations of submachines) and are also optional. The
finitely many control states ctl state ∈ {1 . . .m} are used
to describe different system modes.

IV. PATTERN-ORIENTED CONTROL STATE ASMS

We extended the flowchart notation of control state ASMs
to better enhance some aspects and to capture new ones.
Precisely, we defined a pattern-oriented extension of the
classical flowchart notation for control state ASMs to denote
explicitly parts of the models that have to be further refined,
to denote the definition/instantiation of a pattern, and to
improve model traceability by allocation links between the
flowchart diagrams and their concrete implementations (i.e.,
the ASM specifications) in the textual language AsmetaL.

Revised symbols. We adopt (see Figure 5) dashed lines
for guards and actions to indicate that these elements require
further refinement, i.e., the test predicate for the guard and
the rule for the action. For example, an action can be
refined by introducing other action-state-condition blocks
to model the intended activity. The optional text {text}

Figure 4. Control state ASMs.

Figure 5. Extended control state ASM notation.

near a graphical symbol is used to link diagrams to their
concrete ASM specification spec (in our case, AsmetaL
specification). Specifically: for a state symbol it denotes
the function name in the spec representing the underlying
control state variable; for a guard symbol it denotes the test
predicate name in the spec; for an action symbol it denotes
the rule name in the spec implementing it.

Pattern machines. For modularization and reuse pur-
poses, we introduce two new symbols (see Figure 6) denot-
ing the concepts of pattern (pattern definition) and of pattern
instantiation blocks, respectively. A pattern block is to be
intended as a placeholder for a recurrent and complex action
block, also referred to us as pattern machine. Figure 6 shows
the shape of such a pattern machine that includes an entering
arrow followed by (at least) an action-state-condition block
closed with a floating exit arrow. A pattern machine con-
sisting of an action block only is also admitted. The circles
represent the internal states of the pattern machine and it
usually requires a fresh control state variable ctl_state.
It is a piece of reusable ASM model that can be validated
and verified separately and then re-used in more complex
ASM specifications. The entering arrow denotes always the
evaluation of the guard isUndef(_ctl_state) that is
the mandatory condition that enables the execution of the
pattern machine. The floating exit arrow denotes the exit
point and implies always the mandatory update ctl_state
:= undef.

A pattern machine is then specified in terms of a named
rule and this rule will occur as subrule of the containing
machine. Moreover, we assume that (otherwise specified) the
pattern machine is composed with the other occurring rules
(action blocks), if any, of the containing machine according

Figure 6. Pattern notation.

80Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 98 / 729

to the synchronous parallelism semantics of the par-rule.
The rule name of the pattern machine can be specified (see
Figure 6) near the pattern instantiation symbol.

V. GROUND MODELING ROBOT CONTROL TASKS

We use pattern-oriented control state ASMs for specifying
ground models of robot control tasks.

A. Producer/Consumer models

Figure 7 shows the control state ASM of a simple data
producer module. It contains a pattern machine for the writ-
ing operation on the swinging buffer, presented in Section
V-B. The first action of a producer task is to wait for a
trigger in order to start to acquire and elaborate data; lastly,
data elaborated have to be written in a shared memory (in
our case, a swinging buffer). This machine has blocks to be
refined, because their specific behavior depends on the tasks
nature: tasks can be asynchronous or synchronous, and in
turn master or slave. Listing 1 reports, using the AsmetaL
notation, a possible definition of the test predicates for the
events Trigger and Elaboration Time Elapsed (their names
are also denoted in the diagrams). The event Trigger may
require further refinement. The listing reports a possible
definition of this test predicate (in a particular phase of the
specification development process) that captures two cases:
it is the boolean OR of “waiting for a period of time” for a
synchronous periodic task, and of an “always-true” condition
for an asynchronous task. Both the test predicates take as
parameter the scheduler c, since in our applications each
component is associated to and managed by a scheduler. The
current task scheduled on c is represented by the function
scheduler_MainThread(c).

The data consumer model is straightforward.

Figure 7. Data Producer.

Listing 1. Producer/consumer test predicates.
function trigger($c in Scheduler) = (task_kind(

scheduler_mainThread($c)) = SYNCHRONOUS and
task_elapsedTimeOfPeriod(scheduler_mainThread($c)) >
time(scheduler_currentPhase($c)))
or task_kind(scheduler_mainThread($c)) =

ASYNCHRONOUS

function tElapsed($c in Scheduler) =
scheduler_currentScheduleTime($c) > time(

scheduler_currentPhase($c))

B. Swinging Buffer reading/writing models

The swinging buffer introduces the concept of multiple
shared memory areas. Hence, the producer and consumer
tasks do not share a memory, but only the read/write pointers
to different memory areas. To avoid overwriting problems,
only one task, the master task (either the producer or the
consumer), can manage the indexes update, while the other
tasks, the slaves, behave just classical producers/consumers.
However, in real-time tasks, also the nature of the communi-
cating tasks and their frequency must be considered. In the
case of two asynchronous communicating tasks, a producer
and a consumer, the master task can be either the producer or
the consumer. In the case of two synchronous tasks, instead,
a common practice is to set the slower task as the master
one. In fact, as there is not a single shared memory area,
the master task has to get the lock only when it has to
update its data pointers. Moreover, during its elaboration,
it does not need to get the lock because, as the slave
tasks do not manage indexes, there is no possibility of an
inconsistent update. Finally, in the case of a synchronous-to-
asynchronous communication, the asynchronous task is the
master slave because it does not carry out data elaboration
periodically, but only when new data are available.

This behavioral variability is captured by the ASM pattern
machines for reading/writing from/to swinging buffer shown
in the Figures 8, 9 and 10. In particular, as an example,
Listing 2 for an Asynchronous-Master-Writing operation (see
Figure 8-b) reports the corresponding ASM specification
using the AsmetaL notation. The AsmetaL implementation
of the other pattern machines can be found in [11].

(a) Reading.

(b) Writing.

Figure 8. Swinging Buffer - Asynchr. Master Read/Write.

The Asynchronous-Master-Writing operation (see Figure
8-b) implies first to write data on the shared memory
directly (state Writing), without acquiring the lock for the
critical section. When the writing operation is terminated
(after a certain period of time has passed), the swinging
buffer pointers have to be updated in order to signal to the
consumer that new data are ready. In the next state Managing

81Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 99 / 729

Swinging Buffer, the asynchronous task tries (by the iterative
flowchart part) to get the lock to the critical section for
updating the pointers by executing the action MANAGE
SWINGING BUFFER. After the pointers are updated, the
control exits by releasing the lock (RELEASE SWINGING
BUFFER). As an example, Listing 3 reports the definition of
the rule MANAGE SWINGING BUFFER using the AsmetaL
notation; note again that this rule captures the behavior
of both master and slave tasks by distinguishing clearly
these roles, since it is reused also as action in the other
pattern machines. The AsmetaL implementation for the other
actions and test predicates can be found in [11].

The Asynchronous-Master-Reading pattern (see Figure 8-
a) is similar to the writing one, despite of action order. In
fact, in this case the Managing Swinging Buffer action has
to be performed before reading.

Listing 2. Asynchronous-Master-Writing pattern machine.
rule r_async_master_writing ($c in Scheduler) =
par

//Entering into the pattern machine
if (isUndef (sb_ctrlState(scheduler_currentPhase($c))))
then par

r_write [$c, scheduler_currentPhase($c)]
sb_ctrlState(scheduler_currentPhase($c)):= WRITING

endpar
if (sb_ctrlState(scheduler_currentPhase($c)) = WRITING)
then if (tElapsed ($c))

then par
r_manageSb [$c, scheduler_currentPhase($c)]
sb_ctrlState(scheduler_currentPhase($c)):=

MANAGING_SB
endpar

if (sb_ctrlState(scheduler_currentPhase($c)) =
MANAGING_SB) then
if (swingingBufferManaged($c)) then //Index updated

par
r_releaseSb[$c]
// Exit from pattern machine
sb_ctrlState(scheduler_currentPhase($c)):=

undef
endpar

else //Index not updated
par //Try again to acquire the lock
r_manageSb [$c, scheduler_currentPhase($c)]
sb_ctrlState(scheduler_currentPhase($c)):=

MANAGING_SB
endpar

endpar

For the reading/writing operations of synchronous master
tasks (see Figure 9), the transition for managing the swinging
buffer indexes is slightly modified: if the lock has not
been acquired, a further guard watchdog Time elapsed is
evaluated: if false (there is no time), the task skips the index
update phase and exits. Finally, for synchronous slave tasks
(see Figure 10 for the reading operation) if the lock cannot
be acquired, the task simply skips the reading/writing action.
The writing operation is fully similar.

Listing 3. The MANAGE SWINGING BUFFER rule.
rule r_manageSb($c in Scheduler, $phase in SchedulePhase)=
par

if (syncPriority($phase) = MASTER)
then seq

r_SwingingBuffer_getLock [sharedMemory($phase)
, scheduler_mainThread($c)]

r_SwingingBuffer_updateIndexes [sharedMemory(
$phase) , scheduler_mainThread($c)]

endseq
if (syncPriority($phase) = SLAVE) then

r_SwingingBuffer_getLock [sharedMemory($phase)
, scheduler_mainThread($c)]

endpar

Managing
Swinging

Buffer

RELEASE SB

MANAGE
SWINGING BUFFER

Swinging
Buffer

Managed

Watchdog
Time

Elapsed

YES

NO

YESNO

READ FROM
SWINGING BUFFER

Reading
Read Time

Elapsed

{sb_ctrlState} {sb_ctrlState}
{tElapsed}

{swingingBufferManaged}

{watchdog}

(a) Reading.

WRITE ON
SWINGING BUFFER

Writing
Writing

Time
Elapsed

Managing
Swinging

Buffer

Swinging
Buffer

Managed

Watchdog
Time

Elapsed

RELEASE
SWINGING BUFFER

MANAGE
SWINGING BUFFER

YES

NO

YES NO

{tElapsed}

{sb_ctrlState}

{swingingBufferManaged}

{watchdog}

{sb_ctrlState}

(b) Writing.

Figure 9. Swinging Buffer - Synchr. Master Read/Write.

Managing
Swinging

Buffer
RELEASE SB

Swinging
Buffer

Managed

Watchdog
Time

Elapsed

MANAGE
SWINGING BUFFER

ReadingREAD
Read Time

Elapsed
YES

NO

NO YES
{sb_ctrlState}

{sb_ctrlState} {tElapsed}

{watchdog}

{swingingBufferManaged}

Figure 10. Swinging Buffer - Synchronous Slave Read.

C. Major case study: A VS application model

Let us consider the VS application case study described
in Section II. Figure 11 shows the ASM control state for the
visual servoing component shown in Figure 2. It elaborates
images in order to produce the commands to send to the
robot controller component. So, it is an asynchronous task
because it can elaborate images only when they are available.
Note that it plays the role of both an asynchronous pro-
ducer and an asynchronous consumer: it is an asynchronous
consumer of images coming from the synchronous camera
controller component and a producer for the synchronous
robot controller. It communicates with two synchronous
tasks through two swinging buffers and, being asynchronous,
it is the master.

The AsmetaL implementation of this major case study can
be found at [11].

VI. TOOL-SUPPORT AND TARGET IMPLEMENTATION

We adopt the ASM modeling and analysis toolset AS-
META [7], based on the Eclipse EMF. A graphical editor
for the flowchart extension presented in this paper is being
developed. For the execution of ASM models written in

82Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 100 / 729

Trigger

Elaboration
Time Elapsed

READ
NEW IMAGE

Elaborating

WRITE NEW
SET-POINTS TO

ROBOT
CONTROLLER

{r_async_master_reading}

{r_async_master_writing}

Waiting_
Trigger

ELABORATE

WAIT FOR TRIGGER

{trigger}

{tElapsed}

{action}

{action}

Figure 11. Visual Servoing component.

AsmetaL we use the ASM simulator AsmetaS. We also
exploit the tool AsmetaV to run execution scenarios and
report any violation of the expected behavior.

As target implementation platform, we have been working
on generating automatically C/C++ code from the ASM
models through a mapping towards common used VS li-
braries, including: Posix Threads library, dc1394 library for
managing the communication from/to a firewire (IEEE1394)
[13] camera, and OpenCv for image elaboration.

VII. RELATED WORK

The use of formal methods to describe the underlying
data exchange mechanisms in distributed control systems
is not a common practice. Within the ASM community,
some few works exist related to the ASM modeling of
multi-process synchronization problems and of inter-process
communication problems [14][15][16]. We took inspiration
from all of them. In particular, to compile ASMs into C/C++
code, we have been repeating the previous experience in the
FALKO project (a tool for railway simulation) [12].

The work in [17] reports on the development of AsmL
(an ASM notation from Microsoft Research) specifications
of Synchronous Dataflow domain schedulers of Ptolemy II
– simulation and code generation framework for heteroge-
neous, concurrent, real-time embedded systems [18]. Their
goal is to give a precise semantics to the implementation.
The use of the ASMs to design and verify low level
communication and data exchange mechanisms, however,
seems lacking.

VIII. CONCLUSION AND FUTURE WORK

We proposed an ASM-based easy and scalable approach
to design reliable and reusable ground models of control
tasks and communication/synchronization mechanisms in
VS robotic applications. The proposed flowchart extension
for control-state ASMS and the availability of such reusable
and validated ground models allow a major comprehension
of the system design (even to non ASM experts) and speed
up the development itself. Though our work is targeted to the
VS domain, we believe the approach can be easily extended
to a wide range of real-time applications.

As future work, we aim at defining an ASM model library
for VS applications and using complex analysis tools in the
ASMETA toolset for formal verification.

ACKNOWLEDGMENT
The research leading to these results has received funding from the Euro-

pean Community’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. FP7-ICT-231940-BRICS (Best Practice in Robotics).

REFERENCES

[1] S. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on
visual servo control. IEEE Transactions on Robotics and
Automation, Vol. 12, pp. 651–670, 1996.

[2] A. Luzzana, M. Rossetti, P. Righettini, and P. Scandurra,
Modeling Synchronization/Communication Patterns in Vision-
Based Robot Control Applications Using ASMs. In ABZ Conf.,
2012, pp. 331-335.

[3] E. Börger and R. Stärk, Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer Verlag,
2003.

[4] E. Börger, Construction and analysis of ground models and
their refinements as a foundation for validating computer-based
systems. Formal Asp. Comput., Vol. 19, pp. 225–241, 2007.

[5] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio, A
SoC Design Methodology Involving a UML 2.0 Profile for
SystemC. In Proc. of Design, Automation and Test in Europe
Conf., pp. 704-709, 2005.

[6] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio, A
model-driven design environment for embedded systems. In
Proc. of the Design Automation Conf., pp. 915-918, IEEE
Press, 2006.

[7] The ASMETA website. http://asmeta.sf.net/, [re-
trieved: October, 2012].

[8] P. Arcaini, A. Gargantini, E. Riccobene, and P. Scandurra, A
model-driven process for engineering a toolset for a formal
method. J. Softw., Pract. Exper., Vol. 41, pp. 155-166, 2011.

[9] A. Gargantini, E. Riccobene, and P. Scandurra, A Metamodel-
based Language and a Simulation Engine for Abstract State
Machines. J. UCS, Vol. 14, pp. 1949–1983, 2008.

[10] H. Bruyninckx, Real-time and embedded guide. KU Leuven,
Mechanical Engineering, 2002.

[11] ASM RTpattern library. http://asmeta.
svn.sf.net/viewvc/asmeta/asm_examples/
RTPatternLibrary/, [retrieved: October, 2012].

[12] J. Schmid, Compiling abstract state machines to C++. J.
UCS, Vol. 7, pp. 1068–1087, 2001.

[13] ”IEEE Standard for a High-Performance Serial Bus”. IEEE
Std. pp. 1–906, 2008, doi:10.1109/IEEESTD.2008.4659233.

[14] E. Börger and I. Craig, Modeling an operating system kernel.
In Informatik als Dialog zwischen Theorie und Anwendung, pp.
199–216. Vieweg+Teubner, Wiesbaden, 2009.

[15] R. F. Stärk and E. Börger, An ASM specification of C#
threads and the .NET memory model. In Abstract State
Machines, LNCS 3052, pp. 38–60. Springer, 2004.

[16] W. Müller, J. Ruf, and W. Rosenstiel, An ASM based
SystemC simulation semantics. SystemC: methodologies and
applications, pp. 97–126, 2003.

[17] D. L. Cuadrado, P. Koch, and A. P. Ravn, ASML specification
of a Ptolemy II scheduler. In Abstract State Machines, LNCS
2589, page 417. Springer, 2003.

[18] PTOLEMY website. http://ptolemy.eecs.
berkeley.edu/, [retrieved: October, 2012].

83Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 101 / 729

Aligning the Normalized Systems Theorems
with Existing Heuristic Software Engineering Knowledge

Peter De Bruyn, Geert Dierckx, and Herwig Mannaert
Department of Management Information Systems

Normalized Systems Institute (NSI)
University of Antwerp

Antwerp, Belgium
{peter.debruyn,herwig.mannaert}@ua.ac.be, {geert.dierckx}@student.ua.ac.be

Abstract—Software applications used by contemporary or-
ganizations have to be expendable for incorporating additional
functional requirements, as well as adaptable regarding ever
changing user requirements. As this evolvability has frequently
be noted to be lacking in most information systems, Normalized
Systems (NS) theory has recently proposed a framework on
evolvable modularity. Based on the concept of systems theoretic
stability, NS formulates a number theorems, constituting a set
of formally proven necessary conditions in order to obtain
such evolvability in modular structures. These theorems were
argued to strongly align with heuristic (often tacit) best-practice
knowledge of experienced software developers. In order to
further validate this claim, the present paper will investigate
the degree in which the NS theorems align with best-practice
software engineering guidelines based on the set of 22 “bad
smells in code” as defined by Fowler and Beck. The analysis
shows that the avoidance of the code smells indeed largely
aligns with the Normalized Systems theorems. While 14 of the
guidelines seem to be reflected by the NS theorems, 4 of them
seem to be unrelated to the theorems and another set of 4 code
smells seems to be contradicting with NS reasoning.

Keywords-Normalized Systems; Code Smells; Heuristic Knowl-
edge; Knowledge Management.

I. INTRODUCTION

Software applications used by contemporary organizations
have to be expendable for incorporating additional functional
requirements, as well as adaptable regarding ever changing
user requirements. While many best-practice principles exist
in order to improve the evolvability of software programs,
the knowledge management concerning these heuristics re-
mains inadequate: most of the principles are often only
known tacitly and are not applied consistently. In this regard,
Normalized Systems (NS) theory has recently formulated
a set of four (formally proven) theorems as necessary
conditions to obtain evolvable modular structures in software
systems [1]–[3]. While these theorems as such are not to
be considered entirely new, their value should be seen in
their unambiguous formulation and proof, as well as their
unification based on a single postulate. In the present paper,
the main focus will be aimed at the best-practice knowledge
residing into these Normalized Systems theorems. Indeed,
it has already been argued that the Normalized Systems

theorems offer in fact a more specific and unambiguous way
of representing some already existing (tacit) best-practices in
the software engineering community [1]–[3]. Hence, we will
try to further support this argument by analyzing how the
Normalized Systems theorems seem to be largely supported
by the guidelines of Fowler et al. [4] based on the prevention
of bad code smells.

After briefly highlighting the essence of Normalized Sys-
tems theory, Section III will situate the bad code smells in
software engineering literature and the relevance of compar-
ing it with the NS theory. A mapping of both approaches will
be proposed in Section IV, after which some conclusions
will be presented in Section V.

II. NORMALIZED SYSTEMS

Normalized Systems (NS) is a theory focusing on the
evolvability of software architectures, based on the concept
of stability from systems theory. For this purpose, it consid-
ers software systems as modular systems consisting of a set
of instantiations of programming constructs (e.g., methods,
data structures, etc.). In order to realize proven evolvability
in these systems, first, an unlimited systems evolution is con-
sidered (meaning that in theory the number of instantiated
constructs and their mutual dependencies eventually become
unlimited in every software system). Next, the stability
requirement demands that each bounded set of changes to
the software system (e.g., adding a new data construct or
adding a new version of an action construct) should have
a bounded impact as well (i.e., the impact of a change
should only be depended on the kind of change performed
to the system and not dependent on the size of the system).
Changes which do generate an impact dependent on the
size of the system are regarded as instable (as their impact
becomes unbounded under the unlimited systems evolution
assumption) and are called combinatorial effects. In order
to enable this stability, NS theory proposed the following
four (formally proven) theorems as necessary conditions to
prevent combinatorial effects [1]–[3]:

• Separation of Concerns, requiring that every concern
(change driver) is separated from other concerns in its

84Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 102 / 729

own construct;
• Data Version Transparency, requiring that data entities

can be updated without impacting the entities using it
as an input or producing it as an output;

• Action Version Transparency, requiring that an action
entity can be updated without impacting its calling
components;

• Separation of States, requiring that each step in a work-
flow is separated from the others in time by keeping
state after every step.

In reality, building software applications in conformance
with all four theorems seems to require a set of five
encapsulated higher-level programming constructs (called
elements) as building blocks for NS conform applications:
data elements, action elements, workflow elements, connec-
tor elements and trigger elements [1], [3].

In [2, p. 94], it was already noted that the NS “design the-
orems are not new, but relate to well-known heuristic design
knowledge of software developers”. For instance, a limited
set of manifestations of the above explained theorems were
already mentioned in [1]–[3] as summarized in Table I.
Therefore, it might be interesting to investigate the extent in
which other best-practice heuristics in software engineering
(e.g., the bad code smells as formulated by Fowler et al. [4])
conform with the NS theorems.

III. BAD SMELLS IN CODE

In the source code of a software program, bad code
smells are typically considered as symptoms or indica-
tions regarding potentially troublesome or problematic code
[4]. As such, the concept should be clearly distinguished
from typical bugs: flaws or mistakes in the source code
resulting in undesired effects (mostly at runtime), such as
erroneous output values or security breaches. Consequently,
code smells do not imply an erroneous execution of the
software program at the time being. Rather, they point to
parts in the code of which experience has shown that they
have a high chance of causing real problems in the future,
when the source code is adapted (e.g., due to highly complex
code or its low evolvable structure). Based on this approach,
Fowler et al. [4] presented a set of 22 bad smells in code,
all being the expression of their experience-based heuristic
programming knowledge build up over the years. In order to
avoid the presence of these smells, the same authors propose
a set of 72 refactorings further on in their book [4]. Here,
refactoring is not to be considered as changing the delivered
functionalities of a software program. Instead, the purpose is
to redesign the structure of (a piece of) software code so that
potentially troublesome parts (the “smells”) are removed,
while the program itself is still exhibiting the same behavior
at runtime. A short overview of those 22 code smells from
Fowler et al. [4] is presented in Table II by providing the
name of each smell, a brief description of the potential

problem anticipated to arise, as well as an explanation of
the proposed remediation.

In general, the occurrence of code smells has become
associated with the number and degree of difficulties pro-
grammers might be confronted with when trying to change
existing code. The concept has become a generally known,
accepted and established way for studying the maintainabil-
ity of software. Indeed, after the publication of the book
of Fowler et al. [4], researchers have been extending the
repository of existing code smells or using them as a basis
for empirical validation and software evaluation (see e.g.,
[5]–[8]).

Additionally, some limitations to the formulation of the
code smells by Fowler et al. [4], can be derived from earlier
related work as well, for instance based on Mäntylä et al.
[5], [9]. In [9], the authors first argue that the 22 code smells
as defined by Fowler et al. [4] are only presented in a single
flat list without providing any classification. Hence, they
might surpass the maximum number of guidelines which
can be grasped and applied by a human being concurrently.
Therefore, Mäntylä et al. [9] proposed a taxonomy of 6
bad smell categorizations, claiming to make the set of bad
smells more understandable and clarifying the relationships
between them. For example, the smells Long Method, Large
Class, Primitive Obsession, Long Parameter List and Data
Clumps were all characterized as “bloaters”, representing
situations in which a piece of code has grown so much
that it becomes difficult to be handled effectively. Another
taxonomy of the code smells can for instance be found in
[10]. In some way, such taxonomies might already be seen as
an early attempt to unify several of the code smells of Fowler
et al. [4] while looking for some common causing grounds
(i.e., what are the reasons for the smells to show up?). In
this sense, the NS theorems (being formulated in a very
widely applicable way) might show some analogy with these
attempts as their aim was to identify and eliminate causes
for barriers regarding evolvability (in terms of combinatorial
effects) as well. Further, a second limitation suggested by
Mäntylä et al. [5], [9] is the fact that the code smells are still
somewhat ambiguous, implying that their most significant
benefits are to be situated in the subjective evaluation of
software evolvability (i.e., performed by individuals). This
would limit their potential for a direct translation into
software metrics allowing the full automatic detection of
infringements by software tools. Indeed, while Fowler et
al. [4, p. 63] claimed that their aim was to offer more
specific refactoring clues than merely “some vague ideas of
programming aesthetics”, they specifically stated that they
did not want to give very “precise criteria for when a
refactoring is overdue” based on the argument that human
intuition is intrinsically superior to a set of pure metrics.
Also, both the studies of Mäntylä et al. [5] and Shneiderman
[11] show that some disagreement between a set of such
subjective software evaluations can arise (i.e., different peo-

85Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 103 / 729

Table I
SOME EXEMPLIFYING MANIFESTATIONS OF NORMALIZED SYSTEMS THEORY THEOREMS IN PRACTICE [1]–[3].

NS theorem Exemplifying manifestations

Separation of Concerns
• Message or integration bus to separate the use of various messaging protocols
• The separate use of external workflows by workflow management systems
• Multi-tier architectures separating presentation logic, application or business logic, database logic, etcetera

Action version Transparency
• Polymorphism in object-orientation
• Wrapper functions (e.g., in C)
• Interface definition languages (IDL’s) (e.g., used by frameworks such as CORBA and COM)

Data version Transparency
• XML-based technology (e.g., for web services)
• Information hiding in object-orientation (e.g., getters and setters in the JavaBean component architecture)
• Data structure passing via URL’s, property files, tag-value pairs, etcetera

Separation of States
• Asynchronous communication systems
• Asynchronous processing in general
• Stateful workflow systems

ple might evaluate the same code differently). Therefore, the
NS theorems might offer an interesting point of comparison
in this situation as well, as their formulation was aimed
at providing specific and formally proven guidelines for
obtaining software evolvability and offering an unambiguous
means of identifying violations against them. Hence, it might
be interesting to analyze the extent in which we can map the
bad code smells of Fowler et al. [4] on the NS theorems. Or,
stated otherwise, to investigate the extent in which the bad
code smells can be seen as manifestations or instantiations of
(violations regarding) the NS theorems. This will be exactly
our goal of the next section.

IV. ALIGNING NS THEOREMS WITH THE AVOIDANCE OF
CODE SMELLS

In this section, our aim will be to examine the degree
in which we can find conformance between the bad code
smells of Fowler et al. [4] and the NS theorems. In order to
do so, Table III tries to visualize and map each of the code
smells with the NS theorems. The analysis reveals three kind
of categories: (1) a set of 14 code smells in full, partial or
indirect compliance or support of the NS theorems, (2) a
set of 4 code smells not related to the NS theorems and (3)
a set of 4 code smells contradicting with the NS theorems.
We will now briefly discuss each of them.

A. Code smells in full, partial or indirect compliance or
support of the NS theorems

Most of the code smells appear to be in full accordance
with the Normalized Systems theorems. We will elaborate
two examples here. First, the Duplicate Code smell straight-
forwardly follows from the Separation of Concerns theorem.
Indeed, consider a situation in which a certain processing
function A includes (amongst others) code chunk X , which
is duplicated in another processing function B as well. This
reveals that functions A and B contain at least two concerns
(i.e., change drivers, tasks). In case X would then be
changed (e.g., due to a new version or mandatory upgrade),
both processing functions A and B should be adapted.
Considering an unlimited systems evolution perspective, the

eventual impact might become related to the overall system
size and hence result in a combinatorial effect. Second,
the Long Parameter smell is supported by, amongst others,
the Action version Transparency theorem. Suppose that a
processing function A has an interface w requiring a set
of (primitive) input parameters S1, S2, ..., Sa to perform its
functionality. Suppose further that a set of L processing
functions is calling A. A new version of A in order to incor-
porate some additional functionality might require additional
primitive input parameter(s) and hence, the interface w might
have to change (e.g., an additional input parameter Sb is
added to the parameter list). In this case, all L processing
functions should be adapted in order to keep calling A
correctly (resulting in a combinatorial effect under to un-
limited systems evolution assumption). The Action version
Transparency theorem will prohibit the creation of such
Long Parameter smell by requiring each processing function
to exhibit version transparency. In practice, this is realized by
avoiding the use of primitives (such as String, integer, etc.)
in the interface of a processing function. Instead, objects
as a whole are passed (i.e., encapsulated data structures
as suggested by Fowler et al.). This would for example
mean that instead of passing parameters amount (integer),
beneficiary name (String), etcetera, the object Invoice will
be passed to a processing function. Based on this reference
to the Invoice object, the processing function can request all
information it needs to perform its function. A new version
of a processing function A (e.g., requiring information about
the currency of the invoice) can now be implemented while
keeping the same interface (i.e., the reference to the Invoice
object) and not requiring any additional changes in the L
calling processing functions.

Also, it is strikingly to note that the definition by Fowler et
al. [4] concerning the two code smells which were mapped
on all four NS theorems (i.e., Divergent Change and Shotgun
Surgery) reflect the typical operationalization of evolvability
in NS. For example, the definition of the Divergent Change
smell almost fully corresponds with the notion of change
drivers in NS as it demands for the identification of objects

86Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 104 / 729

Table II
AN OVERVIEW OF THE 22 CODE SMELLS AS DISCUSSED BY FOWLER ET AL. [4]

Code Smell Summary
Duplicate
Code

A code fragment occurring in two or more places in the code base. The code should be refactored in such way that all the
duplicate fragments are grouped and become located at one place.

Long Method A method containing a long sequence of code, often reflecting the incorporation of multiple functionalities. For ease of use
and maintainability purposes, the code should be refactored in such way that each functionality becomes separated in its own
method.

Large Class A class containing too many (infrequently used) member variables and methods, often being an indication of duplicate code
as well. The code should be refactored in such a way that duplicate code is eliminated and fixed clumbs of variables are
separated in a distinct class.

Long Parame-
ter

Methods having a long list of needed parameters for calling them, result in complexity and maintenance issues. The code
should be refactored in such a way that instead of variables, objects are passed to the called methods. The needed information
from those objects can than be requested by using for instance typical get-methods.

Divergent
Change

The phenomenon that a class becomes frequently changed in different ways for different reasons. The code should be refactored
in such a way that everything that changes for a particular cause becomes separated in its own class.

Shotgun
Surgery

The phenomenon that when a (small) kind of change is aimed for, many (little) adaptations have to be made to a lot of
different classes. This causes additional effort to perform changes and creates risks regarding internal consistency. The code
should be refactored in such a way that changes remain contained in a single class resulting in a one-to-one link between
common changes and classes.

Feature Envy The case in which the method of an object tends to use more frequently variables (data) from other classes, than its own
variables. This can occur as objects in object-orientation are typically a combination of both data (variables) and actions
(methods). The code should be refactored in such a way that the method is replaced to the class from which it is intensively
using the data.

Data Clumbs Groups of data (variables, parameters) often occurring together in different objects. This hampers adaptability and increases
complexity of method callings. The code should be refactored in such a way that the bunches of recurring data become
separated in their own class.

Primitive Ob-
session

The (excessive) use of pure primitives or record types (i.e., a structure of data into a meaningful group) to pass on data in
software. This is often a complex and inefficient way to deal with data. Rather, the code can often be refactored in such a way
that small set of primitives is grouped into a (small) object such as a money class with variables for the number, currency,
ranges, etcetera.

Switch State-
ments

Switch statements have the tendency to indicate duplicate code in the source code as often the same switch statement is
scattered about a program in different places. In case a new clause is added, removed or changed within the statement, all
statements have to be found and changed. As such, it is proposed to refactor the code by use of polymorphism.

Parallel
Inheritance
Hierarchies

The phenomenon in which a change in a subclass of one class implies a change in the subclass of another class. This can
be seen as a special case of Shotgun Surgery smell. The code should be refactored in such a way that the instance of one
hierarchy refer to the instances of the other.

Lazy Class Each class created requires effort to create, maintain and understand. Hence, in case classes are present which are not
performing enough functionality to justify these efforts,the code should be refactored in such a way that they are removed.

Speculative
Generality

The presence of methods and classes incorporating future functionalities, but which do not always tend to be used in practice.
The code should be refactored in such a way that this overhead is reduced in order to improve understandability and
maintainability.

Temporary
Field

The situation in which a class has an instance variable which is only set in certain circumstances. This works confusing and
adds to complexity. As such, the code should be refactored in such a way that the temporary fields are replaced to a new
class, in which each instantiation effectively uses the fields.

Message
Chains

When a client asks for a certain object, the situation might occur that this object makes a request to another object, making at
its turn a request to yet another object, and so on. Such method chain creates coupling and a dependency between the client
and the calling stack. The code should be refactored in ways like adding a separate method handling the chain navigation.

Middle Man The phenomenon in which delegation is taken to an extreme situation in which a class is nearly passing all of its incoming
requests to other classes performing the actual functionality. The code should be refactored in such a way that the delegate
(“middle man”) is eliminated from the hierarchy structure.

Inappropriate
Intimacy

The case in which a class is too “intimately” tied to another class, often reflected in a low degree of cohesion of the considered,
as well as a high degree of coupling between them. The code should be refactored in such a way that the coupling between the
classes is lowered by for instance moving fields (variables), methods, rearranging directional links between classes, etcetera.

Alternative
Class with
Different
Interface

The occurrence of a number of methods doing the same thing, but having several different interfaces. Frequently, this goes
hand in hand with duplicate code. The code should be refactored in such way that the methods are renamed and adapted so
they all have the same name and interface, and duplicate code becomes removed.

Incomplete
Library class

When reusing external library classes when building your own code, these library classes may turn out to be incomplete for
performing all required functionalities. Most often, adapting these library classes is very difficult or simply impossible.

Data Class The occurrence of classes only having data fields with getter and setter methods. They form “dumb” data classes, often being
manipulated in too much detail by other classes. The code should be refactored in such a way the data fields become grouped
in the same class as the methods which mostly perform actions upon them.

Refused Be-
quest

The case in which a subclass does not need (many) of the methods its inherits from its base class. Sometimes, this is an
indication of a wrong class hierarchy. In this situation, the code should be refactored in such a way that these inconsistencies
become removed.

Comments If many commentary notes are present in the source code, this often indicates bad quality of the considered code as apparently,
many aspects need additional clarification. They are often a symptom of the above mentioned code smells. The code should
be refactored in such a way that only a little or no extra comment is required in the source code.

87Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 105 / 729

Table III
MAPPING THE 22 CODE SMELLS OF FOWLER ET AL. [4] WITH THE NORMALIZED SYSTEMS THEORY THEOREMS [1]–[3].

Code Smell SoC AvT DvT SoS
Duplicate Code •
Long Method ◦
Large Class ◦
Long Parameter • •
Divergent Change • • • •
Shotgun Surgery • • • •
Feature Envy contradicting
Data Clumbs •
Primitive Obsession •
Switch Statements ◦
Parallel Inheritance Hierarchies not related
Lazy Class not related
Speculative Generality contradicting
Temporary Field contradicting
Message Chains •
Middle Man •
Inappropriate Intimacy •
Alternative Class with Different Interface •
Incomplete Library class ◦
Data Class contradicting
Refused Bequest not related
Comments not related
•: Code smell guideline fully complying with a Normalized Systems theorem
◦: Code smell guideline partly or indirectly complying with a Normalized Systems theorem

being subject to only one kind of change at a time. An
instance of the Shotgun Surgery smell highly resembles
the definition of a combinatorial effect and the notion of
instability, entailing that a small change might have an
impact located in multiple (and eventually an unbounded
amount) of places. All four NS theorems precisely aim at
avoiding these smells to show up. These examples further
clearly illustrate that the code smells could be regarded as a
kind of symptoms of low evolvable software architectures
(i.e., one does not want to be confronted with Shotgun
Surgery), whereas the NS theorems aim to focus on the
root causes of these symptoms (i.e., how can one avoid the
occurrence of Shotgun Surgery based on a set of proven
theorems).

Finally, some code smells only seem to be partially or
indirectly supported by the NS theorems. For instance, Long
Methods, Large Classes or the use of Switch Statements
are in themselves no strict violations of any of the NS
theorems. However, as Fowler et al. [4] argue that they often
tend to give rise to duplicate code and the combination of
multiple change drivers (i.e., a violation of Separation of
Concerns), they can be thought of as indirectly supporting
the NS theorems.

B. Code smells contradicting with the NS theorems

A limited set of four code smells seems to contradict with
the Normalized Systems theorems. For instance, the code
smells Feature Envy and Data Class require and recommend
programmers to incorporate both data and the actions that
are most commonly performed on this data, in one single
construct (class). However, in [3] it was argued to analyze

the dynamic nature of programming constructs in a multi-
dimensional way (i.e., considering different versions for
a data structure, different versions for the interface of a
processing function and different versions for each of the
tasks a function consists of). As the dimensions of variabil-
ity increase even further when both data and actions are
combined into one construct (e.g., a class in typical object-
oriented methodologies), the NS theorems imply the use
of separate data elements (encapsulated with its get- and
set-methods and supporting tasks for cross-cutting concerns
such as remote access and persistence) and action elements
(containing a single functional tasks and encapsulated with
supporting tasks for cross-cutting concerns such as logging
and access control). The arguments and parameters needed
by an action element are thus to be encapsulated separately
into their own data element. This reasoning contradicts with
the guidelines based on the code smells from Fowler et
al [4]. To the extent that the Temporary Field code smell
is advocating the same combination of methods together
with a set of variables (which all have to be used by
those methods), this code smell seems contradictory to the
Normalized Systems theorems as well. Indeed, in NS, the
identification of separate data elements is prescribed even
when not every action element will necessarily use all the
fields in every instance.

The Speculative Generality smell stresses that the incorpo-
ration of future functionalities should only be implemented
when there is a reasonable chance that the functionality will
eventually be used: the implementation of less likely future
functionalities would only add unnecessary complexity. To

88Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 106 / 729

a certain extent, this might be considered as contradictory
to the NS approach as NS would prescribe to isolate each
change driver (i.e., each part of code which is anticipated
to evolve independently) as soon as possible in its own
construct as a way of anticipating all basic elementary future
changes, irrespective of its frequency of occurrence. This
might indeed introduce some additional design complexity
initially, but avoids the occurrence of combinatorial effects
later on. On the other hand, in parallel of the concerning
code smell, NS would obviously also not prescribe to
identify parts of code which are completely unlikely to
change independently, as change drivers.

C. Code smells not related to the NS theorems

While most code smells seem to be supporting the NS
theorems, some of them seem to be somewhat unrelated to
NS as well. For instance, the Lazy Class smell deals with
the deletion of code parts no longer used. This issue is not
directly discussed in NS theory (which considers the deletion
of unused parts to be an automatic process of garbage
collection instead of a change to the information system)
and therefore seems unrelated to the theorems. Equivalently,
inheritance structures (cf. the Parallel Inheritance Hierarchies
and Refused Bequest smells) are not really discussed in NS
theory as it focuses on the very basic constructs of infor-
mation systems in terms of data and actions. However, as
inheritance typically suggests to use the typical combination
in object-orientation of data and actions in one construct
(i.e., a class) these smells do not seem to arise in NS systems
(arguing for the use of separate data and action constructs).
Finally, NS theory does not directly consider the use of
Comments in the source code.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented Normalized Systems theory as
an approach for building evolvable software systems based
on a set of formally proven theorems, which seem to relate
to existing (but often tacit) best-practice heuristic software
engineering knowledge. With the aim of supporting the
claim that the NS theorems correlate with this practitioners
knowledge, we explored the relevance of the set of 22
bad code smells as formulated by Fowler et al. [4] in this
regard. Each of the code smells was mapped onto the 4 NS
theorems. The analysis showed that most of the bad code
smells are reflected by NS reasoning, with the most prevalent
impact apparently coming from the Separation of Concerns
and Data version Transparency theorems. However, a set
of 4 code smells seemed to be unrelated, while another
set of 4 code smells even seemed to be contradicting with
NS theorems. Besides relating both approaches to each
other, this paper (1) supports the work of Fowler et al.
[4] by offering a sound theoretical basis for most of their
formulated heuristic design guidelines and (2) might offer
practitioners more insights into how violations regarding NS

theorems might manifest themselves in practice. To some
extent, the code smells could then be regarded as a kind of
symptoms of low evolvable software architectures, whereas
the NS theorems aim to focusing on the root causes of these
symptoms. Future research might then be aimed at relating
other knowledge repositories regarding software engineering
heuristics towards the NS theorems.

ACKNOWLEDGMENT

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] H. Mannaert and J. Verelst, Normalized systems: re-creating
information technology based on laws for software evolvabil-
ity. Koppa, 2009.

[2] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability
based on systems theoretic stability,” Science of Computer
Programming, vol. 76, no. 12, pp. 1210 – 1222, 2011.

[3] ——, “Towards evolvable software architectures based on
systems theoretic stability,” Software: Practice and Experi-
ence, vol. 42, pp. 89–116, 2012.

[4] M. Fowler, K. Beck, J. Brant, O. W., and D. Roberts, Refac-
toring: Improving the Design of Existing Code. Addison
Wesley Professional, 1999.

[5] M. Mäntylä and C. Lassenius, “Subjective evaluation of
software evolvability using code smells: An empirical study,”
Empirical Software Engineering, vol. 11, pp. 395–431, 2006.

[6] W. Li and R. Shatnawi, “An empirical study of the bad smells
and class error probability in the post-release object-oriented
system evolution,” Journal of Systems and Software, vol. 80,
no. 7, pp. 1120 – 1128, 2007.

[7] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The
evolution and impact of code smells: A case study of two
open source systems,” in Proceedings of the 2009 3rd Inter-
national Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 390–400.

[8] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur,
“Decor: A method for the specification and detection of code
and design smells,” Software Engineering, IEEE Transactions
on, vol. 36, no. 1, pp. 20–36, jan.-feb. 2010.

[9] M. Mäntylä, J. Vanhanen, and C. Lassenius, “A taxonomy
and an initial empirical study of bad smells in code,” in
Proceedings of the International Conference on Software
Maintenance, 2003.

[10] W. C. Wake, Refactoring Workbook. Addison-Wesley Pro-
fessional, 2003.

[11] B. Shneiderman, Software psychology: human factors in
computer and information systems. Winthrop Publishers,
1980.

89Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 107 / 729

A Description Language for QoS Properties and a Framework for Service
Composition Using QoS Properties

Chiaen Lin, Krishna Kavi, Sagarika Adepu
Department of Computer Science and Engineering

Unitersity of North Texas
Denton, TX 76203 USA

chiaen@unt.edu, Krishna.Kavi@unt.edu, sagarika121@gmail.com

Abstract—Web Services Description Language (WSDL) is an
XML-based language for describing Web services and how to
access them. There are established standards and frameworks
for specifying and composing Web services based on the func-
tional properties. A WSDL extension to specify non-functional
or Quality of Service (QoS) properties is proposed in this paper.
This enables the QoS-aware Web service composition. This pa-
per introduces a framework that adapts publicly available tools
for Web services, augmented by ontology management tools,
along with tools for performance modeling to exemplify how the
non-functional properties such as response time, throughput,
and utilization of services can be addressed in the service
acquisition and composition process. The framework provides
support to achieve specified QoS goals by discovering services
based on both functional and non-functional properties, and
composing selected services such that the composed system
satisfies the overall QoS requirements. The framework can
be easily extended to automate the composition of services
and update both functional and non-function properties of the
combined services.

Keywords-WSDL; Ontologies; Quality of Services; Non-
functional Properties; Service Composition.

I. INTRODUCTION

Service oriented architecture (SOA) offers a flexible
methodology for the creation and management of soft-
ware services. Software services are well-defined business
functionalities situated in loosely-coupled and distributed
computing settings such as Cloud and Web. Each service
provides a specific and well defined functionality. Well
defined interfaces permit for the discovery and invocation
of services. Web service is a realization of the SOA con-
cept. Available standards allow for the creation, registration,
discovery and invocation of Web services. Web Services
Description Language (WSDL) can be used to specify the
functionality of a service along with its communication
protocols. Service providers can register services with Uni-
versal Description Directory and Integration (UDDI) or other
such registry services. Service repository can be queried by
customers to discover needed services. The discovery of
a service is based on searching through categories and by
matching the specification given in WSDL.

The goal of our project is to discover services based
not only on their functionality but also based on non-

functional (or quality of service) properties. In addition,
our goal includes service composition and specification of
non-functional properties of composed services. These goals
require the ability to specify non-functional (or QoS) proper-
ties with services, and the ability to compute non-functional
measures of composed services. Ascertaining certain non-
functional properties of composed service require models
and tools that are appropriate for the specific property (e.g.,
stochastic models for performance measures). In this paper,
we explore the development of the necessary framework for
composing performance properties using queuing models.

WSDL can only be used for specifying functionality of
services. Non-functional properties, including several quality
of service (QoS) characteristics, are crucial to the success
and wider adoption of Web services. Customers would like
to use QoS characteristics of Web services for selecting
from among several alternate implementations. Each of the
potential service provider declares similar functionalities
for the same purpose – thus the customer expects more
information about services. Typical among QoS properties
are security, reliability, and performance [1]. WSDL should
be extended in order to provide QoS related information
with services. Once non-functional properties of services are
specified, it will be possible to develop or extend tools for the
discovery of Web services based both on functionality and
non-functional properties. Additional tools can be designed
for service aggregation, integration and composition based
on QoS characteristics.

As we proceed with the quality-aware extension to the
specification of services, it will be necessary to define
standard metrics for non-functional properties. The Cloud
Council that is developing a practical guide to Service level
Agreements [2], recommends using ISO definitions [3] for
standard metrics. Service composition leading to the compu-
tation of QoS properties of the composed services present
new challenges. Consider for example “response time” as
a non-functional property, and consider the composition of
two services with 3ms and 5ms response times. One cannot
assume that the response time of the composed service
is 8ms, since computation of service times are based on
stochastic measures and it may become necessary to use

90Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 108 / 729

appropriate models (e.g., queuing theory) for computing the
response time of the composed service. The orchestration
of services in a composed service plays an important role
in modeling QoS properties of the composite service. In
the case of performance, additional complexity results from
the current workload at a processing node: a lightly loaded
node leads to faster response times. This may necessitate
specification of performance properties at different levels of
workloads (e.g., at low, average and heavy loads). These
complexities can be managed using ontologies for the spec-
ification of non-functional properties.

Since our motivation is not only the discovery of services
meeting QoS requirements, but also to compose services
leading to new services and ascertaining the QoS properties
of composed services, we felt that available QoS extensions
do not fully meet our needs. Hence we propose our own ex-
tensions to WSDL to specify QoS properties. To exemplify
the utilization of these extensions, we propose a framework
for service composition with the assistance of both onto-
logical and performance modeling tools. QoS properties are
modeled with the ontological engine that can be expanded
in accordance with the service declaration. Properties that
are subject to a chosen performance tool can also be noted
in the ontology model for further semantic comparisons.
In this paper, we will focus on the performance aspect of
the service; in particular service response times, utilization,
and throughput. As a proof of concept, we demonstrate the
process of WSDL extension, along with its corresponding
QoS ontology modeling, performance modeling, and service
composition using an example.

The key contributions of our work are (a) WSDL exten-
sions for specifying nonfunctional properties (b) ontology
for classification of non-functional properties (c) framework
for the discovery of services that meet both functional and
non-functional requirements (d) a framework for computing
performance (stochastic) measures of composed services.

The layout of the paper is as follows. Section 2 overviews
research that is closely related to our work. Section 3
describes how we extended WSDL to include QoS prop-
erties. Section 4 introduces the creation of QoS ontology
and performance modeling to be used in the Web services.
Section 5 uses a case study to demonstrate QoS based
Web service composition framework. Section 6 includes our
conclusions about the study.

II. RELATED WORKS

The description of non-functional properties related to
SOA operational management has been described in [4]. In
addition to adding some QoS criteria, semantic interpretation
to the extensions have been realized in various frameworks
[5] [6] [7]. An approach to describing service lifecycle
information and QoS guarantees offered by a service based
on OWL-S can be found in [8]. Here, service profiles are ap-
pended with QoSCharacteristics to generate a corresponding

service description repository. The OWL-S based repository
can automatically cover the traditional UDDI registry by
mapping its elements. In [9], WSDL is extended to X-
WSDL where non-functional criteria are added in service
definition. Following its predecessor X-UDDI [10], the Web
service registration and publication can be queried on the
basis of this criteria. In [11], a unified semantic Web services
publication and discovery framework is proposed with a
QoSMetrics extension to WSDL using PS-WSDL, USQL
for service query, and UDDI mapping suites. In this paper,
we focus on a proof of concept for WSDL extension and its
correspondent non-functional semantic model engineering,
but not on the service registration. With our framework,
it should be straightforward to apply well-defined UDDI
extension tools such as mentioned in [12], or other registry
tools.

To enable semantic description of service extensions, sev-
eral ontological languages have been proposed. An overview
of some of these languages can be found in [13]. They
focus on the semantic modeling and mapping ontology
applied to service descriptions. Our framework focusses on
the engineering of ontology model and its references to
the performance modeling tools. With the help of ontology
mapping, different service description and advertisement
standards should be easy to adapt in our framework.

Service composition methods and their languages can
be broadly categorized into different types: Orchestration,
Choreography, Coordination, and Assembly [14]. While
emphasizing from different aspects to approach the issue,
composition methods use ontology to annotate QoS at-
tributes that provide common ground for service synthe-
sis, execution, and adaptation [15]. In QoS-aware service
composition, services are selected based on inter and intra
task constraints. They can also be grouped into deterministic
and non-deterministic depending on when these attributes
were made known [14]. Various researches are hoping to
gain optimal results by using detailed descriptions of QoS
values of services during composition [16] [17]. In [18], a
quality-driven middleware serves as a composition manager
that model multidimensional QoS attributes with utility
functions, and optimizes them by local selection and global
planning for different quality criteria.

In [19], requested and provided QoS properties are ex-
pressed as required specification documents and service
specification documents respectively in the open dynamic
execution environment. The framework serves as a broker
for service compositions that utilizes QoS model in its own
ontological language. Service selection algorithms and met-
rics based on the ontology are utilized by the service broker.
Its objective is to support ad-hoc service collaborations,
while ours is to facilitate the description of QoS properties
of existing and new composite services. The work is similar
to ours with the emphasis on using ontology model as the
tool to reason QoS attributes semantically. When monitoring

91Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 109 / 729

the execution condition, the ontology model can facilitate
the selection of correct set of QoS values according to the
execution environment. The QoS-aware ontology modeling
framework we propose can serve the same purpose.

The advantage of our framework is in its facilitation of
stochastic performance evaluation during service composi-
tion. The above mentioned related works do not consider the
use of ontology and performance models working closely
to address the evaluation of QoS properties of service
composition. In addition, we consider the use of different
performance tools with the model-related elements in the
ontology, facilitating the usage of QoS attributes based
on context and selecting appropriate models and tools for
ascertaining properties during composition.

III. QOS-AWARE WSDL

WSDL is the standard language suggested by World Wide
Web Consortium (W3C) for service specification. It can be
read as a conceptual model consisting of components with
attached properties, which collectively describe the service
[20]. A WSDL specification contains abstract and concrete
descriptions of the service. At abstract level, it describes the
interface to the service: operations with message exchange
patterns (MEP) and parameter types. At the concrete level,
a binding specifies the transport type that the interface uses.
An endpoint then associates a real network address with the
binding, which forms the service. The service is invoked by
supplying the declared signature to the interface through its
endpoints.

Although the syntactic specifications provide information
about the structure of input and output messages, and
the functional descriptions of the service, WSDL does
not address non-functional properties. To fully utilize Web
services, non-functional information, along with function-
ality, is needed in the service description. To augment
any proposed extensions, backward compatibility and its
extension level must be considered. Since WSDL description
model addresses abstract and concrete components with
services, the non-functional extensions to WSDL should be
considered accordingly. It should be compatible with the
original Web services mechanism in that the addition may
be considered optional. Web service engines and operations
should be able to freely ignore the QoS information as
they choose to operate in the conventional environment.
For applications that adapt our framework, the QoS-aware
extensions are extracted easily. We decided that the ex-
tensions should be established at service level rather than
at interface level, since the WSDL interfaces are bounded
by the message exchange patterns and considered abstract
models. At service level, an endpoint is where the abstract
service binds to a concrete port type, where the overall
service performance can be noted.

WSDL2.0 Core standard provides element-based exten-
sibility that can be used to specify technology-specific

Figure 1. QoS-Aware WSDL schema for Performance parameters

binding. We create an element in WSDL to represent
QoS property specification. Then we use the element as
the extension element to the endpoint. The service with
the endpoint is therefore being annotated by the extended
properties. For a QoS property extension element, we use
complex type in the XML schema to accommodate the data
structure of the QoS. As depicted in Figure 1, the QoS-aware
extension schema exemplifies a non-functional property of
performance. Within the performance criteria, response time
is noted with its value, unit, and category. The extension
can also be further referenced by importing latest XML
schema version which can be updated on-the-fly as revising
the QoS ontology model, thus conforming to the latest XML
standards.

IV. PERFORMANCE SERVICE COMPOSITION

Service composition decisions have to be made from
considerations of both functional and non-functional re-
quirements. To manage the semantics of both aspects and
facilitate the automatic selection of service components that
meet the service level requirement, an ontology engine is
proposed to efficiently and flexibly classify both functional
and non-functional attributes. Services and their components
can be further classified according to the application domain,
using the category scheme, to facilitate the retrieval and
management of corresponding services. The availability of
desired service depends on the discovery resulting from
querying the ontology model. In case of no services meet
the requirements, existing services can be acquired and
composed. The newly composed services can then be added
to the ontology engine for future selections.

In some cases, computing the non-functional properties
of composed services requires stochastic models. Consider
performance properties of services such as response time.
These performance attributes are used to filter and rank
services so that service selections can be made. As new ser-
vices are composed from its constituent service components,
performance indexes can be generated by modeling the new

92Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 110 / 729

composition through the stochastic model. The performance
evaluation results along with the new composed service are
added back to the ontological model for future reference.

The backend of the composition framework provides
interfaces in utilizing ontology model and models for the
evaluation of QoS properties for Web service composition.
The two modules are independent and any potentially com-
patible models and tools can be plugged in. In this paper,
we illustrate the process of creating the ontological model,
and use a queuing model for composition of performance
related properties of services.

A. Ontological Property Model

Ontologies offer more accurate and flexible cataloging of
entities than taxonomies. While the latter uses hierarchical
and branched static structures to group entities and man-
age information using structural organizations, ontological
model annotates semantics with meta-data, relating prop-
erties and attributes with more complex organizations than
branching or tree like structures. Ontology model therefore
provides more flexible organization and semantic interpreta-
tion of data with entities.

The quality of service property of a Web service can be
inferred by its performance attributes. Criterion of service
selection can be formulated by the configuration of these
attributes to indicate levels of service importance. Due to
the dynamic nature provided by service oriented mechanism,
even the meaning of performance metrics should be adapted
to fit the context of the service domain. For example, a
Web service component qualified for soft real-time appli-
cation may be considered if they have reasonable response
times; however they may not be suitable for hard real-time
environments, unless the response times can be bounded.
Different contexts impose different semantic interpretations
on the same non-functional properties. However the ontol-
ogy model is highly flexible and thus multiple semantic
interpretations can be associated with properties associated
with services.

To create an ontological model for Web services, lead-
ing to service composition, we demonstrate the process
of establishing performance as non-functional property of
Web services, such as response time, server utilization, and
throughput. Further context related performance indicators
can also be easily added with similar considerations. In
order to create, update, and query the performance properties
during the Web service composition process, we need to
establish records of each and every services. We adapt the
Protege Editor [21] as the editing tool to help create an
ontology model. Protege Editor has a GUI interface [22].
Users can specifically define Entity and Class as first-class
elements in the schema along with their Object Properties.
Instance of object can be initialized as an Individual and its
Data Property can be appended. Visual tools are provided by
the editor’s plug-ins to facilitate various aspects views. There

are also several reasoners available that can be invoked to
check and infer the ontological derivations automatically.

We differentiate the first-class elements from base per-
formance and model relevant ones. The model refers to the
performance modeling used in the compostion. The base
ones serve as the mandatory performance attributes that all
the Web services are required to specify as performance
indicators. The model-related properties serve as the supple-
ment to the application-specific modeling approaches, thus
can store additional attributes for use by specific methods
and tools. In our example, the base performance classi-
fication is represented by Quality-of-Services (QoS). The
QoS subclasses ResponseTime, Throughput, and Utilization
are base performance indicators, to quantify performance
property. Model-related attributes include Workload and
Statistics. Workload here is used as an attribute to evaluate
the significance of base QoS properties. The attributes allow
for recording the criteria under which the performance
properties were derived and thus allow for adjustments when
new running environments differ from these values.

For each of the base and model-related first-class ele-
ments, classification can also be refined into detailed sub-
classes. For instance, a response time can be ranked into
subcategory such as Fast, Quick, Normal, Slow and Slug-
gish. Each of the rank can also be noted with its values that
represents the class, based on specific context. As the new
service composition emerges, the new service can easily be
accommodated in the ontological model, establish quantity
and corresponding semantics, and is ready for further queries
and reasoning. The example model described here includes
base and model-related classes and depicted in Figure 2(a).
The refined QoS rank subclasses example is depicted in
Figure 2(b).

To be able to interface with Protege Editor so that we can
update and query the ontology model for service composi-
tion processing, we further convert the ontological process
into programming. Protege-OWL provides the capability to
convert API to equivalent GUI functions and the mechanism
for plugging reasoners [23]. We follow the process steps
of creating the ontology model, and make the process
programmable. The base QoS schema can serve as the
building block for the extension of the ontology model.
The automation enhances the flexibility to experiment on
the first-class cataloging and their refined properties. It also
provides a convenient facility to plugin a specific model-
related ontology for performance modeling.

The automation process can be further extended with a
reasoner to the ontology model that enhances the reasoning
ability while interacting with the model. A reasoner imple-
menting the reasoner plugin programming interface will be
accessible in the same way that the built-in reasoners are.
We choose the Jena Framework from Apache as the reasoner
mechanism for our running example. It is well-known and
an open source tool. Its query and storage architecture can

93Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 111 / 729

(a) Performance Ontology Model (b) QoS Ontology Model with Refined Ranks

Figure 2. Ontology Models

enable more flexible online usage of the ontology engine.
We adapt Jena programming API [24] to read the ontology

model built from Protege-OWL, and validate the model by
the reasoner rules. For inference support, Jena provides a
general purpose rule engine that the ontology model can be
validated and the application specific rule can be applied to
facilitate aspects of Web service composition management.
The service composition can be fine-tuned by using the rules
from domain experts or engineers that impose application
related restrictions. For instance, assume the response time
of a quick Web service is defined to be less then five
milliseconds, the selection of the candidate Web service can
be filtered by the rule :

[print-a-quick-WebService: (?x pre-ws:hasQoS ?a) (?a
pre-ws:hasResponseTime ?b) (?b pre-ws:rt value ?c)
lessThan(?c, 5.0) → print(?x, ’has quick QoS:’,?c)]

The print-a-quick-WebService rule prints out any service
entity that has a QoS property with a ResponseTime value
smaller than 5.0 msec. Similarly, other plug-in rules can
be used to customize the model to meet the needs of an
application, such as performance rank selection in a service
category.It should be noted that it is possible to define a
reasoner that uses context related information to define fast,
slow response times subjectively, instead of using values.

The ontology model automation enables the Web ser-
vice composition to be processed online. New classes and
properties can be created on-the-fly to address the specific
needs of applications. Web service processes can also benefit
from adaptation to different service domains by interpreting
the performance parameters. The online feedback from the
analysis is the up-to-date data that enhances accuracy of the
reasoning.

B. Performance Modeling for Service Composition
Different methodologies for evaluating performance of

software services such as process algebra, queueing net-
works, and Petri nets come with different analysis tools for
example, PEPA [25], LQN [26], and SPNP [27]. Stochastic

performance models have been widely used in the perfor-
mance evaluation community. In the Web services commu-
nity, it also plays an important role in assuring that the
service performance meets service level agreements.

The purpose of our framework is to provide a platform
that enables the use of appropriate tools for performance
evaluation in Web service composition. According to the
approaches the process takes, developers can explore differ-
ent tools fit the nature of the composition. Appropriateness
can also be explored by comparing various tools for their
usability. To demonstrate the usability of the framework, we
explain the use of a queueing model with services containing
mandatory performance attributes.

While composing services, the flow among the component
services can be described using a workflow or business logic.
Each of the services can be represented as service nodes,
and the request flow can be modeled as waiting queues.
In front of each service node, requests are waiting in line
for the service to process them in order. The composition
model is formed with the integration of the coordinated
services network. The performance outcome of the queueing
network is the performance result of the newly composed
service. The mapping is seen as a close fit to both the
performance evaluation mechanism and the Web service
composition concept. In the example of our case study,
layered queueing model [26] is adapted as the tool to
demonstrate our framework. We will use an example to
illustrate the framework (see Section 5).

Layered queueing model is a conventional queueing
model embedded with the architecture of a software system
and needed resources [26]. The first class elements are
processor, task, entity, and activity. A task represents a
resource that has processors and other entities to execute.
Each of the entities in turn can invoke other entities on
other tasks to fulfill the job. These invocations are modeled
in layered fashion, and can be depicted as a directed graph.
For further detailed modeling, each entity can be represented

94Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 112 / 729

WS_r=WS_a.WS_b WS_r=WS_a||WS_b

λ=0.5

User_T

User_E
[0]

(1)

Task_a

WS_a
[0.1]

(1)

Task_b

WS_b
[0.1]

λ=0.5

User_T

User_E
[0]

(0.5) (0.5)

Task_a

WS_a
[0.1]

Task_b

WS_b
[0.1]

Figure 3. Web Services Layered Queueing Network Modeling

with more specific activities in its own data flow. For each
task and activity, there will be resource requirements spec-
ified as service time that denotes a performance attribute.
And, the mean number of calls represents the average of
invocations from one entity to another. With the information
for each task and their entities noted, a queuing network
can be constructed to represent the integration of all the
tasks, leading to workload model using either open or
closed queuing models. The former can be modeled with
mean arrival and service rates, while the latter can specified
using mean value analysis (MVA). As soon as the model is
developed, the layered queueing solver can generate reports
on the performance indexes such as service time, throughput
and utilization for both services and processors. It also
generates average waiting times in open queuing model and
mean delay in closed models.

The simplest form of a Web service composition involves
two services, say WS a and WS b. The possible compo-
sitions of the two services can be sequential or parallel
composition, say WS rs and WS rp. Borrowing the syntax
from generic process algebra, the sequential composition
can be represented as WS rs=WS a.WS b, and the parallel
composition can be represented as WS rp=WS a||WS b.
Assume WS a and WS b each represents an entity in
different tasks say Task a and Task b. Each task is assigned
to run on its own processor on different hosts say Proc a and
Proc b. The sequential and parallel composition examples
with an open arrival rate 0.5 are depicted in Figure 3.
Note that the arrival rate is categorized as workload in the
ontology model, and the example just serves as an instance.
In the case of similar services encountered same workload
but running on different platforms, the selection process have
to compare the performance indices such as response time
or throughput.

The service composition in both sequential and parallel
topology can be scaled by accommodating multiple services
at once. Resources can be exclusively owned or shared
among services. Service composition can be based on either

serial or parallel composition of the services involved. The
final layout of the queueing network is the conceptual
modeling of the Web service composition. The model can be
solved by the analyzer and generate the performance indexes
for the composed service.

C. Compositional Semantic Web Services

To export the ontological result that is acquired by the
Web service composition mechanism, we use Axis [28] as
the service publishing interface for demonstration purposes.
The interface also enables the abstraction that Web service
ontological engine (WSOE) and performance modeling en-
gine provide.

The WSOE provides for composition of services in the
context of Web services management. The utility of the com-
position services include basic service information main-
tenance and composition. Service management functions
include insertion, update, and deletion. WSOE Insertion
creates a record in the performance ontology model with
its name and associated performance properties. The per-
formance properties in our running example is the response
time of the service. Other non-functional or QoS properties
can also be included within our framework. WSOE Update
and WSOE deletion are used to update and remove the
correspondent services.

New service composition information created by the
WSOE can be obtained by the WSOE Compose Seq or
WSOE Compose Par. The former will take the list of Web
services in the order specified, and model them as a sequen-
tial network in the layered queueing model. The output will
be the performance indexes for the composed service. For
our simple example, the composition would return the pre-
dicted execution time. Likewise, WSOE Compose Par will
take a list of Web service in the argument, and model them as
parallel network in the queueing model. The sequential and
parallel compositions can be combined to obtain any general
compositions of services. The list of the service interfaces
are listed in Table I.

V. CASE STUDY

To demonstrate the web services composition framework,
we will use a facial recognition service as an example. We
chose this example because of our familiarity with it while
working on a related project on service composition. The
service collects image data from an attached camera and
identifies the presence of human faces. The service consists
of Facial Detection (FD), Image Converter (IC), and Facial
Recognizer (FR), in that order. First each of the component
services are described using our QoS-aware WSDL to denote
both functional and non-functaional properties. For each of
these services we keep their QoS records in the ontology
repository. We will assume that the services are all regis-
tered so that search engine can match potential candidates

95Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 113 / 729

Table I
WEB SERVICE INTERFACES OF WSOE

Service Name Parameters Result
WSOE Insert Service Name, Response Time Boolean (True/False)
WSOE Update Service Name Boolean (True/False)
WSOE delete Service Name Boolean (True/False)
WSOE Compose Seq SN1...SNn Service Name, Response Time
WSOE Compose Par SN1...SNn Service Name, Response Time

Table II
LAYERED QUEUEING MODEL FOR FACIAL RECOGNITION SERVICE

COMPOSTION EXAMPLE

#General Section Service time:
G
”Web service modeling.” Task Name Entry Name Phase 1
0.00001 User T User E 50.4902
100 FD T FD E 0.5
1 IC T IC E 0.4
0.9 FE T FR E 0.3
-1
Processor Information Service time variance (per phase)
P 0 and squared coefficient of variation (over all phases):
p User P f i
p FD P f Task Name Entry Name Phase 1 coeff of var **2
p IC P f User T User E 7598.29 2.98059
p FR P f FD T FD E 0.75 3
-1 IC T IC E 0.34 2.125

FE T FR E 0.09 1
Task Information
T 0
t User T r User E -1 User P m
100

Throughputs and utilizations per phase:

t FD T n FD E -1 FD P
t IC T n IC E -1 IC P Task Name Entry Name Throughput Phase 1 Total
t FE T n FR E -1 FR P User T User E 1.98058 100 100
-1 FD T FD E 1.98058 0.990291 0.990291

IC T IC E 1.98058 0.792233 0.792233
#Entry Information FE T FR E 1.98058 0.594175 0.594175
E 0
s User E 0 -1
y User E FD E 1 -1
s FD E 0.1 -1
y FD E IC E 1 -1
s IC E 0.1 -1
y IC E FR E 1 -1
s FR E 0.3 -1
-1

meeting both functional and non-functional requirements of
the customer.

To create the composed service, a list of qualified can-
didates of each component services are evaluated. Let us
assume that our selection picked FD E, IC E, and FR E
as service components. We will now evaluate the non-
functional values for response time of the composed ser-
vice. We model the layered queueing network as follows.
The service components are mapped as the entities in the
layered queueing network with their correspondent tasks
PD T,IC T, and FR T, each of which uses processors
FD P,IC P, and FR P. The modeling script and the perfor-
mance indexes of the example are shown in Table II.

Furthermore, let us assume that Image Converter (IC)
service can be composed in parallel to improve performance.
The composition engine can be configured to explore the
service composition using parallel workflow among the ser-
vices. The new composition would use two Image Converter
(IC) services in parallel named IC E1 and IC E2. The
modeling script of the example and the performance indexes
result are shown in Table III.

Although we only used a simple example and a single
property here, our framework is very general and flexible
so that it can be easily extended for more complex service
discovery based on many QoS properties, and can composed
in very complex manner.

Table III
LAYERED QUEUEING MODEL FOR FACIAL RECOGNITION SERVICE

COMPOSTION EXAMPLE

#General Section Service times:
G Task Name Entry Name Phase 1
”Web service modeling.” User T User E 82.342
0.00001 FD T FD E 0.82
100 IC T IC E1 0.36
1 IC E2 0.36
0.9 FE T FR E 0.3
-1

Service time variance (per phase)
Processor Information and squared coefficient of variation (over all phases):
P 0
p User P f i Task Name Entry Name Phase 1 coeff of var **2
p FD P f User T User E 20207.5 2.98037
p IC P f FD T FD E 1.24138 1.84619
p FR P f IC T IC E1 0.3096 2.38889
-1 IC E2 0.3096 2.38889

FE T FR E 0.09 1
Task Information
T 0 Throughputs and utilizations per phase:
t User T r User E -1 User P m
100

Task Name Entry Name Throughput Phase 1 Total

t FD T n FD E -1 FD P User T User E 1.21445 100 100
t IC T n IC E1 IC E2 -1 IC P FD T FD E 1.21445 0.995846 0.995846
t FE T n FR E -1 FR P IC T IC E1 1.21445 0.437201 0.437201
-1 IC E2 1.21445 0.437201 0.437201

Total: 2.42889 0.874401 0.874401
#Entry Information FE T FR E 2.42889 0.728668 0.728668
E 0
s User E 0 -1
y User E FD E 1 -1
s FD E 0.1 -1
y FD E IC E1 1 -1
y FD E IC E2 1 -1
s IC E1 0.06 -1
y IC E1 FR E 1 -1
s IC E2 0.06 -1
y IC E2 FR E 1 -1
s FR E 0.3 -1
-1

VI. CONCLUSION

In this paper, we described a framework for composing
Web-services using both functional and QoS properties. We
first extended WSDL descriptions of Web-services so that
non-functional or quality of service parameters can be asso-
ciated with the service. We also developed APIs for locating
Web-services based on both functional and non-functional
properties. We have developed ontologies that can be used
to select and compose Web-services. For the purpose of
composing non-functional properties of component services,
new reasoning engines must be developed. Different non-
functional properties may require different reasoning en-
gines. In this paper, we outlined how performance properties
can be composed using queuing engines. For the purpose of
this paper we demonstrated how services can be composed
either in series or in parallel, and used a queuing engine to
derive the performance properties of the composed service.

We plan to extend the framework for composing Web-
services using other types of QoS properties. While it is
possible to use other available tools, in our study we will
rely on open source tools.

VII. ACKNOWLEDGEMENTS

This research is supported in part by the Net-Centric In-
dustry/University Cooperative Research Center (Net-Centric
IUCRC) and a grant from NSF, #1128344.

96Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 114 / 729

REFERENCES

[1] S. Balasubramaniam, G. Lewis, E. Morris, S. Simanta, and
D. Smith, “Challenges for assuring quality of service in a
service-oriented environment,” in Principles of Engineering
Service Oriented Systems, 2009. PESOS 2009. ICSE Work-
shop on. IEEE, 2009, pp. 103–106.

[2] “Practical guide to cloud service level agreements,” 2012,
http://www.cloud-council.org/press-release/04-03-12.htm [re-
trieved: Oct,2012].

[3] “ISO/IEC 20926,” 2009, http://www.iso.org/iso/home/store/
catalogue tc/catalogue detail.htm?csnumber=51717
[retrieved: Oct,2012].

[4] D. Edmond, J. O’Sullivan, and A. ter Hofstede, “What’s in a
service? towards accurate description of non-functional ser-
vice properties,” Distributed and Parallel Databases Journal,
vol. 12, pp. 117–133, 2002.

[5] S. Chaari, Y. Badr, and F. Biennier, “Enhancing web service
selection by qos-based ontology and ws-policy,” in Proceed-
ings of the 2008 ACM symposium on Applied computing.
ACM, 2008, pp. 2426–2431.

[6] H. Muñoz Frutos, I. Kotsiopoulos, L. Vaquero Gonzalez, and
L. Rodero Merino, “Enhancing service selection by semantic
qos,” The Semantic Web: Research and Applications, pp. 565–
577, 2009.

[7] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell, “Sawsdl:
Semantic annotations for wsdl and xml schema,” Internet
Computing, IEEE, vol. 11, no. 6, pp. 60–67, 2007.

[8] C. Schröpfer, M. Schönherr, P. Offermann, and M. Ahrens,
“A flexible approach to service management-related service
description in soas,” Emerging Web Services Technology, pp.
47–64, 2007.

[9] N. Parimala and A. Saini, “Web service with criteria: Ex-
tending wsdl,” in Digital Information Management (ICDIM),
2011 Sixth International Conference on. IEEE, 2011, pp.
205–210.

[10] Parimala, N. and Saini, A., “Decision support web service,”
Distributed Computing and Internet Technology, pp. 221–231,
2011.

[11] T. Pilioura and A. Tsalgatidou, “Unified publication and
discovery of semantic web services,” ACM Transactions on
the Web (TWEB), vol. 3, no. 3, p. 11, 2009.

[12] C. Atkinson, P. Bostan, G. Deneva, and M. Schumacher, “To-
wards high integrity uddi systems,” in Business Information
Systems Workshops. Springer, 2009, pp. 350–361.

[13] C. Pedrinaci, M. Maleshkova, M. Zaremba, and M. Panahi-
azar, “Semantic web services approaches,” Handbook of Ser-
vice Description, pp. 159–183, 2012.

[14] G. Baryannis, O. Danylevych, D. Karastoyanova, K. Kritikos,
P. Leitner, F. Rosenberg, and B. Wetzstein, “Service composi-
tion,” Service research challenges and solutions for the future
internet, pp. 55–84, 2010.

[15] G. Dobson and A. Sanchez-Macian, “Towards unified
QoS/SLA ontologies,” in Services Computing Workshops,
2006. SCW’06. IEEE. IEEE, 2006, pp. 169–174.

[16] G. Canfora, M. Di Penta, R. Esposito, and M. Villani,
“Qos-aware replanning of composite web services,” in Web
Services, 2005. ICWS 2005. Proceedings. 2005 IEEE Inter-
national Conference on. IEEE, 2005, pp. 121–129.

[17] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma, “A qos-aware
selection model for semantic web services,” Service-Oriented
Computing–ICSOC 2006, pp. 390–401, 2006.

[18] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “Qos-aware middleware

for web services composition,” Software Engineering, IEEE
Transactions on, vol. 30, no. 5, pp. 311–327, 2004.

[19] A. Mukhija, A. Dingwall-Smith, and D. S. Rosenblum, “Qos-
aware service composition in dino,” in Web Services, 2007.
ECOWS’07. Fifth European Conference on. IEEE, 2007, pp.
3–12.

[20] R. Chinnici, J. Moreau, A. Ryman, and S. Weerawarana,
“Web services description language (wsdl) version 2.0 part
1: Core language,” W3C Recommendation, vol. 26, 2007.

[21] H. Knublauch, R. Fergerson, N. Noy, and M. Musen, “The
protg owl plugin: An open development environment for
semantic web applications,” The Semantic WebISWC 2004,
pp. 229–243, 2004.

[22] M. Horridge, H. Knublauch, A. Rector, R. Stevens, and
C. Wroe, “A practical guide to building owl ontologies using
the protg-owl plugin and co-ode tools edition 1.0,” The
University Of Manchester, 2004.

[23] H. Knublauch, “Protg-owl api programmers guide,” 2008-
04-22].http://protege.stanford.edu/plugins/owl/api/guide.html,
2006.

[24] A. Jena, “semantic web framework for java,” URL:
http://jena.sourceforge.net, 2007.

[25] S. Gilmore and J. Hillston, “The pepa workbench: a tool
to support a process algebra-based approach to performance
modelling,” Computer Performance Evaluation Modelling
Techniques and Tools, pp. 353–368, 1994.

[26] G. Franks, P. Maly, M. Woodside, D. C. Petriu, and A. Hub-
bard, “Layered queueing network solver and simulator user
manual,” Dept.of Systems and Computer Engineering, Car-
leton University (December 2005), 2005.

[27] G. Ciardo, J. Muppala, and K. Trivedi, “Spnp: stochastic petri
net package,” in Petri Nets and Performance Models, 1989.
PNPM89., Proceedings of the Third International Workshop
on. IEEE, 1989, pp. 142–151.

[28] A. Axis, “Apache web services project,” Available HTTP:
http://ws.apache.org/axis, 2010.

97Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 115 / 729

Context Awareness in Learning Human Habits
Szymon Bobek

AGH University of Science and Technology
al. A. Mickiewicza 30

Krakow, Poland
Email: sbobek@agh.edu.pl

Weronika T. Adrian
AGH University of Science and Technology

al. A. Mickiewicza 30
Krakow, Poland

Email: wta@agh.edu.pl

Abstract—Mobile devices have gained steadily increasing pop-
ularity over the last few years. They collect and process various
kinds of data which can be used as rich inputs to infer user
preferences and habits. In this paper, we propose an architecture
of a mobile application that will serve as an intelligent assistant
capable of learning human habits and giving suggestions and
recommendations. The system will learn patterns in its user’s
behavior with respect to his or her location, social preferences
and activities that can be measured with a mobile phone sensors.
Data gathered by the mobile device will be used to model
daily, monthly or annual routines of the user. Based on that
model, the mobile assistant will be able to find deviations in
an organizational rhythm of the user and perform appropriate
actions. The system will uses machine learning algorithms and
ontologies to learn and model human behavior.

Keywords-Context-awareness; machine learning; ontologies;
mobile applications.

I. INTRODUCTION

Various information and data sources can be nowadays
reached from nearly every place in the world. Internet access
is now possible through notebooks, tablets and more often –
mobile phones, which are omnipresent in human daily routine.
The last tend to play a role of all–in–one devices that serve as
phones, calendars, web browsers, GPS navigations, and social
media interfaces.

Modern mobile phones (or more commonly named: smart-
phones) can be themselves valuable data sources of human
habits with respect to:

• one’s usual location over time (for instance home, work,
cinema, etc.),

• one’s social preferences (who, where and how often the
one meets),

• one’s entertainment preferences (e.g., one more often
goes to the opera than cinema),

and combinations of the above.
Monitoring human behavior can lead to development of a

rich knowledge base, not only useful for sociologists, but also
being a great input into systems that, based on the individual
habits, will try to optimize user daily routines. Intelligent
houses [1] are one of the most popular way of implementing
ambient intelligence [2] solutions in real life. Tools monitor-
ing human social behavior [3] with smartphones show that
ubiquitous computing and machine learning techniques can
be successfully implemented on mobile platforms as real-time
hybrid systems.

One of the biggest advantage of using mobile platforms
is that a system deployed on it can accompany its user
almost everywhere. Hence, it can become a powerful source
of information about the user behavior. This paper presents an
idea of using smartphones to monitor and learn human habits
from heterogeneous sources: phone sensors (accelerometer,
Bluetooth, light sensor), GPS data or data available from
functionalities like location sharing via Facebook. Information
gathered from these sources can be treated as an input for
a system that will learn human habits and act upon this
knowledge as a intelligent mobile assistant.

The paper is organized as follows: In Section II, we present
an overview of selected related work. The original contribution
of our approach is discussed in Section III. Section IV de-
scribes techniques that can be used for knowledge acquisition
about human behavior. The proposed method of modeling in
a way that can be used for further inference is presented
in Section V. Section VI describes challenges and main
problems faced by our approach. The paper is summarized
in Section VII.

II. RELATED WORK

Ambient intelligence applications and ubiquitous computing
are nowadays widely used in intelligent systems. Various sorts
of such systems cover different aspects of human living. One
of the most popular automation systems are intelligent houses.
Projects like CASAS [4], MavHome [5], or Intellidomo [1]
build user profiles based one their activity at home during a
day. Several techniques are incorporated within these projects
that are crucial in discovering human habits. They include:

• temporal reasoning for describing time dependencies be-
tween the activities,

• methods of automatically constructing universal models
by taking the output of sequential data mining algorithms
and sequential prediction algorithms,

• methods of discovering sequences of user actions in a
system based on speech recognition, and

• ontologies and production rules for describing model of
human behavior.

However, intelligent houses build human profile and can
adapt to it only within a limited space. They create human
habits models using data from sensors installed within a
house. Hence, the behavior profile is limited to describing user
activities inside this building.

98Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 116 / 729

A different approach is represented in the SocialCircuits
platform [3]. The platform uses mobile phones to measure
social ties between individuals, and uses long- and short-term
surveys to measure the shifts in individual habits, opinions,
health, and friendships influenced by these ties.

Sociometric badge [6] has been designed to identify human
activity patterns, analyze conversational prosody features and
wirelessly communicate with radio base-stations and mobile
phones. Sensor data from the badges has been used in various
organizational contexts to automatically predict employee’s
self-assessment of job satisfaction and quality of interactions.

Reality Mining is a term coined by Eagle and Pentland [7].
The authors used mobile phone Bluetooth transceivers, phone
communication logs and cellular tower identifiers to identify
the social network structure, recognize social patterns in daily
user activity, infer relationships, identify socially significant
locations and model organizational rhythms.

III. MOTIVATION

Most of the systems described in Section II monitor and
build human profile based on data gathered from sources that
are highly correlated. They are limited to one domain of user
activity, like home daily routine or social activities. Moreover,
they are more concerned with monitoring human environment
than a human within the environment. Hence, it is not possible
to create a comprehensive human habits profile based on a
human daily routine. The project that is the closest to the idea
that we want to incorporate in our work is described in [7].
However, the information presented by Eagle and Pentland was
not incorporated into any real-life system. In addition to this,
data gathered within the project was processed using statistical
and machine learning tools, but no formal model of the human
behavior was presented.

The original contribution of our approach consists in:
1) extending the idea presented in [7] by additional

data sources: GPS location, accelerometer sensors,
Wifi/GPRS activity, and RFID sensors,

2) learning and developing a model of human behavior with
methods that allow for automated inference (formally
grounded ontologies, see Section V), and

3) implementing a system that will work in real-time as a
mobile assistant.

A system that has all the above mentioned information
at its disposal can act as an intelligent assistant, monitoring
regular behaviors of the users and recommending actions or
signaling aberrations. Such an assistant can be a helpful tool
optimizing daily routines of multi-tasking persons that interact
with technology on a daily basis. This optimization will mainly
consist in suggesting specific actions or decisions inferred
from the model of the user habits and external knowledge.
However, this is not an only possible area of application.

Equally important is enriching the quality of life for elderly
people who wish to stay mobile and independent. Nowadays,
technology services are available to and used by more and
more adults, and the number of technology-aware raisins will
increase over time. Helping them is not only an important goal,

but also a trending research field, supported by international
funding programs such as Ambient Assisted Living. The
program is motivated by the demographic change and aging in
Europe, which implies both challenges and opportunities for
the citizens, the social and health care systems, the industry
and the EU market. Our proposal aligns with the newest
call for proposal entitled: ”ICT-based Solutions for (Self-
) Management of Daily Life Activities of Older Adults at
Home”. By encompassing other data sources into the profile
modeling, we can enhance the solution to assist people also
outside their houses.

IV. SYSTEM PROPOSAL

This section is reworked to answer reviewers’ comments
We propose a mobile assistant system that will learn the
human behavior patterns, build a semantic model of them
and be able to reason over it. In particular, it will recognize
aberrations and react to them or suggest decisions based on
observations of human regular behavior. Example use cases
may include: deciding on route based on the transportation
habits and current traffic, adjusting daily meetings based on
the user’s location habits, or warning users if some variances
are recorded (e.g., being late for work or forgetting shopping).

A. Proposed Architecture

The architecture of the proposed system can be observed in
Figure 1. Data Sources module is responsible for gathering:

GPS WiFi RFID

Accelerometers

Bluetooth

Behavior patterns
recognition

OWL SWRL

Reasoning

Data Sources

Model

Inference

Private
Cloud

Fig. 1. Proposed Architecture of the Mobile Assistant System.

• GPS location over time,
• the location with respect to other devices (RFID and

Bluetooth data),
• accelerometer data determining if the user is walking,

running, or not moving at all.
Inference module performs the main learning and reasoning

tasks. In the learning phase, it identifies human behavior pat-
terns, by recognizing and clustering heterogenous information
(location, time, speed etc.) The other function of the module
is inferring relations between activities and suggesting actions
to be taken. Some of the suggestions will be automatic, based
on rules defined in the Model module, e.g., If it is time that

99Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 117 / 729

regularly the user is driving to work but now the user is not
moving, then play a loud alarm to wake them up. It is also
planned that the user will be able to define their own rules,
e.g., If I run for 15 minutes at a speed above average, play a
tune of... (my favourite song).

The Model module will store the model of the user profile.
The model will comprise of an ontology and rules (see
Section V for more details). It initially consists of a top-
level ontology and rules defined for abstract concepts. During
learning the human behavior patterns, the ontology will be
specialized and adapted to the particular user, its common
locations (e.g., home, work, park), typical intervals of time
(e.g., morning, evening, workday) and objects (persons and
devices). The abstract rules are then instantiated to work on
specific locations and time intervals characteristic for the user.

B. Learning Human Habits

The system will work in two phases: learning and acting. In
the learning phase, the data (in a form of vectors describing
different dimensions of information) will be an input for
machine learning algorithms [8] that will try discover patterns
in human daily routine. The K-Means clustering algorithm
will be implemented to identify users behavior patterns in
daily routine. After the clusters are identified, they will be
semantically annotated by a user.

The system will propose sets of initially classified data and
ask to categorize them (identify certain ranges of values).
For instance, locations can be flagged as home, work, cinema
etc. Other devices recognized via Bluetooth or RFID sensors
can represent other users or objects. Time intervals can be
identified as mornings, evenings, workdays etc. Various speed
values can be assigned by user as walking, running, or driving.

The above classification will lead to the development of a
personal ontology based on a top-level ontology. The clas-
sification will allow to build context predicates, e.g., <user,
locatedIn, park>, <user, performs, running>, based on which
the activities (e.g., shopping, driving to work, meeting friends,
relaxing) will be defined (see Section V).

Once the learning phase is done, the data gathered by the
Data Sources module will be passed to the Inference module
where on-line pattern identification will be performed and
appropriate action taken. Since the on-line classification has
to be fast, the artificial neural network implemented on the
mobile device will be responsible for this.

The system, based on the real-life data, will predict if the
user is realizing daily routine or if there are some derogations
that should be reported. To allow this feature to work properly,
a special model of human behavior and daily habits should be
created. The proposal of this model is sketched in Section V.

V. KNOWLEDGE REPRESENTATION

Data gathered by sensors can be uniformly represented
using a graph model. Persons recognized via Bluetooth and
objects identified with RFID can be uniquely represented as
named nodes in the graph. This approach partially realizes the
Internet of Things [9] idea in blending the borders between the

real world and the virtual model. Accelerometer data will serve
to calibrate the ranges for concepts such as running, walking or
driving and GPS coordinates will be aggregated and named as
locations (home, work, grocery store etc.). Multiple relations
will combine into a semantic network representing the user
behaviors and habits. The information will be represented with
RDF [10], a flexible and universal Semantic Web [11] lan-
guage that will allow the representation all of the information
in a standardized way.

In order to enable automatic reasoning, formalization of the
representation is needed. In our approach, we have adopted the
top-level ontology for smart environments introduced by Ye
et al. in [12]. The authors have identified common semantics
for several domains (time, location, speed etc.) and their
shared relations, such as: finer-grained, equal to, conflicting
or overlapping. Consequently, this top-level ontology provides
”generic rules to facilitate pervasive tasks including detecting
inconsistency of information, generating new knowledge such
as new activities for different applications and new relation-
ships between concepts, contexts, and activities” [12].

The chosen ontology provides a framework for several di-
mensions of information. Therefore, it is suitable for modeling
human habits profiles in various locations and time intervals.
Each dimension of information contains a set of irreducible
grounded values (e.g., GPS coordinates, second). Over the
ranges of grounded values, abstract values are identified.
These are mappings to a set of grounded values and are done
by semantic tagging by user over preliminary classified data
(see Section IV). Abstract values define the ranges of grounded
values and allow to create user-specific subclasses (e.g., park,
morning) of the top-level classes like location or time.

Abstract values serve to build the context predicates
e.g., <user, locatedIn, park>, <user, performs, running>,
which, in turn, are used to define activities (e.g., shop-
ping, driving to work, meeting friends, relaxing). Activi-
ties are defined by a conjunction of context predicates, e.g.
<user, locatedIn, park> ∧ <user, performs,
running> ∧ <sensor, time, 7:00>⇒<user,
engagesIn, ’’jogging’’> (see [12] for more details).
The rules which govern the logic of the application will
operate on the activities and timestamps and will activate
certain actions or recommendations.

Using a formally-grounded ontology in the system allows
for automated logical inference over the model, which is
developed based on data gathered in the application. Intended
modeling language is OWL [13]. The initial model has been
prototyped in OWL and SWRL [14], because this is the
modeling language of the Ontonym ontologies [15].

VI. CHALLENGES AND PROBLEMS

There are several challenges and problems to be considered.
One of the main problems is the privacy issue. Users may
not want to have information about their location stored on a
global server. A separate system called private cloud has to be
developed, that would allow users to store private data on their
computers, and share it only with selected users. The idea of

100Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 118 / 729

the private cloud combines two paradigms of storing data: 1)
privacy and 2) distribution of data. The first aspect puts stress
on the confidentiality of data: only the owner of the data and
authorized users have access to the data. The second aspect
touches the problem of accessability of data. If data has to
be accessible for many mobile users, the most efficient way
is to store it in the distributed environment called cloud. That
comes with the privacy issues that leads to the conclusion that
safety and distribution is very challenging combination that
is out of the scope of this work. Another problem is battery
cost. The software that would use data from several sensors
and process it in a real time will be very power-consuming.
Installed on a mobile phone, this may cause the battery to
run out very quickly. Another type of challenges is related to
users with high entropy of their daily routine. For example,
a person who works as a taxi driver probably will not have
an usual location that can be tagged as for instance work.
Those problems and challenges will have to be addressed in
later work in order to ensure the software works correctly and
efficiently.

VII. CONCLUSION AND FUTURE WORK

Mobile devices have gained steadily increasing popularity
over the last few years. They collect and process various
kinds of data from registering calls and storing messages to
logging GPS locations and receiving data from other devices
via wireless protocols. These collections of data can be used
as rich inputs to infer user preferences and habits. In this
paper, we presented a proposal of an architecture of a mobile
application that will serve as an intelligent assistant capable of
learning human habits and giving suggestions and recommen-
dations. Several techniques are planned to be implemented
in the project, including machine learning algorithms for
patterns recognition in human daily routine and ontologies
for modeling human behavior. The system can not only be
dedicated to people who would like to optimize their daily
routine, but also for those who need care and attention during
a day. The system can work as an artificial assistant for older
people, or as health care tool that will help monitoring and
reporting patients behavior.

For future work, we plan to adapt the semantic knowledge-
based wiki environment Loki to allow the user to monitor and
configure their semantic profile [16]. Using visual methods
for designing rules [17], the user will be able to define
their own actions to be taken in case of a variance in their
behavior. Enriching the functionality by allowing collaboration
among users [18] will open up possibilities of e.g., organizing
meetings and adjusting behavior profiles of several people.

ACKNOWLEDGMENT

The paper is supported by the AGH University of Science
and Technology Grant 11.11.120.859.

REFERENCES

[1] A. Lozano-Tello and V. Botn-Fernndez, “Analysis of sequential events
for the recognition of human behavior patterns in home automation
systems,” in Distributed Computing and Artificial Intelligence, ser.
Advances in Intelligent and Soft Computing, S. Omatu, J. F. De Paz San-
tana, S. R. Gonzlez, J. M. Molina, A. M. Bernardos, and J. M. C.
Rodrguez, Eds. Springer Berlin / Heidelberg, 2012, vol. 151, pp. 511–
518.

[2] B. Epstein, “Ambient intelligence sources,” http://www.epstein.org/
brian/ambient intelligence.htm, [retrieved: September, 2012].

[3] I. Chronis, A. Madan, and A. S. Pentland, “Socialcircuits: the art of
using mobile phones for modeling personal interactions,” in Proceedings
of the ICMI-MLMI ’09 Workshop on Multimodal Sensor-Based Systems
and Mobile Phones for Social Computing, ser. ICMI-MLMI ’09. New
York, NY, USA: ACM, 2009, pp. 1:1–1:4.

[4] P. A. Valiente-Rocha and A. L. Tello, “Ontology and swrl-based learning
model for home automation controlling.” in ISAmI, ser. Advances in Soft
Computing, J. C. Augusto, J. M. Corchado, P. Novais, and C. Analide,
Eds., vol. 72. Springer, 2010, pp. 79–86.

[5] G. M. Youngblood, D. J. Cook, and L. B. Holder, “Managing adaptive
versatile environments,” Pervasive and Mobile Computing, vol. 1, no. 4,
pp. 373–403, 2005.

[6] D. O. Olgun, B. N. Waber, T. Kim, A. Mohan, K. Ara, and A. Pentland,
“Sensible organizations: Technology and methodology for automatically
measuring organizational behavior,” IEEE TRANSACTIONS ON SYS-
TEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, pp. 43–
55, 2009.

[7] N. Eagle and A. (Sandy) Pentland, “Reality mining: sensing complex
social systems,” Personal Ubiquitous Comput., vol. 10, no. 4, pp. 255–
268, Mar. 2006.

[8] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[9] K. Ashton, “That ’Internet of Things’ Thing,” http://www.rfidjournal.
com/article/view/4986, [retrieved: September, 2012].

[10] E. Miller and F. Manola, “RDF primer,” W3C, Tech. Rep., 2004.
[11] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”

Scientific American, May 2001.
[12] J. Ye, G. Stevenson, and S. Dobson, “A top-level ontology for smart

environments,” Pervasive and Mobile Computing, vol. 7, no. 3, pp.
359 – 378, 2011, knowledge-Driven Activity Recognition in Intelligent
Environments.

[13] F. van Harmelen and D. L. McGuinness, “OWL Web Ontology Language
overview,” W3C, Tech. Rep., 2004.

[14] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, “SWRL: A semantic web rule language combining OWL and
RuleML, W3C member submission 21 may 2004,” W3C, Tech. Rep.,
2004.

[15] G. Stevenson, S. Knox, S. Dobson, and P. Nixon, “Ontonym: a collection
of upper ontologies for developing pervasive systems,” in Proceedings
of the 1st Workshop on Context, Information and Ontologies, ser. CIAO
’09. New York, NY, USA: ACM, 2009, pp. 9:1–9:8.

[16] W. T. Adrian, S. Bobek, G. J. Nalepa, K. Kaczor, and K. Kluza, “How to
reason by HeaRT in a semantic knowledge-based wiki,” in Proceedings
of the 23rd IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2011, Boca Raton, Florida, USA, November 2011,
pp. 438–441.

[17] A. Ligeza and G. J. Nalepa, “A study of methodological issues
in design and development of rule-based systems: proposal of a
new approach,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 1, no. 2, pp. 117–137, 2011. [Online].
Available: http://onlinelibrary.wiley.com/doi/10.1002/widm.11/pdf

[18] G. J. Nalepa, “Collective knowledge engineering with semantic wikis,”
Journal of Universal Computer Science, vol. 16, no. 7, pp. 1006–1023,
2010. [Online]. Available: http://www.jucs.org/jucs 16 7/collective
knowledge engineering with

101Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 119 / 729

Automated Construction of Data Integration Solutions for Tool Chains

Matthias Biehl, Jiarui Hong, Frederic Loiret
Embedded Control Systems

Royal Institute of Technology
Stockholm, Sweden

{biehl,hong,floiret}@md.kth.se

Abstract—Modern software development relies increasingly
on the orchestrated use of development tools in the form of
seamless, automated tool chains. Tool chains are becoming
complex software systems themselves, however, the efficient
development of tool chains is a largely unsupported, manual
engineering task. We propose both a domain specific mod-
eling language for systematically specifying tool chains and
generators for efficiently realizing the tool chain as software.
Tool chain software consists of diverse components, such as
service-oriented applications, models and model transforma-
tions, which we produce by different generative techniques.
We study both the separate generative techniques and the
dependencies between the generated artifacts to ensure that
they can be integrated. We evaluate the approach both quan-
titatively and qualitatively, and show in a case study that the
approach is practically applicable when building a tool chain
for industrially relevant tools.

Keywords-Domain Specific Modeling; Tool Integration; Proto-
typing; Higher-Order Model Transformation; Code Generation.

I. INTRODUCTION

Since modern development relies more and more on
sophisticated development tools, the integration of these
tools becomes an important issue. The development tools
may be modeling tools, simulation tools, verification tools
etc., which are typically not designed with ease of integration
in mind [7]. The integration of development tools thus
requires a sizable engineering effort, including the extraction
of data from the integrated tools, adherence to integration
standards and mapping of the data between the formats of
different tools. Manually implementing the tool chain is
time-consuming and error-prone.

Realizing a model-based tool chain as software involves
writing source code for two distinct parts. The first part
deals with setting up the infrastructure for model-based
tool integration, such as transformation engines or tracing
tools. The second part realizes the actual exchange of tool
data, such as the extraction of data from the tool and its
transformation into a different format or representation.

Several approaches for tool integration are mentioned in
the literature, for example model-based tool integration [1],
weaving-based tool integration [6] or ontology-based tool
integration [12]. Model-based tool integration assumes that
data of different tools is available in the form of models,

which adhere to metamodels, and model transformations,
which describe the data conversion [1]. The focus of model-
based tool integration is thus on describing tool data and its
relations (expressed as models, metamodels and transforma-
tions).

The entire tool chain, however, is only an implicit concept.
As a result of this lack of an overall picture of the tool
chain, existing approaches do not uncover the potential
for supporting the development of complete tool chains.
Existing approaches typically assume that the source code
for providing tool data and functionality is implemented
manually. If the implementation needs to follow integration
standards, such as OSLC (Open Services for Lifecycle
Collaboration) [24], it can be tedious to implement this code.
Existing approaches also assume that the data conversion
rules, which are necessary for data exchange between tools,
are implemented manually, e.g., in the form of weaving
models or model transformations. Support to synthesize the
conversion rules is missing.

The goal of this paper is to systematize and partly auto-
mate the development of tool chains. The central question we
address is thus: To what extent can the development of tool
chains be automated through generative techniques? Our
approach is model-based, but differs from previous model
based approaches, as not only the tool data is modeled, but
also the architecture of the complete tool chain. For this
purpose we use a domain specific modeling language for
tool chains, which structures the tool chain into ToolAdapter
components and connectors. A generative approach uses
the structured information to synthesize implementations for
the components, the connectors and the infrastructure of
the tool chain. In previous work, we have described the
modeling language [4], code generation of the components
[5] and infrastructure [4]. The contribution of this paper is
the automated synthesis of the data conversion rules in the
connectors and the integration of the various generated parts
into a complete, cohesive tool chain.

II. APPROACH

From our experience of developing tool chains in an
industrial context, tool chains are often developed with an
iterative prototyping approach. While the general goal for
the tool chain might be clear to all stakeholders, the exact

102Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 120 / 729

details of the execution and conversion in the tool chain
might not be clear and different design options are explored
with prototype implementations. The challenge lies in the
large effort of creating one or potentially many prototype
implementations of the tool chain. It involves creating a
software adaptation layer – known as ToolAdapter – for each
integrated tool and model transformations that convert the
data between the proprietary data format of the tools. The
method and automated techniques of the proposed approach
aim to reduce the necessary development effort for tool
chains.

In our approach, the user models the tool chain using
abstractions from the domain of tool integration. A prototype
implementation of a tool chain is produced by generating
both source code and transformations from the model. In
the following sections, we describe how we achieve the
specification and the automated synthesis of the executable
prototype. We divide the approach into several steps, as
illustrated in Figure 1:

• Step 1 - Specification of a Tailored Tool Chain: The
essential design decisions are described by modeling
the tool chain in the Tool Integration Language (TIL)
[4]. More details on modeling with TIL are presented
in Section III.

• Step 2 - Synthesis of ToolAdapters: The synthesis
automatically generates code based on the specification
of the ToolAdapters. It is presented in Section IV.

• Step 3 - Synthesis of Channels: The synthesis automat-
ically generates code and transformation rules, based
on the specification of the Channels. It is presented in
Section V.

• Step 4 - Integration of Generator Results: The gener-
ated parts need to be integrated into a tool chain, as
presented in Section VI.

• Step 5 - From Prototype to Production Software: The
prototype tool chain can be refined into a production
tool chain, as presented in Section VII.

Steps 1 - 4 are typically iterated multiple times, until
a satisfactory prototype is identified. Since only step 1 is
manual and steps 2, 3 and 4 are automated, this is a viable
iterative development approach for tool chains. We evaluate
the approach qualitatively by a running example, which is
embedded in Sections III-VII. We evaluate the approach
quantitatively in Section VIII. In Section IX, we show the
relation of this approach to other work in the field; in
Section X, we mention future work and conclude.

A. Introduction to the Running Example

We illustrate all steps of the approach by stepwise con-
structing a tool chain, which serves as a running example.
The intended use of the tool chain presented as running
example is in the early design phase of automotive em-
bedded system development [2]. An engineer creates a
UML-conform model with behavioral and fault propagation

Figure 1. Overview of steps 1-4 of this approach

models using the GUI of the development tool and commits
the model to the repository. Every time a new version
of the UML model is committed, the tool chain executes
a transformation of the UML model to the input format
of the fault tree analysis tool HiP-HOPS (Hierarchically
Performed Hazard Origin and Propagation Studies) [25] and
executes HiP-HOPS. Another model transformation creates
a MATLAB/Simulink model that mirrors the structure of the
UML model. When the results of the fault tree analysis are
satisfactory, i.e., there are no single points of failure, the
engineer manually extends this Simulink model to perform
simulations.

III. STEP 1 - SPECIFICATION OF A TAILORED TOOL
CHAIN

The prototyping process starts by specifying the big
picture of the tool chain. We use TIL, a declarative, domain
specific modeling language for tool chains. TIL models
are concise, and expresses domain concepts, so users can
relate to it. TIL allows us not only to describe a tool chain
graphically and with well-defined semantics, but also to
analyze it and generate code from it.

Here, we can only give a short overview of the language,
for more detailed description of syntax and semantics, we
refer to [4]. In the following, we introduce the language
concepts and their concrete graphical syntax (compare 1© ..
7© in Figure 2). TIL is a component-based language and con-

sists of Components (ToolAdapter, Repository, Sequencer,
User) and Connectors (ControlChannel, TraceChannel, Dat-
aChannel).

• A ToolAdapter 1© exposes the data and functionality
of a tool in a common technical format, making the
data and functionality accessible for other ToolAdapters
within the tool chain. A ToolAdapter is specified by
means of a ToolAdapter metamodel. It describes the
selection of data and functionality of the tool, which is
exposed to the tool chain (see Figure 4, for an exam-
ple). Creating the metamodel requires some engineering

103Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 121 / 729

Figure 2. A simple TIL model illustrating the graphical syntax of the
language concepts

effort, since each tool has its own metamodel, there is
no common metamodel.

• A ControlChannel 2© describes the control-flow be-
tween two Components by specifying a triggering event
in the source, a called service in the target and a guard
for conditional execution.

• A TraceChannels 6© connects two ToolAdapters and
describes the possibility of creating traces between
elements of certain data types of the ToolAdapter
metamodels.

• A DataChannels 5© connects two ToolAdapters and
describes the data-flow between them. The DataChan-
nel preserves the semantics of the data. Since the
ToolAdapter delivers all exposed data in a common
technical format, only the data structure needs to be
adapted. The data of the source ToolAdapter needs
to be transformed into the structure expected by the
target ToolAdapter. A model transformation can either
be manually specified or it can be automatically syn-
thesized, as described in Section V.

• A Sequencer 3© describes sequential control-flow; it
executes a sequence of services in a specified order. The
sequencer is used in combination with ControlChan-
nels: it is activated by a ControlChannel and each
of the sequentially called services is connected via a
ControlChannel.

• A User 4© is a representative for a real tool chain user.
This concept is used to describe the possible interac-
tions of the real users with the tool chain. Outgoing
ControlChannels from the User denote services invoked
by the user, incoming ControlChannels to a User denote
a notification sent to the user.

• A Repository 7© is a specific type of ToolAdapter that
provides storage and version management of tool data.

A. Running Example: Step 1

We specify the previously introduced tool chain in TIL,
resulting in the model displayed in Figure 3. An engineer,
depicted by the user symbol, develops a new function of
an embedded system as a UML component model. The

engineer checks the model into the Subversion Repository,
depicted by a ControlChannel, which activates the Dat-
aChannel uml2repository. Automatically, the model will be
analyzed by a safety analysis tool to detect single points of
failure in the embedded system. This is depicted by the tri-
angular shape for the Sequencer Seq0, which is activated by
a ControlChannel, whenever new UML models are checked
into the repository. The Sequencer Seq0 first triggers the
DataChannel uml2safety to transfer the UML model to
the safety analysis tool involving a model transformation.
The Sequencer Seq0 then calls the function to analyze
single points of failure in the safety analysis tool. If no
single points of failure have been found, which is expressed
as a guard condition on the ControlChannel, a simulation
of the behavior of the new model is started in Simulink.
This is realized by another set of ControlChannels and the
Sequencer Seq1. Finally, the engineer receives an email
notification about the simulation results.

The TIL model presented in Figure 3 is linked to several
ToolAdapter metamodels, which are illustrated in Figure 4.
In addition, model instances of these metamodels are linked
to each ToolAdapter. They serve as test data for the pro-
totype implementation. Each of the metamodels describes
the subset of the data of the tool that is exposed by the
ToolAdapter towards the tool chain. The metamodel for
the MATLAB/Simulink tool (A) describes a basic block
diagram. The metamodel for the UML tool (B) comprises
the elements of a basic UML component diagram. The
metamodel for the safety analysis tool HiP-HOPS (C) is
organized into systems and subsystems.

IV. STEP 2 - SYNTHESIS OF TOOLADAPTERS

ToolAdapters are realized as software components that
have a web-based, RESTful architecture. This provides plat-
form independence and allows for a distributed tool chain,
where tools may reside on different network nodes. The
input of the generator is the ToolAdapter metamodel and
a model with test data, which conforms to the metamodel.
The output is a Java source code and configuration files for
the service infrastructure, such as a web server listening for
requests. The generated Java source code provides a skeleton
of the tool adapter implementation, including an implemen-
tation that operates on static test data and serves it conform
to the format and protocols of the industrial initiative OSLC.
The generated ToolAdapter is thus functional, but does not
yet connect to the tool instance via APIs. The connection to
the tools has to be added manually in step 5.

Since the details of generating service-oriented tool
adapters are not the focus of this work, we refer to paper
[5] for more details and examples.

V. STEP 3 - SYNTHESIS OF CHANNELS

The Channels between ToolAdapters can describe control-
flow or data-flow. Control-flow is expressed by ControlChan-

104Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 122 / 729

Figure 3. Specification of the tool chain as a TIL model

Figure 4. ToolAdapter metamodels for the Simulink tool (A), UML tool (B) and safety analysis tool (C)

nels, which are straightforward to synthesize as remote
service calls to other ToolAdapters. Data-flow can be ex-
pressed by TraceChannels or DataChannels. TraceChannels
provide the infrastructure for creating traces at runtime of
the tool chain and this infrastructure is quite straightforward
to generate.

DataChannels denote the transfer of data from a source
ToolAdapter to a target ToolAdapter. The tool data is served
by the ToolAdapter in the form of a model that conforms
to the ToolAdapter metamodel. If the metamodels of source
and target ToolAdapters are the same, the data can be simply
copied between the ToolAdapters. In the more common case
that the metamodels are different, the data needs to be trans-
formed before it can be accepted by the target ToolAdapter.
For this purpose, TIL offers the possibility to link a model
transformation to each DataChannel. This transformation is
a part of the implementation of the DataChannel and can be
either manually specified or synthesized. If a transformation
is required (due to different source and target ToolAdapter
metamodels), but none is specified, a prototype transfor-

mation can be automatically synthesized. Another part of
the implementation of DataChannels is the infrastructure
for executing the transformation and transferring the data
to another ToolAdapter.

The synthesis algorithm generates source code for the
ControlChannels as well as source code for the infrastructure
of DataChannels. This infrastructure accomplishes the fol-
lowing tasks at runtime of the tool chain: it gets the source
model from the source ToolAdapter and provides it together
with the transformation to the transformation engine. The
target model, which is produced by the transformation
engine, is sent to the target ToolAdapter.

In the following, we take a closer look at the automated
generation of an appropriate prototype transformation. A
transformation is appropriate if its source and target meta-
model is identical to the metamodels of source and target
ToolAdapters of the DataChannel and if it is semantics
preserving. The TIL model contains some information for
synthesizing the transformation, such as its execution di-
rection and both its source and target metamodels. This

105Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 123 / 729

information is not sufficient for an algorithmic approach, but
a heuristic approach for prototyping model transformations
can be realized. The intention is to use an automated
approach to quickly create a first model transformation. In
the following sections we explain each step of the generator
for prototype transformations in more detail.

A. Step 3.1 - Finding Correspondences

We assume a certain level of similarity between the source
and target metamodels; so we can find correspondences
between them based on structural and naming similarities.
To find correspondences, we use a matching algorithm that
is based on the similarity flooding algorithm [20] and the
Levensthein distance [16]. The similarity flooding algorithm
is used to detect structural similarities, the Levensthein dis-
tance is used to identify naming similarities. The matching
algorithm produces a matching table, consisting of a number
of correspondences between metaclasses, metaattributes and
metareferences of source and target metamodels. In more
formal terms, the matching algorithm σ(ms,mt) = µ
produces a matching table µ for a given tuple of source
metamodel ms and target metamodel mt.

B. Step 3.2 - Refining the Matching Table into a Matching
Model

To ensure that a valid target model can be produced
by the synthesized transformation, we automatically refine
the matching table µ into a matching model ν by adding
information about the containment hierarchy of the target
metamodel with the refinement function ρ, which is defined
as ρ(µ,mt) = ν. This refinement is necessary, so the
synthesized transformation can produce target models with
an adequate containment structure, which is specified in
the target metamodel mt. The containment hierarchy of a
metamodel is a partial order over all metaclasses in the
metamodel that have a direct parent-child relationship.

The metamodel of the matching model is depicted in
Figure 5. It consists of a number of ordered matchings.
A matching describes a correspondence and consists of a
description of the source and target elements, a number of
related matchings and a type. The type of the matching is
based on the role that the target element of the matching
takes in the target metamodel. We differentiate five types of
matchings:

• Top: A top matching has a target element that is
the root element of the containment hierarchy of the
target metamodel, i.e., the element that is not contained
anywhere else. A top matching specifies the names
of classes and usually has a number of containment
matchings.

• Containment: A containment matching represents a
reference between two metaclasses in the target meta-
model, where one class is the parent and the contained

class is the child. A containment matching specifies the
names of the reference and metaclasses.

• Reference: A reference matching represents a link
between two arbitrary metaclasses in the target meta-
model. A reference matching specifies the names of the
reference and metaclasses.

• Class: In a class matching, the target element is a
metaclass. A class matching specifies the names of
the metaclasses and usually has a number of related
matchings, which are of type containment, reference or
attribute.

• Attribute: In an attribute matching, the target element
is a metaattribute of a metaclass. An attribute matching
specifies the names of the metaattribute and metaclass.

The automated refinement ρ adds a containment matching
for a target metaclass if necessary and ensures that all target
metaclasses are properly contained. It also checks that no
target element is produced by more than one rule. Note,
that this classification depends on the target element only,
since the target element needs to have proper containment
hierarchy to be produced.

C. Step 3.3 - Synthesis of Transformation Rules from the
Matching Model

The model transformation τ1 is automatically synthesized
based on the matching model ν, which is produced in the
previous step and is executed at runtime of the tool chain for
the exchange of tool data. The synthesis of τ1 is performed
by a second model transformation τ2, which is a higher-
order model transformation, defined as τ2(ν) = τ1. The
transformation τ2 produces τ1 and is executed at design time
of the tool chain. The transformation τ1(ns) = nt maps
the model ns to the model nt, where ns corresponds to
the source metamodel ms, and nt corresponds to the target
metamodel mt. The synthesized model transformation τ1 is
a model-to-model transformation, implemented with OMG
QVT-R [23]. The synthesizing model transformation τ2 is a
model-to-text transformation, implemented with OMG MTL
[22].

For each matching in the matching model ν, the trans-
formation τ2 produces one or several QVT relations. For
each type of matching a different template for the relations
is used. The template is instantiated with the values from
the current matching. All customized QVT relations for all
matchings together form the synthesized transformation τ1.
See listing 1 for an example.

D. Running Example: Step 3

For the DataChannels simulink2uml and
simulink2hiphops, this transformation is synthesized
by the generator. The metamodels for UML, Simulink and
HiP-HOPS show a certain degree of structural and naming
similarity, as they represent a hierarchical composition of

106Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 124 / 729

Figure 5. Metamodel of the matching model

components and components are linked by connectors via
ports.

Table I
MATCHING TABLE FOR UML AND SIMULINK

UML Metaclass Simulink Metaclass
Port InOutPort
EString EString
Class Block
Property Attribute
Connector Line
Class.properties Block.attributes
Property.type Attribute.type
Class.ports Block.ports
Connector.source Line.line source
Connector.target Line.line target

Table II
MATCHING TABLE FOR UML AND HIP-HOPS

Simulink Metaclass HiP-HOPS Metaclass
Port Port
Connector Line
EString EString
Class Component
UMLModel System
Property.type Port.name
UMLModel.connectors System.lines
Connector.target Line.target
Connector.source Line.source

As a first step in the automated synthesis of the transfor-
mation, a matching table is created. The automated meta-
model matching algorithm is applied on the UML and the
Simulink metamodels, yielding the matching table I. Apply-
ing the algorithm on the UML and the HiP-HOPS metamod-
els yields matching table II. Since the matching algorithm in
step 3.1 is a heuristics, the automatically created matching
table needs to be checked manually. All the mappings identi-
fied between Simulink and UML are correct, between UML
and HiP-HOPS the matching algorithm correctly identified
many mappings, however the heuristics introduced one error
by mapping Property.type to Port.name. The subsequent
refinement step 3.2 automatically corrects this error by
replacing the matching with (Property.type,Component.type)
through analysis of the containment hierarchy of the target
metamodel, which is the Simulink metamodel.

Afterwards, the higher-order model transformation τ2

of step 3.3 converts the matching model into a QVT-R
transformation. A part of this synthesized transformation
for the mapping between UML and Simulink is depicted
in Listing 1. It shows the transformation code for different
types of matchings, namely top, containment and class
matchings. As the root element, the UML model is mapped
to a Simulink model, contained UML Classes to Simulink
Blocks, and the attributes of Classes to attributes of Blocks.
In a similar manner – but not shown here due to space
constraints – the value of each attribute is mapped, as well
as Connectors and their attributes.

The computed mapping is 100% correct, but not complete,
as not all elements are mapped. The missing mappings
describe attributes, e.g., mapping the name attribute of the
UML Class to the name attribute of Component or Block.
Such missing attribute mappings concern only values and
are relatively easy to add, since no other mappings depend
on them. We evaluate the generated transformations with
precision/recall metrics in Section VIII-B.

Listing 1. Synthesized QVT-R transformation from UML to Simulink
0 t r a n s f o r m a t i o n uml22s imu l ink2 (s o u r c e : uml2 , t a r g e t : s i m u l i n k 2) {

−−Top Matching
t o p r e l a t i o n r Model {

c h e c k o n l y domain s o u r c e p : uml2 : : Model {
5 };

e n f o r c e domain t a r g e t s : s i m u l i n k 2 : : Simul inkModel {
};
where{

r M o d e l c l a s s e s (p , s) ;
10 r M o d e l c o n n e c t o r s (p , s) ;

}
}

−−Conta inmen t Matching
15 r e l a t i o n r M o d e l c l a s s e s {

c h e c k o n l y domain s o u r c e p : uml2 : : Model {
c l a s s e s = co : uml2 : : C l a s s{
}

};
20 e n f o r c e domain t a r g e t s : s i m u l i n k 2 : : S imul inkModel {

e l e m e n t s = sb : s i m u l i n k 2 : : Block{
}

};
where{

25 r C l a s s (co , sb) ;
}
}

−−C l a s s Matching
30 r e l a t i o n r C l a s s {

c h e c k o n l y domain s o u r c e co : uml2 : : C l a s s{
};
e n f o r c e domain t a r g e t sb : s i m u l i n k 2 : : Block{
};

35 where{
r C lass name (co , sb) ;
r C l a s s p o r t s (co , sb) ;
r C l a s s p r o p e r t i e s (co , sb) ;

}
40 }

[. .]
}

107Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 125 / 729

VI. STEP 4 - INTEGRATION OF GENERATOR RESULTS

The generators in steps 2 and 3 produce ToolAdapters
and DataChannels using different generative techniques.
The generator for ToolAdapters uses code generation; the
generator for DataChannels applies a matching algorithm
to produce model transformations, which realize the con-
version of tool data. Both generators use the ToolAdapter
metamodels that are linked to the TIL model, but they use
the metamodels in a different way.

The generator for ToolAdapters uses the tool metamodel
as specification of the data managed by the ToolAdapter.
The tool data is accessible as a model through the generated
ToolAdapter and conforms to the tool metamodel.

The generator for transformations uses the metamodels of
both ToolAdapters it connects to. Data-flow connections be-
tween ToolAdapters need to translate the tool data. The rules
for the translation can be determined at designtime, since it
is independent of the actual data, and only depends on the
tool metamodels. As we have generated the ToolAdapters
we know that they provide tool data that conforms to the
tool metamodels.

The ToolAdapter metamodels are used as interface be-
tween the different generators to ensure compatibility be-
tween the generated artifacts.

VII. STEP 5 - FROM PROTOTYPE TO PRODUCTION
SOFTWARE

The proposed approach promotes the iterative develop-
ment of tool chains, where steps 1 - 4 can be repeated
frequently to explore different what-if scenarios. This is
supported by the generative approach, which produces exe-
cutable source code and transformations automatically with
only a small effort from the tool chain designer. The com-
pletely automatically generated source code works on test
data and the automatically generated transformation might
not be complete. While this level of accuracy might be
sufficient for prototyping different what-if scenarios for tool
chains, it needs to be improved for production software.

To create production software, the generated source code
and transformation rules need to be manually adapted.
The generated source code of the ToolAdapter needs to
be extended to interact with the API of the integrated
development tool, to extract and inject the data from the
tool and to forward service calls to it. The generated model
transformation needs to be refined, mainly by adding new
transformation rules and less frequently by changing the
generated transformation rules.

VIII. EVALUATION

In this section, we intend to quantify to what extent a
tool chain can be generated with the proposed approach.
We separately evaluate the generator for tool adapters and
for transformations.

A. Generator for ToolAdapters

The generator for ToolAdapters produces code skeletons
and a complete prototype implementation, which serves test
data. This prototype implementation needs to be manually
replaced with code that serves the actual tool data using
the API of the tool. The size of the code that needs to be
manually added depends on the tool.

To show the effectiveness of the generator, it is not
sufficient to compare the LOC of generated code with
the manually added code. Instead, we create a baseline
implementation completely manually. We now have two
code bases realizing the same functionality. To quantify the
generated and manually added code, we measure lines of
code. This measurement has been criticized as a general
measurement of software size for complete software, but
here we apply it to fragments of code. We measure the
lines of generated vs. manually implemented code for all
ToolAdapters in the case study and present the measure-
ments in Table III.

Table III
LOC OF THE TOOLADAPTERS: GENERATED AND MANUALLY

IMPLEMENTED CODE WITH THE TIL APPROACH VS. COMPLETELY
MANUALLY IMPLEMENTED BASELINE

ToolAdapter TIL TIL manual
generated manually added baseline

UML 1409 59 1313
Simulink 2030 1118 3077
Safety 3833 317 2359
Sum 7272 1494 6749
Percentage 22% 100%

The size of the generated code is not a significant indicator
for the quality of the generated code. This is why we study
the comparison of the manually added LOC (in step 5) with
the LOC of the manual baseline. Both codes are manually
created, realize the same functionality and their sizes can
thus indirectly give clues about the quality of the generated
code. On average, only 22% of the source code from the
manual baseline needed to be implemented manually with
the TIL approach.

B. Generator for Transformations

The generator for transformations introduced in Section V
is a heuristics. It is the nature of heuristics to approximate
the optimal solution and it cannot be guaranteed that the
calculated result is the optimal solution. It is thus important
to measure the quality of the results. In the following, we
measure the quality of the results of applying our matching
algorithm on a number of tool metamodels. The matching
algorithm is based on two simplifying assumptions: (i) The
transformation, which is part of the DataChannel between
two ToolAdapters is intended to be semantics preserving.
(ii) A semantics preserving transformation maps elements,
which are similar regarding structure or naming. Assumption

108Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 126 / 729

Table IV
RELATIONSHIP BETWEEN SEMANTICS PRESERVATION AND

STRUCTURAL/NAMING SIMILARITY

semantics preservation
yes no

structural/naming
similarity

yes 1 2
no 3 4

(i) is part of the semantics of the DataChannel in TIL (see
Section III). In the following, we will evaluate assump-
tion (ii). We analyze the relationship between semantics
preservation and structural/naming similarity in Table IV and
distinguish four situations.

Since assumption (ii) correlates semantics preservation
with structural/naming similarity, the algorithm only distin-
guishes between situations 1 and 4 in Table IV. Situations 2
and 3 are in the “blind spot” of the algorithm, as semantics
preservation may not be correlated with structural/naming
similarity. The impact of situation 2 is measured by the
precision metric, the impact of situation 3 is measured by
the recall metric, which are defined as follows.

Precision =
|{correctmatches} ∩ {foundmatches}|

|{foundmatches}| (1)

Recall =
|{correctmatches} ∩ {foundmatches}|

|{correctmatches}| (2)

where correctmatches is defined as the correct, semantics-
preserving mapping, and foundmatches is the mapping
that was identified by the matching algorithm. We use the
precision/recall measure and present statistics of the number
of false positives and false negatives in the mappings.

We measure the quality of the calculated mappings of
all six possible combinations between the three metamodels
presented in Figure 4. The resulting precision/recall mea-
surements are displayed in Table V. On average, the syn-
thesis method returns mappings that have a high precision
(93%), but only an average recall (56%).

Table V
PRECISION/RECALL METRIC FOR THE COMPUTED MAPPING OF UML,

SIMULINK AND HIP-HOPS

Source Target Precision Recall
UML Simulink 1 0.56
UML HiP-HOPS 0.89 0.53
Simulink UML 1 0.67
Simulink HiP-HOPS 0.9 0.6
HiP-HOPS UML 0.89 0.53
HiP-HOPS Simulink 0.9 0.5
Average 0.93 0.56

In situation 2, no mapping should be found since there is
no semantic equivalent, but the algorithm finds a mapping
due to structural similarity; this would result in a low pre-
cision. The measurements in Table V show a high precision
metric. This means that the generated mappings are correct
and only need to be changed seldomly. The mappings that

need to be changed have a stable skeleton for manually
added mappings.

In situation 3, there are semantically equivalent meta-
models, for which no structural or naming similarity can
be detected. If it is not possible to deduce clues about
the semantic equivalence from the structural features of
the metamodels, the automated algorithm does not have
sufficient data to make mapping decisions. In this situation,
either additional user data would need to be provided as
input, e.g., via annotations, or the missing mappings need to
be manually added after the algorithm is finished. Situation
3 is captured by the recall metric. The average recall metric
in Table V is largely due to missing attribute mappings. Such
attribute mappings concern only one value and are relatively
easy to add manually, since no other mappings depend on
them. An example for the transformation between UML and
Simulink is the mapping (Class.name,Block.name).

Due to its high precision (93%) and average recall (56%)
characteristic, the matching algorithm can be classified as a
conservative method. The algorithm rather does not include
a mapping into the result than produce a wrong mapping.
The mappings that are included in the result are almost all
correct, maximally one of the mappings is incorrect. The
mappings that are not found automatically by the matching
algorithm can be manually added to the result.

IX. RELATED WORK

The contribution of this paper is in the intersection of sev-
eral fields, namely model-based tool integration, metamodel
matching and rapid prototyping. Related work can be found
in each of these fields. We list the approaches by fields and
point out approaches that are in the intersection of two or
more fields.

A. Tool Integration

Early work on tool integration focuses on identifying
the scope of tool integration in form of aspects [29] and
patterns [14]. A number of integration frameworks have
been defined to support building tool chains, such as the one
from Vanderbilt [13] and jETI [19]. Model-based integration
frameworks focus on data integration, the other integration
aspects (such as control, process, platform and presentation)
defined by Wasserman [29] are excluded or a secondary
issue. Examples are MOFLON [1] or ModelCVS [12]. These
related approaches use metamodeling for describing the tool
data. However, these approaches provide neither concepts
to model a complete tool chain nor concepts to describe
the architecture of the tool chain. The related approaches
assume that tool data is available in the form of models
and that the tool adapters are implemented manually. Only
the MOFLON approach mentions code generation for tool
adapters. The related approaches also use model transforma-
tions to translate between the metamodels of different tools,
but the transformation usually has to be specified manually.

109Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 127 / 729

Tool integration platforms, such as ModelBus [11] or Jazz
[9], mainly provide support for executing the tool chain,
or generic building blocks, so constructing tailored, user-
defined tool chains requires a lot of work. We automate the
construction of such tailored tool chains.

B. Metamodel Matching

Matching metadata on data structures has been studied in
the field of databases as schema matching [20], [26], [27].
These matching algorithms have been adopted in the mod-
eling community, where metamodels are matched instead of
schema definitions. Algorithms based on similarity flood-
ing and naming similarity are described [6], [8]. Different
metamodel matching algorithms are compared in [15] and
formalized into a DSL for metamodel matching [10]. Model
weaving approaches [6] can leverage metamodel matching
to create weaving models that express the correspondence.

Del Fabro shows how metamodel matching can be applied
for data migration between two bugtracking tools [6]. The
approach assumes that the tool data is already available in a
model format and focuses on the use of metamodel matching
for weaving models. We use metamodel matching in an
integration scenario and focus on a comprehensive approach
for the creation of a complete tool chain.

C. Prototyping

Prototyping approaches focus on the early synthesis of an
executable system from a high-level specification. Bernstein
stresses the importance of prototyping [3] and lists advan-
tages of the approach, among them he sees prototyping as
a vehicle to better understanding the environment and the
requirements, to validate requirements with the user and to
study the dynamics of a system. We distinguish between
throwaway and evolutionary prototyping [17]. In throwaway
prototyping, the prototype is built to learn a specific thing
and is discarded before a completely new prototype is built.
In evolutionary prototyping, one prototype is refined over
several iterations. The technology proposed in this paper can
be used for either prototyping approach.

Many prototyping systems employ a prototyping language
in combination with code generation techniques. These ap-
proaches are usually specialized to certain domains, such as
CAPS and DCAPS [18] for embedded systems, information
systems and user interfaces [30], component based systems
[28] or data mining systems [21].

X. FUTURE WORK AND CONCLUSION

The creation of tool chains is usually regarded as a com-
pletely manual implementation task. The presented approach
shows that the tool chain implementation for a prototype can
be automatically created with generative techniques. Differ-
ent generative techniques need to be combined to produce
the heterogeneous parts of the tool chain: code generation
for ToolAdapters and a heuristic matching algorithm for

transformations. The generated code for the ToolAdapters
ensures compliance with standards and serves test data for
prototyping.

This code is also the basis for production software as it
provides a skeleton that needs to be refined with manually
written code that interacts with the API of the integrated tool.
In our case study the generated code for ToolAdapters makes
up 78% of the total production software. The generated
transformation code for the DataChannels provides a precise
mapping for the data elements (93% precision), but does not
cover all data elements (56% recall). Due to the conserva-
tive characteristic of the approach (high precision, average
recall), the generated mapping can be be extended into a
comprehensive mapping. The generated artifacts can serve
as a starting point for manual extensions and refinements of
the generated tool chain implementation.

The proposed approach for automated synthesis of both
source code and transformations makes it possible to sys-
tematically and rapidly create an executable prototype of a
tool chain. This allows the user to test and iteratively modify
the tool chain prototype, before investing time to extend the
prototype into the final production software.

An important next step is a further assessment of the
practical applicability of this approach. We will apply our
approach in additional case studies, which cover a broader
set of development tools. This will allow us to further narrow
down the conditions, in which the approach can achieve
the best mapping, measured with the precision/recall metric.
In addition, we will examine if the algorithm can also be
applied to support the evolution of a tool chain, when tool
A in the tool chain is exchanged against a similar tool B. The
here presented algorithm might be applicable for realizing
the migration of the data from tool A to tool B.

Acknowledgement

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agree-
ment 100203.

REFERENCES

[1] C. Amelunxen, F. Klar, A. Königs, T. Rötschke, and
A. Schürr. Metamodel-based tool integration with MOFLON.
In ICSE ’08, pp. 807–810, 2008.

[2] E. Armengaud, M. Biehl, Q. Bourrouilh, M. Breunig, S.
Farfeleder, C. Hein, M. Oertel, A. Wallner, and M.s Zoier.
Integrated tool chain for improving traceability during the
development of automotive systems. In ERTS2 2012 —
Embedded Real Time Software and Systems, pp. 30–46, 2012.

[3] L. Bernstein. Importance of software prototyping. Journal of
Systems Integration, 6(1), pp. 9–14, 1996.

[4] M. Biehl, J. El-Khoury, F. Loiret, and M. Törngren, “On the
Modeling and Generation of Service-Oriented Tool Chains,”
Journal of Software and Systems Modeling, vol. 0275, 2012.

110Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 128 / 729

[5] M. Biehl, J. El-Khoury, and M. Törngren. High-Level
Specification and Code Generation for Service-Oriented
Tool Adapters. In Proceedings of the International Con-
ference on Computational Science (ICCSA2012), pp. 35–
42, Jun. 2012 [Online]. Available: http://dx.doi.org/10.1007/
s10270-012-0275-7

[6] M. Del Fabro, J. Bézivin, and P. Valduriez. Model-Driven
Tool Interoperability: An Application in Bug Tracking. InOn
the Move to Meaningful Internet Systems 2006, LNCS, vol.
4275, pp. 863–881, 2006.

[7] J. El-khoury, O. Redell, and M. Törngren. A Tool Inte-
gration Platform for Multi-Disciplinary Development. In
31st EUROMICRO Conference on Software Engineering and
Advanced Applications, pp. 442–450, 2005.

[8] J.-R. Falleri, M. Huchard, M. Lafourcade, and C. Nebut.
Metamodel Matching for Automatic Model Transformation
Generation. In Model Driven Engineering Languages and
Systems, LNCS, vol. 5301, pp. 326–340, 2008.

[9] R. Frost. Jazz and the Eclipse way of collaboration. IEEE
Software, vol. 24, no. 6, pp. 114–117, 2007.

[10] K. Garcés, F. Jouault, Pi. Cointe, and J. Bézivin. A Domain
Specific Language for Expressing Model Matching. In
Proceedings of the 5ère Journée sur l’Ingénierie Dirigée par
les Modèles (IDM09), pp. 30–45, 2009.

[11] C. Hein, T. Ritter, and M. Wagner. Model-Driven Tool
Integration with ModelBus. In Workshop Future Trends of
Model-Driven Development, pp. 1–12, 2009.

[12] E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Rets-
chitzegger, and M. Wimmer. On Models and Ontologies -
A Layered Approach for Model-based Tool Integration. In
MOD2006, pp. 11–27, 2006.

[13] G. Karsai and J. Gray. Component generation technology for
semantic tool integration. vol. 4, pp. 491–499, 2000.

[14] G. Karsai, A. Lang, and S. Neema. Design patterns for open
tool integration. Software and Systems Modeling, vol. 4, no.
2, pp. 157–170, 2005.

[15] L. Lafi, S. Issam, S. Hammoudi, and J. Feki. Comparison
of two metamodel matching techniques. In 4th Workshop on
Model-Driven Tool & Process Integration (MDTPI2011), pp.
54–65, 2011.

[16] V. Levenshtein. Binary Codes Capable of Correcting Dele-
tions, Insertions and Reversals. Doklady Akademii Nauk
SSSR, 163(4), pp. 845–848, 1965.

[17] V. Luqi, V. Berzins, M. Shing, R. Riehle, and J. Nogueira.
Evolutionary Computer Aided Prototyping System (CAPS).
In Technology of Object-Oriented Languages and Systems,
pp. 363, 2000.

[18] V. Luqi, J. Berzins, J. Ge, M. Shing, M. Auguston, B. Bryant,
and B. Kin. DCAPS-architecture for distributed computer
aided prototyping system. In Rapid System Prototyping, 12th
International Workshop on, pp. 103–108, 2001.

[19] T. Margaria, R. Nagel, and B. Steffen. jETI: A Tool for
Remote Tool Integration Tools and Algorithms for the Con-
struction and Analysis of Systems. In TACAS, LNCS, vol.
3440, pp. 557–562, 2005.

[20] S. Melnik, H. Garcia-molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm, 2002.

[21] I. Mierswa, M. Scholz, R. Klinkenberg, M. Wurst, and T.
Euler. YALE: Rapid Prototyping for Complex Data Mining
Tasks. In In Proceedings of the 12th ACM SIGKDD, pp.
935–940, 2006.

[22] OMG. MOF Model to Text Language (MTL). Technical
report, OMG, 2008.

[23] OMG. MOF 2.0 Query / View / Transformation. Technical
report, OMG, 2009.

[24] OSLC Core Specification Workgroup. OSLC core specifica-
tion version 2.0. Technical report, Open Services for Lifecycle
Collaboration, 2010.

[25] Y. Papadopoulos and J. McDermid. Hierarchically Performed
Hazard Origin and Propagation Studies. In SAFECOMP,
LNCS, vol. 1698, pages 139–152, 1999.

[26] E. Rahm and P. Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal, vol. 10,
no. 4, pp. 334–350, 2001.

[27] P. Shvaiko, J. Euzenat. A Survey of Schema-Based Matching
Approaches Journal on Data Semantics IV. In Journal on
Data Semantics IV, LNCS vol. 3730, pp. 146–171, 2005.

[28] M. Tkachuk, A. Zemlyanoy, and R. Gamzayev. Towards
Prototyping-Based Technology for Adaptive Software Devel-
opment Information Systems and e-Business Technologies. In
LNBIP, vol. 5 , pp. 508–518, 2008.

[29] Anthony I. Wasserman. Tool Integration in Software En-
gineering Environments. In Software Engineering Environ-
ments, International Workshop on Environments Proceedings,
LNCS, pp. 137–149, 1989.

[30] W. Zhou. A Rapid Prototyping System for Distributed
Information System Applications. Journal of Systems and
Software, vol. 24, no. 1, pp. 3–29, 1994.

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 129 / 729

A Neurolinguistic Method for Identifying OSS Developers’ Context-Specific Preferred
Representational Systems

Methanias Colaço Júnior a,b, Manoel Mendonça, Mario

André de F. Farias
a Software Engineering Laboratory - LES

UFBA – Federal University of Bahia
Salvador/BA – Brasil

mjrse@hotmail.com, manoel.g.mendonca@gmail.com, mario-
fa@infonet.com.br

Paulo Henrique, Daniela Corumba
b Competitive Intelligence Research and Practice Group -

NUPIC
Information Systems Department - DSI

UFS - Federal University of Sergipe
Itababaiana/SE – Brasil

diretor.ph@gmail.com, danielacorumba@gmail.com

Abstract — Open Source Software (OSS) projects use mailing lists
as the primary tool for collaboration and coordination. Mailing
lists can be an important source for extracting behavioral
patterns in the OSS development. A new approach for that is the
use of NeuroLinguistic theory to determine what is the Preferred
Representational cognitive System (PRS) of software engineers in
that specific context. Different resources and cognitive channels
are used by developers in order to achieve software
understanding. An important question on this matter is: What
types of representational systems are preferred by software
engineers? This paper presents a psychometrically-based
neurolinguistic method to identify the PRS of software
developers. Experimental evaluation of the approach is carried
out in an experiment to assess the Preferred Representational
System of top developers at Apache server and Postgresql mailing
lists. The results showed that the PRS scores of the top-
committers clearly differ from the general population of the
projects. Qualitative analysis also indicated that the PRS scores
obtained are aligned with the top committer’s profiles.

Keywords: open source; text mining; neurolinguistic; mental

imagery; experimental software engineering.

I. INTRODUCTION

Developing and maintaining software systems is an arduous
task. Large systems are complex and difficult to understand. In
order to understand them, the developer must construct a
mental model of the software works and structure [1].

In the comprehension process, developers use different
resources and representational systems, such as: (1) examples,
analogies, and code execution; (2) visual descriptions,
diagrams and graphic models of the system; and (3) textual
descriptions and source code analyses. Clearly, these resources
are complementary and may be combined. However, is there a
Context-Specific Preferred Representational System (PRS)?
Or, is there a preferred order or combination of the
representational systems in the understanding process?

Visual resources, like diagrams and non-conventional
visualization metaphors, are being increasingly used in
software engineering [2]. Studies show that the way software
engineers process those resources impacts on the success of
that processing [3], for both text [4] and diagrams [5].
However, we do not know complete studies that evaluate what
types of representational systems are preferred by software
engineers.

This is a broad question in the sense that different people
may have different preferences in different contexts. Actually,
the conception that different representational ways for
cognition exist is well accepted in psychology area [6, 7, 8].
However, this statement has raised new theories such as
Neuro-linguistic, which proposes the use of a PRS in specific
contexts [9]. Internal mental processes such as problem
solving, memory, and language consist of visual, auditory and
kinesthetic representations that are engaged when people think
about or engage in problems, tasks, or activities. Internal
sensory representations are constantly being formed and
activated. Whether making conversation, writing about a
problem or reading a book, internal representations have an
impact on a one's performance. The Preferred
Representational System is the one that the person tends to use
more than the others to create his/her internal representation.

Bandler and Grinder, Neuro-linguistic Programming (NLP)
champions, claim that people say sensory-based words and
phrases, or verbal cues, which indicate a context-specific
visual, kinesthetic or auditory processing [9, 10]. These
affirmations divide researchers of cognitive psychology area.
Some have not found evidences for the declarations [11] hence
they were criticized by the lack of concept understanding [12],
meanwhile others have shown empirical scientific evidences
and the need to expand researches [13, 14].

Thus, motivated by the psychometric text analysis presented
by Rigby and Hassan [15], we developed a psychometrically-
based neurolinguistic analysis tool. Our tool, NEUROMINER,
uses Linguistic Inquiry and Word Count (LIWC) to classify
developers’ Preferred Representational Systems (PRS).
NEUROMINER combines text mining and statistic analysis
techniques with NLP sensory-based words in order to classify
programmers.

NEUROMINER was used in an experiment which analyzed
top committers and subjects of two large-scale OSS projects:
Apache Server and Postgresql. The results showed that the
measured PRS scores can indeed differentiate top committers
from the general population. Qualitative analysis also indicated
that the PRS scores obtained are aligned with the top
committers profiles.

The rest of this paper is organized as follows. The next
section introduces NLP. Section 3 reports text mining
definitions used throughout the article. Section 4 describes our

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 130 / 729

approach to LIWC and to mining software development
mailing lists. In the Section 5, we detail an experimental
validation of our approach. Section 6 discusses related works.
Finally, Section 7 closes the paper with a discussion of future
research.

II. NEURO-LINGUISTIC PROGRAMMING

A. History and Some Concepts

Neuro-Linguistic Programming (NLP), created in the 70’s,
consists of a set of techniques in which the neurological
processes, behavioral patterns and a person’s language are
used and organized to achieve better communication and
personal development. The term NLP is broadly adopted in
education, management and training fields. However, although
evidences of NLP have been published as model for
comprehension and learning [16], few academic works exist on
the subject.

NLP claims that people are intrinsically creative and
capable, acting according to how they understand and
represent the world, instead of how the world is. Literature
constantly cites Korzybski’s statement [17] “the map is not the
territory”, a reference to individual understanding that
everyone has – mental model -, according to his/her
experience, beliefs, culture, knowledge and values.

In [13], an article written by NLP scientific research group,
NLP is presented as an epistemological perspective, with
scientific principles which are not usually presented. The first
works published by Bandler and Grinder [9, 10] were based on
Fritz Perl’s models, Gestalt founder, Virginia Satir, researcher
in family therapy, and Milton Erickson, doctor in medicine,
master in psychology and hypnotherapist recognized
worldwide. As a consequence, the epistemological view of
NLP presents a roadmap to develop the necessary scientific
basis to support its beliefs. The research reported in this paper
explores this path by scientifically characterizing the use of
preferred representational systems for cognition.

This representational system (or internal representation) is
highly dependent on context (i.e. it varies with the situation)
[12]. This way, some people, in specific contexts, may prefer
to use one or more basic systems to communicate and learn [6,
7, 8]. Most authors in the area recognize the following basic
systems:

(1) Visual, that involves internal images creation and the use
of seen or observed things, including pictures, diagrams,
demonstrations, displays, handouts, films, and flip-chart;

(2) Auditory, that involves sounds reminders and
information transferred through listening; and

(3) Kinesthetic, that involves internal feelings of touch,
emotions and physical experience: holding and doing practical
hands-on experiences.

We use all of our senses all of the time and ,depending on
the circumstances, we may focus on one or more of them – for
instance, when listening to a favorite piece of music, we may
close our eyes to more fully listen and to experience certain
feelings. In order to see things more clearly, we might need to
close our eyes and visualize the situation, person or place.

So, we all use each of the senses and each of us also has a
Preferred Representational System (PRS), one that we use
most when we speak, learn or communicate in any way. For
example, when learning something new, some of us may prefer
to see it or imagine it performed, others need to hear how to do
it, others need to get a feeling for it, and yet others have to
make sense of it. In general, one system is not better than
another and sometimes it depends on the situation or task that
we are learning or doing as to which one or more
representational systems might be more effective than another.

Supporters of NLP believe that word predicates let us know
what is consciousness state of a person. They believe that
specific, sensory-based, word predicates are chosen when a
person is using a specific representational system. The
predicates indicate what portion - of internal representations -
they bring into awareness [10]. Such predicates may be
identified and used to improve communication among the
analyzed subjects, for example.

One of the major problems in communication, be it informal
or technical, is the difficulty to arouse interest on the receiving
end, the person who is reading or listening to your message.
Many times, the person who receives the message does not
assimilate what is being transmitted, be it a simple message or
a technical diagram. NLP can then be one approach to improve
communication. The challenge lies in identifying the
representational system that is being used by the subject and
match the same system for empathy construction. The
matching consists of identifying the predicates that indicate a
representational system and use them, or other predicates that
belong to the same system, for communication [10].

In order to exemplify this matching process, consider the
following question “have you seen the logic of the algorithms
that I showed you?”, and the following answer “not yet, I am
going to examine them carefully, once I get a clear picture of
the whole system.” This is a coherent answer to the question
from the sensory system matching perspective. The sensory-
based words “seen” and “showed” in the first phrase indicate a
visual processing, and the response used the same system
through the visual sensory words “examine them” and “clear
picture”.

In this context, detecting the developers' representational
preferences may enhance the empathy in the team
communication, i.e, each member may be more stimulated in
his/her Preferred Representational System, enhancing the
effectivity of communication, software comprehension and the
solution of activities of development and maintenance.

Allocating a person in a task, considering his/her technical
abilities as well as his/her personality, is essential for the
success of any software project. Productivity secret is to adjust
the project needs with its members' personalities. Detecting,
for instance, that a system analyst barely uses his/her visual
representational system may help solve his/her difficulties with
project diagrams or estimulate his/her reallocation to another
activity. Many times a member is lost because of wrong job
allocation. A good programmer may become a not so good
analyst. In other situations, a person's preferential cognitive

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 131 / 729

system may not match his/her colleagues' profile, or the way
the organization works.

Our research deals with the identification of sensory-based
words used by developers in OSS discussion lists. We then use
these words to characterize the preferred representational
systems of the developers and analyze these against their
profile and role in the projects.

B. Neurolinguistic Criticism

NLP is dismissed as theoretically impossible or implausible,
especially in websites where one cannot fully trust.

The literature in academic journals is minimal, and the
reference [47] is a good example. There has been virtually no
published investigation into how NLP is used in practice. The
experimental research consists largely of laboratory-based
studies from the 1980’s and 1990’s, which investigated two
particular notions from within NLP, the ‘eye movement’
model, and the notion of PRS.

Heap [48], in particular, has argued that, on the basis of the
existent studies, these particular claims of NLP cannot be
accepted. Heap conducted a meta-analysis of these and appears
entirely justified in criticising the unequivocal claims made in
NLP literature. It is notable, however, that Heap’s meta-
analysis included many postgraduate dissertations. His
bibliography refers only to sources of abstracts of those
dissertation studies, not to the dissertations themselves. Thus,
his meta-analysis appears based on the reported outcomes of
these studies, not on critical appraisal of their methodology or
validity.

Einspruch and Forman [12], and Bostic St.Clair and Grinder
[49] have also argued that the types of study reviewed by Heap
are characterised by problems affecting their reliability,
including inaccurate understanding of NLP claims and invalid
procedures due to (for example) the inadequate training of
interviewers, who therefore may not have been competent at
the NLP techniques being tested. Heap himself offers only an
‘interim verdict’ and acknowledges Einspruch and Forman’s
view that ‘the effectiveness of NLP therapy undertaken in
authentic clinical contexts of trained practitioners has not yet
been properly investigated’ [48].

Given these concerns, in [13], for example, Tosey and
Mathison suggest that the existing body of experimental
research cannot support definitive conclusions about NLP. It
seems clear that there is no substantive support for NLP in this
body of experimental research, yet it also seems insufficient to
dismiss NLP.

Our study does not test NLP techniques, but rather it shows
an association between NLP based-measures and developers’
roles and profiles.

III. TEXT MINING BASIS

Our work is based on Text mining (TM), a technology for
analysis of large collections of unstructured documents, aiming
to extract patterns or interesting and non trivial knowledge
from text [18].

A. Preprocessing

Similar to conventional data mining, text mining consists of
phases that are inherent to knowledge discovery process [19].
Classification of knowledge discovery phases may vary for
different authors, but most comprises at least data selection,
preprocessing, mining and assimilation. Text mining pays
special attention to preprocessing, because its data is
unstructured for computer analysis. In other words, after
setting the base with texts to be mined, it is necessary to
convert each document to a format suitable for a computational
algorithm.

One may use three different ways – boolean, probabilistic or
vector-based models – to structure the information of a text
document for computational analysis. The vector model
utilizes geometry in order to represent documents. Introduced
by [20], this model was developed to be used in a retrieval
system called SMART. According to the vector model
approach, each document is represented as a term vector and
each term receives a weight that indicates its importance in the
document [20].

In more formal terms, each document is then represented as
a vector, which is composed of elements organized as a tuple
of values: dj = {w1j ,.. , wij}, where dj represents a document
and wij represents a weight associated to each indexed term of
a set of t terms of the document. For each element of the term
vector, a dimensional coordinate is considered. This way, the
documents can be placed in a Euclidian space of n dimensions
(where n is the number of terms) and the position of the
document in each dimension is given by the term weight in this
dimension.

In this model, the consultations are also represented by
vectors. This way, the document vectors can be compared with
the consultation vector and the similarity between them can be
easily computed. The most similar documents (those that show
the closest vectors to the consultation vector) are relevant, and
returned as a response to the user. Besides, documents that
show the nearest vectors can be considered similar to the target
document.

A term vector is built by the following steps.

B. Term Extraction

Researchers from the information retrieval field claim that
the main difference between data and information retrieval is
exactly the relevance of the information obtained [21].

In general, not all terms that compose a document are
relevant when one intends to extract high level information.
So, in order to compose a term vector for a text, it is necessary
to identify words with high semantic content, selecting only
those that are meaningful for the objective at hand.

The task of term extraction from a document consists of
various steps, all of them contributing for the final purpose of
producing a vector with high semantic content [22]. They are
described as follows:

1. Lexical analysis: the original document is not always
represented in a purely textual format. Therefore, it is
necessary to convert it to a standardized format, eliminating
any attributes of presentation formatting.

114Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 132 / 729

2. Characters conversion to uppercase or lowercase:
such procedure enables equal words written with a character in
a different format in uppercase or downcase – for example,
neuro and Neuro may be interpreted as the same term.

3. The use of a word list to be ignored: commonly called
stopwords. This list consists of a relation of words that have no
significative semantic content (e.g., prepositions, conjunctions,
articles, numerals etc.) and consequently are not relevant for
text analysis.

4. Morphological normalization: aiming to cluster terms
with the same conceptual meaning, e.g., the words compute
and computation. A conversion algorithm of terms to radicals
may be applied in this case. In the example, the words
“compute and computation” have the same radical “comput”,
so they can be reduced to this term.

5. Selection of simple or compound words: in some
cases, during the preprocessing of a document, several joint
words (phrases) may be managed as a single term. This
selection can be done using predefined word lists or statistical
and syntactic techniques.

6. Normalization of synonyms: words with the same
meaning can be reduced to a specific term, for example, the
acronym SEL and the composition Software Engineering Lab,
both have the same meaning.

7. Structural analysis: this step consists of associating
information to each term regarding its positioning in the
document structure, in order to distinguish it from a homonym
term situated in another position.

C. Assigning weights

The process of associating numeric values to each term
previously extracted is known as assigning weights. In general,
the settlement of the term weight in a document can be
resolved with two paradigms [23]:

1. the more a term appears in the document, the more
relevant the term is to the document subject;

2. the more a term occurs among all documents of a
collection, the less important the term is to distinguish between
documents.

This calculation can be done in two ways:
1. Binary or Boolean – The values 0 and 1 are used to

represent, respectively, the absence or presence of a term in the
document.

2. Numeric – It is based on statistical techniques regarding
the term frequency in the document.

The numeric weights can be represented by measures such

as:
● Term Frequency (tf): Simple method which consists

of the number of times that a term wi occurs in a document d.
This method is based on the premise that the term frequency in
the document provides useful information about the relevance
of this term for the document.
● Document Frequency (DF): it is the number of

documents in which the term wi occurs at least once.
● Inverse Document Frequency (idf): it defines the

relevance of a term in a set of documents. The bigger this

index is, more important the term is to the document in which
it occurs. The formula to calculate idf is:

idf i = log (|D| / |{d: ti ε d}|)

Where |D| represents the total of documents and

|{d: ti ε d}| represents the number of documents where the

term ti appears.

tf-idf: it combines the term frequency with its inverse
frequency in the document, in order to obtain a higher index of
its representativeness. The formula to calculate tf-idf weight is:

(tf-idf) i,j = tfi,j x idfi

D. Grammatical classes and noun phrases

To further strengthen the semantic meaning of the structured
data, our work uses word composition. Words that have similar
semantic and syntactic behaviors can be clustered in the same
class, creating syntactic or grammatical categories, more
commonly named parts of speech (POS). The three main ones
are noun, verb and adjective. The nouns refer to people,
animals, concepts and things. The verb is used to express
action in a sentence, whereas the adjectives express noun
properties.

The POS detection is important, because in specific contexts
two or more words with different grammatical categories may
have one unique meaning. The semantical composition of
words is known as a Noun Phrase [24]. Noun phrases (NPs)
cluster words in a context and its detection can improve the
search accuracy in texts. Usually a noun is the central element
(head part) which determines the syntactical character of a NP,
and a verb or an adjective modifies this noun (mod part).

In order to implement NP detection, it is necessary that a
dictionary specifies which words can appear together. In
general, it is not necessary to store words in a compound way,
because this process demands time and does not enhance the
system efficiency significantly. What can be done is to store
information about the distance between words, and the
consultation technique is responsible for evaluating whether
words are adjacent or not.

NEUROMINER, the tool discussed in this article, uses the
vector spatial model, transforming the developer’s emails into
vectors, classifying the words grammatically and identifying
NPs, as well as assigning weights to the extracted terms.

IV. LIWC FOR NEUROLINGUISTIC

A. Motivation

We identified works that try to pinpoint people’s preferred
representational systems, but those researches are only in
psychology, and in domains like sports and education [25]. We
also found some software engineering papers that use text
mining to identify developers’ general emotional content.
However, these papers do not try to relate the developer’s
personality, or other psychological aspect, to the software
engineering activities themselves [26, 15]. This gap of
knowledge stimulated us to use text mining to investigate the

115Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 133 / 729

association between a psychological concept – PRS – and
software development roles and activities.

Our tool, NEUROMINER, uses Linguistic Inquiry and
Word Count (LIWC) to classify the Preferred Representational
Systems (PRS) of developers in a given context. We could not
find any tools that make automated neurolinguistic text
analysis and, as discussed later, our LIWC approach can be
adapted to other domains.

Finally, due to the scarcity of scientific researches about
NLP itself, this paper generates the opportunity to show
empirical results of applying one of its principles to our,
human-intensive, domain.

B. Neurominer

NEUROMINER combines statistic and text mining
techniques with sensory predicates of NLP, aiming to classify
programmers’s PRS.

The basic characteristics of NEUROMINER are:
● Use of a neurolinguistic dictionary;
● Use of ANOVA for PRS classification. An ANOVA

is an Analysis of the Variation present in an experiment. It is a
test of the hypothesis that the variation in an experiment is no
greater than that due to normal variation of individuals'
characteristics and error in their measurement;
● Use of an ontology to identify Software Engineering

and neurolinguistic terms combined in noun phrases;
● Use of synonym normalization resources with

dictionaries for Brazilian Portuguese [50] [27], and for English
[51] [28].

This paper will not focus on Neurominer internal
architectural, but rather in its NLP and PRS classification
approach.

Building and Using a NLP Dictionary

According to NLP, the words a person chooses to describe a
situation – when they are specific to representational system
(i.e., sensory-based) – let us know what his/her consciousness
is. This predicate indicates what portion of internal
representations the person brings into awareness [10].

The goal of our work is to identify the most used RS and the
percentage of use of the others. For this, we have adopted a
LIWC approach similar to the one presented by [15]. As
shown in Table I, it uses a NLP dictionary with four basic
dimensions composed of sensory-based words or phrases [10,
14].

TABLE I. NEUROLINGUISTIC DIMENSIONS

DIMENSION EXAMPLE WORD TAG
Visual ‘brilliant’ Mod
Auditory ‘dissonant’ Mod
Kinaesthtic ‘concrete’ Mod
Concepts ‘algorithm’ Head

The Concept dimension was created to increase contextual
classification power. A noun phrase (NP) such as ‘brilliant
algorithm’ indicates a visual PRS cue used in the context of
software engineering. The tag column of Table I indicates that
the dimension is part of a modifier (PRS) or head (SE context)

of the NP. In this very simple way, NPs formed with SE
ontological concepts have a bonus multiplied to the score in
our text mining approach.

The concepts were extracted from software document
ontology discussed in [29] and described in [30], which is
based on various programming domains, including
programming languages, algorithms, data structures and design
decisions such as design patterns and software architectures.
Our goal is to verify the direct relation of sensory-based words
with Software Engineering context. This way, we can find
noun phrases formed with ontological concepts and sensory-
based words or phrases, our first innovation.

Email Mining with Neurominer
Figure 1 summarizes the text mining main steps. The

approach is summarized only briefly, since details about
preprocessing [29], and clean messages [15, 31] have already
been published.

Step 1 includes steps such as stemming, part-of-speech
tagging and noun-phrase detection. For example, in the latter
step cited we use the MuNPEx approach (Multi-Lingual Noun
Phrase Extractor, [52]).

After downloading the email archives, the system parses
each email for meta-data as discussed in [31], and places its
relevant information into a data mart [32]. This data mart was
designed based on a software engineering data warehousing
architecture proposed by us in previous papers [33, 34].

The process only uses the text actually written by the sender
and its timestamp. It removes all diffs, attachments, quoted
replies, signatures, code and HTML that is not part of a diff.

We adopted a daily frequency-based cumulative approach.
In step 2, the system finds and counts the senders’ sensory-
based words and phrases by month, considering the NLP
dimensions in the dictionary.

In step 3, the system uses a text mining approach for the
NLP classification of individuals, instead of the traditional
document classification, our second innovation. In it, the set of
all emails written by a developer is treated as a ‘big text’ to be
classified. A simple approach for that is to count all the words
found in all emails of a developer and verify the percentage of
each representational system. However, aiming more detailed
analyses of evolution, the system considers the daily
frequencies of the words.

Figure 1. Text mining process chain

Our alternative to the basic tf-idf formulation (see Text

Mining section) computes weights or scores for sensory-based
words. The values are positive numbers so that it captures the
presence or absence of the word in a month. Equation (1)
indicates that neuro weight assigned to a word j is the term
frequency (i.e., the ratio between word count and the sum of
number of occurrences of all words) modified by scale factor
for the importance of the word. The scale factor, for our
approach, is called daily frequency df(j), which is the ratio

116Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 134 / 729

between the number of days containing word j and the number
of loaded days. Thus, when a word appears in many days, it is
considered more important and scale is increased.

 neuro(j) = (tf(j) + df(j)) x b (1)

In addition, a bonus b is also multiplied to the measure. The

bonus can be 1 or 2, where b will be equal to 2 if term is a NP
or phrase, and 1 if term is a simple word.

At the end of each month, the term weights are recalculated
and a general total of weights (final weight) are stored for each
representational system. Lastly, each representational system
monthly mean is computed.

In the step 4, we use ANOVA (analysis of variance) to
determine if the means are statistically different.

V. EXPERIMENT

The rest of this paper describes an experimental validation
of our approach. The presented experimental process follows
the guidelines by [35]. This section will focus on the
experiment definition and planning. The following section will
present the obtained experimental results.

A. Goal definition

The main goal of our study is to evaluate if OSS top
committers have a PRS. This goal is formalized using the
GQM Goal template proposed by [36] and presented in [37]:
Analyze Project top committers
with the purpose of evaluation
with respect to NLP context-specific Preferred
Representational Systems
from the point of view of software engineering researchers
in the context of development mailing lists of OSS projects

B. Planning

Context selection: The experiment will target OSS projects.

Hypothesis formulation:
The issues we are trying to explore are as follows.
1. We are interested in verifying if OSS top committers

have a PRS.
2. Besides that, we believe top committers are more

kinesthetic than auditory and visual. Our belief is that
experienced programmers of the OSS community rely heavily
on their experiences, and are less dependent on visual and
auditory artifacts than the general population of OSS software
engineers.

Considering the arduous manual work of searching for valid
emails used by top committers and, as a consequence, the
small sample size due to the low number of top committers, a
formal statistical test will not be performed for the second
issue. This hypothesis is:

Null hypothesis H0: OSS top committers have the same
frequency for the three profiles (Visual, Auditory and
Kinesthetic).

Alternative hypothesis H1: The frequency of OSS
Kinesthetic top committers is higher than Visual and Auditory.

However, considering the large number of emails that will
be mined, the test of the existence of a PRS top committer for
each selected will have large power. We will also do a detailed
qualitative analysis of the top committers’ profiles in order to
sanity check NEUROMINER measures.

NEUROMINER will be used to calculate the final weights
for each representational system, as well as representational
systems monthly means (see Email Mining section).

Formally, the hypothesis we are trying to confirm is:
Null hypothesis H0: OSS top committers have the same

representational system monthly mean.
H0

PRS: µ(Visual Final Weight) = µ(Auditory Final Weight) =
µ(Kinesthetic Final Weight)

Alternative hypothesis H1: at least one of the
representational systems’ monthly means is different from the
others.

Participant and artifact selection:
To answer our research questions, we extracted email

messages from the Apache [53] and Postgresql Projects [54]
mailing lists. For the Apache, we analyzed the body of all
email messages between 1996 and 2005 (35,483 messages),
and selected the four developers who had the greatest number
of commits. Those are the same developers studied by [15].
For Postgresql, we analyzed the body of all email messages
between 1997 and 2006 (57,159 messages), and also selected
the four developers who had the greatest number of commits.
In both projects, two top committers still contribute to the
project and others have already left.

We also created clusters of all other developers for both
projects. During data reporting we will refer to this general
population measures as the cluster.

The analysis is completely non-intrusive to developers as
the data was drawn directly from the project mailing lists. For
each developer and cluster, once a month, we calculated the
PRS using the method described in Section 4.2.2 (email
mining). At the end, we had one data point of mined e-mails
per month for each subject. Clusters were mined for 3 years
(36 months). Top-committers were mined for the last 10 years,
but data points were produced only for those months in which
they posted at least one e-mail at the project discussion list.
NEUROMINER then tested the population distribution and
calculated the analysis of variance of the monthly PRS scores
for each participant (all calculation was double checked using
SPSS). The population distribution for each sample is normal.

C. Results

Tables II and III summarize our results. The column Totals
represents the number of months (data points for each
participant), days and emails. For each representational system
the final weight is shown for the set of all sensory-based words
found and the monthly average of this weight. The column
ANOVA p-value reports P values for the null hypothesis.

D. Analysis and Interpretation

For the statistical testing, we established an apriority
significance level (α) of 0.05. Tables II and III show that our
first hypothesis is accepted as we obtained the p-value of 0.000

117Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 135 / 729

for all means but one, developer G. The results for the clusters
and developers A-F and H are significantly lower than 0.05,
strongly rejecting the null hypotheses.

We observed that Developers B, D, E, F and H did not have
a higher value for the Kinesthetic RS. This contradicts our
initial hypothesis that top committers are more Kinesthetic
than Visual and Auditory. Moreover, this is also the PRS of the
general population (see Cluster Row in Tables II and III).

With respect to the first point, we found out that there are
four visual, two kinesthetic and one auditory top-committers.

Looking at their profiles, we realized that most of them are
quite concerned with following procedures and documenting
information, contradicting our initial stereotype of a hardcore
OSS developer.

The second point, the other developers being kinesthetic on
average, leads us to believe that most people that post in the
list are indeed involved with practical activities in the project,
and counters our initial belief that many posters were by
newbies or people that were simply curious – wanted to hear –
about the project.

TABLE II. APACHE TOP COMMITTERS RESULTS

Months Days Emails Final Weight Monthly Mean Final Weight Monthly Mean Final Weight Monthly Mean

A Yes 53 773 4357 2.458847752 2.7274 2.222439202 2.4645 2.579237886 2.9774 .000

B Yes 33 320 1082 2.258647848 2.6680 1.557743226 1.6667 1.900853069 2.2514 .000

C No 72 1213 4279 1.904784203 2.3577 1.684352265 2.0152 2.17853237 2.6210 .000

D No 42 366 644 0.557085631 0.6013 0.526795847 0.6581 0.441884768 0.4684 .000

Cluster - 36 1091 25121 6.906216384 7.7567 6.456228874 7.3756 8.849529521 9.5515 .000

Totals (1996 - 2005) Visual Auditive Kinesthetic
Participant Left the Project? ANOVA p-value

TABLE III. POSTGRESQL TOP COMMITTERS RESULTS

Months Days Emails Final Weight Monthly Mean Final Weight Monthly Mean Final Weight Monthly Mean

E Yes 62 899 2854 0.928310296 0.929891595 0.546308965 0.530733142 0.637687699 0.638343065 .000

F Yes 53 478 1284 0.97883767 0.958569136 0.419031696 0.421918608 0.615530516 0.631261987 .000

G No 55 536 1176 0.845112965 0.718432684 0.672360338 0.629946198 0.561439549 0.725690981 0.085

H No 121 2728 17712 0.901184217 0.855757104 0.648274323 0.644466038 0.596461266 0.600263054 .000

Cluster - 36 731 34133 0.745095331 0.717685413 0.623314426 0.617197033 0.727219871 0.752834067 .000

ANOVA p-valueParticipant Left the Project ?
Totals (1997 - 2006) Visual Auditive Kinesthetic

Even where there is dominance of the Kinesthetic RS, the
results show that OSS developers also have significant visual
and auditory RS. This may indicate an opportunity to introduce
better visualization tools and better support for cooperative
work, increasing direct developer interaction, in OSS
development.

Digging a bit deeper into the top committers’ profiles [55]
and [56], we found out that Developer B had a strong
involvement with the project architecture and the work to
hybridize Apache. This seems to support his/her Visual PRS
(see Table II and Figure 2).

Developer D – the most singular subject among the top
committers – has an Auditory PRS and also a strong Visual
RS. His/her profile indicates that he/she contributes heavily
with the project documentation and his/her predominant
working language is XML. This possibly matches the mined
profile, as one would expect strong listening and reading
capabilities from people involved in OSS documentation.

These insights are quite aligned with the results presented in
[15]. This paper reports that the measures collected for
Developer D were the least associated with the other subjects
in the study. Our study, however, went further and indicated a
classification that directly matched the subject profile and
project role.

Regarding the Postgresql top-committers, the first thing that
catches the eyes (see Figure 3), is that three of them are highly
visual. Moreover, the visual PRS is high even for Developer G
and the project cluster itself. Top-committers E, F and G are

highly involved with both documentation and implementation.
Top-committer G, the only one who is not classified in any
category, p-value 0.085, also works on performance testing
and tuning, which may be related to his/her relatively high
kinesthetic score. He/She also works with user groups and on
providing general direction for the project advocacy, which
may be related to his/her relatively high auditory score. Top-
committer H, by far the most active top-committer of them all,
is visual but also has a high auditory score, even higher than
his/her kinesthetic score. His/her scores may be explained by
the fact that he/she is highly involved with development, but
also does training and maintains the project FAQ and TODO
list.

E. Threats to Validity
In spite of the fact that Apache and Postgresql are a mature,

real world, large projects, and our results seem to be quite
consistent with the obtained top-committer profiles, the PRS
measures still need further investigation to assure external
validity.

A new study is being run in an industrial setting. The
completely different setup and higher control over the study
environment will help to increase the generalization power of
the results.

We obtained the top committer profiles through the project
sites. Better analysis would be possible with more extensive
information. Gathering more profiling data would help us
improve our analysis. Aiming at this, we developed a
questionnaire to characterize and assess the PRS of software
engineers. This questionnaire is publicly available at [57].

118Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 136 / 729

We contacted the top-committers by e-mail and asked them
to fill it out. Unfortunately, they could not find the time to fill
it out.

0

1

2

3

4

5

6

7

8

9

10

A B C D Cluster

Visual

Auditive

Kinesthetic

Figure 2 Apache Results

VI. RELATED WORK

Regarding NLP, there are some scientific articles showing
evidences of its assertions. In addition, there are several
publications about preferences for some specific
representational systems in the cognitive and learning
processes, even in computing [38].

The basis for models and techniques presented by NLP can
be found in psychological studies that involve the so-called
“Chameleon Effect”, which concerns non-matching and
matching stimuli to the empathy increase in communication.
Reference [39] did an experiment at a restaurant in the south of
Netherlands in which half of the studied waitresses used the
“Chameleon Effect” to serve customers. Results showed that
the average value of the tips almost doubled for the waitresses
who used matching language and behavior. The reference [40]
analysed subjects who interacted with artificial intelligence
based software – an agent which simulates a subject giving an
explanation. The agent that imitated subject’s movements was
more convincing, receiving more positive evaluations. It was
the first virtual reality study that showed the effects of a non
verbal automatic imitator in order to gain empathy.

Reference [14] tested NLP hypothesis about matching
processes which enhance empathy in communication. The
relation between matching and empathy increase were
significant. Education was also related to the empathy
increase, however, even when it was controlled, the relation
between matching and empathy remained significant.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E F G H Cluster

Visual

Auditive

Kinesthetic

Figure 3 Postgres Results

Paolo et al. [38], presupposing some students’ preferences
for the kinesthetic processing in certain contexts, developed
and tested a set of kinesthetic activities for a distributed
systems course, with graduation and post graduation students.
The article presents detailed descriptions of the exercises and
discusses the factors that contributed for their success and
failure.

Fleming presented a questionnaire developed and used at
Lincoln University to identify the preferences of students for
particular modes of information representation [25]. Named
the VARK model, the questionnaire is now the basis of a
commercial service for educational planning (http://www.vark-
learn.com/english/page.asp?p=questionnaire). The acronym
originates from questionnaire classification of the learning
styles. “V” is for visual learners, “A” is for auditory learners,
“R” is for reader/writer learners, people that best learn through
seeing printed words. And, “K” is for tactile/kinesthetic
learners.

The VARK classification differs from the NLP classic
classification, because it includes the readers-writers category
on top of the usual the visual, kinesthetic and aural categories.
According to Fleming, results show that students with
preferences for R and V information use their eyes to “take in
the world” but they have preferences within that sensory mode;
some like text and others like diagrammatic or iconic material
- information that is symbolically displayed [25].

Another point raised by the VARK data is that the same
subject may have different profiles in different areas (martial
arts, music, languages, etc) for different time periods, i.e., a
subject may be Visual (V) to learn martial arts for a period of
time and become Kinesthetic (K) after that.

These evidences support some NLP techniques and establish
an empirical basis for further studies.

Considering text mining in Software Engineering,
independent from the database, linguistic analyses have been
used to comprehend the development of OSS softwares. Witte
at al. [29] considered the semantic importance of the
documents written in natural language in the process of
maintenance and reengineering. The result of the research
consisted of creating a text mining system capable of filling
software ontology with information extracted from these
documents.

Other works have already considered email specific analysis
to study OSS development process [41, 31]. Pattison et al. [42]
studied the relation between the several software entities
mentioned in emails and the number of times these entities are
included in the changes made.

Two works are closest to the research presented here. In the
first, Scialdone et al. [26] used emails to evaluate the social
presence in maintenance groups of OSS projects. Social
presence theory classifies different communication media
along a one-dimensional continuum of social presence, where
the degree of social presence is equated to the degree of
awareness of the other person in a communication interaction.
According to social presence theory, communication is
effective if the communication medium has the appropriate
social presence required for the level of interpersonal

119Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 137 / 729

involvement required for a task. On a continuum of social
presence, the face-to-face medium is considered to have the
most social presence, whereas written, text-based
communication, the least. It is assumed in social presence
theory that in any interaction involving two parties, both
parties are concerned both with acting out certain roles and
with developing or maintaining some sort of personal
relationship [43, 44].

Core and Peripheral members were compared, and the
results showed that respect behavior to another one’s
autonomy may contribute to the survival of the group and
continuity of the project. The work does not raise alternatives
to social presence or solutions to increase empathy. It is based
solely on psychological and social measures. It establishes no
relation between these aspects and software engineering roles
and profiles.

The second work is [15], which analysed the content of
Apache discussion list to find developer’s personality and
general emotional content. Like ours, this work uses a LIWC
tool (Linguistic Inquiry and Word Count) [45] to help ratings.
However, the work uses a general purpose psychological
analysis tool. It was neither developed to explore emails nor to
preprocess text mining and score terms.

In [46], we presented an initial report for the use of
neurolinguistic ratings by mining development discussion lists.
This work motivated and guided the need for extended studies
and details about innovations and technologies involved,
which are now presented in this article.

VII. CONCLUSION AND FUTURE WORK

We presented a text Neurolinguistic mining tool that is
capable of extracting sensory-based words from software
mailing lists. The system is novel in four important aspects: (1)
it automates parts of NLP practices; (2) it combines a SE
taxonomy with sensory-based words; (3) it adapts traditional
text mining process to NLP practices; and (4) it uses specific
Text Mining Data Mart in a software engineering data
warehouse. The approach itself is novel in its use of NLP
concepts in the software engineering area.

The results are encouraging. In spite of being contrary to our
expectation, the PRS scores clearly differentiate the top-
committers from the general population of the projects.
Moreover, the scores are aligned with the participant profiles,
indicating that they indeed can be used to profile people to
software engineering tasks and, possibly, better
communication. It is worth noting that the classifications
presented in this work are not fixed, ie, they initially represent
only the greater use of one or other system within the context
analyzed.

Thus, in specific contexts, a particular sensory system may
take dominance (for example, (a) being primarily aware of
external kinesthetic representations - bodily movements and
sensations - while training. (b) Concentrating preferentially on
auditory comparisons while analyzing client requirements),
representational system preferences thus tend to be a
contextual artifact in that when an individual considers specific
contexts, his/her language can reflect how he/she processes the

information relating to the process of considering that context.
In certain cases a person may find himself/herself with certain
rigid representations and strategies which preclude behavioural
choice. In such a case, one representational system may
predominate and important for enhancing emphaty.

Our future work will address three key issues: (1) examine
the empathy of exchanged messages to assess communication
success over PRS alignment; and (2) better profile PRS scores
with usage of software engineering artifacts and the roles that a
person plays in a project; and (3) devise new ways to measure
PRS.

ACKNOWLEDGEMENTS

This work is partially (for Methanias and Manoel) supported
by INES - National Institute for Software Engineering
(www.ines.org.br) funded by CNPq (grant 573964/2008-4).

REFERENCES
[1] Klemola, T. and Rilling, J. Modeling Comprehension Processes in

Software Development. Proceedings: First IEEE International
Conference on Cognitive Informatics, pp. 329-336, 2002.

[2] Diehl, S. Software Visualization -Visualizing the Structure, Behavior and
Evolution of Software. New York: Springer Verlag, 2007.

[3] Hungerford, B. C., Hevner, A. R and Collins, R. W. Reviewing
Software Diagrams: A Cognitive Study. IEEE Transactions on Software
Engineering, vol. 30, no. 2, pp. 84-95, 2004.

[4] Maldonado, J. C., , Carver, J., Shull, F., Fabbri, S. C. P. F., Doria, E. S.,
Martimiano, L., Mendonca, M., and Basili, V. Perspective-based reading:
A replicated experiment focused on individual reviewer effectiveness.
Empirical Software Engineering An International Journal, 11(1): pp.
119–142, 2006.

[5] Travassos, G., Shull, F., Fredericks, M., Basili, V.R.: Detecting defects
in object-oriented designs: using reading techniques to increase software
quality. In: Proceedings of the 14th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’99), pp. 47–56. ACM, New York, 1999.

[6] Dent, K. A. Cognitive Styles: Essence and Origins: Herman A. Witkin
and Donald R. Goodenough. Journal of the American Academy of
Psychoanalysis, 11: pp. 635-636, 1983.

[7] Matthews, D. B. Learning Styles Research: Implications for Increasing
Students in Teacher Education Programs. Journal of Instructional
Psychology, 18 pp. 228-236, 1991.

[8] Peters, Derek, Gareth, Jones, and Peters, John. Preferred 'learning styles'
in students studying sports-related programme in higher education in the
United Kingdom. Studies in Higher Education. Vol 33, pp. 155 – 166,
2008.

[9] Bandler, R. and Grinder, J. Frogs into Princes: Neuro-linguistic
Programming, Moab, Utah: Real People Press, 1979.

[10] Dilts, R., Grinder, J., Bandler, R. and DeLozier, J. Neuro-linguistic
Programming: Volume 1 California: Meta Publications, 1980.

[11] Elich, M., Thompson, R. W., and Miller, L. Mental imagery as revealed
by eye movements and spoken predicates: A test of neurolinguistic
programming. Journal of Counseling Psychology, 32(4), pp. 622-625,
1985.

[12] Einspruch, Eric L. and Forman, Bruce D. Observations concerning
Research Literature on Neuro-Linguistic Programming. Journal of
Counseling Psychology, vol. 32, no. 4, pp. 589-596, 1985.

[13] Tosey, Paul and Mathison, Jane. Fabulous Creatures of HRD: A Critical
Natural History Of Neuro-Linguistic Programming. 8th International
Conference on Human Resource Development Research and Practice
across Europe, Oxford Brookes Business School. Available in
http://www.nlpresearch.org/, last access in Dez/2009, 2007.

120Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 138 / 729

[14] Turan, Bulent and Stemberger, Ruth M. The effectiveness of matching
language to enhance perceived empathy. Communication and Cognition,
Vol 33(3-4), pp. 287-300, 2000.

[15] P. Rigby and A. Hassan. What Can OSS Mailing Lists Tell Us? A
Preliminary Psychometric Text Analysis of the Apache Developer
Mailing List. Proceedings of the Fourth International Workshop on
Mining Software Repositories, 2007.

[16] Tosey, P. and Mathison, J. Neuro-linguistic Programming and Learning
Theory: a response. The Curriculum Journal Vol. 14 no.3 pp. 361 – 378,
2003.

[17] Korzybski, A. Science and Sanity. The International Non-Aristotelian
Library Publishing Company. Available online at
http://www.esgs.org/uk/art/sands.htm, accessed 14.01.2009, 1941.

[18] Visa. A. Technology of Text Mining. Proceedings of Machine Learning
and Data Mining in Pattern Recognition, Second International
Workshop, MLDM 2001, Leipzig, 2001.

[19] Fayyad, Usama; Piatetski-Shapiro, Gregory; Smyth, Padhraic. The KDD
Process for Extracting Useful Knowledge from Volumes of Data. In:
Communications of the ACM, pp.27-34, Nov.1996

[20] Salton, G., Wong, A., andYang C.S. A Vector Space Model for
Automatic Indexing. Communications of the ACM, New York, v.18,
1975.

[21] C. J. V. Rijsbergen. Information Retrieval, 2nd edition. Butterworths,
London, 1979.

[22] Hiemstra, D. and Jong, F. Statistical Language Models and Information
Retrieval: Natural language processing really meets retrieval, Glot
International 5(8), Blackwell Publishers, 2001.

[23] Sholom, M. Weiss et al. Text Mining: Predictive Methods for Analyzing
Unstructured Information. Springer, 2005.

[24] Cunningham, H., Maynard, D., Bontcheva, K., and Tablan, V. GATE. In
Proceedings of the 40th Meeting ACL, 2002.

[25] Fleming, N. D. I'm different; not dumb. Modes of presentation (VARK)
in the tertiary classroom, in Zelmer,A., (ed.) Research and Development
in Higher Education, Proceedings of the 1995 Annual Conference of the
Higher Education and Research Development Society of Australasia
(HERDSA), HERDSA, Vol 18, pp. 308 – 313, 1995.

[26] Scialdone, Michael J. Group Maintenance Behaviors of Core and
Peripherial Members of Free/Libre Open Source Software Teams. In
Proceedings of the OSS 2009, pp. 298-309, 2009.

[27] Maziero, E.G. Electronic Thesaurus for the Brazilian Portuguese. VI
Workshop on Information Technology and Human Language, pp. 390-
392, 2008.

[28] Cognitive Science Laboratory. WordNet - a lexical database for the
English language, Princeton University, 2006.

[29] Witte, R., Li, Q., Zhang, Y., and Rilling, J. Text mining and software
engineering. IET Softw – Special Section on Natural Language in
Software Engineering, 2, (1), pp. 3–16, 2008.

[30] Wongthongtham, P., E. Chang, T. S. Dillon, and I. Sommerville.
Development of a software engineering ontology for multi-site software
development. IEEE Transactions on Knowledge and Data Engineering,
volume 21, Issue 8, pp. 1205-1217, 2009.

[31] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan.
Mining email social networks. Proceedings MSR 2006, pp. 137–143,
2006.

[32] Colaço Jr., Methanias. Implementing Decision Support Systems and
Data Warehouses. Rio de Janeiro, Brazil: Axel Books, 2004.

[33] Colaço Jr. , Methanias, Mendonça, M. G. and Rodrigues, F. Data
Warehousing in an Industrial Software Development Environment. In:
33rd Annual IEEE/NASA Software Engineering Workshop, 2009A.

[34] Colaço Jr., Methanias, Mendonça, M. G. and Rodrigues, F. Mining
Software Change History in an Industrial Environment. In: XXIII
Brazilian Symposium on Software Engineering, Fortaleza, Brazil,
2009B.

[35] Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A.
Wesslén. Experimentation in software engineering: an introduction.
Kluwer Academic Publishers, 2000.

[36] V. Basili and D. Weiss, “A Methodology for Collecting Valid Software
Engineering Data,” IEEE Transactions on Software Engineering,
vol.10(3): pp. 728-738, November 1984.

[37] R. van Solingen and E. Berghout. The Goal/Question/Metric Method: A
practical guide for quality improvement of software development.
McGraw-Hill, 1999.

[38] Paolo A. G. Sivilotti and Scott M. Pike. A collection of kinesthetic
learning activities for a course on distributed computing. ACM SIGACT
news distributed computing column 26. SIGACT News 38(2): pp. 56-74,
2007.

[39] Van Baaren, R. B., Holland, R. W., Steenaerts, B., and van Knippenberg,
A. Mimicry for money: Behavioral consequences of imitation. Journal of
Experimental Social Psychology, 39, pp. 393-398, 2003.

[40] Bailenson and Yee. Digital chameleons: automatic assimilation of
nonverbal gestures in immersive virtual environments. Psychological
Science. v16. Pp. 814-819, 2005.

[41] A.Mockus, R. T. Fielding, and J. Herbsleb. Two case studies of open
source software development: Apache and Mozilla. ACM Transactions
on Software Engineering and Methodology, 11(3):pp. 1–38, 2002.

[42] David S. Pattison , Christian A. Bird and Premkumar T. Devanbu. Talk
and work: a preliminary report. Proceedings of the 2008 international
working conference on Mining software repositories, May, pp. 10-11,
2008.

[43] Sallnas, E.L., Rassmus-Grohn, K., and Sjostrom, C. Supporting presence
in collaborative environments by haptic force feedback. ACM
Transactions on Computer-Human Interaction, 7(4), pp. 461–476, 2000.

[44] Stein, D.. Creating shared understanding through chats in a community
of inquity. The Internet and Higher Education 10(2), pp. 103-115, 2007.

[45] J. Pennebaker, M. Francis, and R. Booth. Linguistic inquiry and word
count: Liwc 2001. Mahwah, NJ: Erlbaum, 2001.

[46] Colaço Jr, Methanias, Mendonça Neto, M. G., Farias, M. A. and
Henrique, Paulo. OSS Developers Context-Specific Preferred
Representational Systems: An Initial Neurolinguistic Text Analysis of
the Apache Mailing List. In: 7th IEEE Working Conference on Mining
Software Repositories, Cape Town, 2010.

[47] Thompson, J. E., Courtney, L., and Dickson, D. The effect of
neurolinguistic programming on organizational and individual
performance: a case study, Journal of European Industrial Training, vol.
26, no. 6, pp. 292-298, 2002.

[48] Heap, M. "Neurolinguistic programming - an interim verdict," in
Hypnosis: current clinical, experimental and forensic practices, M. Heap,
ed., Croom Helm, London, pp. 268-280, 1988.

[49] Bostic St.Clair, C. and Grinder, J. Whispering in the Wind J & C
Enterprises, Scotts Valley, CA, 2001.

WEB REFERENCES
[50] http://www.nilc.icmc.usp.br/tep2/index.htm accessed in October, 2011.

[51] http://wordnet.princeton.edu/wordnet/download/ accessed in October,
2011.

[52] http://www.ipd.uka.de/~durm/tm/munpex/ accessed in July, 2009.

[53] www.apache.org accessed in January, 2011.

[54] www.postgresql.org accessed in July, 2011.

[55] http://httpd.apache.org/contributors/ accessed in January, 2011.

[56] http://www.postgresql.org/community/contributors/ accessed in July,
2011.

[57] www.neurominer.com/survey accessed in October, 2011.

121Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 139 / 729

Architecture Centric Tradeoff
A decision support method for COTS selection and life cycle management

Subhankar Sarkar
Senior Manager, Public Sector ERP

IBM USA
ssarkar@us.ibm.com

Abstract— Current methods of COTS selection have not been

widely accepted in industry, and have been found to lack
architectural orientation and a Cost of Ownership perspective.
This paper reviews the current methods, and proposes a new
method - Architecture Centric Tradeoff (ACT) – for COTS
decision support. ACT prescribes a 3-layer Metamodel,
Heuristics for Cost of Ownership computations, and a Processor
that iterates through candidate solutions to find the optimal
tradeoff. In ACT, COTS selection is not driven solely by
functional features, but also by architectural characteristics.
ACT also takes into account IT portfolio convergence and
various COTS delivery methods such as SaaS and Cloud services.

Keywords- COTS; ERP; Composition based systems;
Component evaluation; Cost of Ownership; Tradeoff Analysis

I. INTRODUCTION

Commercial Off the Shelf (COTS) products nowadays
comprise a significant proportion of most IT portfolios. In-
house software development, following traditional waterfall
methodologies, started giving way to composition based
systems in the late 1990s, and the trend accelerated in the
2000s. Lower costs and shorter implementation cycles were an
obvious driver. COTS products provided a viable means to
replace outdated systems [1] or integrate disparate portfolios
[2]. Also, in the face of the technology revolution, many CEOs
were content to leave product development to COTS
providers. Around the same time, generally accepted practices
and well-formed standards started to emerge in many domains,
such as Accounting, Supply Chain and Human Resources.
COTS vendors such as SAP, Oracle and PeopleSoft created
products in these domains, using design patterns that allowed
the same product to be adapted for many businesses. Many
organizations adopted COTS as a platform for Business
Process Engineering (BPR), and as a means of gaining
strategic advantage [3].

Several COTS selection methods exist in literature. One of

the first, and the one that gave shape to the generally accepted
COTS selection process, was the Off the Shelf Option (OTSO,
1995). This method employed progressive filtering, based on
evaluation criteria that included functionality, non-functional
properties, strategic considerations and architecture
compatibility [4]. Procurement Oriented Requirements
Engineering (PORE, 1998), stressed the use of knowledge
discovery techniques for progressive elaboration of
requirements, and decision support techniques for product
ranking [5]. COTS-based Requirements Engineering (CRE,

2002) added a Non-Functional Requirements (NFR)
framework to the selection process [6]. COTS-Aware
Requirements Engineering (CARE, 2004) intertwined
requirements engineering with component evaluation [7].
Mismatch-Handling Aware COTS Selection (MiHOS, 2005)
introduced processes for handling mismatches between
requirements and COTS, and suggested optimization
techniques, such as linear programming [8]. And then, of
course, there is the ubiquitous fit/gap spreadsheet.

II. ANALYSIS OF CURRENT METHODS

Most COTS selection methods fit into a general pattern,
referred to as General COTS Selection (GCS) [9]:
1. Define evaluation criteria based on stakeholder.
2. Search for candidate COTS.
3. Filter search results based on “must-haves”.
4. Evaluate candidates using decision support techniques.
5. Select COTS, and tailor as needed.

Data suggests that none of these methods have found wide

adoption in industry. In a study of Small-and-Medium-
Enterprises (SME) in Norway and Italy, it was found that none
of them used any of the formal methods for COTS selection
[10]. Current criticism for the GCS is summarized below:
• Although most of the proposed approaches were

developed for general use, there is no commonly accepted
approach for COTS selection [11]. Also, these approaches
were proposed without a clear explanation of how they
can be adapted to different domains and projects.

• Current approaches suggest using decision making
techniques such as weighted score method (WSM) or
analytic hierarchy process (AHP) [12]. However, there are
several limitations to these techniques [13]. For example,
these techniques estimate the fitness of COTS candidates
based on ‘one’ total fitness score. This is sometimes
misleading due to the fact that high performance in one
COTS aspect might hide poor performance in another.

• …what is needed is a more robust negotiation component
through which COTS can be progressively selected based
on functional and non-functional requirements,
architecture, and at the same time resolving conflicts
between stakeholders [9].

In this paper, we take a holistic look at the challenges in

COTS selection, and discover several problems that have not
been adequately addressed in current literature or practice.

122Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 140 / 729

Current methods lack a “Cost of Ownership” perspective.
• They look at product features at face value, and select the

product with the highest (weighted) feature score. The
focus is on the number of mismatches, and on negotiating
that to a low value. The predicate is that the product will
not be customized, or that the cost of customization is a
function of the number of mismatches alone. The first
predicate is not true in most implementations; usually, the
persistent goal in the COTS life cycle is to arrive at the
optimal level of customization, not to eliminate
customization as a possibility. The second predicate is
even less true – the cost of customization is not a function
of the number of mismatches, but of the mismatch type,
and more importantly, of the underlying product
architecture and the extensibility mechanisms.

• Development cost is only one component of the
customization cost (or the “Cost of Repair”), not even the
larger part. The life cycle impact of customizations – the
potential regressive impact, and resulting increase in the
cost of sustenance – is by far the greater cost. That cost,
too, is driven not so much by the number of missing
features, but by the mismatch type and the underlying
product architecture.

• Current methods fail to capture the true business impact
of accepting a set of mismatches, or the “Cost of
Acceptance”. This cost is not simply the (weighted)
mismatch score; it also depends on the level of the
requirements hierarchy where those mismatches occur.
Mismatches at a higher level, involving foundational
requirements, will have a larger cost. The Cost of
Acceptance also depends on the mitigation thereof. In the
simplest case, the customer organization will stop doing
something; then the Cost of Acceptance is simply the
value of the lost function. In most cases, the organization
will add a manual process, expand another function, or
distribute work to another segment of the enterprise.

Current methods lack architectural orientation.
• While many methods mention “architectural

reconciliation”, there is insufficient detail on how such
reconciliation may be pursued. Most of the current
methods focus on requirements negotiation, and treat
architectural characteristics or non-functional
requirements (NFRs), as simply another group of
requirements. But architectural characteristics enable
multiple functions; architectural gaps, unlike functional
ones, have a multiplier effect on the Cost of Ownership.
Current methods do not treat architectural characteristics
as enablers, and fail to account for this multiplier effect.

• Current methods do not have a portfolio perspective.
Architectural characteristics influence IT portfolio
convergence, and ROI of the organization’s IT portfolio.
For example, if the organization has invested substantially
in LDAP services, absorption of a product that does not
support LDAP integration will lead to portfolio
divergence and diminished ROI. While COTS
functionality is best viewed from a Line of Business

(LoB) perspective, COTS architecture is best viewed from
a portfolio (i.e. CIO) perspective. Then again, if the
COTS is delivered as Software as a Service (SaaS) or as a
service from a shared community Cloud, the customer
organization need not have an equal interest in the
underlying architecture, and IT portfolio convergence
need not be an issue. Therefore, the COTS delivery
method, of which there are several in industry today,
becomes a factor in the selection process.

III. PROPOSED METHOD

In this paper, we propose a new method for COTS selection
and life cycle management – Architecture Centric Tradeoff
(ACT) . ACT is a decision support method for the entire COTS
lifecycle, starting from COTS selection, and persisting through
the Design, Build, Deploy and Maintain phases. The
fundamentals of the ACT method remain unchanged through
the life cycle, while the underlying model data is progressively
refined. The salient features of ACT are:
1. ACT explicitly recognizes that COTS based system

development is an optimization, not a construction,
problem. The central object in ACT is the Tradeoff.
Matrix, not the Requirement Traceability Matrix (RTM).

2. ACT supports a holistic Cost of Ownership perspective. In
ACT, the Cost of Ownership is a function of the business-
product mismatch. The mismatch can be assessed from
multiple viewpoints, each resulting in one component of
the Cost of Ownership. (Function and Technology are the
fundamental viewpoints.) ACT seeks the minima for the
Cost of Ownership function, i.e. the collection of Accept
and Repair decisions that result in the lowest Cost of
Ownership. In ACT, the COTS product with the lowest
minimum Cost of Ownership is selected, which may not
necessarily be the product with the highest (weighted)
feature score.

3. ACT is an architecture-centric process. It goes beyond
features, and explores structural aspects of businesses and
products. ACT recognizes the multiplier effect of
architectural characteristics such as extensibility. Through
the technology viewpoint, the method supports IT
portfolio convergence and ROI of IT investments. ACT
explicitly recognizes the need for new COTS to leverage
IT investments already made.

A. Model Organization and Relationships

ACT comprises of 3 parts:
• Metamodel: ACT uses a 3-layer metamodel, constructed

in the Unified Modeling Language (UML). The first layer
describes the conceptual model, the second the logical,
and the third the physical.

• Heuristics: These process the model data to calculate the
various components of the Cost of Ownership. The
heuristics can be adjusted based on organizational
assessments and COTS architecture reviews.

• Processor: The processor iterates through various
candidate solutions, defined by the analyst, to find the
optimal tradeoff.

123Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 141 / 729

ACT is founded on the Evolutionary Process for
Integrating COTS (EPIC) [14], which itself is an extension of
the Rational Unified Process (RUP). EPIC was developed by
the Software Engineering Institute (SEI) at Carnegie Mellon.
• Like RUP, EPIC is incremental, iterative and

architecture-centric. EPIC uses the well-formed artifacts
(e.g. Use Cases) and the modeling language (Unified
Modeling Language (UML)) of RUP. But while the
constructs are the same, the focus is different. RUP
focuses on the progressive realization of a fixed set of
requirements, while EPIC focuses on the systematic
tradeoff of requirements and COTS capabilities.

• EPIC represents a paradigm shift in COTS based system
integration. In EPIC, business needs and COTS
capabilities converge across multiple iterations. EPIC
allows the understanding of requirements and COTS
capabilities to evolve along the life cycle. Because it is
tradeoff oriented rather than requirements oriented, EPIC
reduces risk, decreases cost and facilitates use of
delivered capabilities. Importantly, it also transforms
system integration into an optimization problem, which, in
the traditional approach, it is not.

Figure 1. Evolutionary Process for Integrating COTS

ACT builds on the EPIC process framework. ACT
quantifies the tradeoffs in EPIC, and facilitates the iterative
convergence of function, technology and COTS. EPIC is a
broad process framework, and does not say how tradeoffs
should be calculated and managed. ACT takes EPIC from
theory to practice; it enables tradeoff oriented COTS program
management, governance and tool development.

Figure 2. ACT Model Organization

B. Model Metadata

ACT is a repository based method. The repository
metadata describes the entities in the model and the
relationships between them. Inferentially, it defines the
boundaries of the model and the subset of problems it can
solve. The metadata is in 3 layers - conceptual, logical and
physical. The inheritance hierarchy of ACT, as shown the
figure below, allows it to work with multiple products,
businesses, SDLCs and EA frameworks, while maintaining the
same core metadata.

Figure 3. ACT 3-Layer Metamodel

Layer 1 Metadata describes the core concepts.
� “Enterprise” is a unit (company, agency, department…)

that does, provides or supports “things of value”. The
enterprise is structured as a hierarchy, with the “relative
importance” at each node distributed amongst lower
nodes. Function and technology are the two fundamental
hierarchies.

� “Mismatch” is where the Enterprise is not fully
supported by (or does not have) a Product Context.
Mismatch can be full or partial. Each mismatch is traced
to a specific node in the Enterprise hierarchy, with
preference for the lowest possible node, and is fully
distributed to “Accept” or “Repair”.

� “Accept” is where the enterprise needs to do something
differently, or stop doing something. “Cost of
Acceptance” measures the impact to the Enterprise. “Cost
of Acceptance” derives from the size and type of the
acceptance, the nodes in the Enterprise which it affects,
and organizational factors, which may, in turn, inherit
from the business domain. Note that a mismatch in one
node may have to be resolved by doing things differently
at other nodes. This situation is common when
consolidating enterprises on a single COTS.

� “Repair” is where the product needs to be changed to
support the enterprise. “Cost of Repair” measures the
impact to the life cycle cost of ownership. “Cost of
Repair” derives from the size and type of the repair, the
nodes in the product context which it affects, and product
technology factors, which may, in turn, inherit from the
technology domain.

124Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 142 / 729

Figure 4. ACT Layer 2 Metadata

Layer 2 Metadata implements the layer 1 concepts as
logical constructs.
• “Enterprise Function” in Layer 2 implements

“Enterprise” from Layer 1. The Enterprise Function
hierarchy contains the functional decomposition for the
Enterprise. The “relative importance” at each node is a
product of the “relative importance”s along the path to
that node.

• Product Structure is a function-oriented decomposition
of the relevant section of the COTS product. (There is no
need to model the entire COTS.) Product Component
relates specific repair candidates to the Product Structure.

• “Accept” is extended into its subtypes – “Active” and
“Passive”. Passive is where the enterprise stops
performing a function e.g. stops selling a product, because
the COTS does not support it. Active is where the
enterprise reorganizes work, adds manual processes,
trains employees or adds compensating controls, to
resolve a mismatch. The available subtypes for a
function/mismatch depend on the Enterprise Constraints.
For example, Passive will not be available for mandatory
functions. “Cost of Acceptance” is influenced by the type
of the Acceptance, and the nodes in the function hierarchy
that are impacted by the Acceptance. Cost of Acceptance
is also influenced by organizational factors.

• “Repair” is extended into its subtypes – Configure,
Extend and Replace. Configure is where only certain
literals that drive product behavior (i.e. configuration data
or settings) need to be changed. Extend is where
components may be extended to provide new
functionality without modifications to the delivered
COTS metadata, such that there is no potential for
regressive impact to adjunct components. Replace is
where there are modifications to the COTS metadata, and
thereby potential regressive impact or loss of
upgradeability. The subtypes available depend on the
Product Constraints. Where only certain components are
exposed through APIs, for example, the Extend subtype is
available only for those components. “Cost of Repair” is
influenced by the type of the Repair, and the level in the
component hierarchy where the changes are taking place.
For example, changes at the structural layer (e.g. database
schema) will have a greater Cost of Repair than that of
changes at the presentation layer (e.g. JSP pages).

Layer 3 describes specific implementations; the logical

constructs of layer 2 are implemented for a specific business
and candidate COTS. Key activities include formation of the
function hierarchy and product structure. In addition to
Function, Technology is another fundamental viewpoint. The

125Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 143 / 729

technology hierarchy, also known as the Technology
Reference Model, shows the relevant technology platforms and
services within the organization. The relative importance at
each node indicates the technology investment at that node.
The principle is that ROI targets can be achieved by acquiring
COTS that leverage IT investments already made. However, if
the COTS is provided as SaaS or Cloud service, Technology
ceases to be a viewpoint, and the choice of COTS may be
made based on the Function viewpoint alone.

C. Model Heuristics

ACT is a quantitative model for COTS decision support,
and the ACT metadata is structured to support computation
and optimization. Much of the computations that follow are
simple SQL operations on the ACT database. The model has
to be calibrated, and the coefficients established, for each
organization and COTS implementation program. (The costs
shown are notional, and are meant to support relative
comparisons, not absolute dollar estimates.)

Cost of Ownership
C_own = C_accq + ρ ∑ Wρ*(C_acptρ + C_reprρ)

• C_own : Cost of ownership
• C_accq : Cost of acquisition (or licensing cost)
• ρ : Viewpoint (Function/Technology)
• W : Weight assigned to viewpoint ρ
• C_acpt : Cost of acceptance (from viewpoint ρ)
• C_repr : Cost of repair (from viewpoint ρ)

Cost of Acceptance
 The Cost of Acceptance has passive and active
constituents. Passive is where the enterprise stops performing
a function because of a mismatch. Active is where the
enterprise reorganizes work, adds manual processes, trains
employees or adds compensating controls, to resolve a
mismatch.
C_acpt = C_acpt_passive + C_acpt_active
C_acpt_passive = ∏iEM_flex i* m∑Fm*FM m*MA m*A m*AP m

• EM_flex: Effort multipliers related to the (lack of)

organizational flexibility
• m: Mismatch pointer
• F : Relative importance of the node where there’s a

mismatch
• FM: The percentage of mismatch
• MA: The percentage of the Mismatch that is Accept
• A: The size of the acceptance.
• AP: The percentage of Accept that is Passive.

C_acpt_active=∏iEM_adapti* m∑Am*(1-APm)*{ n∑F_mod

n*mod_size n }

• EM_adapt: Effort multipliers related to the (lack of)
organizational adaptibility

• m: Mismatch pointer
• n: Modified function pointer

• F_mod: Relative importance of the node modified
• mod_size: Size of the modification

Effort Multipliers
Organizational flexibility: These multipliers quantify the
constraints that impede an organization from dropping a
function in the event of a mismatch. Where these constraints
are severe, e.g. where the organization is bound to fulfill
certain functions by law, the EM_flex will be high, and
Passive acceptance will lead to an unsustainable Cost of
Acceptance.

Organizational adaptability: These multipliers quantify
constraints that impede an organization from reorganizing
work or workforce to resolve a mismatch. Where these
constraints are severe, e.g. where there are restrictions on
hiring, the EM_adapt will be high.

Cost of Repair

The Cost of Repair comprises of the Cost of
Configuration, Cost of Extension and Cost of Replacement.
The product architecture, and the technology domain from
which it inherits, will place limits on what options are
available for a given repair.
C_repr = C_cfg + C_extn + C_repl

C_cfg = ∏iEM_cfgi* r∑ {R*RC r *(1 + n∑mod_size n

 1/λ)}
C_extn=∏iEM_extni* r∑{R*RE r *(1+ n∑mod_sizen

 1/λ)}
C_repl=∏iEM_repl i* r∑{R*RR r *(1 + η* n∑mod_size n

 1/λ)}

� EM_cfg: Effort multipliers related to configurability
� EM_extn: Effort multipliers related to extensibility
� EM_repl: Effort multipliers related to overwrite
� r: Repair pointer
� n: Modified component pointer
� R: Size of the repair
� RC, RE, RR: Percentages of Repair that are

Configuration, Extension or Replace
� mod_size: Size of the modification to the component,

measured as Source Lines of Code (SLOC), etc.
� λ: The level of the modified component in the

hierarchy. More foundational the level (lower λ),
higher the effective size of the modification.

� η: The number of upgrades expected during the
product life cycle, e.g. for a product life cycle of 10
years, where the vendor releases 2 upgrades a year, η
will be 20.

Effort Multipliers
 These effort multipliers reflect the product’s architectural
characteristics.
Configurability:
• (Lack of) Configuration wizards or utilities
• (Lack of) Configurable rules engine and field edits
• (Lack of) Modularization or distinct inter-module

interfaces

126Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 144 / 729

Internet

Repository

COTS Products

Processor

(Executes Heuristics)

Organizational

Assessment

Business/

Technology

Models

COTS

Architectural

Asessment

Fit/Gap Analysis

Alternate mismatch resolutions

Update knowledgebase; tune heuristics

XMI

Publish to community

Optimized

Tradeoff

Decision

Figure 5. The ACT Processor

Extensibility:
• (Lack of) Integrated Development Environment (IDE), or

support for common IDEs (e.g. Eclipse).
• Proprietary programming languages; (Lack of) Support

for Java, C++, etc; (Lack of) Object orientation
• (Lack of) Published APIs, user exits and extensible

abstract classes
Replacebility:
• (Lack of) Integrated Development Environment (IDE), or

support for common IDEs (e.g. Eclipse)

D. Model Processor

Several iterations take place in the COTS life cycle, some
before COTS selection, and some after. The processing
sequence for a given iteration during the COTS evaluation
phase is as follows.
1. The metadata is populated with organizational assessment

results, business and technology hierarchies, and model
scaling factors and coefficients.

2. COTS products are fed into the processor. For each
COTS, the metadata is populated with results of fit/gap
and architectural assessments.

3. The Processor is run with alternate sets of mismatch
resolutions, and Cost of Acceptance and Cost of Repair is
calculated for each set. The Processor outputs
performance profiles for each COTS, which graphs the
Cost of Ownership against the level of repair.

4. Finally, an Optimized Tradeoff Decision is reached, i.e. a
COTS product at a specific repair level is selected.

Figure 6 shows 2 COTS – B has a better feature match,

while A is more extensible. The minima of the Cost of
Ownership function is lower for A than for B. Most current
COTS methods will select B; ACT will select A.

Figure 6. Example of ACT Processor output

IV. CONCLUSION AND FUTURE WORK

ACT provides a comprehensive framework for COTS
selection, implementation and governance.

Benefits to the customer organization include:
• Enables a true Cost of Ownership perspective.
• Enables COTS selection at optimal customization, rather

than as delivered.
• Costs of Acceptance and Repair are adjusted to

organization and product.
• Emphasizes architectural capabilities rather than features;

exposes what matters in the long run.
• Explicit shift from requirements to tradeoff collapses

project schedules, cost and risk.
• Enables IT portfolio convergence and ROI.

127Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 145 / 729

Benefits to the system integrator include:
• Standard analytical model for COTS/business

convergence reduces project risk.
• Quantitative model facilitates client communications and

Business Process Engineering (BPR) negotiation.
• Common metadata and process model can be reused

across engagements. Continual refinement of models,
based on engagement feedback.

Future work in this area will include the formation of an

adjunct framework to assess configurability and extensibility
of COTS products. Future work will also include establishing
UML profiles for the metamodel, and finally, the calibration
of the model over multiple iterations in the field.

V. REFERENCES

[1] R. O'Callaghan,“Technology Diffusion and Organizational
Transformation: An Integrative Framework”, Idea Group
Publishing, 1998.

[2] M.L. Markus, “Paradigm Shifts - E-Business and
Business/Systems Integration”, Communications of the AIS, 4
(10), 2000.

[3] T.H. Davenport, “Mission Critical: Realizing the Promise
of Enterprise Systems”, Harvard Business School Press, 2000.

[4] J. Kontio, “OTSO: A Systematic Process for Reusable
Software Component Selection”, Univ. of Maryland report
CS-TR-3478, 1995.

[5] C. Ncube and N. A. Maiden, “PORE: Procurement-
Oriented Requirements Engineering Method for the
Component-Based Systems Engineering Development
Paradigm”, Second International Workshop on Component-
Based Software Engineering, Los Angeles, 1999.

[6] C. Alves and J. Castro, “CRE: a systematic method for
COTS components Selection”, XV Brazilian Symposium on
Software Engineering (SBES), Rio de Janeiro, 2001.

[7] L. Chung and K. Cooper, “Defining Goals in a COTS-
Aware Requirements Engineering Approach”, Systems
Engineering, 7(1), Wiley, 2004.

[8] A. Mohamed, G. Ruhe and A. Eberlein, "Decision Support
for Handling Mismatches between COTS Products and System
Requirements”, ICCBSS'07, Banff, 2007.

[9] A. Mohamed, G. Ruhe and A. Eberlein, "COTS Selection:
Past, Present, and Future", ECBS'07,Tucson, Arizona, 2007.

[10] M. Torchiano and M. Morisio, “Overlooked Aspects of
COTS-Based Development”, IEEE Software, 2004.

[11] G. Ruhe, "Intelligent Support for Selection of COTS
Products", LNCS, Springer, vol. 2593, 2003.

[12] J. Kontio, G. Caldiera, and V. R. Basili, "Defining
factors, goals and criteria for reusable component
evaluation", CASCON'96, Toronto, 1996.

[13] C. Ncube and J. C. Dean, "The Limitations of Current
Decision-Making Techniques in the Procurement of COTS
Software Components”, ICCBSS, 2002.

[14] C. Albert and L. Brownsword, “Evolutionary Process for
Integrating COTS-Based Systems (EPIC): An Overview”,
(CMU/SEI-2002-TR-009), Software Engineering Institute,
Carnegie Mellon University, 2002.

128Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 146 / 729

Implementation of Business Processes in Service Oriented Architecture

Krzysztof Sacha and Andrzej Ratkowski
Warsaw University of Technology

Warszawa, Poland
{k.sacha, a.ratkowski}@ia.pw.edu.pl

Abstract—The paper develops a method for transformational
implementation of business processes in a service oriented
architecture. The method promotes separation of concerns and
allows making business decisions by business people and
technical decisions by technical people. To achieve this goal, a
description of a business process designed by business people is
automatically translated into a program in Business Process
Execution Language, which is then subject to a series of
transformations developed by technical people. The
transformations are selected manually and executed by an
automatic tool. Each transformation changes the process
structure to improve the quality characteristics. The method
applies a correct-by-construction approach and defines a set of
transformations, which do not change the process behavior.
The quality of the process implementation is assessed using a
set of metrics.

Keywords-business process; BPEL language; service
oriented architecture; SOA; transformational implementation.

I. INTRODUCTION
A business process is a set of logically related activities

performed to achieve a defined business outcome [1]. The
structure of a business process and the ordering of activities
reflect business decisions made by business people and,
when defined, can be visualized using an appropriate
notation, e.g., Business Process Model and Notation [2] or
the notation of ARIS [3]. The implementation of a business
process on a computer system is expected to exhibit the
defined behavior at a satisfactory level of quality. Reaching
the required level of quality may need decisions, made by
technical people and aimed at restructuring of the initial
process in order to benefit from the characteristics offered by
an execution environment. The structure of the
implementation can be described using another notation of,
e.g., Business Process Executable Language [4] or UML
activity diagrams [5].

This paper describes a transformational method for
implementing business processes in a service oriented
architecture (SOA). The method begins with an initial
definition of a business process, written by business people
using Business Process Modeling Notation (BPMN). The
business process is automatically translated into a program in
Business Process Executable Language (BPEL), called a
reference process. The program is subject to a series of
transformations, each of which preserves the behavior of the
reference process, but changes the order of activities, as

means to improve the quality of the process implementation,
e.g., by benefiting from the parallel structure of services.
Transformations applied to the reference process are selected
manually by human designers (technical people) and
performed automatically, by a software tool. When the
design goals have been reached, the iteration stops and the
result is a transformed BPEL process, which can be executed
on a target SOA environment.

Such an approach promotes separation of concerns and
allows making business decisions by business people and
technical decisions by technical people.

A critical part of the method is providing assurance on
the correctness of the transformation process. In this paper
we apply a correct-by-construction approach, and define a
set of safe transformations, which do not change the process
behavior. If each transformation is safe, the resulting
program will also be correct, i.e., semantically equivalent to
the original reference process.

The rest of this paper is organized as follows. Related
work is briefly surveyed in Section II. The semantics of a
BPEL process and its behavior are defined in Section III. An
illustrative case study is provided in Sections IV and VI.
Safe transformations are introduced in Section V. Quality
metrics to assess transformation results are described in
Section VII. Conclusions and plans for future research are
given in Section VIII.

II. RELATED WORK
Transformational implementation of software is not a

new idea. The approach was developed many years ago
within the context of monolithic systems, with the use of
several executable specification techniques. The formal
foundation was based on problem decomposition into a set of
concurrent processes, use of functional languages [6] and
formal modeling by means of Petri nets [7].

An approach for transformational implementation of
business processes was developed in [8]. This four-phase
approach is very general and not tied to any particular
technology. Our method, which can be placed in the fourth
phase (implementation), is much more specific and focused
on the implementation of runnable processes described in
BPMN and BPEL.

BPMN defines a model and a graphical notation for
describing business processes, standardized by OMG [2].
The reference model of SOA [9,10] and the specification of
BPEL [4] are standardized by OASIS. An informal mapping
of BPMN to BPEL was defined in [2] and a comprehensive

129Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 147 / 729

discussion of the translation between BPMN and BPEL can
be found in [11,12]. An open-source tool is available for
download at [20].

The techniques of building program dependence graph
and program slicing, which we adopted for proving safeness
of transformations, were developed in [13,14] and applied to
BPEL programs in [15].

Quality metrics to measure parallel programs have been
studied for many years. A traditional tool for measuring
performance of a parallel application is Program Activity
Graph, which describes parallel flow of control within the
application [16]. We do not use this graph, nevertheless, our
metrics Length of thread and Response time can be viewed
as an approximation of Critical path metric described in [16].
Similarly, our Number of threads metric is similar to
Available concurrency defined in [17].

Our work on the implementation of business processes in
a service oriented architecture is to the best of our
knowledge, original. An early version of our approach was
published in [18]. A definition of safeness, an extended set of
transformations, the proofs of transformation safeness, a
revised algorithm for building program dependence graph
and performance metrics are introduced in this paper.

III. THE SEMANTICS OF A BUSINESS PROCESS
A business process is a collection of logically related

activities, performed in a specific order to produce a service
or product for a customer. The activities can be implemented
on-site, by local data processing tasks, or externally, by
services offered by a service-oriented environment. The
services can be viewed from the process perspective as the
main business data processing functions.

A specification of a business process can be defined
textually, e.g., using a natural language, or graphically, using
Business Process Modeling Notation. An example BPMN
process, which shows a simplified processing of a bank
transfer order is shown in Fig. 1. The process begins, and
waits for an external invocation from a remote client
(another process). When the invocation is received, the
process extracts the source and the target account numbers
from the message, checks the availability of funds at source
and splits into two alternative branches. If the funds are
missing, the process prepares a negative acknowledgement
message, replies to the invoker and ends. Otherwise, the
alternative branch is empty. Then, the process invokes the
withdraw service at source account, invokes the deposit
service at target account, packs the results returned by the

two services into a single reply message, replies to the
invoker and ends. This way, the process implements a
service, which is composed of another services.

BPMN specification of a business process can be
automatically translated into a BPEL program, which can be
used for a semi-automatic implementation.

 BPEL syntax is composed of a set of instructions, called
activities, which are XML elements indicated in the
document by explicit markup. The set of BPEL activities is
rich. However, in this paper, we focus on a limited subset of
activities for defining control flow, service invocation and
basic data handling.

The body of a BPEL process consists of simple activities,
which are elementary pieces of computation, and structured
elements, which are composed of other simple or structured
activities, nested in each other to an arbitrary depth. Simple
activities are <assign>, which implements substitution,
<invoke>, which invokes an external service, and <receive>,
<reply> pair, which receives and replies to an invocation.
Structured activities are <sequence> element to describe
sequential execution, <flow> element to describe parallel
execution and <if> alternative branching. An example BPEL
program, which implements the business process in Fig. 1, is
shown in Fig. 2. Name attribute will be used to refer to
particular activities of the program in the subsequent figures.

The first executable activity of the program is <receive>,
which waits for a message that invokes the process execution
and conveys a value of the input argument. The last activity
of the process is <reply>, which responds to the invocation
and sends a message that returns the result. The activities
between <receive> and <reply> execute a business process,
which invokes other services and transforms the input into
the output. This is a typical construction of a BPEL process,
which can be viewed as a service invoked by other services.

SOA services are assumed stateless [19], which means
that the result of a service execution depends only on values
of data passed to the service at the invocation, and manifests
to the outside world as values of data sent by the service in
response to the invocation. Therefore, we assume that the
observable behavior of a process in a SOA environment
consists of data values, which the process passes as
arguments when it invokes external services, and data values,
which it sends in reply to the invoker.

To capture the influence of a process structure into the
process behavior, we use a technique called program slicing
[13,14], which allows finding all the instructions in a
program, which influence the value of a variable in a specific

Extract source
account no

Extract target
account no

Check funds
at source

Prepare
negative ack

Empty

Pack the
results

Withdraw at
source

Deposit at
target

Figure 1. BPMN specification of a business process

130Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 148 / 729

point of the program. For example, finding the instructions,
which influence the value of a variable that is used as an
argument by a service invocation activity or by a reply
activity of the process.

The conceptual tool for the analysis is Program
Dependence Graph (PDG), which nodes are activities of a
BPEL program, and edges reflect dependencies between the
activities. An algorithm for constructing PDG of a BPEL
program consists of the following steps:
1. Define nodes of the graph, which are activities at all

layers of nesting.
2. Define control edges (solid lines in Fig. 3), which follow

the nested structure of the program, e.g., an edge from
<sequence> to <if> shows that <if> activity is nested
within the <sequence> element. Output edges of <if>
node are labeled "Yes" or "No", respectively.

3. Define data edges (dashed lines in Fig. 3), which reflect
dataflow dependencies between the activities, e.g., an
edge from activity "rcv" to activity "src" shows that an
output variable of "rcv" is used as input variable to "src".

4. Convert "Yes" and "No" edges that output <if> activities
into data edges (Fig. 3).

5. Add data edges from <receive> activity, which is nested
within a <sequence> element, to each subsequent activity
of this <sequence> such that no paths from <receive> to
this activity exists (there are no such items in Fig. 3).
Data edges within a program dependence graph reflect

the dataflow dependencies between activities, which
determine values of the program variables. Data edges added
in step 5 reflect the semantics of the process as a service,
which starts after receiving an invocation message. The flow
of control within a BPEL program complies with data edges
of its program dependence graph.

In the rest of this paper we adopt a definition that a
transformation preserves the process behavior, if it keeps the
set of messages sent by the process as well as the data values
carried by these messages unchanged. Such a definition
neglects the timing aspects of the process execution. This is
justified, given that it does not change the business
requirements. There are many delays in a SOA system and
the correctness of software must not relay on a specific order
of activities, unless they are explicitly synchronized.

A transformation, which preserves the process behavior
will be called safe.

Definition (Safeness of a transformation)
A transformation is safe, if the set of messages sent by

the activities of a program remains unchanged and the flow
of control within the transformed program complies with the
direction of data edges within the program dependence graph
of the reference process. □

The set of activities executed within a program may vary,
depending on decisions made when passing through decision
points of <if> activities. To fulfill the above definition, the
set of messages must remain unchanged, for each particular
combination of these decisions.

A path composed of data edges in a program dependence
graph reflects the data flow relationships between the
activities, and implies that the result of the activity at the end

of the path depends only on the preceding activities on this
path. If the succession of activities executed within a
program complies with the data edges, then the values of
variables computed by the program remain the same,
regardless of the ordering of other activities of this program.

Safeness of a transformation guarantees that the
transformation preserves the behavior of the transformed
program as observed by other services in a SOA
environment. Safeness is transitive and a sequence of safe
transformations is also safe. Therefore, a process resulting
from a series of safe transformations applied to a reference
process preserves the behavior of the reference process.

IV. CASE STUDY
Consider a process of transferring funds between two

different bank accounts, shown in Fig. 1, implemented by a
BPEL process.

The process body is a sequence of activities, which starts
at <receive>. Then, it proceeds through a series of steps to

<sequence>
 <receive name="rcv" variable="transfer"/>
 <assign name="src">
 <copy> <from variable="transfer" part="srcAccNo"/>
 <to variable="source" part="account"/> </copy>
 <copy> <from variable="transfer" part="srcAmount"/>
 <to variable="source" part="amount"/> </copy>
 </assign>
 <assign name="dst">
 <copy> <from variable="transfer" part="dstAccNo"/>
 <to variable="target" part="account"/> </copy>
 <copy> <from variable="transfer" part="dstAmount"/>
 <to variable="target" part="amount"/> </copy>
 </assign>
 <invoke name="verify" inputVariable="source"
 outputVariable="fundsAvailable"/>
 <if> <condition> $fundsAvailable.res </condition>
 <empty name="empty"/>
 <else> <sequence>
 <assign name="fail">
 <copy> <from> 'lack of funds' </from>
 <to variable="response" part="fault"/> </copy>
 </assign>
 <reply name="nak" variable="response"/>
 <exit name="exit"/>
 </sequence> </else> </if>
 <invoke name="withdraw" inputVariable="source"
 outputVariable="wResult"/>
 <invoke name="deposit" inputVariable="target"
 outputVariable="dResult"/>
 <assign name="success">
 <copy> <from variable="wResult" part="res"/>
 <to variable="result" part="withdraw"/> </copy>
 <copy> <from variable="dResult" part="res"/>
 <to variable="result" part="deposit"/> </copy>
 </assign>
 <reply name="ack" variable="result"/>
</sequence>

Figure 2. A skeleton of a BPEL program of a bank transfer (Fig. 1)

131Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 149 / 729

process the received bank transfer order and to invoke
services offered by the banking systems to verify availability
of funds at source account, to withdraw funds and to deposit
the funds at the destination account. Finally, it ends after
replying positively, if the transfer has successfully been
done, or negatively, if the required amount of funds was not
available at source. A skeleton of the simplified BPEL
program of this process is shown in Fig. 2.

PDG of this program is shown in Fig. 3. The first two
<assign> activities process the contents of the received
message in order to extract the source and destination
account numbers and the amount of money to transfer.
Therefore, there are data edges from "rcv" to "src" and to
"dst" nodes in PDG. The next consecutive <invoke> activity
uses the extracted source account number and the amount of
money to invoke the verification service, and the response of
the invocation is checked by <if> activity. Therefore, two
data edges from src to verify and from verify to <if> exist in
the graph. Similarly, the <invoke> activities named
"withdraw" and "deposit" use the account numbers
calculated by "src" and "dst", respectively. Two data edges
from "withdraw" and "deposit" nodes to "success" node, and
then an edge from "success" to "ack", reflect the path of
preparing the acknowledgement message that is sent to the
invoker when the transfer is finished.

V. TRANSFORMATIONS
The body of a BPEL process consists of simple activities,

e.g., <assign>, which define elementary pieces of
computation, and structured elements, e.g., <flow>, which is
composed of other simple or structured activities. The
behavior of the process results from the order of execution of
activities, which stem from the type of structured elements

and the positioning of activities within these elements. A
transformation applies to a structured element and consists in
replacing one element, e.g., <flow>, by another element, e.g.,
<sequence>, or in relocation of activities within the
structured element. If the behavior of the transformed
element before and after the transformation is the same, then
the behavior of the process stands also unchanged.

Several transformations have been defined. The basic
ones: Simple and alternative displacement, parallelization
and serialization of the process operations, and process
partitioning are described in detail below. All the
transformations are safe, according to definition of safeness
given in Section III. As pointed out in Section III, a safe
transformation does not change the behavior of a process,
which is composed of stateless services. A problem may
arise, if the services invoked by a process have an impact on
the real world. If this is the case, a specific ordering of these
services may be required. In our approach, a designer can
express the necessary ordering conditions adding
supplementary edges to the program dependence graph.
Transformation 1: Simple displacement

Consider a <sequence> element, which contains n
arbitrary activities executed in a strictly sequential order.
Transformation 1 moves a selected activity A from its
original position i, into position j within the sequence.
Theorem 1. Transformation 1 is safe, if no paths between
activity A and the activities placed on positions i+1, … j in
the sequence existed in the program dependence graph of the
transformed program.

<sequence>

Proof: Assume that i < j (move forward). The
transformation has no influence on activities placed on
positions lower than i or higher than j. However, moving
activity A from position i to j reverts the direction of the flow
of control between A and the activities that are in-between.
This could be dangerous if a data flow from A to those
activities existed. However, if no data paths from A to the
activities placed on positions i+1, … j existed in the program
dependence graph, then no inconsistency between the control
and data flow can exist.

If j < i (move backward), the proof is analogous. The lack
of data path guarantees lack of inconsistency between the
data and control flows within the program. □
Transformation 2: Pre-embracing

Consider a <sequence> element, which includes an <if>
element preceded by an <assign> activity, among others.
Branches of <if> element are <sequence> elements.
Transformation 2 moves <assign> activity from its original
position in the outer <sequence>, into the first position
within one branch of <if> element.
Theorem 2. Transformation 2 is safe, if neither a path from
the moved <assign> to an activity placed in the other branch
of <if>, nor a path from the moved <assign> to the activities
positioned after <if> in the outer sequence, existed in the
program dependence graph of the transformed program.

Proof: The transformation has no influence on activities
placed prior to <if> element in the outer <sequence>.
Moving <assign> activity to one branch of <if> removes the
flow of control from <assign> to activities in the other
branch of <if> and – possibly – to activities placed after

"dst"

"withdraw" "ack" "deposit" "success"

"empty"

<sequence>

"fail" "nak"

"exit"

"verify"

"src"

<if>

"rcv"

Y N

Figure 3. Program dependence graph of the bank transfer process

132Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 150 / 729

<if>. But according to the assumption of this theorem, there
is no data flow between these activities. Therefore, no
inconsistency between the control and data flow can exist. □

<invoke name="xxx" (a)
 inputVariable="source" outputVariable="target"
/>

<sequence> (b)
 <invoke name="xxx_i" inputVariable="source"/>
 <receive name="xxx_r" variable="target"/>
</sequence>

Figure 4. Synchronous (a) and asynchronous service invocation (b)

Transformation 3: Post-embracing
Consider a <sequence> element, which includes an <if>

activity followed by a number of another activities. Branches
of <if> element are <sequence> elements, one of which
contains <exit> activity. Transformation 3 moves the
activities, which follow <if>, from its original position in the
outer <sequence> into the end of the second <sequence> of
<if> element.
Theorem 3. Transformation 3 is safe.

Proof: Activities, which are placed after an <if> element
in the reference process, are executed only after the
execution of <if> is finished. The existence of <exit> in one
branch of <if> prevents execution of these activities when
this branch is selected. The activities are executed only in
case the other branch is selected. Therefore, neither the flow
of control nor the flow of data is changed in the program,
when the activities are moved to the other branch of <if>,
i.e., the branch without <exit> activity. □
Transformation 4: Parallelization

Consider a <sequence> element, which contains n
arbitrary activities executed in a strictly sequential order.
Transformation 4 parallelizes the execution of activities by
replacing <sequence> element by <flow> element composed
of the same activities, which – according to the semantics of
<flow> – are executed in parallel.
Theorem 4. Transformation 4 is safe, if for each pair of
activities Ai , Aj neither a path from Ai to Aj nor a path from Aj
to Ai existed in the program dependence graph of the
transformed program.

Proof: The transformation changes the flow of control
between the activities of the transformed element. The lack
of data paths between these activities means that no
inconsistency between the control and data flow can exist. □
Transformation 5: Serialization

Consider a <flow> element, which contains n arbitrary
activities executed in parallel. Transformation 5 serializes the
execution of activities by replacing <flow> element by
<sequence> element, composed of the same activities, which
are now executed sequentially.
Theorem 5. Transformation 5 is safe.

Proof: The proof is obvious. Parallel commands can be
executed in any order, also sequentially.
Transformation 6: Asynchronization

Consider a two-way <invoke> activity, which sends a
message to invoke an external service and then waits for a
response (Fig. 4a). Transformation 6 replaces the two-way
<invoke> activity with a sequence of a one-way <invoke>
activity followed by a <receive> (Fig. 4b). This way, a
synchronous invocation of a service is converted into an
asynchronous one.

Transformation 6 can be proved safe, if we add a data
edge from <invoke> node to <receive> node in the program
dependence graph of each program, which includes an
asynchronous service invocation shown in Fig. 4b.
Theorem 6. Transformation 6 is safe.

Proof: The transformation has no influence on activities
executed prior to <invoke> activity. Data edges from these
activities to <invoke> remain unchanged. The transformation
has no influence on activities executed after <invoke>, as
well. Data edges to these activities from <invoke> are
redirected to begin at node <receive>. Hence, there is a one-
to-one mapping between the sets of data paths, which exist in
program dependence graph of a program before and after the
transformation. Therefore, no inconsistency between the
control and data flow can exist.

Transformations 1 through 6 can be composed in any
order, resulting in a complex transformation of the process
structure. Transformations 7 and 8 play an auxiliary role and
facilitate such a composition. These transformations are safe,
because they do not change the order of execution of any
activities within a BPEL program. □
Transformation 7: Sequential partitioning

Transformation 7 divides a single <sequence> element
into a nested structure of <sequence> elements (Fig. 5a).
Transformation 8: Parallel partitioning

Transformation 8 divides a single <flow> element into a
nested structure of <flow> elements (Fig. 5b).

<sequence> (a) <flow> (b)
 <sequence> <flow>
 <C1> </C1> <C1> </C1>

 <Ck> </Ck> <Ck> </Ck>
 </sequence> </flow>
 <sequence> <flow>
 <Ck+1> </Ck+1> <Ck+1> </Ck+1>

 <Cn> </Cn> <Cn> </Cn>
 </sequence> </flow>
</sequence> </flow>

Figure 5. Sequential (a) and parallel (b) partitioning of commands

VI. CASE STUDY (CONTINUED)
Consider BPEL program of a bank transfer process

described in Section IV. The analysis of the program
dependence graph in Fig. 3 reveals that no data flow path
between activity named "dst" and the next two activities
"src" and "verify" exists in the graph. Therefore, these
activities can be executed in parallel. Similarly, there is no
data flow path between two consecutive <invoke> activities
"withdraw" and "deposit". These two activities can also be
executed in parallel.

133Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 151 / 729

To perform these changes, we can partition the outer
<sequence> element using transformation 6 three times, and
then parallelize the program structure using transformation 4
twice. A skeleton of the resulting BPEL program is shown in
Fig. 6. Only names of the activities are shown in Fig. 6. The
variables used by the activities are omitted for brevity.

However, this is not the only way of transformation.
Alternatively, the designer can displace "dst" forward, just
before <if> activity, and then use transformation 2 in order to
enter "dst" to the inside of <if> in place of <empty> activity.
Next, transformation 3 can be used to embrace the last three
activities of the outer <sequence> element into the first
branch of <if> element, consecutively following "dst". Then,
the designer can move "dst" forward, adjacent to "deposit",
partition the inner sequence of <if> using transformation 6,
and parallelize the program structure using transformation 4.
A skeleton of the resulting BPEL program is shown in Fig. 7.
We removed "exit" activity from the final program, because
it is obviously redundant at the end of the program.

The main advantage of the transformed process over the
original one is higher level of parallelism, which can lead to
better performance of the program execution. If we compare
the two alternative designs, then intuition suggests that the
structure of the second process is better than of the first one.
In order to verify this impression, the reference process and
the transformed processes can be compared to each other,
with respect to a set of quality metrics. Depending on the
results, the design phase can stop, or a selected candidate (a
transformed process) can be substituted as the reference
process for the next iteration of the design phase.

<sequence>
 <receive name="rcv"> - receive order
 <assign name="src"> - extract source no
 <invoke name="verify"> - verify funds
 <if>
 <condition> ... </condition> - check availability
 <sequence>
 <flow>
 <invoke name="withdraw"> - withdraw funds
 <sequence>
 <assign name="dst"> - extract dst. no
 <invoke name="deposit"> - deposit funds
 </sequence>
 </flow>
 <assign name="success">
 <reply name="ack"> - reply positively
 </sequence>
 <else> <sequence>
 <assign name="fail"> - set response
 <reply name="nak"> - reply negatively
 </sequence> </else>
 </if>
</sequence>

Figure 7. A skeleton of the transformed bank transfer process – variant II

<sequence>
 <receive name="rcv"> - receive transfer order
 <flow>
 <assign name="dst"> - extract destination no
 <sequence>
 <assign name="src"> - extract source no
 <invoke name="verify"> - verify funds at source
 </sequence>
 </flow>
 <if>
 <condition> ... </condition> - check availability
 <empty name="empty"> - do nothing if available
 <else> <sequence>
 <assign name="fail"> - set response
 <reply name="nak"> - reply negatively
 <exit name="exit"> - end of execution
 </sequence> </else>
 </if>
 <flow>
 <invoke name="withdraw"> - withdraw funds
 <invoke name="deposit"> - deposit funds
 </flow>
 <assign name="success">
 <reply name="ack"> - reply positively
</sequence>

Figure 6. A skeleton of the transformed bank transfer process – variant I

VII. QUALITY METRICS
Many metrics to measure various characteristics of

software have been proposed in literature [16,17]. In this
research we use simple metrics that characterize the size of a
BPEL process, the complexity and the degree of parallel
execution. The value of each metric can be calculated using a
program dependence graph.

The size of a process is measured as the number of
simple activities in a BPEL program. More precisely, the
value of this metric equals the number of leaf nodes in the
program dependence graph of a BPEL process. For example,
the size of the processes shown in Fig. 2 and 6 is 12, while
the size of the process in Fig. 7 equals 10.

Leaf nodes are simple activities, which perform the
processing of data. Therefore, the value of the process size
metric could be considered a measure of the amount of work,
which can be provided by the process. However, smaller
number of this metric may result from removing excessive,
unstructured activities, like <empty> and <exit>. This is the
case of program in Fig. 7.

The complexity of a process is measured as the total
number of nodes in PDG. For example, size of the process
structure of the program shown in Fig. 2 is 15, size of the
process structure of the program in Fig. 6 is 18, and size of
the process structure of the program in Fig. 7 is 16.

The number of nodes in PDG, compared to the size of the
process, describes the amount of excess in the graph, which
can be considered a measure of the process complexity.

The number of threads is measured as the number of
items within <flow> elements of a BPEL program, at all
levels of nesting. A problem with this metric is such that the
number of executed items can vary, depending on values of
conditions within <if> elements. Therefore, the metric is a

134Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 152 / 729

TABLE I. NUMBER OF THREADS METRIC

if -
condition

Process in
Fig. 2

Process in
Fig. 6

Process in
Fig. 7

YES 1 2 2
NO 1 2 1

vector of values, computed for all combinations of values of
these conditions. The algorithm of computation assigns
weights to nodes of the program dependence graph of the
process, starting from the leaves up to the root, according to
the following rules:

• the weight of a simple BPEL activity is 1,
• the weight of a <flow> element is the sum of

weights assigned to the descending nodes (i.e., nodes
directly nested within the <flow> element),

• the weight of a <sequence> element is the maximum
of weights assigned to the descending nodes (i.e.,
nodes directly nested within the <sequence>
element),

• the weight of an <if> element is the weight assigned
to the activity in this branch of <if>, which is
executed according to a given value of condition
within the <if> element.

The number of executed items can be influenced also by
the presence of <exit> activity, which ends the process
execution. Therefore, the nodes directly nested within a
<sequence> element are ordered in compliance with the
order of execution. Nodes subsequent to a node, which is, or
which comprises, <exit> activity, are not taken into account
in the computation.

The metric value equals the weight assigned to the top
<sequence> node of PDG. Values of the metric for the
processes in Fig. 2, 6 and 7 are shown in Table I. Program
dependence graph and calculation of the metric for the
program in Fig. 6 is shown in Fig. 8 (grey numbers right to
the nodes).

The length of thread is measured as the number of
sequentially executed activities within a BPEL program.
Because the number of executed items can vary, depending
on values of conditions within <if> elements, the metric is a
vector of values, computed for all combinations of values of
these conditions. The algorithm of computation assigns
weights to nodes of the program dependence graph of the
process, starting from the leaves up to the root, according to
the following rules:

• the weight of a simple BPEL activity is 1,
• the weight of a <flow> element is the maximum of

weights assigned to the descending nodes (i.e., nodes
directly nested within the <flow> element),

• the weight of a <sequence> element is the sum of
weights assigned to the descending nodes (i.e., nodes
directly nested within the <sequence> element),

• the weight of an <if> element is the weight assigned
to the activity in this branch of <if>, which is
executed according to a given value of condition
within the <if> element.

Nodes directly nested within a <sequence> element are
ordered in compliance with the order of execution. Nodes
subsequent to a node, which is, or which comprises, <exit>
activity, are not taken into account in the computation.

The metric value equals the weight assigned to the top
<sequence> node of PDG. Values of the metric for the
processes in Fig. 2, 6 and 7 are shown in Table II.

The response time is measured as the sum of estimated
execution times of activities, which are sequentially executed
within a BPEL program. Because the number of executed
items can vary, depending on values of conditions within
<if> elements, the metric is a vector of values, computed for
all combinations of values of these conditions The algorithm
of computation is identical to the algorithm of computation
of the length of thread metric, except of the first point, which
now reads:

• the weight of a simple activity is the estimated
execution time of this activity,

In the simplest case, the estimated execution time can
just differentiate between local data manipulation activity

TABLE II. LENGTH OF THREAD METRIC

if -
condition

Process in
Fig. 2

Process in
Fig. 6

Process in
Fig. 7

YES 9 7 7
NO 7 6 5

TABLE III. RESPONSE TIME METRIC

if -
condition

Process in
Fig. 2

Process in
Fig. 6

Process in
Fig. 7

YES 36 25 25
NO 16 15 14

verify

dst

<if>

<sequence>

withdraw

deposit ack

nak

Y
N

<sequence>
Y: 25 / N: 14 Y: 2 / N: 1

src

<sequence>

<flow>

1 1 1 10 1 1

1 10

11

10

11

1

13

1

1

2

1

1 1 1

1

2

2

1

1

1

success
1

rcv

fail

<sequence>

1

Figure 8. Program dependence graph of the program in Fig. 6 and
calculation of metrics: Number of threads (grey numbers right to the

nodes) and length of execution (left to the nodes)

135Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 153 / 729

and a service invocation. Values of the metric for the
processes in Fig. 2, 6 and 7, calculated under an assumption
that a local data manipulation time equals 1, while a service
execution time equals 10, are shown in Table III. Program
dependence graph and calculation of the metric for the
program in Fig. 7 is shown in Fig. 8 (numbers left to the
nodes).

Comparing the values of metrics calculated for the
processes considered in the case study in Sections IV and VI,
one can note that both transformed processes are faster than
the original reference process (smaller value of the response
time metric). Speeding up the process execution is a benefit
from parallel invocation of services in a SOA environment.
Comparing the variants of the transformed bank transfer
process (Fig. 6 and Fig. 7), one can note that the second
variant is a bit faster and simpler (smaller values of the size
metrics). This variant can be accepted by the customer or
used as a new reference process in the next transformation
cycle.

VIII. CONCLUSION AND FUTURE WORK
Defining the behavior of a business process is a business

decision. Defining the implementation of a business process
on a computer system is a technical decision. The
transformational method for implementing business
processes in a service oriented architecture, described in this
paper, promotes separation of concerns and allows making
business decisions by business people and technical
decisions by technical people.

The transformations described in this paper are correct by
construction in that they do not change the behavior of a
transformed process. However, the transformations change
the process structure in order to improve efficiency and
benefit from the parallel execution of services in a SOA
environment. The quality characteristics of the process
implementation are measured by means of quality metrics,
which account for the process size, complexity and the
response time of the process as a service. Other quality
features, such as modifiability or reliability, are not covered
in this paper.

The correct-by-construction approach is appealing for the
implementation designer because it can open the way
towards automatic process optimization. However, the
approach has also some practical limitations. If the external
services invoked by a process have an impact on the real
world, as is usually the case, a specific ordering of these
services may be required, regardless of the dataflow
dependencies between the service invocation activities
within a program. In our approach, a designer can express
the necessary ordering conditions adding supplementary
edges to the program dependence graph. Therefore, the
approach cannot be fully automated and a manual
supervision over the transformation process is needed.

It is also possible that small changes to a process
behavior can be acceptable within the application context.
Therefore, part of our research is aimed at finding a
verification method, capable not only of verifying the

process behavior, but also of showing the designer all the
potential changes, if they exist. The results of this research
are not covered in this paper.

ACKNOWLEDGMENTS
This research was supported in part by the Ministry of

Science and Higher Education under the grant number
5321/B/T02/2010/39.

REFERENCES
[1] T. H. Davenport and J. E. Short, The New Industrial Engineering:

Information Technology and Business Process Redesign, Sloan
Management Review, pp. 11-27 (1990)

[2] OMG, Business Process Model and Notation (BPMN), Version 2.0,
(2011) http://www.omg.org/spec/BPMN/2.0/PDF/ 20.09.2012

[3] A. W. Scheer, ARIS - Business Process Modeling, Springer, Berlin
Heidelberg (2007).

[4] D. Jordan and J. Evdemon, Web Services Business Process Execution
Language Version 2.0. OASIS Standard (2007).

[5] OMG, Unified Modeling Language (UML): Superstructure, V2.1.2,
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF (2007).

[6] P. Zave, An Insider's Evaluation of Paisley. IEEE Trans. Software
Eng., vol. 17 (3), pp. 212-225 (1991)

[7] K. Sacha, Real-Time Software Specification and Validation with
Transnet. Real-Time Systems J., vol. 6, pp. 153-172 (1994)

[8] F. J. Duarte, R. J. Machado, and J. M. Fernandes, BIM: A
methodology to transform business processes into software systems,
SWQD 2012, LNBIP 94, pp. 39-58 (2012)

[9] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz,
Reference Model for Service Oriented Architecture 1.0. Technical
report, OASIS (2006)

[10] J. A. Estefan, K. Laskey, F. G. McCabe, and D. Thornton, Reference
Architecture for Service Oriented Architecture Version 0.3. Working-
draft, OASIS (2008)

[11] S. A. White, Using BPMN to Model a BPEL Process, BPTrends 3,
pp. 1-18 (2005) www.bptrends.com

[12] J. Recker and J. Mendling, On the Translation between BPMN and
BPEL: Conceptual Mismatch between Process Modeling Languages.
In: T. Latour, M. Petit (Eds.): Proc. 18th International Conference on
Advanced Information Systems Engineering, pp. 521-532 (2006)

[13] M. Weiser, Program slicing. IEEE Trans. Software Eng., 10 (4), pp.
352-357 (1984)

[14] D. Binkley and K. B. Gallagher, Program slicing, Advances in
Computers, 43, pp. 1-50 (1996)

[15] C. Mao, Slicing web service-based software. IEEE International
Conference on Service-Oriented Computing and Applications, IEEE,
pp. 1-8 (2009)

[16] J. K. Hollingsworth and B. P. Miller, Parallel program performance
metrics: A comparison and validation, Proc. ACM/IEEE Conference
on Supercomputing, pp. 4 - 13, IEEE Computer Society Press (1992)

[17] A. S. Van Amesfoort, A. L. Varbanescu, and H. J. Sips, Proc. 15th
Workshop on Compilers for Parallel Computing, pp 1-13 (2010)

[18] A. Ratkowski and K. Sacha, Business Process Design In Service
Oriented Architecture. In: A. Grzech, L. Borzemski, J. Świątek, Z.
Wilimowska (Eds.): Information Systems Architecture and
Technology, pp. 15-24. Wroclaw University of Technology (2011)

[19] T. Erl, Service-oriented Architecture: Concepts, Technology, and
Design. Prentice Hall, Englewood Cliffs (2005)

[20] Bpmn2bpel Project Home, A tool for translating BPMN models into
BPEL processes, http://code.google.com/p/bpmn2bpel/, 22.10.2012

136Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 154 / 729

On Re-Architecting Legacy Software Systems: The Case of Systems at Umm Al-

Qura University

Abstract—This short paper describes our proposed

architecture for the software systems at Umm Al-Qura

University (UQU). We adopted the notion of SOA to derive the

building block of the new architecture. The proposed solution

is the first step towards migrating the legacy systems at UQU

to new architecture that can respond seamlessly to the

emerging e-government requirements.

Keywords- legacy systems; SOA; e-government.

I. INTRODUCTION

Responding to rapidly changing IT markets - including
expanding e-government applications - requires adopting a
reliable, versatile and fully flexible system capable of
accommodating recent and upcoming changes and
modifications efficiently and smoothly while keeping old
business needs intact [1-2]. In this day and age, such a
system can be described as a mandatory rather than an
optional when responding to ever increasing business needs.

Adaptable systems nevertheless are not always available
to many large private companies, public organizations,
government agencies, hospitals, municipalities, and
universities in the Saudi Arabian context. These institutes in
reality usually maintain their respective legacy systems as far
as the systems provide the basic necessary functionality.
However, these organizations are aware of the rapidly
changing IT market and are duly planning to replace their old
systems at some point in order to accommodate the growing
new business requirements should finical resources become
available. They may also consider the more cost-effective
option of modernizing or re-architecting [3].

Many challenges are attributed to the nature of legacy
systems which cannot be easily modified. Systems are
usually treated as black boxes not because they lack
documentations or because the source code is not available.
Instead, the systems are poorly architected in the sense they
can no longer cope with new business needs. Hence, become
one of the key barriers to adopt any potential e-government
business models.

Poorly architected legacy systems can encourage CEOs
to replace them with entirely new ones. However, such a
decision should be informed and well researched as it still
has consequences. Legacy systems usually provide highly
customized functionalities that none of the available
solutions in the market may provide if purchased as is. For
example, setting up new systems may require making huge
modifications that can take up to several years to comply

with old business needs within organizations while
accommodating newer ones.

This research aims at investigating an architectural model
to analyze the feasibility of re-architecting legacy systems in
order to satisfy e-government business needs. The paper is
organized in six sections. Section II presents the background
work that set the context of our work. Section III introduces
a conceptual system architecture model of SOA. Our
proposed model is given in section IV. Section V describes
some potential advantages of applying the notion of re-
architecting as compared to purchasing new products.
Finally, the conclusion and future works is given in section
VI.

II. BACKGROUND WORK

We chose Umm Al - Qura University (UQU) [11] as a
typical Saudi organization running a legacy system in need
of urgent updating to act as our case study for applying and
evaluating our proposed alternative model. The goal is to
establish a fully integrated environment that supports e-
government business. In other words, the institution needs a
rigorous solution that promotes changes without interrupting
their daily working activities. However, funding seems to be
a major constraint that constantly influences the decision for
adopting any major new development plans.

Umm Al-Qura University launched its information
systems in early 2001 to serve around 3600 employees and
just over 40,000 students at the time. It owns old fashioned
systems based on Oracle 6i for forms and reports those are
built entirely on client-server pattern [7]. The major systems
include an in house built Enterprise Resource Planning
(ERP), Student Information System (SIS), Library
Information System (LIS), and Healthcare Information
System (HIS). These systems are still used today to serve
around 75000 students and more than 7000 employees, a
much higher figure than in 2001, with minor improvement to
the original functionality.

However, software systems at UQU still lack many
capabilities that become core-requirement nowadays in terms
of compatibility with different environments (e.g., Mobile
devices) and the services provided to students and faculty
members in the University. Moreover, with the pioneering of
e-government movements in Saudi Arabia, organizations
may need to apply major changes to their systems in order to
accommodate these new requirements; one of which is
process automation that solely requires splitting functional
aspects of an application from the business aspects.

Basem Y. Alkazemi

Department of Computer Science

Umm Al-Qura University, UQU

Makkah, Saudi Arabia

bykazemi@uqu.edu.sa

137Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 155 / 729

Current practices for the modifications to add features to
any of the systems are done in an ad-hoc manner by which
an application's code is modified to satisfy requirements.
Specifically, business processes are implemented directly
into the forms confusing the functional aspects of an
application with the non-functional ones. As a result, the
complexity of UQU systems is building up rapidly in a
manner that will become very hard to manage in the near
future.

III. CONCEPTUAL SYSTEM ARCHITECTURE

One key driver for establishing our framework is the
representation of workflow within a software system.
Currently many systems develop their business processes
hardcoded into the source code. So, whenever new business
processes are required to be implemented the overall code
must be modified. Moreover, applications are integrated in a
one-to-one manner by writing glue code to establish the
integration. This glue code is usually written as a mediator
between two applications. Although this approach might
look simple to some developers, it causes process design to
become totally confused and mixed. In some cases glue code
is injected into one of the applications themselves. This is the
worst scenario as it will result in very tangled code that
cannot be managed over the years especially when
developers are dealing with an enterprise solution.

The described framework considers SOA [8] as an
integration facilitator mechanism and not as a service
delivery mechanism. The framework is composed of
different layers that, based on our previous work for
analyzing a number of systems [9], any enterprise solution in
the market must satisfy in order to ensure flexibility and
extensibility of their systems. Figure 1 presents our proposed
architecture for an enterprise solution.

Each layer is independent of the other surrounding layers
in terms of their main functionality. The description of these
layers is as follows:

 Data Access Layer: this layer is responsible for
managing the interaction between application and
database and hiding the databases used in the
organization. So, if different database technologies
are used (e.g., MYSQL, Oracle), this layer will
manage the connectivity with the corresponding
source.

 Application Layer: this layer is responsible for
executing the basic functionality that represents an
organization‟s business needs. In the context of an
ERP solution, this layer represents the fundamental
modules offered by the solution such as HR,
Finance, Projects, and Sales. Every one of these
modules must be a standalone application that is not
aware of any other modules.

 Packaging Layer: this layer is responsible for
wrapping the available applications from the
application layers into standard component model
[12]. All applications are therefore decoupled from
their underlying environment and made available
through request-response interaction mode.

Data Access Layer

Application Layer

Packaging Layer

Pooling Layer

Business Process Layer

Policy Layer

Frontend Layer

Figure 1. Architectural Layers for Enterprise Solutions

 Pooling Layer: this layer is responsible for hosting
the different packaged components and make them
ready to be used in a business. In addition, the layer
is responsible for establishing the communication
pattern and routing protocols that enable service
discovery and interaction. It defines the policies that
comply with the standards adopted by vendors. For
example, web services interact by exchanging SOAP
messages over HTTP protocol. Any interaction
between services must be accomplished through this
layer. This is usually referred to as the Enterprise
Service Bus (ESB) layer.

 Business Process Layer: this layer defines the
workflows that are employed by an organization. It
is responsible for establishing the sequence by which
services are going to be invoked to satisfy business
requirements. For example, an attendance service
might need to issue a request to a finance service to
deduct a certain amount from an employee salary.

 Policy Layer: this layer is responsible for defining
the privileges for accessing services. A different
level of access rights can therefore be granted at this
layer according to the defined policy.

 Frontend Layer: this layer is responsible for
exposing services for different types of devices and
technologies (e.g., web applications, mobile
application, cloud computing).

This layered architecture is technology neutral and

designed partially utilizing the concept of the SOA pattern.
The identified layers are not interchangeable as they must
build up in a bottom-up manner. So, for example, a database
can be established and tables created for an ERP system.
Then, a number of standalone applications are developed on
top of these tables to utilize the data in the tables. These
applications must then be exposed in a standard manner in
order to facilitate their integration with other applications to
achieve new business needs. So, the new exposed interfaces
are pooled and made ready for requests. Workflows can then
be defined on top of the available pool of services in order to
integrate different applications seamlessly without affecting

138Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 156 / 729

each application‟s concern. In fact, a workflow defines the
design of a system where different components can be
executed in a pre-defined sequence. Once all the business
requirements are established (i.e., all functionality is
implemented), there should be privileges assigned to
personnel who are authorized to execute certain processes in
the system.

IV. PROPOSED ARCHITECTURE FOR UQU SYSTEMS

UQU is moving steadily and progressively toward
providing e-government services which goes in line with the
university‟s technological ambitions. A main objective from
the university‟s website indicates fully automating all its
internal processes and establish rigorous infrastructure
capable of supporting internal and external exchange of data.
In fact, the organization dedicates huge resources and funds
in order to achieve this objective.

This requires a comprehensive architecture to be
established in order to facilitate harmonious integration of
different systems. UQU systems currently operate in three
different environments, SharePoint 2010, PHP (codeigniter),
and Oracle 6i. Our proposed architecture is meant to
integrate all systems regardless of technology in a rather
neutral manner. The proposed architecture model is given
below.

WCF

Data Access

Oracle

Oracle

Stored Procedures

SharePoint (Portal)

SQL

Server

PHP

Web Applications

MySQL

Consume

servicesActive Directory

Workflow Designer

SSO

Figure 2. UQU Proposed System Architecture

Figure 2 illustrates the proposed architecture for

facilitating the adoption of the emerging business need of
UQU based on the resources that are currently available to
the university. The main objective of this solution is to
promote fully integrated environment that facilitates internal
and external data exchange, in addition to promote
scalability for future development. UQU currently own full
package of SharePoint 2010, in-house built Oracle ERP
solution, website and a number of services in PHP, and an
Internet Information Server (IIS).

In our proposed solution, SharePoint is utilized to play
two main roles; the web presence and the service
orchestration layer where business processes are defined

through windows workflow foundations (WWF) provided by
the SharePoint workflow engine. Services are exposed to
SharePoint through the Microsoft-IIS layer where web
services are defined. As a result, every application must be
wrapped and exposed as a standalone web service that can be
consumed by SharePoint. This capability simulates the basic
functionality of the well-known Enterprise Service Buss
(ESB) pattern for service integration and management which
represent the communication layer for integrating the various
applications in an organization. SharePoint 2010 must work
only on SQL server, hence, in this solution; we propose to
use the SQL server for document flow management purposes
without interfering with the university database by any
means.

This architecture proposes a flexible solution for the ERP
system within the UQU and also establishes rigorous
platform for any potential ECM functionality required by the
university. SharePoint 2010 together with Microsoft-IIS
provides the necessary pool and management of services.
They facilitate services orchestration in order to enable the
interaction between the different services of the system. Any
new service can be exposed into this layer and then
composed with other services by defining a workflow that
corresponds to a predefined business process model.

Ideally, the resulted architecture should promote high
degree of extensibility and flexibility where different
business processes within or between departments become
composable and fully automated. The first step toward that
ultimate goal, as far as system structure is concerned, is re-
architecting of the legacy system in order to increase the
flexibility of IT within UQU. Re-architecting UQU legacy
systems with SOA concepts in mind allows for quick
response to changing market needs, can implement IT
systems that can quickly adapt to changing markets, shifting
customer requirements, and new business opportunities.

V. POTENTIAL BENEFITS OF RE-ARCHITECTING

Legacy systems‟ re-architecting is a cost-effective
modernization alternative to the creation of software systems
in an organization when a new market or business need
arises. Given that purchasing new software has huge cost
implications to the organization, it is better for organizations
to improve their own proven legacy systems to address their
specific emerging business needs. The huge costs of
purchasing new software from the market come from the
actual price of the software, rollout cost, and training costs.
In fact, being new, it might cost higher to maintain in the
initial days because it might involve vendor intervention
from time to time [4]. More so, this approach promotes low
operating costs, with the software built on existing hardware
and other systems [5].

The re-architecting approach is low risk modernization
option in the sense that existing software is already tested
and proven to work in addressing existing business needs.
This is more favorable as opposed to software systems an
organization purchases and have pilot tests done before
establishing if it actually addresses the organization‟s needs
[4]. It allows an organization to transform its existing legacy
applications to meet the current market demands without

139Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 157 / 729

overhauling the entire system. This, in turn, minimizes the
loss of existing IT systems‟ investments in which the legacy
systems hold crucial information and data that is required in
the daily operations of the organization.

Another advantage of this approach is that re-architecting
encourages the development of a custom software system
architecture that is based on the organization‟s demands and
capabilities. This is because this process allows the re-
architecting team to survey and understand not only the
requirements of the new system, but also the overall
capabilities of the organization in managing the new system
[6]. Consequently, this enables the development of a system
that the organization will use and manage comfortably.
During the re-architecting of legacy systems, highlights that
re-architecting legacy systems gives the development team
an opportunity to transform the current system user interface
to the popular web-based user interface if it is not in place
already. This helps the users interact with the new system in
a friendly manner and, thus, enable the usual operations of
the organizations to run with minimum delays.

Software system re-architecting approach permits
customization in the training of the system users and
maintenance teams. This is realized through re-architecting
experts who train the users at each stage of the development
process, thus, enabling them to understand the new system
with much ease. This is achievable since re-architecting
targets certain system enhancements concerning the central
part of the solution which aims at handling given business
needs.

Improving legacy systems helps sustain an organization‟s
reputation because it principally helps minimize any
interruption to routine business operations. This means that
customers, too, will feel minimal negative impact, if any.
This is critical in businesses where reputation is very
important, particularly due to competition. Consider a
situation where rolling out a new system takes days to
realize. Business operations would have to stop until the
system is working as expected but clients may not be that
patient and, therefore, consider the organization insensitive
to their needs.

Finally, this approach grants an organization the
opportunity to employ modern technical architecture such as
Service Oriented Architecture and Cloud Computing
Architecture. These have tested and proven levels of
flexibility to accommodate future technological changes. For
instance, when SOA is implemented to support business
intelligence (BI), it allows a flawless technology integration
to form a consistent BI environment that makes the delivery
of data straightforward while simplifying low latency
diagnostics at the same time.

VI. CONCLUSION AND FUTURE WORK

This paper accounts for a major obstacle that challenges
the decision to adopt e-business solution in any given
organization which is the lack of standard architecture of the
legacy systems. The paper proposed that re-architecting
legacy system can be beneficial to some organizations in
improving the architecture of their systems without affecting

their underlying business logics. We summarized the main
advantages of re-architecting in the following points:

 Re-architecting connects legacy business logic with
modern technologies and concepts.

 Re-architecting can evolve legacy applications into
SOA-based deployments.

 The new system will require less time spent coding
when modifying or developing logic.

 By being based on SOA concepts and built on an
advanced framework, the new system will be
flexible, transparent, and reliable.

 The new system will be expandable without the
danger of a 'spaghetti architecture' emerging.

The next step in this work is to utilize one of the tools
available in the market such as the BAZ [10] tool performs
the conversion of 6i forms into ADF [13] compatible
components. Then, components will be exposed as web
services and deployed into the IIS for business process
utilizations. Also, we will apply this model to some other
universities within the region in order to evaluate its
applicability to a wider range of cases.

REFERENCES

[1] C. Holland, and B. Light, “A Critical Success Factors Model for ERP
Implementation”, Software IEEE, vol. 16, no. 3, 1999, pp. 30 – 36.

[2] K. Bennett; M. Ramage, and M. Munro, M. Decision “Model for
Legacy Systems”, Software, IEE Proceedings, vol. 146, no. 3, 1999,
pp. 153 – 159.

[3] R. C, Seacord, D. Plakosh & G. A. Lewis, Modernnising Legacy
Systems: Software Technologies, Engineering Processes, and
Business Practices. 2003, Boston: Pearson Education.

[4] D. Reeves, “Legacy systems re-engineering: leveraging your existing
assets”, Revenue Solutions, Inc. 2009, Available from:
http://www.taxadmin.org/fta/meet/09tech/Tech%2009%20papers/Ree
ves-Legacy.pdf [retrieved: March 2012].

[5] A. Umar and A. Zordan, “Reengineering for service oriented
architectures: a strategic decision model for integration versus
migration”, Journal of Systems and Software, vol. 82 vo. 3, 2008, pp.
56 – 64.

[6] D. Quah, 2005. Thesis on „Case Study on Re-Architecting of
Established Enterprise Software Product: Major Challenges
Encountered and SDM Prescriptions from Lessons Learned.‟
Massachusetts Institute of Technology, pp. 1-122.

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,
Pattern-Oriented Software Architecture Volume 1: a System of
Patterns, 1996.

[8] L. Grace, M. Edwin, S. Dennis, and S. Soumya. SMART: Analyzing
the Reuse Potential of Legacy Components in a Service-Oriented
Architecture Environment, In CMU/SEI-2008-TN-008. Software
Engineering Institute, Carnegie Mellon University, 2008.

[9] B. Y. Alkazemi, ,“A Conceptual Framework to Analyze Enterprise
Business Solutions from a Software Architecture Perspective ", in the
IJCSI, vol. 9, no. 3, 2012.

[10] SmartDeveloper Co., http://www.sd4it.com/Baz.html, [retrieved: Jan
2012]

[11] Umm Al-Qura University, http://www.uqu.edu.sa, [retrieved: Nov
2012].

[12] K. Lau, Z. Wang, “Software Component Models”, IEEE Transaction
on Software Engineering, vol. 33, no. 10, 2007.

[13] Oracle Co, Oracle Application Development Framework, Available
from:http://www.oracle.com/technetwork/developer-
tools/adf/overview/index.html [retrieved: June 2012]

140Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 158 / 729

Business Process Modeling in
Object-Oriented Declarative Workflow

Marcin Dąbrowski, Michał Drabik, Mariusz Trzaska, Kazimierz Subieta
Polish-Japanese Institute of Information Technology

Warsaw, Poland
{mdabrowski, mdrabik, mtrzaska, subieta}@pjwstk.edu.pl

Abstract—The paper presents motivations, the idea and design
of an object-oriented declarative workflow management
system. The main features that differ this system from many
similar systems are: inherent parallelism of all workflow
instances and tasks, the possibility of dynamic changes of
running process instances and integration of workflow
instances with an object-oriented database. Workflow
instances, tasks, subtasks, etc., are implemented as so-called
active objects, which are persistent data structures that can be
queried and managed according to the syntax and semantics of
a query language. and also possess active parts that are
executable. The prototype has been implemented on the basis
of ODRA, an object-oriented distributed database
management system. As the workflow programming language
we use SBQL, an object-oriented database query and
programming language developed for ODRA.

Keywords-workflow; object-oriented; declarative; query
language; active object, dynamic workflow change; ODRA;
SBQL

I. INTRODUCTION
Current workflow technologies, developed mainly by

commercial companies and standardization bodies, see for
instance [1, 2, 3], present a considerably well recognized
domain, with a lot of commercial successes. The core of the
current approaches to workflows is the control flow graph,
which determines the order of tasks performed by a
particular process instance. Other issues related to
workflows, such as resource management, workflow
participant assignments, database structure and organization,
transaction processing, synchronization of parallel activities,
exception handling, tracking and monitoring of workflow
processes, are frequently treated with attention, but are seen
as secondary with respect to the work control flow. The
model based on a control flow graph is defined formally as a
Petri net [4].

There are problems that undermine applications of
workflow management systems in important business
domains. Below, we list the following features that are
frequently required in complex business applications, but are
absent or poorly supported by workflow systems:
1. Mass parallelism of tasks within workflow processes.
2. Dynamic changes of workflow instances during their

run.
3. Reactions to unexpected events or exceptions and

aborting running processes or their parts.

4. Resource management as a main workflow driving
factor.

Below, we discuss the above aspects.
Ad.1. Currently workflow systems enable parallel sub-

processes through splits and joins (AND, OR, XOR) that are
explicitly determined by the programmer. Such a form of
parallelism is insufficient for many business cases. During
the run, a process instance could be split into many parallel
sub-processes, but their number is large and unknown during
development of the process definition. For example,
processing an invoice requires splitting it into as many sub-
processes as the items that the invoice consists of. This
typical situation cannot be covered by explicit splits and
joins. Moreover, as noted by Reichert and Dadam [5], it is
often not convenient and not efficient to determine task
sequences in advance.

Ad2. Although there is a valuable research (e.g., [5, 6, 7,
8, 9, 10, 11]) aiming at dynamic changes of process
instances, especially workflow patterns [12, 13], it can be
anticipated that the scope of the changes must be limited.
There are several problems with modifications of a currently
executed process instance graph:
• Current workflow programming languages are not

prepared to deal with dynamic changes of a running
code.

• Parts of a flow control graph have no identity, they
cannot be separated from other parts and they are not
described by some metamodel (like a database
schema).

• Process instance graph elements are tightly
interconnected. If one would try to alter the code (e.g.
by removing some its part) the problem is how to fix
other elements to create a consistent whole.

• Changes can violate the consistency of process
instances, hence some discipline of changes is required.

• If many possible actors are allowed to alter a process
instance graph, then elements of the graph should
follow ACID transactions.

Ad3. Usually, programming languages have
programming means to define and process exceptions
(events). However, this concerns only situations when
exceptions are known during developing a process
definition. The behavior of business processes is frequently
unpredictable. There are exceptional situations that are
known only at the time when process instances are already
running. For instance, a new type of malicious attack on a
banking workflow system is discovered in situations when

141Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 159 / 729

thousands of process instances are already executed. The
workflow system administrator has practically the only
option: abort processes, change the process definition and
start processes from the beginning. From the business point
of view this could be unacceptable and might generate a
huge additional cost. Aborting already running processes is a
problem, because they engage entities and resources from the
business environment (clients, personnel, documents,
contracts, etc.). They may require a lot of compensating
actions, which must be done manually, with no help from the
workflow system.

Ad4. In currently developed workflows, the work control
flow (a la Petri net) is on the primary plan and the resources
(people, money, time, work power, equipment,
infrastructure, offices, vehicles, etc.) are secondary and
sometimes not taken into account at all. This is unnatural for
business processes because just availability, unavailability of
resources and their monitoring, planning and anticipating are
the main factors that determine a process control flow. Just
availability of resources should trigger some tasks. Because
information on resources is usually a property of a database
supporting the workflow system, conditions within a
workflow control flow graph should include accesses to a
database. This is usually impossible in typical workflow
programming languages or burdened by an infamous effect
known as impedance mismatch [14] between querying and
programming.

The above issues were the reasons that we started the
research on a new workflow management system that will be
able to overcome limitations of the current systems
concerning mass parallelism and dynamic changes of
running workflow instances. The assumptions of our design
is that an element of a workflow instance should have a
double nature. On the one hand, it should be perceived as a
data structure (an object) that can be addressed by a database
query and programming language. The structure is to be
stored in a database and should be the subject of database
transactions. On the other hand, the element should contain
executable parts, i.e., the code of a workflow process or sub-
process.

This way, we have come to the concept of active object.
An active object is a database object that contains some static
parts (attributes) and some active parts (codes). We
distinguish four such parts: firecondition, executioncode,
endcondition and endcode. An active object waits for
execution until the time when its firecondition becomes true.
After that, the object’s executioncode is executed. The
execution is terminated when either all the actions are
completed (including actions of active sub-objects) or its
endcondition becomes true. After fulfillment of the
endcondition some terminating actions can be executed
through endcode. This may be required to terminating some
actions, e.g. closing connections, aborting transactions,
setting a new object state, etc. Active objects belong to their
classes, follow the principle of encapsulation and are
typechecked according to the strong typing system. They can
be updated as regular database objects. Preventing undesired
updates can be accomplished by well-known database
capabilities such as user rights, integrity constraints, triggers

and active (business) rules. Unexpected events can be served
by inserting new active sub-objects into running active
objects and/or by altering active objects.

Active objects accomplish an important feature: mass
parallelism of executed tasks. In principle, all active objects
act in parallel. In life, tasks performed by people can be done
in parallel with no conceptual limitations. Some tasks,
however, must wait for completing other tasks and this
model can be expressed as a PERT (Program Evaluation and
Review Technique) graph. Active objects act as PERT
graphs: if object A has to wait for object B, then the
firecondition of A tests the state of B, which should be set to
“completed” when B is terminated. This way, one can
determine the sequence of processes, but this does not
constraints one from using parallelism whenever possible.
Because the sequence of tasks is not determined explicitly,
we describe this workflow model as “declarative”. Note that
this idea of declarative workflow processes is considerably
different from the idea of the DECLARE model presented in
[15], which is a logic-oriented formalism for specification of
various dependencies between (sequences of) events. In our
case, “declarative” means that the programmer specifies a
workflow code as collections of (nested) active objects, with
fireconditions and endconditions specified by means of the
declarative query language SBQL[16].

In our idea, workflow resources, as any database
properties, can be used to form fireconditions and
endconditions. In this way the resource management is
properly shifted on the first plan. Both active objects and
resource description objects are integrated in the same
database thus can be addressed by the same integrated query
and programming language. Hence, any form of impedance
mismatch is avoided.

The widely recognized paper devoted to dynamic
workflow changes is [5]. It presents some framework for
formalizing process graphs and updating operations
addressing such a graph. There are valuable observations
concerning the necessity of dynamic workflow changes for
real business processes and the necessity of strong discipline
within the changes to avoid violation the consistency of the
processes. Numerous authors follow the ideas of this paper.
The fundamental difference of our approach is that the
process control flow graph is not explicitly determined. It
can be different from one run to next run, depending on the
state of the workflow environment, database, computer
environment, fireconditions and endconditions. The problem
of the necessity of various control flow graphs for the same
business process is one of the motivations for the research
presented in [5], but it is not easy to see how such a feature
can be achieved within the proposed formal workflow
model. In our idea the feature is an inherent property.

Some disadvantage of our concept concerns the
performance. Decreasing performance can be caused by late
binding and the necessity of cyclic checking of fireconditions
and endconditions. We believe that performance problems of
our idea can also be overcome by new optimization methods
and new computer architectures.

The prototype is implemented under the ODRA system
[17]. As a workflow programming language, we use SBQL,

142Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 160 / 729

an object-oriented query and programming language
developed for ODRA.

The paper is organized as follows. Section 2 presents the
concept of an active object. Section 3 describes the
implemented prototype. Section 4 presents a comprehensive
example of a declarative workflow. Section 5 concludes the
paper.

II. ACTIVE OBJECTS
In the following, we use the term active object as a

generalization of process instance and task instance. Because
of the relativity of objects assumed in SBQL, components of
active objects are active objects too. Due to this, there is
usually no need to distinguish between process instances and
task instances – all are represented as active objects. To
represent process and task instances, active objects are
specialized, and belong to a special class named
ActiveObjectClass, which contains basic typing information,
basic methods and other necessary invariants.

An active object is a nested object with the following
main properties:
• Unique internal object identifier.
• External (business) name that can be used in source

programs.
• Certain number of public and private attributes.
• One distinguished attribute (sub-object) containing an

SBQL procedural workflow executioncode of a process
or a task; it may contain an empty instruction only.

• One distinguished attribute (sub-object) containing an
SBQL code with a firecondition (a condition for
starting the run of the given active object).

• One distinguished attribute (sub-object) containing an
SBQL code with an endcondition (a condition for
terminating the run of the given active object). An
endcondition may be absent. In this case the action of
an active object is terminated when its executioncode is
terminated and/or when all its active subobjects are
terminated.

• One distinguished attribute (sub-object) containing an
SBQL code with an endcode (a code executed to
consistently terminate the run of the given active
object). An endcode can be absent.

• Any number of named pointer links (binary relationship
instances) to other (active or passive) objects.

• Any number of inheritance links connecting the given
object to its classes (multiple inheritance is supported).

• Any number of nested active objects. The construction
of a nested active object is identical to that of a regular
active object (the object relativism is supported). The
number of nesting levels for active objects is unlimited.

When an active object consists of active sub-objects, the
endcondition determines whether the process or task is
completed. An endcondition can accomplish all kinds of
joins (AND, XOR) of parallel processes, and much more.

For example, if within an active object Invoice there are
many (unknown number of) active sub-objects
TestingAnItem, then we can impose the endcondition of

Invoice (the end of the invoice checking process) in the form
of a query involving an universal quantifier:
forall TestingAnItem as x (x.State =
“completed” or x.State = “cancelled”)

We can also impose more complex conditions. For
instance, let the cost of an invoice item will be stored within
TestingAnItem as a Cost attribute, and assume that the entire
invoice is checked if more than 95% of its total cost is
checked. In this case, the endcondition will have the form:
sum((TestingAnItem where State =
“completed”).Cost) / Invoice.TotalCost > 0.95

Because active objects are regular objects in the SBQL
terms, they can be manipulated without limitations. For
instance, active objects can be altered and deleted. Their
state can be changed, including the code of active parts. New
active sub-objects can be inserted into an active objects. This
feature makes it possible to split the process (represented by
the active object) into any number of subprocesses (inserted
active subobjects). Proper construction of the object’s
endcondition (e.g., with the use of quantifiers) makes it
possible to do any join of them, as illustrated in examples.

Active objects are specified by their classes and follow
the strong typechecking. The definition of a workflow
process determined by its class can be instantiated by
creating an active object of this class. The object creation
follows the standard routine of SBQL. The only difference
concerns executable parts: during instantiation their codes
are created as strings and then compiled to bytecodes.

III. DESIGN AND IMPLEMENTATION OF THE PROTOTYPE
The implemented prototype makes it possible:
• Creating and modifying workflow definitions;
• Instantiating them (creating workflow instances);
• Running a workflow monitor which processes

workflow instances.
The prototype has been implemented as a web

application using several technologies. The web part utilizes
Groovy [18], Grails [19] and JavaScript [20]. The ODRA
DBMS, the ODRA wrapper and the process monitor are
written in Java.

The main part of the system resides on the Tomcat [21]
servlet container hosting most of the application logic. The
most important parts are the following:
• The module for generating GUI. It is based on the core

Grails framework technology called GSP (Groovy
Server Pages). It is similar to well-known JSP (Java
Server Pages);

• The application logic which manages the workflow
model on the functional level. It provides an interface
to administrative tasks in a workflow system for all
applications. It is suitable not only for our custom built
GUI interface, but also for any Java-based application.

• The ODRA wrapper simplifies all tasks related to the
ODRA DBMS. ODRA is responsible for storing
workflow related information (definitions, instances)
and executing SBQL codes within active objects.

143Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 161 / 729

• The process monitor accomplishes time sharing among
active parts. It periodically switches the control flow
among all currently executed parts of active objects and
their subobjects.

• The cache memory speeds up the access to commonly
utilized DB objects.

The client component is executed in the standard-
compliant web browser and consists of the following
features:
• Regular web forms which are used for creating and

updating instances and definitions.
• An AJAX part written in JavaScript using the jQuery

library. Such an approach makes it possible to use
powerful widgets like definitions/instances trees (Fig.
1) or SBQL code editor with syntax highlighting.
Another advantage was lack of reloading a web page
(post/get) in some cases, i.e., auto refreshing of
instances’ status in the tree. As a result overall user
experience was greatly enhanced.

Figure 1. A workflow instances tree

The last two remaining architecture’s items are: the
ODRA system and a mail server. The last one is utilized for
sending progress messages to parties involved in a workflow.

The schema of a database used to store workflow data, is
presented in the Fig. 2. The process objects represent
structures created by the workflow programmer before it is
actually ran. Once a process is initiated, all data, including
the data of sub-processes, is copied to the corresponding
ProcessInstance objects. The parent-child bidirectional
pointer, combined with SBQL query operators, gives a great
flexibility in expressing conditions and codes. For instance:
• Find all my children (the code is written with regard to

one particular ProcessDefinition).
• Find my parent.
• Find a process with a given status.
• Find a process with a given name.

ProcessDefinition
globalId
name
fireCondition
execCode
endCondition
endCode
timeout
getAttribute(name)
setAttribute(name, value)

ProcessDefinition
globalId
name
fireCondition
execCode
endCondition
endCode
timeout
getAttribute(name)
setAttribute(name, value)

ProcessInstance
globalId
name
fireCondition
execCode
endCondition
endCode
timeout
status
processId
instanceId
timeOfLastCheck
getAttribute(name)
setAttribute(name, value)

ProcessInstance
globalId
name
fireCondition
execCode
endCondition
endCode
timeout
status
processId
instanceId
timeOfLastCheck
getAttribute(name)
setAttribute(name, value)

Attribute
name
value

Attribute
name
value

parent
0..1

*
child

parent
0..1

*
child

parent
0..1

*
child*

attributes
*

attributes

Figure 2. ODRA database schema

These constructs can be easily combined for more
complex search, for instance:
• Find a child that has a certain name and status.
• Check if all my children have the status ‘Finished’.
• Find my “brother” (using parent.children).
• Find all my “nephews” (using parent.children.children).

To allow processes to store “ad-hoc” some additional
data we have provided the Attribute class with a set of
methods in the ProcessDefinition and ProcessInstance
classes. Attributes can be easily used to control the flow
(when the conditions are based on them) and enable the
communication between processes (as one process can query
other process attributes and can change their values).

The ProcessMonitor is a Java based application, that can
be run as a separate thread on a separate machine. Its duty is
to periodically check (basing on timeouts) each
ProcessInstance. Then, according to the values retrieved
from condition codes, the ProcessMonitor executes the inner
code of the process and pushes it forward through the
workflow.

IV. SAMPLE DECLARATIVE WORKFLOW DEFINITION
As an illustration, we have created a sample workflow,

which utilizes basic concepts of our idea. The workflow
application supports processing of a credit request within a
bank. It is a complex structure of active objects representing
various tasks. The structure is presented in Fig. 3. Apart from
objects representing processes, there are resource objects that
are available through names such as Customer,
ApplicationForm, Account and Contract. A rough scenario
for the Request process is described below.
1. A customer submits an application for a credit in the

form of an ApplicationForm object.
2. After checking that all of necessary resources are

available the Analysis sub-process is activated.
3. The data is checked formally by the analyst for formal

and business correctness (Initial formal check).
4. If the data is incorrect, the customer is informed about

that and further processing of the application is
suspended (Suspension) until reaction of the customer is
received. If there is no reaction the application is
rejected, and the customer is informed about that by an
appropriate e-mail message (Rejection).

144Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 162 / 729

5. If the data is correct the client rating is calculated
(Calculate Client Rating).

6. After successful calculating of the client rating, a check
is performed if the amount of the credit does not exceed
the general bank limit (Calculate general limit).

7. A positive result of the Analysis sub-process activates
the Verification sub-process.

8. Verification consists of two stages:
a. Checking if the customer is not present in the

government registry of persons having debts;
b. Checking if the customer has an account within the

bank; if not, creating such an account.
9. If this sub-process is successfully completed, the sub-

process Ratification is triggered.
10. The sub-process Ratification is split into sub-processes:

a. Checking if the customer’s current income is
sufficient for the requested credit (Final check).

b. Preparing contract for the customer (Preparing
contract);

c. Sending information to the customer (Information
to customer);

d. Signing the contract with the customer (Signing
contract);

e. Transfer of the money to the customer’s account
(Money transfer);

f. Checking and sending information to the
government registry of customers that apply for
credits (to avoid many applications of the same
customer to different banks submitted at the same
time).

11. If these tasks are completed (successfully for the
customer or not), the process instance is terminated.

12. If at any stage the application is rejected the appropriate
information is sent to the customer.

Let us consider the Ratification sub-process in more
detail. It consists of six sub-processes: Final check,
Preparing contract, Information for customer, Signing
contract, Money transfer and Information to debts registry.
In order to start the Ratification process the fire condition
should check if the parent’s attribute ‘state’ is empty and the
Verification process has got finished status. This condition
means that the application has not been rejected yet and the
Verification sub-process is finished. After satisfying the fire
condition, Ratification process changes its status to Active
and all of its children changes status to Waiting. A
Ratification process is ended when all its children are
completed or when the application is rejected.

Request

Analysis

Initial formal check

Check client rating

Calculate general limit

Verification

Check debts registry

Check client account

Ratification

Final check

Preparing contract

Information for customer

Money transfer

Info to debts registry

Signing contract

Rejection

Information for customer

Suspension

Information for customer

Suspending

Activating

Figure 3. Structure of the Request process

When the Ratification is active, the fire condition of the
child with the name Final check is checked. It fires as soon
as its parent has got active status. When the process
activates, the code of this task is executed. The purpose of
this code is to check if the customer can afford such a credit
and according to that sets the proper value to the attribute
“state” of the Request object. The endcode of the Final
check is absent, hence the process ends immediately after
completing the execution code.

The next process in order is Preparing contract. It fires
as soon as Final check is finished and the state attribute of a
Request process has the “accepted” value. The purpose of
this process is to create a new Contract object assigned to an
application form filled by the customer with start date equal
to the current date and with an attachment being a reference
to the application form of the customer. If the contract has
been successfully created the process ends.

Finishing of Preparing contract process activates
Information for customer. The main task of this process is to
send an e-mail to the customer with the information that the
contract is ready to sign up. Depending on the result of this
operation the attribute mailSent is set with a proper value. If
sending does not succeed, the status of the process is
changed to Waiting, so the next process monitor check will
trigger its run again. When the e-mail is sent the process
ends. After informing the customer on the contract, the
processing waits for the signature. The next process Signing
contract provides information if a contract has been already
signed or not. It is started after finishing Preparing contract
and is active till a contractSigned attribute is false.

When the contract is signed, the bank transfers the
money into the customer account. The Money transfer
process is responsible for this action. It is activated when the
Signing contract process is finished.

The execution code for this process updates the amount
attribute from the customer’s Account object with the value

145Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 163 / 729

of the creditAmount attribute from the specific
ApplicationForm object. The process ends immediately after
completing this action (no endcondition).

The last action in the ratification procedure is sending an
info about a customer to a debts registry. After completing
all the sub-processes the Ratification process is finished.

The manager of workflow processes can do any changes
to process instances, including currently running instances by
simple database updates. For instance, for any reason he/she
can delete active object Check client rating from active
object Analysis for the given customer Request. It is possible
that in such a case the endcondition of the Analysis object
should be changed too.

V. CONCLUSION AND FUTURE WORK
The perception of workflow processes as autonomous

objects can be very useful in terms of maintaining and
managing process definitions and execution. Controlling the
process execution with fire and end conditions gives a
workflow creator a powerful tool to create very flexible and
advanced control structures. Moreover every process
attribute such as conditions, execution code etc. can be
accessed in every moment of the process lifetime, which
gives the opportunity to apply a changes to an already
working workflow instance if needed. The mentioned
features had been successfully implemented in working
prototype. It gives a foundation to achieve important features
like mass parallelism and flexible resource management.

The idea is very new, hence it presents a lot of
opportunities for future research. One of the research lines
concerns mass parallelism of processes and tasks executed
on many (thousands of) servers. This require developing and
implementing a process monitor and a task balancing tool.
Another research concerns a user-friendly API for dynamic
process changes. Proper modifications of notations such as
BPMN (Business Process Modeling Notation) [22] and
execution languages such as XPDL (XML Process
Definition Language) [23] and BPEL (Business Process
Execution Language) [24] could also be the subject of
research. There is also a need for preventing running
processes from undesired changes using such means as user
rights, semi-strong type checking, triggers and business
rules.

REFERENCES
[1] IBM developer works: Business Process Execution Language for

Web Services, ver. 1.1, May 2003.
[2] OMG. Business Process Modeling Notation (BPMN) specification.

Final Adopted Specification. Technical Report, 2006

[3] WfMC, WorkFlow process definition interface – XML Process
Definition Language. WfMC TC 1025 (2.1); October, 10, 2008

[4] Petri nets: http://www.petrinets.info/
[5] M. Reichert and P. Dadam. ADAPTflex: Supporting dynamic

changes of workflow without loosing control. Journal of Intelligent
Information Systems, 10(2), pp. 93-129, 1998

[6] C.A.Ellis. K.Keddara, GRozenberg. Dynamic change within
workflow systems. Proc. ACM Conf. on Organisational Computing
Systems (COOCS 95)

[7] C.A.Ellis. K.Keddara, and J.Wainer. Modelling workflow dynamic
changes using time hybrid flow. In Workflow Management: Net
based Concepts, Models, Techniques and Tools (WFM’98), 98(7),
Computing Science Reports, pp. 109-128. Eindhoven University of
Technology, 1998

[8] D.C.Ma, J.Y.-C.Lin, M.E.Orlowska. Automatic merging of work
items in business process management systems. Proc. 10th Intl. Conf.
on Business Information Systems (BIS2007), Poznań, Poland, 2007

[9] W.M.P. van der Aalst. Generic workflow models: How to handle
dynamic change and capture management information? Proc. 4th Intl.
Conf. on Cooperative Information Systems (CoopIS'99), Los
Alamitos, CA, 1999

[10] S.Sadiq, O.Marjanovic, M.E.Orlowska. Managing change and time in
dynamic workflow processes. Intl. Journal of Cooperative
Information Systems (IJCIS), 9(1-2), 2000

[11] S.Sadiq, M.E.Orlowska. Architectural considerations in systems
supporting dynamic workflow modification. Proc. 11th Conf. on
Advanced Information Systems Engineering, CAiSE99, Heidelberg,
Germany, 1999

[12] W.M.P. van der Aalst, A.H.M.Hofstede, B.Kiepuszewski,
A.P.Barros. Workflow patterns. Distributed and Parallel Databases,
14(3), pp. 5-51, 2003

[13] G. Vossen, M. Weske: The WASA Approach to Workflow
Management for Scientific Applications . In: Workflow Management
Systems and Interoperability. ASI NATO Series, Series F: Computer
and Systems Sciences, Vol. 164, pp. 145-164. Berlin: Springer 1998

[14] Impedance mismatch:
http://www.sbql.pl/Topics/ImpedanceMismatch.html

[15] F. M. Maggi, A. J. Mooij, and W. M. P. van der Aalst, User-Guided
Discovery of Declarative Process Models , 2011 IEEE Symposium on
Computational Intelligence and Data Mining, 2011

[16] SBQL: Stack-Based Query Language: http://www.sbql.pl/
[17] ODRA: Description and Programmer Manual.

http://www.sbql.pl/various/ODRA/ODRA_manual.html, 2008

[18] Groovy: A dynamic language for the Java Platform.
http://groovy.codehaus.org/

[19] Grails: http://grails.org/

[20] Javascript: http://www.w3schools.com/js/default.asp

[21] Apache Tomcat: http://tomcat.apache.org/

[22] BPMN: Business Process Modeling Notation: http://www.bpmn.org/

[23] XPDL: XML Process Definition Language:
http://www.wfmc.org/xpdl.html

[24] BPEL: Business Process Execution Language: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel

146Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 164 / 729

Data Transformations using QVT between Industrial Workflows and

Business Models in BPMN2

Corina Abdelahad, Daniel Riesco

Departamento de Informática

Universidad Nacional de San Luis

San Luis, Argentina

{cabdelah, driesco}@unsl.edu.ar

Alessandro Carrara, Carlo Comin, Carlos Kavka

Research and Development Department

ESTECO SpA

Trieste, Italy

{carrara, comin, kavka}@esteco.com

Abstract— Automation of business processes (workflows) has

become today a key component to support the growth of

organizations. Many standards in the field of business

processes, however, are not directly applicable to the field of

process engineering due to specific engineering workflow

requirements. The Business Process Model and Notation

(BPMN), a widely used notation to model business process

which has been recently enhanced, allows to extend the use of

workflows from the field of business process to the field of

engineering. However, the large base of existing engineering

workflows used currently by industry represents one of the

main obstacles for the adoption of the new standards.

Transformations play a pivotal role in the implementation of

Model-Driven Architecture by providing a mechanism to

express model refinement. Query/View/Transformation (QVT)

is an OMG standard established to create queries, views and

transformations of models. The QVT Relations, a component

of QVT, allows to formalize model-driven transformations.

ESTECO is a company which has developed a proprietary

workflow modeler and an associated workflow engine. Even if

its proprietary model has proven to be useful in the context of

engineering processes, a standard-complaint industrial process

flow will enable the building of unified and standardized

models across all sectors of the business. This paper presents a

model-to-model partial transformation using QVT between the

ESTECO metamodel and the BPMN2 metamodel, where input

data of ESTECO generates DataInputs, InputSets and

IoSpecification for use in BPMN2. This transformation allows

the conversion of most ESTECO industrial workflow to

BPMN2, assuring portability between tools that support the

BPMN2 standard.

Keywords - BPMN2; business workflow; ESTECO; industrial

workflow; metamodel.

I. INTRODUCTION

An industrial workflow is an automated business process
usually used to execute complex processing tasks that
requires many features that most business process models do
not currently support [7]. These kinds of workflows are
widely used in natural science, computational simulations,
chemistry, medicine, environmental sciences, engineering,
geology, astronomy, automotive industry and aerospace
among other fields.

BPMI (Business Process Modeling Initiative) together
with the OMG have developed the widely used BPMN

notation for modeling business processes [2][5]. BPMN
defines a formal notation for developing platform-
independent business processes, opposed to specific
definitions of business processes such as XPDL (XML
Process Definition Language) [9] or BPEL4WS (Business
Process Execution Language for Services Web) [8]. BPMN
defines an abstract representation for the specification of
executable business processes within a company, which can
include human intervention, or not. BPMN also allows
collaboration between business processes of different
organizations. The last definition of the BPMN standard (the
release 2.0) has been developed by taking as one of its
objectives the overcoming of the limitations that prevented
its use in scientific and engineering applications [1][2].

The definition of this new standard allows, for the very
first time, to extend the use of workflows from the field of
business process to of the field of engineering. Engineering
workflows, which share many properties with well-known
scientific workflows, are heavily used in industry today.
Although they are widely used, there is currently no standard
accepted for the definition of engineering workflows, despite
the efforts of standard organizations in the field of business
processes. The large base of existing engineering workflows
used currently by industry, which will need to be
transformed between proprietary legacy formats to the new
standard in order to be executed, represents one of the main
obstacles for the adoption of the new standards.

QVT is a standard relation language for model
transformation defined by the OMG with a specification
based on MOF and OCL[17]. The language consents to
express a declarative specification of the relationships
between MOF models and metamodels supporting complex
object pattern matching. A QVT transformation defines the
rules by which a set of models can be transformed into a
different set [4]. Furthermore, it specifies a set of relations
that the elements of the implicated models in the
transformation must fulfill. The model types are represented
by their corresponding metamodels. A relation in QVT
specification consists in a set of transformation rules where a
rule contains a source domain and a target domain [6]. A
domain is a set of variables to be matched in a typed model,
with each domain defining a candidate model and also
having its own set of patterns [4].

147Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 165 / 729

The paper is structured in sections. Section II presents
related works while section III describes the motivations of
current research. The ESTECO metamodel used as the
source model for transformations is described in section IV.
Sections V and VI present the transformation architecture
and the transformation between models respectively. The
paper ends with conclusions in section VII.

II. RELATED WORK

Several works in the field of software engineering are
related to the concept of transformation between models, and
many of them use BPMN to model business process. To the
best of our knowledge, no other research work has
considered BPMN2 as the target model for transformation in
the context of industrial workflows.

Marcel van Amstel et al. [12], investigate what factors
have an impact on the execution performance of model
transformation. This research estimates the performance of a
transformation and allows to choose among alternative
implementations to obtain the best performance.

In this same line, a model-to-model transformation
between PICTURE and BPMN2 is presented in [11].
PICTURE is a domain-specific process modeling language
for the public administration sector. The transformation
allows to model administrative processes in PICTURE and
to get BPMN2 models for these processes automatically,
helping electronic government by making possible the
implementation of supporting processes.

In [13], three sets of QVT relations are presented as a
mean of implementing transformations in a model-driven
method for web development. One of them transforms a
high-level input model to an abstract web-specific model.
The other two transform the abstract web model to specific
web platform models.

An example application is presented in [14] to
demonstrate an automated transformation of a business
process model into a parameterized performance model.

III. MOTIVATIONS

As mentioned before, engineering workflows are heavily
used in industry today to execute complex processing tasks
like simulation or optimization [3]. Current examples include
the areas of automotive, aerospace, turbines and other
industries where the development of complex products is
modeled as an engineering process defined in terms of the
collaboration of various engineering services with usually
large exchange of information between them.

Both scientific and engineering workflows differ from
business workflows in many aspects. For example, business
workflows usually deal with discrete transactions, but
engineering and scientific workflows in most cases deal with
many interconnected software tools, large quantities of data
with multiple data sources and in multiple formats. Also,
engineering services have usually a very long execution
duration and depend on the execution environment.

Even if engineering workflows have been used
successfully since many years, most of the tools used to
define and execute them are not based on standard
technologies. Until now, a single standard could not be used

to represent both the abstract view (used by the engineer to
represent the process at the scientific domain) and the
workflow representation used for execution (at workflow
engine level). The use of standards like BPMN for abstract
representation and BPEL for execution were proposed in the
past, but never went too far in industry due to the need to
support two different standards for the same workflow.
BPMN2, however, defines a standard with support for both
levels, with many different graphic editors and workflow
engines available, making a business standard accessible for
the very first time to industry to completely support
engineering workflows.

With BPMN2, many companies will be tempted to
support a standard workflow for engineering applications.
However, it must be considered that there exists a large base
of engineering workflows already designed and used
currently by industry which cannot be just thrown away. In
order to provide legacy workflow support, we propose a
methodology for the transformation of legacy proprietary
workflows into BPMN2 standard workflows. This approach
will provide an extra incentive for companies to abandon
proprietary workflows and move to standard technologies
coming from the field of business processes.

However, the transformation is not without pain. The
extra data and process requirements in engineering
workflows need to be handled properly. Fortunately,
BPMN2 has been defined with an extension facility which
allows to add required constructions without breaking
standard compliance.

As part of the methodology, this work presents a partial
transformation for selected constructions of a widely used
industrial engineering workflow to BPMN2 in order to
present a valid path to perform legacy workflow conversion
to a well-defined standard. The next section presents a short
introduction to the legacy metamodel.

IV. ESTECO METAMODEL

The metamodel selected as an example is the workflow
model used by ESTECO for modeling simulation workflows
in the context of industrial multi-objective optimization. This
workflow, which is typical in this kind of environments,
includes one task node for each activity and data nodes used
to represent input, output and temporary data objects. Data
objects can represent simple data like integer, doubles,
vectors, matrix or more complex data like files or databases.
Activities correspond to the execution of simulators, scripts
and other applications in local or remote locations. Usually
each activity has associated a set of configuration files,
which can be large (many gigabytes being common), and a
set of inputs and outputs (which can also be very large files
or databases). Distributed execution is required, meaning that
the activities specified in the workflow can be executed in
different nodes (on the grid or the cloud system), requiring
data to be passed between them.

The next section provides a description of the
framework used for the transformation by applying it to a
subset of ESTECO’s workflow.

148Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 166 / 729

V. TRANSFORMATION ARCHITECTURE

Our proposal aims to apply the most recent concepts of
business processes to the field of engineering workflows in
industrial fields. The use of standards in industry is important
since it guarantees portability between tools that support
BPMN2.

The industrial legacy workflow selected has an XML
representation, allowing the use of tools like QVT for
transformation. There is no one-to-one correspondence
between the different components of ESTECO’s workflow
and BPMN2 constructions, since control nodes and data
nodes are very differently handled in both models. Also, files
and database handling put extra requirements which can only
be handled properly with BPMN2 extensions.

The QVT transformations describe relations between the
source metamodel and the target metamodel, both specified
in MOF. The transformation defined is then applied to a
source model, which is a part of ESTECO source

metamodel, to obtain a target model, which is part of the
BPMN2 target metamodel, as can be seen in Fig. 1.

The metamodels used in the definition of the
transformation are shown at the top level. The specific
models to which the transformation defined in the
metamodel level is applied in order to obtain BPMN2
models is shown at the middle level. The lower level
represents the instances of the models which can be executed
in the corresponding workflow engines.

As mentioned before, activities and processes need data
in order to be executed, and in addition, they can produce
data during or as a result of their execution. In BPMN2, data
requirements are captured as DataInputs and InputSets. The
produced data is captured using DataOutputs and
OutputSets. These elements are aggregated in an
InputOutputSpecification class [2] as can be seen from Fig.
2. The DataInputs and DataOutputs are additional attributes
of the InputOutputSpecification element; these elements are
optional references to the DataInputs and DataOutputs
respectively. A DataInput is a declaration that a particular
kind of data will be used as input of the
InputOutputSpecification. A DataOutput is a declaration that
a particular kind of data can be produced as output of the
InputOutputSpecification. DataInputs and DataOutputs are
ItemAware elements. If the InputOutputSpecification defines
no DataInput, it means no data is required to start an
Activity. If the InputOutputSpecification defines no
DataOutput, it means no data is required to finish an Activity
[2].

A partial view of the ESTECO metamodel with the
metaclasses involved in the relations described in this work
is shown in Fig. 3. The TInputDataNode and

Figure 1. Transformation architecture.

Figure 2. Partial view of the BPMN2 metamodel.

149Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 167 / 729

TOutputDataNode elements inherit the attributes and model
associations of TDataNode, which in turn, inherits from
TNode. The TGeometry class is the outermost object for all
ESTECO elements, i.e., all these elements are contained in a
TGeometry. The TInputDataNode element is a particular
kind of TDataNode that will be used as input of TGeometry
to a Task. The TOutputDataNode element is a particular kind
of TDataNode which can be produced as output of a Task
contained in TGeometry. A TTaskNode class represents the
task that is performed within an industrial workflow.

VI. TRANSFORMATION BETWEEN MODELS

A transformation specifies a group of relations that the
elements of the involved models must fulfill. A
transformation may have any number of input or output
parameters known as domains. For each output parameter, a
new model instance is created according to the metamodel of
the output metamodel (in this case, the metamodel BPMN2).

Each domain identifies a corresponding set of elements

defined by means of patterns. A domain pattern can be

considered an object template. A relation in QVT defines

the transformation rules. A relation implies the existence of

classes for each one of its domains. In a relation, a domain

is a type that may be the root of a template pattern. A

domain implies the existence of a property of the same type

in a class. A pattern can be viewed as a set of variables and

a set of constraints that model elements must satisfy. A

template pattern is a combination of a literal that can match

against instances of a class and values for its properties. A

domain can be marked as checkonly or enforced. A

checkonly domain simply verifies if the model contains a

valid correspondence that satisfies the relation. When a

domain is enforced, if checking fails, the elements of target

model can be created, deleted or modified so as to satisfy

the relationship.
A relation can contain two sets of predicates identified by

a when or a where clause. The when clause specifies the
condition that must be satisfied to execute the
transformation. The where clause specifies the condition that
must be satisfied by all model elements involved in the
relation, and it may contain any variable involved in the
relation and its domains [4]. In the context of transformation,
a model type represents the type of the model. A model type
is defined by a metamodel and an optional set of constraint
expressions.

The transformation between ESTECO metamodel and
BPMN2 metamodel is defined as follows:

This transformation takes as input an ESTECO model,
which is an instance of the ESTECO metamodel, and
produces a BPMN2 model, that will be an instance of the
BPMN2 metamodel.

transformation ESTECOToBPMN2(source : esteco_m,
 target : bpmn2)

Figure 3. Partial view of ESTECO metamodel.

150Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 168 / 729

Below, the relations which define the mapping between
ESTECO metamodel classes and BPMN2 metamodel classes
are shown. This correspondence is not straightforward. As
we mentioned in the previous section, the DataInputs are
captured in InputSets and both are added into an
InputOutputSpecification.

The same happens with the DataOutputs. So, in the
transformation it is necessary to generate an IoSpecification
object to aggregate DataInputs, DataOutputs, InputSets and
OutputSets.

The relation used to create an IoSpecification object is
shown below:

The relations used to create InputSets and OutputSets is
presented below.

Note that an InputSet is a collection of DataInput
elements that together define a valid set of data inputs
associated to an InputOutputSpecification. An
InputOutputSpecification must define at least one InputSet
element. An OutputSet is a collection of DataOutputs
elements that together can be produced as output from an
Activity. An InputOutputSpecification element must have at
least OutputSet element [2].

The relations used to obtain the DataInputs of the
ESTECO model and the generation of DataInputs in
BPMN2 is presented below.

Each data input of ESTECO must be transformed into a

data input of BPMN2. This transformation is
straightforward; the QVT code presented before shows the
procedure by which the id, name, value and connectors are
obtained.

relation createIOSpecificationTask {
 checkonly domain source g:esteco_m::TGeometry { };
 enforce domain target t:bpmn2::Task {
 ioSpecification= ioSpecif :
 bpmn2::InputOutputSpecification {}
 };
 primitive domain id_task:String;
 where {
 getDataInputTask(g,ioSpecif, id_task);
 createInputSetsTask(ioSpecif,ioSpecif);
 getDataOutputTask(g, ioSpecif, id_task);
 createOutputSetsTask(ioSpecif, ioSpecif);
 }
}

relation createInputSetsTask {
 checkonly domain target ioSpecif:
 bpmn2::InputOutputSpecification {
 };
 enforce domain target ioSpecif :
 bpmn2::InputOutputSpecification {
 inputSets = input_set :bpmn2::InputSet{
 dataInputRefs= ioSpecif.dataInputs
 }
 };
}
relation createOutputSetsTask {
 checkonly domain target ioSpecif:
 bpmn2::InputOutputSpecification{
 };
 enforce domain target ioSpecif :
 bpmn2::InputOutputSpecification{
 outputSets = output_set :bpmn2::OutputSet{
 dataOutputRefs= ioSpecif.dataOutputs
 }
 };
}

relation getDataInputTask{
 id_input, name_input : String;
 value_input : Real;
 checkonly domain source g:esteco_m::TGeometry{
 taskNode = t:esteco_m::TTaskNode{
 bufferInputDataConnector = buffer_input :
 esteco_m::TBufferInputDataConnector {}
 },
 inputDataNode = input : esteco_m::TInputDataNode {
 id = id_input,
 name = name_input,
 value = value_input,
 outputDataConnector = output_data :
 esteco_m::TOutputDataConnector {}
 },
 dataEdge = data_edge : esteco_m::TDataEdge {}
 };
 enforce domain target ioSpecif :
 bpmn2::InputOutputSpecification {
 dataInputs = data_input : bpmn2::DataInput {
 id= id_input + '_T',
 name = name_input,
 itemSubjectRef = item : bpmn2::ItemDefinition {
 id = 'DoubleItemDefinition'
 }
 }
 };
 primitive domain id_task:String;
 when {
 if (data_edge.from = output_data.id) and
 (data_edge.to = buffer_input.id) and
 (id_task=t.id) then true else false
 endif;
 }
}

151Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 169 / 729

The relation used to obtain the DataOutputs of ESTECO
model and the generation of DataOutputs in BPMN2 is
shown below.

VII. CONCLUSION

In last years, business processes have gained popularity

and have been subject to a large number of studies.
In the context of engineering, the execution of many

parallel activities with complex interdependencies is
required. At the same time, configuration control of the
models should be maintained in order to ensure the
traceability of the experiments, a requirement that is not
necessarily considered in the typical business models. The
efficient integration with platforms such Service Oriented
Architecture (SOA) and Cloud Computing is also essential in
the context of industrial workflows, a feature that is not
considered in typical business workflows [15][16].

 The objective of this work has been to apply the latest
concepts of business processes to the industrial field.
Furthermore, it intended to show the importance of the use of
standards in the industrial field to guarantee portability
between tools that support BPMN2.

In order to validate experimentally the methodology, the
approach has been applied to the engineering environment
supported by a company specialized in multi-objective
optimization. Even if the company is currently working to
fully support the standard for future workflows, the approach
presented in this paper will allow to guarantee the support for
legacy workflows by performing a transformation between
the old metamodel to the BPMN2 standard metamodel. It is
important to stress that this transformation allows the
conversion of most ESTECO industrial workflows to
BPMN2 consenting their execution in BPMN2 workflow
engines with adequate extensions support.

ACKNOWLEDGMENT

 The authors thank the reviewers for the very useful

comments that have contributed to enhance the paper.

REFERENCES

[1] Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas

Fahringer, Geoffrey Fox, Dennis Gannon, Carole Goble,
Miron Livny, Luc Moreau, and Jim Myers, “Examining the
challenges of scientific workflows”. IEEE Computer vol. 40,
no. 12, 2007, pp. 24-32.

[2] Object Management Group (OMG), “Business process model
and notation”, http://www.omg.org/spec/BPMN/2.0
[retrieved: October, 2012]

[3] ESTECO S.p.A., “modeFRONTIER applications across
industrial sectors involving advanced CAD/CAE packages”,
http://www.esteco.com/home/mode_frontier/by_industry, [re-
trieved: October, 2012]

[4] Object Management Group (OMG), “Meta object facility
(MOF) 2.0 query/view/transformation, V1.1”,
http://www.omg.org/spec/QVT/1.1 [retrieved: October, 2012]

[5] The Business Process Management Initiative (BPMI.org),
http://www.bpmi.org/ [retrieved: October, 2012]

[6] Li Dan, “QVT based model transformation from sequence
diagram to CSP”, 15th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS), 2010,
pp. 349-354.

[7] Li Hongbiao, Li Feng, and Yu Wanjun, “The research of
scientific workflow engine”, IEEE International Conference
on Software Engineering and Service Sciences (ICSESS),
2010, pp. 412-414.

[8] Oasis, “Web services business process execution language
version 2.0”, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.html, [retrieved: October, 2012]

[9] Workflow Management Coallition (WfMC), “XML Process
Definition Language”, http://www.xpdl.org, [retrieved:
October 2012]

[10] Narayan Debnath, Fabio Zorzan, German Montejano, and
Daniel Riesco. “Transformation of BPMN subprocesses based
in SPEM using QVT”, IEEE International Conference on
Electro/Information Technology, 2007, pp. 146-15.

[11] Henning Heitkoetter, “Transforming PICTURE to BPMN 2.0
as part of the model-driven development of electronic
government systems”, 44th Hawaii International Conference
on System Sciences (HICSS), 2011, pp. 1-10.

[12] Marcel van Amstel, Steven Bosems, Ivan Kurtev, and Luís
Ferreira Pires, “Performance in model transformations:

relation getDataOutputTask{
 id_output, name_output : String;
 checkonly domain source g:esteco_m::TGeometry {
 taskNode = t:esteco_m::TTaskNode{
 bufferOutputDataConnector = buffer_output :
 esteco_m::TBufferOutputDataConnector {}
 },
 outputDataNode = output :
 esteco_m::TOutputDataNode {
 id = id_output, name = name_output,
 inputDataConnector = input_data :
 esteco_m::TInputDataConnector {}
 },
 dataEdge = data_edge : esteco_m::TDataEdge {}
 };
 enforce domain target ioSpecif :
 bpmn2::InputOutputSpecification {
 dataOutputs = data_output : bpmn2::DataOutput {
 id= id_output + '_T',
 name = name_output,
 itemSubjectRef = item : bpmn2::ItemDefinition {
 id = 'DoubleItemDefinition' }
 }
 };
 primitive domain id_task:String;
 when {
 if (data_edge.from = buffer_output.id) and
 (data_edge.to = input_data.id) and
 (id_task=t.id) then true else false
 endif;
 }
}

152Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 170 / 729

experiments with ATL and QVT”, Lecture Notes in Computer
Science, Volume 6707, Theory and Practice of Model
Transformations, Springer, 2011, pp. 198-212.

[13] Ali Fatolahi, Stéphane Somé, and TimothyLethbridge,
“Automated generation of abstract web models using QVT
relations”, Technical Report TR-2010-06, School of
Information Technology and Engineering, University of
Ottawa, September 2010.

[14] Paolo Bocciarelli and Andrea D'Ambrogio, “A BPMN
extension for modeling non functional properties of business
processes”, TMS-DEVS'11 Proceedings of the 2011
Symposium on Theory of Modeling & Simulation: DEVS
Integrative M&S Symposium, Springer-Verlag, 2011, pp.
160-168.

[15] Cui Lin, Shiyong Lu, Xubo Fei, Artem Chebotko, Darshan
Pai, Zhaoqiang Lai, Farshad Fotouhi, and Jing Hua, “A
reference architecture for scientific workflow management
systems and the VIEW SOA solution”, IEEE Transactions on
Service Computing, vol. 2, no. 1, 2009, pp. 79-92.

[16] Gideon Juve and Ewa Deelman, Scientific workflows and
clouds, ACM Crossroads, vol. 16, no. 3, 2010, pp. 14-18.

[17] Object Management Group (OMG), “Modeling and metadata
specifications”, http://www.omg.org/spec, [retrieved: October
2012]

153Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 171 / 729

A Data-driven Workflow Based on Structured
Tokens Petri Net

Nahla HADDAR
MIRACL/FSEGS laboratory :Computer Department

FSEGS, Airport avenue Km 4, BP 1013 Sfax 3018, Tunisia
Email :nhaddar@ymail.com

Mohamed TMAR, Faiez Gargouri
MIRACL/ISIMS laboratory :Computer Department

ISIMS, B.P. Technology Center:
242 Sfax 3021, Tunisia

Emails :mohamed.tmar@isimsf.rnu.tn, faiez.gargouri@gmail.com

Abstract—Business processes design and implementation
within a company are mainly based on the specification of
actors and their different tasks. Data and general information
are transmitted in a very specific organization among actors,
applications and the information system, which constitute a
workflow. In this paper, we present an approach for workflow
process modeling. The model is in charge of representing both
control flow and shared data in the workflow process, and it can
be analysed to verify its correctness before implementation. This
workflow modeling approach has been implemented into Opus
system that provides a set of graphical interfaces to model and
execute the business process tasks. The system also provides a
workflow engine that grants automatic workflow processing by
interpreting the workflow process.

Keywords—Workflow modeling; Workflow management sys-
tem; Petri Nets; Data-driven approach; Structured token.

I. INTRODUCTION

At the beginning of this century, workflow management
concentrated on the design and documentation of business
process [1]. Therefore, it focused on the dependencies be-
tween tasks and their sequencing, while data and resources
played a very minor role. Many new approaches have been
introduced, e.g, Petri Nets [2], Business Process Modeling
Notation (BPMN) [3], Business Process Execution Language
(BPEL) [4], etc.; but only a few of them are of ongoing interest
in modeling the exchanged data flow in the business process.
Moreover, the importance of data in business processes has
increased progressively in recent years with the appearance of
the data-driven approaches.

As execution and expressiveness have got more attention,
also validation of the workflow model has needed to get
attention. One big standard in this attribute is Petri Nets.
Petri Nets are currently among the best known techniques for
workflows specification [5].

In this paper, we present a formal approach inspired from
the data-driven approach and the Petri Net formalism to model
workflow processes. The resulting model can be analyzed for
validation and automatically generated by the workflow engine
for process execution.

The rest of the paper is organized as follows :we illustrate
the related work in Section II and then, we elucidate our
approach for workflow modeling in Section III. We illustrate
in Section IV the possible information flows routing. Then, we
demonstrate our approach by an example of workflow model

in Section V. In Section VI, we explain how our workflow
model can be analyzed and verified and we present our work-
flow management system Opus in Section VII. Section VIII
concludes the paper.

II. RELATED WORK

Many new approaches have emerged, which shifted their
focus to combination of data flow and control flow. An emerg-
ing approach uses artifacts, that combine data and process by
using atrifacts and Petri Nets model, is the Business Artifacts
(BA) [6].

The BA approach focuses on solving decision problems,
related to reachability, avoiding dead-ends and redundancy,
but it does not provide a graphical notation for process
modeling. Despite it was formally defined, the BA does not
provide a formal mechanism for process verification. Process
verification has been widely studied in workflow research,
with states machines in Petri Nets [7], [8], graphs [9], data
dependencies [10], etc.

Another formal approach based on Petri Nets model is the
CorePro Framework [1]. The CorePro enables to model the
data-driven specification and then, to create automatically the
process structures based on given data structures in the model
level. As well, CorePro provides some simple rules to verify
the soundness properties of the data-driven process structures.
However, it has skipped to retain the object states which have
already been activated before the execution.

Many extensions of Petri nets in which tokens carry data
have been defined in the literature, in order to improve
expressiveness of workflow models. Data Nets (DN) [11] are
an extension of Petri nets in which tokens are taken from a
linearly ordered and dense domain, and transitions can perform
whole place operations like transfers, resets or broadcasts.
Although, a data net can be viewed as a constrained mul-
tiset rewriting systems (CMRS) enriched with whole-place
operations. And, according to researches developped in [12],
whole-place operations augment the expressive power of Petri
nets only in the case of black indistinguishable tokens, but
not for models in which tokens carry data taken from an
ordered domain. Weakness refers here to the fact that the
CMRS encoding simulates a lossy version of data nets, e.g.,
data nets in which tokens may get lost.

All the approaches mentioned above focus on the data

154Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 172 / 729

routing and data managed by the process, but they consider
activities as black-boxes in which application data is managed
by invoked application components. Some of them, like DN,
can apply transitions that read from or write to some data
element, but with limited power to manage all the handled data
element. This is why processes have to be modeled at a higher-
level of abstraction to reflect the preferred work practice.

III. WORKFLOW MODELING USING STRUCTURAL PETRI
NET TOKENS

We have inspired from Petri Nets to propose a new workflow
modeling approach leading to a workflow process model. To
manage all the data handled by the work procedures, we use
the notion of data-driven process structures.

So, we describe the process by respective data structures,
and we define a data structure as a pair s = (C, D), where C
is a list of attributes and D is a list of tuples, each tuple is an
ordered set of attribute values. Formally, ∀n, m ∈ N :

C = (c1, c2 . . . cn)
D = {(d11 , d12 . . . d1n), (d21 , d22 . . . d2n) . . . (dm1 , dm2 . . .

dmn)}
Each attribute ci is an ordered pair of attribute name ni and

type name ti, such as :
∀i, ti ∈ {SmallInt, Int, BigInt, F loat, Double, Real,

Decimal, Char, V archar, Text, Date, Y ear, Boolean}
∀i, j, dij ≡ tj :an attribute value is a specific valid value

for the type of the attribute.
The workflow process is defined as a Petri Net representing

the work, where a place corresponds to a data structure that
contains structured tokens (tuples) and a transition corre-
sponds to a task. A workflow is then a quadruplet WF =
(S, T, Pre, Post) where :

● S is a finite set of data structures,
● T is a finite set of tasks,
● Pre ∶ S × T → N is the pre-incidence matrix,
● Post ∶ T × S → N is the post-incidence matrix.
A workflow process is defined by an oriented net with

two node types representing data structures and tasks
manipulating the tuples of these structures. A task consumes
data structure tuples to produce others, which can then be
consumed by other tasks.

A task t is said to be enabled if each input data structure
s ∈ S is marked with at least xi tuples (refers to Pre(s, t),
which defines the weight of the edge from s to t). A firing
of an enabled task t consumes xi tuples from each input data
structure s, and produces xj tuples (refers to Post(t, s)) to
each output data structure of t. Post(t, s) is the weight of
the edge from t to s.

We have to clarify that in our case we cannot be limited
to a simple post-incidence matrix. In fact, each transition
consumes an undefined number of tuples and produces a
number belonging to a well determined range, depending on
its processing (See Table I, in Appendix). For example, if a
transition is a tuples union operation of two data structure
s1 and s2 containing respectively x1 and x2 number of

tuples, it will produce a number of tuples belonging to
the interval :max(x1, x2) and x1 + x2 (because the union
operation eliminates the duplicated tuples).

So, we define two post-incidence matrices :PostMin and
PostMax, as a values interval which limits all possible
post-incidence matrices. Formally :
∀t ∈ T and s ∈ S, PostMin(t, s) :is the edge going from

transition t to place s minimal weight.
∀t ∈ T and s ∈ S, PostMax(t, s) :is the edge going from

transition t to place s maximal weight.
∀t ∈ T and s ∈ S, Post(t, s) ∈

[PostMin(t, s), PostMax(t, s)].
We explain this idea in details through the example in

Figure 1.

Figure 1. Example of workflow model

The example illustrated by Figure 1 contains eight places
(s1, s2 . . . s8) and five transitions (ta, tb . . . te). Each edge is
associated with a weight (xi > 0).

We define its Pre matrix by :

Pre =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

ta tb tc td te

s1 x1 0 0 0 0
s2 x2 x2 0 0 0
s3 0 x3 0 0 0
s4 0 0 x6 0 0
s5 0 0 x7 x7 0
s6 0 0 0 0 0
s7 0 0 0 0 x10

s8 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

Following the example illustrated in Figure 1, and
the definition of its transitions in Table I, we can determine
the values range of output tokens for each fired transition as
follows :

● x4 ∈ [0, min(x1, x2)]
● x5 ∈ [max(x2, x3), x2 + x3]
● x8 = x6 × x7 ∈ [x6 × x7, x6 × x7]
● x9 = x7 ∈ [x7, x7]
● x11 = x10 ∈ [x10, x10]
So, we can deduce the matrices :

PostMin :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

ta tb tc td te
s1 0 0 0 0 0
s2 0 0 0 0 0
s3 0 0 0 0 0
s4 0 0 0 0 0
s5 0 max(x2, x3) 0 0 0
s6 0 0 x6 × x7 0 0
s7 0 0 0 x7 0
s8 0 0 0 0 x10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

155Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 173 / 729

PostMax :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

ta tb tc td te

s1 0 0 0 0 0
s2 0 0 0 0 0
s3 0 0 0 0 0
s4 min(x1, x2) 0 0 0 0
s5 0 x2 + x3 0 0 0
s6 0 0 x6 × x7 0 0
s7 0 0 0 x7 0
s8 0 0 0 0 x10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

Using these three matrices (Pre, PostMin and PostMax)
we can derive several properties of the designed workflow
model to be verified. We detail this idea in Section VI.

To reach the lowest level of abstraction, we need algebra
over data structures. So, we have inspired from the relational
algebra to define the tasks needed to produce data structures
from others. As illustrated in Table I, we redefine the
relational algebra operations in a formal way in order to
suit the Petri Net formality. To keep equivalence between
the attributes of data structures assigned to operations as
Union, Difference, Intersection, and Division, we define the
Permutation and Substitution operations.

Furthermore,we suggest an Extension operation to add
attributes in a structure scheme, where its values are
generated through applying a function. And finally, to insert
data structure tuples in a data structure, we define the
Alimentation operation.

As for example, we explain the Projection operation
illustrated in Table I by the following example :

Whether the structure Products = (Cj , Dj), where :
Cj = (Id, designation, price, Stock),
Dj = {(1, aa, 20.5, 1000), (2, ab, 25.0, 2500), (3, ac,
22.75, 1500).
P rod = (Ci, Di) = �(Products, b) such as

b = (1, 0, 0, 1).
So, q is defined as following :

q =
5

∑
k=1

bk = 2 ⇒ Ci = (cjj′
1

, cjj′
2

)

j′1 = min
l = {1,2 . . .5}

l

∑
p=1

bp = 1

l = 1 ⇒ ci1 = cj1 = Id

j′2 = min
l = {1,2 . . .5}

l

∑
p=1

bp = 2

l = 4 ⇒ ci2 = cj4 = Stock

⇒ Prod = ((Id, Stock),{(1, 1000), (2, 2500), (3,
1500)})

IV. INFORMATION FLOWS ROUTING

Our workflow model can express sequential, conditional and
parallel routing flow.
Sequential routing is used to deal with causal relationships
between tasks [8]. Figure 2 shows that sequential routing can
be modeled by our operations graph.

Figure 2. Sequential routing

Parallel routing is used where two tasks B and C have
to be executed at the same time. To model parallel routing,
two building blocks are identified :The AND-Split and the
AND-Join [8]. Figure 3 shows that both building blocks can
be modeled by our operations graph.

Figure 3. Parallel routing

Conditional routing is used when there is a mutual ex-
ecution between two tasks according to a condition. We can
express conditional routing by a simple network using control
operations.

Indeed, the control operation decides to continue, or not,
the information flows routing according to the controlled data
structure content. Whether si is the controlled data structure,
sj is the data structure expected by the next transition if the
condition is verified, so, si will be controlled by one of the
control operations which are defined as follows :

Control operation 1, noted ± :

si ± sj = { si if sj = φ
φ otherwise

Control operation 2, noted ∓ :

si ∓ sj = { si if sj ≠ φ
φ otherwise

An example of control flow is illustrated in Figure 5 in
Appendix, where the structure s6, which contains all the
unpaid bills of the current customer, is used by task t5 to
decide the customer solvency. So, if s6 contains one or more
tokens, t5 will decide that the customer is not solvent, and it
will finish the order management process. Otherwise, t5 will
reproduce s2 tokens in s7 in order to be sent to Inventory
Check Role.

V. EXAMPLE MODELED USING OUR APPROACH

Consider an office procedure for order processing within
a company. When a customer sends his order by email, the
job is sent to the customer solvency check, and then to the
inventory check. After the evaluation, either a rejection mail
is sent to the customer, or the order is sent to shipping and
billing. In this paper, we restrict our example to the solvency
check and the inventory check processes.

To simplify the representation of the model, we group the
tasks related to the same function in the company according
to roles. So, each role work is presented by a sub-process
belonging to the whole workflow process definition.

As shown in Figure 5, when a customer mail arrives, the

156Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 174 / 729

workflow will launch. S1 tokens (present customers data) are
to be consumed by t1 in order to select the current customer
(CC) information by his first name and his last name (the
selection condition is to be seized by the Solvency Check Role
(SCRole) during the execution of the workflow).

The resulted structure s2 token (s2 contains only one token
presenting the CC information), and the s3 tokens (present
bills data of customers) are to be used by t2 to produce
a single data structure containing bills data, and the CC
information. Resulted structure s4 tokens are to be used by
t3 to create an inner join between bills data and the CC,
in order to select only the CC bills. So, s5 tokens present
the CC history on bill payment. To check customer solvency,
t4 selects only s5 tokens which have a paid attribute value
equals to false. The resulted structure s6 is to be then used to
decide the customer solvency. Task t5 is a control operation,
which verifies s6 content. If s6 contains one or more tokens,
t5 will decide that the customer is not solvent (because he has
unpaid bills), and it will finish the order management process.
Otherwise, t5 will reproduce s2 tokens in s7 in order to be
sent to Inventory Check Role (ICRole).

To select the ordered products, t6 extends s8 (contains all
products data) by the ord qtity attribute (accepts only integer
values), in order to allow the ICRole to seize the ordered
quantities relatively to the ordered products. Then, t7 selects
from the resulted structure s10 only tokens having an ordered
quantity value higher than zero and lower than the stocked
product quantity. The resulted tokens are stocked in s11.

In parallel, t8 applies a projection operation on s7, to get
the structure s9 having as a token, the CC identifier. If there
are available ordered products, the ICRole has to create a new
order. To verify availability, we define the control operation in
t9. If s11 contains one or more tokens (there is, at least, one
available product), t9 will reproduce s9 token in s12, then, t10
will add a new order in s13. It remains to create the new order
lines. So, the ICRole has to seize the new order identifier, t13
will save his seizure in s17. Then, t14 will create the new order
lines by applying a simple inner product between s17 token
and s15 tokens (present identifiers of the ordered products and
their relative ordered quantities).

VI. THE WORKFLOW VERIFICATION

We provide techniques based on Pre and Post matrices,
to ensure that WF satisfies the minimum requirements for
correctness.

First of all, we verify that each data structure is the result
of at most a single transition. Formally, consider n places and
m transitions in the workflow model :∀ i ∈ {1, 2 . . . n},

∀ i ∈ {1, 2 . . . n}, ∣j ∈ {1, 2 . . .m}, P re(si, tj) ≠ 0∣ ≤ 1.
(1)

To explain Equation 1, we resume the example in Figure 1,
and we verify s4. So, for i = 4 :

∣j ∈ {a . . . e}, P re(s4, tj) ≠ 0∣ = ∣x6∣ = 1 ⇒ s4 verifies
the condition.

In the rest of this section we focus on the verification of

liveness property of the model. For us, to verify this property,
we have to begin with defining the initial and the final marking
of WF .

Formally, the initial marking i is defined as : i =
⎛
⎜⎜⎜
⎝

i1
i2
. . .
in

⎞
⎟⎟⎟
⎠

,

such as :∀j ∈ {1, 2, . . . n}

ij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
k∈{1, 2,...m}

Pre(sj , tk),
if ∀l ∈ {1, 2, . . .m}PostMax(sj , tl) = 0.

0, otherwise.
(2)

We explain Equation 2 using the example in Figure 1 :
∀j ∈ {1 . . .8}, the condition ∀l ∈

{a . . . e}PostMax(sj , tl) = 0 return true only for
j = 1, j = 2 and j = 3. So, ∀j ∈ {4 . . .8}, ij = 0.

For j = 1 : max
k∈{a...e}

Pre(s1, tk) return Pre(s1, ta) = x1.

⇒ i1 = x1
For j = 2 : max

k∈{a...e}
Pre(s2, tk) return Pre(s2, ta) = x2

(or Pre(s2, tb) = x2).
⇒ i2 = x2
For j = 3 : max

k∈{a...e}
Pre(s3, tk) return Pre(s3, tb) = x3.

⇒ i3 = x3
As we define an interval for Post matrices, we

define an interval for final possible markings. Formally,
∀j ∈ {1, 2, . . . n} : A minimal final marking o− is defined

as :o− =
⎛
⎜⎜⎜
⎝

o−1
o−2
. . .
o−n

⎞
⎟⎟⎟
⎠

, where :

o−j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
k∈{1, 2,...m}

PostMin(sj , tk),
if ∀l ∈ {1, 2, . . .m}Pre(sj , tl) = 0.

0, otherwise.

(3)

Let us calculate o− of the model in Figure 1 :∀j ∈ {1 . . .8},
the condition ∀l ∈ {a . . . e}Pre(j, l) = 0 return true only for
j = 6, j = 8. So, ∀j ∈ {1 . . .8}/{6,8}, o−j = 0.

For j = 6 :
max

k∈{a...e}
PostMin(s6, tk) return PostMin(s6, tc) = x6×x7.

⇒ o−6 = x6 × x7
For j = 8 :
max

k∈{a...e}
PostMin(s8, tk) return PostMin(s8, te) = x10.

⇒ o−8 = x10
The maximal final marking o+ is defined as o− but with

using the PostMax matrix instead of the PostMin :

o+ =
⎛
⎜⎜⎜
⎝

o+1
o+2
. . .
o+n

⎞
⎟⎟⎟
⎠

, such as :

o+j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
k∈{1, 2,...m}

PostMax(sj , tk),
if∀l ∈ {1, 2, . . .m}Pre(sj , tl) = 0.

0, otherwise.

(4)

157Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 175 / 729

Assuming i as the initial state, o as the final state of a
process, the workflow model is live if and only if :

● For every state M reachable from state i, there exists a
firing sequence leading from state M to state o [8]. We
adopt this rule to WF by applying the following rule :
Whether R+ (resp. R−) is the net presenting the maximal
(resp. minimal) output function, such as :

R+ = (S, T, Pre, PostMax),
R− = (S, T, Pre, PostMin),

∀M(i ∗→ R+(M)) ⇒ (R+(M) ∗→ o+),
(i ∗→ R−(M)) ⇒ (R−(M) ∗→ o−).

(5)

● There are no dead transition in the workflow model [8].
We also adopt this rule to WF by applying the following
rule :

∀t∈T∃M,M ′ , (i ∗→ R+(M) t→M ′). (6)

We define the simple algorithm below to ensure the verifi-
cation of Equations 5.

Algorithm 1 Verification
/* t is a task to verify */
Procedure VerificationT(t)
VerificationT(t)= ⋀

i ∈ {1, 2 . . . n}
Pre(si, t) ≠ 0

VerificationS(si);

Procedure VerificationS(s)
/* s is a root node */
if ∀j ∈ {1, 2 . . .m}, PostMax(s, tj) = 0 then

VerificationS(s)=true;
else

/* ti is the task which has PostMax(s, ti) ≠ 0 */
VerificationS(s)=VerificationT(ti) where
PostMax(s, ti) ≠ 0 ;

end if

We apply Algorithm 1 on the example illustrated in
Figure 1, and we choose to verify task te since its output
data structure is a final state in the model; so, its verification
generates the verification of all firing sequences leading from
a state M to this final state.

VerificationT(te)= ⋀
i ∈ {1, 2 . . .8}
Pre(si, te) ≠ 0

VerificationS(si)

= VerificationS(s7) = VerificationT(td)
= VerificationS(s5) = VerificationT(tb)
= VerificationS(s2) ∧ VerificationS(s3)
= true ∧ true = true.

To verify Equation 6, we have to verify that the model
is without structural conflicts. we assume that WF has a
structural conflict if it contains at least two tasks ti and tj
having the same input data structure s. As the case in Figure 1,
the model has a structural conflict caused by tb and tc which
share s2. To avoid these cases, we extend the model by adding
extra tasks T ∗ = {tcopy1 , tcopy2 . . . tcopyk} such as k is the
number of data structures which cause conflicts, and tcopy is

a Copy operation (See Table I), which allow to create copies
from a shared data structure to satisfy the need of tasks in a
conflict.

The extended model WF+ = (S+, T+, P re+, Post+) is
defined as follows :S+ = S, T+ = T ∪ T ∗, Pre+ = S × T+
and Post+ = T+ × S.

Figure 4. Removing the conflict

So, to resume, Algorithm 1 can verify that WF+ is live.

VII. IMPLEMENTATION OF THE WORKFLOW
MANAGEMENT SYSTEM Opus

The Opus workflow system consists of a number of com-
ponents including a workflow engine and a Petri Net editor.
Workflow specifications can be designed using the Opus editor
and deployed in the Opus engine for execution.

The Opus engine follows the workflow model definition
and interprets automatically the code executing the workflow.
Then it invites each role to perform its tasks according to
its feasibility and urgency. The verification of the conceived
model is automatically ensured as follows in Algorithm 1
and Equation 1. To integrate workflows with the Information
System (IS), we developed some tools, e.g., the Import tool
(it imports a table tuples to a definite data structure belonging
to the workflow process), the ImportId tool (it imports the
tuple identifier of the last tuple inserted in a definite table),
the Insert tool (it inserts data structure tuples in a definite
IS table) and the Update tool (it updates a table in the IS
with a data structure tuples). To perform these operations, and
operations which requires two identical data structure schemes,
Opus system is equipped with a matching tool, which uses the
Substitution and the Permutation operations.

VIII. CONCLUSION AND FUTURE WORK

The proposed approach is modular in a sense that the work-
flow process is to be decomposed on sub-processes which fa-
cilitates any eventual updates on the workflow process model.
In fact, the changes related to the evolution in the role work,
causes the change of its sub-process without damaging other
sub-processes. In particular, the detailed formal definition of
tasks and data structures is useful for the Opus engine, to
extract all the process specifications. However, this approach
must be completed by many functionalities. In fact, we plan
to provide techniques to verify others Petri Nets property,
like boundness, soundness, etc. We also plan to implement
a simulation tool to decision-makers, in order to improve
the business process, and a module for documents generation
(invoice, purchase order, etc.) :the system can manage the
content but not the container.

158Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 176 / 729

REFERENCES

[1] D. Müller, M. Reichert, and J. Herbst, “Data-driven modeling and
coordination of large process structures,” in OTM Conferences (1), 2007,
pp. 131–149.

[2] C. Petri, “Communications with automata,” Ph.D. dissertation, Institut
für instrumentelle Mathematik, Bonn, 1962.

[3] Object Management Group (OMG), “Business process model and
notation (bpmn)(version 2.0),” Tech. Rep., 2011. [Online]. Available:
http://www.omg.org/spec/BPMN/2.0/

[4] OASIS WSBPEL Technical Committee, “Web services business
process execution language version 2.0,” 2007. [Online]. Available:
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[5] W.V.D. Aalst, J.M. Colom, F. Kordon, G. Kotsis, and D. Moldt, Petri
Net Approaches for Modelling and Validation, ser. Lincom Studies in
Computer Science, 2003, vol. 1.

[6] A. Nigam and N.S. Caswell, “Business artifacts: An approach to
operational specification,” IBM Syst. J., vol. 42, no. 3, pp. 428–445,
July 2003.

[7] W.V.D Aalst, “Verification of workflow nets,” in Application and Theory
of Petri Nets 1997, P. Azéma and G. Balbo, Eds., vol. 1248, 1997, pp.
407–426.

[8] W.V.D Aalst, “The application of petri nets to workflow management,”
Journal of Circuits, Systems, and Computers, vol. 8, no. 1, pp. 21–66,
1998.

[9] W. Sadiq and M.E. Orlowska, “Analyzing process models using graph
reduction techniques,” Information Systems, vol. 25, pp. 117–134, 2000.

[10] S.X. Sun, J.L. Zhao, J.F. Nunamaker, and O.R.L. Sheng, “Formulating
the data-flow perspective for business process management,” Information
Systems Research, vol. 17, no. 4, pp. 374–391, 2006.

[11] R. Lazic, T.C. Newcomb, J. Ouaknine, A.W. Roscoe, and J. Worrell,
“Nets with tokens which carry data,” Fund. Informaticae, vol. 88, no. 3,
pp. 251–274, 2008.

[12] P.A. Abdulla, G. Delzanno, and L. Van Begin, “A language-based
comparison of extensions of petri nets with and without whole-place
operations,” in Proceedings of the 3rd International Conference on
Language and Automata Theory and Applications, ser. LATA ’09.
Springer-Verlag, 2009, pp. 71–82.

APPENDIX

Table I
OPERATIONS DEFINITION

Operation Formal definition

Named :Inner Product
Description :Performs the
combination of all struc-
ture tuples with those of
another structure.
Noted:×

∀ sj = (Cj , Dj), sk = (Ck, Dk)
Cj = (cj1 , cj2 . . . cjnj

),
Ck = (ck1

, ck2
. . . cknk

)
si = sj × sk
⇒ si = ((cj1 . . . cjnj

, ck1
. . . cknk

),Di)
Where :

Di = ⋃
l ∈ {1 . . . nj}
p ∈ {1 . . . nk}

{(djl1 . . . djlnj ,

dkp1 . . . dkp
nk)}

Resulted tokens number :xi = xj × xk

Named :Selection
Description :Selects only
the structure tuples that
meet the desired criteria.
Noted :σ

Whether P is the selection property,
∀ sj = (Cj , Dj), si = σP sj
⇔ si = (Cj , ⋃

e ∈Dj

P (e)

{e})

Resulted tokens number :xi ∈ [0, xj]
Named :Difference
Description :Subtracts
the tuples of a data struc-
ture from another one.
Noted :−

∀ sj = (C, Dj), sk = (C, Dk)
⇒ sj − sk = (C, Dj − Dk)
Resulted tokens number :
xi ∈ [xj − xk, xj]

Named :Projection
Description :Selects only
the structure columns
(attributes) that we are
interested in.
Noted :�

sj = (Cj ,Dj),∀(b1 . . . bn) ∈ {0,1}n
si = (Ci,Di) = �(b1...bn)sj
Where ci is a selected (resp. not selec-
ted) attribute, if bi = 1 (resp bi = 0).

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci = (cj
j′
1

, cj
j′
2

. . . cjj′q
)

Di = {(dj1
j′
1

, dj1
j′
2

. . . dj1j′q
),

(dj2
j′
1

, dj2
j′
2

. . . dj2j′q
) . . . (djmjj′

1

,

djmjj′
2

. . . djmjj′q

)}

Such as :
q = ∑n

k=1 bk :is the number of attributes
in the structure result. And :
j′k =min l = {1,2 . . . n}

∑l
p=1 bp = k

l :refers to

the projection attributes indices.
Resulted tokens number :

{ xi = 0, if xj = 0
xi ∈ [1, xj], otherwise

Named :Union
Description :Groups the
tuples of two structures
into a single one.
Noted :∪

∀ sj = (C, Dj), sk = (C, Dk)
⇒ sj ∪ sk = (C, Dj ∪ Dk)
Resulted tokens number :
xi ∈ [Max(xj , xk), xj + xk]

Named :Intersection
Description :Retrieves the
common tuples of two
structures.
Noted :∩

∀sj = (C, Dj), sk = (C, Dk)
sj ∩ sk = (C, Dj ∩Dk)
Resulted tokens number :
xi ∈ [0, Min(xj , xk)]

Named :Division
Description :Allows to
get a data structure tuples
that are associated with
all tuples of another
structure.
Noted :÷

∀sj = (Cj , Dj), sk = (Ck, Dk)
Where :Cj = (c1 . . . cnj

),
Ck = (c1, . . . cmj

)
If nj >mj then :
⎧⎪⎪⎪⎨⎪⎪⎪⎩

si = sj ÷ sk = (Ci, Di)
Ci = (cmj+1

, cmj+2
. . . cnj

)
∀ q ∈ Di, Dk × q ∈ Dj

Resulted tokens number :
xi ∈ [0, E(xj/xk)]

Named :Substitution
Description :Changes a
structure attribute name.
Noted :⧄

∀sj = (Cj , Dj), si = ⧄(cjk , c, sj)
⇔ si = ((cj1 . . . cjk−1, c, cjk+1
. . . cjn), Dj)
Resulted tokens number :xi = xj

Named :Permutation
Description :Allows
to permute two columns
in a data structure.

Noted : ↷º

∀si = (Ci, Di), sj = ↷
º (si, k, l)

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k, l ∈ {1,2 . . . n}
k < l
Cj = (ci1 . . . cik−1 , cil , cik+1
. . . cil−1 , cik , cil+1 . . . cin)
Dj = {(d1i1

. . . d1ik−1
, d1il

,
d1ik+1

. . . d1il−1
, d1ik

, d1il+1
. . . d1in), (dmi1

. . . dmik−1
,

dmil
, dmik+1

. . . dmil−1
, dmik

,
dmil+1

. . . dmin)}
Resulted tokens number :xi = xj

Named :Extension
Description :Extends a
structure scheme by ad-
ding a attribute c =(n,t)
and applying a function f.
Noted :�

∀sj = (Cj , Dj), si = �(sj , c, f)
⇔ si = ((cj1 , cj2 . . . cjn , c),{(dj11 ,
dj12

. . . dj1n
, f(dj11 , dj12 . . . dj1n ,

Dj)) . . . (djm1
, djm2

. . . djmn
, f(djm1

,

djm2
. . . djmn

, Dj))})
Resulted tokens number :xi = xj

Named :Add Tuple
Description :Add a tuple
of data d in a data
structure.
Noted :+

∀sj = (Cj , Dj), Dk = (dk1, dk2 . . . dkn),
si = +(sj , Dk)
⇔ si = ((cj1 . . . cjn),{(dj11 , dj12 . . .
dj1n

) . . . (djm1
, djm2

. . . djmn
), (dk1,

dk2 . . . dkn)})
Resulted tokens number :xi = xj + 1

Named :Copy
Description :Makes n
copies of a data structure.
Noted :tcopy

∀si = (Cj , Dj),
tcopy(si, n) = {Sj1

, Sj2
. . . Sjk

},
where k ∈ {1,2 . . . n} and sj = si.
Resulted tokens number :xj = xi

159Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 177 / 729

Figure 5. Orders management workflow

160Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 178 / 729

Bankruptcy and Financial Standing Models Application for SMEs

David Plandor, Lenka Landryová

Department of Control Systems and Instrumentation

VSB – Technical University Ostrava

Ostrava, Czech Republic

e-mails: david.plandor@vsb.cz, lenka.landryova@vsb.cz

Abstract—This paper describes a system from software

application research, development, implementation and

testing. The final software tool is a web-based application used

as a finance module by SMEs within the FutureSME portal,

which supports small and medium companies for better

competition on the market. The finance module offers three

bankruptcy and financial standing models for evaluation of

their financial health. The results are crucial for their ability to

get a loan from banks. The self-assessment way of getting

results does not require any advisor or bank representative.

The described tool was used in practice by partnering

companies.

Keywords–finance module; financial health; bankrupcy

model; financial standing model; SME.

I. INTRODUCTION

Nowadays, every SME (Small and Medium Enterprise) is

in a situation when a loan is needed for future development,

expansion or research. It is a long process to get the desired

amount of money in a company’s bank account. A company

needs to hire a financial consultant or contact a bank directly.

They have to fill out several forms. They have to expose

their financial health to many people, which could be

sometimes insecure, as when the company is in red numbers

and crucial information leaked out to the public could cause

a real problem. Why not use tools that are utilized by banks

and use them by a company itself? We would like to research

all available tools for stating a company’s health and focus

on creating a tool that would be accessible via the

FutureSME portal and every SME will be able to get its

financial health status by filling all requested data in a form

and the system will process and generate results. Input data

should be in the form of a profit & loss report and/or balance

sheet. We would like to apply more than one financial

model. The overall result will be presenting a well arranged

table with simply expressed results colored or highlighted

according to the current company’s health status.

II. SMES ANALYSIS AND REQUIREMENTS

At the first phase of the FutureSME project, a long

analysis was carried out by all FutureSME R&D partners [2,

5]. The academic research focused on emerging technologies

and ICT (Information and Communication Technologies)

standards and methods suitable to be used for SMEs [2, 5,

17], the industrial partners of the project were surveyed

during seminars and panels organized by the project

Consortium. The results, also published in several case

studies [7], helped us to focus on financial models [1, 14, 16]

and to choose those that are frequently used by banks and

other financial institutions. Also this helped to determine a

customer’s solvency [8, 15], then to select the most suitable

form and content to deliver our implementation in order to

have it accepted by SMEs in their daily practice, and finally,

to create an application using tools for web publishing.

III. FINANCIAL MODELS

All development and programming has a very powerful

theoretical background in the financial area. We had been

searching for usable models related to a company’s

profitability and bankruptcy, which would correspond to

SMEs specifications. Based on the requirements collected

during the analytical phase of the project [2, 5], such as

keeping the entry data simple, using the same company’s

data available for shareholders and/or annual reports, being

easy to operate by not technically skilled SME staff and

similar areas, we selected three models – two models for

profitability – Kralicek’s quick test [14] and the DuPont

analysis [10] and one bankruptcy model – Altman’s Z-Score

model [1]. Our research confirmed that Kralicek’s quick test

is robust method utilizing whole potential of balance sheet

and profit & loss report. DuPont analysis was chosen as it is

a great tool to show the typical employee, who has little or

no financial and accounting background, on how their work

and efforts impacts the financial results of their company.

Altman’s Z-Score model is a common simple and accurate

calculation used by investors and plays a relatively easy

addition to an investment checklist.

There are many evaluation tools using these models

Kralicek’s Online Quick Test [13], DuPont Financial

Analysis - Easy Calculator [4] and Altman Z-Score

Spreadsheet [11], but they are separated standalone utilities

requesting almost same input data. We need just one

comprehensive application on the portal sharing common

161Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 179 / 729

input data for all analyses. User interface must be created

for various types of SMEs, so the final application is generic

and each company works with paragraphs and fields that are

relevant for them.

A. Kralicek‘s quick test

This test was created by Professor Kralicek in 1991. This

test uses an annual report (profit & loss report and balance

sheet) and calculates ratio indicators and each of them gets a

grade from various perspectives – capital strength,

indebtedness, profitability and financial position; see Table

1. This test has four partial results and one overall result

[14].

Equity Ratio = Total Owner's Equity / Total Assets

Debt Settlement Period from Cash Flow = (Liabilities -

Cash) / Cash Flow)

Cash Flow = P/L Acc. Period + Assets Depreciation +

Reserves and Deferred Income

Operating Cash Flow / Sales = Operating Cash Flow / Net

Sales (Revenue) - This ratio, which is expressed as a

percentage, compares a company's operating cash flow to its

net sales or revenues, which gives investors an idea of the

company's ability to turn sales into cash.

ROA (Return on Assets) = Net Income / Total Assets - An

indicator of how profitable a company is relative to its total

assets. ROA gives an idea as to how efficient management

is at using its assets to generate earnings. Calculated by

dividing a company's annual earnings by its total assets,

ROA is displayed as a percentage. Sometimes this is

referred to as "return on investment" [9].

If we get a grade 1 or 2, our company is profitable [14];

otherwise a company is threatened by bankruptcy.

B. DuPont Analysis

DuPont analysis (also known as the DuPont identity,

DuPont equation, DuPont model or the DuPont method) is

TABLE 1 – KRALICEK’S QUICK TEST GRADING

 Grading Scale

Indicators
1

excellent
2 very

well
3

well
4

poor
5

dangerous

Equity / Total

Assets
> 30 %

> 20

%

> 10

%
> 0 % negative

Debt Settlement

Period from

Cash Flow

< 3 years
< 5

years

< 12

years

< 30

years
> 30 years

Financial

Stability

arithmetic mean of total assets and Debt Settlement

Period from Cash Flow

Operating Cash

Flow / Sales
> 10 % > 8 % > 5 % > 0 % negative

ROA > 15 %
> 12

%
> 8 % > 0 % negative

Profit Situation arithmetic mean of Operating Cash Flow and ROA

Total Grading arithmetic mean of all four indicators

an expression which breaks ROE (Return On Equity) into
three parts. The name comes from the DuPont Corporation
that started using this formula in the 1920s [10].

ROE = (Profit margin) * (Asset turnover) * (Equity

multiplier)
= (Net Profit/Sales) * (Sales/Assets) * (Assets/Equity) =

(Net Profit/Equity)
The DuPont identity breaks down Return on Equity (that

is the returns that investors receive from the firm) into three
distinct elements. This analysis enables the analyst to
understand the source of superior (or inferior) return by
comparison with companies in similar industries (or between
industries). The DuPont identity, however, is less useful for
some industries, such as investment banking, that do not use
certain concepts or for which the concepts are less
meaningful. Variations may be used in certain industries, as
long as they also respect the underlying structure of the
DuPont identity. The DuPont analysis relies upon the
accounting identity, that is, a statement (formula) that is by
definition true.

C. Altmans Z-Score model

The Z-Score formula for predicting bankruptcy was
published in 1968 by Edward I. Altman, who was at the time
an Assistant Professor of Finance at New York University.
The formula may be used to predict the probability that a
firm will go into bankruptcy within two years. Z-scores are
used to predict corporate defaults and an easy-to-calculate
control measure for the financial distress status of companies
in academic studies. The Z-Score uses multiple corporate
income and balance sheet values to measure the financial
health of a company. The Z-Score is a linear combination of
four or five common business ratios, weighted by
coefficients. The coefficients were estimated by identifying a
set of firms which had declared bankruptcy and then
collecting a matched sample of firms which had survived,
matching them by industry and approximate size (assets) [1].

Z-Score definitions:

 X1 = Working Capital / Total Assets

 X2 = Retained Earnings / Total Assets

 X3 = Earnings before Interest and Taxes / Total Assets

 X4 = Market Value of Equity / Total Liabilities

 X5 = Sales/ Total Assets

Z-Score bankruptcy model:

 Z = 1.2X1 + 1.4X2 + 3.3X3 + 0.6X4 + .999X5

Zones of Discrimination:

 Z > 2.99 - Safe Zone

 1.81 < Z < 2.99 - Grey Zone

 Z < 1.81 - Bankruptcy Zone

IV. SOFTWARE IMPLEMENTATION

Our final software tool is called “Finance Module” and is
implemented into the FutureSME portal; see Fig. 1.

162Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 180 / 729

Figure 1. FutureSME portal

This portal, as the deliverable of the FutureSME project,
supports SMEs for their better competitiveness on the market
and, once they log in, offers them free tools to be used for
improvement of their business and managing the company
transformation dependent on the changing business
environment they must face.

Our Finance Module offers them to get their financial
grades and check their ability to get a loan from a bank
without any further consultancy help, just by filling out their
Profit & Loss report and Balance Sheet data; see Fig. 2.

All entered data are processed on the server and then the
final reports with results from all three financial models
applied using common source data are produced. Just a
moment after all data are entered results are generated and
presented in the form of simple tables; see Fig. 3, 4 and 5.
The final software application is in a form of a webpage. It is
programmed in PHP and uses java script for client-side
scripting and the Microsoft SQL server for data storing. All
input data are related to a company and an analysis. A
company is defined by its name, description and type
(privately or publicly held). Once a company is stored the
user is allowed to create a new analysis. Every analysis is
related to a business year. Then, data from the profit & loss
and balance sheet are required. There is a cash flow form as
well but its data are not mandatory for final results
generation.

The balance sheet always requests data from the analysis
year and two previous years. It is divided into four areas –
the director’s loan, fixed assets, current assets and accruals

Figure 2. Finance module interface with balance sheet tab

Figure 3. Kralicek’s model results

Figure 4. DuPont Analysis

Figure 5. Altman Z-Score test

and deferred expenditure. The areas have their own areas and
subareas. The user is supposed to fill out either subareas or
total numbers. While data are being updated, the results are
changing in real time, and there is no need of starting a
process. The user only needs to choose a particular model
and to click that tab to get the results.

Model results are presented by a table with highlighted
numbers according to the particular status. Mostly green,
amber and red colors are used. The data used in this paper
are provided by one of our partnering companies for testing.
The company’s name is not published.

V. CONCLUSION

The goal of this research has been reached. A new
Finance Module was developed and implemented into the
FutureSME portal. The module was tested by partnering
companies and external SMEs as well. The final version of
the application was accommodated according to their
comments. Companies reviewed this tool as very useful and

163Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 181 / 729

helpful when a loan is needed or simply when they want to
determine their company’s health or development from
previous years during current situation into the future. The
Finance Module is offered to all registered users of the
FutureSME portal and its use is free of charge. A user
manual is included and is accessible via the program menu.

VI. ACKNOWLEDGMENTS

The authors would like to acknowledge the FutureSME
project team who contributed greatly to the data collection
and analysis of requirement specifications for this work, as
well as the European Commission for funding and
supporting CP-IP 214657-2 FutureSME, (Future Industrial
Model for SMEs), EU project of the 7FP in the NMP area.

VII. REFERENCES

[1] E. I. Altman, Predicting Financial Distress of Companies, pp.

15–22. Available from URL
<http://pages.stern.nyu.edu/~ealtman/Zscores.pdf> [retrieved:
August, 2012].

[2] M. Assarlind and I. Gremyr, Quality Management in Small
and Medium Sized Enterprises, Irish Academy of
Management 12th Annual Conference, Conference
Proceedings, Galway, 2009, pp. 135-138.

[3] R. A. Brealey and S. C. Myers. 2000. Principles of Corporate
Finance. Irwin: McGraw-Hill, 10th edition, 2010, ISBN-13:
978-0077356385.

[4] K. Bernhardt, Dupont Financial Analysis - Easy Calculator,
Available from URL
<http://cdp.wisc.edu/wk1/DuPont%20EasyCalc.xls>
[retrieved: August, 2012].

[5] U. Bititci and A. Ates, The appropriateness of current
intervention policy patterns and delivery mechanisms to
address the manufacturing SME needs in Europe. In
Configuring manufacturing value chains - Responding to an
uncertain world - 14th Cambridge Symposium on
International Manufacturing. 11 pp. Contribution. University
of Strathclyde. Available from URL
<www.ifm.eng.cam.ac.uk/cim/symposium2009/.../20_umit_bi
titci.pdf> [retrieved: August, 2012].

[6] E. F. Brigham and M. C. Ehrhardt, Financial Management:
Theory and Practice, USA: Thomson South-Western, 2007,
ISBN-13: 978-1439078099.

[7] FutureSME Consortium, Case Studies, Available from URL
<http://www.futuresme.eu/case-studies/futuresme> [retrieved:
August, 2012].

[8] A. A. Groppelli and E. Nikbakht (2000). Finance, 4th ed.
Barron's Educational Series, Inc. pp. 444–445. ISBN 0-7641-
1275-9.

[9] Investopedia, Return of Assets, Available from URL
<http://www.investopedia.com/terms/r/returnonassets.asp#axz
z21YKTWO00> [retrieved: August, 2012].

[10] InvestorWords.com, Du Pont Analysis Definition, Available
from URL
<http://www.investorwords.com/6496/Du_Pont_Analysis.htm
l>, [retrieved: August, 2012].

[11] J. Jun, Free Altman Z - score Spreadsheet, Available from
URL <http://www.oldschoolvalue.com/blog/investment-
tools/free-altman-score-spreadsheet/> [retrieved: August,
2012].

[12] E. Kislingerová and J. Hnilica, Finanční analýza krok za
krokem. 1. vyd., Praha: C. H. Beck, 2005, 137 s. ISBN 80-
7179 -321-3.

[13] P. Kralicek, Online Quicktest, Available from URL
<http://www.kralicek.at/index.php?gr=-30> [retrieved:
August, 2012].

[14] P. Kralicek, Základy finančního hospodaření: Bilance. Účet
zisků a ztrát. Cashflow. Finanční plánování. Systémy
včasného varování, Prague: Linde, 1993, ISBN 80-85647-11-
7.

[15] B. E. Needles and M. Powers, Financial Accounting, 2007,
Boston: Houghton Mifflin Company, ISBN-13: 978-
0547193281.

[16] The Manage Mentor, Finance – DuPont Analysis, Available
from URL
<http://www.themanagementor.com/EnlightenmentorAreas/fi
nance/CFA/DUPontAnalysis.html> [retrieved: August, 2012].

[17] M. Valas, O. Winkler, P. Osadník, and L. Landryová, Graphic
Data Display from Manufacturing on Web Pages. In
Transactions of the VŠB- Technical University of Ostrava,
Mechanical Series, No. 2/2009, volume LV, article No. 1705,
VŠB-TU Ostrava 2009, pp. 149-154, ISBN 978-80-248-2144-
3. ISSN 1210-0471 (Print). ISSN 1804-0993 (Online). ISSN-
L 1210-0471.

164Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 182 / 729

Automated Test Code Generation Based on
Formalized Natural Language Business Rules

Christian Bacherler, Ben Moszkowski
Software Technology Research Lab

DeMontfort University
Leicester, UK

christian.bacherler@email.dmu.ac.uk, benm@dmu.ac.uk

Christian Facchi, Andreas Huebner
Institute of Applied Research

Ingolstadt University of Applied Sciences
Ingolstadt, Germany

{christian.facchi|andreas.huebner}@haw-ingolstadt.de

Abstract—The paper addresses two fundamental problems
in requirements engineering. First, the conflict between un-
derstandability for non-programmers and a semantically well-
founded representation of business rules. Second, the verifica-
tion of productive code against business rules in requirements
documents. As a solution, a language to specify business rules
that are close to natural language and at the same time for-
mal enough to be processed by computers is introduced. For
more domain specific expressiveness, the language framework
permits customizing basic language statements, so called atomic
formulas. Each atomic formula has a precise semantics by means
of predicate and Interval Temporal Logic. The customization
feature is demonstrated by an example from the logistics domain.
Behavioral business rule statements are specified for this domain
and automatically translated to an executable representation of
Interval Temporal Logic. Subsequently, the example is utilized
to illustrate the verification of requirements by automated test
generation based on our formalized natural language business
rules. Thus, our framework contributes to an integrated software
development process by providing the mechanisms for a human
and machine readable specification of business rules and for a
direct reuse of such formalized business rules for test-cases.

Keywords-Requirements engineering; business rules; natural
language; testing; logic.

I. INTRODUCTION

In software development, different stakeholders with dif-
ferent knowledge and intention cooperate, typically domain
experts and developers. Requirements engineers are acting as
negotiators between these two worlds and prepare require-
ments specifications in a way that can be understood by
both sides. Nonetheless, unstructured natural language in re-
quirements documents does not ensure identical interpretations
by different readers, which has always been a fundamental
problem in software engineering [1]. Moreover, machine-
readability of a requirements document can be a big asset but
requires a formal syntax that is not provided by unstructured
natural language [2].

By the introduction of AtomsPro Rule Integration Language
(APRIL) [3], we propose a means to develop a formalized ver-
sion of business rules specifications by precise semantics that
support human- as well as machine-readability. The APRIL
statements representing business rules are easy to design and
can be customized by the construction of tailored statements, a
feature, which we introduce via a novel combination of pattern

building mechanisms. In this paper, we show how to extend
APRIL’s expressiveness using atomic formulas that constitute
the link between statements that are like natural language and
formal frameworks.

Formal specifications enhance the established software de-
velopment process (V-Model). As a general advantage, such
specifications allow consistency checking of business rules
(e.g., reveal conflicts or proof properties). The aspect we want
to focus on in this work is based on the fact that in the
established software development process, code and corre-
sponding tests are developed based on the natural language
specification. In order to reduce complexity of the development
process, we support automated creation of tests based on
formal APRIL statements representing business rules. With
our method, human understandable formal specifications can
be used to directly generate formal logical conditions and
behavior specifications for testing. This approach shifts the
creation of the test code from the developer to the requirements
engineer, which helps to improve test-driven development
projects [4] [5].

The paper is structured as follows: The next Section II will
give an impression of the context and the facets of the work
presented. Section III presents the framework for our language
to describe business rules close to natural language. After
laying down the fundamentals, we demonstrate in Sec. IV
the transformation of example statements in our language into
computer processable test code. After the discussion of related
work (Section V), a conclusion will be drawn and future work
will be presented (Section VI)

II. OVERVIEW

The APRIL framework can be embedded into standard
software development processes. As an example, the seamless
integration into the V-Model is shown in Figure 1. Aspects
that will be detailed in this paper are highlighted in dark grey.

Our Framework aims at supporting the generation of com-
puter executable test code from formal specifications that are
close to natural language and thus enable the verification of
the productive code against the original user specification. In
Section III, a detailed explanation of the substantial concepts
of the APRIL language is given, exemplifying the formaliza-
tion of business rules as APRIL statements in Section III-A.

165Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 183 / 729

Fig. 1. Overview of the software development process using APRIL.

The treatment of complex real-world business rules using mix-
fix notation and decomposition into reusable sub-statements
(APRIL-Definitions) is presented in Section III-B. Section
III-C deals with support for customizing parts of the language
using so-called atomic formulas. These are verbalized versions
of operations on sets, predicate-logic formulas and special
common constraints. Atomic formulas provide a precise se-
mantics for APRIL Definitions.

Tests based on APRIL statements can be generated to check
conditions using invariants, pre- and post-conditions in the
Object Constraint Language (OCL) [6] notation. Checking
process behavior is done by the use of a subset of Interval
Temporal Logic (ITL) called Tempura. The rationale for
applying our testing-framework is laid down in Section IV-A.
Section IV-B presents the testing-framework by example, tak-
ing into account the significant concepts for defining a custom
atomic formula for modeling a simple example-process and the
relation to the semantic frameworks presented in Section III-D.
This section will also include a presentation of the automated
test generation for behavior testing using Tempura. Due to
space limitations, the detailed presentation of generating OCL-
statements is omitted. Some translation examples are shown
alongside the introduction of the APRIL language.

After the discussion of related work (Section V), a conclu-
sion will be drawn and future work will be sketched (Section
VI).

III. THE APRIL FRAMEWORK - SPECIFYING BUSINESS
RULES IN FORMAL NATURAL LANGUAGE

Business rules are restrictions of certain object constella-
tions and behaviors based on domain models [2]. Typically in
software development, requirements engineers produce busi-
ness rules in natural language and hand them to develop-
ers along with the respective domain-models to enable the
development of a software-system compliant to these input
artifacts. Mostly, those natural language business rules are
informal and suffer from ambiguity and imprecision. APRIL
supports the specification of business rules that are formal
enough to be processed by computers, but still close enough to
natural language to ensure readability and comprehensibility

for humans.

A. Business Rules in APRIL

In general, the different types of business rules in the
industrial practice are: Integrity Rules, Derivation Rules and
Rules to describe behavior [7]. Despite the fact that there are
fundamental intentional differences, these rule types have one
aspect in common: The projection of the semantics of parts
of the real world into formal representations by means of
logic. In APRIL we use UML-class models [8] to formally
represent business domain models. The reason is that the
UML-class model is widely used for representing conceptual
schemas and is easily understood by people. APRIL requires
UML-class models as the domain of discourse to specify
business rules as constraints, which are of the following
types: invariant, pre-, post-condition and behavioral rules.
Invariants describe allowed system states that must not be
violated during any point in time. This is unlike the pre-
and post-conditions, which have a restricted scope right before
and after a transition. The fourth rule type describes behavior
explicitly. Behavioral rules can describe operations lasting over
multiple state transitions [2], which is not possible with a
single pair of pre- and post-condition.

In Figure 2, a simple domain model of a car-rental system,
with the basic concepts Car, Rental and Customer, is shown
as UML-class model. As an example of APRIL usage on
the class-model, the corresponding statement for the invariant
underageCustomers can be seen in Listing I.

1 Invariant underageCustomers concerns Rental:
2 aaaAll underage customers who rent a Porsche must pay
3 aaaplus 150 percent.

Listing I
TOP-LEVEL RULE, COMPOSED OF SEVERAL APRIL DEFINITIONS.

The header (line 1) of a rule contains its name (under-
ageCustomers) and the token after the keyword concerns,
which represents the context set (represented by the class
name Rental) of the business rule to which the formula after
the colon applies. With respect to UML-models, the context
in invariant rules is represented by a class name and by a
qualified method name in the case of pre- and post-conditions
respectively. The rule body (lines 2-3) contains the actual
business rule. In order to use a natural language sentence in the
needed formal way, a couple of definitions have to be installed,
which are explained in Section III-B continuing this example.

Fig. 2. UML-model of the car rental example.

166Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 184 / 729

Moreover, a detailed specification of APRIL including default
logic- and set- operators, is given in [3].

B. APRIL-Definitions

APRIL Definitions are special mix-fix operators, which
allow the intuitive construction of patterns that decompose
large business rules into smaller, comprehensible and reusable
sub-statements. Mix-fix is a particularly useful technique to
form natural language statements [9]. Mix-fix operators allow
to compose an operator’s constants and placeholders in ar-
bitrary order. The design of the APRIL-Definition’s headers
is based on sequences of static name parts and placeholders.
Both static name parts and placeholders can be arbitrarily
composed to express a business statement reflected as a natural
language sentence pattern. This makes them particularly easy
to construct for humans [1].

Despite the convenience that mix-fix operators provide to
humans, it is quite challenging to implement the parser logic
[10], especially for nested definition calls. The problem is that
the parser has to recognize a definition call embedded inside
an ID-token sequence in what is in the grammar specification
another definition call (see highlighted EBNF-grammar rules
in Listing II). As a consequence, a context free grammar
provides only insufficient means to specify sub ID-token
streams with a different semantics to their embedding ID-
token streams. To overcome this, we use the ANTLR v3 [11]
parser-/compiler-generator framework. The framework allows
to specify semantic annotations [12], which are actually user
defined code snippets (e.g., in Java) that get inserted into the
proper positions of the grammar to guide parser decisions
based on the semantics of tokens. Consider Listing II, where
the Boolean return-values of the semantic annotations indi-
cated by α0 and α1 influence the generated parsers resolution
algorithm. The semantic annotations indicated by the symbols
αn represent java code that gets integrated into the parser.
The implemented logic performs the link between syntax and
semantics. E.g., when a token with the value Rental gets
recognized, the semantic annotation allows to conclude on
further decision steps for the parser. Or also trigger some type-
checking mechanism. However, for parsing mix-fix operators,
we limit the nesting depth to three, which was shown to be
sufficient in our preliminary case study.

definition::= ’Definition’ nameSignature ’yielding’
definition::= typeDef ’is defined as’ ruleBody ’.’
nameSignature::= (ID | parameterDef)+
parameterDef::= ’(’ name=ID ’as’ type=ID ’)’;
typeDef::= ID | ID ’(’ typeDef ’)’;
ruleBody::= statement+ ;
statement::= ... | referenceOrDefinitionCall | ...;
referenceOrDefinitionCall::= {α0}modelReference
referenceOrDefinitionCall:: |{α1} definitionCall | ...;
definitionCall::= ID (ID | referenceOrDefinitionCall)* ;

Listing II
GRAMMAR SNIPPET FOR APRIL DEFINITIONS

Given the car rental example from Section III-A, the
APRIL-Definitions (D.1)-(D.3) decompose the business rule

statement from Listing I into reusable and easy to define sub-
statements with a signature in mix-fix notation.

(D.1) Definition All (customers as Collection(Customer)) must
pay plus (ratio as Number) per cent yielding Boolean is
defined as every customer satisfies that contracts.amount
= contracts.car.regularPrise * (1 + ratio).

(D.2) Definition underage customers who rent (type as Integer)
yielding Collection(Customer) is defined as each cus-
tomer in all instances of Customer where customer.age
< 21 and customer.contracts.car.typeNumber=type.

(D.3) Definition a Porsche yielding Integer is defined as 911.

In (D.1), the exact offset ratio is mapped to a set of
customers. On the other hand, (D.2) is a set-comprehension on
the set of all customers defining, what an underage customer
is that rents a certain car type. Furthermore, (D.3) maps an
identifier-constant (911) of type integer to a name representing
the intended car type.

In order to provide a precise semantics to the Defini-
tions, APRIL atomic formulas are used. They are verbal-
ized versions of operations on sets, predicate-logic formulas
and special common constraints sketched by Halpin [9]. For
example, the every-satisfies-that-statement of Definition (D.1)
is an atomic formula in APRIL that constitutes a universal
quantification that is by default incorporated into the language.
Some more operators are described in [3]. Default atomic
formulas are for maintaining sufficient expressive power and
straight-forward translation into executable representations.
Therefore, APRIL uses OCL as target language for translating
invariants and pre-and post conditions. Behavioral rules are
translated into Tempura, which is briefly explained later.

In order to extend APRIL’s expressiveness over general pur-
pose operators provided by OCL, we allow the customization
of atomic formulas that can be tailored to a certain domain.
Moreover, this approach delegates the design of the atomic
formulas as natural language statements to the human user,
who is still the best choice for this creative task.

C. Extending APRIL with Custom Atomic Formulas

Like Definitions, customizable atomic formulas are defined
using textual business patterns (bp). Here, a requirements
engineer can, e.g., reuse his already existing, informal textual
business patterns [1], which, unlike the more abstract Defini-
tions, express a very basic business rule- or business process
pattern that regulates the business concepts and facts under
consideration. For example if a requirements engineer wants
to verbalize business process statements which specify that in
a warehouse all elements in a goods-stock move to a dedicated
truck-loading bay and have to pass a certain gate on their way,
she would have to specify parts of the grammar. Therefore,
a state of practice language implementation mechanism de-
scribed by Parr [12] is used. First, a formal production rule of
the new atomic formula must be specified. Formal production
rules are parts of a context-free grammar [13] and are used to
generate text recognition algorithms of a parser that processes

167Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 185 / 729

statements of a language to generate a parse tree. Second,
a parse tree rewrite rule has to be specified along with the
production rule. Parse tree rewrite rules are instructions for
the parser on how to construct the abstract syntax tree (AST)
from the parse tree.

The AST is a condensed version of the parse tree that can
be influenced by semantic considerations to form a concise
and expressive logical representation of the parsed statements.
For APRIL the AST provides the necessary flexibility to
incorporate user defined language parts and also makes it
particularly easy to extract the necessary parameters for the
compiler. For clarification, Listing III sketches the language
extension mechanisms that APRIL provides. It formalizes the
example operator that reflects the scenario mentioned above.
In line 1 the production rule with the name of the atomic
formula moveTo is introduced. The definition of the new
atomic formula’s regular syntax is defined in the lines 2-7.
Here, the non-terminal referenceOrDefinitionCall is similar to
that in Listing II. It can either refer to an element of the related
domain model (e.g., to class names Store, Bay, Gate) or to
values in the scope of the parent rule or definition, in which
the formula is used. The references to the parse tree nodes
of type referenceOrDefinitionCall in the lines 3, 5 and 7 are
stored one by one in the local variables source, target and
routeNode. Line 9 concludes the specification of the grammar
rule with the parse tree rewrite rule. It is delimited from the
syntax rule by the ”→” sign. It tells the parser to construct
a tree with the MOVETO-terminal as root node having three
leaves: source, target and routeNode.

The grammar rule and the parse tree rewrite rule in Listing
III get injected into dedicated areas of the APRIL core
grammar. Parameterization of the APRIL-compiler is straight
forward, which is depicted in Figure 3. In the second pass
a so called tree parser interprets the AST (of the rewrite
rule MOVETO) and decides, which target language template
to apply to the AST of the atomic formula. It then passes
the values of the leaf-nodes (here the values of the variables
$source, $target and $routeNode) to the parameters of the
respective template. The instantiated template is the actual

Fig. 3. Translation example of the atomic operator moveTo.

1 moveTo :
2 ’all elements in’
3 source=referenceOrDefinitionCall
4 ’move to’
5 target=referenceOrDefinitionCall
6 ’over’
7 routeNode=referenceOrDefinitionCall
8
9 → â(MOVETO $source $target $routeNode);

Listing III
GRAMMAR RULE AND PARSE TREE REWRITE RULE FOR THE OPERATOR

MOVETO IN ANTLR 3.0.

translation of the atomic formula.

D. APRIL’s Target Languages

APRIL makes use of the logical frameworks OCL and
Tempura to underpin its language constituents with a well
defined semantics. Both languages are briefly introduced in
the subsequent sections.

1) OCL: OCL 2.3.1 is the target language for APRIL-
invariants, pre- and post- conditions. For the sake of brevity,
we give a rudimentary introduction to OCL because it is well
known. The interested reader should consult the literature on
OCL. The specification of OCL 2.3.1 can be found on [6].

OCL restricts UML-class models using predicate logic
and operations on sets. Arithmetic-, Boolean- and relational
operators are used in the conventional way. The well known
existential and universal quantifiers allow to quantify on
propositions holding on an object population derived from a
class model. In order to give an idea of the OCL syntax, we
provide in Listing IV a translation into OCL of the car-rental
example mentioned earlier in Listing I and the definitions from
(D.1)-(D.3). Here, we used OCL’s decomposition mechanisms
to cater to an improved readability.

context Rental inv underageCustomers:
Customer::
All customers must pay plus ratio per cent(
aaCustomer::underage customers who rent type(
aaaaCar::a Porsche),150)

context Customer def:
All customers must pay plus ratio per cent(
aacustomers:Collection(Customer), ratio:integer) :
aaaaBoolean = customers→forAll(customer|
aaaaaacustomer.contracts.amount =
aaaaaacustomer.contracts.car.regularPrise *
aaaaaa(1+ratio))

context Customer def:
underage customers who rent type(
aatype:integer) : Collection(Customer) =
aaallInstances()→select(customer: Customer |
aaaacustomer.age < 21 and customer
aaaacontracts.car.typenumber = type)

context Car def: attr a Prosche : integer = 911

Listing IV
OCL-TRANSLATION OF THE INTRODUCTORY CAR-RENTAL-EXAMPLE

168Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 186 / 729

2) Tempura: Tempura is an executable subset of Interval
Temporal Logic (ITL) [14]. Like some other temporal logics,
ITL enhances predicate calculus with with a notation of dis-
crete time and associated operators. A key feature of ITL and
Tempura is that the states of a predicate are grouped together
as nonempty sequences of states called intervals σplus. They
are called intervals. For example the shortest interval (of states)
σ on a predicate P can be represented by < s > with length σ
:= |σ| = 0, which is generally the number of states in σ minus
1. The semantics of ITL keeps the interpretations of function
and predicate symbols independent of intervals. Thus, well
known operators like {+, -, *, and, or, not,...} are interpreted
in the usual way. The characteristic operator for ITL is the
operator chop (;). Conventional temporal logic operators
such as next (#) and always (�) examine an interval’s suffix
subintervals whereas chop splits the interval into two parts
and tests both. Furthermore, Moszkowski [14] shows how to
derive operators such as always and sometimes from chop. In
ITL, the formula w := w1;w2 is true if I〈σ0..σi〉 Jw1K and
I〈σi..σ|σ|〉 Jw2K are true in the respective sub-formulas. Note
that w1 and w2 share the same subinterval σi. We adopt some
examples from [14], which are as follows:

σ P R
s 1 2
t 2 1
u 3 1

The lenght of interval σ is expressed by |σ| and is defined
as the number of the states in σ minus one. Thus, in our
example, |σ| = 2.

The following formulas on the predicates P and R are true
on the interval < stu >:
• P = 1. The initial value of P is 1.
• #(P) = 2 and #(#(P)) = 3. The next value of P is 2

and the next next value of P is 3.
• P = 1 and P gets P + 1. The initial value of P is 1 and

P gets increased by 1 in each subsequent state.
• R = 2 and #(�(R)) = 1 The initial value of R is 2 and

R is always 1 beginning from the next state.
• P ← 1 ; P ← P + 1 ; P ← P + 1. The formula e2 ←
e1 is true on an interval if σ0(e1) equals σ|σ|(e2). Thus,
← is called temporal assignment.

We adopt Tempura because it is able to model operations
lasting over multiple state transitions, which would not be
possible with a single pair of OCL pre- and post-conditions.
Moreover, the reader will recognize similarities with the
rationale of the test-definitions given in Section IV-A.

IV. GENERATING TEST CODE FROM APRIL
STATEMENTS

This section clarifies the connection between APRIL and
its target languages utilizing the moveTo-operator example
introduced earlier. Section IV-A describes the basic rationale
that influence the test framework presented in Section IV-B.

The test framework is applied to an application, which helps to
track movements of goods in a logistics centre. For testing the
correct routing, we use the example operator moveTo described
in Section III-C.

A. Testing

For generating proper test-code based on APRIL statements,
the classification of different test types into black- and white-
box testing has to be clarified. Our definition of the test types
is as follows: Each function fi in the set of functions F ::=
{f0 to fn} of a component under test (CUT) triggers a state
transition and obeys a predefined signature. This signature
requires a tuple of input values (fIN) and yields a tuple of
output values (fOUT). A signature of a function is an interface
describing a contract [15] with IN- and OUT-data, which is
specified in UML-class models. We assume that a composite
function gik is a conglomerate of some functions fi to fk, for
some natural numbers 0 <= i < k <= n. Then, any OUT-
signature of a proceeding function fj must correspond to the
IN-signature of the succeeding function fj+1, for some natural
numbers k < j <= i. This convention of the inner structure
can be formalized by OUT (fj) == IN(fj+1), which we want
to abbreviate with Dj . It represents an element of a function
sequence. Moreover, the following holds IN(gik) == IN(fi)
and OUT (gik) == OUT (fk).

A white-box test necessitates the knowledge of the entire
sequence of DD0,...,Dn as the internal structure of g (gik),
which is normally the case as the user knows the source code.
If D(g) is unknown, tests are limited to reason on the data
given by IN(g) and OUT (g), they are called black-box tests.
In APRIL black-box tests are issued to the invariants, pre- and
post-conditions.

For the specification of behavioral models, we extend our
recent definition of white-box tests beyond reasoning on D.
We use Interval Temporal Logic (ITL) [14] for modeling
behavior in white-box-tests. Therefore, we introduce behav-
ioral constraints in APRIL, which we regard as orthogonal
to the invariants as well as pre- and post-conditions. Assume
D represents a state σ1 that maps a set of values to their
corresponding variables at one certain point in time. Then
let σ be an ordered set of states σ0 to σn, each of which
describes a different D at different subsequent, discrete points
in time. In our understanding, the knowledge of σ is sufficient
for applying white-box-tests, which we want to utilize in our
framework.

B. Test Framework and Case Study

In this section, we build a representative example around
the behavioral all-elements-move-to-operator introduced in
Section III-C. The Definitions of the previous section are used
in our test framework, which deals with logistic processes
to handle the material flow in a warehouse. It consists of a
simple 3-tier architecture with RFID-readers and light sensors
at the field-level and an ERP-system at the top level. Between
these two levels, we use an RFID-middleware -Rifidi [16]- for
information exchange and filtering.

169Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 187 / 729

The connection between a specification in Tempura and a
function in the productive code is the test data. Therefore,
the user has to provide initial test data IN(f0), constituting
an important part of a test-case. The productive code affects
the data OUT (fi) in the memory for each invocation of fi,
which marks a new interval at the same time. Thus, each time a
function under test fi gets invoked a snapshot of the input data
(fIN) prior to the invocation and output data (fOUT) when fi
is left gets generated. The test data for the Tempura-statements
is provided by recorded history-data that is stored in a properly
formatted log-file containing a condensed version of the data-
snapshots. The retrieval of the test data from the running
system is achieved via AspectJ [17]. Therefore, AspectJ point-
cut statements are generated based on the reference-nodes (see
Listing III) to class-attributes found in the AST of an APRIL
statement. The use of AspectJ permits us to leave the original
code of the productive system untouched.

The use case for the earlier mentioned example with the
behavioral operator moveTo formalized in Listing III is as
follows: Imagine a warehouse that has a high-bay storage
and a loading bay for lorries. Both, storage and lorry-bay are
connected with a conveyor belt. Each of the three components
is equipped with one RFID-reader that can detect tagged-goods
in its near field to allow tracking whether the correct thing
takes the right path in the right direction. For a customer
order, all goods in store contained in the order must go from
the store to the lorry-bay via the conveyor belt. For simplicity
we assume that each good will be detected by exactly one
of the three RFID-readers at a time. This simplification is
an abstraction of the real world, which does not influence
considerations regarding the presented methodology.

The described scenario can be reflected by a log file as
depicted in Table I, if the actual memories of the readers
holding the IDs of the tags can be accessed in the productive
application via the following reference-IDs: STORE for the
RFID-reader observing the near-field of the storage, GATE1
for the conveyor and BAY for the lorry-bay. The data in the log
file is formatted as array with the symbolic name OUTPUT.

O
U

T
PU

T

σI STORE GATE1 BAY
I=1 ”a”,”b”
I=2 ”b” ”a”
I=3 ”b” ”a”
I=4 ”b” ”a”
I=5 ”a”,”b”

TABLE I
REPRESENTATION OF LOG-FILE RECORDED FOR EXAMPLE-OPERATOR

With regard to the model, the Tempura statements in Listing
V hold. They are actually an instantiation of a template that
is used by the APRIL-compiler for translating the move-to-
operator if used in an APRIL statement like in Listing VI. The
formatting of the statements is according to String-Template
described by Parr [18] and contains generic parts that get filled
according to the parameters of the operator in Listing VI.

define store moves to Bay over Gate1 () = {
aalen(|OUTPUT|-1) and
aaI = 0 and
aaI gets I+1 and
aamoveAtoB(OUTPUT[I][Store], OUTPUT[I][Gate1]) and
aamoveAtoB(OUTPUT[I][Gate1], OUTPUT[I][Bay]) and
aaOUTPUT[|OUTPUT|-1] [Bay] ← OUTPUT[0] [Store]
}.

define moveAtoB (A,B) = {
aaif (|A| > 0) then {
aaaafirst(A) gets last(B) and skip
aa}
}.

Listing V
TEMPLATE FOR THE ALL-ELEMENTS-MOVE-TO OPERATOR.

all elements in Store move to Bay over Gate1.

Listing VI
USAGE OF THE ALL-ELEMENTS-MOVE-TO OPERATOR.

V. RELATED WORK

SBVR-Structured-English (SE) and similarly RuleSpeak
[19] are so-called controlled languages to express business
rules in a restricted version of natural language. Both are
based on SBVR, which defines semantic parts, e.g., terms
and facts to determine business concepts and their relations.
The syntactic representation of these parts is achieved by
text formatting and coloring, which could be used to aid
parsing SE-statements. From our viewpoint, mixing technical
information with the textual representation is problematic
because formalized and natural language semantics have to
be maintained in one and the same statement. However,
natural language does not utilize text formatting information
for transporting semantics.

Nevertheless, SE is used for model representation, which
Kleiner et al. [20] utilize as a starting point for translating
schema descriptions (in SE) into UML-class models, which
is helpful for software development. Unfortunately, they leave
the treatment of business rules for further work. Regarding the
customizability aspect of business statements, the approach of
Sosunovas et al. [21] presents another way, utilizing regular
patterns. They pursue a three-step approach to constructing
business rule templates that are first defined on an abstract
level and then tailored to fit a specific domain with every
further refinement step. Therewith, they provide precise meta-
model-based semantics to the template elements but -as they
admit- not to the business rule resulting from using the
template.

Another interesting approach in generating tests from re-
quirements specifications is introduced by Nebut et al. [22].
They utilize UML use-case models combined with contracts
represented by pre- and post- conditions to specify sequences
of state transitions. Based on these contracts, they simulate the
modeled behavior by intentionally ”instantiating” the use case
model. This approach could be a worthy extension to ours,
which uses historical data that could also be generated by

170Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 188 / 729

simulation. Moreover, Nebut et al. show how to generate test-
cases from sequence diagrams and test objectives, that cater
to a defined test coverage.

VI. CONCLUSION AND FUTURE WORK

With APRIL we want to provide a customizable and seman-
tically well-founded notation that is close to natural language
and suitable for humans as well as for computers. A core
design principle of APRIL is the ability to define abstract
mix-fix operators that are particularly useful to define natural
language expressions as reusable patterns. We consider this
pattern building technique as sufficiently intuitive even for
untrained persons. The semantic underpinning of the mix-fix
operators is achieved by customizable atomic formulas. The
syntax of atomic formulas can be tailor-made for any domain.
This is exemplified by a new atomic formula taken from
the logistics domain to model behavior. We extend APRIL’s
grammar and present a mapping to the interpretation function
based on Interval Temporal Logic. With the use of the new
atomic formula and the transformation into the instantiated
Tempura statement, executable test code is generated. This
way our framework contributes to an integrated software
development process by providing unambiguous and under-
standable business rules that can be reused for automatically
generating tests.

From the current viewpoint, some issues are still open.
Further evaluation is needed to determine wether the speci-
fication of the grammar rules and their corresponding rewrite
rules are suitable to a typical requirements engineer. Also,
the use of OCL and especially Tempura, for creating the
templates requires a considerable amount of skills. Moreover,
using APRIL requires a basic understanding of logic and set-
theory. It has to be discovered if the aforementioned challenges
are manageable by the typical requirements engineer. Hence,
future work will target on refining the presented approach with
a focus on methodologies to improve APRIL’s usability.

ACKNOWLEDGEMENTS

The authors are greatful for many hours of inspiring dis-
cussion and feedback received from Hans-Michael Windisch.

REFERENCES

[1] C. Rupp, Requirements-Engineering und -Management: Professionelle,
iterative Anforderungsanalyse für die Praxis, 5th ed. München and
Wien: Hanser, 2009.

[2] A. van Lamsweerde, Requirements engineering: from system goals to
UML models to software specifications. Chichester: Wiley, 2009.

[3] C. Bacherler, C. Facchi, and H.-M. Windisch. (2010) Enhancing
Domain Modeling with Easy to Understand Business Rules. HAW-
Ingolstadt. [retrieved: 09,2012]. [Online]. Available: http://www.haw-
ingolstadt.de/fileadmin/daten/allgemein/dokumente/Working
Paper/ABWP 19.pdf

[4] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[5] P. Liggesmeyer, Software-Qualität. Spektrum, Akad. Verl, 2002.
[6] Object Management Group. (2010) OCL Specification:

version 2.3.1. [retrieved: 09,2012]. [Online]. Available:
http://www.omg.org/spec/OCL/2.3.1/PDF/

[7] J. Cabot, R. Pau, and R. Raventós, “From UML/OCL to SBVR speci-
fications: A challenging transformation,” Information Systems, vol. 35,
no. 4, pp. 417–440, 2010.

[8] Object Management Group. (2010) UML Specification: version 2.2.
[retrieved: 09,2012]. [Online]. Available: www.omg.com/uml

[9] T. A. Halpin, “Verbalizing Business Rules: Part 14,” Business Rules
Journal, vol. 7, no. 4, 2006.

[10] N. Danielsson and U. Norell, “Parsing mixfix operators,” Proceedings
of the 20th International Symposium on the Implementation and Appli-
cation of Functional Languages (IFL 2008), 2009.

[11] T. Parr. (2012) ANTLR v3. [retrieved: 09,2012]. [Online]. Available:
http://www.antlr.org/

[12] ——, The Definitive ANTLR Reference. Pragmatic Bookshelf, 2007.
[13] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: principles,

techniques, and tools. Pearson/Addison Wesley, 2007.
[14] B. Moszkowski, Executing Temporal Logic Programs. Cambridge,

1986.
[15] B. Meyer, “Applying Design by Contract,” Computer, vol. 25, no. 10,

pp. 40–51, 1992.
[16] Rifidi Community. (2012) Rifidi-Platform. [retrieved: 09,2012].

[Online]. Available: http://www.transcends.co/community
[17] Eclipse Open Plattform Community. (2012) AspectJ: Version 1.7.0.

[retrieved: 09,2012]. [Online]. Available: http://www.eclipse.org/aspectj/
[18] T. Parr. (2012) String Template: Version 4.0. [retrieved: 09,2012].

[Online]. Available: http://www.stringtemplate.org/
[19] Object Management Group. (2008) SBVR Specification:

version 1.0. [retrieved: 09,2012]. [Online]. Available:
http://www.omg.org/spec/SBVR/1.0/

[20] M. Kleiner, P. Albert, and J. Bézivin, “Parsing SBVR-Based Controlled
Languages,” in Model Driven Engineering Languages and Systems,
ser. Lecture Notes in Computer Science, A. Schürr and B. Selic, Eds.
Springer Berlin / Heidelberg, 2009, vol. 5795, pp. 122–136.

[21] S. Sosunovas and O. Vasilecas, “Precise notation for business rules
templates,” Databases and Information Systems, 2006 7th International
Baltic Conference on, pp. 55–60, 2006.

[22] C. Nebut, F. Fleurey, Y. Le Traon, and J. Jézéquel, “Automatic test
generation: A use case driven approach,” Software Engineering, IEEE
Transactions on, vol. 32, no. 3, pp. 140–155, 2006.

171Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 189 / 729

Using SSUCD to Develop Consistent Use Case Models: An Industrial Case Study

Mohamed El-Attar
Information and Computer Science Department

King Fahd University of Petroleum and Minerals
P.O. 5066, Al Dhahran 31261, Kingdom of Saudi Arabia

melattar@kfupm.edu.sa

Abstract- In software development projects that utilize a use case-
driven development methodology, it is crucial to develop high
quality use case models to ensure the development of a quality
end product. There are many quality attributes for use case
models. One of these qualities is consistency. A structure named
SSUCD (Simple Structured Use Case Descriptions) was
developed to guide use case authors while authoring their use
cases. SSUCD was developed in previous work to specifically
tackle the issue of consistency in use case models. In particular,
SSUCD ensures structural consistency in use case models. Thus
far, SSUCD has been validated using exemplars. While
exemplars provide beneficial preliminary validation, a more
thorough validation process is required to ensure the industrial
applicability of SSUCD. To this end this paper presents an
industrial case study that was used to validate SSUCD. The result
of the case study shows that SSUCD can be effectively used to
develop consistent use case models of industrial strength.

Keywords – Use Cases; SSUCD; Model Consistency.

I. INTRODUCTION

Use case modeling [7, 13] is a very popular technique used

to elicit and model functional requirements in object-oriented
software development projects. In a use case driven
development methodology, the use case model is used to drive
the development of other UML (Unified Modeling Language)
[13] design artifacts at the design phase. This process is
vulnerable to human injected defects since naturally there is a
gap between the analysis and design phases. Consequently, this
will cause system architects to create designs that provide
different functionality from that was required (i.e., developing
the ‘wrong’ system), leading to costly reworks and schedule
overruns, in addition to the intangible cost of unsatisfied
customers. It is, therefore essential to develop high quality use
case models in order to ensure the development of end systems
that delivers the required functionalities; while allowing them
to be understandable by all stakeholders, including “non-
technical” stakeholders.

The literature has identified a number of use case models
quality attributes that can be categorized into five main
categories: consistency, correctness, completeness, analytical
and understandability [11]. The harmful consequences of
lacking in any of these quality attributes have been documented
in the literature. Many research works have been devoted
towards improving these quality attributes or at least targeting a
subset of these quality attributes. Consistency in particular is a
highly sought after quality attribute [1-6, 10-12]. The current
state of practice to develop use case models depends on the
modeler’s discipline to create consistent use case models. Such
discipline seldom in exists in practice. In previous work, a

structure named SSUCD [11] was developed to specifically
target the issue of inconsistencies in use case models. In
particular, SSUCD can be used to ensure structural consistency
in use case models. SSUCD does not directly improve other
quality attributes. Therefore, it is recommended that SSUCD be
used in addition to other researched techniques to improve the
overall quality of use case models.

The remainder of this paper is organized as follows: Section
2 provides a brief background and discusses related works.
Section 3 presents the SSUCD structure. In Section 4, the
MAPSTEDI case study is presented. Finally, Section 5
concludes and provides suggestions for future work.

II. BACKGROUND AND RELATED WORK

 A use case model consists of a use case diagram, a set of use
case descriptions and a glossary. The glossary is an artifact
that is shared by all artifacts developed in a project to
document relative terminology in a consistent manner. The use
case diagram serves as a visual summary of the functional
requirements of the underlying system. The functional
requirements are textually detailed in use case descriptions.
 In a use case model, inconsistency can occur between the
use case descriptions, the various diagrams (if more than one
was used), and most commonly inconsistency may occur
between the use case diagrams and the corresponding set of
use case descriptions. The cost of inconsistencies depends on
the form it exists in.
 The literature has repeatedly warned against inconsistencies
in use case models. A taxonomy of use case modeling defects
and their harmful consequences were presented in Anda et al.
[3]. The taxonomy states that inconsistencies in a use case
model have a detrimental effect on every aspect of the
development process and in turn severely hampering the
overall quality of the end product. In Lilly [10], a number of
inconsistency defects were outlined. For example, an
inconsistent system boundary has been found to cause
ambiguity with respect to the functionality that needs to be
developed. Development teams may suffer from costly
redundant and unnecessary development leading to schedule
overruns. Conversely, development teams may miss some of
the required functionality. Inconsistencies in use case models
has also been found to be symptomatic of an ambiguous
domain model and a use case model that might be handling
concepts that are not defined or understood properly [5].
Inconsistencies may also be a result of missing or vague
information [5]. Ambler [2] warns that a high level of

172Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 190 / 729

inconsistencies in use case models may render it useless as it
becomes too outdated.
 Naturally many research works have been devoted towards
improving consistency in use case models. For example,
Armour and Miller [6] and Kulak and Guiney [8] have highly
recommended various mechanisms of reviewing use case
models as means to ensure their quality by assuring that they
possess a great deal of consistency. An automated approach
was proposed by McCoy [12]. McCoy [12] presents a tool that
provides a template for use case authors to write their use
cases. The template aids in ensuring consistency during the
data entry process. Butler et al. [4] introduced the concept of
refactoring to the use case modeling domain. A number of use
case refactorings improve consistency.

III. THE SSUCD STRUCTURE

 The structure SSUCD was devised to specifically tackle the
issue of inconsistencies. SSUCD employs a template of
commonly used fields in popular use case description
templates such as those presented by Cockburn [1]. Use cases
described using the SSUCD structure contains four main
sections, these are: (a) Use Case Name, (b) Associated Actors,
(c) Description, (d) Extension Points and Extended Use Cases.
With the exception of the “Description” section, these sections
utilize a handful of keywords to embed the required structure.
All keywords are written in uppercase for readability
purposes. The “Description” section on the other hand is
populated using natural language to allow for maximum
flexibility and expressiveness by use case authors. Other
sections can be added to cater to specific needs; the additional
sections must be contained as subsections of the “Description”
section.
 The design of the SSUCD structure accounted for
readability. This is achieved by using a limited set of English
keywords that are inserted within various sections of the
templates. All keywords pertain to the use case modeling
domain and thus greatly reducing the required learning curve.
A brief description of each keyword is shown in Table 1.
Figures 1 and 2 illustrates the concepts explained above and
demonstrates the visually the mapping of the keywords in
Table 1 using a mock example.

Table 1 A summary of the SMCD structure constructs
Section Keyword Diagram

Representation

Use Case
Name

ABSTRACT
 Abstract use cases are
depicted in italic font in
the diagrams.

SPECIALIZES
A generalization
relationship link is
depicted in the diagram.

IMPLEMENTS

A generalization
relationship link is
depicted in the diagram.
This is due to the fact that
the generalization and
implementation

relationships are depicted
using the same notation.

The name of
the use case

A use case with the given
name is displayed in the
diagram.

Description INCLUDE

Results in the creation of
an include relationship
directed towards the use
case stated in the
INCLUDE statement.

Extended
Use Cases

Base Use Case

An extend relationship
link is created and
directed towards the
stated base use case.

Extension Point

Optional to the user.
Results in the
augmentation of the
targeted extension point
name on the extend
relationship link.

IF

Optional to the user. The
condition is displayed on
the extend relationship
link in square brackets.

Extension
Points

The names of
public extension
points

Each extension point
stated is depicted within
the oval of the given use
case in the diagram.

Mock Example Textual Descriptions

Actor Name: A

Brief Description:
A brief description of actor A
Actor Name: B

SPECIALIZES: A

Brief Description:
A brief description of actor B
Use Case Name: C

ABSTRACT

Brief Description:
A brief description of use case C
Use Case Name: D

Brief Description:
A brief description of use case D

Extended Use Cases:
Base UC Name: F
AT: extension point of F
IF: is true
Use Case Name: E

IMPLEMENTS: C

173Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 191 / 729

SPECIALIZES: D

Brief Description:
A brief description of use case E and INCLUDE <F>
Use Case Name: F

Brief Description:
A brief description of use case F.

Extension Points:
Extension point of F

Figure 1. Mock Example of Textual Descriptions

Figure 2. Example use case diagram including the entire notational set
supported by the SSUCD structure

 The SSUCD structure is supplemented with the REUCD
(Reverse Engineering of Use Case Descriptions) process.
There are two perform key functionalities that are performed
by REUCD [11]: (a) REUCD constructs a use case diagram
that accurately represents the textual descriptions of use cases
and actors, (b) REUCD can generate skeletons of use case
descriptions. Once these descriptions are completed, REUCD
can once again be used to generate a use case diagrams that
accurately represents the textual descriptions.

A. Consistency and Mapping Rules Between Use Case

Descriptions and Diagrams

In this section, we will introduce the REUCD (Reverse
Engineering of Use Case Diagrams) process, which is used to
systematically map SSUCD’s structural constructs to
diagrammatic notations that form use case diagrams. This
systematic process is automated using the tool SAREUCD
(see Section 5), which will ensure the consistency and speed
of the process.
 The process of generating use case diagrams from use case
descriptions and vice versa is analogous to generating

complete and accurate UML class diagrams from code and
generating code structures from UML class diagrams. The
reason UML class diagrams cannot be used to generate
complete programs is because they act as a visual summary of
a program’s static structure. UML class diagrams are at a
higher level of abstraction compared to code. On the other
hand, a complete program will contain more than enough
details required to generate complete and accurate UML class
diagrams.
 Use case descriptions (analogous to code) contain far more
details than use case diagrams (analogous to class diagrams).
Use case diagrams are at a higher level of abstraction than the
descriptions. Therefore, given a set of use case descriptions, a
complete and accurate use case diagram can be systematically
produced. However, if modelers choose to create use case
diagrams manually first, which is often the case; a ‘skeleton’
of the use case descriptions can be systematically produced.
Detailed descriptions of the use case are later added manually
by analysts to ‘flesh out’ the generated ‘skeletons’. After the
use case descriptions are complete, an updated version of the
use case diagram can be systematically generated. Users of
SSUCD and REUCD will not be burdened with performing
these transformations since they will be carried out by a tool.

B. The REUCD Process

When given a set of SSUCD use case description, the REUCD
process is applied by iteratively parsing through the text of the
descriptions. Each iteration has several purposes and these are
described below:

Iteration 1: Identify actors and create XML components to
represent these actors to be displayed by a UML modeling
tool.

Iteration 2: Identify use cases and create XML components
to represent these use cases to be displayed by a UML
modeling tool.

Iteration 3: Identify relationships between actors and use
cases and create to corresponding XML components. This
step will require cross-referencing with XML components
previously created in the previous two iterations.

When given a use case diagram, the REUCD process is
applied on the XML file the represents the given use case
diagram. The process is applied by iteratively parsing through
the text of the XML file. Each iteration has a purpose as
defined below:

Iteration 1: Identify actors and create a text area for each
actor with its name and the appropriate fields.

Iteration 2: Identify use cases and create a text area for
each use case with its name and the appropriate fields.

Iteration 3: Identify the relationships between actors and
use cases and amend the corresponding text area to reflect
these relationships.

Finally, the text areas are combined into one file.

IV. THE MAPSTEDI SYSTEM CASE STUDY

In this section, we present an industrial case study where
SSUCD was applied successfully. This case study is

174Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 192 / 729

concerned with the MAPSTEDI (Mountains and Plains
Spatio-Temporal Database Informatics) use case model [9].
The MAPSTEDI system was built for research purposes by
geocoders to help them analyze biodiversity data in the
northern plains as well as the southern and central Rocky
Mountains both spatially and temporally. It was developed by
the Denver Botanic Gardens (DBG), Denver Museum of
Nature and Science (DMNS) and University of Colorado
Museum (UCM). The project’s aim is to merge their separate
collections into one distributed biodiversity database to
include over 285,000 biological specimens.

The use case model of the MAPSTEDI system originally
five use case models representing five subsystems. The use
case diagrams of three subsystems were later merged as a
result of a refactoring process. A brief description of each
subsystem is provided below:

 Database Queries: The purpose of this subsystem is to

perform queries on local and distributed databases for
collections data. There are two distributed databases.

 Database Integrator: The purpose of this subsystem is to
handle how the collections data from separate databases
are integrated after being updated.

 Database Edits: The purpose of this subsystem handles
the operational mechanisms for editing and updating the
databases. The databases are updated whenever a
geocoder edits the collections data.

 Administrative Process: The purpose of this subsystem
outlines the administrative functionalities and
responsibilities. This subsystem backups and restores
collections data and application code. Moreover, the
subsystem is used to install any new updates.

 Database Access: The purpose of this subsystem handles
access control of the database; who may access the
database and how. Public users have access to search and
download collections data and visualize biodiversity
analysis. However, only researchers have access to
sensitive data.

 The “Database Access” and “Administrative Process”
subsystems each had a separate use case diagram. Meanwhile,
the “Database Edits”, “Database Queries” and “Database
Integrator” subsystems are represented by a single merged use
case diagram.
 The purpose of this case study is to validate the SSUCD
structure and the REUCD process. In this case study, the use
case and actors descriptions were developed using the SSUCD
structure. The textual descriptions were then used as input by
the REUCD process to produce the corresponding use case
diagrams. The successful application of this case study is if
use case diagrams generated by the REUCD process were
structurally similar. Figures 1, 3 and 5 below contain the
textual descriptions of the use cases and actors in each use
case diagram. The use case diagrams generated by REUCD
based on the descriptions in Figure 1, 3 and 5, are shown in
Figure 2, 4, and 6, respectively.

Database Access
Actor Name:
User

Brief Description:
<A brief description about the User actor>
Actor Name:
Public User

Specializes:
User

Brief Description:
<A brief description about the Public User actor>

Actor Name:
Research User

Specializes:
User

Brief Description:
<A brief description about the Research User actor>

Use Case Name:
Download Collections Data

Associated Actors:
User

Basic Flow:
… INCLUDE <Search Collections Data>
Use Case Name:
Search Collections Data

Associated Actors:
User

Basic Flow:
…this use case allows the user to search collections data…

Use Case Name:
Visualize Biodiversity Analysis

Associated Actors:
User

Basic Flow:
…this use case allows the user to visualize biodiversity analysis…

Use Case Name:
Access Sensitive Data

Associated Actors:
Research User

Basic Flow:

…this use case allows the research user to access sensitive
data…

Figure 3. The descriptions of the use cases and actors of the “Database
Access” subsystem

175Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 193 / 729

Figure 4. The generated use case diagram from “Administrative Process”

Administrative Process

Actor Name:
Administrator

Brief Description:

<A brief description about the Administrator actor>

Actor Name:
Database Administrator

Specializes:
Administrator

Brief Description:
<A brief description about the Database Administrator actor>

Actor Name:
ArcIMS Administrator

Specializes:
Administrator

Brief Description:
<A brief description about the ArcIMS Administrator actor>

Use Case Name:
Backup Process

Associated Actors:
Administrator

Basic Flow:
…this use case name allows the administrator to perform process
backup…

Use Case Name:
Restore Process

Associated Actors:
Administrator

Basic Flow:
…this use case name allows the administrator to perform process
restoration…

Use Case Name:
Install Software Updates

Associated Actors:
Administrator

Basic Flow:

…this use case name allows the administrator to install
software updates…

Figure 5. The descriptions of the use cases and actors of the “Administrative
Process” subsystem

Figure 6. The generated use case diagram based on reverse engineering the
textual descriptions of use cases and actors in the “Administrative Process”
subsystem.

Merged Subsystems
Actor Name:
Geocoder

Brief Description:

<A brief description about the Geocoder actor>

Actor Name:
Database Integrator

Brief Description:
<A brief description about the Database Integrator actor>

176Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 194 / 729

Use Case Name:
Geocode Specimen

Associated Actors:
Geocoder

Basic Flow:
…this use case name allows the administrator to geocode a
specimen and it INCLUDE <Update Collections Data>…

Use Case Name:
Update Collections Data

Associated Actors:
Database Integrator

Basic Flow:
…this use case name allows the administrator to update
collections data…

Extended Use Cases:
Base Use Case Name: Query Remote Database

Use Case Name:
Query Remote Database

Specializes:
Query Database

Basic Flow:
…this use case name allows the administrator to query remote
database…

Use Case Name:
Query DMNS Database

Specializes:
Query Remote Database

Basic Flow:
…this use case name allows the administrator to query DMNS
database…

Use Case Name:
Query DIGIR Database

Specializes:
Query Remote Database

Basic Flow:
…this use case name allows the administrator to query DIGIR
database…

Use Case Name:
Query Database

Basic Flow:
…this use case name allows the administrator to query database…

Use Case Name:
Query Local Database

Specializes:
Query Database

Basic Flow:
…this use case name allows the administrator to query local
database…

Use Case Name:
Integrate Query Results

Associated Actors:
Database Integrator

Basic Flow:
…this use case name allows the administrator to integrate query
results and it INCLUDE <Query Remote Database> and
INCLUDE <Query Local Database>…

Figure 7. The descriptions of the use cases and actors of the merged
subsystems

Figure 8. The generated use case diagram based on reverse engineering the
textual descriptions of use cases and actors in the merged subsystems.

A. Verifying the Correctness of the Generated Use Case

Diagrams

 The correctness of the generated use case diagrams was
verified through two distinct means. The first approach
involved the use of the UseCaseDiff tool [14] to check for
differences between the generated use case diagrams and the
original use case diagrams. UseCaseDiff is an open source use

177Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 195 / 729

case diagram differencing tool that was developed as part of
previous work [14]. Both sets of use case diagrams were
provided as input into the UseCaseDiff tool. The tool
generated a report showing no structural differences.
 The second approach used to verify the correctness of the
generated use case descriptions was via manual inspection.
The two sets of diagrams were juxtaposed manually by three
independent researchers. The reviewers did not find any
structural differences between the two sets of diagrams.

V. CONCLUSION AND FUTURE WORK

In this paper, we report on the successful use of SSUCD to
develop a structurally consistent industrial use case model that
represents the functionality of the five subsystems comprising
the MAPSTEDI system. The case study has shown that
SSUCD can be utilized by industry practitioners to develop
consistent use case models and to help them detect structural
inconsistencies in existing models.

Future work can be directed towards developing an
approach to transform use cases written using SSUCD into
other types of models, such as UML Activity and Sequence
Diagrams.

ACKNOWLEDGEMENTS

The author would like to acknowledge the support provided by
the Deanship of Scientific Research (DSR) at King Fahd
University of Petroleum & Minerals (KFUPM) for funding this
work.

REFERENCES

[1] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2000.
[2] S. Ambler, Agile Modeling: Effective Practices for eXtreme

Programming and the Unified Process. Wiley, 2002.
[3] B. Anda, D. Sjøberg, and M. Jørgensen, “Quality and Understandability

in Use Case Models,” 15th European Conference Object-Oriented
Programming (ECOOP), edited by J. Lindskov Knudsen. Springer-
Verlag, Budapest, Hungary, pp. 402-428, 2001.

[4] G. Butler and L. Xu, “Cascaded refactoring for framework evolution,”
Proceedings of 2001 Symposium on Software Reusability, ACM Press,
pp. 51-57, 2001.

[5] P. Chandrasekaran, “How Use Case Modeling Policies Have Affected
The Success of Various Projects (or How to Improve Use Case
Modeling),” Addendum To The 1997 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
pp. 6-9, 1997.

[6] F. Armour and G. Miller, Advanced Use Case Modeling. Addison-
Wesley, 2000.

[7] I. Jacobson, M. Ericsson, and A. Jacobson, The Object Advantage. ACM
Press, 1995.

[8] D. Kulak and E. Guiney, Use Cases: Requirements in Context. Addison-
Wesley, 2000.

[9] M. El-Attar, Analysis of the MAPSTEDI system Use Case Model.
Available online:
http://www.steam.ualberta.ca/main/research_areas/MAPSTEDI%20Anal
ysis.htm. [retrieved: October 2012].

[10] S. Lilly, “Use Case Pitfalls: Top 10 Problems from Real Projects Using
Use Cases,” Proceedings of TOOLS USA '99, IEEE Computer Society,-
pp. 174-183, 1999.

[11] M. El-Attar and J. Miller, “Producing Robust Use Case Diagrams via
Reverse Engineering of Use Case Descriptions,” Journal of Software
and Systems Modeling, vol. 7, no. 1, pp. 67-83, 2008.

[12] J. McCoy, “Requirements Use Case Tool (RUT),” Companion of the
18th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pp. 104-105,
2003.

[13] OMG 2003, “UML Superstructure Specification”, Object Management
Group, http://www.omg.org/docs/ptc/03-08-02.pdf, 2003. [retrieved:
October 2012].

[14] M. El-Attar, “UseCaseDiff: An Algorithm for Differencing Use Case
Models,” 9th International Conference on Software Engineering
Research, Management and Applications, pp. 148-152, 2011.

178Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 196 / 729

A Systematic Mapping Study on Domain-Specific Languages

Leandro Marques do Nascimento
1,2

, Daniel Leite Viana
1
, Paulo A. M. Silveira Neto

1,3
,

Dhiego A. O. Martins
1
, Vinicius Cardoso Garcia

1
, Silvio R. L. Meira

1

1
 Informatics Center, Federal University of Pernambuco (UFPE)

Recife, Brazil
2
 Department of Informatics, Federal Rural University of Pernambuco (UFRPE)

Recife, Brazil
3
 Department of Informatics, Federal Rural University of Pernambuco (UFRPE)

Serra Talhada, Brazil
{lmn2, dlv2, pamsn, daom, vcg, srlm}@cin.ufpe.br

Abstract—Domain-Specific Languages (DSLs) offer substantial

gains in expressiveness and ease of use compared with general

purpose languages. This way, DSLs have gained significant

attention in industry and academy, as can be seen by the

increased number of related publications in key conferences

and journals. This paper aims to provide a broad view of the

DSL research field by performing a Systematic Mapping

Study. Adopting a detailed search strategy, 4450 studies were

initially identified, and, after filtering, 1440 primary studies

were selected and categorized using a particular classification

scheme. So, this work presents the most popular application

domains where DSLs have been applied, identifies different

tools for handling DSLs, including language workbenches, and

enumerates several techniques, methods and/or processes for

dealing with DSLs.

Keywords: Domain-specific languages; systematic mapping

study; programming languages; mini languages; little languages.

I. INTRODUCTION

Software systems are built upon computer languages or
better called programming languages. A programming
language is a notation for expressing computations
(algorithms) in both machine and human readable form.
Appropriate programming languages and tools may
drastically reduce the cost of building new applications as
well as maintaining existing ones [1]. For humans, it would
be easier to write computer programs if a natural language
could be used, such as English or Portuguese, for instance.
However, computer languages must follow a rigid
predefined structure, with a specific grammar and syntax,
and to learn this structure is not so easy for many people,
taking significant time for someone to be “fluent” in that
kind of language.

In the context of programming languages, a Domain-
Specific Language (DSL) is a language that provides
constructs and notations tailored toward a particular
application domain [2]. Usually, DSLs are small, more
declarative than imperative, and more attractive than
General-Purpose Languages (GPL) for their particular
application domain due to easier program understanding,
reduced semantic distance between the problem and the
program, and enhanced productivity. Some well-known
examples of DSLs are BNF (syntax definition), HTML

(hypertext markup), SQL (database queries), and VHDL
(hardware design).

DSLs trade generality for expressiveness in a limited
domain, and this can bring several benefits to software
engineering. However, these benefits do not come for free.
The cost of DSL design, development and maintenance has
to be taken into account. Without appropriate methodologies
and/or tools these costs can be higher than savings. Although
DSLs have been developed from the beginning of computer
science (an early example is APT, a DSL for numerical
control of machine tools developed back in the 1950s at MIT
[3]), many unanswered questions remain regarding when and
how to develop a DSL.

Therefore, this paper presents a systematic mapping
study in order to better understand the DSL research field,
through synthesizing evidence to suggest important
implications for practice, as well as identifying research
trends, open issues, and areas for improvement. A Mapping
Study (henceforth abbreviated to ‘MS’) [4] is an evidence-
based approach, applied in order to provide an overview of a
research area, and to identify the quantity and type of
research and results available within it. Hence, the goal of
this investigation is to identify, evaluate, and synthesize
state-of-the-art domain-specific programming practices in
gathering evidence of what has been achieved so far in this
discipline. We are also interested in cataloging which are the
domains that have taken advantage of using DSLs. This way,
researchers and/or practitioners may know which DSLs have
been applied to a particular domain and then reuse or adapt it
for any other specific needs. This systematic mapping
process was conducted from November, 2011 to April, 2012.

The remainder of this paper is organized as follows:
Section 2 presents the related work. In Section 3, the
research methodology used in this paper is described
including the research questions, the search strategy and the
classification scheme. Section 4 reports the main findings. In
Section 5, the threats to validity are shown, and at last,
Section 6 draws some conclusions and provides
recommendations for further research on this topic.

II. RELATED WORK

The literature on DSLs provides a large number of
studies, regarding both general and specific issues, as will be

179Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 197 / 729

discussed later in this paper. However, a general search for
(“mapping study” OR “systematic literature review”) AND
“domain-specific languages” in well-known search engines
have shown that no publication have tried to address the
issues of this research field using specifically the MS
approach. Actually, many papers presented the state-of-the-
art in this field using other approaches than a MS and they
are next described as related work.

One of the first published papers to coin the concept of a
DSL is from 1965 [5]. It presents a family of unimplemented
computing languages that is intended to span differences of a
given application area by a unified framework.

In the 1980s, Bentley [6] tried to summarize the concept
of the so called Little Languages. The paper describes
examples of small languages that could be developed with
the technology available back there, e.g. COBOL and
FORTRAN.

In a paper from 2000, Deursen et al. [7] list a selection of
75 key publications in the area. It discusses terminology,
risks and benefits, examples of domain-specific languages,
design methodologies, and implementation techniques.

In a more recent work from 2005, Mernik et al. [2] try to
answer the question “When and How to Develop Domain-
Specific Languages?”. The paper brings a list of DSLs
developed until then for different domains. The work
identified five DSL development phases: decision, analysis,
design, implementation, and deployment, and then relates the
listed DSLs with their development phases. At last, the work
enumerates domain analysis tools and language development
systems, giving a full view of the open issues in the area.

One of the most recent related work that could be
identified is [8], from 2011. It compares four different
approaches for DSL implementation: ANTLR, Ruby,
Stratego and Converge. From their comparative study, it was
observed that each approach has its merits and demerits and
there is no single approach that would apply to all scenarios.
The work does not mention directly the use of language
workbenches.

Indeed, we believe our study states current and relevant
information on research topics that can complement others
previously published. By current, we mean that, as the
number of studies published has increased rapidly, as shown
in Figure 2, it justifies the need of more up to date empirical
research in this area to contribute to the community
investigations. Moreover, applying a MS approach to map
out the research area of DSL gives us a full overview of what
is being done and what is lacking attention from academia/
industry, as well as allow future extensions and replications.

III. RESEARCH METHODOLOGY

The experimental software engineering community is
working towards the definition of a standard processes for
conducting literature reviews. There are mainly two different
approaches to be cited: Systematic Literature Reviews (SR)
and Systematic Mapping Studies (MS) [9]. While a SR is a
mean of identifying, evaluating, interpreting and comparing
all available research relevant to a particular question [9], a
MS intends to “map out” the research undertaken rather than
to answer detailed research questions [4]. A MS comprises

the analysis of primary studies that investigate aspects
related to predefined research questions, aiming at
integrating and synthesizing evidence to support or refute
particular research hypotheses.

In this study, we merged ideas from Petersen et al. [4]
with some good practices defined in the guidelines proposed
by Kitchenham and Charters [9], such as the protocol
definition. Therefore, we could apply a process for a
mapping study, including best practices for conducting
systematic reviews, making the best use of both techniques.

A MS is basically performed in three phases. All phases
are detailed in following sections: 1) Definition of the
protocol, which comprises the research questions and the
search strategy. This phase is commonly used in systematic
reviews. 2) Conducting the study with screening of relevant
papers. During this phase, a classification scheme is used. 3)
Keywording relevant topics, data extraction and systematic
mapping.

A. Research Questions

This mapping study intends to identify relevant
publications about Domain-Specific Languages,
understanding how they can be created and which ones have
been created so far. In addition, this study tries to enumerate
the domains in which DSLs have been applied, which
knowledge is necessary from the domain experts to start
using the language, and so forth which are the open issues of
the whole research field.

In summary the main research question of this study is:
In which manner are Domain Specific Languages (DSLs)
being created, used and maintained?

B. Research Sub-questions

Moreover, in order to make the mapping study main
objective more clear and repeatable, some research sub-
questions are defined, as following:

Q1. Which techniques, methods and/or processes are
used while working with DSLs, i.e. creation,
application, evolution and extension of DSLs?

Q2. Which DSLs have been created and are available for
use or are described in some type of publication?

Q3. In which domains are these DSLs being used?
Q4. Which tools are used for the development and usage

of DSLs and how such tools support those activities?

C. Search Strategy, Data Sources and Studies Selection

According to our research questions and in order to
increase the coverage of our search, we decided to use the
following search string, which brings only general terms
grouped by an OR clause:

"domain-specific language" OR "domain-specific
modeling language" OR "generative programming"

Therefore, instead of restricting our search items with
other keywords, we understand that any work that mentions
one of the three items listed is going to be returned by the
search engine anyway. Although the number of manuscripts
returned could increase considerably, few or even no
relevant studies would be left over. Indeed, experts in the

180Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 198 / 729

DSL research field may say there are other related terms,
such as “little/small language” or “Architecture Description
Language” (ADL). Despite of including those terms in our
automatic search, we decided to look for those terms in the
manual search and snow-balling process (which follows up
the reference list of each selected manuscript), since papers
that have those terms and do not have the term “domain-
specific language” are quite rare and can be easily found
during a fine-grained and non-automatic search process.

We ended up adding “domain-specific modeling
language” and “generative programming” because we
noticed that these terms are extremely related to the research
field just by checking at the most relevant papers according
to the search engines relevance ordering.

The study was conducted using automatic and manual
search. We did not establish any inferior year-limit. For
automatic search, six search engines and digital databases of
scientific sources were used: ACM Digital Library,
IEEEXplore, SpringerLink, Science Direct, Scopus and
Engineering Village (also known as El Compendex).
Besides, the manual search includes the most important
international, peer-reviewed journals published by Elsevier,
IEEE, ACM and Springer, and 26 different conferences.

After performing the automatic and manual search, a
total of 4450 papers were identified, 93 of them from manual
search. During manual search, a snow-balling process was
done. Next, the studies were submitted to the inclusion and
exclusion criteria, as we detail in the following section.

The studies selection involved a screening process
composed of three filters, in order to select the most suitable
results, since the likelihood of retrieving not adequate studies
might be high. Figure 1 details each filter.

Regarding the inclusion criteria, the studies were
submitted to the following conditions:

 Books, papers, technical reports and ‘grey literature’
regarding Domain Specific Languages, Domain
Specific Modeling Languages and/or Generative
Programming. No date filtering was applied.

 While verifying if a given article may be included in
our study, we can check if it is possible to answer
‘yes’ for at least one of the following questions:
o Is it a DSL or DSML?
o Is it a technique, method or process for

handling DSLs/DSMLs?
o Is it a tool (language workbench) for handling

DSLs/DSMLs?
o Is it any type of philosophical paper that

discusses concepts of DSLs, DSMLs and/or
any related generative programming
technique?

Considering the exclusion criteria, the studies were
submitted to the following conditions:

 Articles not written in English.

 Literature that was only available in the form of
abstracts or Powerpoint presentations. Posters, short
papers (less than 2 pages) and invited conference
talks with no relevant results can be excluded.

 Articles in press, journals and conferences
editorials/reviews can also be excluded.

 Duplicated and/or incomplete studies.

Figure 1. Stages of the selection process and the corresponding number of

papers.

After performing the selection process, some results can
be seen in Figure 2 which shows the distribution of the
primary studies, considering the publication year. The Figure
2 clearly gives us the impression that many correlated areas
in software engineering and computer science in general are
taking more and more advantage of DSLs in practice, as we
can check by looking at the growth curve.

Figure 2. Distribution of studies by their publication years after 3rd filter.

We were able to identify the most common locals of
publication. Conferences such ICSE (International
Conference on Software Engineering), OOPSLA (Object-
Oriented Programming, Systems, Languages & Applications
Conference) and GPCE (Generative Programming and
Component Engineering Conference) had the highest
number of studies published. Similarly, the most popular
journals were ACM SIGPLAN Notices, IEEE Software and
ENTCS (Electronic Notes in Theoretical Computer). We
catalogued manuscripts from 548 different sources (418
conferences and 130 journals).

D. Classifying Selected Studies

Our classification scheme assembled three facets. Facet
one lists the classes of research based on [4]: Validation
Research, Evaluation Research, Solution Proposal,
Philosophical Papers, Opinion Papers, Experience Papers.
Details of each class of research can be found on [4]. The
two others are directly related to our research questions.

Filters Activities N. of papers

1

2

3

Identify relevant studies using

defined search terms through

manual and automatic search

Exclude studies based on

exclusion criteria for

removing duplicated studies

Exclude studies by applying

exclusion criteria on title,

abstract and keywords.

N = 4450

N = 2688

N = 1440

1 2 1 1 2 2 3 2 1 4 5 2 4 2 7 2 7 4
19

31 25 32 35
45

59
70

100

138

172

221
225

216

0

50

100

150

200

250

1
9

6
6

1
9

6
7

1
9

7
1

1
9

7
3

1
9

7
5

1
9

7
6

1
9

7
7

1
9

8
6

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

Distribution of primary studies

181Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 199 / 729

Facet 2 – DSL Research Type – considered in our study
is directly related to the research sub-questions Q1, Q2 and
Q4. We tried to identify studies that report specifically the
usage of a given DSL to solve a problem and also studies
that report any kind of technique, method or process to
handle DSLs, i.e., create, evolve, integrate, debug. What is
more, we tried to enumerate what tools have been used to
apply those techniques, methods and/or processes. TABLE I
presents the details of Facet 2. Some concepts of this facet
are based on [10].

TABLE I. FACET 2 – DSL RESEARCH TYPE.

1. ADL Architecture Description Languages (ADLs) are

aimed at the specification of high level system

architectures, described in terms of components

and connectors.

2. DSAL A Domain-Specific Aspect Language combines

benefits from DSLs and Aspect-Oriented

Programming (AOP). It is a aspect language

tailored to a specific domain.

3. DSML A domain-specific modeling language is a

special type of DSL that can be used for

modeling domain-specific systems. The concept

of a DSML comes originally from the adaptation

of UML to specific domains.

4. External DSL A completely separate language, for which you

write a full parser, usually using a parser

generator.

5. Internal DSL An internal (or embedded) DSL is an idiomatic

way of using a general-purpose language.

6. Method or Process Any type of generic solution for a class of

problems which usually involves technical and

non-technical aspects. A method/process

involves a set of steps to be performed in order

to make it repeatable for anyone to try using it.

A method/process may use a group of

techniques which combined represent a generic

solution for a class of problems.

7. Technique Any type of solution for a specific problem. For

example: a technique to generate Java code

based on C# input; a technique for teaching how

to create parsers, a technique to analyze model

coupling.

8. Tools Any type of software engineering tool used for

handling DSLs.

Facet 3 addresses the domains in which DSL techniques

are somehow applied and is directly related to Q3. Inspired
by previous publications that tried to do the same [2], [7], we
identified many different domains ranging from
bioinformatics to robotics and control systems, for example.
We were able to enumerate 30 different domains. Among
them, we selected the top 15 most referenced domains to be
used as facet in this study. Since the final number of papers
included in our study was quite large (1440), some domains
were mentioned few times (1 or 2), then those ones are not
considered to our classification. TABLE II displays Facet 3.

It is important to notice that none of the three facets are
exclusive, it means, a paper may be classified in two or more
categories of any of the three facets. For example, a paper
may be categorized as a Solution Proposal and Validation

Research, as a DSML and a Tool and also with the domains
of Web and Control Systems.

TABLE II. FACET 3 – DOMAINS

1. Web Every study that uses any type of web
technology

2. Embedded Systems Hardware and software co-design

3. Low-level Software Low-level programming, for instance,
operating systems, device drivers, etc.

4. Control Systems Any type of control systems, for example:
flight control, automation systems, etc.

5. Parallel Computing High-performance computing, multithreaded
programming

6. Simulation Any type of simulation software

7. Data Intensive Apps Studies that present ways of handling
databases using DSL techniques

8. Real-time Systems Systems where the time is a crucial variable

9. Security Studies that handle security issues such as
intrusion detection, access control, etc.

10. Dynamic Systems A type of software system that can adapt to
the context it is immersed

11. Visual Language Apart from textual languages, this type of
study describes a DSL with visual appealing

12. Testing DSLs applied to the software engineering
discipline of testing

13. Education Any type of publication that mentions
education as the primary goal, e.g. as in [11]

14. Network DSLs for manipulating computer networks
and/or distributed systems issues

15. Others In this category, we gathered domains with at
most 5 publications, covering several
divergent topics, such as Chemistry,
Geometry and Engineering, among others

In addition, it is important to highlight that TABLE II is

missing some important domains due the total amount of
manuscripts included in this study. Hereby, we cite one
sample publication of these domains that were left over:
healthcare [12], pervasive computing [13], graphics [14],
cloud/grid computing [15], robotics [16], ontology [17],
games [18], multi-agent systems [19], requirements
engineering [20], bioinformatics [21], mobile apps [22],
multimedia [23], user interface [24], hardware description
[25], automation [26].

IV. MAIN FINDINGS

In this section, each topic presents the findings of a
research sub-question, highlighting evidences gathered from
the data extraction process. These results populate the
classification scheme, which evolves while doing the data
extraction. It is important to mention that this study is not
going to enumerate all the references we found, as it makes
no sense at all to list 1440 references. Instead, we are going
to choose sample references to demonstrate our results.

Our first results are shown in Figure 3, which presents
the distribution of papers according to Facet 1 – Classes of
research. As can be seen, there is a majority number of
Solution Proposals, which indicates that there are many
proposals yet to be validated. The number of Validation and
Evaluation Research together represents about one third of
those proposals, which means that a representative number
of proposals are somehow tested in industry and/or academy.

182Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 200 / 729

Figure 3. Distribution of papers by classes of research.

A. Techniques, Methods and/or Processes for Handling

DSLs

Several techniques, methods and/or processes could be
found during the execution of this mapping study. Methods
for software construction using generative techniques are not
new as we can see in [27], although they did not directly
mention the construction of DSLs.

At an abstract level, a language is a means of
communication; in the case of computing that
communication is generally between a human and a
machine. In order to be usable, a language needs to have a
way that participants can share communications (syntax) and
an agreed shared meaning (semantics). Languages may form
parts of larger languages (e.g. the sub-part of English used
only in computing could be detached and reattached to the
main language); they may be parameterisable (e.g. American
and British English can be seen as variations on the single,
abstract, language English); they may have variable syntaxes
(e.g. Serbian is written in both the Cyrillic and Latin
alphabets); and so on [28].

One of the processes for handling DSL catalogued by this
mapping study is called Language Factories [28]. Language
Factories break languages down into components, including
the following parts:

 Abstract syntax: The single definition of its
Abstract Syntax Tree (AST).

 Concrete syntax(es) and syntactic mapping: A
definition of its concrete syntax(es) specified as e.g.
a context free grammar, and a mapping from that
concrete syntax to the abstract syntax.

 Semantic aspect(s): Each semantic aspect defines (a
possibly incomplete part of the) semantics. Semantic
aspects may overlap with each other (e.g. an
operational and denotational semantics) or describe
completely different elements of the semantics (e.g.
semantics of language types and semantics for text
editors supporting tool-tips).

 Constraints: Describes constraints on how the
language can be composed with others (both in
terms of what the component provides, and what it
requires of other components).

These parts of language development could help us in
citing the findings of this study. The development of formal
DSLs contains concepts of metamodels or grammars

(syntax) [29], [30], context conditions (static analysis and
quality assurance) as well as possibilities to define the
semantics of a language [31]. Many references highlight
techniques directly related to compiler construction [11],
[32], [33]. Along with the concept of DSL, we catalogued
some publications describing DSMLs and its peculiarities
[34]. Over the last few decades, DSLs have proven efficient
for mastering the complexities of software development
projects. The natural adaptation of DSLs to the model-driven
technologies has in turn established domain-specific
modeling languages (DSMLs) as vital tools for enhancing
design productivity.

A widespread approach to the design of a DSML is to
make use of the so-called profile mechanisms and to reuse
the UML metamodel as the base language. By extending
UML elements with stereotypes and their attributes, it is
possible to define new concepts to better represent elements
of a domain. Despite the ever increasing number of profiles
defined and successfully applied in many applications.

The technique of UML profile is mentioned in 21
publications of our catalogue, as for example, [34–36]. We
noticed that many of those techniques are well supported by
tools, as we exemplify in the corresponding section.

We found quite a large number of techniques, methods
and/or processes as can be seen in Figure 4. These are some
examples of techniques for creating new DSLs: [37–39]. A
total number of 160 publications mention some topic related
to DSL creation, 69 other publications mention DSML
creation and 53 mention embedded DSL creation.

Among different methods/processes for creating [40],
implementing [41] and evolving [42], [43] a DSL, one of the
methods that caught attention was the one that mentions
directly the concept of Language-Oriented Programming
[44] or even DSL oriented software engineering. The
authors’ fundamental principle is promoting the use of the
right domain specific tool for each problem, instead of some
universal tool coupled with a way of working that tries to
wrap it so that it becomes usable in various contexts. The
primary meta-tool promoted in [44] is usage of high level,
strictly domain specific languages, based on formal concepts
used and widely understood by domain experts who may
have limited or no software engineering knowledge. This
concept of language-oriented programming is fully aligned
with other similar concept called Language Factories [28],
already mentioned.

Figure 4. Distribution of papers by DSL research type.

201

215

1142

29

28

105

0 200 400 600 800 1000 1200

Validation Research

Evaluation Research

Solution Proposal

Philosophical Paper

Opinion Paper

Experience Paper

Distribution of papers by classes of research

151

337

111

125

549

170

7

29

0 100 200 300 400 500 600

Tools

Technique

Method or Process

Internal DSL

External DSL

DSML

DSAL

ADL

Distribution of papers by DSL Research Type

183Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 201 / 729

Moreover, other relevant aspect identified in this study
involves DSL integration/composition, as shown in [45–47].
Development of and tooling for a single DSL is well-studied,
but surprisingly little is known about the interplay of
different DSLs in a single system. Multiple DSLs are
required when moving from toy examples to real enterprise
applications. Methods and tool support are needed if multiple
DSL development is to succeed. One of these methods is
described in [48]. The method specifically tackles the
problem of overlapping concerns between different DSLs. It
has three steps: 1) Identification, 2) Specification, and 3)
Application. The purpose of the Identification step is to
uncover the overlaps between different languages and
identify connections among them. The Specification step
encodes these connections in a way that will make them
amenable to various analyses. The last step of the method is
Application where the encoded connections from the
previous two steps are used. The authors also provide tools
and case studies for using their method.

B. Domain-Specific Languages and their Respective

Domains

As can be seen in Figure 5, several DSLs were
catalogued according to their domain. We separated the
studies that simply report the usage of a DSL in two
categories: external DSL and internal (embedded DSL). For
each embedded DSL, we also identified in which technology
it was implemented. The most common technology in which
DSLs are embedded is Haskell with 46 concurrencies, as for
example in [49]. However many other host languages are
used, such as Java, C/C++, Ruby, Scala, SmallTalk, Python,
Prolog, XML and even some unpopular languages like
Clean, Galois, Dylan and Curry.

Figure 5. Distribution of papers highlighting top 15 domains.

Different types of DSLs have been identified other than
the ones we previously knew. We identified FSML, ADL
and DSAL.

A Framework-Specific Modeling Language (FSML) [50]
is a kind of Domain-Specific Modeling Language that is
used for modeling framework-based software. FSMLs enable
automated round-trip engineering over non-trivial model-to-
code mappings and thereby simplify the task of creating and
evolving framework-based applications.

An Architecture Description Language (ADL or ADSL)
[51] is a language that directly expresses a system’s
architecture. In this sentence, “directly” means that the
language’s abstract syntax contains constructs for all the
ingredients of the conceptual architecture. Developers can
thus use the language to describe a system on the
architectural level.

A Domain-Specific Aspect Language (DSAL) [52] is a
custom language that allows special forms of crosscutting
concerns to be decomposed into modularized constructs.
Examples of domain-specific aspect languages include
languages for dealing with coordination concerns, object
marshaling concerns, and class graph traversal concerns.

Many different domains that make use of DSL could be
identified in our study. The most popular domain was the
horizontal domain of web applications, in which several
publications states the use of web services, and terms like
services composition, services orchestration and services
mash up are common. Figure 6 shows a full cross reference
view of the DSL research type and their respective domains.

In this context, web services composition refers to the
creation of new (web) services by combining functionalities
provided by existing ones. A number of domain-specific
languages for service composition have been proposed, with
consensus being formed around a process-oriented language
known as WS-BPEL (or BPEL). The kernel of BPEL
consists of simple communication primitives that may be
combined using control-flow constructs expressing
sequence, branching, parallelism, synchronization, etc.
Some examples of BPEL identified in this study: [53–55].

C. Tools

Tools play an essential role in software engineering and it
is not different when we are talking doing language
engineering. Our study identified 151 manuscripts that are
related to DSL tools.

Some studies do not actually describe a new tool, but
discuss about other tools as in [56] or just make use of a set
of tools and report the experience as in [57]. Although, there
are few studies comparing DSL tools, we were able to
identify two of them as can be seen in [8], [58].

Observing the available publications, we could identify 3
subcategories of tools:

 Tools for using DSLs: this type of tool is actually
the more comfortable for the user once he/she is
supposed to be familiarized with the domain being
manipulated. No knowledge about language
engineering or domain engineering is necessary for
using this type of tool, as well as it is projected be
used by domain experts. A good example listed in
our study is the tool Scratch [59], appropriated for
introductory programming courses.

 Tools for DSL creation (specification): these are a
more intuitive way of creating compilers. At this
level, the tool is nothing more than a compiler of
compilers and, in the end of the process of DSL
creation, there will be no integration with other
software engineering tools (IDEs), pretty printer,

141

54

38

27

36

28

59

54

91

67

51

26

31

81

75

0 20 40 60 80 100 120 140 160

Web

Visual Language

Testing

Simulation

Security

Real-time Systems

Parallel Computing

Others

Network

Low-level Software

Embedded Systems

Education

Dynamic Systems

Data Intensive Apps

Control Systems

Distribution of papers highlighting top 15 domains

184Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 202 / 729

Figure 6. DSL Research Type VS Top 15 Domains.

code assistant and so on. An example of this type of
tool in our study is JTS (Jakarta Tool Suite) [60].

 Language workbench: these tools support DSL
creation not just in terms of parsing and code
generation but also in providing a better editing
experience for DSL users. In particular, language
workbenches let a DSL author create custom DSL
editors of similar power to modern IDEs. Language
workbenches are still in their early days, but if their
potential is realized, they could change the face of
programming [10]. Our study identified some
examples of language workbenches: XText [61],
MetaEdit+ [62], Spoofax [63], and MPS JetBrains
[64].

Another way of classifying tools is considering textual
and visual languages as described in [65]. Instead, we
decided to try other classification to highlight the real power
of language workbenches. Unfortunately, the number of
publications regarding language workbenches is still low.
However, some relevant studies have been published such as
[64–66].

V. THREATS TO VALIDITY

There are some threats to the validity of our study. First
one is regarding our set of research questions. The set we
defined might not have covered the whole DSL research
field, mainly because language implementation in general
overlaps other several research fields, for example, model-
driven approaches. As we considered this as a feasible threat,
we had several discussion meetings and decided to use
questions as broad as possible. This way, we knew that the
number of primary studies would be bigger but there would
be a smaller chance of leaving any important study out of
this MS.

In addition, it is possible that we have not chosen the
most appropriate keywords. In general, several research
fields that use computer science as a mean to solve problems
also use DSLs to provide practical solutions where the
domain experts can be more effectively involved. However,
these types of research and their associated publications may
not directly mention DSL keywords. To mitigate this threat

we added the terms “generative programming” and “domain-
specific modeling language”, although we noticed that rarely
the term DSL is left off completely.

Other two possible threats to the validity of our study are:
Search engines providing incoherent information in BibTeX
and, to mitigate this threat, we developed a tool to extract
BibTeX information which considers the peculiarities of
each search engine, reducing the number of possible
mistakes; and we may have not selected the most
representative studies but, to mitigate this threat, we revised
the paper selection spreadsheet in pairs until we reached a
common sense.

VI. CONCLUDING REMARKS

The main motivation for this work was to investigate the
state-of-the-art in engineering DSLs, through systematically
mapping the literature in order to determine what issues have
been studied, as well as by what means, and provide a guide
to aid researchers in planning future research.

After performing this mapping study, we catalogued
1440 relevant studies from an initial set of 4450, which
helped us to investigate several approaches regarding
different aspects of DSL engineering. Our findings could
show which are the domains where DSLs are most suitable.
For instance, four domains of applications draw our
attention, as following (with the respective number of
publications): Web (141), Network (91), Data Intensive Apps
(81), and Control Systems (85). In addition, we were able to
catalogue which types of DSL are being created
(internal/external DSL, DSML, ADL, DSAL), we listed
several techniques, methods/processes to handle DSL, and
we identified different tools to create and maintain DSLs,
including language workbenches.

Moreover, in Figure 6, this study presents a bubble chart
with a full cross reference view of DSL research types and
their respective domains. This way, it is easy to identify
which areas in this research field have been deeply explored
and which are lacking attention from academy/industry with
only a few publications listed.

In our future agenda, we will investigate more deeply the
area of language workbenches through a SR, gathering even

47 60 19 5 16 51 60 44 10 32 17 21 22 92 32

2 7 4 4 6 11 10 3 2 3 4 8 10

3 5 2 7 2 5 3 6 2 7 16 16 4

6 5 1 1 3 1 2 8 6 2

6 3 4 6 3 2 1 3 1 3 4 14 10

4 7 4 6 1 2

1 1

20 11 5 4 18 5 8 2 7 2 5 5 26 8

Domains

DSL Research Type VS Top 15 Domains

External DSL

Internal DSL

Techniques

Methods/Processes

Tools

ADL

DSAL

DSML

Control
Systems

Data Intensive
Apps

Dynamic
Systems

Education Embedded
Systems

Low-level
Software

Network Parallel
Computing

Real-time
Systems

Security Simulation Testing Visual
Language

Web Others

185Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 203 / 729

more evidence of the area. Moreover, we intend submit an
extended version of this study to a journal because the page
limit here is restraining us to present more details.

ACKNOWLEDGMENTS

This work was partially supported by the National
Institute of Science and Technology for Software
Engineering (INES [67]), funded by CNPq and FACEPE,
grants 573964/2008-4, APQ-1037-1.03/08 and APQ-1044-
1.03/10 and Brazilian Agency (CNPq processes number
475743/2007-5 and 140060/2008-1).

REFERENCES

[1] M. Fowler, Domain-Specific Languages, 1st ed. Addison-Wesley

Professional, 2010, p. 640.

[2] M. Mernik, J. Heering, and A. Sloane, “When and how to develop

domain-specific languages,” ACM Computing Surveys (CSUR), vol.

37, no. 4, pp. 316–344, 2005.

[3] D. Ross, “Origins of the APT language for automatically

programmed tools,” ACM SIGPLAN Notices, vol. 13, no. 8, pp. 61–

99, 1978.

[4] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic

mapping studies in software engineering,” in 12th International

Conference on Evaluation and Assessment in Software Engineering,
2008, pp. 71–80.

[5] P. J. Landin, “The Next 700 Programming Languages,”

Communications of the ACM, vol. 9, no. 3, pp. 157–166, 1965.

[6] J. Bentley, “Programming pearls: little languages,” Communications

of the ACM, vol. 29, no. 8, pp. 711–721, 1986.

[7] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages:

An Annotated Bibliography,” ACM SIGPLAN Notices, vol. 35, no.

6, pp. 26–36, Jun. 2000.

[8] N. Vasudevan and L. Tratt, “Comparative Study of DSL Tools,”

Electronic Notes in Theoretical Computer Science, vol. 264, no. 5,

pp. 103–121, Jul. 2011.

[9] B. Kitchenham, “Guidelines for performing systematic literature

reviews in software engineering, version 2.3,” Keele University,

EBSE Technical Report. EBSE-2007-01, 2007.

[10] M. Fowler, “A pedagogical framework for domain-specific

languages,” Software, IEEE, vol. 26, no. 4, pp. 13–14, 2009.

[11] T. R. Henry, “Teaching compiler construction using a domain
specific language,” ACM SIGCSE Bulletin, vol. 37, no. 1, p. 7, Feb.

2005.

[12] J. Munnelly and S. Clarke, “ALPH: a domain-specific language for
crosscutting pervasive healthcare concerns,” in Proceedings of the

2nd workshop on Domain specific aspect languages, 2007, p. 4–es.

[13] P. Barron and V. Cahill, “YABS: a domain-specific language for
pervasive computing based on stigmergy,” in Proceedings of the 5th

international conference on Generative programming and

component engineering - GPCE ’06, 2006, pp. 285–294.

[14] F. Jacob, “CUDACL+: a framework for GPU programs,” in

Proceedings of the ACM international conference companion on

Object oriented programming systems languages and applications
companion, 2011, pp. 55–58.

[15] A. Manjunatha, A. Ranabahu, A. Sheth, and K. Thirunarayan,

“Power of Clouds in Your Pocket: An Efficient Approach for Cloud
Mobile Hybrid Application Development,” in 2010 IEEE Second

International Conference on Cloud Computing Technology and

Science, 2010, pp. 496–503.

[16] M. Bordignon, U. P. Schultz, and K. Stoy, “Model-based kinematics

generation for modular mechatronic toolkits,” in Proceedings of the

ninth international conference on Generative programming and
component engineering, 2010, pp. 157–166.

[17] I. Ceh, M. Crepinsek, T. Kosar, and M. Mernik, “Ontology driven

development of domain-specific languages,” Computer Science and
Information Systems, vol. 8, no. 2, pp. 317–342, 2011.

[18] P. Moreno-Ger, R. Fuentes-Fernández, J.-L. Sierra-Rodríguez, and

B. Fernández-Manjón, “Model-checking for adventure videogames,”
Information and Software Technology, vol. 51, no. 3, pp. 564–580,

2009.

[19] M. Amor, A. Garcia, and L. Fuentes, “Agol: An aspect-oriented
domain-specific language for mas,” in Proceedings of the Early

Aspects at ICSE Workshops in AspectOriented Requirements

Engineering and Architecture Design, 2007, pp. 4–11.

[20] P. Sawyer, N. Bencomo, D. Hughes, P. Grace, H. J. Goldsby, and B.

H. C. Cheng, “Visualizing the Analysis of Dynamically Adaptive

Systems Using i* and DSLs,” in Second International Workshop on
Requirements Engineering Visualization REV, 2007, pp. 1–10.

[21] T. Antao, I. Hastings, and P. McBurney, “Ronald: A Domain-

Specific Language to study the interactions between malaria
infections and drug treatments,” in International Conference on

Bioinformatics Computational Biology, 2008, pp. 747–752.

[22] H. Behrens, “MDSD for the iPhone Developing a Domain-Specific
Language and IDE Tooling to produce Real World Applications for

Mobile Devices,” in Proceedings of the ACM international

conference companion on Object oriented programming systems
languages and applications companion, 2010, pp. 123–128.

[23] X. Amatriain and P. Arumi, “Frameworks Generate Domain-
Specific Languages: A Case Study in the Multimedia Domain,”

IEEE Transactions on Software Engineering, vol. 37, no. 4, pp. 544–

558, 2011.

[24] S. Michels and R. Plasmeijer, “iTask as a new paradigm for building

GUI applications,” in Proceedings of the 22nd international

conference on Implementation and application of functional
languages (IFL’10), 2010, pp. 153–168.

[25] C. Kulkarni, G. Brebner, and G. Schelle, “Mapping a domain

specific language to a platform FPGA,” in Proceedings of the 41st
annual conference on Design Automation DAC 04, 2004, pp. 924–

927.

[26] M. Jiménez, F. Rosique, P. Sánchez, B. Álvarez, and A. Iborra,
“Habitation: A Domain-Specific language for home automation,”

Software, IEEE, vol. 26, no. 4, pp. 30–38, 2009.

[27] J. M. Neighbors, “The Draco approach to Constructing Software
from Reusable Components,” IEEE Transactions on Software

Engineering, vol. 10, no. 5, pp. 567–574, 1984.

[28] T. Clark and L. Tratt, “Language factories,” in Proceeding of the
24th ACM SIGPLAN conference companion on Object oriented

programming systems languages and applications - OOPSLA ’09,

2009, pp. 949–955.

[29] H. Meng, “Semiautomatic acquisition of semantic structures for

understanding domain-specific natural language queries,” IEEE

Transactions on Knowledge and Data Engineering, vol. 14, no. 1,

pp. 172–181, 2002.

[30] C. Brabrand and M. I. Schwartzbach, “The metafront system: Safe

and extensible parsing and transformation,” Science of Computer
Programming, vol. 68, no. 1, pp. 2–20, Aug. 2007.

[31] J. Evermann and Y. Wand, “Toward formalizing domain modeling

semantics in language syntax,” IEEE Transactions on Software
Engineering, vol. 31, no. 1, pp. 21–37, Jan. 2005.

[32] K. Kennedy et al., “Telescoping Languages: A System for

Automatic Generation of Domain Languages,” Proceedings of the
IEEE, vol. 93, no. 2, pp. 387–408, Feb. 2005.

[33] C. Consel and F. Latry, “A generative programming approach to

developing DSL compilers,” in Fourth International Conference on
Generative Programming and Component Engineering (GPCE),

2005, pp. 29–46.

[34] F. Lagarde, H. Espinoza, F. Terrier, C. André, and S. Gérard,
“Leveraging Patterns on Domain Models to Improve UML Profile

Definition,” in FASE’08/ETAPS'08 Proceedings of the Theory and

186Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 204 / 729

practice of software, 11th international conference on Fundamental

approaches to software engineering, 2008, vol. 4961, pp. 116–130.

[35] T. Ritala and S. Kuikka, “UML Automation Profile: Enhancing the

Efficiency of Software Development in the Automation Industry,” in

5th IEEE International Conference on Industrial Informatics, 2007,
pp. 885–890.

[36] I. Weisemöller and A. Schürr, “A Comparison of Standard

Compliant Ways to Define Domain Specific Languages,” in
ACM/IEEE 10th International Conference On Model Driven

Engineering Languages And Systems (MoDELS 2007), 2008, pp.

47–58.

[37] F. Javed, M. Mernik, and A. Sprague, “Incrementally inferring

context-free grammars for domain-specific languages,” in

Proceedings of the Eighteenth International Conference on Software
Engineering and Knowledge Engineering - SEKE’06, 2006, pp. 363–

368.

[38] H. Krahn, B. Rumpe, and S. Völkel, “Integrated definition of
abstract and concrete syntax for textual languages,” in 10th

International Conference Model Driven Engineering Languages and

Systems (MoDELS 2007), 2007, pp. 286–300.

[39] R. T. Lindeman, L. C. L. Kats, and E. Visser, “Declaratively

defining domain-specific language debuggers,” in Proceedings of

the 10th ACM international conference on Generative programming
and component engineering - GPCE ’11, 2011, pp. 127–136.

[40] R. Martinho, J. Varaj o, and D. Domingos, “Using the semantic web
to define a language for modelling controlled flexibility in software

processes,” IET Software, vol. 4, no. 6, p. 396, 2010.

[41] B. Selic, “A systematic approach to domain-specific language design
using UML,” in Proc. 10th IEEE Int’l Symp. Object and

Component-Oriented Real-Time Distributed Computing, 2007, pp.

2–9.

[42] L. Tratt, “Evolving a DSL implementation,” in ICSE ’08

Proceedings of the 30th international conference on Software

engineering, 2008, pp. 425–441.

[43] S. Wenzel and U. Kelter, “Analyzing model evolution,” in

Proceedings of the 13th international conference on Software

engineering - ICSE ’08, 2008, pp. 831–834.

[44] A. Vajda and J. Eker, “Return to the language forrest,” in

Proceedings of the FSE/SDP workshop on Future of software

engineering research - FoSER ’10, 2010, pp. 389–392.

[45] H. Krahn, B. Rumpe, and S. Völkel, “MontiCore: a framework for

compositional development of domain specific languages,”

International Journal on Software Tools for Technology Transfer,
vol. 12, no. 5, pp. 353–372, 2010.

[46] M. Brambilla, P. Fraternali, and M. Tisi, “A Transformation

Framework to Bridge Domain Specific Languages to MDA,” in
ACM/IEEE 11th International Conference on Model Driven

Engineering Languages and Systems (MoDELS 2008), 2009, pp.

167–180.

[47] E. Wyk and E. Johnson, “Composable Language Extensions for

Computational Geometry: A Case Study,” in 2007 40th Annual

Hawaii International Conference on System Sciences (HICSS’07),
2007, pp. 258–267.

[48] H. Lochmann and A. Hessellund, “An integrated view on modeling

with multiple domain-specific languages,” in Proceedings of the
IASTED International Conference Software Engineering SE 2009,

2009, pp. 1–10.

[49] P. Thiemann, “An embedded domain-specific language for type-safe
server-side web scripting,” ACM Transactions on Internet

Technology, vol. 5, no. 1, pp. 1–46, Feb. 2005.

[50] M. Antkiewicz, K. Czarnecki, and M. Stephan, “Engineering of
Framework-Specific Modeling Languages,” IEEE Transactions on

Software Engineering, vol. 35, no. 6, pp. 795–824, Nov. 2009.

[51] M. Voelter, “Architecture as Language,” IEEE Software, vol. 27, no.

2, pp. 56 – 64, 2010.

[52] M. Shonle, K. Lieberherr, and A. Shah, “XAspects: an extensible

system for domain-specific aspect languages,” in Companion of the

18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications - OOPSLA’03,

2003, pp. 28–37.

[53] S. Brahe and B. Bordbar, “A pattern-based approach to business
process modeling and implementation in web services,” in

ICSOC’06 Proceedings of the 4th international conference on

Service-oriented computing, 2007, pp. 166–177.

[54] W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and S. Dustdar,

“An integrated approach for identity and access management in a

SOA context,” in Proceedings of the 16th ACM symposium on
Access control models and technologies - SACMAT’11, 2011, pp.

21–30.

[55] J. Boubeta-Puig, I. Medina-Bulo, and A. García-Domínguez,
“Analogies and Differences between Mutation Operators for WS-

BPEL 2.0 and Other Languages,” in 2011 IEEE Fourth International

Conference on Software Testing, Verification and Validation
Workshops, 2011, pp. 398–407.

[56] D. Spinellis, “The Tools We Use,” IEEE Software, vol. 24, no. 4, pp.

20–21, Jul. 2007.

[57] T. Kosar, M. Mernik, and P. E. M. Lopez, “Experiences on DSL

Tools for Visual Studio,” in 2007 29th International Conference on
Information Technology Interfaces, 2007, pp. 753–758.

[58] M. Freudenthal, “Using DSLs for developing enterprise systems,” in

Proceedings of the Tenth Workshop on Language Descriptions Tools
and Applications, 2010, pp. 11:1–11:7.

[59] M. Resnick et al., “Scratch: Programming for All,” Communications

of the ACM, vol. 52, no. 11, p. 60, Nov. 2009.

[60] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: tools for

implementing domain-specific languages,” in Proceedings. Fifth

International Conference on Software Reuse, 1998, pp. 143–153.

[61] M. Eysholdt and H. Behrens, “Xtext - Implement your Language

Faster than the Quick and Dirty way,” in Proceedings of the ACM

international conference companion on Object oriented
programming systems languages and applications companion -

SPLASH’10, 2010, pp. 307–309.

[62] R. Pohjonen, “Metamodeling made easy–metaedit+ (tool
demonstration),” in Generative Programming and Component

Engineering (GPCE 2005), 2005, pp. 442–446.

[63] L. C. L. Kats and E. Visser, “The spoofax language workbench,”
ACM SIGPLAN Notices, vol. 45, no. 10, p. 444, Oct. 2010.

[64] M. Voelter, “Embedded software development with projectional

language workbenches,” in Proceedings of the 13th international
conference on Model driven engineering languages and systems

Part II (MoDELS 2010), 2010, pp. 32–46.

[65] B. Merkle, “Textual modeling tools: overview and comparison of
language workbenches,” in Proceedings of the ACM international

conference companion on Object oriented programming systems

languages and applications companion - SPLASH ’10, 2010, pp.
139–148.

[66] M. Völter and E. Visser, “Language extension and composition with

language workbenches,” in Proceedings of the ACM international
conference companion on Object oriented programming systems

languages and applications companion - SPLASH ’10, 2010, pp.

301–304.

[67] National Institute of Science and Technology for Software

Engineering (INES). Available in: www.ines.org.br. Last accessed in

September, 2012.

187Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 205 / 729

Specifying and Designing Exception Handling with FMEA

Tsuneo Nakanishi, Kenji Hisazumi and Akira Fukuda
Faculty of Information Science and Electrical Engineering

Kyushu University
744 Motooka, Nishi, Fukuoka 819-0395, Japan
Email: {tun, nel, fukuda}@f.ait.kyushu-u.ac.jp

Abstract—This paper proposes a methodology to specify
and design exception classes and exception handling codes
used in the try-catch-finally exception handling control
structure, which is available in C++, Java and similar program-
ming languages. Poorly described specifications of exceptional
operations cause ad-hoc, individual dependent use of the
try-catch-finally exception control structures and fail in
poorly designed exception classes and duplicated codes in the
exception handling codes. Therefore, the methodology employs
HAZOP (hazard and operability analysis) and FMEA (failure
modes and effects analysis) to specify the exceptional operations
in a consistent manner. HAZOP is used to find failure modes
of the specified normal operations and then FMEA is applied
to the failure modes to specify their countermeasures (namely,
exception handling). Commonality and variability analysis of
the specified countermeasures is performed. The result of this
analysis is used to design exception classes and exception
handling codes, which leads disciplined use of the exception
handling control structure and elimination of duplicated codes
in exception handling.

Keywords-FMEA; HAZOP; exception handling; commonality
and variability analysis

I. I NTRODUCTION

The system required higher safety and reliability must
provide valid behaviors, even if it cannot provide the spec-
ified normal services due to failures. The system should
avoid occurrence of anticipated failures as much as possible.
Furthermore, if a failure occurs unfortunately, the system
should detect its occurrence and localize, compensate, or
mitigate negative effects brought by the failure to minimize
the damage.

Such exceptional services are realized in a valid and
correct manner through a sound development process, espe-
cially in large and complicated systems. Exceptional services
must be analyzed, specified, designed, implemented and
then tested, as normal services are realized so. Apart from
distinguishing normal and exceptional services explicitly in
development, system behaviors on failures are usually spec-
ified to a greater or lesser extent during requirements and
specifications phase. However, it is impossible to identify
failures sufficiently that will occur at the component level,
since the system is not decomposed at all at this phase. As
the system is refined and decomposed in later phases, more
design decisions are made and more failure modes become
visible. Countermeasures to the failure modes identified in

later phases must be studied and specified. Their specifi-
cations must be integrated in the system specification as
exceptional services. We should keep it in mind that two
thirds of system failures are due to design faults hidden
in exception handling that occupies over two thirds of the
system [1].

Exceptional services tend to be specified insufficiently in
immature development sites. They are often decided individ-
ually by designers or programmers. That brings duplicated
and/or irregular design of exceptional operations as well as
a considerable amount of development rework. Furthermore,
that will cause large scale modification in exceptional opera-
tions in case we enhance the existing system with additional
functions.

The similar problem occurs also in implementation phase.
The try-catch-finally statement is an exception han-
dling control structure available in C++, Java and other
similar programming languages. This exception handling
control structure contributes to increase readability and
reusability of exception handling codes as long as its usage is
well disciplined. However, if exceptional operations are not
specified and designed in a systematic manner, the exception
handling control structure tends to be used in an ad-hoc,
individually dependent manner. Sometimes, exceptions are
ignored without taking responsible actions, although they
should be processed or transferred to the caller. Absence of
comprehensive view on exception handling fails in distribu-
tion of code clones doing the almost same but a little bit
different things in the exception handling control structure.
Moreover, poorly designed exception classes make exception
handling chaotic.

This paper presents a methodology to specify exceptional
operations at the class member function level and defines
exception classes for thetry-catch-finally exception
handling control structure. The proposed methodology em-
ploys HAZOP (Hazard and Operability Analysis) [2] and
FMEA (Failure Modes and Effects Analysis) [3]. HAZOP
is a risk analysis method to identify risks to the system and
its stakeholders brought by the system under consideration
when a concerned property deviates from its intended extent.
FMEA is a failure analysis method to study countermeasures
to failures of the system under consideration. The proposed
method identifies failures of the normal operation with HA-

188Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 206 / 729

ZOP and then, studies countermeasures to the failures with
FMEA. FMEA establishes comprehensive view on exception
handling and helps consistent and disciplined design of
exception handling. Moreover, the proposed methodology
performs commonality and variability analysis of the coun-
termeasures, which the authors believe the novel idea in
the field of exception handling. Commonality and variability
analysis is a technique that has been commonly performed
in software product line engineering [4] to separate com-
mon and variable structures and behaviors among products.
Introduction of this idea into exception handling contributes
to eliminate duplicated codes in exception handling codes
for different exceptions and design well-structured exception
classes.

The paper is organized as follows: Section 2 describes
HAZOP and FMEA and its application to software. Section
3 gives a brief description on thetry-catch-finally
exception handling control structure of C++, Java and similar
programming languages. Section 4 presents the proposed
methodology with an example. Section 5 describes related
works. Section 6 concludes the paper.

II. HAZOP AND FMEA

HAZOP [2] is a risk analysis method to identify possible
risks to the system and its stakeholders, which was originally
used in chemical process engineering. In HAZOP, risks are
identified by drawing up hazardous scenarios caused when a
concerned property of the system such as temperature, pres-
sure, velocityetc. deviates from its intended extent. Guide
words are applied to the properties to facilitate imagination
of hazardous scenarios;more, less, none, reverse, andother
than are examples of the guide words. Countermeasures to
the hazardous scenarios are studied. The result of HAZOP
is summarized in the tabular format.

FMEA [3] is a failure analysis method used to assess and
improve reliability and safety of the system. FMEA is so
generic that it has been used (maybe, more than HAZOP)
in various industries such as aviation, space, automotive,
nuclearetc. to develop and operate safety critical systems
for several decades.

In FMEA, various stakeholders of the system come to-
gether; identify failure modes for each component of the
system; analyze what negative effects will be brought to
the component, the subsystem, and/or the system for each
failure mode; and study countermeasures to compensate or
mitigate the effects. Moreover, for each failure mode of
the component, the stakeholders evaluate criticality of the
negative effects and, based on the evaluation, prioritize the
countermeasures to be realized. The criticality is basically
evaluated in terms of probability of failure mode occurrence
and severity of the negative effects. FMEA with this prob-
ability and severity evaluation is sometimes referred to as
FMECA (Failure Modes, Effects, and Criticality Analysis).
(See [5], [6], for some methods of criticality evaluation in

FMECA.) The result of FMEA is also summarized in the
tabular format.

Since FMEA is inherently a bottom-up analysis method
starting from failure modes of the component, it may seem
impossible to apply FMEA to the system extent until the
system is completely decomposed into the components.
However, it is absolutely unreasonable for large and compli-
cated systems to perform FMEA and modify the system to
increase reliability and safety after the system is completely
decomposed. That will force us to abandon a large part
of detailed design artifacts, or require a huge amount of
development rework to satisfy non-functional requirements
such as performance or for other reasons. Therefore, FMEA
has evolved from a simple, component oriented method
toward a process oriented method that performs analysis
at various granularity of system decomposition along with
stepwise refinement of the system. That is, FMEA is applied
to each subsystem after decomposition of the system first;
design of the system is improved at the subsystem level
based on its result; the subsystems are decomposed into
components; FMEA is applied to each component of the
subsystem to improve the design of the subsystem in the
similar manner.

FMEA is sometimes time-consuming. However, negative
effects to the system brought by failure modes are not fully
diverse; rather, we can observe a considerable amount of
duplication. It is possible to deal with multiple failure modes
having the identical negative effect as a group. This group
is referred to asFault Equivalent Class[7]. This concept
contributes to reduce duplicated works in analysis and the
scale of FMEA. It is reported that 12,401 failure modes are
shrinked into 1,759 failure equivalent classes in the case
study of the cabin management system of Boeing 777. The
failure modes obtained in FMEAs of different abstraction
levels are also grouped in the same failure equivalent class
if their negative effects to the system are identical. That
enables partial reuse of FMEA results performed in earlier
phases in later phases.

HAZOP and FMEA are used for similar objectives and
their results are summarized in similar tabular formats. The
proposed method uses the “deviation” concept and the idea
of guide words of HAZOP to identify failures of the normal
operation. Countermeasures to the failures are studied with
FMEA, not with HAZOP.

III. E XCEPTION HANDLING CONTROL STRUCTURE

The proposed methodology assumes use of the
try-catch-finally exception handling control
structure used in C++, Java and other similar programming
languages. This section is dedicated to remind the readers
of exception handling control structure.

These programming languages have the exception han-
dling control structure of the form shown below:

try {

189Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 207 / 729

...
}
catch (ExClass formalExInstance) {

...
}
finally {

...
}

Normal operations are implemented in thetry block,
exceptional operations are implemented in thecatch block,
and clean-up operations are implemented in thefinally
block. Each try block can follow one or morecatch
blocks with different exception classes. Thefinally block
is optional.try , catch and finally blocks can include
anothertry-catch-finally block.

If it is impossible to continue execution of thetry
block or its callee functions,throw statement shown below
should be executed:

throw actualExInstance;

Execution of thethrow statement terminates execution of
the try block. A catch block with the formal instance
(formalExInstance) of an exception class (ExClass),
which is compatible to the exception class of the thrown
actual instance (actualExInstance), is responsible for
the exception issued by thethrow statement. The processor
tries to find such acatch block out of thecatch blocks of
the currenttry block. If it is not found, the processor tries to
find acatch block to be executed out of thecatch blocks
of another try block containing the currenttry block
directly. The processor continues this backward traversal
of nestedtry blocks recursively until it finds thecatch
block to be executed. Furthermore, if thecatch block
to be executed is not found in the function, the processor
try to find it out of thecatch blocks of thetry block
containing the current invocation point in the caller. The
processor performs this backward traversal of function calls
recursively, whenever there is no moretry block to be
checked in the function. After the propercatch block is
found and executed, the processor transfers its execution to
the point immediately after the exception handling structure
having the executedcatch block and the stack frames for
the terminatedtry blocks and functions are released. The
finally block is executed whenever control leaves the
exception handling structure to which it belongs, regardless
of whether acatch block is executed or not.

The actual instance of the exception class specified in
the throw statement (actualExInstance) can be ref-
erenced in the correspondingcatch block as its formal
instance (formalExInstance). Therefore, the exception
class is used not only to distinguish exceptions but also
to pass data and control information required for exception
handling by embedding them as its attributes.

IV. SPECIFYING AND DESIGNING EXCEPTION

HANDLING WITH FMEA

In this section, we propose the methodology to specify and
design exception handling with FMEA. The methodology
assumes that the system has already been decomposed into
classes and the classes have already been designed for
normal operations.

The methodology is described below in a stepwise manner
with an example of the login form of the graphical user
terminal. A user inputs his/her name and password in the
text fields and then presses the login button on the form
shown in Figure 1 to use the terminal. A member function
Login() of classLoginForm is called on the login button
press. The member function inquires of the user DB if the
input name and password are correct by calling a member
functionAuth(username, passwd) of classUserDB .
If they are correct, the member function closes the form and
notifies its caller that the login is accepted. Otherwise, the
member function waits user’s further input of his/her name
and password without closing the form or notifies its caller
that the login is failed with closing the form.

Figure 1. Login Form

A. Describing Normal Specifications

First, we describe the normal specification of each mem-
ber function which are identified in class design. The
normal specification of a member function is a sequential
description of its internal operations from invocation to
termination where the function successfully provides its
service specified in the class specification. The steps must be
in even granularity. The step should be in active verbal form,
namely “do ...”, and should not include multiple operations.
The step can include conditional or iterative operations.
A pseudo-code describing only normal operations of the
member function can be dealt with a normal specification.

Normal specifications ofUserDB.Auth(username,
passwd) and LoginForm.Login() are shown in the
Normal Operationcolumn of Tables I and II, respectively.

B. Deriving Failure Modes

Second, we apply the methodology deriving failure
modes, which was proposed by the authors [8], to normal
specification steps in active verbal form “do ...” and look for
failure modes of each step by imaging cases where the step

190Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 208 / 729

Table I
FMEA RESULTS ONUserDB.Auth(username, passwd)

Normal Op. Failure Modes/Causes Detection Effects Countermeasures Not. to Callers
1) Checking
if the user
DB is con-
nectable.

The user DB
cannot be ac-
cessed.

The handle for
user DB ac-
cess is NULL.

I: User authentication is
impossible.

Run-Time: Throw an exception. The user DB
is not acces-
sible.

2) Reading
the password
of the user
specified
by the user
name from
the user DB.

Reading of
the user DB
is failed. /
The user DB
is locked.

The return
value and the
error code
from the DB
library

I Run-Time: Throw an exception. The user DB
is locked.

Reading of
the user DB
is failed.
/ Other
reasons

The return
value and the
error code
from the DB
library

I Run-Time: Throw an exception. The user DB
is unreadable
for a certain
reason.

The
specified
user is not
found.

The number of
the matched
records is
zero.

I Run-Time: Throw an exception. The
specified
user is not
found. + The
specified
user name

Two or more
specified
user is
found.

The number of
the matched
records is
equal to or
greater than
two.

II: The user DB is log-
ically corrupted. Further
accesses may destroy the
user DB completely and
prohibit even partial re-
covery.

Run-Time: Throw an exception. The
specified
user is
found too
much. + The
specified
user name

3) Checking
if the pass-
word is cor-
rect.

The
password is
not correct.

The password
is not equal to
one in the user
DB.

I Run-Time: Terminate the function
without authenticating the user.

Return
value: false

4) End user
authentica-
tion.

(The user is authenti-
cated successfully.)

Run-Time: Terminate the function with
authenticating the user.

Return
value: true

cannot be accomplished successfully. The methodology as-
sumes abnormal deviation of properties of objects, relation-
ships among objects and behaviors as failures. Four HAZOP
guide wordsno, less, moreandother thanare applied to the
properties to derive failure modes by their deviation. To de-
rive failure modes on behaviors, the methodology examines
properties common to all the behaviors and specific to each
behavior. The common properties are beginning time, ending
time, duration, frequency, rate, interval, orderetc.

The second normal operation step of
UserDB.Auth(username, passwd) , “Reading
the password of the user specified by the user name from
the user DB.” has a behaviorread and objectspassword,
user, user nameanduser DB. The HAZOP guide words are
applied to their properties. The properties of the behavior
read are the common ones mentioned above as well as
success or failand the number of the recordswhich are
specific to read. The properties of the objectsuser is
the number of the usersand the properties of the object
password are the number of the passwordsand length.
Table III shows candidates of failure modes found by

HAZOP application to these properties.
They are all candidates of failure modes. The candidates

which are actually hazardous are adopted as the failure
modes and listed in theFailure Modes/Causescolumn of
the FMEA table after adjustment of their terms.

Countermeasures can be different depending on the cause
of the failure. Therefore, if the abstraction level of a derived
failure mode is too high to find a single countermeasure for
the failure mode, we apply FTA [9] to the failure mode to
identify its causes and study countermeasures depending on
the causes. For example, in Table I, causes of the failure
mode “Reading of the user DB is failed.” are analyzed.
A couple of causes, “The user DB is locked.” and “Other
reasons”, are found and the countermeasures for them are
studied separately. (The countermeasures for the both causes
are same, namely, “Throw an exception.” However, note
that exception objects representing different meanings are
thrown.)

If the function calls other functions, the contents of the
Notification to Callerscolumn must be duplicated in the
Failure Modes/Causescolumn. For example, the failure

191Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 209 / 729

Table II
FMEA RESULTS ONLoginForm.Login()

Normal Op. Failure Modes/Causes Detection Effects Countermeasures Not. to Callers
1) Getting
the user
name from
the User
Namefield.

The user
name is not
specified.

I Run-Time: i) Displaying a message
telling the user name is not specified; ii)
Clearing theUser NameandPassword
fields; iii) Focusing theUser Name
field; iv) Continuing the login form.

Nothing.

Invalid
characters
are used
in the user
name.

III: The user DB will
reject login at Step 3.

(Unnecessary) Nothing.

The user
name is too
long.

III Dev. Time: Set the maximum length
of the user name field to the maximum
length of the user name.

Nothing.

2) Getting
the password
from the
Password
field.

The
password
is not given.

IV: No problem because
some users may not set
their passwords.

(Unnecessary) Nothing.

Invalid
characters
are used
in the
password.

III (Unnecessary) Nothing.

The
password
is too long.

III Dev. Time: Set the maximum length
of the password field to the maximum
length of the password.

Nothing.

3) Asking
the user DB
if login is
possible.

The user DB
is not con-
nected.

Exception
from
UserDB.Auth()

I Run-Time: i) Displaying a message
that the user DB is unavailable; ii)
Terminating the login form.

Nothing.

The user DB
is locked.

Exception
from
UserDB.Auth()

I Run-Time: i) Displaying a message
telling that the user DB is locked; ii)
Focusing the login button; iii) Contin-
uing the login form. (Because the user
DB may be unlocked later.)

Nothing.

The user
DB is not
available
for other
reasons.

Exception
from
UserDB.Auth()

I Run-Time: i) Displaying a message
telling that the user DB is unavailable;
ii) Terminating the login form.

Return
value: false

No user is
found.

Exception
from
UserDB.Auth()

I Run-Time: i) Displaying a message
telling that the user is unknown; ii)
Clearing theUser NameandPassword
fields; iii) Focusing theUser Name
field; iv) Continuing the login form.

Nothing.

Two or more
users are
found.

Exception
from
UserDB.Auth()

II Run-Time: i) Displaying a message
telling that the user DB is logically cor-
rupted; ii) Terminating the login form.

Return
value: false

Password is
not correct.

Return
value from
UserDB.Auth()

I Run-Time: i) Displaying a message
telling that password is incorrect; ii)
Clearing thePasswordfield; iii) Focus-
ing the Passwordfield; iv) Continuing
the login form.

Nothing

4) Terminat-
ing the form.

(The user accomplishes
login successfully.)

Return
value: true

192Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 210 / 729

Table III
HAZOP GUIDE WORDSAPPLICATION TO “READ” (UPPER), “U SER” (MID) AND “PASSWORD” (LOWER)

Properties Type No Guide Word Applied Guide Words
ϕ no less more other than

beginning time time instant Start reading at
right timing

Do not start read-
ing

Start reading too
early

Start reading too
late

/

ending time time instant End reading at
right timing

Do not end read-
ing

End reading too
early

End reading too
late

/

...
success/fail boolean Read

successfully
Fail in reading × × ×

of the records number Read a right
number of the
records

Read no record Read too few
records

Read too many
records

/

of the users number A right number
of the users

No user Too few users Too many users /

of the pass-
words

number A right number
of the passwords

No password Too few
passwords

Too many pass-
words

/

The length of the
password

number A right length of
the password

Null password Too short pass-
word

Too long pass-
word

/

...

modes at the third normal operation step of the operation
LoginForm.Login() in Table II are from theNotifica-
tion to Callerscolumn of theUserDB.Auth(username,
passwd) in Table I.

C. Assessing Each Failure Mode

Third, we assess each failure mode; study how to detect
the failure mode, how the failure mode brings negative
effects, how to devise countermeasures against the failure
mode, and what kind of information should be given to the
caller; and complete the FMEA table. The FMEA table for
the proposed methodology has, in addition toNormal Op-
eration and Failure Modes/Causescolumns,Detection, Ef-
fects, CountermeasuresandNotification to Callerscolumns
described below.

Detection: If the failure mode can be detected in the
member function, we describe how to do it briefly.

If the failure mode can be detected in the callee of the
member function, we describe how the callee notifies the
member function that the failure mode is detected. See
the Notification to Callerscolumn described below for the
details.

Effects: We describe how the failure mode brings negative
effects with grouping them into fault equivalent classes
described in Section 2 and assigning a sequential number
referred to asFault Identifier Number (FIN). Negative
effects which are previously described in earlier and current
phases are referenced by FINs, instead of describing the
same thing twice or more. In theEffectscolumn of Tables I
and II, negative effects appeared first time are described with
new FINs in the Roman numeral, however, ones appeared
previously are just referenced by their FINs.

Countermeasures:We describe countermeasures to the
failure mode, namely, how to avoid the failure mode and/or

how to localize, compensate or mitigate the effect brought
by the failure mode.

Various types of countermeasures are possible. Develop-
ment time countermeasures are ones taken before release of
the product, while run-time countermeasures are ones taken
after release of the product. Some of run-time countermea-
sures are executed as exception handling.

Note that the countermeasures must be subject to the
specification on the exceptional behaviors specified in earlier
phases if they are available.

Notification to Callers: We describe manners and con-
tents of notification to the caller when this member function
encounters the failure mode. This notification is not manda-
tory and should not be performed in vain to keep information
hiding and loose coupling. The notification is needed in the
following cases:

• This member function cannot manage the failure mode
within its specified responsibility.

• The caller of this member function can provide worthful
actions to localize, compensate, or mitigate the effect
of the failure mode.

• Expected reactions to the failure mode can be different
depending on the caller of this member function.

There are some manners to notify the caller of failure
mode occurrence such as the return value or reference pa-
rameters of the function, exceptions thrown by the function,
global variables, invocation of prescribed or preregistered
functions etc. The contents of the notification are data
used in exception handling and/or control information which
changes behaviors of exception handling in the caller. Note
that description in this column will appear in theDetection
column of the FMEA tables for the callers of this function.

Others: We can describe criticality, namely probability of
failure mode occurrence and severity of the negative effects,

193Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 211 / 729

for each failure mode to prioritize countermeasures to be
taken.

D. Performing Commonality and Variability Analysis of
Failure Mode Countermeasures

Fourth, we perform commonality and variability analysis
of run-time failure mode countermeasures and construct a
variability model of them. As the variability model, the pro-
posed methodology uses an extension of the feature model
[10], which is often employed in product line engineering
[4] to describe commonality and variability among products
in terms of their features.

The original feature model is a static model to represent
variability among products in the product line (or product
line variability), that is, the feature model represents how
each product can select the features to be equipped. The
variability model used in the proposed methodology repre-
sents not only product line variability but also variability in
dynamic behaviors of the system (or run-time variability),
that is, the variability model additionally represents how the
system changes its behavior in terms of the features.

The variability model represents product line variability
in an almost same manner as the original feature model:
mandatory features are represented by nodes without any
decoration, optional features are represented by ones with
decoration of the white circle, and the nodes corresponding
to a set of alternative features are grouped by the solid arc
across the edges from the nodes to their parent node. It
is also same as the original feature model that the solid
thin edge represents the feature of the parent node partially
consists of the feature of the child node and the solid
thick edge represents the feature of the parent node is
implemented by the feature of the child node. However,
generalization/specialization relationship between the fea-
tures is represented by the white arrow from the child node
corresponding to the specialized feature to the parent node
corresponding to the specialized feature, although the dotted
thin edge is used in the original feature model.

Furthermore, the variability model represents run-time
variability with symbolic extension to the original feature
model. The solid edge means that the feature of the child
node is always executed if the feature of the parent is
executed. The dotted edge means that the feature of the
child node may or may not be executed if the feature of the
parent is executed. The dotted arc across the edges means
that the features of the children of the bundled edges are
alternatively executed if the feature of the parent node of
the bundled edges is executed.

Figure 2 shows a variability model for the countermea-
sures described in Table II. The model does not include
any variability on software construction, since the example
system is not in product line development, but variability
on software execution. For example, the variability model
shows that the error message is always displayed but the

message to be displayed is alternatively selected out of
“Unknown user name”, “User DB is locked”,etc. The
variability model tells us that the input fields may not be
cleared, but if cleared, the user name field is always cleared
and the password field may or may not be cleared.

There are some reasons why the authors use this variabil-
ity model. While the class of the class diagram can represent
only structural aspect of exception handling, the feature
of the variability model can represent relating structural
and behavioral aspect of exception handling in a consoli-
dated manner. Moreover, variability modeling is a powerful
technique to facilitate separation of concerns. For example,
in Figure 2, features “Clearing fields” and “Focusing UI
Object” are modeled separately. Since this separation en-
ables independent handling of these behaviors, we can avoid
scattering of similar or duplicated codes on these behaviors
in the exception handling. The variability model can be used
also in product line development, not only in single product
development, since it inherits the properties of the original
feature model.

E. Describing Exceptional Specifications

Fifth, we describe the exceptional specification of the
member function. At the same time, we add and/or modify
the normal specification of the member function if necessary.

We classify features in the variability model intonormal
featuresexecuted as normal operations in thetry block
andexceptional featuresexecuted as exceptional operations
in the catch block. The features which terminate a se-
ries of normal operation steps for its execution should be
exceptional features. The other features can be executed as
either. After the classification, we describe the exceptional
specification relating to the exceptional features in the same
format as the normal specification. Moreover, we add and/or
modify the existing normal specification to add the normal
specification relating to the normal features identified in run-
time failure mode countermeasures.

For the example of Figure 2, we can regard all the features
in the variability model as exceptional features, since all the
behaviors relating to the features require termination of the
normal operation.

F. Designing Exception Classes

Finally, we design exception classes with referencing
variability models. The variability model, which has al-
ready been constructed for each member function of the
class, contains features that represent run-time behaviors
as countermeasures for failure modes, namely exceptional
operations, and data used in the exceptional operations.
Moreover, note that the variability model represents control
information specifying which feature should be executed
conditionally in exceptional operations.

Before designing exception classes, to reduce the number
of exception classes, variability models of member functions

194Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 212 / 729

Error Message
Focusing
UI Object

User Name
Field

Password
Field

LoginForm.Login()
Failure Effect Countermeasures

Clearing fields

User Name
Field

Password
Field

Login
Button

Terminating
the form

Empty
user name

User DB
locked

User DB
unavailable

Unknown
user

User DB
corrupted

Incorrect
password

Mandatory

Optional

Alternative

Run-Time Variability

Mandatory

Product Line Variability

Optional

Alt. Alt. Alt.

Feature Relationships

generalization/
specialization

implemented-by

consists-of

Figure 2. A Variability Model for Run-Time Failure Mode Countermeasures

should be merged and integrated if they are closely related
and share a lot of features. The merging and integration
are performed based on the names of the features. The
variability model may be required to be refactored in this
activity. For example, we have to rename the features, if they
have the same name although they have different meanings.
Moreover, we have to restructure the variability model for
integration, if the same features from different variability
models are organized in different tree structures.

We define an exception class for each integrated variabil-
ity model. The features which represent control information
changing run-time behaviors of the exceptional operations
are reduced into attributes for flagging. The features which
represent data used in the exceptional operations are reduced
into attributes. Reference and conversion of these attributes
are defined as member functions of the exception class.

The exception class reduced from the variability model
shown in Figure 2 is as follows:

class ExLoginForm : public Exception
{
public:

enum LoginFormError {
ERR_EMPTY_USER_NAME,
ERR_USERDB_LOCKED,
...

} login_form_error;
enum ClearingFields {

UserNameField = 0x01,
PasswordField = 0x02,

} clearing_fields;
enum FocusingUIObject {

UserNameField,
PasswordField,
LoginButton

} focusing_UI_object;
bool terminating;
string getErrorMessage();
...

};

In this reduction, a feature representing data or behaviors

taken alternatively such as “Error Message” and “Focusing
UI Object” is reduced to the enumeration data member. A
feature representing data or behaviors taken multiply such as
“Clearing fields” is reduced to the bit field data member. A
feature representing data or behaviors taken optionally such
as “Terminating the form” is reduced to the Boolean data
member.

Considering overheads, use oftry-catch-finally
exception handling control structure should be carefully
limited. Countermeasures can be implemented by general
control structures and variables instead of exception han-
dling control structures. If we can write the same thing
without losing readability and producing duplicated codes
in exception handling, use of general control structures is
preferable. The proposed methodology will be helpful also
in such a case to realize exception handling codes in a
consistent manner and without including duplication.

V. RELATED WORK

This work is refined from authors’ previous work [11] pre-
sented as a non-peer-reviewed, ongoing paper in Japanese.

Although FMEA was originally applied to mechanical and
hardware systems, efforts applying FMEA to software has
been continued so far [8], [12], [13], [14], [15], [16], [17].

HAZOP is an effective methodology to find possible
failure modes in a comprehensive manner. The failure mode
derivation methodology used in this work applies HAZOP
guide words to properties of behaviors and their targetting
objects [8]. The methodology is an extension of Kouno’s
work [18]. HAZOP is applied to software for UML in
Hansen’s work [19] and for state transition diagram in Kim’s
work [20], for example. Both works are for descriptions in
higher abstraction level than this work.

In this work, FTA is also used to seek for the causes of the
failure and study countermeasures depending on the causes,
in case the abstraction level of the failure mode is higher.
The approach looking for the causes from the failure mode
is taken by Lutzet al. [12] and Goddard [13], for example.

195Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 213 / 729

On the other hand, Maxionet al.presents an approach based
on the viewpoints given by fish-bone diagram that classifies
exceptional conditions into computation, hardware, input
and output, library, data, return value, external environment,
and null pointer and memory problems, which can be
abbreviated as “CHILDREN”. [21]

VI. CONCLUSION AND FUTURE WORK

In this paper, the authors proposed a methodol-
ogy to specify and design exception handling for
try-catch-finally exception handling control struc-
ture of C++, Java and other similar programming languages.

The proposed methodology applies a HAZOP based fail-
ure mode derivation method proposed by the authors to each
normal operation step of the member function. FMEA is
performed to study countermeasures to the identified failure
modes. The table produced in FMEA facilitates consistent
and disciplined design of exception handling. Commonality
and variability analysis is applied to the countermeasures
studied in FMEA. Commonality and variability analysis con-
tributes to eliminate duplicated codes in exception handling
codes. A variability model constructed by the analysis is
used to design exception classes.

The proposed methodology will be used not only for
newly development but also for refactoring of exception
handling codes in the existing system. The future work
includes large scale application of the methodology to real
applications and empirical validation of the methodology.

REFERENCES

[1] Flaviu Cristian, “Exception Handling and Tolerance of Soft-
ware Faults,” Software Fault TOlerance, M. R. Lyu, ed.,
Chapter 4, John Wiley & Sons, 1995.

[2] IEC Standard,Hazard and Operability Studies (HAZOP Stud-
ies): Application Guide, IEC 61882 ed1.0, 2001.

[3] IEC Standard,Analysis Techniques for System Reliability:
Procedure for Failure Mode and Effects Analysis (FMEA),
IEC 60812 ed2.0, 2006.

[4] Paul Clements and Linda Northrop,Software Product Lines:
Practice and Patterns, Addison-Wesley, 2001.

[5] John B. Bowles, “The New SAE FMECA Standard,”Proc.
Annual Reliability and Maintainability Symp. (RAMS) 1998,
pp. 48–53, Jan. 1998.

[6] John B. Bowles, “Fundamentals of Failure Modes and Effects
Analysis,” Tutorial Notes,Annual Reliability and Maintain-
ability Symp. (RAMS) 2003, Jan. 2003.

[7] C. Steven Spangler, “Equivalence Relations within the Fail-
ure Mode and Effect Analysis,”Proc. Annual Reliability
and Maintainability Symp. (RAMS) 1999, pp. 352–357, Jan.
1999.

[8] Tsuneo Nakanishi, Kenji Hisazumi, and Akira Fukuda, “A
Software FMEA Method and Its Use in Software Product
Line,” IEICE Technical Report, Vol. 111, No. 481, pp. 19–
24, Mar. 2012. (in Japanese)

[9] IEC Standard,Fault Tree Analysis (FTA), IEC 61025 ed2.0,
2006.

[10] Kyo-Chul Kang, Jaejoon Lee, and Patrick Donohoe, “Feature-
Oriented Product Line Engineering,”IEEE Software, Vol. 9,
No. 4, pp. 58–65, July/August 2002.

[11] Tsuneo Nakanishi, Kenji Hisazumi, and Akira Fukuda, “Spec-
ifying and Designing Exception Handling with using FMEA,”
IPSJ SIG Technical Report, Vol. 2012-SE-175, No. 14, pp. 1–
8, Mar. 2012. (in Japanese)

[12] Robyn R. Lutz and Robert M. Woodhouse, “Experience
Report: Contributions of SFMEA to Requirements Analysis,”
Proc. 2nd Int. Conf. on Requirements Engineering (ICRE ’96),
pp. 44–51, Apr. 1996.

[13] Peter L. Goddard, “Software FMEA Techniques,”Proc. An-
nual Reliability and Maintainability Symp. (RAMS) 2000, pp.
118–123, Jan. 2000.

[14] John B. Bowles and Chi Wan, “Software Failure Modes and
Effects Analysis for a Small Embedded Control System,”
Proc. Annual Reliability and Maintainability Symp. (RAMS)
2001, pp. 1–6, Jan. 2001.

[15] Dong Nguyen, “Failure Modes and Effects Analysis for Soft-
ware Reliability,”Proc. Annual Reliability and Maintainability
Symp. (RAMS) 2001, pp. 219–222, Jan. 2001.

[16] Nathaniel Ozarin, “Failure Modes and Effects Analysis dur-
ing Design of Computer Software,”Proc. Annual Reliability
and Maintainability Symp. (RAMS) 2004, pp. 201–206, Jan.
2004.

[17] Ajit Ashok Shenvi, “Software FMEA: A Learning Experi-
ence,” Proc. India Software Engineering Conf. (ISEC) 2011,
pp. 111–114, Feb. 2011.

[18] Tetsuya Kouno, “An Application of HAZOP to Risk Analysis
of Software Requirement Specification,”Proc. Japan Symp. on
Software Testing 2012, pp. 37–42, Jan. 2012. (in Japanese)

[19] Klaus M. Hansen, Lisa Wells, and Thomas Maier, “HAZOP
Analysis of UML-Based Software Architecture Descriptions
of Safety-Critical Systems,”Proc. 2nd Nordic Workshop on
the Unified Modeling Language (NWUML) 2004, pp. 59-78,
Aug. 2004.

[20] Zoohaye Kim, Yutaka Matsubara, and Hiroaki Takada, “A
Safety Analysis Method Based on State Transition Diagram,”
IEICE Trans. on Fundamentals of Electronics, Communica-
tions and Computer Sciences, Vol. J95-A, No. 2, pp. 198-209,
Feb. 2012. (in Japanese)

[21] Roy A. Maxion and Robert T. Olszewski, “Eliminating
Exception Handling Errors with Dependability Cases: A
Comparative, Empirical Study,”IEEE Trans. on Software
Engineering, Vol. 26, No. 9, Sep. 2000.

196Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 214 / 729

Orchestration Definition from Business

Specification

Charif Mahmoudi

Logics, Algorithm, Complexity Laboratory

LACL, Paris 12 University

Creteil, France

charif.mahmoudi@lacl.fr

Fabrice Mourlin

Logics, Algorithm, Complexity Laboratory

LACL, Paris 12 University

Creteil, France

fabrice.mourlin@wanadoo.fr

Abstract—The implementation of service orchestration is often

seen as a convoluted process for business analysts, lead

developers and architects. In this document, we propose a new

approach based on a continuous process starting from the

analysis phase to the architecture phase as an attempt to

standardize the implementation of service orchestration. Our

ultimate goal is to have a BPEL (Business Process Execution

Language) script which will be interpreted by an engine

residing inside a middleware generating a composition of

elements where each element can be considered as an

independent component equipped with a Web service.

Orchestration definition contains several facets such as logical,

pragmatic and architectural aspects; each of them is

complementary and the interaction between them usually

raises conflicts. In our approach, these issues are addressed

and solved by adaptation rules and the problem of adapting

the software architecture onto a physical architecture is solved

by the pragmatism method.

Keywords-SOA; Architecture; Web service orchestration;

business process design and specification

I. INTRODUCTION

The component-oriented approach has emerged and has
become widespread in the industry to meet the scalability of
information systems [1]. It reduces software costs and allows
rapid adaptation to changing business and technological
developments. It also enables software components to create
highly modular and integrated. The development of certain
parts of the information system may be too independent.

This component-oriented approach allows governing the
evolution of technical and functional information system
based on standard software. In addition, it covers all aspects
of development and life cycle of the software. With the
emergence of the component-based modeling paradigm, the
OMG (Object Management Group) did not remain inactive
and has proposed a new architecture based on MDA rules
[2]. The development has facilitated UML modeling
components. In 2001, the OMG defined the MDA approach
with the aim to facilitate the integration of applications and
make the specification of independent application
development technologies. It also sets rules for mapping the
standard specifications of different technologies [3].

UML Modeling tools generate the code source structure
of applications. There is a transformation of a logic model to

design model to the platform on the basis of design pattern
templates and code [4].

The SOA is not far away removed from the component-
oriented approach; see Peter Herzum [5]. He is one of the
first authors having clearly defined the concept of
components and component architecture. From his point of
view, there are three types of components: Components
"business process", components "business entity" that
implement a core business concept, and finally, the
component "business tool" used in various system
components. He proposed to build a system specification
based on four models. A business process model is used to
identify components known as "business process" that
manage one or more use cases. A model of "business
entities" supports one or more business processes. A model
is created to define business events. Another model is created
for the definition of business rules.

The component-oriented approach has been developed
within companies, but the purpose of sharing common
components is often wishful thinking. Projects are organized
into business lines. The application needs vary greatly over
time. The services are requested too often, and the code of
common components is duplicated and modified directly in
new applications as alternatives. Reuse requires the
establishment of specific resources such as the development
of cataloging tools, dissemination of information about the
components, creating a team to administer the transverse
components. It also requires the definition of a target
upstream of urbanization of the information system. We
present in this contribution our approach to defining
orchestration from business specification, and to mix it with
other reused components. In the next section, we explain our
design process for SOA architecture. Then, we give details
about the semantic model of our approach and pragmatic
model also. The following section is about logical model and
how we declare it. The last part is about architecture and
implementation of orchestration. Finally, we provide a case
study of our approach.

II. DESIGN PROCESS FOR SOA ARCHITECTURE

The concept of enterprise architecture management was
gradually adopted in enterprises to address the problems of
organization and urban information system. Different
methodological approaches have been developed or

197Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 215 / 729

framework to build and maintain this architecture such as
Zachman [6], [7] and TOGAF [8], [9] or EUP (Enterprise
Unified Process) [10], [11]. Our approach provides a method
for developing SOA and managing the complexity of the
enterprise by integrating the evolution of new technologies.
It is based on modeling different aspects of the system and a
process of construction and derivation of the models.
Basically, there are two views. An external view for
describing the company level: business data manipulation,
organization and business processes. An internal view can
gradually develop the system: logic model and technique to
build the software deployed on the hardware. The physical
model describes the implementation and deployment. It
extends to the logical architecture with the definition of
service components and the technical architecture design.
Our approach is providing a comprehensive urbanization of
information systems by using a semantic model and a
pragmatic model. We add to this a logical architecture with a
design of the technical architecture.

A. Several models for a given project

We start our approach by a first pre-model, which is used
to define a common vision to the various players in the
enterprise. The description languages used are UML [12] and
Business Process Modeling Notation (BPMN) [13]. The pre-
model provides a dictionary of terms in the application field,
an analysis of objectives and business needs. We identify
high-level processes and key use cases and the fundamental
business rules.

Our semantic model is intended to describe the basic
business concepts of the company. This model can be
established at two levels: The overall level contains the
definition phase of urbanization. The local business domain
contains the definition of business service. The purpose of
the construction of these models is to achieve stability of
business concepts. We build mostly by diagrams such as
UML class diagram semantics, OCL constraints. For
instance, Figure 1 provides a semantic model about bank
operations:

Figure 1. External view - business class diagram as semantics model.

Behind this kind of diagram, vocabulary is bound and a

first set of constraints is taken into account. This business
model is the knowledge of the company. This business
model acts as a common language between all company
projects. It can be built by successive iterations. In that
diagram, Semantic classes and main attributes are defined.
The life cycle of the business classes is also described.
Relations between business classes are also provided clearly.
Relations could be evolved with precise detailed information.
For instance association between Deal class and
PreClassificationCashflow class can change into a
composition under business conditions.

The different projects feed into the common semantic
repository. The difficulty of this analysis involves the
construction of an observation with no prerequisites. The aim
is to describe the business concept and not handled the
technical which has been used in existing projects. The
management of business objects needs a workflow
description. Also, we have added such diagram attached to
the fundamental business class. As an example, we give a
description of the Order Fulfillment Process of a bank
product (OFP) (Figure 2). The diagram shows that secondary
business classes can be added for describing the process. It
also focuses on the responsibilities of each step of the
workflow.

Figure 2. Workflow with partitions showing who does what work.

This global diagram provides main collaborations into
business process and precisely causality between main
events in the process. It also highlights synchronization
between processes. This automaton is generally
deterministic. Controls can be done with other workflows
and conflicts are then detected which improve our models.

Business modeling is to improve the abstract concepts.
The diagram should be simple and generic. It can anticipate
the consideration of future developments.

The repository contains semantic early different business
areas and key objects. It is enriched in with new projects. A
review of models is to perform when they are stable.

198Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 216 / 729

B. Architecture and semantics

Then, the specification of services is driven by the
business analysis. It involves business managers and
technical managers. It requires defining relationships
between the UML diagrams that were constructed. Then, all
descriptions can be observed as a multi layers diagram as
follows (Figure 3).

A business layer is based on the functional layer, this
functional layer depend on the application layer. The
implementation of this application layer is described by the
technical layer.

Figure 3. Methodology approach.

The use of four views allows traceability of the business

to the computer. It provides the logical sequence between the
business views, functional and application.

This top-down functional approach may have a
downside: how to structure the architecture of services into a
stable structure? And witch levels of abstraction in the
information system will we consider. Our answer is a dual
approach. First, learn the basic services starting from the
semantic model (Figure 4, functional view) and also
complement the services based on the principles of the
organization (Figure 4, application view): use case of the
information system and business process details.

The modeling principles presented apply with a global
reach and local levels. Of course, there are analysis and
design and the need to reorganize and streamline processes.
Use case diagrams of the information system are the business
functional requirements that must leave the system in a
consistent state. It ensures the unity of actor, unity of place,
time unit.

Figure 4. UML models used in our approach.

Our method for identifying use cases is classic. It

identifies the actors, list the types of events. Finally, we
deduce the interactions with the system. Then we structure
all the use cases to a hierarchy or order planning for a future
project.

Of course, in some projects, it is necessary to take into
account organizational or operational constraints. In this case
we show a view of the organization. It describes the process
in relation to the business organization.

Other constraints must also be considered as the
geographical dispersion of actors and business processes.
These features may require significant optimizations. For
example, the choice of appropriate new technologies can
help streamline and simplify processes. For example, the
nomadic operation belongs to that kind of constraints.

The underlying logical model is intended to specify and
organize the services of our SOA. This is accomplished by
the use of semantic diagrams (such as Figures 1 and 2). This
defines the logical architecture that will be derived within the
meaning of the Model Driven Architecture (MDA) approach
[14] in software components. The word “logical” denotes the
sense that the logic model should remain free of any
technical choice. It contains a Platform-Independent Model
(PIM) [15]. They can be derived to different technical
platforms: J2EE, .NET, ESB, Web services, etc. Our logical
architecture defines the components and services based on
semantic aspects, pragmatic aspects and geographic aspects.

Our logic model is not deprived of any technical concern.
It must produce a coherent model; this model must be
implementable effectively while respecting technical
choices.

C. Multi layer architecture

We structure our layered architecture. We distinguish a
logical level, related to semantic classes, an organization

199Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 217 / 729

level, linked to the workflow or orchestration and finally a
technical level related to the problems transverse. Our
service concept is seen as elementary grain architecture.
Services are provided at the logical level. They correspond to
elementary operations directly related to the state machine of
the main class of business concept. These operations are the
transitions of this automaton. They normally have been
specified in the semantic model.

The types of data exchanged between services must be
precisely specified. They correspond to the design pattern
DTO (Data Transfer Object) J2EE applications. It is the
pivot language used in the process orchestrations. They
reduce the number of parameters of services.

This data are formalized as classes belonging to a
mapping utility. They are grouped in a factory to make them
accessible to all services. These classes allow access to
properties using getter and setter. All instances of those
classes can be exposed through the use of context.

All components must provide at least one interface,
which is to say all the public services exposed to the outside.
The interfaces are not accessible. A component can provide
different interfaces for different tasks of the components. A
component also includes one or more data structures
combining the exchange of trade data structures internal
components. After deployment time these components will
be exposed via a component server.

Figure 5. State chart of a copy

Use cases should have been structured to eliminate any
redundancy. Each use case is then derived in an elementary
workflow where each activity is a candidate to become
distributed logical service. Basic activities correspond to
simple exchanges with users. The others are often called
business services.

III. SEMANTIC MODEL OF OUR APPROACH

Our semantic model is intended to gradually create a
stable business model describing the general business
concept business fundamentals. It corresponds to the
concepts and business objects of the project field. It is
described with UML notation: class diagrams with semantic
attributes, relations between the business concepts, business
rules that constrain them, the life cycle of the business
classes.

A. Constraints on semantics model

The requests on the semantic model are: tractability
upstream. It is useful to be able to justify the model in
relation to its inputs (functional requirements, legislation,
regulations, etc.). Other requirements relate to restitution: the
diagrams must be interpreted in natural language. We must
keep the synonyms of the terms in a thesaurus. Finally, the
model should express the semantics of the domain while
excluding of any other aspect.

Gradually, it evolves the model is documented in the
project including different aspects such as the number of
handled instances, their persistence...

The quality of such a model is assessed with reference to
classical properties. The non-coupling expresses that each
capture a single semantic entity. The homogeneity requires
that we do not aggregate various aspects of business
semantics. Sufficiency occurs when classes are all the
information. Completeness is achieved when all the relevant
features are included in the model.

This model is important because it is a communication
medium between the project partners. Moreover, it must be
easily usable by all members intervened in the project,
whether internal or not.

Constraints and business rules are encapsulated in
classes. The constraints are described as the sources of
method or attribute.

The life cycle of business objects is described using finite
state automata. Its purpose is to identify all the events
changing the state of business objects and operations of a
semantic nature. A second goal is to identify all the
disturbances affecting the cycle of the object: the trigger
events, operations performed during the transition.

B. Example of semantics model

We have studied workflow of copies of books which are
managed into a library. The library has several sites into a
town and books can be transferred from one site to another if
there are not borrowed more than eight weeks. Other
business rules are defined by business expert. This kind of
diagram (Figure 5) is an ideal support for expressing rules
and constraints because all existing cases are taken into
account.

When constraints change, such diagram catches all new
constraints, even if they involve the refactoring of the whole
diagram. Because this diagram is linked to a business class,
new methods enrich its behavior. Of course, such a
description is rich in information and can update the business
class diagram. These events are in addition to methods for
the question of the life cycle of objects. Then we created a

200Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 218 / 729

package diagram by business domain. This constitutes
around major business classes such as Library, User, Copy,
etc. The semantic model is valid by reviewing models. It is
also useful in cases of unit test on the model. This means
checking state machines and the events received and
forwarded. The model is simple and it is likely to be stable.

IV. PRAGMATIC MODEL AND PHYSICAL DISTRIBUTION

A. Process Analysis in UML

UML provides good modeling tools [16]. Use cases
provide an overview of the system: reactions reports by the
needs of actors. They can be used at two levels. Informally,
they are used to identify the processes and use cases in a
phase of reflection. Finally, more formally, they are useful
for describing use cases of information system.

Activity diagrams provide a graphical representation to
represent the largely consensual process. Sequence diagrams
are used to describe the use case scenarios. But they are
limited in their use to cases nominal and do not necessarily
provide added value. The state diagram can also model the
status of an activity of a business use case. They clear the
events that affect its performance. Class diagrams are used to
rank the players.

The difficulty of the analysis process is the level of
granularity of modeling. The distinction is between processes
and sub processes, tasks and activities. We often encounter a
meta-level model of the company to agree on the level of
detail of this modeling. The issue is the granularity of the
service and its reusability often introduces unnecessary and
lengthy discussions.

In this type of study, there are little methodological
approaches completely formalized and really consensual.
The existing methodological approaches are usually the
owners of these processes. We preconize to use an open
source approach to be able to use instrument allows fully
shared processes by the tools.

B. The organizational view

1) Process definition
It contains descriptions of the process. This description

comprises both system responses to external events and also
the information flows (flows, object flows, internal events),
it also includes coordination between the activities of
different actors.

The view also contains organizational decisions and their
explanations. This includes configuring services, distribution
of responsibilities, the profile of players and possibly other
constraints such regulations. This view is also about the
definition of classes related to problems of organization and
management. It also contains classes related to business
events that are in the semantic model.

We consider a process as an ordered set of activities to
produce a result: the production or transformation of an
object. Our pragmatic model describes the process the
processing steps acting on objects in the semantic model are
already described as state machines associated with these
objects.

Activity corresponds to an action or a set of actions. The
mastery of activities requires organization and rules that are
not present in the semantic model.

The process space is hierarchical, it is important to begin
the descriptions of the most important processes. It is
unnecessary to describe the process with a full level of detail
rendering them incomprehensible except to experts. We
establish a general map of the process. We determine the key
process, that is to say those criticisms vs. strategic objectives.
It is important to analyze the risks.

Our approach to analyze the process remains a classic.
First, we outline the beginning and end of the process, and
then describe the goal. This means knowing the customer's
expectations. In addition, we describe the interface with
other processes. We detail the resources used: objects
manipulated. We add the traceability rules. Finally, we
define the associated skills: entities contributing to the
process. We list the actions that can be activated with the
possible exception thrown.

We use activity diagrams for our performances. They
contain the events sent or received, the conditions of the
transitions, the parallel workflows and exchanged business
objects whose states are monitored.

When existing processes are described, it is possible to
reconfigure to improve efficiency, improve flexibility.
Further improvements are possible to provide a better level
control and smoother operation and even reduce the
execution time of processing. As an example of
improvement, there is research into the causes of waiting by
grouping tasks within a single activity or eliminating seizures
or occasions of data.

2) Modelling approach
Our approach aims to extract the organizational aspects.

It is important to analyze the process by respecting their
borders. For this, we focus on objects involved in the
process. Processes frequently collaborate within the same
activities and it is important to specify the transactional
aspects. This is specified as a string of treatments which
obeys the rule of all or nothing. The scope should be as far as
possible, as small as possible.

Of course, there arises the problem of transaction
management long term which could several hours or several
days. There is no question of pausing transactional locks on
objects handled; the rollback is managed by a compensation
mechanism.

3) Use view
An actor performs a series of transactions during his

dialogue with the system. But restrictions apply: a scenario is
not interruptible in business perspective view. In addition, a
use case is single-player. Use cases describe the purpose of
use. These are functional requirements that must leave the
business information system in a consistent state.

Our method for identifying use cases is very simple. We
first identify the actors and list the events and infer
interaction decomposition systems. This view must be
comprehensive to describe all interactions between the actors
and the system. Each use case typically handles one main
purpose. It is important to ensure that all use cases described

201Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 219 / 729

covers many transitions in the state machines of the major
classes of the semantic model.

C. Physical distribution

To complete the functional requirements, it is important
to locate users and geographic information systems. We add
the technical requirements for equipment: technical guidance
on network configuration requirements for the workstations.
Other sensitive issues include competition within use cases
and the constraints of scalability.

Nonfunctional constraints are taken into account as the
degree of availability desired. Requirements related to
quality of service, sometimes, bring the definition of
categories of use cases. And a class level of service quality is
associated with accessibility criteria.

Constraints related to the geographic dispersion are
difficult because they require difficult technical choices. A
site is described by its location, its capacity. He mentioned
the players it hosts and the type of activities taking place
there. Communication between sites is via the media. They
should list them: communication network, transport, etc.

We use deployment diagrams, collaboration diagrams
eventually. The collaboration diagram is often used early in
the project to be within the information system and show the
flow of information. Deployment diagrams are used in hand
continuously from one project to another.

V. LOGICAL ARCHITECTURE MODEL

A. Approach

The logic model is used to specify and organize the
service of SOA, based on semantic and pragmatic views. It
defines the logical architecture of SOA will be derived in
software components. Phase logical architecture of the
system is similar to all phases of project management
methodology. One of the rules is to minimize dependencies.
Finally it is important to consolidate services related to
business classes or use cases.

We chose to group services by field of business objects.
We added a set of factories. These factories are the first level
of urbanization. They correspond to the main structure of the
information system. A factory has no interface but represents
a logical division of classes. It involves important properties
of the SOA. This multilevel structure organizes the data flow
between the parties of the information system. Encapsulation
manages the relationship between different components of
the architecture: The level of services in terms of mask data.

Our methodological approach can be summarized. First,
there is the structuring of the logic model in key areas. Then,
there is the recovery of the semantic model and the
derivation of detailed models, definition of complex data
types. They are used to exchange information between
services. They are grouped with the utilities. Then, we treat
the analysis of use cases to discover the additional services.
This involves grouping into packages. Finally, there is a
detailed description of services (business and technical).

It is necessary to designate the services exposed to the
outside world. For efficiency reasons, it is crucial to choose
the type of invocation (web service, SOAP, XML, RMI,
etc.). Transaction management also has an impact, especially
for the resilience (the backup orchestration of context)

B. Structuring of the semantic model

Each main class of the semantic model is the heart of a
logic component. The division into logical component
follows the same structure as the division into business
components. Dependence after a combination of the
semantic model can be managed in several ways. First, it can
be passed as a parameter of the service to remove a strong
dependency. Secondly, it is possible to have data at the
service orchestration. Do keep the dependencies in the types
of data exchanged.

It is important to distinguish two types of services at the
level of elementary components. On the one hand the
services those run on a single component instance. These are
the services associated with managing the life cycle. On the
other hand the service for handling collections and
navigation. These are services that work on sets to calculate
a subset of data: search, sort, query, verification of existence.

The data exchanged are specified in detail because they
are the pivot language that is used in the process
orchestration. They reduce the number of service settings.
The data related to a secondary class masked by a main class
are managed by incorporation of a subtype in the main type.
The data related to a semantic class of another component
are managed by reference. They are retrieved by accessing a
directory.

A logical component is described by an interface. All
utilities are exposed to the outside. It also includes one or
more internal data structure. Of course this interface is not
accessible directly but through an access server. Optionally,
a component can provide multiple interfaces for different
missions.

C. Structuring of the pragmatic model

Each use case results in a Transactional service to
validate a customer dialog. The transactional service logic
starts a transaction that contains technical information
transfer. This means that inspections are carried out with the
use of a rules engine. If the checks are correct, the service
validates the transaction and returns the information resulting
from the transaction. In the pragmatic model, processes are
described in terms of activity diagram. This diagram is
attached either to the functional field or it’s a package
associated with crosscutting activities. The activity diagram
is shown in the logic model and built to represent the
functional area. It shows the services that keep coming into
the process. Human interventions are indicated by actions
that refer to use cases.

202Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 220 / 729

Figure 6. Structural diagram of the organization

In our previous example, organizations are run by
factories logic. Organizations share the same core but can
describe their operations as separate. In Figure 6, the
decomposition of the system comprises both the context of
use (organization, actor, ID), the informal context (set of
information related to the trade).

VI. ARCHITECTURE AND ORCHESTRATION

A. Service specification

In service specification step, we may choose the
signature and the names that will be present in the WSDL..
The parameters in reading, writing are prohibited. In an
SOA, the transition is performed by parameter value to allow
only based implementation web service. Additional
parameters are the context, they provide information about
the user context when the invocation. This information may
influence the functionalbehavior of the service. They help
minimize the number of services.

It is important to provide an exhaustive list of error
codes. Non-blocking errors do not throw program level
exception because these kinds of exceptions are catched and
managed in framework level. We can provide services in
signing a complex type that allows logging errors non-
blocking.

Preconditions and post conditions can guarantee the
conditions for running a service. They are based on the
parameters passed as input. They are typically implemented
by a direct appeal of the checking methods. This is a
prerequisite for triggering of the main algorithm. We chose
to externalize their code of the service implementation not
the use of AOP (aspect oriented programming) [17].

Service quality is also specified. It is a guarantee of
performance, availability and security. It relates to the
average response time, the number of calls per second web
service, the number of sessions, etc. We specify the end user
monitoring: indicators and measures used. The
documentation part of the services is important that a
supplement should not be overlooked because life depends
on it.

B. Technical aspects

Technical aspects that we addressed in our case study are
the persistence, security, object-relational mapping,
archiving issues, and the implementation of business rules
and data architecture. Management communication was done
by the web service call usually asynchronous.

We have implemented the business classes by POJO
(Plain Old Java Object). We create factory for façade to
delegate calls to the implementation classes. We distinguish
the services handling a single component instance handling
collection of services. These services must appeal directly to
a data service that handles requests multiple instances of the
database.
Queries performing joins on several business classes should
be modified to remove dependencies between elementary
concepts.

The process service calls keep coming. It is necessary to
implement a facade since the methods have directly initiated
the process. If several processes contain an identical set of
activities, these can be managed using a process as
implemented by a class in each package of integrated process
that contains it. Implementation of this principle respects the
principle of SOA but uses conventional technologies.

Processes are the orchestrators of calls to operations of
business services. In terms of architecture, the process
includes a presentation layer. A process is conventionally
implemented as a component state full or using an
orchestrator. In the first case, we must manage the execution
context and make the system fault tolerant.
We constructed an intermediate layer adaptation allows both
to transform data and orchestrate existing transactions. The
problem with JavaEE arises with the use of external
transaction via tools such as SAP via JCA connector. We use
a SOAP wrapper to trigger the transaction from operations.

We used the framework WISIF (Web Service Invocation
Framework) from Apache to call the JCA connector. For
security aspects, we wanted to make confidentiality and
identification of access rights. The use of SSL is possible to
exchange point to point but quickly becomes difficult with
the spread and use of web services. The security
management which is integrated directly within the SOAP
messages [18]. The standard WS-Security OASIS
framework provides a stabilized security manager. It enables
strong authentication based on Kerberos ticket and is based
on a W3C specification.

For transaction management, three aspects are taken into
account with different frameworks. WS-Coordination
provides a protocol to coordinate the actions of a distributed
application (creation and propagation of context between the
services). WS-Atomic Transaction defines transactions with
a simple method of two-phase commit. Finally, WS-
BusinessActivity can coordinate distributed activities with
long transactions.

We used a middleware for the exchange of asynchronous
messages. It has several properties: the ordonnancement
messages, persistent messages in the event of service
interruption, the integration of new components.
All of our orchestration is made with the BPEL language. As

203Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 221 / 729

defined above WSDL, it can describe a collection of Web
services. Activities can be combined with additional
elements to form structured activities. For asynchronous
calls, callbacks are defined by use of framework WS-
Addressing.

CONCLUSION AND FUTURE WORK

We have presented our approach of orchestration
definition. We have structured the design time in a sequence
of model definition: semantics, logic, pragmatic. We have
shown that relationships exist between them. These allow us
to check and update our design. Then we have explained that
BPEL scripts are derived and deployed into the business part
of our multi-layer application.

Our future work will focus on extending our approach to
other orchestration languages like CAMEL DSL [19]. Our
goal is to enrich Java DSL's routing for managing dynamic
mobile Participant that implements WS-Coordination. The
participants are defined in functional layer; our approach
offers a solution to adapt a functional definition to a
generated Participant implementation to the constraints of
the technical layer.

REFERENCES

[1] C. Szyperski, “Component Software: Beyond Object-Oriented
Programming”, 2nd Edition. Addison Wesley. 2002, pp. 139–150.
ISBN: 978-0201745726

[2] J. Rumbaugh, I. Jacobson and G. Booch, “Unified Modeling
Language Reference Manual,” 2nd Edition, Pearson Higher
Education, 2004, pp. 139-150, ISBN:0321245628

[3] Object Management Group. OMG Unified Modeling Language
Specification, Version 1.4, 2001.
http://www.omg.org/technology/documents/formal/uml.htm,
retrieved: October, 2012.

[4] R. S. Pressman. “Software Engineering, A practitioner’s approach”.
7th edition edition, Mc Graw-Hill Education, 2000, pp 603-630.
ISBN: 978-0071267823.

[5] P. Herzum, “Business Components Factory: A Comprehensive
Overview of Component-Based Development for the Enterprise”,
Kindle Edition, January 2000, pp. 477-527.

[6] W. H. Inmon, J. A. Zachman, and J. G. Geiger, “Data Stores, Data
Warehousing, and the Zachman Framework: Managing Enterprise
Knowledge.” McGraw-Hill, 1997, pp. 105-140, ISBN 0070314292.

[7] J. Zachman. The zachman framework for enterprise architecture. http:
//www.zifa.com/, 1997, retrieved: October, 2012.

[8] TOGAF Version 9. The Open Group, 2009.
http://www.togaf.info/togaf9/index.html, retrieved: October, 2012

[9] T. Erl, SOA Principles of Service Design, 1 edition, Prentice Hall,
July 18, 2007, pp. 211-252, ISBN: 978-0132344821

[10] S. Hussain, B. Ahmad, S. Ahmad, and S. M. Saqib, “Mapping of
SOA and RUP: DOA as Case Study,” Journal of Computing, January
2010, pp. 2-4.

[11] S. W. Ambler, J. Nalbone, and M. Vizdos, “Enterprise Unified
Process: Extending the Rational Unified Process”, Prentice Hall.
2002, www.enterpriseunifiedprocess.com.

[12] C. Hofmeister, R. L. Nord, and D. Soni, Describing software
architecture with UML. In Proceedings of the First Working IFIP
Conference on Software Architecture (WICSA1), San Antonio, TX,
February 1999. , pp. 7-12.

[13] S. White, Using BPMN to model a BPEL process, BPTrends 3 (3)
(2005) 1–18.

[14] A. Kleppe, J. Warmer, and W. Bast, “MDA Explained, The Model-
Driven Architecture” Practice and Promise. Addison Wesley, 2003

[15] M. Elammari and Z. Issa, “Using Model Driven Architecture to
Develop Multi-Agent Systems” the International Arab Journal of
Information Technology (IAJIT), Volume 10, No. 4, July 2013, pp.
19-24.

[16] M. Peltier, J. Bézivin, and G. Guillaume, “A general framework
based on XSLT for model transformations,” In WTUML’01,
Proceedings of the Workshop on Transformations in UML, Genova,
Italy, April 2001, pp. 5-7.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes,
J-M. Loingtier, and J. Irwin, "Aspect-oriented programming,” In
Proceedings of the 11th European Conference on Object-Oriented
Programming, June 1997, pp. 3-5.

[18] S. Santesson, R. Housley, and T. Polk, "Internet X.509 Public Key
Infrastructure Qualified Certificates Profile,"
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&par
ent=T-REC-X.509-200003-I pp. x-y, retrieved: October, 2012.

[19] C. Ibsen and J. Anstey. “Camel in Action”. Manning, 2010, pp. 113–
122.

204Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 222 / 729

Value-Based Technical Debt Model and Its Application

Marek G. Stochel, Mariusz R. Wawrowski, Magdalena Rabiej

Motorola Solutions
Kraków, Poland

{marek.stochel, mariusz.wawrowski, magdalena.rabiej}@motorolasolutions.com

Abstract—The majority of software development today is being

conducted in a value-neutral setting, where each functionality

once being locked down as a part of software release is treated

as equally important. This limited visibility of the real value

perceived by customer inside software engineering

organizational departments has significant consequences in the

way the technical quality of the product is being evaluated and

maintained. The relentless pursuit of efficiency in the software

engineering domain requires a broader view of long-term

economical consequences of any product-related decision.

Technical debt typically is an internalized (engineering-based)

assessment. We propose to expand the understanding and

visibility of the technical debt by introducing a model driven

approach to provide the means to assess the technical debt

impact on perceived product quality parameters, such as

codebase/design and architecture, engineering productivity,

and finally the company’s business return on the engineering

investment. Furthermore, the case studies presented in this

paper are focused on the application of the technical debt

concept—how it could be identified, measured and what are

the consequences of not managing it. The key principles of this

concept were proved to be valid while evaluating the

development of a major software system release. Finally, the

need for balanced view for the technical debt management

strategy is discussed, to ensure pay-off benefits are aligned
with time-to-market expectations.

Keywords—Technical Debt; Software Life Cycle; Software

Economics; Software Development and Maintenance; Wisdom of

Crowds; Value Based Software Engineering.

I. INTRODUCTION

The technical debt metaphor refers to the product’s
deficiencies, caused by shortcuts or incomplete engineering
knowledge, which may speed up software development and
delivery, but inevitably have their drawbacks and incur
additional, delayed costs [7][8]. Unfortunately, due to its
mostly internalized nature (engineering-based), technical
debt is sometimes hardly recognized even by the very
business unit where it was created and which is responsible
for business return on the engineering investment. We claim
that focus should be not only on the product/solution
deficiencies, but also on how the value perceived by
customers and profitability of a business unit are directly or
indirectly impacted. The significant problem with managing
technical debt and establishing pay-off strategy lies in the
definition of the value to the customer/product/business
return. Therefore, we believe that binding technical debt to
the real value for the customer and hence the products return

on investment (ROI) for the business (profitability) provides
a better understanding of the potential consequences of not
managing it. Additionally, awareness of the current and
predicted product/solution condition is raised as a leading
indicator.

The realization of value during software development
was also the rationale for Boehm’s Value Based Software
Engineering concept [1][2], for which we propose a slight
adjustment (marked by the dashed line) of the value
realization feedback process to explicitly measure and
manage technical debt (Fig. 1).

Figure 1. Value realization feedback process enhanced with technical debt

cost assessment

As a consequence, technical debt is analyzed and
discussed in this paper as a three-layered model, consisting
of codebase/design debt, architecture debt, and portfolio
debt. From this perspective long-term consequences for
engineering and business are visible and understandable,
leading to an established communication strategy across
these functional areas. This aligns the effort spent in the
oftentimes numerous departments of an organization during
the planning and execution phases. Missing any of these
critical layers of value-added granularity will provide a
considerably less robust prioritized definition, and as a result,
a distorted view of potential consequences of the technical
debt the organization has already experienced and
accumulated and may well continue to do so.

While introducing the model-based approach and the
discussing underlying rationale, this paper provides also
specific examples of how to calculate the technical debt
value for subsequent layers, and how the total technical debt
value may be coherently assessed. This discussion is
supported by the results of two experiments. The first one
was conducted to compare the subjective and objective ways
of assessing the technical debt, the second—to understand
the consequences of the missing knowledge about technical
debt and related management strategy. Finally, we discuss

Develop/update
business case;
time-phased
cost, benefit
flows; plans;
assumptions

Perform
to plans

Determine corrective actions

Value
being

realized?

Technical
debt cost
accept-
able?

Assump-
tions still
valid?

Yes Yes

Yes

No No No

205Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 223 / 729

the consequences the proposed model incurs and suggest
further areas of the research and investigation.

II. REVIEW OF LITERATURE

Although Cunningham refers to technical debt as a result
of gaining knowledge during development [7][8], rather than
deliberate choice, we should not neglect the fact that
sometimes the latter is justifiable, as suggested by Brazier
[3]. Some may suggest that technical debt should be tightly
coupled only with the coding aspects that were caused
deliberately, as it was referred by Fowler [12]. Furthermore
he states that the question should be whether the technical
debt metaphor is useful to discuss the design problems. This
was supported by the technical debt quadrant concept
referring to whether the debt is prudent or reckless, and
running into it was deliberate or inadvertent [12]. Other
authors expand the technical debt metaphor and propose the
Modern Portfolio Theory [15] to calculate technical debt and
the resulting associated risk. The risk based approach for
software architectural decisions was also discussed by
Fairbanks [10]. Following that path (usefulness of the
metaphor), we propose to integrate these aspects tying
technical debt to real business value in order to enhance
communication and visibility.

III. THE MODEL

Understanding technical debt and how it changes over
time should be performed consistently across the
organization for both the product and the portfolio. In order
to achieve this goal we propose a three-layered model
aligned with a typical software product development
lifecycle (Fig. 2). Note that codebase/design debt is
aggregated by architectural debt, and this in turn is
aggregated by portfolio debt.

Figure 2. The three-layered model of technical debt

The rationale for this approach stems from a software
development process analysis. The P-Diagram approach
[17], usually employed for process risk assessment and
impact analysis, was used for this purpose (Fig. 3). From this
perspective technical debt can be thought of as an unintended
byproduct of the software product development process as
well as a noise factor of current development practices. Thus,
we define technical debt as:

• Caused by the very nature of the software product
development practices,

• Creating negative feedback loops, which impact all
the intended outputs: product quality, engineering
productivity, and organizational profitability,

• Being impacted by control factors, including—but
not limited to—technical debt management strategy.

Figure 3. Technical debt in the context of software product development

process

A. Technical debt—“the process view”

The software product development process constitutes
the framework for technical debt assessment. Any omission
of these aspects inevitably leads to an incomplete view of the
technical aspects concerned and may result in a technical
debt management strategy counterproductive from the
organizational perspective.

The P-Diagram components (Fig. 3) are defined as
follows:

Inputs (Signal): requests for a change in the product,
driven by the customer (Voice of Customer—VoC), the
market (VoM), and/or the business (VoB).

Outputs—Intended results (Ideal Function)
• Product Quality: product characteristics, as

perceived by both customers and producers,
• Engineering productivity (Voice of Process,

organizational capability): functionality delivered
considering effort spent, may be presented as the
engineering organization throughput (optimized cost,
quality, schedule, scope according to baseline
capability index),

• Profitability (marketing/sales): the business return on
the engineering investment between and within
projects. This can be measured as the percentage
gross margin.

Outputs—Unintended results (Error States): the
technical debt itself, which may be referred to as product and
process characteristics, internally perceived by the
organization (business unit).

Control factors: They comprise all factors, which
influence and control the software development process,
decreasing its variability thus improving predictability. For
example:

• Engineering development environment: Tools,
quality control processes, continuous software
integration

Portfolio Debt

V
is
io
n

Architecture Debt

S
tra
te
g
y

Codebase/Design Debt
Tactics

SW Product

Development

Product Quality

E
n
g.E

n
viro

nm
e
nt:

tools &
 co

ntrol p
rocesse

s

K
now

le
dg
e M

a
na
gem

en
t

P
rod

uct Te
chn

olo
gy

(V
oT
)

Technical Debt

O
th
er n

oise

facto
rs…

E
ng
Te
am
 S
tab

ility
(e

.g. a
ttrition

)

O
th
er co

ntrol facto
rs…

…

…

Control

Factors

Noise

Factors

Ideal Function

Error States
(Unintended Result)

Te
chn

icalD
eb
t

M
a
na
ge
m
en
t S
tra
te
gy

B
usiness

P
ressu

re
s

Engineering
Productivity

Signal

Customer Needs
(VoC)

Business Needs
(VoB)

Market Needs
(VoM)

Profitability

206Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 224 / 729

• Knowledge management/sharing: Activities
pertaining to information interchange, supporting
seamless communication, and ensuring optimal work
assignments

• Technology/product management: Activities
controlling technical inflation [11] with focus on
technology alternatives, ensuring robust testability

• Technical debt management strategy
Noise Factors: They are out of the direct control of the

engineering organization, for example: business pressures,
stability of engineering organization (attrition), and the
technical debt itself.

B. Technical debt trend—assessment and prediction

Despite the technical debt value being calculated, it will
naturally evolve. The question how to address these changes
should be reflected in the technical debt management
strategy. As technical debt from an unintended byproduct
becomes the noise factor later (Fig. 3), the trend impacting
predictability of intended results needs to be constantly
monitored.

Understanding the measured impact and process
capability we are able to predict whether a technical debt
level is acceptable. The metric here should provide
information how the product’s current owner cares about
maintenance and quality of the product, and how the value of
technical debt changes over time according to the
information provided by the portfolio and architecture teams.
We also need to understand how value is being realized, and
this information may be provided by a Value Based Software
Engineering approach (presented earlier in Fig. 1). As a
result, the current value of the technical debt may be
determined in the broader context of the three-layered
technical debt model. Additionally we are able to establish a
threshold of how high the tech debt value might be when
immediate action or a change in strategy is required and
whether a technical debt pay-off is justifiable from the cost
perspective.

IV. CODEBASE/DESIGN DEBT

The codebase/design debt is the most objective aspect of
technical debt. It is a concept claiming that various source
code quality indicators may be combined into one
meaningful value easier to manage. This metric may be
expressed as the effort required to change the existing
codebase into an easy to maintain, well structured and
testable code.

There are various aspects of both static and dynamic code
characteristics that can be taken into consideration to create
one meaningful technical debt metric. One can use code
complexity measures provided by standard tools, such as
Klocwork [16] or FXCop [13], to ensure that good coding
practices are followed. Other tools may provide information
that robust unit test coverage was assured. Enforcing well
defined coding standards leads to a lesser number of defects
introduced during integration to the version control engine,
thus reducing the debt. Delaying integration of local software
changes leads to a debt increase: the greater the delay, the
less probability of an effortless integration. In principle, the

set of measures and tools should explicitly reflect the
software product’s true characteristics in its intended
environment.

A. Measurement Approaches

One approach, proposed for Java-based projects, is the
Sonar approach [14]. Sonar is an Open Source Software
quality management tool, which leverages the existing
ecosystem of quality open source tools (for example:
Checkstyle [4], PMD [20], Maven [18], and Cobertura [6]),
to offer a fully integrated solution for development
environments and continuous integration tools. Being
accompanied by technical debt plug-in, Sonar is able to
monitor static and dynamic metrics on the project and
enforce coding best-practice rules, supporting defect
prevention effort.

Another way to assess technical debt in codebase/design
may be Wisdom of Crowds technique, which is based on the
approach proposed by Surowiecki [22]. This technique has
already proved successful in the prediction of defect
distribution among system areas [23] and, although not
mentioned explicitly, it was a major component of a
proposed test case prioritization approach [24]. The software
development team, if mature, can readily assess the code
quality with precision and predictable results. However, in
order to properly assess technical debt using the Wisdom of
Crowds method, the following conditions must be met:

• Diversity of opinion—each person should have an
opportunity to voice private information (even if it is
his/her view of known facts),

• Independence—we have to assure that people can
voice their concerns/opinions, and not repeat those
of more senior, influential ones,

• Decentralization—we have to ensure the opportunity
to present different perspectives, as people are able
to specialize and provide conclusions based on local
knowledge,

• Aggregation—the mechanism to turn private
judgments into a collective opinion.

A more detailed overview of importance of these factors
and rationale behind them in the context of experimental
setup may be found in [23].

B. Context of the three-layered model

Technical debt introduced in the codebase/design phase
is tightly coupled with the code being implemented. It has
direct impact on the codebase cohesion, coupling, process
flow, etc. Additionally, in the Agile approach, design phase
is reduced to minimum. So the overall code and design
quality is the responsibility of a software development team
and can be assessed together using the codebase debt in the
broader context of the three-layered model. Importantly, the
technical debt ratio in a product is more of a metric how the
historical decisions were made, so it should not be used for
comparison of the organizations’ maturity. Technical debt
trend shows the efforts of the current software development
team.

Monitoring technical debt trend in the product can give a
software development team an early problem indicator,

207Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 225 / 729

before these software problems are actually released (where
technical debt ratio has significantly grown during the
project). Another way to use technical debt ratio is to
compare particular areas of the same code, to identify where
investment is required before any new feature is
implemented. In order to establish consistent technical debt
management strategy the team may define a baseline ratio
for codebase/design debt that reflects the acceptable debt
level for the product and optimize the particular code areas to
limit this debt ratio below the desired threshold. However,
some questions have to be answered: When to stop
optimizing? Should the code be optimized until it is “clean”
and 100% testable? Software development team may not
possess this knowledge. It is the business/architecture team
that knows what the software product’s roadmap and
strategy is: whether it is a onetime development with no
maintenance planned or mission critical software that will be
maintained for years. A decision on acceptable level of
codebase/design technical debt should be taken by the
software development team, on the basis of a feedback loop
from business/architecture to avoid sub-optimization.

C. Experiment 1: Sonar vs. Wisdom of Crowds

As it was mentioned earlier in this section, some tools
exist, which provide the technical debt calculation, for
example Sonar for Java-based products. However, more
complex products or development environments may pose a
serious challenge to find a consistent approach to evaluate
the status of the product. This was the rationale behind
comparing objective assessment provided by Sonar to the
subjective measurement strategy based on the Wisdom of
Crowds approach.

This experiment was conducted in one of the main
components of a major system release. The developers
prioritized modules according to the following criteria:

1. Where introducing changes is the most difficult
2. Which are poorly written (refactoring required)
3. Where there is high amount of latent defects
Survey results were compared to technical debt ratio

calculated by Sonar. The results were analyzed for any
correlation between objective measurements and subjective
assessment of the technical debt value. The Pearson
Correlation coefficient was calculated between each of the
criteria and values provided by Sonar. In each case,
correlation for the objectively measured technical debt (by
Sonar) and the engineering assessment was significant. The
first criterion is the closest to how technical debt is usually
perceived—the consequences of earlier short-cuts of
incomplete knowledge for current work (state of the product
being maintained). Not surprisingly, the highest correlation
with objective Sonar assessment was observed—the
correlation coefficient reached 0.84 (Fig. 4). For criteria 2
and 3, the correlation was also significant, reaching 0.75 and
0.67, respectively.

There is one more aspect, which was considered in this
assessment. An additional question was asked: Do you think
it is necessary to pay-off technical debt in an area before any
changes are introduced? The correlation with technical debt
value reported by Sonar is significant (0.61); however we

should also focus on the specific measurement points, where
although debt is low, engineers insist on paying off the debt.
This provides further insight into architectural or portfolio
debt concerns.

Figure 4. Correlation of objective and subjective assessment methods

(difficulty of introducing changes in software modules).

These three criteria mentioned earlier by no means
exhaust technical debt concept, but may provide a
representative guideline for the assessment. Modules, which
accumulated higher technical debt, are perceived as:

• Most difficult to have changes introduced,
• Badly written (require refactoring),
• Highly riddled by defects.
Statistically significant correlation was observed. This

assessment provides us with a good overview of the quality
perceived by engineering (e.g. maintainability) as well as
overall quality visible to the customer (e.g. error proneness
of certain system areas).

If we use all the answers as a basis for aggregation,
instead of aggregating them question by question, the
Pearson correlation coefficient still remains high (0.77).
Therefore, we claim that having common understanding of
technical debt and its consequences, the subjective
measurement based on the Wisdom of Crowds method can
provide reliable and consistent results in comparison with
objectively defined measurements (in this case Sonar
output). This fact opens a possibility of measuring the
technical debt in more complex software products, even of a
heterogeneous nature.

D. Experiment 2: Naturalistic observation—technical debt

management

The following study was conducted to answer the
question whether it is worthwhile to consider technical
debt—not only as quality indicator for already existing code,
but perhaps as a quality gate for software development
activities. Unfortunately, delayed payment for what cannot
be easily measured, or not knowing the potential
consequences and value (real costs) usually causes technical
debt to be neglected and accumulate over time, until it is
very difficult and costly to address. Without a value
associated to this, it is usually omitted during task
prioritization. In this experiment, we wanted to understand
how two similar modules behave if one is optimized against
technical debt concerns and the second is not.

D
iff
ic
ul
ty
 o
f i
nt
ro
du
ci
ng
 c
ha
ng
es

(W
is
do
m
 o
f C
ro
w
ds
)

Technical debt in days (Sonar)

Correlation of objective and subjective technical debt
assessment methods

Pearson correlation coefficient = 0.84

208Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 226 / 729

Typically, preparation of an experimental set-up focuses
on establishing a controllable environment. Unfortunately
the very activity of preparing for the experiment may impact
its results. This is manifested in the social proof phenomenon
described by Cialdini [5]; in our case, engineers may try to
figure out what is the expected “good” result and therefore
inadvertently optimize their work against it. Providing some
framework before the experiment, even without any
explanation about the quality of the value to be compared
against, may also cause additional obstacles—such as
cognitive bias, known as anchoring [25], impacting the
results. In this particular case, we were in a very good
position as the study was actually a naturalistic observation
[21], i.e., no direct researcher influence was disturbing the
engineering activities. The retrospective analysis of the
results was performed.

We were assessing two similar database replication
handler modules, which were developed for two similar
database engines. The first one was taking into consideration
technical debt and adhering to the rules defined by Sonar
plug-in (module_1), and the second one was developed
without the knowledge and proper application of that
concept (module_2). Both modules were handling data
synchronization and monitoring mechanisms, and the same
development approach was used: pair programming during
similar timeframe. Looking into technical debt as reported by
Sonar, the value for module_1 was 2.5 times smaller than for
module_2.

The chart presented below shows the defects found and
their distribution among testing phases (Fig. 5). What can be
observed is that number of defects found in module_1 was
2.6 times smaller than number of defects found in module_2.
Moreover for module_1 test screening effectiveness was
much better at earlier phases (80%), as only 20% escaped
this activity and was found during system tests. No defects
were found post release. For the second module, similar box
test effort was capable of finding 8% of defects, 69% were
found by system tests, and finally 23% were found post
release.

Figure 5. Comparison of defect arrival distribution between modules.

The development cost of the module written neglecting
technical debt concerns was 10% smaller. But, as a result,

the cost of fixing the problems in this module was almost
two times higher than the initial creation effort. The results
confirmed that neglecting technical debt incurs not only
problems with maintenance later, but also causes higher
amount of defects found both during development process
and post release ones. We claim that technical debt value is a
reliable prediction of future software product quality.

V. ARCHITECTURE DEBT

Numerous publications emphasize the fact that
architecture is not only the macroscopic recognition of
design, but constitutes the backbone of the system,
orthogonal to its functionality, for example [10]. More
importantly, the selection of architecture is a choice between
multiple ways of implementing the system that accomplish
an established set of functionalities. The choice of
technology solutions—a decision made in the early phases of
the project—implies a more or less explicit choice of the
relevant architecture and may prevent the efficient
refactoring later (inherent activity in projects using Agile
approach). Therefore, reconstruction of the architecture,
especially based on a specific technology, becomes much
more costly. In this respect, the architecture related decisions
should be the result of continuous, long-term analysis of
customer needs, leading to an optimal solution selection.
Moreover, changing the architecture or technology of
software development needs to be a result of a complex
analysis of the business process, and qualitative assessment
against technical debt. So, the question arises: what metrics
should be used to evaluate the architecture? One approach
may be the Architecture Tradeoff Analysis Method
(ATAM), which offers “utility tree” analysis [19].
Architecture technical debt assessment can be done using
quality factors like: modifiability, scalability, and latency.
For example, modifiability directly affects the characteristics
of the cost of change, which can be treated as expression of
technical debt at an architecture level. It is essential that the
assessment of architecture should be done in reference to the
Voice of Business. Following the conceptual model of
“Portfolio Management” [15], it is necessary to assess
technical debt for each artifact created in the software
production process. Nevertheless, information on technical
debt from the architecture level is critical because it
accumulates technical feedback from the engineering teams
(involved in software development and test activities), and
directly takes into consideration information from the
business (portfolio). Fig. 6 shows a model of decision
making at the architecture level, which provides a roadmap
for software product, technology, and development process
based on all factors mentioned earlier. These roadmaps
define engineering strategy, which is driven by value and
considers organizational capability.

Technical debt in this model is presented as a trend in the
cost of software changes, and its calculation should take into
account the estimated cost of changes expected by the
customers in time. This prediction should also include the
estimated cost of change as if it were to be done in
alternative architecture or technology. As a result, the
architecture technical debt can be expressed as a set of

209Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 227 / 729

characteristics representing the cost of changes for the
current architectural solution and alternative ones. This
assessment should constitute a feedback to the process of
business analysis on portfolio level, where profitability trend
of the investment should be determined.

Figure 6. Technical debt limited to the context of architecture deliverables

VI. PORTFOLIO DEBT

The rationale behind portfolio debt layer (highly
dependent on external factors) lies in a strategic alignment of
effort spent by different organizational departments and
common understanding of the goal to be pursued. Referring
to the technical debt model shown in Fig. 2, a portfolio level
is accompanied by Vision for a given product in terms of
sales, market needs, technology, etc. Vision guides the
strategy definition (architecture layer) and helps to align the
software development effort (codebase/design layer). As a
result, the profitability aspect needs to be taken into account,
what can be expressed as:

 ��������	
�~
������
�������

������

 (1)

where Cost(t) is defined as:

 Cost(t) = Ctools,IDE,COTS + Cmigration + CSW changes + Cother (2)

The selected technology should enable the organization
to make an optimal decision, which aims at the highest ROI
considering present and future customer needs and sufficient
time to market. The result of optimizing the objective
function (1) is a certain amount of observed technical debt.
For example, lack of investment in new technology and
refactoring at some point may just not yield the targeted ROI
based upon VoB. Continued analysis of this trend can lead to
a decision change, however still vulnerable to the risk of
established customer goals volatility, emerging alternative
technologies, or significant changes in market conditions.

For example, technical debt may show the estimate
variation of the cost of change in time for the three possible
technologies. Customers waiting for new and more complex

features push the existing solution to the technological
frontier. This prevents the effective implementation of new
products or improvement of the existing ones.

Let us assume that a new technology emerges, which is
very promising and the software team might be prone to
immediate migration. However, this incurs a risk that
expensive migration might not be justifiable from ROI
perspective, as the benefits will not be realized in the
expected timeframe. In such a case, a better strategy might
be an evolutionary migration, where the current software is
gradually modified (code refactoring) to compensate
technical debt in relation to the new technology. The
decision about final migration can be made when technical
debt is reduced accordingly (Fig. 7).

Figure 7. Technical debt driven by Voice of Customer optimized to

control the refactoring of architecture

The decision about migration to a new technology is
dictated by potential profitability of the estimated cost of
change reflected by the Voice of Customer (VoC). The new
technology may require additional investment but it will be
balanced by potential financial benefits that can be calculated
on the basis of VoC and VoB information. Modern Portfolio
Management offers a statistical method to calculate this risk,
making decisions about technical debt reduction
economically justifiable [15].

The need for accurate assessments and quantification of
future customer/market needs and its associated ROI is
evident. The approach of sales prediction (proposed by
Eades [9]) may be used as a reference for measuring impact
of technical debt on the value perceived by customers and
company profitability. Having the sales pipeline properly
filled in, the potential value (yield) for a particular
functionality can be estimated at any point of time (Fig. 8),
as well as technical debt value associated with it. However,
when assessing market opportunity, not only value
(interpreted as sales prediction) should be taken into account
but also how it is aligned with product long-term portfolio
planning and potential market needs. In summary, the nature
of the portfolio debt trend may not be linear, as the debt
reveals itself as a result of certain external factors. Therefore

Software

Architecture

Product Roadmap

Process Roadmap

Technology Roadmap

E
ngin

ee
ring

e
nviron

m
en
t

S
W
 Te
st &

D
eve

lopm
en
t

E
stim

atin
g
P
rocess

Technical Debt

B
usin

ess
P
ressures

E
m
erging

Tech

nolo
gy

…

…

Control
Factors

Noise Factors

Signal
Ideal Function
(Intended Result)

Error States
(Unintended Result)

Te
chn

icalD
eb
t

M
ana

ge
m
e
nt S

tra
teg

y

P
rodu

ctTechno
log
y

(V
oT
)

Customer Needs
(VoC)

Business Needs
(VoB)

Market Needs
(VoM)

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

C
os
t
of
 C
ha
ng
e

Technical Debt
Architectural decisions driven by portfolio management

Migration to emerging technology

Non-standard system

Standard API

Emerging technology using API

0

0 . 5

1

1 . 5

2

2 . 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

S
iz
e
of
 W
or
k

Time/Release

Value of work - Profitability is based
on Voice of Customer

210Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 228 / 729

codebase/design and architecture layers have to take some
degree of assumptions and risks (even if unconsciously).
This further emphasizes the importance of communication
links presented in the next section.

Figure 8. Solution Selling Pipeline Milestone Chart

VII. COMMUNICATION NEEDS

Assessing technical debt as an inherent aspect of the
software development process reveals the critical need for
seamless communication and organizational alignment to
understand and manage all three defined layers of the
technical debt model. To remove obstacles with information
interchange the communication links as presented in Fig. 9
should be established.

Figure 9. Addressing communication needs related to technical debt

The discussed communication needs may be addressed using
a matrix matching feature development schedule with
potential benefits to be gained from technical debt pay-off.
Such a matrix (table) complements the practical use of the
three-layered model discussed in this paper. The sample
matrix implementation is presented in Fig. 10. SW Change
Request rows represent Technical Debt Items (TDI)
assessed against quality attributes. For each TDI pay-off cost
(column Cost) and savings per each roadmap feature
(columns Feature A, B, etc.) are estimated. Each feature is
assigned to a planned software release (top row: releases R1,
R2, etc.) and has a total development cost associated with
(row Cost). As a result different scenarios may be evaluated,
for example: what is the benefit of having a particular TDI
paid off in releases R1 or R2, how does it change when
scope of releases R1 and R2 will be released together? Such
a matrix supports also discussions on the budgeting
scenarios. Let us assume that a fixed budget (450k$) was
planned for a given project. The total cost of the
functionality planned for releases R1 and R2 reaches 500k$.

An investment in paying off technical debt items (170k$)
provides us with the savings of 275k$ only when features A,
B, C, D are implemented together. Summarizing, having all
technical debt items paid off, the gained benefits enable the
company to develop all features within the fixed budget (3):

 450k$ > 500k$ + 170k$ − 275k$ (3)

Figure 10. Technical debt vs. portfolio assessment matrix

However, the time to market for individual features may
be different, what may impact selling value. Such an
assessment may lead to the decision of making separate
releases, acknowledging the technical debt presence and
maximizing the profits. As a result the portfolio analysis
makes the roadmap change frequently, reflecting changing
market conditions and embracing engineering feedback. Any
external change is being reflected in ongoing
synchronization of the roadmap, thus optimizing profits and
ROI stemming from an engineering investment. Additionally
having technical debt properly assessed and being paid off
according to the long term needs, engineering organization
achieves easier maintainability of the owned code base over
a longer period of time.

VIII. CONCLUSIONS

The model proposed in this paper exemplifies the need
for a framework, in which the technical debt has to be
assessed and reveals clear rationale behind it. Moreover,
various approaches to evaluation and quantification of
technical debt were presented.

To answer the question what if the cost prohibits using
advanced analytical approaches, or there are no tools to
support such an analysis (e.g. heterogenic solutions, auto-
generated code)?, we claim that a properly conducted
subjective assessment based on the Wisdom of Crowds is
capable of providing sufficient and reliable information to
help in understanding the technical debt in such
environments and may also support prioritization of
refactoring tasks.

Technical debt prioritization may be considered in a
three-layered perspective. The consequences of this model
show how the defined layers (codebase/design, architecture
and portfolio) depend upon and are related to each other.
Neglecting any one of these dependencies may result in sub-
optimization. Moreover, from a business perspective such an

Milestone Revenue Win Odds Milestone description Yield

T sales-at-T $ Territory

S sales-at-S $ 10% Qualified Suspect 10%*sales-at-S $

D sales-at-D $ 25% Qualified Sponsor 25%*sales-at-D $

C sales-at-C $ 50% Qualified Power Sponsor 50%*sales-at-C $

B sales-at-B $ 75% Decision Due 75%*sales-at-B $

A sales-at-A $ 90% Pending Sale 90%*sales-at-A $

W sales-at-W $ 100% Win 100%*sales-at-W $

Portfolio
/

Architecture

Codebase
/

Design
Product

• Voice of Customer
• Voice of Business
• Voice of Market
• Voice of Technology
• etc

Feedback from existing customers

tech debt reduction (code/design
improvements)

Limitations due to technical
debt (e.g. technical inflation,
architecture constraints)

How to quantify the debt
(alignment/understanding)

R1 R1 R2 R1

Feature

A

Feature

B

Feature

C

Feature

D

100 80 120 200

R1 R2 R1+R2

Unit test environment Testability 20 20 10 0 10 20 -20 20

Design granularity

for subsystem S
Modifiability 15 0 0 30 10 -5 15 25

Component C

response time
Performance 35 50 5 0 40 60 -35 60

New SW Integrated

Development

Environment IDE

(CoTS)

Maintenance,

 Modifiability
100 10 0 80 10 -80 -20 0

Product roadmap - features vs. releases R1, R2,…

SW Change Request

(Technical Debt Item)

Quality

attribute

Cost

[k$] savings per feature
Savings in

211Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 229 / 729

effort may be treated as a waste (overproduction), which
may impede further improvement activities initiated by
engineering.

Technical debt management strategy should be the key
concern, not relentless pay-off. The understanding and
prioritization of the debt may be done on a value-basis,
providing a bridge between the business and engineering,
and a common strategy for the technical debt management.
Furthermore, experiments indirectly stressed the importance
of portfolio analysis, to confirm for which software
components refactoring effort may be prioritized.

 Even a high technical debt value may be discarded if a
particular product is close to its retirement. A different
approach may be taken when the product is planned to be
expanded, to constitute the baseline for other products
(according to predicted market needs). Another concern is
maintenance time—for long-term projects, where
maintenance is scheduled for years, the debt will have a
different value comparing to the solutions for products,
which have a significantly shorter life. Lastly, the criticality
of issues which may occur is also a very important aspect, as
mission critical communications should be treated differently
than cell phone games.

IX. FUTURE DIRECTIONS

Current work is focused on the validation of the three-
layered technical debt model and calibration of measurement
approaches among several organizational departments.
Additionally there are further concerns which may be
addressed by the future research. Several of them are
mentioned below:

Technical debt communication:
• How to address the communication needs avoiding

known “traps” in the organizations’ psychological
and sociological composition (as team cooperation
and software development are social activities).

• How much proprietary information is to be shared
with broader audience? How to ensure it is properly
handled?

ROI assessment:
• What factors should be taken into account assessing

technical debt impact on engineering productivity?
What is their relative impact and importance?

• How to assess and address the nonlinear traits of
value-based technical debt trend?

Mathematical formulae:
• How the interdependence among technical debt

layers can be approximated by mathematical
formula—expanding the model proposed by Guo
and Seaman [15]? How it may be deployed to
measure technical debt in the company with rich
software legacy, with no technical debt evidence
consistently tracked?

X. ACKNOWLEDGMENTS

We want to express our gratitude to James Joseph
Waskiel and ElŜbieta Stochel who supported the work,
relentlessly editing and reviewing the paper.

REFERENCES

[1] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher, Eds.
Value-Based Software Engineering. Springer, 2005.

[2] B. Boehm and L.G. Huang, “Value-Based Software Engineering: A
Case Study,” IEEE Computer, March 2003, pp. 33-41.

[3] T. Brazier, “Managing Technical Debt,” Overload Journal, Vol. 77,
Feb. 2007, retrieved on Feb. 13, 2012, from:
http://accu.org/index.php/journals/1301

[4] Checkstyle, http://checkstyle.sourceforge.net

[5] R. Cialdini, Influence: Science and Practice, 4th ed. Pearson
Education, 2000.

[6] Cobertura, http://cobertura.sourceforge.net

[7] W. Cunningham, “Ward Explains Debt Metaphor,” retrieved on
Feb. 11, 2012, from:
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

[8] W. Cunningham, “The WyCash Portfolio Management System,”
OOPSLA’92 Experience Report, Mar. 26, 1992, retrieved on Feb. 11,
2012, from: http://c2.com/doc/oopsla92.html

[9] K. Eades, The New Solution Selling: The Revolutionary Sales
Process That is Changing the Way People Sell, 2nd ed. McGraw-Hill,
2003.

[10] G. Fairbanks, Just Enough Software Architecture. A Risk-Driven
Approach. Marshall & Brainer, 2010.

[11] M. Fowler, “Technical Debt”, Feb. 26, 2009, retrieved on Feb. 13,
2012 from: http://www.martinfowler.com/bliki/TechnicalDebt.html

[12] M. Fowler, “Technical Debt Quadrant”, Oct. 14, 2009, retrieved on
Feb. 10, 2012 from:
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html

[13] FXCop, http://msdn.microsoft.com/en-us/library/bb429476.aspx

[14] O. Gaudin, “Evaluate your technical debt with Sonar,” Jun. 11, 2009,
retrieved on Feb. 5, 2012 from: http://www.sonarsource.org/evaluate-
your-technical-debt-with-sonar/

[15] Y. Guo, C. Seaman, “Portfolio Approach to Technical Debt
Management,” Proceeding of the 2nd working on Managing technical
debt (MTD '11), May 2011, pp. 31-34

[16] Klocwork, http://www.klocwork.com

[17] E. Maas and P.D. McNair, Applying Design for Six Sigma to
Software and Hardware Systems, Prentice Hall, 2009.

[18] Maven, http://maven.apache.org

[19] R. L. Nord, M. R. Barbacci, P. Clements, R. Kazman, M. Klein,
L. O’Brien, and J. E. Tomayko, Integrating the Architecture Tradeoff
Analysis Method (ATAM) with the Cost Benefit Analysis Method
(CBAM). Carnegie Mellon University, 2004.

[20] PMD, http://pmd.sourceforge.net

[21] J.J. Shaughnessy, E.B. Zechmeister, and J.S. Zechmeister, Research
Methods in Psychology, 5th ed. McGraw-Hill, 2000.

[22] J. Surowiecki, Wisdom of Crowds. Why the Many are Smarter Than
the Few. Abacus, 2005.

[23] M. G. Stochel, “Reliability and accuracy of the estimation process.
Wideband Delphi vs. Wisdom of Crowds,” Proceedings of 35th
Annual IEEE International Computer Software and Applications
Conference, Jul. 18-21, 2011, Munich, Germany, pp. 350-359.

[24] M. G. Stochel and R. Sztando, “Testing optimization for mission-
critical, complex, distributed systems,” Proceedings of 32nd Annual
IEEE International Computer Software and Applications Conference,
Jul. 28-Aug. 1, 2008, Turku, Finland, pp. 847-852.

[25] A. Tversky and D. Kahneman, “Judgement under Uncertainity:
Heuristics and Biases,” Science, New Series, Vol. 185, No. 4157,
Sep. 27, 1974, pp. 1124-1131.

212Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 230 / 729

An Advanced Interactive Visualization Approach
for Component-Based Software: A User Study

Jaroslav Šnajberk, Lukas Holy, Kamil Jezek and Premek Brada
Department of Computer Science and Engineering, Faculty of Applied Sciences,

University of West Bohemia, Pilsen, Czech Republic
{snajberk, lholy, kjezek, brada}@kiv.zcu.cz

Abstract—We present a user study that compares user per-
formance during architectural analysis using two different ap-
proaches to visualizing component-based applications structure:
AIVA (Advanced Interactive Visualization Approach) and UML
(Unified Modeling Language). AIVA is a research proof of
concept focused on extensive use of interactivity in visualization of
structure. UML is an industrial standard in the field of software
visual modeling. Participants of this user study tested how fast
they could perform six basic tasks which were selected so as to
gain understanding of component dependencies in a medium-
sized OSGi application. The results show that AIVA helps to
find answers on average three times faster than UML. The study
and its results provide a quantitative support for our hypothesis
that the structure of component-based applications should be
visualized interactively using dedicated notation rather than in
static UML diagrams to improve understanding of the whole
application architecture.

Keywords-software visualization; component; UML; user study;
interactivity.

I. INTRODUCTION

Component-based software engineering is a modern soft-
ware discipline that encapsulates objects into black box
structures called components to maximize re-usability and
to improve logical composition of the application. Although
the concept of a component is not new, approaches able to
fully visualize the structure of these applications are lacking.
However, such visualization is important for engineers to
thoroughly understand the applications.

AIVA (Advanced Interactive Visualization Approach) [1] is
our research visualization approach that is built on the idea
that interactivity is beneficial for the study of structure and that
different interactive techniques should be adopted to maximize
the impact of interactivity. This idea is in contrast with the
commonly used static approach of standardized UML [2] and
its component diagrams. Such an interactive approach should
be able to describe any component in at least the same level
of detail as UML can, without introducing more occlusion in
the diagrams. Interactivity should lead to a simplification of
structure visual representation, especially when combined with
techniques that are able to provide all details to the user just
when he needs them.

To validate the approach and assess its practical implemen-
tation, we have performed a controlled user study focused
on performance (time required to provide a correct answer)
during architectural analysis tasks. This paper describes the

whole study in terms of its design and results, together with
necessary background information on the AIVA approach and
further discussion of the results.

A. Current State of the Art

The Unified Modeling Language (UML) provides three
groups of diagrams to model both static and dynamic features
of software [2], including the component diagram. The nota-
tion used in this diagram, however, captures components only
on a general level, while their details differ greatly between
component models, both commercial and research ones –
OSGi [3], EJB [4], SOFA 2 [5] and others.

A component model can further introduce its own unique
features like behavior protocols [6] or hierarchical decomposi-
tion. To this end, UML supports user-defined profiles that are
able to model most – but not all – of the features satisfactorily;
although, their visual representation tends to be difficult to
read. An opposite approach is sometimes used, namely to
augment a given component model with its own visual notation
as, for example, in the case of SaveCCM [7]. A brief study of
the currently used approaches and tools is provided by Holy
[8].

Even when a UML profile is complemented with a tool
providing good visualization of the profile, an essential prob-
lem still remains: that the structure of component applications
tends to be more complex than most class structures. Contracts
between components often involve several features like event
queues, provided interfaces, imported packages, etc., leading
to many diagram lines per component pair. The resulting
structure is therefore more complex and harder to read.

B. Related Work

Research efforts related to our visualization of software
architectures fall in two broad categories: displaying the struc-
ture and dealing with interactivity. The efforts to display these
structures are most commonly oriented on extensions of the
UML itself, without taking interactivity under consideration;
while Dumoulin [9] introduces layers to support multiple
views in one diagram, Byelas [10] suggested the use of colored
areas of interest to improve orientation in classical UML
component diagrams. Other works are even less relevant to
the work presented in this paper.

Telea’s [11] work on (interactive) visualization of
component-based software is generic and mostly similar to

213Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 231 / 729

the work presented in this paper, but it does not provide
many details about components themselves and can hardly be
compared with UML. Wettel and Lanza [12] visualize software
as cities – they define three dimensions: two are used as the
base of a building and the third is used as the height of a
building. This approach could be easily used on component
software, but again it does not provide details needed to get
full comprehension of the structure.

Interactivity should help primarily with the creation of a
mental model, so that one will be able to reason about the
architecture and make decisions. It is important to lighten the
cognitive load, namely hide unnecessary details, as Ric Holt
highlighted with several examples in [13]. The importance of
interactivity for the ability to make decisions about a mental
model is mentioned in several studies, one of which is Meyer
et al. [14]. He goes even further and defines a new science
of visually enabled reasoning, implying that interactivity is its
key enabler.

Finally, works concerned with the evaluation of new in-
formation visualization approaches are also related, as we
studied them prior to designing our own user study. Therefore,
the work of Camilla Forsell [15] should be highlighted, as it
provides a clear guide for similar studies. Laidlaw [16] uses a
similar comparative study of performance on 2D vector field
visualization methods. Evaluation of software visualization
was also described by Sensalire et. al. in [17], cooperating
with Telea, mentioned earlier.

C. Structure of the Text

This paper first describes AIVA and UML in Section II
in order to provide sufficient understanding of them. Section
III describes the design of the presented user study in detail.
Technical information related to the hardware and specific
software technologies used are provided in Section IV.

Section V presents the results of the performed user study,
whose conclusions are then discussed in Section VI. Finally
this paper is concluded by Section VII with a summary of
findings.

II. OVERVIEW OF COMPARED APPROACHES

This section discusses both AIVA and UML, where the
former is described in greater detail, as it is an experimental
approach which is not commonly known. UML is touched only
briefly, being a common standard. Special care is given to the
techniques and features that were used by participants in the
study. Both approaches were already compared in a case study
[18] which focused solely on the readability of the diagrams in
these two approaches – compared to their performance testing,
which is the subject of this paper.

A. AIVA

The Advanced Interactive Visualization Approach (Project
page: http://www.assembla.com/spaces/comav)
uses an oriented graph to visualize components and their
relations. Its visual notation is unified for all component
models (including the hierarchical ones) and is partially

similar to that of a UML class diagram. However, it differs in
the representation of the list of elements inside the component
“box” – AIVA prefers hierarchical ordering based on the
characteristics of elements. The resulting groups of elements
stand each for itself to provide better orientation. A thorough
description of AIVA was published in [1], so below we
discuss mainly its interactive features that can help increase
user performance, in line with the goal of this paper.

The navigation and explore features that are most fre-
quently used when studying the diagram accommodate these
interactive techniques: scrolling, zooming, panning, outline
view and quick search (move the view on the diagram to
show the component selected in the project overview). AIVA
improves the zooming technique: when zoomed out, standard
zooming simply changes the scale of the standard output,
which makes the details of a component unreadable and thus
useless. AIVA in this case hides the details and enlarges only
the information that is always important – the name of the
component. This change should improve orientation in the
diagram.

Highlighting helps to further improve orientation in the
diagram. Almost any interaction will highlight the subject of
interaction with bright, easily distinguishable color in both
the diagram and the overview. One click on a component
highlights the component; one click on a connection line
highlights the line together with both components connected
by the line and the elements involved in this relation. Double
click on an element highlights all connection lines related to
this element as well as all connected components.

Decreased complexity of the diagram is yet another way
to improve diagram readability; AIVA uses information-hiding
techniques that help to achieve this goal, together with details
on demand (discussed next). A very effective complexity
reduction method is to collapse the connection lines, since
the reduction of the number of lines in the diagram makes
it less complex and easier to read; in AIVA, therefore, there
is only one connection line between each pair of connected
components. In addition, the information labels identifying the
connection type and connected elements are by default hidden.
Finally, interfaces and other component interface features are
not diagram nodes and the structure is therefore less complex.

Details on demand are used to access the hidden informa-
tion. When one clicks on the connection line, an information
box appears showing a detailed list of all connected elements;
therefore, no information value is lost. Additional details
are also provided when the user clicks on the component,
revealing information about, e.g., its version, license, symbolic
name, etc. Similar information about every component element
is accessible by hovering over its name.

Other features that are supported by AIVA are used mostly
to offer a different view on the same thing. However, these
features are not in the scope of this paper, so we mention
them only to present AIVA completely:

1) Grouping and filtering, based on the characteristics of
the elements. Support for user defined sets of groups.

2) Conditional formatting able to work with component-

214Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 232 / 729

model-specific information and various secondary data
that are normally hidden.

3) Reconfiguration features, namely change of representa-
tion of components or diagram layout.

B. UML

Unified Modeling Language on its own is a static approach
in which the diagrams look the same on a computer screen
and on paper. For full component modeling support, user
profiles are necessary, which considerably shortens the list
of available tools. The standard interactive techniques used
across all these UML tools are navigation ones – scrolling,
panning, zooming, and overview. The overall usability of UML
component diagrams is related more to the specific features of
concrete tools than to the UML notation itself. Therefore, tools
with some “added value” should be selected to objectively
investigate UML usability.

IBM Rational Software Architect (RSA) can be considered
as such an advanced UML tool. Besides all standard navigation
features, it supports some advanced ones that allow users to
manipulate the diagram, like changing the layout of nodes,
changing the line routing and modifying the look of compo-
nents and interfaces. Added value is in its “properties view”,
displayed at the bottom of the screen. This view shows all the
details about components and relations and, most importantly,
it can be used to navigate to related components. For example,
the “Relationships” tab shows a list of all elements that use or
are used by the component. This list clearly specifies which
kind of relation is used and which component is related. The
name of the related component has the form of a link, so the
user can easily find more information about it.

III. DESIGN OF THE STUDY

This section provides the details about the goal and me-
chanics of the performed user study.

A. Goal of the Study

The main goal of this study is to evaluate the performance of
users during architecture analysis in two different approaches
– UML and AIVA. The hypothesis tested was: “It is faster for
engineers to study the structure of component-based applica-
tions interactively rather than using static diagrams.” The null
hypothesis was that studying component-based applications’
structure is comparably fast when using interactive and static
visualization methods.

The results of this user study can therefore help in finding
out to what degree interactivity is useful. These questions
are important because the level of interactivity used in AIVA
is high and could negatively affect the user’s performance
while he collects some more detailed information, specifically
because a lot of this information is hidden and revealing it
requires user interaction.

The set of tasks used in the study simulates the activities
performed during one step of architecture analysis. These tasks
are focused on collecting knowledge about one component –
its features, dependencies and overall context consisting of

related components. When analyzing the whole architecture,
one needs to repeat this step for most of its components. The
concrete set of tasks is discussed thoroughly further below.

B. Profile of Participants

The structure of component-based applications is studied
by software engineers who work on these applications. They
have a deep knowledge of components and UML to be able
to understand the diagram presented. Such people are hard
to get to participate in a user study that takes at least one
hour; thus we decided to ask our colleagues to participate.
Use of academics and Ph.D. candidates was encouraged by
Sensalire et. al. in [17], based on their lessons learned: “They
are willing to take part in studies for the sake of gaining
knowledge and may require less or no additional motivation”,
while still clearly being professionals in the field of software
engineering.

The participants were young software engineers selected
from different groups at our department. They were confi-
dent in most UML diagrams; their knowledge of component
diagrams was tested specifically before participation. Most of
the participants use components on a daily basis and the rest
were briefly trained before the study. All of the participants
were confident in the required basics of component-based
development before undertaking the questions.

All participants were also trained in both tools that were
used to test the two approaches: UML/RSA and the AIVA
research prototype. First, the tool was presented to them. We
shared our working experience on how to get various types of
information effectively. Then every participant had unlimited
time to test all types of tasks that he would encounter.
Participants were handled individually and guidance was given
when asked. The training ended when the participant felt
confident and able to perform all types of tasks used in this
user study.

C. How the Study Was Performed

The process repeated with every participant was as follows:
1) Verification of knowledge
2) Training in Tool 1
3) Performing all tasks in Tool 1
4) Training in Tool 2
5) Performing all tasks in Tool 2
Verification of UML and component knowledge took about

20 minutes to ensure the participant’s expertise. Training in
both tools took about 40 minutes, until the participant felt
confident. All tasks were performed in under 10 minutes,
because the tasks were quite short.

All participants were observed for the whole time of the
study and there were no interruptions nor any advice while
they searched for the answers to a given task. The time
was measured from the moment the question was read and
understanding was confirmed by the participant, to the point
when a correct and full answer was given. We required users
to visually verify the information as part of the answer, i.e. to
pinpoint the found information in the diagram.

215Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 233 / 729

All participants were divided into two groups of the same
size. Group #1 started with AIVA and group #2 with UML.
The set of tasks was identical for both approaches; however,
the tested approaches provide such different diagrams that
the participants could not gain an advantage by performing
the same tasks again with the other tool. Moreover, training
in the second tool was performed after testing first tool to
distract participants from the tasks. During the training phase,
similar tasks were practiced by the participants on different
components in a completely different application to ensure that
they could not gain any knowledge related to the test tasks.

The study was intentionally designed this way to prevent
bias of participants which could erode the validity of results.

IV. TECHNICAL BACKGROUND

This section provides technical details required to recreate
the user study described. An overview of the OSGi component
model and CoCoME application used is provided, after which
the set of tasks (bound to the application) is described in its
final form. Finally, details about hardware are presented to
provide the whole picture.

A. OSGi Component Model

OSGi [3] is a multi-platform Java component solution
focused on dynamic deployment and assembly of components.
OSGi components are black-boxes; their nature and features
are described in a manifest file. The communication between
components is realized by services which are implementations
of interfaces, thus keeping their black-box nature.

Apart from services, both provided and required, these
components can depend on Imported packages and other com-
ponents – Required bundles. Thus there are three completely
different types of relations in the OSGi environment. Complex
analysis of OSGi and its key features is described in [19],
where the author suggests an OSGi profile for the ENT meta-
model which is used by AIVA.

After a thorough study of this profile, we developed a
similar one for UML, so it can model the same information
as the ENT meta-model. We already described this profile in
our previous study [18], which was more concerned with the
question of how this information is visualized.

B. CoCoME

CoCoME stands for Common Component Modeling
Example [20]. It models an information system for
supermarket chains and is used for the purpose of
comparing different approaches to component-based software
development. It has been officially implemented in 13
component models; we created an OSGi implementation
(http://www.assembla.com/spaces/comav/docu
ments/tag/CoCoME).

The CoCoME application consists of three main parts. First
is a Cashdesk part, which contains the cashdesk, including
barcode scanners, credit card readers, etc. The second part
is a store backoffice server and a store client. Finally,
the chain part consists of an enterprise server and client

applications. CoCoME is assembled from 37 components
using 12 interfaces, thus representing a medium-size
application. The complete diagram of the whole application is
accessible in both AIVA and UML forms on our project page
(http://www.assembla.com/spaces/comav/wiki
/Comparison_of_AIVA).

C. Tasks

The tasks described below were tested on the CoCoME
application. Because of this, they are formulated directly for
its components; however, they can be easily generalized. The
tasks are basic and contribute to answering one complex
question: how is a particular component (cocome-osgiDS-
store.impl) integrated in the CoCoME application. One has
to find out what this component offers and requires and
uncover its ties to other components, simulating the activities
performed during one step of the architecture analysis. The
most complex component of the application was chosen for
these tasks.

The tasks were identified based on our experience with the
structure of component-based applications and hints obtained
during interviews with several software engineers from local
software companies. The exact wording was then designed to
cover all aspects of one concrete component.
Q1. Which packages are imported by component cocome-

osgiDS-store.impl?
Q2. Which elements of component cocome-osgiDS-

store.impl are unused (i.e. have no relationship)?
Q3. Which components use the service StoreIf provided by

cocome-osgiDS-store.impl?
Q4. Which components depend on cocome-osgiDS-

store.impl?
Q5. Which components are required by cocome-osgiDS-

store.impl?
Q6. Which elements does cocome-osgiDS-store.impl need

from cocome-osgiDS-data?

D. Hardware

Computer hardware did not influence the results of the
study since the bottleneck for performance was the user’s
ability to interact and read the information from the diagram.
However, to provide complete technical background, here are
the specifications of the testing computer: Intel Core i5 3Ghz
CPU, 4GB DDR3 1066Mhz RAM, 7200RPM HDD and,
most importantly, 24” LCD with 1920x1080 resolution. This
computer proved to be fast enough to ensure a comfortable
working experience and the screen resolution was sufficient
for visualization purposes.

V. RESULTS

This section provides detailed results of this study for each
approach and their comparison. As the reader may note, the
results differ greatly depending on the participant. This was
caused by individual perception, orientation abilities and how
quickly they were able to click the mouse. (A lot of attention
was paid to preparing all of them thoroughly, see Section III.)

216Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 234 / 729

Twelve users participated in the study, identified as A-L in
the tables below. The last two participants (K and L) are co-
authors of this paper and mentored the rest of the participants.
Our performance is listed in the results to show the peak
performance of the tasks, as we knew exactly what we were
looking for and how to retrieve this information. We followed
the same rules as any other participants and accepted the
answer only after visual confirmation. Our results are not used
in later statistics. The Q1-Q6 identifiers in the result tables
refer to the tasks from Section IV-C.

Statistical tables present important statistical values calcu-
lated per question. The “Total” column provides the sum of
values per row, calculated from results data with millisecond
precision (thus, the simple sum of provided values may differ).

A. Performance in AIVA

Results of all participants are presented in Table I, while
statistical values are in Table II. The biggest strength of AIVA
was the search for unused elements (Q2), as it provides the
answer immediately and most participants were able to read it
right away; however, a few of them did not at first understand
this information. The biggest weakness was finding the depen-
dent components (Q4), because most of the participants forgot
to read the type of arrow indicating the type of the connection
and got a little confused – searched for the answer elsewhere
before they found it. As a result, the time needed for a correct
answer was longer, as we waited for them to solve the problem
themselves.

TABLE I
RESULTS OF USERS IN AIVA [MIN:SEC].

ID Q1 Q2 Q3 Q4 Q5 Q6 SUM
A 0:46 0:11 0:20 0:32 0:33 0:28 2:50
B 0:16 0:09 0:42 0:25 0:35 0:25 2:32
C 0:22 0:08 0:18 1:02 0:23 0:27 2:40
D 0:51 0:33 0:20 0:41 0:44 0:50 3:59
E 0:12 0:10 0:11 1:20 0:22 0:10 2:25
F 0:25 0:09 0:23 0:27 0:31 0:38 2:33
G 0:23 0:22 0:19 0:40 0:23 0:29 2:36
H 0:29 0:06 0:16 0:37 0:29 0:16 2:13
I 0:07 0:04 0:08 0:24 0:16 0:24 1:23
J 0:15 0:24 0:17 0:31 0:25 0:17 2:09
K 0:08 0:03 0:08 0:13 0:19 0:10 1:01
L 0:12 0:04 0:08 0:15 0:17 0:11 1:07

TABLE II
STATISTICS OF USERS IN AIVA.

Measure Q1 Q2 Q3 Q4 Q5 Q6 Total
Avg 0:24 0:13 0:19 0:39 0:28 0:26 2:32

Median 0:22 0:09 0:18 0:34 0:27 0:26 2:18
Min 0:07 0:04 0:08 0:24 0:16 0:10 1:09
Max 0:51 0:33 0:42 1:20 0:44 0:50 5:00

Std dev. 0:13 0:08 0:08 0:17 0:07 0:10 N/A

B. Performance in RSA

Results of all participants are presented in Table III, while
statistical values are in Table IV. The biggest strength of RSA

was looking up service clients (Q3), as it provided the answer
almost immediately, while the biggest weakness was finding
the dependent components (Q4) due to worse RSA support
in connecting components through ports. Participants gave a
stable performance as they are familiar with UML notation.
The graphical user interface of RSA is more user friendly,
which also helped users in orientation. Often, Participants were
delayed by accidental clicking on the connection line – RSA
had centered the screen on it and they lost the context of the
studied component.

TABLE III
RESULTS OF USERS IN RSA [MIN:SEC].

ID Q1 Q2 Q3 Q4 Q5 Q6 SUM
A 1:04 2:40 0:12 2:56 2:43 2:10 11:45
B 1:22 2:06 0:11 1:40 2:39 2:08 10:06
C 1:13 2:30 0:25 1:58 2:49 2:14 11:09
D 1:19 1:30 0:27 1:23 2:25 2:10 9:14
E 0:36 0:59 0:17 0:43 1:41 1:00 5:16
F 1:24 1:05 0:21 1:01 1:40 2:49 6:12
G 0:43 0:30 0:07 0:39 1:46 1:20 5:05
H 0:46 1:14 0:09 0:54 2:17 0:52 6:12
I 0:52 0:34 0:08 0:28 1:00 0:36 3:38
J 0:59 1:06 0:21 0:40 1:48 1:28 6:22
K 0:32 0:42 0:10 0:34 1:07 0:46 3:51
L 0:39 0:52 0:11 0:25 0:54 0:39 3:40

TABLE IV
STATISTICS OF USERS IN RSA.

Measure Q1 Q2 Q3 Q4 Q5 Q6 Total
Avg 1:01 1:25 0:15 1:14 2:04 1:40 7:42

Median 1:01 1:10 0:14 0:57 2:02 1:48 7:14
Min 0:36 0:30 0:07 0:28 1:00 0:36 3:17
Max 1:24 2:40 0:27 2:56 2:49 2:49 13:05

Std dev. 0:16 0:43 0:06 0:43 0:33 0:41 N/A

C. Comparing the Results
Apart from the measured values, a useful piece of infor-

mation resulting from this study is the performance ratio of
AIVA to RSA. Comparing this ratio for every participant can
bring more insight than comparing the global numbers. The
highest ratio was for participant A, who was 4.15 times faster
in AIVA than in RSA. The lowest ratio was for participant G,
only 1.96 times faster in AIVA than in RSA. The rest of the
participants were within these extremes; however, they were
on average 3 times faster in AIVA – the average test time in
RSA was 462 seconds, compared to 152 seconds in AIVA.

The average results are compared with the standard devia-
tion in Figure 1. Normal distribution says that 70% of users
would fall within these limits. This figure clearly shows that
AIVA was faster in tasks Q1, Q2, Q4, Q5 and Q6, that is in
83% of cases, while it was slower in task Q3, which was the
strongest task in RSA.

Figure 2 comprehensibly presents minimum, maximum and
median values in a comparable way, so that these values can
be conveniently studied in one place.

Lastly, Figure 3 contrasts the longest times measured in
AIVA with the shortest times measured in RSA. This figure

217Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 235 / 729

Fig. 1. Comparison of average results.

Fig. 2. Minimum and maximum values with median marked.

presents a different look at these extreme values, showing how
a poor use of AIVA compares with best-performing RSA users.
The numbers show that even in this case, AIVA is comparable
in two thirds of tasks; RSA has its best results significantly
faster in tasks related to service dependencies.

Fig. 3. Comparison of maximal AIVA results with minimal RSA results.

Two scenarios were tested to compare results in more depth.
The first scenario tested if users who perform best in UML
are also very fast in AIVA. All participants were ordered from
fastest to slowest in both AIVA and UML and their order was
compared. Four participants from the UML top 5 were also in
the AIVA top 5. The notes on the remaining participant who
did worse in AIVA showed that he was overconfident because
of his expertise in UML. He started the test in AIVA and had
to think longer about how to finish the given tasks. As a result
of this scenario, it is possible to conclude that good analysts
will benefit from using AIVA.

The second scenario tested where in the distribution are
users who were really slow in UML. All participants were
ordered from fastest to slowest in UML and, also, their
performance ratio between AIVA and UML was ordered from
highest to lowest. Four participants from the bottom 5 in UML

were among the top 5 users overall in the performance ratio.
(The one who was not in the top 5 also had significantly worse
results in AIVA – he also felt confident in AIVA although it
turned out he should have kept training for some more time.)
The five slowest participants in UML were on average 3.5
times faster in AIVA, while the top 5 UML participants were
on average only 2.5 times faster. It is possible to conclude that
casual users of UML will benefit the most from using AIVA.

VI. DISCUSSION

The previous section provided results of this user study and
compared them. By studying these results it is possible to
conclude several things on which this section comments. It
is important to realize that AIVA did trade-off some char-
acteristic features of UML to get these better results. The
most important trade-offs are that AIVA can not be used on
paper; it is usable only for component-based applications and,
moreover, only for the structure of these applications.

A. Measures of AIVA Performance

First of all, the time required to finish a task in AIVA
is more consistent – the standard deviation in RSA (48
seconds) is almost four times higher that that of AIVA (14
seconds). The reason is that UML itself and thus also RSA
has different levels of recognition and therefore handling for
different elements – work is really fast with some (tasks that
depend mostly on interfaces) but slow with others (tasks that
depend mostly on ports). On the other hand, AIVA provides
the same level of support for all types of elements on both
visual and interaction levels.

The previous conclusion leads to a more important one –
the choice of tasks is not so important for AIVA as it is for
UML. In other words, AIVA should be able to provide stable
user performance for any task set, in any component model. In
contrast, a user’s performance in UML depends on the selected
tasks, the selected UML tool and the component model.

Task Q4 (searching for clients of the studied component)
was the slowest one in both approaches. The reason is that
the component was widely used by many other components
in the CoCoME application. Therefore, it took time to find
them all.

One should also look at the fastest task for UML – Q3,
which worked with dependencies of interfaces in a tool which
is able to list all these dependencies at once. This can be
recognized as a best case UML scenario, with the fastest time
of 7 seconds, while AIVA required 8 seconds. Median values
are 14 seconds for UML and 18 seconds for AIVA – that is,
AIVA is 28% slower. The worst case scenario for UML would
be Q5, which worked a lot with dependencies of packages
(ports). The fastest user finished this task in 16 seconds in
AIVA but took 60 seconds in UML. Median values are 27
seconds in AIVA and 122 seconds in UML – UML is 450%
slower. These numbers again indicate that AIVA would be
faster in any mixed task set.

From the results provided, it is thus possible to conclude
that the level of interactivity used in AIVA is useful and that

218Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 236 / 729

the null hypothesis is not valid. Interactivity helped AIVA to
provide a simpler diagram, so users could orientate themselves
easier, and the overall user performance was better even
when the interaction was required to gather the necessary
information.

B. Participant Opinions

This user study confirmed that AIVA is faster than UML,
but we also asked the participants a few subjective questions
after they finished:

1) Do you consider the AIVA or UML diagram clearer?
Why?

2) Which was more comfortable to work in, AIVA or RSA?
Why?

3) Do you have other suggestions?
All participants answered that AIVA provides a clearer

diagram that is more readable and understandable. They men-
tioned these reasons: fewer lines, hidden details on zoom,
all information in one place and very readable structure of
elements.

One participant felt more comfortable in RSA because
labels were always visible and a click on lines centered the
screen. The rest of the participants felt more comfortable in
AIVA, giving these reasons: clearer GUI, packages shown
inside components, much faster operation, information easier
to reach, better interactive overview. These participants also
did not like the RSA feature that centered the screen after
they clicked on a line because it happened often by accident
and they lost thecontext.

VII. CONCLUSION AND FUTURE WORK

This paper described a complete user study that compared
performance in component architecture analysis tasks using
two different component visualization approaches – AIVA and
UML. AIVA is implemented as a research proof of concept,
while UML is supported by a lot of commercial tools. Rational
Software Architect was chosen to represent these tools because
of its ability to easily study relations, which was most needed
in this experiment.

The data obtained show that users working interactively (i.e.
in AIVA) are approximately three times faster than those using
UML. In only one of six tasks was UML faster, while AIVA
performed better in the remaining 5/6 of tasks. The discussion
section above provides insight into the reasons and on how
different tasks could affect the overall performance.

Results of this user study therefore confirm that advanced
visualization of component-based application architecture us-
ing a high level of interactivity is beneficial for users. Even the
increased interaction required to uncover hidden information
does not introduce significant problems.

Our future work will evaluate if AIVA can be used by
software engineers in real-life scenarios. In particular, we want
to test if it helps users to understand the application structure
starting from the beginning of the learning process to the
point where they have sufficient insight to make decisions and
answer complex questions.

ACKNOWLEDGMENT

The work was supported by the University of West Bohemia
grant SGS-2010-028 Advanced Computer and Information
Systems.

REFERENCES

[1] J. Snajberk and P. Brada, “Interactive Component Visualization,” in Pro-
ceedings of International Conference on Evaluation of Novel Approaches
to Software Engineering. SciTePress, 2011, pp. 218–225.

[2] Object Management Group, “UML Superstructure Specification,” Object
Management Group, OMG Specification formal/2009-02-02, 2009.

[3] OSGi Alliance, “OSGi Servise Platform Core Specification,” OSGi
Alliance, OSGi Specification, 2009.

[4] Sun Microsystems, Inc., “Enterprise JavaBeans(TM) Specification,” Sun
Microsystems, Inc., SUN Specification, 2001.

[5] T. Bures, P. Hnetynka, and F. Plasil, “SOFA 2.0: Balancing Advanced
Features in a Hierarchical Component Model,” in SERA. IEEE
Computer Society, 2006, pp. 40–48.

[6] F. Plasil and S. Visnovsky, “Behavior Protocols for Software Compo-
nents,” IEEE Trans. Software Eng, vol. 28, no. 11, pp. 1056–1076, 2002.

[7] H. Hansson, M. Akerholm, I. Crnkovic, and M. Tarngren, “SaveCCM
- A Component Model for Safety-Critical Real-Time Systems,” in
EUROMICRO. IEEE Computer Society, 2004, pp. 627–635.

[8] L. Holy, J. Snajberk, and P. Brada, “Evaluation Component Architecture
Visualization Tools,” in Proceedings of International Conference on
Information Visualization Theory and Applications. SciTePress, 2012.

[9] C. Dumoulin and S. Gerard, “Have Multiple Views with one Single
Diagram! A Layer Based Approach of UML Diagrams,” Institut Na-
tional de Recherche en Informatique et en Automatique, Universite des
Sciences et Technologies de Lille, Research report INRIA-00527850,
October 2010.

[10] H. Byelas, E. Bondarev, and A. Telea, “Visualization of areas of
interest in component-based system architectures,” in Proceedings of the
32nd EUROMICRO Conference on Software Engineering and Advanced
Applications. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 160–169.

[11] A. Telea and L. Voinea, “A Framework for Interactive Visualization of
Component-Based Software,” in Proceedings of the 30th EUROMICRO
Conference. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 567–574.

[12] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in In
Proc. of the 4th IEEE International Workshop on Visualizing Software
for Understanding and Analysis. Society Press, 2007, pp. 92–99.

[13] R. Holt, “Software Architecture as a Shared Mental Model,” in Proceed-
ings of International Workshop on Program Comprehension, 2002.

[14] J. Meyer, J. Thomas, S. Diehl, B. Fisher, and D. A. Keim, “From
Visualization to Visually Enabled Reasoning,” in Scientific Visualization:
Advanced Concepts, ser. Dagstuhl Follow-Ups, H. Hagen, Ed. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010,
vol. 1, pp. 227–245.

[15] C. Forsell, “A guide to scientific evaluation in information visualization,”
in Information Visualisation (IV), 2010 14th International Conference,
july 2010, pp. 162 –169.

[16] D. H. Laidlaw, J. S. Davidson, T. S. Miller, M. da Silva, R. M. Kirby,
W. H. Warren, and M. Tarr, “Quantitative comparative evaluation of 2d
vector field visualization methods,” in Proceedings of the conference on
Visualization ’01, ser. VIS ’01. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 143–150.

[17] M. Sensalire, P. Ogao, and A. Telea, “Evaluation of software visualiza-
tion tools: Lessons learned,” in Visualizing Software for Understanding
and Analysis, 2009. VISSOFT 2009. 5th IEEE International Workshop
on, 2009, pp. 19 –26.

[18] J. Snajberk, L. Holy, and P. Brada, “AIVA vs UML: Comparison of
Component Application Visualizations in a Case-Study,” in Proceedings
of 16th International Conference on Information Visualization, 2012.

[19] L. Valenta and P. Brada, “OSGi Component Substitutability Using
Enhanced ENT Metamodel Implementation,” Department of Computer
Science and Engineering, University of West Bohemia, Tech. Rep.
DCSE/TR-2006-05, 2006.

[20] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, The Common Com-
ponent Modeling Example: Comparing Software Component Models,
1st ed. Springer Publishing Company, Incorporated, 2008.

219Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 237 / 729

Representing Topic Event-Based
Systems using Pluggable Units

Fernando J. Barros
Departamento de Engenharia Informática

Universidade de Coimbra, Portugal
Email: barros@dei.uc.pt

Abstract—In this paper, we present Pluggable Software Units
(PUs), a formalism aimed to represent independent and hier-
archical software units. PUs extend the request/reply paradigm
by introducing full support to anonymous invocation. PUs is a
reflective approach supporting the definition of dynamic software
topologies. We show that these features enable the representation
of modular topic event-based systems using gate-to-gate (g2g)
communication. PUs provide a unification of request/reply and
event-based paradigms. Our results contradict current research
that suggests event-based and request/reply approaches to be
independent and intrinsically incompatible. Application examples
are described in JUSE, a Java/Groovy implementation of PUs.

Keywords-topic event-based programming; pluggable soft-
ware units; dynamic software topologies.

I. INTRODUCTION

Hierarchical and modular design has its origins in the field
of General Systems Theory [1] and it has been later adapted
by the area of software engineering [2], [3]. Although the
advantages of independent software are evident, the definition
of reusable software has been elusive for many decades. Early
formal frameworks for defining independent software lack the
compliance with object-oriented design, becoming virtually
useless for software engineering projects. The area of soft-
ware architecture has produced specifications that have little
support from programming languages [4]. Earlier executable
specifications supporting the independence between software
components have been introduced in the area of event-based
programming [5]. Although the event-based paradigm has
many features enabling reuse, it is not compatible with the
request/reply principles of object-oriented programming, im-
posing an exclusive choice between programming paradigms
[6]. Given the known advantages of both event and request/re-
ply programming it would be desirable to develop a unifying
paradigm exhibiting the best of their features.

We have developed PUs [7], a modular and hierarchical
software specification framework, based on the General Sys-
tems Theory [8]. The PU approach is fully compatible with the
request/reply paradigm introducing the complete independence
between software units [9]. This approach the anonymous
request/reply paradigm, as defined in [6].

In this paper we unify topic event-based and anonymous
request/reply programming. In particular, we express events
using PUs gate-to-gate (g2g) primitives to achieve a frame-
work supporting both styles of programming. This unification
allows software models to combine the best features of both

paradigms, giving the choice to the modeler to represent parts
of the model using the multicast feature of event programming,
simultaneously with gate-to-gate communication provided by
request/reply.

To obtain the unification of both paradigms we map event
publish/subscribe operators into g2g links supported by PUs.
Since publish/subscribe operators can be made during applica-
tion runtime, the key to the unification is given by the ability
to support dynamic software topologies that adapts links to
these operators.

We shown that design patterns based on implicit invocation,
like the Observer pattern [10], can also be represented in PUs,
showing the generality of this approach. Application examples
are provided in JUSE, a Java/Groovy implementation of PUs.

The paper is organized as follows. Section II provides a
formal definition of basic and network pluggable software
units (PUs). Section III introduces a representation of topic
event-based programming using PUs with a dynamic topology.
Related work is described in Section IV. Conclusion and future
work are presented in Section V.

II. PLUGGABLE SOFTWARE UNITS

PUs comprises two types of software units: basic and
network. Basic PUs provide the actual method invocation,
whereas networks are a composition of PUs and provide
message passing. In PU composition, both basic and network
PUs can be used indistinctly. PUs supports a hierarchical
and modular type of software construction. Network definition
is dynamic, permitting the specification of adaptive software
topologies.

A. Basic PU

Basic PUs define a set of input and output gates. Input
gates correspond to object methods, whereas output gates
represent an abstract access to external PUs. Output gates
are an amendment to the object-oriented protocol and they
remove the need for PUs to refer to others explicitly. This
construct supports effectively the anonymous request/reply
programming. Since PU communication is made exclusively
through gates they are completely independent and can be
arbitrarily composed. Each basic PU has its own description,
referred to as the PU model. Let B̂ be the set of names of
basic PUS. The PU model associated with χ ∈ B̂ is given by:

220Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 238 / 729

Mχ =
(
inGates, {inSigng}, S, s0, {ag}, outGates,

{outSignk}, {outDSignk}, {outFunctionk}
)
χ

where
inGates is the set of PU input gates
inSigng is the input-to-output signature of every gate g in

inGates
S is the set of PU states
s0 is the PU initial state
ag is an action for every gate g belonging to the set inGates

outGates is the set of PU output gates
outSignk is the output-to-input signature of every gate k in

outGates
outDSignk is the intermediate signature of every output gate

k ∈ outGates
outFunctionk is the output function of every gate k in

outGates

An input-to-output signature is a 2-tuple containing the
range set of the incoming parameters and the range set of
outgoing parameters. For example, if input gate g receives
real values R, and responds by sending integer values I, then
its input signature is given by inSigng = (R, I).

The function ag on input gate g of signature (Ig, Og) is
expressed by

ag : S × Ig S ×Og
An action corresponds to a method in the object paradigm.

Action ag receives input values from (S × Ig), produces a
change in the PU state, and returns a value from Og . As a
side effect, an action on a PU can trigger other actions on the
PUs linked to it. The action can also request values from the
network where the PU is inserted. We do not formalize here
these side effects of action behavior.

An output-to-input signature is a 2-tuple (Ok, Ik) containing
the range set of the outgoing (direct) parameters Ok and the
range set of incoming (return) parameters Ik.

Output functions convert the set of values received by an
output gate. These functions are useful when several links are
connected to an output gate, and in general, to convert values
without creating special PUs.

Intermediate signatures define the values, Dk, that can be
received by an output gate k. These value are then converted
by the output function to the set Ik.

The output function outFunctionk on output gate k of
intermediate signature Dk and output signature (Ok, Ik) is
expressed by

outFunctionk : Dk
∗ −→ Ik

where Dk
∗ is a list of values from set Dk.

Semantics of the output function outFunctionk associated
with gate k is graphically sketched in Figure 1, where request
and reply semantics are represented in Figure 1(a) and Figure
1(b), respectively.

(a) Request. (b) Reply.

Fig. 1. Semantics of the outFunctionk .

In the request phase (Figure 1(a)), values from set Ok are
sent to all neighbors of gate k. In the reply phase (Figure
1(b)), values from set Dk are collected and transformed by
outFunctionk into a value of the set Ik.

We note that input gates of basic PUs do not define
intermediate signatures since these units do not have internal
connections, and thus their input gates are terminal.

Given an output gate k with output signature (Ok, Ik),
we assume the head function when the output function
outFunctionk is omitted and the intermediate and input
signatures match (Dk = Ik). This function returns the first
value from a list and it is defined by:

head(< arg0, . . . >) = arg0

Example: Position PU: To illustrate an example of a
basic PU we employ the Position PU represented in Figure
2. This PU has input gates: ax and x, corresponding to
actions it can provide. Position has also the output gate
x that sends the current position to the outside. Position
receives piecewise constant acceleration values and computes
the current position x by double integrating the input signal.
For simplicity we describe here one-dimension positions. 2D
coordinates are used in the next sections.

Fig. 2. Position PU.

Position state keeps the time of the last update (time),
position (x), velocity (vx) and acceleration (ax) values. The
PU is described by:

MPosition = ({ax, x},
{(R2, ∅), (R,R)},
R3, (time = 0, x = 0, ax = 0),

{actionax, actionx},
{x}, {(R, ∅)}, {∅},
{outFunctionx(∅, ...) = ∅})

where ∅ represents the empty set and ∅ represents the
null/absence of value.

The ax action sets the acceleration and is defined by:

221Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 239 / 729

actionax(t, a)
δ ← t− time
x← x+ vxδ + ax

2 δ
2

vx ← vx + axδ
ax ← a
time← t
out.x(x)
↑ ∅

This action also sends the current position to the outside
through gate x using the command out.x(x). The current
position at time t is computed by:

actionx(t)
δ ← t− time
↑ x+ vxδ + ax

2 δ
2

B. PU Network

Hierarchical composition of systems has been used as a
powerful construct to manage complex systems. We consider
that PUs can be hierarchically composed, being the resultant
PU indistinguishable from the basic PU of the last section.
This ability permits to handle in a homogeneous form both
basic and aggregated components. A PU network is a complex
PU built by the composition of other PUs. Let Ê be the set of
names corresponding to PU networks, constrained to Ê∩B̂ =
∅. The model of the network PU χ ∈ Ê is defined by:

Mχ =
(
inGates, {inSigng}, {inDSigng},

{inFunctiong}, ε,Mε, outGates,

{outSignk}, {outDSignk}, {outFunctionk}
)
χ

where
inGates is the set of the network input gates
inSigng is the input-to-output signature of every gate g ∈

inGates
inDSigng is the intermediate signature of every input gate

g ∈ inGates
inFunctiong is the input function of every gate g ∈ inGates

ε ∈ ε̂ is the network executive
Mε is the model of the network executive
outGates is the set of the network output gates
outSignk is the output-to-input signature of every gate k ∈

outGates
outDSignk is the intermediate signature of every output gate

k ∈ outGates
outFunctionk is the output function of every gate k ∈

outGates

with ε̂ representing the set of all names associated with
network executives, constrained to ε̂ ∩ B̂ = ε̂ ∩ Ê = ∅.

The PU network has the same type of interface of a basic
PU making it possible to use networks as components of other
networks, enabling the hierarchical composition of PUs. The
network topology is managed by a special PU termed here

by network executive ε. The executive keeps a list of the PUs
that compose the network. It also keeps the set of the links
existing among PUs. This information is not static, and can be
changed by executive actions [11]. The model of the network
executive is an augmented PU model defined by:

Mεχ =
(
inGates, {inSigng}, S, s0, {ag},

σ, Σ̂, outGates, {outSignk},

{outDSignk}, {outFunctionk}
)
εχ

Function σ maps the executive state into an network topo-
logy. The topology function σ is expressed by:

σ : S → Σ̂

Each topology Σ ∈ Σ̂ is given by

Σ =
(
C, {Mc}, L,Ξ

)
where
C is the set of PUs
Mc is the model of each PU c ∈ C
L is the set of links
Ξ is the order function
Given that the current network topology is a function of the

executive state, any change in this state can cause a topological
change in the network. A link in L is a 3-tuple defined by:(

(i, gi), (j, gj), (dC, rC)
)

where
i is the name of the source PU
gi is a gate of the i PU
j is the receiver PU
gj is a gate of j
dC is the link direct converter
rC is the link reverse converter

Converters transform both the values sent and received by
a PU. For example, if a PU works with values in m·s−1 and
needs to communicate with another PU operating in km·h−1,
then adapting capabilities provide a solution to make this
conversion without the creation of additional PUs. In this
case, the direct converter is given by dC(x) = 3.6 x, and
the reverse converter is given by rC(x) = x

3.6 to make
the conversions m·s−1 ↔ km·h−1. If omitted, converters are
considered to be the identity function. We note that reverse
converters are a consequence of the request/reply paradigm
that imposes the compatibility of the returned values.

Ξ : L+ → L+ is the order function, where L+ is the set of
all sets of links (excluding the empty set).

The order function establishes the order of the outside calls
when several links are connected at the same output gate.
For simplicity, when omitted, a non-deterministic order is
assumed. In the JUSE implementation the order function is
established implicitly by link declaration order.

The initial network topologyΣ0 is given by Σ0 = σ(s0,ε).

222Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 240 / 729

Example: Mobile Entity: To illustrate the definition of a PU
network, we build a PU to represent an autonomous mobile
based on the Position PU of last Section. The network PU
is depicted in Figure 3 and it is defined by:

MMobile =({x}, {(∅,R)}, εMobile,
MεMobile , {x}, {(∅,R)}, {∅},
{outFunctionx(∅, ...) = ∅})

where

MεMobile =({}, {}, {s0}, s0, {}, σ, {Σ0},
{}, {}, {}, {})

Network single topology given by:

Σ0 = σ(s0) = (C, {Mc}, L)

where
C = {Position}
{Mc} = {MPosition}
L = {

((Mobile, x), (εMobile, x), dC(t) = t, rC(x) = x)
((εMobile, ax), (Position, ax), dC(t, a) =
(t, a), rC(∅) = ∅),
((εMobile, x), (Position, x), dC(t) = t, rC(x) = x),
((Position, x), (Mobile, x), dC(x) = x, rC(∅) = ∅)
}

The PU network, represented in Figure 3, is composed
of one Position PU, linked to the executive εMobile. The
network has the input gate x to access the value of the current
position. The executive requests the position through the call
x(time), where time represents the current time.

Fig. 3. Block diagram of the Mobile network PU.

At a random intervals, the executive updates the current
value of acceleration through gate ax. This value is integrated
by PU Position that computes current position and velocity
as described in the last section.

C. JUSE

JUSE is a Java/Groovy implementation of PUs and it pro-
vides an executable version of software units. JUSE supports
the following calls to create software units and to establish
links between PUs:

void addS(Class aClass, String aName), cre-
ates a PU named aName of class aClass;

void linkS(String aName, String aGate,
String bName, String bGate, Closure
dConverter, Closure rConverter), links a
PU named aName gate aGate to gate bGate of PU
bName, establishing direct converter dConverter and
reverse converter rConverter.

Input/output functions are associated with input/output
gates, respectively. In JUSE these functions are specified when
gates are added to PUs by the call:
GateCollection add(Class rSgnt, Class

iSgnt, String aGate, ArrayList<Class>
dSgnt, Closure aClosure), that adds aGate
with return signature rSgnt, intermediate signature
iSgnt and direct signature dSgnt, and associates it
with the function aClosure.

These primitives are used in the next sections for describing
several examples using JUSE. Anonymous Publish/Subscribe
JUSE provides support for anonymous publish/subscribe pro-
gramming enabling both static and dynamic topologies. We
consider the surveillance system depicted in Figure 4, with
one radar and a variable number of mobiles (ships, aircrafts,
...), that enter and leave radar range. The radar samples the
position of all mobiles at a regular rate and receives a list
of pairs with mobile position and name. Instead of modeling
mobiles as entities that publish their position, as required
by push event-based programming, we have considered that
mobile positions are pulled by the radar. The main advantage
is that we can directly express radar sampling rate instead
of handling an arbitrary pushing rate from the mobiles. This
representation makes the surveillance model more efficient
since it can easily accommodate several radars with different
sampling rates. When the radar issues the command xy it
receives a list of mobile positions at the current time. This
example exploits the bidirectional nature of request/reply that
unifies the push and pull styles of event-based programming.
These two styles can be used independently in some systems
like CORBA [12]. To override the default behavior of radar
output gate xy, we use the following output function that
return a list of values:
add(List, XY, ’xy’, [], List<XY> list->

list)
Surveillance initial topology is given by Listing 1 where the

name of mobiles is introduced by reverse converters using the
method setSource in lines 9-11.

1void structure() {
2super.structure();
3addS(’R1’, Radar);
4addS(’M1’, Mobile);
5addS(’M2’, Mobile);
6addS(’M3’, Mobile);
7linkS(’Network’, ’in’, ’Executive’, ’in’, {List<IOutput> m->

[m]}, {Void x-> x});
8linkS(’Executive’, ’leave’, ’Network’, ’move’, {List<String>s ->

[s]}, {Void x-> x});
9linkS(’R1’, ’xy’, ’M1’, ’xy’, {->}, {XY p-> p.setSource(’M1’)});
10linkS(’R1’, ’xy’, ’M1’, ’xy’, {->}, {XY p-> p.setSource(’M2’)});

223Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 241 / 729

(a) Initial topology. (b) Topology after the removal of mobile M2.

Fig. 4. Block diagram of the surveillance network.

11linkS(’R1’, ’xy’, ’M1’, ’xy’, {->}, {XY p-> p.setSource(’M3’)});
12}

Listing 1. JUSE definition of the surveillance initial topology

One of the radar tasks is to keep track of the mobiles
within its range. Mobiles out of range are removed and sent to
another surveillance system through output gate out. These
operations are described in Listing 2 where executive action
move receives a list of mobiles to be removed from the current
surveillance system.

1Void move(List<String>mobiles) {
2List<IOutput> leaving = new List<IOutput>();
3mobiles.each{String m-> leaving.add(remove(m)};
4out.out(leaving);
5return null;
6}

Listing 2. Removing mobiles

III. TOPIC EVENT-BASED PROGRAMMING

We consider event-based programming as a special case
of anonymous publish/subscribe systems with a dynamic
topology. This interpretation implies that the same type of
invocation is used, the difference being the way dynamic
topologies are specified. The event invocation is less expres-
sive than anonymous publish/subscribe due to unidirectional
information flow. The publish/subscribe mechanism character-
istic of event programming is kept since it enables simpler
specifications.

A. Basic Operators

A key feature introduced in publish/subscribe systems, and
not supported by many modular systems, is the ability to define
changes in topology. In fact, publish/subscribe operators can
be regarded as implicitly defining dynamic topologies that link
publishers and subscribers. However, in a reflective framework
like PUs, that provides full support for dynamic topologies,
the ability to change links between components can be easily
supported. While PUs topology is kept and controlled by the
executive, this does not mean that changes in topology must
be decided in the executive. In fact, decisions can be made

anywhere in the system, but they are only effective when they
are enforced by the executive. To provide similar operators
as defined by event-based systems we consider the executive
to act as the implicit hidden middleware supporting events.
The result is an explicit construct where publish/subscribe
messages can be handled. For this purpose, we provide each
PU with the output gate command. The executive is provided
with the input gate command, that receives a command and
the origin of the command. To support hierarchical event-
based systems, we extend PU network with the output gate
command, so publish/subscribe commands can be sent to
upper levels of the hierarchy.

JUSE supports the following executive commands to repre-
sent publish/subscribe systems:
Void publish(String aName, String

aGate, Closure dConverter, Closure
rConverter); where PU named aName publishes
output gate aGate, with direct converter dConverter
and reverse converter rConverter;

Void subscribe(String aName, String
aGate); where PU named aName subscribes gate
aGate and will receive notifications at gate aGate.

These operators establish g2g channels whenever there is an
intersection between the interest of publishers and subscribers.
The definition of hierarchical event-based systems is enabled
by the possibility to send/receive messages to/from the net-
work PU.

JUSE supports the following executive commands to destroy
links in publish/subscribe systems:
Void unpublish(String aName, String

aGate);
Void unsubscribe(String aName, String

aGate).
Although this can be seen as an exercise of expressing one

paradigm into another, this mapping combines advantages of
both techniques. The unifying approach allows multicast and
g2g topologies to co-exist. If we take the example of the last
section, while the links between the radar and the mobiles
can be easily expressed using publish/subscribe operators, a

224Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 242 / 729

pursuer launched to cancel a specific mobile will be better
specified using g2g operators. In every case the specification
ends up becoming g2g, but when using publish/subscribe op-
erators links are defined implicitly, providing a short notation
that in many cases becomes more convenient. The addition
of a new radar, for example, becomes quite simple, since the
radar needs only to publish its output gate xy.

The new representation of the Mobile PU presented in
Section II-B is given in Figure 5. Default gate command
and g2g links are provided to each PU so commands can be
transmitted. While the executive has the input gate command
linked to the output gate command of all other PUs, executive
output gate command is linked to network output gate cmd
so commands can be sent hierarchically to the upper level,
enabling dynamic scoping [6].

Fig. 5. Mobile PU supporting publish/subscribe operators.

A major contribution of the publish/subscribe paradigm
is a set of compact operators to express structural changes.
Gate-to-gate links require source and destination information
in order to establish a new channel. In some situations this
information is cumbersome to gather and publish/subscribe
operators can represent models in a simpler manner. However,
since the resulting topologies can still be expressed by g2g
networks, no increasing expressiveness is actually obtained.
We next provide an example that demonstrates the advantages
of the publish/subscribe operators.

B. Event-Based Surveillance System
We consider the event-based representation of the surveil-

lance system described in Section 3 and depicted in Figure
6. After the commands of Listing 3, the topology is changed
from the initial structure given by Figure 6(a) to the topology
of Figure 6(b).

1out.command({String s, Executive e-> e.publish(s, ’xy’, {->},
{String source, XY p-> p.setSource(source)})}) "In radar R1"

2out.command({String s, Executive e-> e.subscribe(s, ’xy’)}) "In
Mobile M1"

3out.command({String s, Executive e-> e.subscribe(s, ’xy’)}) "In
Mobile M2"

Listing 3. JUSE publish/subscribe commands to create the topology in Figure
6(b).

The commands originated at mobiles M1 and M2 are issued
by the respective executive and sent to the Surveillance ex-
ecutive through gates command. Line 1 publishes R1 output

gate xy. Line 2 subscribes to all output gates xy that have
been publishes and tries to create g2g channels to M1 input
gate xy. Line 3 is similar and it applies to mobile M2. Mobile
M3 did not subscribe any gate and it becomes stealthy since
it cannot be detected by any radar. The advantages of this
approach are self-evident. The introduction of new radars and
mobiles becomes very simple since the event-based executive
handles publications and subscriptions, freeing the modeler
from specifying g2g links. These links can be cumbersome to
establish as shown in this particular system.

The support in JUSE for systems requiring a hybrid specifi-
cation using events and request/reply can be exemplified by the
creation of a pursuer launched to cancel a specific threat. Upon
detection, the radar sends a signal to the executive to request
the creation of a pursuer and to make g2g links between the
pursuer and a specific mobile identified by the radar. Figure
7 depicts the surveillance system with pursuer P1 attached to
mobile M1. The radar and executive PUs are extended with
gate pursuer so the radar can make requests for purser
creation.

Fig. 7. Surveillance system with purser P1 targeting mobile M1.

JUSE executive action pursuer is given in Listing 4. The
executive finds the nearest purser to position aXY (Line 3),
adds the purser (Line 4) and links it to the mobile aName (line
5). These links are specified using g2g operations and they
would become difficult to be specified using publish/subscribe
operations.

1Void pursuer(String aName, Point aXY) {
2pursuer = findPursuerAt(aXY);
3add(pursuer);
4link(pursuer _name, ’xy’, aName ’xy’);
5}

Listing 4. Creation of pursuer P1 using g2g specification.

This solution requires the ability to program the executive
that no longer can be an implicit and hidden middleware layer
and needs to be made visible and reprogramable. A solution
in the event paradigm would require the use of content event-
based programming and the pursuer would only receive mes-
sages from a specific mobile. This solution, however, would

225Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 243 / 729

(a) Initial topology. (b) Topology after the radar R1 has published output gate
xy and M1-M2 have subscribed gate xy.

Fig. 6. Event-based surveillance system.

not be so elegant and mostly no so efficient since it would
require message conversion from a possibly large number
of mobiles. This solution would also require to disclose the
mobile name to the pursuer, breaking the modularity of the
approach.

C. Event-Based vs. Request/Reply

The multicast nature of events poses no difficulty in being
mapped into gate-to-gate communication. In the example of
the previous section, when a new mobile is added to the
surveillance system and subscribes gate xy it is immediately
linked to all radars in the systems, without the need to
explicitly find what are the current set of active radars, since
the executive can retrieve this information and use it to make
the required links. Analogously, when a new radar is created
and publishes gate xy it starts receiving data from all mobiles,
since the executive keeps tracks of all PUs having published
gate xy. The complementary situation is treated in a similar
form: when a mobile leaves the system by unsubscribing
gate xy, all radars stop receiving mobile position. Event-
based systems have been considered orthogonal to anonymous
request/reply programming [6]. This seems to be the case for
some request/reply systems, but it does not hold for PUs, as
shown here.

Event-based programming, through publish/subscribe con-
structs, has introduced a set of operators that provide a
compact specification for some types of changes in software
topology. However, these operators can be mapped into g2g
links defined in PUs. This situation is quite fortunate since
it allows the expression of event-based programming with
modular software units. Events can thus be integrated with
anonymous request/reply instead of being an additional form
of software specification.

The difficulty in integrating event-based and request/reply
approaches seems to be caused by the requirements event
systems impose on software topologies. As shown in the
examples, anonymous invocation is just one of the key factors
to integration, the other is the ability to modify software

topology during runtime. Anonymous requests/reply solutions
not exhibiting both features will thus provide limited support
for event-based systems.

We consider that a unifying effort is currently required given
the multiplicity and apparent disparate paradigms proposed
for software development. This situation forces practitioners
to master a large variety of paradigms, or in alternative, to
map models to a known paradigm that does not yield be best
representation. Since reality is, for complex systems, multi-
faceted, a unifying approach, like PUs, permits to choose the
best paradigm to each aspect of the system while guaranteeing
the overall integration.

IV. RELATED WORK

Hierarchical and modular principles have been used as a
powerful heuristic for handling complex problems in many
fields. One of the first formal descriptions of modular de-
composition have been made in the area of General Systems
Theory [1]. The decomposition of software into modules has
later been advocated in software engineering [3]. On this latter
work, however, the hierarchical decomposition of software
has not been really introduced but rather hierarchy is used
as synonymous of layered (software). Recently, there has
been a growing interest in modular representations and large
variety of formalisms have been modified/created [2], [13]–
[15]. Likewise General Systems Theory representations, these
formalisms are not compliant with request/reply principles,
imposing awkward software specifications. Given these lim-
itations, many formal models become virtually useless for
practical use in software projects.

To overcome the limitations of formal descriptions, so
called Architecture Definition Languages (ADLs) have been
developed [4], [16], [17]. However, ADLs are mainly fa ades
decoupling specification from implementation as pointed in
[18]. ADLs description need thus to be translated into a
programming language. This process is somewhat similar to
the one used by the Unified Modeling Language [19] with

226Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 244 / 729

the limitations and drawbacks of separating specification from
implementation.

To bridge this gap, hierarchical and modular constructs
have been introduced into existing programming languages
[18], [20], [21]. However, none of theses approaches pro-
vide the general support to modular hierarchical software as
provided by PUs. Limitations include the lack of converters
and input/output functions. Additionally, these systems do not
provide full support for topology adaptation. In particular, they
lack the ability to represent hierarchical mobility, as supported
by PUs [7].

The use of event-based programming has also been ad-
vocated as an alternative to anonymous request/reply [22],
(the reverse we have described in this paper). However, the
advantages are only apparent since signal wiring diagrams [22]
need to be manually mapped into object-oriented request/reply
languages becoming, in some aspects, similar to ADLs.

V. CONCLUSION AND FUTURE WORK

PUs provide a powerful framework for developing reusable
software units. This approach supports hierarchical and modu-
lar software development, permitting to handle complexity by
partitioning large models into smaller and independent units.
The introduction of converters and input/output functions
provide a great flexibility to software interconnection. PUs
also provide full support for dynamic software topologies. In
particular, we have shown that the ability to add and remove
software channels at runtime permits to describe the topic
event-based programming style using gate-to-gate connections
supported by PUs. This work has demonstrated that topic
event-based programming can be regarded as a particular case
of anonymous request/reply. Callbacks, used in the Observer
pattern and the Composite pattern, were also shown to be
particular cases of an anonymous request/reply representation
supporting converters and input/output functions. As future
work we intend to study the requirements for supporting con-
tent event-based programming and to introduce the required
operators to represent this paradigm in PUs. The representation
of event-based scoping exploiting hierarchical modeling also
looks promising.

ACKNOWLEDGMENT

This work was supported by the Portuguese Foundation for
Science and Technology under project PTDC/EIA-EIA/100-
752/2008.

REFERENCES

[1] A. Wymore, A Mathematical Theory of Systems Engineering: The
Elements. Krieger, 1967.

[2] R. Allen and D. Garlan, “A formal basis for architectural connection,”
ACM Transactions on Software Engineering and Methodology, vol. 6,
no. 3, pp. 213–249, March 1997.

[3] D. Batory and S. O’Malley, “The design and implementation of hierar-
chical software systems with reusable components,” ACM Transactions
on Software Engineering and Methodology, vol. 1, no. 4, pp. 355–398,
1992.

[4] D. Garlan, R. Monroe, and D. Wile, “ACME: An architecture description
interchange language,” in Conference of the Centre for Advanced Studies
on Collaborative Research, 1997.

[5] D. Luckham and J. Vera, “An event-based architecture definition lan-
guage,” IEEE Transactions on Software Engineering, vol. 21, no. 9, pp.
70–93, 1996.

[6] G. Mühl, L. Fiege, and P. Pietzuch, Distributed Event Based Systems.
Springer, 2006.

[7] F. Barros, “System and method for programming using independent and
reusable software units,” US Patent 6851104 B1, February 2005.

[8] ——, “Modeling formalisms for dynamic structure systems,” ACM
Transactions on Modeling and Computer Simulation, vol. 7, no. 12,
pp. 505–515, 1997.

[9] ——, “Achieving reuse with pluggable software units,” in 12th Interna-
tional Conference on Software Reuse: Top Productivity through Software
Reuse. Lecture Notes in Computer Science, Volume 6727, 2011, pp.
183–191.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[11] F. Barros, “Representing hierarchical mobility in software architectures,”
in International Workshop on Software Engineering for Adaptive and
Self-Managing Systems, 2007.

[12] OMG, CORBA Component Model Specification, 2006.
[13] J. Bradbury, “Organizing definitions and formalisms for dynamic soft-

ware architectures,” Queens University, Canada, Tech. Rep. 2004-77,
2004.

[14] F. Oquendo, “Formally modelling software architectures with the UML
2.0 profile for π-ADL,” ACM SIGSOFT Software Engineering Notes,
vol. 31, no. 1, pp. 1–13, 2006.

[15] F. Arbab, “Reo: A channel-based coordination model for component
composition,” Mathematical Structures in Computer Science, vol. 14,
pp. 329–366, 2004.

[16] N. Medvidovic and R. Taylor, “A classification and comparison frame-
work for software architecture description languages,” IEEE Transac-
tions on Software Engineering, vol. 26, no. 1, pp. 70–93, 2000.

[17] M. Shaw and P. Clements, “The golden age of software architectures: A
comprehensive survey,” Carnegie-Mellon University, USA, Tech. Rep.
CMU-ISRI-06-101, 2006.

[18] J. Aldrich, C. Chambers, and D. Notkin, “ArchJava: Connecting software
architecture to implementation,” in International Conference on Software
Engineering, 2002, pp. 187–197.

[19] J. Arlow and I. Neustadt, UML 2 and the Unified Process: Practical
Object-Oriented Analysis and Design. Addison, 2005.

[20] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J. Stefani, “The
FRACTAL component model and its support in Java,” Software Practice
and Experience, vol. 36, no. 11–12, pp. 1257–1284, 2006.

[21] V. Sreedhar, “Mixinup components,” in International Conference on
Software Engineering, 2002, pp. 198–207.

[22] T. Faison, Event-Based Programming: Taking Events to the Limit.
Apress, 2006.

227Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 245 / 729

Towards an Approach to Represent Safety Patterns

Pablo Oliveira Antonino, Thorsten Keuler
Embedded Systems Development Department

Fraunhofer IESE
Kaiserslautern, Germany

(Pablo.Antonino, Thorsten.Keuler)@iese.fraunhofer.de

Elisa Yumi Nakagawa
Department of Computer Systems

USP - University of São Paulo
São Carlos, Brazil
elisa@icmc.usp.br

Abstract—Safety-critical systems are complex entities, which,
due to severe regulations, demand continuous development of
approaches for supporting their construction. To keep safety-
critical systems free of failures, it is fundamental to identify
potential failure modes and their causes, and to eliminate them.
One major approach to solving failure modes is the application
of safety patterns at the architectural level of such systems.
However, this is not trivial, since safety patterns have not been
represented in a widely accepted way that would facilitate their
understanding and use. In order to contribute to filling this gap,
we present in this paper an approach for representing safety
patterns in a way that allows them to be properly modeled and
also offers means to support their application in architectural
models. To this end, we propose the joint use of a UML profile
and rules that are descriptive structures stating safety patterns
application constraints. We have observed that our approach
makes the safety patterns easy to represent and apply, thus
contributing to the development of safety-critical systems.

Keywords-Safety Pattern; UML Profile; Pattern Descriptive
Rule; Architectural Model.

I. INTRODUCTION

Domains such as automotive and avionics demand high
integrity levels between hardware and software to ensure
proper execution of their systems, which, in turn, are con-
stantly becoming larger and more complex [1]. A com-
mercial airplane, for instance, contains systems that con-
trol ground proximity, navigation, and engine commands,
amongst others. Almost all of these systems are safety-
critical; i.e., a failure would lead to a catastrophic situation,
endangering human lives and/or the environment. To mini-
mize the probability of failure in safety-critical systems, it
is necessary to integrate tactics based on well-known fault-
tolerant methods to deal with failure avoidance, detection,
and containment, for example, monitoring and redundancy
[2]. Most of these tactics are concretized by means of
specific design patterns, best known as Safety Patterns.
Examples of safety patterns are Watchdog, Homogeneous
Redundancy, and Sanity Check [3].

The growing popularity of model-driven approaches, such
as Model Driven Architecture (MDA) and Model Trans-
formation, has triggered the use of such tactics in the
construction of safety-critical systems [1]. In this context,
UML (Unified Modeling Language) [4] has been used by

several MDA-based approaches for representing the required
models. The reason is the diversity of elements and diagrams
offered by UML, which provides means for expressing
systems from diverse perspectives [5], and the existence
of extension mechanisms like UML Profiles, which allows
modeling particularities of domains by means of customiza-
tions of UML’s syntax and semantics [6].

The UML’s official specification for representing design
patterns consists of using Parameterized Collaborations [7].
However, due to singularities that are inherent to safety-
critical systems and safety patterns, UML and the others
initiatives mentioned in the literature [8][7][9][10][11] are
not appropriate for representing safety patterns in a stan-
dardized way that jointly facilitates their understanding and
supports the automatized application of patterns in archi-
tectural models. Actually, the existent approaches belong to
one of two extremes: (1) too complex and far from intu-
itive, requiring deep knowledge about formal specification
techniques for representing patterns, or (2) providing only
subjective information about the pattern that is useful only
for reasoning on high-level concerns, which is important,
but not enough to support the application of safety patterns
in architectural models.

To fill this gap, we propose an approach for representing
safety patterns that offers means for graphically expressing
the structure and purpose of a safety pattern, and also
provides information to facilitate its automatized application
in architectural models by means of Model Transformations.
In a nutshell, this corresponds to the joint use of UML Profile
and descriptive rules stating safety pattern constraints that
are worth being considered for their application in archi-
tectural models. After representing a set of safety patterns
relevant in the domain of safety-critical systems described in
[3] with our approach, we observed that the safety patterns
became easier to represent and reuse, thus indicating our
contribution to the construction of safety-critical systems.

The remainder of this paper is structured as follows: In
Section II, the overall context is presented; in Section III, the
related works are described; in Section IV, we present our
approach; in Section V, we show the complete representation
of a safety pattern using our approach; and in Section VI
we conclude and present perspectives for future work.

228Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 246 / 729

II. CONTEXT

A. Safety-Critical Systems
Safety-critical systems are those that, in case of failure,

will cause unacceptable drastic consequences to human
beings and/or to the environment [12].

There are four concepts that are intrinsically related to
safety-critical systems [12]: (i) Mistake: Cause of a fault
happening during development; (ii) Fault: The adjudged or
hypothesized cause of an error; (iii) Error: If the system is
running, an error is an erroneous state that could lead to
a failure; and (iv) Failure: An event that occurs when the
system terminates its ability to provide the correct service.
As perceived, a Failure is caused by an Error, which is
caused by a Fault, which is a result of a Mistake. According
to Aviz̆ienis et al. [12], all faults that might affect a system
during its existence are part of specific Fault Classes, which,
in turn, are grouped into specific Fault viewpoints. With
respect to failures, Aviz̆ienis et al. [12] discuss service failure
modes. A service failure happens when a service delivered
by a system deviates from its correctness, and service failure
modes are the different ways in which the deviations are
perceived.

B. Safety Tactics and Safety Patterns
Safety tactics are architectural design decisions made

to avoid or handle failures that safety-critical systems are
subject to [2]. They are based on well-known fault-tolerant
design methods, and were inspired by the notion of ar-
chitectural tactics proposed by the Software Engineering
Institute (SEI). Architectural tactics are “means of satisfying
a quality-attribute-response measure by manipulating some
aspect of a quality attribute model through architectural
design decisions.” [13]. Following the same principle, Wu
and Kelly developed an analytic safety model focusing on
the relationship between safety attributes and architectures
with respect to failures. Based on this analytic safety model,
they organized safety tactics into three categories: (i) tactics
for failure avoidance, (ii) tactics for failure detection, and
(iii) tactics for failure containment. To be compliant with
the SEI’s tactics approach, they proposed a hierarchical
organization for such tactics, as illustrated in Figure 1.

Due to the nature of safety-critical systems, the decision
about whether the tactics should be addressed at the software
or at the hardware level are mainly driven by regulations,
which state exactly where and how a tactic must be applied
[2].

Safety tactics should be seen as the highest abstraction
level of a safety pattern. A safety tactic will be addressed
in a safety-critical system when any pattern (or combination
of patterns) that implements the tactic is considered in the
system architecture.

Safety patterns have been considered for years mainly in
the Electrical Engineering field, due to the fact that safety-
critical systems, in most cases, are the result of a very tight

synergy between the hardware and the software embedded in
electronic devices - so-called Embedded Systems [14]. How-
ever, methods originating from the Computer Science field
have been widely considered in the development of such
systems, mainly because the software portion of embedded
systems is continuously acquiring more responsibility. In
this regard, safety patterns have been considered a topic of
interest for software engineers.

Some aspects of safety patterns that make them special
and demand specific mechanisms for dealing with them are
[3]: (i) they can be essentially formed by roles that represent
software or hardware entities, or by a combination of both,
demanding specific ways to show how these entities are
related; (ii) a great number of roles are common to many
safety patterns, differentiating basically in how they are
connected and distributed along execution channels. Execu-
tion channels are pipes comprised of roles that sequentially
transform input data into output data [3]; (iii) each safety
pattern is meant to avoid, detect, or do the containment of
a failure and faults [12]. Therefore, it is necessary means to
deal with the reuse of roles while modeling safety patterns,
which will ensure that the roles are properly connected and
are associated with the proper execution channel. Moreover,
there must exist means to indicate the fault class and service
failure mode that the safety pattern is supposed to handle, as
well as the safety tactic that the safety pattern implements.

With respect to the description and representation of
safety patterns, we considered the general pattern description
principle proposed by Alexander [15] that, when reasoned
in our context, states that a pattern description also provides
means with which can be observed how the resulting system
architecture will look like after the application of a pattern.
This generative property enforces that a pattern description
should not only show the characteristics of a pattern, but
coach how to apply it [16]. In this regard, we understand
that a safety pattern constitutes a set of entities related to
each other by specific rules, which, by definition, represent
knowledge that states actions to be followed for the achieve-
ment of a purpose [17].

C. UML Profiles

UML Profiles are mechanisms for specifying rules to
be used in parts of the model of a system where specific
constraints are required [7]. Profiles are based on stereotypes
and tags, which are the concrete entities that must be
applied to UML elements such as classes, components, and
connectors, with the aim of ruling parts of a system with
respect to constraints of the domain or of the modeling
process.

III. RELATED WORK

In the computer science field, software pattern spec-
ification and representation have been widely discussed,
mainly after the work of GoF (Gang of Four) [18]. The

229Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 247 / 729

Figure 1. Hierarchical organization of safety tactics (extracted from [2]).

UML’s official pattern representation approach is based on
a parameterized collaborations model, rendered in a way
similar to UML template classes [7]. Rosengard and Ursu
[19] proposed an ontological representation for patterns.
Mak et al. [20] proposed an extension to UML 1.5, using
meta-modeling techniques and collaboration diagrams to
specify the collaboration among the elements of the model.
Guennec et al. [21] proposed the use of UML collaboration
models combined with the Object Constraint Language
(OCL) for representing patterns. Eden et al. [10] proposed
a declarative and higher-order language, called LePUS, to
represent generic solutions indicated in the patterns. Kim
[9] proposed a language called Role-Based Meta modeling
Language (RBML), which comprises abstract syntax, meta
model level constraints, and constraint templates. Selonen et
al. [11] established a language for defining profiles hierarchy,
which is derived to support patterns representation using
only UML Profiles.

With respect to safety patterns, Douglass [3] [22], Pul-
lum [23], Koren and Krishna [24], and Hanmer [25] have
documented a vast list of safety patterns. However, their
presentation of these patterns focuses mainly on general
information related to the general structure, the problem
addressed, the context of use, and the consequences.

Regarding the representation of safety patterns, Armoush
et al. [8] proposed an approach for representing safety pat-
terns that consists of a traditional table template for pattern
documentation, with a series of fields that address subjective
information like the safety pattern’s name, problems that it
solves, and consequences of use. Such a canonical struc-
tural form of representing a pattern is basically useful for
understanding the nature and purpose of the patterns, but
does not offer any information to support the proper pattern
application in architectural models.

An approach that is closer to ours is the one proposed
by Tichy and Giese [26], which uses degradation rules to
describe the structure and deployment restrictions of safety
patterns and specify the behavior that is executed while

degrading the systems functional or non-functional proper-
ties. Actually, such rules are used only to complement the
structural and deployment documentation of safety patterns.
On the other hand, our rules were built foreseeing automa-
tized processes of safety patterns application in architectural
models by means of model transformation mechanisms.

IV. OUR APPROACH

Our approach for representing safety patterns aims at
facilitating the modeling and application of safety patterns in
the architectures of safety-critical systems. For this, it jointly
uses:

1) Graphic models of the safety pattern that show (i) the
structure of the safety pattern in terms of the roles
that compose the pattern and how they are connected,
modeled with elements defined in the Safety UML
Profile; (ii) the safety tactic that the pattern is related
to; (iii) the fault class, and (iv) the service failure mode
for which the pattern is appropriate.

2) Pattern Descriptive Rules, which express detailed de-
sign constraints of the safety pattern, providing in-
formation that is useful to support the construction
of statements used by mechanisms that perform auto-
matic application of safety patterns modeled with the
Safety UML Profile, in architectural models.

The remainder of this section covers: (i) the Safety UML
Profile; (ii) how to model safety patterns using elements
defined in the Safety UML Profile; and (iii) the Pattern
Descriptive Rules.

A. Establishing the Safety UML Profile

We have defined an UML profile, the so-called Safety
UML Profile, which aggregates stereotype elements rep-
resenting the roles of each safety pattern. Actually, each
role of a safety pattern becomes a stereotype of the Safety
UML Profile. For instance, Figure 2 shows the roles of
the Protected Single Channel Pattern (PSC). This pattern
is composed of six roles: Input Sensor, Input Processing,

230Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 248 / 729

Data Transformation, Data Validation, Output Processing,
and Actuator. Each role corresponds to a stereotype in the
Safety UML Profile. The role Input Processing, for example,
becomes the stereotype �Input Processing�.

Figure 2. Roles of the Protected Single Channel pattern mapped to
stereotypes of the Safety UML Profile.

We understand that a unique UML profile is enough to
comprise the entities required for a concise representation of
a safety pattern, due to the fact that the roles of the safety
pattern are very often repeated in most patterns, differing
basically in how these roles are linked, the execution channel
that each role is part of, and in the quantity of elements that
are present in a specific pattern. For instance, consider the
PSC (shown in Figure 2) and the Triple Modular Redun-
dancy pattern (TMR) [3] (shown in Figure 3). It can be
seen that the TMR contains roles that are also present in the
PSC, but that are replicated along three execution channels.
TMR contains an additional role called Voter, while PSC has
another one called Data Validation. To address the roles of
the TMR, the Safety UML Profile shown in Figure 2 (which
already contains the roles of the PSC) is modified by adding
only a new stereotype that represents the role Voter.

Each stereotype representing a role of a safety pattern
has associated with it a textual description of the role. Such
information is useful for engineers to better understand the
purpose of each role. There is no standardized way for the
description. However, it must be detailed enough to ensure
that the purpose of the role is clearly understandable.

Beyond the roles that compose the safety patterns, the
Safety UML Profile also defines three other stereotypes:
�Safety Tactic�, �Fault Class�, and �Service Failure
Mode�. These stereotypes are respectively used to indicate
the safety tactic (cf. Figure 1) that the safety pattern is
associated with, and the fault classes [12] and service failure
modes [12] that a safety pattern solves when applied in

Figure 3. Triple Modular Redundancy pattern and its multiple execution
channels (adapted from[3]).

the architecture of a safety-critical system. This is done by
adding of three UML classes in the same diagram where the
structure of a safety pattern is represented with instances
of the stereotypes available in the Safety UML Profile.
The class associated with the fault classes is stereotyped
with the stereotype �Fault Class�, and named according
to the fault class that the safety pattern solves. The class
associated with the service failure modes is stereotyped with
the stereotype �Service Failure Mode�, and named with
the Service Failure Mode that the safety pattern solves. The
class associated with the safety tactic is stereotyped with the
stereotype �Safety Tactic�, and is named according to the
safety tactic that the safety pattern is associated with.

B. Representing Safety Patterns with Safety UML Profile

According to our approach, the structures of safety pat-
terns are designed using instances of the stereotypes avail-
able in the Safety UML Profile. The reason for using
instances is that we understand that the stereotypes defined
in the profile are reusable elements, which are present in
multiple patterns, since, as already mentioned, the same role
is present in various patterns. For example, consider that
the architect wants to model the PSC pattern (cf. Figure
2). In a separate diagram, he/she creates instances of the
stereotypes available in the Safety UML Profile that comprise
the PSC pattern, and connects these stereotype instances
with directed links indicating the direction of the information
flow, as shown in Figure 4.

Due to the fact that safety patterns can be composed of
hardware, software, or both entities at the modeling level,
it is important to reason on them in terms of functional
entities, regardless of their roles as hardware or software. For
instance, the Data Transformation role of the PSC pattern

231Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 249 / 729

Figure 4. Protected Single Channel pattern specified with instances of
stereotypes defined in the Safety UML Profile.

can be a hardware or a software entity. Representing the
roles with stereotypes offers the flexibility of mapping the
Data Transformation of the PSC pattern, for instance, to
software components, deployment units, or any other UML
element of the architectural model, once they are conceptual
entities.

If we take a closer look at Figure 2, we observe that
the roles of the PSC pattern, except for Input Sensor and
Actuator, are surrounded by a boundary called Channel.
A particular characteristic of safety patterns is that the
roles that compose them, with the exception of Sensors
and Actuators, run under execution channels [3]. Our way
of dealing with this characteristic is to use Tagged Values
[7]. Each stereotype instance used for designing a specific
safety pattern is tagged with Name ≡ ExecutionChannel
and Value ≡ Name of the Channel. When the roles are
under a unique execution channel, as in the PSC pattern,
each stereotype instance is tagged with a tag that has Tag
Name ≡ ExecutionChannel, and Tag Value ≡ Channel A.
In other patterns, such as the TMR pattern, the roles are
under multiple execution channels (cf. Figure 3). In this
case, the stereotype instances of this pattern (cf. Figure
5) are tagged in accordance with the execution channel
they are part of. This means that the three instances of
the stereotype that represents the role Input Processing, for
instance, are tagged differently, due to the fact that they run
under different execution channels. Their tags will have Tag
Name ≡ ExecutionChannel, and Tag Value ≡ Channel A,
Channel B, and Channel C, respectively. On the other hand,
the roles Input Sensor, Voter, and Actuator will have Tag
Name ≡ ExecutionChannel and Tag Value ≡ null because
they are not associated with any execution channel.

With respect to the Fault Class, Service Failure Mode,
and Safety Tactic of the TMR pattern, consider Figure 5,
which shows the TMR pattern specified with stereotypes
instances. On the bottom left there are (i) a class called

Random Fault, stereotyped with �Fault Class�, (ii) a class
called Content Failure, stereotyped with �Service Failure
Mode�, and (iii) a third class called Failure Containment,
stereotyped with �Safety Tactic�. This indicates that the
TMR pattern is a concretization of a failure containment
tactic, and is appropriate for dealing with random faults and
content failures.

C. Pattern Descriptive Rules for representing Design Con-
straints of Safety Patterns

We understand that a safety pattern constitutes a set of
entities related to each other by a specific rule. Therefore,
we propose a set of rules, which we call Pattern Descriptive
Rules, which were designed to support the future construc-
tion of statements used by mechanisms that perform auto-
matic application of safety patterns in architectural models.
An example of such a mechanism are Model Transformation
rules, which provide indications on how the structure of a
model is orchestrated in the model transformation processes,
in terms of which elements should be created, updated, or
deleted [27].

Our Pattern Descriptive Rules are structured to describe
each specific role that participates in a safety pattern, which
was previously represented with instances of stereotypes
defined in the Safety UML Profile. As already mentioned,
we argue that the participation of a role in a safety pattern
composition is determined by (i) the information flow among
the roles in each pattern; (ii) the quantity of instances of the
same role in each safety pattern; and (iii) how the instances
of the same role are distributed along execution channels.
For example, in the PSC Pattern (cf. Figure 4), there is only
one instance of the Output Processing role, which receives
input from the Data Processing and provides output to the
Actuator. On the other hand, in the TMR pattern (cf. Figure
5), there are three instances of the Output Processing role,
each one in a different channel, and all of them providing
output to the Voter role.

In this regards, our approach states that for each role that
participates in a safety pattern:

1) There is one Pattern Descriptive Rule representing
the participation of the role (this includes information
about the execution channel where the role is located).

2) There is one Pattern Descriptive Rule describing to
which other roles the output flow is directed to.

For instance, for the Input Processing role in the PSC
pattern (cf. Figure 4), there is one Pattern Descriptive Rule
related to the role itself and its execution channel, and one
Pattern Descriptive Rule related to the connections between
the Input Processing and the Data Transformation, and
another one between the Input Processing and the Data
Validation.

The Pattern Descriptive Rule that we propose for
representing a role and its execution channel is:

232Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 250 / 729

Figure 5. Triple Modular Redundancy pattern specified with elements of the Safety UML Profile.

rule Rule Name:
σ:UML ∪ ((ε ∈ κ) ∈ ψ: Safety UML Profile)

where,

σ ≡ Architectural model, modeled according to the standard UML
meta model, where the safety pattern will be applied.
ε ≡ UML element representing the role instance.
κ Execution channel where the role instance is located.
ψ ≡ Safety pattern modeled with instance of stereotype defined in
the Safety UML Profile.

This Pattern Descriptive Rule is read as: The architectural
model σ is modified by the insertion of a UML element
that represents the role instance ε, which is tagged with
information related to the execution channel κ and composes
the safety pattern ψ.

As already mentioned, if a role instance is not part of an
execution channel, like the Input Sensor and Actuator in the
PSC, and Input Sensor, Actuator, and Voter in TMR, the tags
will have Tag Name ≡ ExecutionChannel, and Tag Value
≡ null.

The Pattern Descriptive Rule that we propose for
representing connections between roles in a safety pattern
is:

rule Rule Name:
τ ∪ (

∑
λ ∈ (ε ∈ κ))

where,

τ ≡ σ:UML ∪ (
∑
ε ∈ ψ: Safety UML Profile), i.e., Architectural

model σ containing all the roles ε that compose the safety pattern
ψ being applied, but without presenting connections among the
role instances.

λ ≡ one connection originated in the element representing a
specific role ε that is part of an execution channel κ.

This Pattern Descriptive Rule is read as: The architectural
model with all the roles ε that compose the safety pattern
ψ being applied is modified by the insertion of all the
connections λ originated in the element that represents a
specific role ε, which, in turn, is part of an execution channel
κ.

For example, consider the PSC pattern (cf. Figure 4).
The rule that represents the Input Processing role of this
pattern and its execution channel is:

rule Input Processing of the PSC pattern Rule:
M1:UML ∪ ((Input Processing ∈ Channel A) ∈ PSC pattern:

Safety UML Profile)

This rule states that a UML element, stereotyped
with Input Processing and tagged with Tag Name =
ExecutionChannel, and Tag Value = Channel A, must be
introduced in the UML model M1 in the application of the
PSC pattern. It is worth emphasizing that every role that
composes the PSC pattern has a rule like this one. Consider
now the existence of a model M2, containing six UML
elements, one for each role that composes the PSC pattern.
The Pattern Descriptive Rule that represents connections
originated in the Input Processing role is:

rule Connections of the Input Processing of PSC pattern:
M2 ∪ (Connections Input Processing(Channel A): Data

Transformation(Channel A), Data Validation(Channel A)), where:

M2 = (M1 ∪ (
∑

Roles ∈ PSC pattern: Safety UML Profile))

233Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 251 / 729

This Pattern Descriptive Rule states that the model M2 is
modified by adding the connections between the elements
representing the Input Processing role and the elements that
receive its output: Connection 1 = Input Processing and Data
Transformation; Connection 2 = Input Processing and Data
Validation. In this case, all the role are under the same
execution channel. However, it is important to have such
indication for the case of association of roles in different
execution channels.

The graphical representation of safety patterns with
stereotypes instances is an appropriate front-end that allows
engineers to reason on the safety pattern structure (roles
and connections) in terms of abstract functional entities.
Moreover, it provides means to state safety specificities (fault
classes, services failure modes, and safety tactics) that are
singular to each safety pattern. Our Pattern Descriptive Rules
state actions that foresee the automatized application of
safety patterns in architectural models, providing fundamen-
tal highlights on how the artifacts necessary to perform the
complete pattern application using Model Transformation
mechanisms should look like. When combining the graphical
representation with the Pattern Descriptive Rules, engineers
have means to represent the pattern, taking in consideration
not only the pattern design, but also explicitly indicating
application constraints.

V. REPRESENTING THE HOMOGENEOUS REDUNDANCY
PATTERN WITH OUR APPROACH

We have represented with our approach the safety patterns
proposed by Douglass [3] and observed that they become
easier to represent and reuse. Due to space constraints,
however, for this section, we selected the Homogeneous
Redundancy pattern to be represented with our approach.
This pattern is composed of seven roles: Input Sensor, Input
Processing, Data Transformation, Data Validation, Output
Processing, Actuation Validation, and Actuator. Consider
that initially, the Safety UML Profile contains only three
stereotypes: �Fault Class�, �Service Failure Mode�,
and �Safety Tactic�. The first step is to create stereotypes
on it that represent the roles of the Homogeneous Redun-
dancy pattern in the Safety UML Profile, as shown in Figure
6. At this point, each role has an associated documentation
providing general information of it, as can be seen in Table
I.

After having the roles available in the Safety UML Profile,
the pattern structure is created in a separate diagram using
instances of these stereotypes (cf. Figure 7). To clearly
differentiate between the execution channels that the roles
are part of, the roles in light gray are part of the Primary
Actuation Channel, the ones in dark gray are part of the
Secondary Actuation Channel, and the white elements are
sensors and actuators that are not part of any channel. The
roles that are part of the Primary Actuation Channel are

Role Name Role Description

Input Sensor This is the source of the information used to
control the actuator.

Input Processing Acquires and performs the first processing on the
data sent by the Primary Input Sensor.

Data Transformation Performs a single transformation step on the input
data.

Data Validation Validates if the data is correct or reasonable, and
also stops the processing on the current channel
and begins it on the second channel when a fault
is detected.

Actuation Validation Compares the output to the commanded output,
and determines when some application specific
fault occurs.

Output Processing Performs the last stage of the data transformation,
and controls the Actuator.

Actuator This is the device performing the actuation. This
is the actuator used by default.

Table I
DESCRIPTION OF ROLES THAT COMPOSE THE HOMOGENEOUS

REDUNDANCY PATTERN.

tagged with Tag Name ≡ ExecutionChannel, and Tag Value
≡ Primary Actuation Channel. The roles that are part of the
Secondary Actuation Channel are tagged with Tag Name ≡
ExecutionChannel, and Tag Value ≡ Secondary Actuation
Channel. The sensors and actuators are tagged with Tag
Name ≡ ExecutionChannel and Tag Value ≡ null. The three
classes on the bottom left side of Figure 7 represent the Fault
Class, Service Failure Mode, and Safety tactic related to
the Homogeneous Redundancy pattern, which are Random
Fault, Content and Timing, and Functional Redundancy,
respectively.

For each role that composes the Homogeneous
Redundancy pattern, there is one rule representing the
role and its execution channel, and one rule describing to
which other roles its output flows are directed. For this
example, consider the UML model called SourceModel as
the original model where the Homogeneous Redundancy
pattern is to be applied, and another UML model called
TargetModel as the model that already contains elements
representing every role of the Homogeneous Redundancy
pattern. The rule representing the role Input Sensor (so
called Primary Input Sensor) associated with the Primary
Actuation Channel is:

rule Primary Input Sensor of Homogeneous Redundancy:

SourceModel:UML ∪ ((Primary Input Sensor ∈ null) ∈ Homogeneous

Redundancy pattern: Safety UML Profile)

This Pattern Descriptive Rule is read as: The architectural
UML model SourceModel is modified by the insertion of an
UML element that represents the role Primary Input Sensor,
which is tagged with Tag Name = ExecutionChannel,
and Tag Value = null, and composes the safety pattern
Homogeneous Redundancy. It is worth highlighting that the

234Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 252 / 729

Figure 6. Safety UML Profile with the Roles of the Homogeneous Redundancy pattern.

Figure 7. Homogeneous Redundancy pattern modeled with instances of stereotypes defined in the Safety UML Profile.

tag ExecutionChannel has a value null because it is not
part of any Execution channel.

The following Pattern Descriptive Rule is related to the
Primary Input Processing, and is read as: The architectural
UML model SourceModel is modified by the insertion
of an UML element that represents the role Primary
Input Processing, which is tagged with Tag Name =
ExecutionChannel, and Tag Value = Primary Actuation
Channel, and composes the safety pattern Homogeneous
Redundancy.

rule Primary Input Processing of Homogeneous Redundancy:

SourceModel:UML ∪ ((Primary Input processing ∈ Primary Actuation

Channel) ∈ Homogeneous Redundancy pattern: Safety UML Profile)

The rules for the others roles that are part of the Primary
and Secondary Actuation channel, as well as the Secondary
Input Sensor and both actuators, follow the same con-
struction principle. For instance, the rules representing the
Secondary Data Validation role and the Secondary Actuator
are as follows:

rule Secondary Data Validation of Homogeneous Redundancy:

SourceModel:UML ∪ ((Secondary Data Validation ∈ Secondary Actuation

Channel) ∈ Homogeneous Redundancy pattern: Safety UML Profile)

This Pattern Descriptive Rule is read as: The architectural
UML model SourceModel is modified by the insertion of
an UML element that represents the role Secondary
Data Validation, which is tagged with Tag Name =
ExecutionChannel, and Tag Value = Secondary Actuation
Channel, and composes the safety pattern Homogeneous
Redundancy.

rule Secondary Actuator of Homogeneous Redundancy:

SourceModel:UML ∪ ((Secondary Actuator ∈ null) ∈ Homogeneous

Redundancy pattern: Safety UML Profile)

The Pattern Descriptive Rule above, which describe the
Secondary Actuator of Homogeneous Redundancy pattern,
is read as: The architectural UML model SourceModel is
modified by the insertion of an UML element that repre-
sents the role Primary Actuator, which is tagged with Tag
Name = ExecutionChannel, and Tag Value = null, and

235Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 253 / 729

composes the safety pattern Homogeneous Redundancy. As
with the Primary Input Sensor peviously mentioned, the tag
ExecutionChannel has the value null because it is not part
of any Execution channel.

For describing the rules that represent the connections of
the roles of the Primary and Secondary Actuation Channel,
as well as the Input Sensors and Actuators, consider
the SourceModelWithRoles as the original source model
(SourceModel) modified by the addition of representatives
for every role of the Homogeneous Redundancy pattern (or,
using our notation, SourceModelWithRoles = (SourceModel ∪ (

∑
Roles ∈

Homogeneous pattern: Safety UML Profile))).

The following Pattern Descriptive Rule represents the
connections originated in the Primary Input Sensor that
connects it with the Primary Input Processing, and is read
as: The architectural model containing all the roles that
compose the safety pattern Homogeneous Redundancy is
modified by the insertion of the connections that have
origin in the element that represents the role Primary Input
Sensor, and that link it with the element that represents the
role Primary Input Processing, which, in turn, is part of
the Primary Execution Channel.

rule Connections of the Primary Input Sensor of Homog. Redundancy Pattern:

SourceModelWithRoles ∪ (Connections Primary Input Sensor: Primary Input

Processing (Primary Actuation Channel)

The rule representing the connections originated in the
Primary Input Processing is:

rule Connections of the Primary Input Processing of Homog. Redundancy

Pattern:

SourceModelWithRoles ∪ (Connections Primary Input Processing: Primary

Data Transformation (Primary Actuation Channel); Primary Data Validation

(Primary Actuation Channel))

This rule is read as: The architectural model containing
all the roles that compose the safety pattern Homogeneous
Redundancy is modified by the insertion of the connections
that have their origin in the element that represents the role
Primary Input Processing (part of the primary execution
channel), and that link it with the elements that represent
the role Primary Data Transformation and the role Primary
Data Validation, which are both part of the Primary Execu-
tion Channel.

The rule that represents the connections originated in the
Primary Data Validation is:

rule Connections of the Primary Data Validation of Homog. Redundancy

Pattern:

SourceModelWithRoles ∪ (Connections Primary Data Validation: Secondary

Data Validation (Secondary Actuation Channel))

This rule should be read as: The architectural model
containing all the roles that compose the safety pattern
Homogeneous Redundancy is modified by the insertion of
the connections that have their origin in the element that
represents the role Primary Data Validation (part of the
primary execution channel), and that link it with the element
that represents the role Secondary Data Validation, which,
in turn, is part of the Secondary Execution Channel.

As our approach requires two rules per role that compose
a safety pattern (one rule describing the role itself and its
execution channel, and another one describing the connec-
tions originated in the role), the complete representation
of the Homogeneous Redundancy pattern consists of the
model shown in Figure 7, and additional twenty eight Pattern
Descriptive Rules. Therefore, due to space limitation it is
not possible to show all the rules. However, as already
mentioned, they look similar to the ones previously shown,
with the appropriate changes of the connected roles instances
and the actuation channel they are part of.

It is important to emphasize that the rules described
in this work are not enough to ensure the application of
a safety pattern in an architectural model. Actually, our
Pattern Descriptive rules are to Model Transformation rules
as algorithms are to Imperative languages. It means that they
are language independent and, when considered together
with the information available in the graphical model (for
instance Figure 7), offer the basis for constructing model
transformation rules in languages like TRL or ATL [27],
which will ensure the automatic application of safety pat-
terns in architectural models of safety critical systems, by
means of model transformation mechanisms.

VI. CONCLUSION AND FUTURE WORKS

This work was motivated by the lack of ways to represent
safety patterns in a way that engineers can reason on
the safety patterns composition in terms of the functional
entities that comprise them, and on the safety patterns
constraints that should be considered when applying them
in architectural models. To fill this gap, we have proposed
a safety pattern representation approach that consists of the
joint use of: (i) a graphical representation of safety pattern
using elements defined in a UML profile called Safety UML
Profile; and (ii) a set of pattern descriptive rules that describe
each role participation in the safety patterns, its execution
channel, and the connections of each role.

Being able to express safety patterns with elements of
a UML profile and pattern descriptive rules in a unified
fashion is the first step in our attempt to perform safety
pattern applications in architectural models of safety-critical
systems by means of Model Transformation mechanisms.

Acknowledgements: This work is supported by the Fraunhofer-Innovation
Cluster Digitale Nutzfahrzeugtechnologie (Digital Engineering for Commercial
Vehicles).

236Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 254 / 729

REFERENCES

[1] P. Liggesmeyer and M. Trapp, “Trends in embedded software
engineering,” IEEE Software, vol. 26, no. 3, pp. 19–25, May
2009.

[2] W. Wu and T. Kelly, “Safety tactics for software architec-
ture design,” in in Proceedings of the 28th Annual Inter-
national Computer Software and Applications Conference,
(Hong Kong, 2004). IEEE Computer Society, 2004, pp. 368–
375.

[3] B. P. Douglass, Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

[4] O. M. G. Group. UML specification, version 2.0.

[5] N. Rozanski and E. Woods, Software Systems Architecture:
Working With Stakeholders Using Viewpoints and Perspec-
tives. Addison-Wesley Professional, 2005.

[6] L. Fuentes-Fernández and A. Vallecillo-Moreno, “An in-
troduction to uml profiles,” Journal of UML and Model
Engineering, vol. 2, 2004.

[7] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling
Language Reference Manual, The (2nd Edition). Pearson
Higher Education, 2004.

[8] A. Armoush, “Design patterns for safety-critical embedded
systems.” Ph.D. dissertation, RWTH Aachen University, 2010,
http://d-nb.info/1007034963.

[9] D.-K. Kim, R. France, S. Ghosh, and E. Song, “A role-
based metamodeling approach to specifying design patterns,”
Computer Software and Applications Conference, Annual
International, p. 452, 2003.

[10] A. H. Eden, Y. Hirshfeld, and A. Yehudai, “Lepus - a
declarative pattern specification language,” Department of
Computer Science, Tel Aviv University, Tech. Rep., 1998.

[11] P. Selonen, M. Siikarla, K. Koskimies, and T. Mikkonen,
“Towards the unification of patterns and profiles in uml,”
Nordic J. of Computing, vol. 11, no. 3, pp. 235–253, Sep.
2004.

[12] A. Aviz̆ienis, J. . Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”
IEEE Trans. on Dependable and Secure Computing, vol. 1,
no. 1, pp. 11–33, 2004.

[13] F. Bachmann, L. Bass, and M. Klein, “Deriving architec-
tural tactics: A step toward methodical architectural design,”
Software Engineering Institute (SEI), Technical Report, No.
CMU/SEI-2003-TR-004, 2003.

[14] J. C. Knight, “Safety critical systems: challenges and direc-
tions,” in Proceedings of the 24th International Conference
on Software Engineering, ser. ICSE ’02. New York, NY,
USA: ACM, 2002, pp. 547–550.

[15] C. Alexander, The Timeless Way of Building. Oxford
University Press, 1979.

[16] B. Appleton, “Patterns and software: essential concepts and
terminology,” Object Magazine Online, vol. 3, 1997.

[17] P. Avgeriou and U. Zdun, “Architectural patterns revisited
- a pattern language,” in Proceedings of the 10th European
Conference on Pattern Languages of Programs (EuroPLoP
2005), Irsee, Germany, Jul. 2005.

[18] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
1st ed. Addison-Wesley Professional, 1994.

[19] J.-M. Rosengard and M. Ursu, “Ontological representations
of software patterns,” Proceedings of KES’04, 2004.

[20] J. K.-H. Mak, C. S.-T. Choy, and D. P.-K. Lun, “Precise
modeling of design patterns in uml.” in ICSE’04. Scotland:
IEEE Computer Society, 2004, pp. 252–261.

[21] A. L. Guennec, G. Suny, and J.-M. Jzquel, “Precise modeling
of design patterns.” in UML, ser. Lecture Notes in Computer
Science, A. Evans, S. Kent, and B. Selic, Eds., vol. 1939.
Springer, 2000, pp. 482–496.

[22] B. P. Douglass, Doing hard time: developing real-time sys-
tems with UML, objects, frameworks, and patterns. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[23] L. L. Pullum, Software fault tolerance techniques and imple-
mentation. Norwood, MA, USA: Artech House, Inc., 2001.

[24] I. Koren and C. M. Krishna, Fault-Tolerant Systems. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2007.

[25] R. Hanmer, Patterns for Fault Tolerant Software. Wiley
Publishing, 2007.

[26] M. Tichy and H. Giese, “Extending fault tolerance patterns by
visual degradation rules,” in Proc. of the Workshop on Visual
Modeling for Software Intensive Systems (VMSIS) at the the
IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’05), Dallas, Texas, USA, 2005.

[27] K. Czarnecki and S. Helsen, “Classification of model transfor-
mation approaches,” in OOPSLA03 Workshop on Generative
Techniques in the Context of Model-Driven Architecture,
2003.

237Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 255 / 729

Process Modeling-based Assessment of Software Release Planning

Case Study Results and Experiences

Jos J.M. Trienekens

University of Technology Eindhoven

Eindhoven, The Netherlands

j.j.m.trienekens@tue.nl

Robbert Slooten

Philips Eindhoven

The Netherlands

slooten.robbert@gmail.com

Abstract- In the software industry, customer input often

takes the form of improvement requests. Release planning is

the process of making decisions about what new functionalities

or changes will be implemented in which release of a software

product. The purpose of this work in progress paper is to

explore a new approach to assess and improve the release

planning process in industrial software companies. The new

approach consists of a combined application of software

process modeling, assessment and improvement. This paper

presents results and experiences from a case study in two

industrial companies.

Keywords-release planning; assessment; process modeling.

I. INTRODUCTION

An increasing part of the software produced is aimed at
being offered to a general marketplace rather than to one
specific customer. This type of software development is
called market-driven software product development
(MDSPD) [9]. In the software industry, customer input often
takes the form of improvement requests. Improvement
requests and other system complaints often result in an
abundance of requirements [2]. Yet, often too little resources
are available to implement all requirements at the same time.
Proper release planning is as complex as it is important for
the success of a software product [10] .

The purpose of this paper is to explore a new approach to
assess and improve the release planning process in industrial
software companies. This approach consists of a combined
application of business process modelling, [5] , and process
assessment [11]. Instead of a generic CMMI model for
process assessment and improvement a more focused
maturity model is used, i.e., the SPM Maturity Model. This
maturity model is dedicated to software product management
and addresses particular software processes such as the
release planning process. In Section 2, we will first address
the background of the release planning process, and the
motivation for the new approach. Section 3 will present the
case study and selected results and experiences of the new
approach. Section 4 finalizes the paper with conclusions and
further work to be done.

II. BACKGROUND RELEASE PLANNING AND

PRIORITISATION

Release planning aims at selecting an optimal subset of
features that satisfy as many stakeholders as possible within

the budget, resource and risk constraints [10]. Many different
aspects can be taken into account when prioritizing
requirements. However, involving multiple aspects
complicates the decision process.

Regarding the assessment and improvement of software
processes, the Capability Maturity Model Integration
(CMMI) is a well-known approach [7]. Applications of
CMMI in Small and Medium Sized Enterprises (SMEs) have
shown several problems, such as: the implementation is too
complex, too time-consuming, too costly etc., see e.g., [8]. In
our case study we therefore have selected a more focused
assessment approach that has as scope software product
management. Four main processes, are being distinguished,
respectively requirements management, release planning,
product planning and portfolio management. For the release
planning process a number of focus areas have been defined,
see Table I. Capabilities of each of the focus areas are
represented by A to F in the rows. To progress through
maturity levels 1 to 10, the capabilities of each focus area
indicated in each respective column must be achieved. E.g.,
to reach maturity level 2 the capability A of Launch
preparation should be achieved. Moving from left to right
through the matrix matures the SPM processes. Progressing
from maturity level 1 to 10, the focus areas are revisited
multiple times maturing them incrementally as well. An
important aspect in an assessment is the collection of
information to rate the capabilities. Currently this is done by
asking questions to practitioners and by studying project
documents. For all the capabilities in the matrix, a company
has to answer yes or no to the question ‘Is this capability
implemented in your organisation?’ Advantages of using a
questionnaire are that it can be distributed easily to a wide
range of respondents across geographic boundaries, it is non-
invasive, and it is cost and time efficient. However, there are
also serious disadvantages to using questionnaires in
software process assessment, respectively: questionnaires
have been found to be repetitive and verbose, questions have
been found to not be related to the real problem, qualitative
information is needed to reflect the software process and
finer granularity than yes/no questions is needed to reflect
the software process [8]. Regarding our release planning
assessment case study, we decided that our assessment
method should not only be aimed at collecting answers to
yes/no questions, but should aim at an in-depth analysis and
discussion of the ‘actual’ release planning process as it is
carried out in practice. Given this aim, and the disadvantages

238Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 256 / 729

of questionnaires listed above, we applied a different
assessment instrument: i.e., formal process modelling
techniques. These modeling techniques have already been
recognized for many years as instruments, e.g., [3][4] which
both conclude that 'software process modeling facilitates
human understanding and supports process improvement'.
Also, research on success factors of software process
improvement shows that an inhanced understanding of the
process by employees, and employee involvement (because
of their insight into and knowledge of the process areas), are
of utmost importance for the success of a software process
improvement project. To select an appropriate modelling
technique we first defined the purpose of modelling. Our
purpose was to describe the current processes, to determine
the current process maturity, and to formulate improvement
proposals. This is classified in the process modeling area as
'working towards a descriptive model for learning and
process development' [1]. A number of techniques can be
used for this type of modelling. In our situation, based on the
characteristics from a user and a modeller perspective,
formal flowcharts and data flow diagrams have been chosen.
Subsequently, we selected Business Process Modelling
Notation (BPMN) as our modelling language. BPMN is able
to capture aspects of both flowcharts and DFDs (based on
the Bunge-Wand-Weber (BWW) representation model), We
used the BPMN notation, i.e., its extended modelling
elements, as described in [6]. BPMN is already for quite
some time recognized as the most ontological complete
model [12]. Lastly, it has to be stated that our choice for
BPMN was also motivated by current knowledge and
expertise in our research group at TU/e,), e.g., [5]. Software
process modelling facilitates human understanding and
communication and supports process assessment and
improvement. Business process modelling is an iterative
method that provides rich information on how processes are
implemented. Summarizing, our new process assessment
approach consists of the application of process modelling
techniques to derive information from the actual processes
for the rating of the capabilities (in a SPM Maturity Matrix)
of a release planning process.

III. RELEASE PLANNING ASSESSMENT AND IMPROVEMENT

A. The case study content

The case study addressed in this paper was carried out at
two companies (A and B) active in providing telematics
solutions to the transportation industry. Companies in this
transport and logistics domain are facing major challenges.
Competition is large, operating costs are increasing rapidly,
customers demand an ever-expanding range of services and
the legislation is strict. As more information becomes
available digitally, inside the truck as well as outside, data
from an expanding number of sources needs to be processed
and integrated. This increases the complexity of full service
telematics solutions considerably.

Company B is a company that provides telematics
solutions to the transportation industry. It has over 280
employees spread throughout Europe. More than 80.000
devices have been installed. It provides products to acquire

mobile operations data and communicate this data between
dispatch/shipment control, back-end information systems,
and mobile shipping unit (e.g., a truck or trailer, etc.).
Company A, a SME, has recently been taken over by
company B. Release planning at company A is mainly done
by a small group of high-positioned executives, and no
formal process descriptions exist. At company B however,
processes are more defined and certain formal protocols are
in place. The different release planning processes in the
distinct companies have to be aligned and should finally
smoothly flow together. Preserving the best of both ways of
the release planning processes of both companies will
contribute to a more efficient process and a higher quality of
release planning.

B. Process modelling and maturity rating

Process models of the current release planning processes
at both companies have been made. In the context of this
work in progress paper examples of the process models are
not presented here. However, we will clarify in what way we
discussed these process models and how we derived
information from them to determine the capabilities
(maturity) of the release planning processes. The modeling
process was identical at both companies. In a first session
with the persons responsible for the release planning process
a list of persons of interest was put together, not limited to
those who are involved directly in the process. Persons
involved in requirements gathering and the product
development process in general were thus included on the
list. After interviews with these persons were completed, the
gathered information was used to build a first version of the
process models. Subsequently, the process models were used
to guide a second iteration of data collection. Again,
information was gathered that was now used to adjust the
process models created in the first iteration. This process
continued until the company supervisors agreed with the
process models build in the latest iteration. Within company
A, the first session with the company supervisor resulted in a
list of 9 persons. Within company B, the initial list of
persons of interest included 7 persons. The initial discussion
sessions were all conducted using a semi-structured
discussion protocol. The discussion sessions ranged in
duration from 30 minutes to one hour on average. The
process modelling effort at both companies shows that input
from multiple stakeholders and an iterative approach is
needed to get accurate process models. Using the input from
multiple stakeholders singled out contradicting views on a
process. In the discussion sessions we focused on a number
of process model characteristics such as: the release planning
focus areas recognized or implemented, importance of
decisions made in process steps, type of and frequency of
(formal) techniques and tools used, (internal and external)
stakeholders involved, etc.

From the discussion sessions on the release planning
process models of company A, we summarize two types of
results. On one hand, we will present the identification of
capability ratings for the distinct release planning focus
areas, and on the other hand we will address interesting

239Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 257 / 729

benefits of the usage of the process models. First, see Table
II (underlined ratings), the capability ratings:

 A grouping based prioritisation method is often used, so
capability B of requirements prioritisation is achieved.

 Based on formal cost-benefit criteria for prioritisation
level D is also achieved. Level A and C are skipped
since not all internal stakeholders provide input on the
priorities and external stakeholders are not involved in
the prioritisation process.

 An open-ended release planning technique is used, and
no formal release definition is formed. As a
consequence none of the capabilities of release
definition are achieved.

 There exists hardly a release definition. This has as
consequence: none of the capabilities for release
definition validation have been achieved.

 No formal scope change management exists. When
development on projects of features turns out to be
underestimated it can be chosen to simply not release
yet or exclude it from the new version.

 New products are first thoroughly tested internally and
externally, thus achieving capability A and B for build
validation.

 Internal stakeholders are informed about a new release
by means of a formal release document. Capability A in
launch preparation is thus achieved. However, the
release decision is not based on formal quality rules, and
therefore capability B is not achieved.

Regarding the benefits of using process models in
company A we can give the following example: based on the
multiple iterations of discussing process models with
different stakeholders, it appeared that alternative routings
were possible in the initially developed process models, e.g.,
request handlers often consulting sales managers for a
second opinion regarding their decisions. Only because of
these iterations important business process details could be
identified. However, it has to be stated that in total, the
release planning process at company A didn't strongly
benefit from using process models. Although the various
process models were slightly adjusted in subsequent
iterations, this didn't lead to big changes in the maturity
ratings.

Regarding the capability ratings, from the discussion

sessions in company B, we give the following results; see
Table III.

 Regarding requirements prioritisation, internal
stakeholders are being involved and a formal
prioritisation method is often used. Also a cost-revenue
consideration is being made. As a consequence levels A,
B and D have been achieved. Because customers are not
being involved in the process, C is skipped.

 The release proposal compiled by the Product
Management fits the descriptions of capability A and B
of release definition.

 The release definition has to be approved by a formal
Strategic Product Board thus achieving capabilities A
and B of release definition validation. Capability C is

not achieved because the release definition is not
communicated to internal stakeholders.

 Having implemented a formal project management
methodology, the company meets capabilities A and B
of scope change management.

 Regarding the release preparation process a tool has
been developed called the ‘release clock’. The release
clock defines that new features are first tested internally
and consequently in a field test, thereby achieving levels
A and B of build validation.

 The ‘release clock’ also defines a rigorous launch
preparation process which includes all the capabilities of
launch preparation.

Regarding the experienced benefits of the usage of
process models in company B we also experienced the
advantages of the multiple iterations in discussing the
process models with different stakeholders. For example, in
company B, it became clear, only after a couple of iterations
that an automated requirements gathering system was hardly
used in practice and was not favoured by most of the
employees. As a consequence, we decided to exclude this
system, which was formally specified in the company
process standard, from the process models. However, also in
company B it appeared that the usage of process models also
can have disadvantages. E.g., the 'build validation and launch
preparation processes' would have required very much effort
to capture in process models, while the existing and
available process documentation was of sufficient quality to
base the maturity rating on. Summarizing, we can state that
the usage of process models has clear advantages in
particular process areas, but when applied 'at random' to any
process it also can have serious drawbacks, e.g., too time-
consuming. too cost-ineffective.

IV. CONCLUSIONS AND FUTURE WORK

The development of software process models in the case
study provided detailed and in-depth information on the
capabilities of the release planning focus areas. The maturity
matrices of the release planning process of both companies
could be completed in a reliable and detailed way. In
particular, the iterations in the discussions on the process
models, with the different stakeholders, resulted in renewed
insights into the current practice, e.g., with respect to
existing but unused tools. Of course the detailed arguments
for the capability ratings are an important add-on to the
Maturity Matrices in Table II and Table III. They clarify
important and detailed aspects of the release planning
processes. The use of a focus area oriented SPM Maturity
Model, instead of a generic software process maturity
approach such as CMMI, proved to have strong advantages
regarding the detailed information of strengths and
weaknesses of the release planning process and its focus
areas.

However, the usage of process models also showed
sometimes disadvantages. In particular, we mention here the
effort which is needed to develop (and maintain) the process
models. From our case studies we conclude that the
appropriateness of using process models depends on

240Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 258 / 729

particular characteristics of the process and the business
context, e.g., the complexity, the dynamics, and the number
of stakeholders involved in a process. In further research, we
will focus on these characteristics in order to become able to
determine the suitability of using process models to
particular types of processes and to different types of
business situations. In that way, we will strive at a more
efficient usage of process modeling for software process
maturity rating.

REFERENCES

[1] Aguilar-Savén, R. (2004). Business process modelling: Review and

framework. International Journal of Production Economics, Vol. 90,
pp. 129-149.

[2] Bagnall A., Rayward-Smith V. and Whittley, I. (2001).The Next
Release Problem. Information and Software Technology, Vol. 43, No.
14, pp. 883 - 890.

[3] Bollinger, T. and McGowan, C. (1991), A Critical Look at Software
Capability Evaluations. IEEE Software, pp. 25-41.

[4] Curtis, B., Kellner, M. and Over, J., (1992). Process Modelling.
Communications of the ACM, Vol. 55, No. 9, pp. 75-90.

[5] Dijkman R.D., M. Dumas and C. Ouyang, Semantics and analysis of
business process models in BPMN, Information and Software
Technology, Volume 50, Issue 12, November 2008, pp. 1281-1294.

[6] OMG (2011). Business Process Model and Notation (BPMN). Object
Management Group, Inc.

[7] Paulk, M. (2002). Capability Maturity Model for
Software.Encyclopedia of Software Engineering.

[8] Pino, F., García, F. and Piattini, M. (2008). Software process
improvement in small and medium software enterprise: a systematic
review. Software Quality Journal, Vol. 16, pp. 237 - 261.

[9] Regnell, B. and Brinkkemper, S. (2005). Market-driven requirements
engineering for software products. In A. Aurum, & C. Wohlin,
Engineering and Managing Software Requirements, pp. 287 - 308.
Berlin Heidelberg: Springer.

[10] Saliu, O. and Ruhe, G. (2005). Supporting Software Release Planning
Decisions for Evolving Systems.Proceedings of the 2005 29th Annual
IEEE/NASA Software Engineering Workshop (SEW'05), pp. 14- 24.
Greenbelt, MD.

[11] Van de Weerd, I., Bekkers, W. and Brinkkemper, S. (2010).
Developing a Maturity Matrix for Software Product
Management.ICSOB, Lectures Notes in Business Information
Processing, Vol. 51, pp. 76 – 89.

[12] Weber, R. (1997). Ontological Foundations of Information Systems.
Melbourne: Coopers & Lybrand.

241Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 259 / 729

TABLE I Example of a Release Planning Part of the Maturity Matrix for Software Product Management (Van de Weerd et al, 2010)

0 1 2 3 4 5 6 7 8 9 10

Release planning process

Requirements prioritisation

A

B C D

E

 Release definition

A B C

D

E

Release definition

validation

A

B

C

 Scope change management

A

B

C

D

 Build validation

A

B

C

 Launch preparation

A

B

C D

E

F

TABLE II. RELEASE PLANNING PROCESS MATURITY AT COMPANY A

 0 1 2 3 4 5 6 7 8 9 10

Release planning process

Requirements prioritisation A B C D E

Release definition A B C D E

Release definition validation A B C

Scope change management A B C D

Build validation A B C

Launch preparation A B C D E F

TABLE III. RELEASE PLANNING PROCESS MATURITY AT COMPANY B

 0 1 2 3 4 5 6 7 8 9 10

Release planning process

Requirements prioritisation A B C D E

Release definition A B C D E

Release definition validation A B C

Scope change management A B C D

Build validation A B C

Launch preparation A B C D E F

242Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 260 / 729

Distributed Software Framework

For Biosphere 2 Land Evolution Observatory (LEO) Autonomic Cyber-Physical System (ACPS)

Shafiul Islam

The Department of Electrical and Computer Engineering

The University of Arizona

Tucson, U.S.A.

jacky@email.arizona.edu

Abstract— This paper presents the architecture, design, and

implementation of a real-time Distributed Software

Framework for Biosphere 2 Land Evolution Observatory

Autonomic Cyber-Physical System, which uses an optimum

technology mix discovered through intensive research, design,

and development over a period of two years (2010- 2012) using

a novel adaptable process framework named as Jacky’s

Universal Process. It has a Service Oriented Architecture with

Publish/Subscribe interaction pattern and Object Oriented

Design. It applies self-healing feature of Autonomic Computing

and uses Cloud Computing and OpenSplice Data Distribution

Service. The distributed system software (software + service) of

this framework is a complete production quality software

product that requires near zero maintenance since only sensor

drivers for new sensor types need to be developed and by

appropriately mixing and matching the services all required

system level capabilities can be provided. This framework

deployed on B2 server, is capable of handling 45x the expected

load having a total of about 148,500 sensors. It is highly

reliable, robust, fault tolerant, scalable (both vertically and

horizontally), extensible, secured, and easy to use. It

successfully resolves all technological risks, provides concept

consistency, and supersedes the functional and non-functional

requirements.

Keywords-distributed software framework; data distribution

service; service oriented architecture; autonomic computing,

jacky’s universal process.

I. INTRODUCTION

 The Biosphere 2 Land Evolution Observatory (LEO) is
an interdisciplinary project aimed to quantify various earth
and atmospheric processes to understand the complex non-
linear interaction among these processes by coupling
controllable physical systems with numerical models of the
interacting processes using a cyber-physical system, which is
a specialized cyberinfrastructure (CI) for LEO and referred
to as Autonomic Cyber-Physical System (ACPS). ACPS
requires a highly reliable, robust, fault-tolerant, scalable,
extensible, and easy to maintain real-time Distributed
Software Framework (DSF) with a life span of about 10
years that can be deployed on any heterogeneous distributed
system and resolve integration risks. The primary users of
this framework are researchers and engineers interested in
development of scientific domain specific applications and

computational models, which in turn are meant to be used by
scientists and students for research and education (e.g., CI
for Atmospheric Sciences, Earth Sciences, and Engineering
Research) as mentioned in NSF’s CI vision for 21

st
 century

discovery [2].
In order to meet the challenging requirements and resolve

technological risks, autonomic computing, cloud computing,
service oriented architecture (that uses publish/subscribe
interaction pattern), and object-oriented design were used.
The optimum technology mix was discovered through
intensive research, design, and development over a period of
two years (2010-2012). In this paper, the final production
quality architecture, design, and implementation of ACPS
DSF for Biosphere 2 LEO are presented. A secondary
outcome of this research and development effort, also
introduced in this paper, is the inception of a novel adaptable
process framework for software engineering of self-
managing distributed systems, which is named as Jacky’s
Universal Process (JUP).

The rest of the paper is organized as follows: Section II
provides a theoretical foundation through literature review;
Section II explains the methodology used; Section IV lists
the requirements, and discusses the architecture and design;
Section V discusses testing, and results; Section VI discusses
experimentation and results; and finally, Section VII
describes conclusion and future work.

II. LITERATURE REVIEW

At present, no similar distributed software framework for
cyber physical systems that use autonomic computing exist.
Hence the fundamental concepts are briefly presented here to
provide the theoretical foundation.

A. Distributed Systems

A collection of independent systems that appear as a
single coherent system is called a distributed system [3],
which has key goals of achieving reliability, availability,
adaptability, expandability, scalability, robustness, and fault-
tolerance (through redundancy) while providing distribution
transparency [4]. ACPS DSF, being a distributed software
framework, naturally provides the non-functional needed by
Biosphere 2 LEO.

243Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 261 / 729

Figure 1. Jacky’s Universal Process (JUP)

B. Autonomic Computing

The overall goal of Autonomic computing, modeled upon
autonomous nervous system, is that computing systems will
self-manage taking only high-level objectives from
administrators (human beings) [5]. The four aspects of self-
management are: 1) Self-configuration; 2) Self-optimization;
3) Self-healing; and 4) Self-protection. In ACPS DSF, self-
healing aspect is implemented to provide fault tolerance for
critical system-level services, and monitoring and
notification for sensors of the physical system.

C. Cloud Computing

Data center hardware and software is known as a cloud
[6]. Using a composability methodology, cloud computing
systems can be classified into any of the five layers [7]: 1)
Cloud Application Layer (SaaS); 2) Cloud Software
Environment Layer (PaaS); 3) Cloud Infrastructure Layer
(IaaS); 4) Software Kernel; 5) Hardware and Firmware. For
example, Amazon EC2 is IaaS, Google AppEngine SaaS,
and Microsoft Azure is PaaS [6]. ACPS DSF system-level
services need to be run locally on Biosphere 2 servers to
avoid latency issues as experienced during testing on
Amazon EC2. However, ACPS DSF application-level
software can easily be deployed to a cloud.

D. OMG Data Distribution Service

Object Management Group (OMG) Data Distribution
Service (DDS) is an open specification for publish-subscribe
(PS) data distribution systems [8] that attempts to provide
formal definition for defining Quality of Service (QoS) to
configure service and help connect information producers
(publishers) with information consumers (subscribers). Many
real-time applications, including ACPS DSF, have the need
to have pure data-centric architectural pattern and take
advantage of DDS. OpenSplice [9] is the most advanced,
complete and widely used (commercial and open source)
implementation of OMG DDS specification. This is a tried
and tested commercial-of-the-shelf product and was chosen
for ACPS DSF as the OMG DDS implementation of choice.

III. METHODOLOGY

This project was primarily a complex large-scale
interdisciplinary engineering project with intensive
technology research. The greatest risks in the project were
the technical risks and the greatest challenge was to maintain
conceptual integrity among interdisciplinary Biosphere 2
staff members. The Spiral model was applied when the
project was completely risk driven. As critical risks were
resolved by incorporating new technologies like OpenSplice
DDS and as development moved from middleware /
distributed system software towards distributed application
software, the approach moved more towards Lean (Agile)
[11] principles. All of the critical risks have been resolved by
developing Proof of Concepts (PoCs) for Data Turbine,
OpenSplice DDS, real-time Visualizations using Matlab
compiled codes, and coming up with ways to deliver data
from DDS and plots over the web using Java Server Pages
(JSP). Code quality has been ensured by incorporating

recommendations of S. McConnell [18] whenever
applicable.

By going through the activities in the engineering
notebook and through self-reflection, the hybrid (model that
was being used naturally) has been extracted. John S.
Miranda, a manager at Intel, proposed that any organization
that tries to implement such hybrid approach should have a
set of questions / criteria to decide the best mix. This
research confirms that requirements stability, software
generalizability, software life expectancy and dependency
are some key criteria.

Although, at present, there is no quantitative data to
confirm the effectiveness of such a hybrid approach (the
focus of this project was in research, design, and
development of ACPS DSF), but the fact that a complicated
large-scale software project like ACPS DSF was very
successful may set some foundation for future research. In
this paper a novel adaptable process framework for Self-
managing Distributed Systems that adds a third dimension to
the Rational Unified Process (RUP) [1] [12] is proposed.
This new process framework is named as Jacky’s Universal
Process (JUP) of Software Engineering for Self-managing
Distributed Systems. As shown in Figure 1, while the pre-
existing axes from RUP provide sequential increments and
iterative workflows, in JUP the third dimension provides
parallel augmentations. Augmentations are different from
increments in that they are very loosely coupled services that
can be connected or disconnected anytime as required. Each

parallel augmentation can apply Spiral, Lean (Agile), or
Hybrid e.g. Spiral + Lean (Agile), or any other model as
appropriate. The four universal categories of services in this
third augmentation axis are:

 System Services: Any distributed system level
services.

 Autonomic System Services: Any or all of Self-*
features of Autonomic Computing at the system
level (global).

 Application Services: Any distributed application
level services.

244Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 262 / 729

Figure 2. System Architecture (Cyber System)

 Autonomic Application Services: Any or all of
Self-* features of Autonomic Computing at the
application level (local).

The four universal categories of services can be seen in
the ACPS DSF Software Architecture (Figure 3). For
example, Universal Critical Services are System Services,
Autonomic Managers are Autonomic System Services,
Visualizations are Application Services, and Control Panel is
an Autonomic Application Service. At present use of JUP in
different kinds of distributed system that have some
capabilities of Autonomic Computing is advocated. Further

research in JUP will provide some quantitative measures of
its effectiveness. For now, use ACPS DSF as the case study
to learn JUP by example.

IV. REQUIREMENTS, ARCHITECTURE, AND DESIGN

A. Requirements

As any other project, the requirements of this project
were very vague initially. The vision, overall requirements,
and detailed requirements have been collected through
interaction with Biosphere 2 Scientists and Biosphere 2 Staff
members. At any point, technology risks and non-functional
requirements were the key drivers for all subsequent system
architecture, software architecture, software design and

implementation. The overall requirement was to research,
design, and develop a distributed software framework that
would facilitate the establishment of LEO cyberinfrastructure
by providing a standard reliable, robust, and fault-tolerant
means of data acquisition, data distribution, data
visualization, data assimilation, modeling, and simulation.
No hard and fast metric for feature requirements were
defined, but the overall requirements can be listed as follows:

 The software framework should collect data from the
physical system and store it in database.

 The software framework should make data available

to real-time monitoring and visualization.

 The software framework should have facility for off-
line modeling and simulation.

 The software framework should use technologies
best for LEO’s cyberinfrastructure.

 The visualizations should be available to
students/faculty members over the web.

 The software framework should be:
o Scalable
o Reliable
o Robust
o Fault tolerant

245Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 263 / 729

Figure 3. Software Architecture

o Easy to maintain (preferably no
maintenance)

o Easy to extend

B. System Architecture

The system architecture, provided in Figure 2, is the final
standard cyber system architecture consisting of
heterogeneous systems, which can be modified in the future
if desired and/or required. In the future, there will be at least

one feed-back loop going from the cyber system to the
physical system.

Basically, this architecture shows that the entry into the
cyber system happens through the file system—a ‘Source’
folder where the physical system drops measurement data
files. From there, Physical2Cyber uploads data to both
database and DDS. From the DDS, DDS2GenericFileFormat
samples the most recent sensor values in to a special generic
file format for current and future web/cloud applications to

read. Also, there is a DDS2SurfacePlot, a composite service,
which uses CommandExecuter to generate surface plots.
DDS2Database is service that can be used to sample DDS
contents directly into database. AutonomicSensorManager
monitors sensors and writes notifications of sensor failures
according to defined policy and also stores knowledge of
failures. AutonomicServiceManager monitors the heartbeats
of the critical services according to the defined policy. In
case of failures of any services, it takes the appropriate

actions as defined in policy while storing knowledge of any
failures. The web/cloud application reads data from the
‘Sink’ folder (in particular, from files created and updated
byDDS2GenericFileFromat and notification files created by
AutonomicSensorManager), and database to show text data,
visuals, text and provide audio warnings when required [13].

All of the servers shown in this system architecture are
important (ftp server being the most important one) and the
flow of data and events through them can easily be analyzed

246Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 264 / 729

and best understood using the system architecture, which
also shows the best technology mix. The physical system is
modeled as a system that generates data. As a matter of fact,
details of the physical system, which was outside the scope
of my responsibility, is not provided to emphasize the cyber
system.

C. Software Architecture

The ACPS Distributed Software Framework (DSF)
architecture is shown in Figure 3. It basically consists of
three layers in an open architecture i.e. any top level layer
can call any of the bottom layer(s). This architecture is a
Service Oriented Architecture (SOA) that combines layered
and data space architectural patterns [3]. It is SOA because it
is composed of a collection of services that provide the
fundamental services, which can be mixed and matched to
provide the universal set of capabilities ACPS will need over
its life-span. These services use Publish/Subscribe
interaction pattern by applying the first open international
middleware standard—OMG Data-Distribution Service for
Real-Time Systems [14]. The Middleware / Distributed
System Software (Software + Service) and Distributed
Application Software (Software as a Service) consists of
subsystems (projects) and each subsystem consists of
modules (packages), which in turn contains
classes/components.

Each of the software layers are described below starting

with the bottommost layer first:

Commercial of the shelf (COTS) Platform, Middleware,

and Database: This layer of software represents the

industry standard proven, tried and test products used as the

foundation for ACPS DSF. The major technologies in this

layer are:

 Java Standard Edition: Java was chosen as the

software platform of choice for performance,

versatility, portability, and security [15] that ACPS

DSF requires.

 OpenSplice Data Distribution Service (DDS):
OpenSplice DDS is the global leader in real-time

data distribution middleware technology [9]. It is

the strictest implementation of Object Management

Group (OMG) DDS Open Standard providing high

scalability, low latency, and fault-tolerance for

real-time distributed systems.

 Oracle Database: Oracle database provides the

foundation for high quality information storage and

delivery [16].

Middleware / Distributed System Software (Software +

Service): This system layer consists of the system software

and services (S+S) that should be sufficient to provide all of

the system level capabilities ACPS will ever need over its

entire life-span of about 10 years. This layer is complete in

that by combining and configuring the universal critical

services that use the core, all of the current and future

system level needs can be met provided the project plan

does not change radically. Other than sensor driver

development, and shell script development to meet

particular deployment need, no maintenance to this level is

neither expected nor recommended. Overall, this layer

provides the scalability, robustness, reliability, and fault-

tolerance along with fundamental/core ACPS system (and

significant application) logic. If ever required, the software

and services may be extended without making any changes

to the existing core, services, and emulator. This layer has

the following subsystems:

 Core (Kernel): As the name implies, contains all

of the core system (and some application level)

logic fundamental to ACPS as a whole. In this

subsystem, Sensor Object Model is the most

important module that hosts the most important

object oriented data structure / application

programming interfaces (APIs) for all system level

services. Sensor Drivers is the next most important

module that hosts all of the derivers for sensors that

define calibration functions. The File System

Object Model, Data Access, and Helpers module

contains relevant classes/APIs for files, database,

and general helpers. The DDS Object Model,

contains the APIs for talking to DDS that use data

structures in Data Msg Model, Event Msg Model,

and Command Msg Model modules. The Publisher

Object Model, Subscriber Object Model, Event

Object Model, and Command Object Model

provide classes / wrapper APIs to DDS. The

Service Object Model, contains the base class and

exception class for any system level service.

 Universal Critical Services: These are the

fundamental services that provide universal

capabilities that ACPS will ever need at the system

level. Physical 2 Cyber, DDS 2 Generic File

Format, DDS 2 Database, and Command Executer

classes represent the critical services.

 Emulators: At present only one cRIO Emulator is

needed while B2 LEO is under construction. This

emulator has the capability to read sensor

definitions from database and generate data in

exact established format specification between the

physical and the cyber system.

 Autonomic Managers (controllers): The

autonomic managers provide self-healing

capabilities of Autonomic Computing to add fault

tolerance at service level by Autonomic Service

Manager module and monitoring/notification

capabilities at sensor level by Autonomic Sensor

Manager module.

247Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 265 / 729

#Type

SensorMetadata

#Index
#Id
#Name
#Unit
#NoDataValue

VariableMetadata

+Calibrate(in InputVariableMap, in InputVariableValueMap, in ParameterMap)
-loadCalibMethod()

#CalibMethod

OutputVariableMetadata

#ValidRangeFrom
#ValidRangeTo

InputVariableMetadata

#Code
#Value

Parameter

1

*

#ID

Variable

+isInValidRange(in inputVlalue : float(idl)) : boolean(idl)

InputVariable

*

1

+Calibrate(in InputVariableValueMap) : float(idl)

OutputVariable

*

1

*

1

1

*

1

*

#ID
#Code
#DataTableName

Sensor

1

*

1

*

1

*

C+<SensorType>+<VariableID>

Each OutpubVariableMetada will load particular
class at run-time from a classpath using the
class name as C+<SensorType>+<VariableID>
e.g. C5TM1 i.e. this is an application of strategy pattern.

1

1

1
1

+LoadSensors()
+LoadSensorDataList(in DataFile) : object(idl)
-LoadSensorMetadata()
-ValidateSensorData()

+SensorMap
-SensorMetadataMap

SensorObjectModel

Value of InputVariable is read from measurement files at run-time.
Value of OutputVariable is calculated at run-time.

+Calibrate(in InputVariableMap, in InputVariableValueMap, in ParameterMap) : float(idl)

«interface»
ICalibMethod

#LocalDateTime
#InputVariableValueMap
#OutputVariableValueMap

SensorData

*

1

#id
#code
#name
#localX
#localY
#localProjection
#localZ
#verticalProjection
#posAccuracyM
#boxX
#boxY
#boxProjection
#boxZ
#boxVerticalDatum
#dLevel
#elevation
#comments

SensorLocation

11

«uses»

Figure 4. Sensor object model (simplified)

Distributed Application Software (Software as a Service):
This layer is meant to be extended where all future work will
take place. All applications in this layer are provided as
service over internet and expected to be all deployed in
private and/or public clouds i.e. this is the SaaS layer. Hence,
all of the control panel and visualization applications are
available to any portable device in the world with an internet
connection and a web browser. Essentially, all of the
web/cloud applications are JavaServer Pages (JSP) that read
data from appropriate sources (files and database) and
present them either in text or graphics format in appropriate
format. Autonomic Sensor Manager refreshes itself
periodically and monitors contents of a notification file for
any sensor failures and present such failures to the user along
with audio warning. Surface Plot Viewer displays the
appropriate surface plot image generated by DDS 2 Surface

Plots composite service. Text Data Viewer display the
appropriate data from generic file format generated and
updated by DDS 2 Generic File Format service and Time
Series Plot Viewer shows time series data from database.

D. Design Overview

The design of ACPS DSF started with the notion of
loosely coupled collection of publishers and subscribers
interacting through a middleware keeping in mind the need
for scalability due to the massive amount of data flow that is
expected. In the design, file system was used, in addition to
OpenSplic DDS, as a queue, and also as a shared memory.
This way, different systems are decoupled from each other
through the file system. Also, during the design, parallelism
was taken as a key design criterion to provide scalability. For
example, the finished ACPS DSF can be used in parallel by

248Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 266 / 729

Figure 5. 'Subscriber' machine CPU, Disk, Network, and Memory

usage (when DDS2SurfacePlot is running)

splitting the load of one cRIO to multiple cRIOs, which in
turn would mean splitting the queue, running services in
parallel, and loading data to database in parallel either at the
schema level or at the server level. Also, in the design,
synchronization issues have been carefully assessed and file
locks were always used for any writing operations. Overall,
this ACPS DSF is designed to make it easier to develop ad-
hoc applications, which can easily consume data either from
the file system or from database. The OpenSplice DDS serve
as a shared memory where most recent value of all sensors
(from a hill slope) are kept up to date. Any interested
application can also sample any particular number or types
of sensors at the desired sampling rate.

E. Class Design

Object-oriented design has been used throughout ACPS
DSF. Although most of the design evolved over time, the
classes in Sensor Object Model (Figure 4) were carefully
designed first, even before hitting a single key, and the
design was always kept in sync with code. This object model
is the most important data structure integral to ACPS DSF.
In this design, it is assumed that a sensor has inputs
(measurements) and outputs (calibrations) which can be a
function of any number of inputs. In order to make these
calibrations as general as possible, the strategy design pattern
[17] was used. Thus, classes collectively referred to as sensor
drivers, define calibration functions by implementing
ICalibMethod interface. The next most important sets of
classes (in respective packages) are those that form wrappers
around OpenSplice DDS namely those in DDS Object
Model, Publisher Object Model, Subscriber Object Model,
Event Object Model, Command Object Model—all of these
packages/modules are part of the ACPS DSF core. ACPS
DSF itself is composed of a number of subsystems:
Controllers, Core, Emulators, Services, and User Interface.
As the name implies, Core/kernel is the most fundamental
critical subsystem to the entire distributed system. Each of
these subsystems is divided into packages/modules as
required.

Design pattern [17] was used in three places: Strategy

Pattern in implementing sensor drivers mechanism,

Command Patten for commands and events mechanism, and

Singleton Pattern was used to make sure that only one

instance of Physical2Cyber can be executed per folder it is

monitoring.

F. Message Structure Design

In this DDS-centric design, message structure is very

important. In order to make sure that all of the kinds of

messages that will ever flow through the middleware, are

general message structures which are specialized over layers

of software using command pattern. In OpenSplice DDS,

these messages were defined using Interface Definition

Language (IDL), and when passed through a tool (idlpp) that

is part of the OpenSplice, the relevant Java classes were

generated.

G. Database Design

Database is also an integral part of the system. In order to
decouple the design of the database from the design of ACPS
DSF, special view specifications were created that serve as
interface between the full database and the view of the
database in light of ACPS DSF. These views are prefixed
with ACPS and all that matters to ACPS DSF is the exact
number of attributes with proper data types. The query used
to get these attributes may change and are not a concern for
ACPS DSF as long as this interface is not broken.

V. TESTING, RESULTS, AND DISCUSSION

A. Testing Overview

The test cases designed were goal oriented as
recommended by Fenton [19]. All of the test cases basically
had nominal scale of measurement: Success or Failure. Since
all of the test cases passed, the correctness and quality of
ACPS DSF were successfully validated.

B. System Testing—Biosphere 2 LEO Server Deployment

In this deployment scenario, three physical cRIO are
connected which provides the expected amount of load once
the physical system is completed. In the actual physical
system, each cRIO is expected to drop files in ‘Source’
folder every 10-15 mins. However, for the purpose of testing,

the connected cRIOs (x, y, and z) are configured to drop files
every 2 mins. In addition to the physical cRIOs, three
cRIOEmulators (x, y, and z) are also configured to drop files
every 1.5 mins. In accordance with the System Architecture
(Figure 2), the ‘Publisher’ machine is running
Physical2Cyber, AutonomicSensorManager, and
AutonomicServiceManager. Similarly, the ‘Subscriber’
machine is running DDS2GenericFileFormat,
DDS2SurfacePlot, and AutonomicServiceManager.

249Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 267 / 729

Figure 6. 'Publisher' machine CPU, Disk, Network, and Memory usage

Resource usage for ‘Subscriber’ machine is shown in
Figure 5, and resource usage of ‘Publisher’ machine is
shown in Figure 6. From these statistics, it is evident that
resources in ‘Publisher’ machine can easily be more utilized
by applying more load i.e., one ‘Publisher’ machine is
capable of serving multiple hill slopes (physical systems).

This demonstrates that the system has the capability to
provide more throughput than required. However, in
‘Subscriber’ machine resource utilization is more intense
when plotting routines of Matlab is in use as expected. Thus
it may be reasonable to have one ‘Subscriber’ machine per
hill slope. Another option could be to have a dedicated
machine to run DDS2SurfacePlot, which is indeed the most
resource intensive service and in this configuration, a single
‘Subscriber’ machine could serve multiple hill slopes.

C. System Testing—Amazon Web Services/Cloud

Deployent

A test bed was created on Amazon Web Services (EC2)
with minimal machine (m1.small) configuration. At present,
a shared folder on ‘ACPSServer’ to be accessed by
‘ACPSPublisher’ and ‘ACPSSubscriber’ machines could not
be created. So the backup plan was to test everything on the
‘ACPSServer’ machine with predefined m1.small
configuration. Since this server is in Amazon EC2, loading
time to database was taking much longer ~ 4 minutes for
cRIOEmulatorX, which has the largest number of sensors
attached to it. The time to load to database (including
network latency) directly determines the throughput of the
system. Hence for the purpose of testing, cRIOEmulatorX,
cRIOEmulatorY, and cRIOEmulatorZ were configured to
generate sensor measurement data files every 5 minutes. A
total of three sets of application setup were tried: ‘Publisher’
setup, ‘Subscriber’ setup, and ‘Web Server’ setup.

D. Reliability Testing

 Until present time, there has never been any software
downtime. The best way to understand the reliability would
be to have a look at a production release of Biosphere 2
Sensor Network Data Acquisition System (Bio2SNDAS),
which is the precursor to Physical2Cyber service in ACPS
DSF. In the ACPS DSF, in the final release, none of the
universal critical services ever failed i.e. zero crashes so far
during non-stop execution.

E. Robustness Testing

Error could be introduced into the ACPS DSF from three
primary places: sensor measurement files, configuration
files, and database sensor definitions. Error checking, sensor
verification and validation and lots of try-catch blocks were
used. As a result, the final release of ACPS DSF never
crashed due to any input error.

F. Fault-tolerance Testing

ACPS DSF is configured using batch files in both
‘Publisher’ and ‘Subscriber’ machines with shortcut from
startup folder such that incase of any machine restart, it will
start automatically. Also, self-healing capabilities provided
by AutonomicServiceManager ensures that if any service
dies, it is restarted according to the defined policy. As of
now, none of the service ever crashed. However, for the
purpose of testing, they were manually terminated, and in all
of the trials, AutonomicServiceManager was always able to
do its job.

G. Scalability Testing

ACPS DSF has been tested thoroughly, and it can be
parallelized at the cRIO level, service level, database schema
level, and obviously at the database server level. As a matter
of fact, the current deployment of ACPS DSF far exceeds the
requirements. As long as the network and the database does
not become a bottleneck, ACPS DSF is highly scalable. To
overcome any network latency, the database should be as
geographically close as possible to the cRIOs and the
‘Publisher’ machine. In order to overcome any possible
database insertion inefficiency, various techniques including
indexing that are common in database optimization should
be applied. Hence, this software product supports both
scaling up and scaling out both of which are limited only by
the available resources and the imagination of the
administrator of the product.

H. Maintainability Testing/Assessment

ACPS DSF requires near zero maintenance for the
middleware / distributed system software level since only
new sensor drivers need to be developed for new sensor
types. The universal critical services can be mixed and
matched to provide all of the system level capabilities ACPS
will ever need. Hence, at this level, it is a complete product
and is expected to be used like a commercial of the shelf
product.

250Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 268 / 729

Figure 7. Finding utilization of 1.0

I. Extensibility Testing/Assesment

At the distributed application software level, ACPS DSF
is expected to be extended throughout its entire lifespan. It
has a service oriented architecture using publish/subscribe
interaction pattern. Also, it has object-oriented design.
Anyone can extend ACPS DSF both at the middleware /
system and at the application level.

J. Usability Testing/Assessment

ACPS DSF is very easy to use once a user learns how to
configure it, which is also easy. Basically, once it is
configured, due to self-healing feature of autonomic
computing, no human monitoring of the software is required.
As a matter of fact, it can be considered as a fire and forget
software system.

K. Security Testing

As of now, all user input is through button clicks.
Web/Cloud application is completely decoupled from the

middleware. Security was taken in to account throughout the
entire design and development cycle. Also, no nice-to-have
features were implemented, which often lead to security

holes. Overall, ACPS DSF is highly a secured software
product, however, the Web/Cloud app could have
vulnerability in that user could try SQL injection from the
address bar. At the same time, these critical web pages are
not expected to be exposed to the general public but only
restricted to the B2 employees. It would be nice to have a
team of ethical hackers try to compromise it and provide
further insight into security issues (if any) of the Web/Cloud.
For now, no further tests were done.

VI. EXPERIMENTATION, RESULTS, AND DISCUSSION

From all of the testing conducted in Section Error!
Reference source not found., it is evident that not only does
ACPS DSF meets all of the functional and non-functional
requirements of B2 LEO, but exceeds them by more than
10x. In B2 server setup, one deployed instance of ACPS
DSF is already demonstrating capability to serve more than
10 hill slopes. The calculation for this load multiplier for the
present experimental configuration on B2 LEO is provided
in Error! Reference source not found.. Even with these
experiments, it is evident from the resource usage profiles
that the machine is not fully utilized. This is indeed an
exploratory analysis. From this analysis, a theory is
established that ACPS DSF have the capability by far more
than 10x. To test the theory, a confirmatory analysis is
conducted using Queuing Theory [20].

TABLE I. LOAD MULTIPLIER CALCULATION

 Actual

system

Experimental

emulated system

Experimental

physical system

Sensor

Measurement

File

interarrival

time (minutes)

tactual = 10 temulated = 1.5 tphysical = 2

Number of

cRIO
nactual = 3 nemulated = 3 nphysical = 3

Load

multiplier
(tactual /

tactual) *

(nactual /

nactual) = 1

(tactual / temulated)

* (nemulated /

nactual) = 6.67

(tactual / tphysical)

* (nphysical /

nactual) = 5

Total load

multiplier

(emulated +

physical)

N / A (tactual / temulated) * (nemulated /

nactual) + (tactual / tphysical) *

(nphysical / nactual) = 11.67 > 10

The Source Folder in File System can be considered as a

queue where sensor measurement files arrive. The time it
takes to process each measurement file, depends upon the
amount of data it has, which in turn depends upon the
number of sensors connected to the particular cRIO (X, Y, or
Z). cRIO Y has the most number of sensors (little more than
1000). The time taken to process a measurement file from
cRIO Y in the current B2 server is about 4s. For cRIO X, Z,
the time taken is negligible. However, let us take the
maximum service time for all of the measurement files X, Y,
and Z. Hence, the interarrival rate, λ, is 3 measurement files
every (10 * 60) seconds, and the service rate, μ, is 3
measurement files every 12 seconds. The utilization of server
is given by equation (Error! Reference source not found.).

251Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 269 / 729

Figure 8. Graph of utilization vs. number of hill slopes

 ρ λμ 

By entering this information in an Excel Spreadsheet, the
number of hill slopes for which utilization of the current
system becomes one is found as shown in Figure 7.

According to this calculation, the current system will attain
an utilization of 1.0 when a load of 50 hill slopes i.e. 150
cRIO is provided (assuming they have the same size of
sensor measurement files i.e. same number of sensors
attached). A graph of utilization vs. number of hill slopes is
also provided in Figure 8. It is evident that the system will
have utilization of 0.9 for 45 hill slopes, even this is way
more than the amount of load each cyber system is expected
to have when augmented sensors are introduced in future. In
order to simulate a 45x load, the cRIOEmulators (X, Y, and
Z) can be configured with lower interarrival time and verify
that the cyber system is still stable. Hence, an experiment is
conducted with each cRIOEmulators configured to have an
interarrival time of 600 / 45 = 13.33 seconds on B2 server
‘Publisher’ machine and are configured to use a development
shared folder so that the files from physical cRIOs are not
included in the experiment. The outcome of this experiment
is exactly as expected. The queue (source folder) goes almost
full, then Physical2Cyber completes processing them all and
as soon as it finishes, more measurements file arrive. This is
an excellent utilization (0.9) of the ‘Publisher’ machine and
this utilization represents 45 hill slopes. This experiment
confirms the theory that ACPS DSF is not only capable of
meeting the non-functional requirements but goes above and
beyond—it has the ability to process the load of as many as
45 hill slopes with a server utilization of 0.9 and each hill
slope having three cRIOs with each cRIO connected to about
1100 sensors (i.e. a total of about 45 * 3 * 1100 = 148,500
sensors).

It is important to note that to load measurement file from
cRIO Y from Amazon cloud to LEO database server, it took
about 4 minutes. Hence, both the ACPS DSF and database
are highly optimized. The network latency is a major
bottleneck and should be resolved by locating databases as
close to the cRIO as possible to reduce latency.

VII. CONCLUSION AND FUTURE WORK

In conclusion, this was a very exciting and challenging
project. Turning various ideas into reality, shaping the ideas
and finding the best architecture, design, and implementation
with the perfect technology mix was a great accomplishment
in an interdisciplinary team like this, where maintaining
concept consistency itself was a great challenge. ACPS DSF
provide the ultimate technical solution for B2 LEO so that it
can now focus on integrating computational models with the
confidence that the underlying middleware / distributed
system software is organized physically into the standard
system architecture will always provide the performance and
the reliability, robustness, fault-tolerance, scalability, and
extendibility it needs. This ACPS DSF provide the strategic
directions for all kinds of application development—
applications that all fit into the distributed software
framework. No more maintenance is needed (at the
distributed system software level) once all of the different
sensor types are purchased, and all of the sensor drivers are
developed. OpenSplice DDS and Oracle Database make real-
time, near-real-time, and offline analyses possible.
Moreover, this optimum technology mix found through this
research project resolves all of the critical technological
risks. The best architecture, design, and implementation
methods are clearly demonstrated through this distributed
software framework, which is expected to last for the entire
life-span of B2 LEO project of about 10 years. In this
research project how Matlab can be used creatively to
generate plots that can be delivered over the web through
simple techniques as just pooling plot files generated by
Matlab from JSP pages using auto refresh mechanism is
clearly demonstrated. Such simple mechanisms allow thin
clients to access all of the applications as a service over
web/cloud. The audio alarm in addition to text alarm are
extremely helpful and provide such off-site monitoring of
sensor from anywhere in the world with just a portable
device with internet connection and a browser. This Service
Oriented Architecture allows very loose coupling enabling
each subsystem to decouple from one another. In case of
maintenance only the required machines can be turned down
for maintenance ACPS DSF can be configured to auto-start.
The Source folder where all files are dropped from the
physical system act as a queue, and the Sink folder where all
data and plots are dropped serve as a shared memory. The
Source folder decouples the physical system from the
middleware, and the Sink folder decouples any application
from the middleware. Likewise the database also decouples
applications from the middleware. Hence, any physical
system application and/or any application software do not
have to know the details of the middleware, but need to
know how to access text files, pictures, and database. The
middleware in the meantime provide all of the non-
functional capabilities that B2 LEO ACPS will ever need.

Overall, ACPS DSF resolves all of the technology risks
by providing the middleware and by providing efficient
application solutions; it provides concept consistency
through the framework in which all future applications can
evolve. ACPS DSF is a very successful real-time product

252Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 270 / 729

with meets all of the functional and non-functional
requirements. As a matter of fact, since one instance of
ACPS DSF can handle the load of as many as 45 hill slopes
having a total of 148,500 sensors with a utilization of 0.9, B2
LEO will never have to worry about any development in
ACPS DSF middleware / distributed system software. Also,
the hope is that JUP will add value to both industry and
academia for software engineering of self-managing
distributed software systems.

Future work consists of extending ACPS DSF by
building new applications at the distributed application level.
The immediate next set of work include creating services
that read data from database and transform them into
NetCDF format so that the very first model known as Kathy
can be run for analysis. Along with the models simulation,
new visualizations will be required. From there, it will all
depend upon the priorities and progress of other new models.
If there is new sensor types, drivers for them should be
developed. Any change to ACPS DSF middleware /
distributed system software is neither expected nor
recommended. ACPS DSF is a finished product and should
be used like a commercial-of-the-shelf software framework.

ACKNOWLEDGMENT

Thanks to Biosphere 2 LEO for funding this research and
development.

REFERENCES

[1] P. Kruchten, The Rational Unified Process: An Introduction (2nd

Edition), Addison-Wesley Professional, 2000.

[2] NSF, Cyberinfrastructure Vision for 21st Century Discovery, National

Science foundation Cyberinfrastructure Council, 2007.

[3] A. S. Tanebaum and M. V. Steen, Distributeds Systems: Principles

and Paradigms (2nd edition), Upper Saddle River: Pearson, Prentice
Hall, 2006.

[4] P. Veríssimo and L. Rodrigues, Distributed Systems for System
Architects, Springer, 2001.

[5] J. Kephart, "The vision of autonomic computing," Computer, vol. 36,

no. 1, pp. 41-50, 2003.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, and G. Lee, "A View of Cloud Computing,"

Communications of the ACM, vol. 53, no. 4, pp. 50-58, 04 2010.

[7] M. Butrico and D. Da Silva, "Toward a Unified Ontology of Cloud

Computing," in Grid Computing Environments workshop, Santa

Barbara, 2008.

[8] G. Pardo-Castellote, "OMG Data-Distribution Service: architectural

overview," in Distributed Computing Systems Workshops, 2003.

[9] "OpenSplice DDS Overview," PrismTech, [Online]. Available:
http://www.prismtech.com/opensplice/products/opensplice-dds-

overview. [retrieved: September, 2012].

[10] B. W. Bohem, "A spiral model of software development and
enhancement," Computer, vol. 21, no. 5, pp. 61-72, 1988.

[11] M. Poppendieck and P. Tom, Lean Software Development: An Agile

Toolkit, Upper Saddle River: Addison Wesley, 2003.

[12] S. Schach, Object-Oriented Software Engineering, McGraw-Hill

Science/Engineering/Math, 2007.

[13] S. Islam, A. Robertson, C. M. Kartchner, D. V. Sickinger, and J. L.
Eyre, "Situational Awareness Detection and Warning for Airport

Operations," The University of Arizona., Tucson, 2010.

[14] "Data Distribution Service Portal," Object Management Group,
[Online]. Available: http://portals.omg.org/dds/. [retrieved:

September, 2012].

[15] "Java SE Overview - at a Glance," Oracle, [Online]. Available:
http://www.oracle.com/technetwork/java/javase/overview/index.html.

[retrieved: September, 2012].

[16] "Oracle Database 11g Release 2," Oracle, [Online]. Available:
http://www.oracle.com/technetwork/database/enterprise-

edition/overview/index.html. [retrieved: September, 2012].

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley

Professional, 1994.

[18] S. McConnell, Code complete: A Practical Handbook of Software

Construction (2nd Edition), Microsoft Press, 2004.

[19] N. E. Fenton and S. L. Pfleege, Software Metrics: A Rigorous and

Practical Approach, Revised (2nd edition), Course Technology, 1998.

[20] L. L. Peterson and B. S. Davie, Computer Networks, Elsevier Science,

2007.

253Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 271 / 729

Understanding the Relationships Within the Medi SPICE Framework

Derek Flood, Fergal Mc Caffery, Valentine Casey
Dundalk Institute of Technology,

Dundalk, Ireland
{derek.flood, fergal.mccaffery, val.casey} @dkit.ie

Abstract— Regulated domains, such as medical device software
development, require organisations to have specific processes
in place in order to secure regulatory approval. Software
process improvement initiatives, such as Medi SPICE, help
organisations to improve their process in conformance with
these regulations. These initiatives, however, do not specify
how an organisation implements these processes, instead
detailing what the organisation must implement. This work
proposes the development of a series of roadmaps that will
guide an organisation through the implementation of the
required processes in a regulatory compliant manner. This
paper presents the first step towards achieving this aim, which
involves an investigation of the dependencies between the base
practices defined in Medi SPICE in order to ensure that the
produced roadmaps form a complete software development
process in line with regulatory requirements. The paper
describes two complementary approaches, a structured
representation and a graphical representation, to representing
the links between practices in the Medi SPICE framework.

Keywords-Software Process; Medical Device Regulation;
Software Process Improvement Roadmaps.

I. INTRODUCTION

Advancements in technology have allowed medical
practitioners to provide a greater level of care to patients by
offering a wider range of treatment options. However, when
technology is used, there is a risk to the patient if that device
should fail. For this reason, strict regulations must be
followed during the design and development of medical
device software. In order for an organisation to market
medical devices they must comply with the regulatory
requirements of the country in which the device is to be sold
[1]. For example, an organisation wishing to market new
medical devices, unlike anything on the market, within the
US must first submit a pre-market submission to the Food
and Drug Administration (FDA) for approval prior to the
distribution of the medical device. If a similar medical device
is already on the market, then the medical device
organisation must submit a 510k application. One exception
to this is Medical Device Data Systems (MDDS), which do
not require pre-approval, but must have been developed
using defined development processes and have a Quality
Management System (QMS) in place [2].

Increasingly, software is becoming a more important
component of medical devices. This is partially due to its
flexibility and its ability to enable complex changes to be
made to the medical device, without the need for changes to
the hardware [3] and also due to the fact that standalone

software in its own right may also be considered a medical
device [4]. Consequently, this increase in the proportion of
software within medical devices has resulted in increased
medical device software complexity [5].

In order to assist organisations improve their processes to
meet regulatory compliance, Medi SPICE [6] (a medical
device specific software process improvement framework)
provides organisations with the goals of the required
processes and a number of base practices that must be
implemented in order to achieve these goals.

The Medi SPICE framework is divided into a number of
processes each detailing a different aspect of the software
development process. However, there are a number of
dependencies between these processes making it more
difficult to focus upon individual processes in isolation. This
work aims to identify these dependencies through an analysis
of the base practices defined within Medi SPICE both
internally within individual processes and externally across
different processes.

Upon obtaining a detailed understanding of these
dependencies a series of roadmaps may then be developed
that will guide organisations through the implementation and
improvement of their medical device software development
processes in an efficient manner.

In this paper, we detail the process used for the
identification of these links and how the representation
scheme that has been used will allow for validation upon the
completed roadmaps. In addition, the paper outlines the types
of relationships that were identified in the Medi SPICE
framework and provides examples of each type of
relationship.

The paper is structured as follows: Section II outlines the
importance of medical device software. Section III
introduces the Medi SPICE framework. Section IV outlines
the objectives of this research. Section V describes how the
relationships in Medi SPICE were modelled using both a
human readable and machine readable representation.
Section VI discusses how these representations will be used
during the construction of a series of process roadmaps to
guide organisations through the implementation of the
necessary standards for developing medical device software.
Section VII contains our conclusions for this research.

II. MEDICAL DEVICE SOFTWARE

Software is playing an increasingly integral part in
medical devices and is now included in approximately 50%
of the medical devices available for sale in the US [7].
Consequently, generic software development organisations

254Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 272 / 729

are now becoming medical device software organisations
both due to the software development opportunities within
this domain and also because their software development
applications may now be classified as medical devices if they
meet the Medical Device Directive’s (MDD’s) definition of
a medical device [8]. The MDD defines a medical device as

“any instrument, apparatus, appliance, material or
other article, whether used alone or in combination,
including software necessary for its proper application
intended by the manufacturer to be used for human
beings for the purpose of:

• diagnosis, prevention, monitoring,
treatment or alleviation of disease,

• diagnosis, monitoring, treatment,
alleviation of or compensation for an
injury or handicap,

• investigation, replacement or modification
of the anatomy or of a physiological
process,

• control of conception,

and which does not achieve its principal intended
action in or on the human body by pharmacological,
immunological or metabolic means, but which may be
assisted in its function by such means.”

This means that software development organisations

creating applications which meet this definition must now
conform to the same regulatory requirements as traditional
medical device manufacturers.

Therefore, organisations that are new to medical device
software development must be aware of the relevant
regulations that are applicable to the medical device domain
within the particular region they wish to market their device
[9]. Medical devices marketed in the US must comply with
the FDA regulations, while devices to be marketed within
the European Union (EU) must conform to the regulations
set out by the European Council.

As part of these regulations [2], a QMS must be in place
during the design, development, delivery, installation and
servicing of medical devices. The QMS ensures that high
quality processes are used through-out the entire product
lifecycle and that adequate documentation is maintained for
review by the appropriate authority.

To guide these organisations a number of regulations and
standards have been produced by the relevant regulatory
authorities. In the EU, the ISO 13485- Medical Devices -
Quality management systems – Requirements for regulatory
purposes [10], has been produced outlining the main
requirements of a QMS. Similarly, the FDA has produced
the FDA 21 CFR Part 820 Quality Systems Regulations
(QSR) [11].

III. MEDI-SPICE

Despite the regulatory bodies outlining the necessary
regulations, standards, technical reports and guidance
documents for medical device software development, they
do not provide specific methods for performing the required
activities to achieve regulatory approval. This often leads to
medical device organizations becoming compliance centric
in their approach to software development. As a result, there
has been very limited adoption of software process
improvement within the medical device domain [12].
Previously, this was not a critical issue due to the limited
proportion of software contained within medical devices, but
this is no longer the case. Today, there is a particular
requirement for highly effective and efficient software
development processes to facilitate medical device software
development [13].

Existing generic Software Process Improvement (SPI)
models are available, which include the Capability Maturity
Model Integration (CMMI®) [14] and ISO 15504-5:2006
[15] (SPICE), but these models were not developed to
provide sufficient coverage of all the areas required to
achieve medical device regulatory compliance [16]. To
address the requirement for a medical device software
process assessment and improvement model the Regulated
Software Research Group at Dundalk Institute of
Technology undertook extensive research in this area [6]
[17]. This initiated the development of Medi SPICE, a
medical device specific SPI framework, which is being
developed in collaboration with the SPICE User Group [19].

The objective of undertaking a Medi SPICE assessment
is to determine the state of a medical device organisation’s
software processes and practices. Medi SPICE is an
integration of the regulatory requirements of the medical
device industry and software engineering best practice [14].
It can also be used as part of the supplier selection process
when an organisation wishes to outsource or offshore part or
all of their medical device software development to a third
party or remote division [16].

Medi SPICE is based upon the latest version of ISO/IEC
15504-5 (currently under ballot) and ISO/IEC 12207:2008
[17]. It is being developed in line with the requirements of
ISO/IEC 15504-2:2003 [18] and contains a Process
Reference Model (PRM) and Process Assessment Model
(PAM). It also incorporates the requirements of the relevant
medical device regulations, standards, technical reports and
guidance documents.

The Medi SPICE PRM consists of 42 processes and 15
subprocesses which are fundamental to the development of
regulatory compliant medical device software. Each process
has a clearly defined purpose and outcomes that must be
accomplished to achieve that purpose.

Medi SPICE also contains a PAM, which is based upon
the PRM, which forms the basis for collecting evidence that
may be used for rating the process capability. This is
achieved by the provision of a two-dimensional view of
process capability. In one dimension, it describes a set of
process specific practices that allow the achievement of the
process outcomes and purpose as defined in the PRM; this is

255Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 273 / 729

termed the process dimension. In the second dimension, the
PAM describes capabilities that relate to the process
capability levels and process attributes, this is termed the
capability dimension.

IV. RESEARCH OBJECTIVES

The aim of this research is to understand and identify the
relationships between the base-practices defined within the
Medi SPICE PAM. In order to achieve this aim, two research
questions (RQs) were constructed to examine the
relationships between base-practices both within individual
processes and across different processes.

• RQ1: What relationships exist between base-
practices in each process included within the Medi
SPICE framework?

• RQ2: What relationships exist across processes of
the Medi SPICE framework?

RQ1 was posed to examine each process in isolation to

determine the relationships that exist between the base
practices.

In contrast to RQ1, RQ2 examined the relationships
between the processes by identifying base-practices that are
dependent upon base practices in other processes. For
example Fig. 1 shows the relationship between Eng1, which
details a process for obtaining stakeholder requirements, and
ENG2, which defines the system requirements analysis
process. It can be seen that, before establishing the system
requirements (ENG2.BP1), an organisation must first agree
on the requirements with stakeholders (ENG1.BP7).

In order to answer the research questions posed above, an
analysis of the Medi SPICE PAM was performed. The base
practices in each process were examined and the
relationships between the practices were determined. The
identified relationships were then independently validated by
the authors of Medi SPICE. The identified relationships were
represented using both a human readable (graphical)

representation and a machine readable (structured)
representation (XML).

V. REPRESENTATION OF LINKS

Once the links were identified between the practices, they
were represented in two ways. To aid the understanding of
the relationships between practices in each process, a
graphical representation of each process was produced. In
addition to this, a machine readable structured representation
was also produced to allow for a quick identification of
practice dependencies.

A. Human readable representation

As one of the aims of this work was to understand how
the base practices in the Medi SPICE framework relate to
one another, a human readable representation of each process
was created.

In this representation, each practice is represented as a
rectangle and the links between them are represented as an
arrow pointing to the depending process. It can be seen in
Fig. 2 that there is an arrow pointing from AGR1B.BP1 to
AGR1A.BP2. This means that base practice 2 (AGR1B.BP2)
is dependent upon base practice 1 (AGR1B.BP1).

Figure 2. Human-Readable Visualisation

In this representation, it was decided to use the full

process ID to help users distinguish between practices of
different processes when the graph is used to represent a
relationship between multiple processes.

The nature of the dependencies between the base
practices usually stems from the need of information to pass
from one base practice to another. For this reason, the
dependency graphs designed during this work were produced
to replicate the information flow between the base practices.

B. Structured representation

In addition to the visual representation, it was necessary
to produce a machine readable format that could be used
during the production of the roadmaps to identify all base
practices necessary to meet those required by the standards.

It was decided to use a custom XML schema to represent
the links as most languages provide support for reading in
XML files. An example process is presented below.

Figure 1. Across Process Relationship

256Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 274 / 729

<process title="Acquisition Preparation"

id="AGR1A">

<basePractice

id="AGR1A.BP1">Establish the

need</basePractice>

<basePractice id="AGR1A.BP2">Define

the requirement</basePractice>

<basePractice id="AGR1A.BP3">Review

Requirements</basePractice>

<basePractice id="AGR1A.BP4">Develop

Acquisition strategy</basePractice>

<basePractice id="AGR1A.BP5">Define

selection criteria</basePractice>

<basePractice

id="AGR1A.BP6">Communicate the

need</basePractice>

<InProcessLink PID="AGR1A.BP2"

dependantOn="AGR1A.BP1"/>

<InProcessLink PID="AGR1A.BP3"

dependantOn="AGR1A.BP2"/>

<InProcessLink PID="AGR1A.BP4"

dependantOn="AGR1A.BP3"/>

<InProcessLink PID="AGR1A.BP5"

dependantOn="AGR1A.BP4"/>

<InProcessLink PID="AGR1A.BP6"

dependantOn="AGR1A.BP5"/>

<ExProcessLink PID="AGR1A.BP5"

DependantOn="AGR1B.BP1"

type="equivalent"/>

</process>
Each process is comprised of four tags; <Process/>,

<BasePractice/>, <InProcessLink>, and <ExProcessLink>.
The <Process> tag represents a process in the Medi SPICE
framework and includes two attributes; the title of the
process and the ID used to identify the process within the
Medi SPICE framework. All other tags are nested within the
<Process/> tag.

The <BasePractice/> tag is used to represent the base
practices within the process. There are between 3 and 18
base practices within each process. Each base practice is
comprised of an ID and the title of the practice.

The <InProcessLink/> tag represents a link between two
practices within a single process. The tag contains two
attributes; the first attribute identifies the practice which is
dependent upon another practice and is given the attribute
name PID while the second attribute identifies the practice
which is depended upon, known as dependantOn.

The final tag is used to represent external links. This tag,
titled <ExProcessLink/>, contains three attributes. The first
two attributes are the same as those used within the
<InProcessLink/>; PID and dependantOn, while the third
attribute, titled type, denotes the class of link that exists
between the practices. A detailed examination identified
three types of links within the Medi SPICE framework:
breakdown, equivalent, and dependent.

In some cases, a sub process is used to implement a base
practice in another process. For example, AGR1.BP3 defines
the practice “Select Supplier” while sub process ARG1B
defines the base practices that should be used to select a
supplier, as illustrated in Fig. 3. This type of link is known as
breakdown, as this type of link breaks down one practice into
multiple base practices.

Figure 3. Between Process Link of type breakdown

In addition, some practices are semantically equivalent to

practices in other process areas. For example, AGR1A.BP5 is
to “Define the selection criteria” while ARG1B.BP1 states
“Establish supplier selection criteria”. Although the
terminology is different between the two practices the
underlying meaning is the same. This is depicted in Fig. 4. In
this type of relationship, the type attribute is given a value of
equivalent.

Figure 4. Between Process Link of type equivalent

The value given to the type attribute in the final class of

relationship is dependant. In this case, a base practice must
be performed before a subsequent base practice can be
implemented. For example, the stakeholder requirements

257Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 275 / 729

should be established (ENG1.BP7) before the establishment
of the system requirements (ENG2.BP2), as illustrated in
Fig. 1.

VI. USING THE DEPENDENCY GRAPH

The next phase of this work will be to identify the base
practices that are necessary to fulfil the requirements of
multiple medical device software development regulations
and standards such as ISO 13485 and ISO 14971. These
standards define the requirements that are necessary to
secure regulatory approval in order to sell medical devices.

Before a medical device can be marketed in the US, it
may be required to first secure premarket approval from the
FDA. To assist medical device organisations the FDA have
produced a document entitled “Guidance for the content of
Premarket Submissions for Software Contained in Medical
Devices” in which they outline what is required in order to
prepare a premarket submission.

In this document, the FDA state that an organisation must
implement a QMS in order to sell their devices on the market
in the US. This requirement is also necessary for sales within
the EU. The International Organization for Standardisation
(ISO) have produced the International standard ISO 13485 –
Medical devices - Quality management systems –
Requirements for regulatory purposes which details the
requirements for a QMS. The FDA has produced a similar
regulation, but have said, recently, that QMSs compliant
with the ISO 13485 would also be acceptable.

In order to assist organisations to implement a quality
management system, the base practices necessary to fulfil the
requirements of the ISO 13485 will be identified through a
thorough examination of the standard. Subsequently, through
the use of the dependency graph, described above, all
supporting base practices necessary to implement the
identified base practices will be identified.

Using these base practices, a software process
improvement roadmap will be developed that will guide an
organisation through the implementation of a QMS. Each of
the base practices will be grouped into one of three phases;
Planning phase, SDLC phase and On-Going activities phase.

The planning phase occurs at the beginning of a medical
device software development project. During this phase the
organisation will define the lifecycle that will be used during
the project and define strategies for a number of activities
performed during the development of the medical device
software. This phase will also include the definition of the
quality objectives and the assignment of responsibility for
the QMS to a member of the management team.

The second phase is performed during the development
of the software. During this phase, the practices necessary to
be compliant with the QMS are defined. The practices in this
phase relate to the systems development lifecycle and
include activities such as requirements analysis, design, and
testing.

The ISO 13485 standard requires that a number of
activities need to be performed at regular intervals during the
development process. These activities do not belong to a
single phase of the lifecycle but can occur during any phase
of the development process. The practices belonging to these

activities will be placed in the third phase of the roadmap,
the On-Going activities phase. Examples of this type of
activity are quality assurance activities, risk assessment
activities and problem resolution activities.

In addition, this phase also includes an optional process
that may be required during the development of a medical
device software system, namely, Acquisition. It may be
necessary for a medical device software organisation to
acquire components that will be used in the produced
medical device software. To assist these organisations the
roadmap will include an optional process that will guide the
organisation through the acquisition of the necessary
components.

When the practices have been assigned to each of the
three groups described above, they will then be sub-divided
into steps that will allow the organisation to implement them
in a sequential manner.

The dependency graphs described in this paper will play
an important role in validating the proposed roadmaps. In
addition to identifying necessary practices, the dependency
graphs will also help to ensure that the activities are
performed in the correct order. Using the machine readable
format, each practice in a step will be validated to ensure that
it does not depend on a step that is performed at a subsequent
step.

VII. CONCLUSION

Medical device software is required to be developed and
maintained through following high quality processes during
the construction and distribution of the software. Depending
upon the region in which the software is to be sold, local
regulations must be adhered to in order to secure approval
for sale. The Medi SPICE framework has been developed to
assist medical device software organisations improve the
quality of their processes.

This work complements the Medi SPICE framework
through the development of a series of SPI roadmaps that
medical device organisations can use to guide their software
improvement activities. An important first step in this work
has been the identification of the relationships that exist
between base practices within the Medi SPICE framework.
These relationships have been modelled in both a human and
machine readable format allowing for quick analysis of these
relationships during the creation of the roadmaps.

VIII. ACKNOWLEDGEMENTS

This research is supported by the Science Foundation
Ireland (SFI) Stokes Lectureship Programme, grant number
07/SK/I1299, the SFI Principal Investigator Programme,
grant number 08/IN.1/I2030 (the funding of this project was
awarded by Science Foundation Ireland under a co-funding
initiative by the Irish Government and European Regional
Development Fund), and supported in part by Lero - the Irish
Software Engineering Research Centre (http://www.lero.ie)
grant 10/CE/I1855.

258Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 276 / 729

IX. REFERENCES
[1] Burton, J., McCaffery, F., and Richardson, I., A risk

management capability model for use in medical device
companies. in International Workshop on Software quality
(WoSQ '06). 2006. Shanghai, China: ACM

[2] US FDA Center for Devices and Radiological Health, Guidance for
the Content of Premarket Submissions for Software Contained in
Medical Devices. 2005, CDRH: Rockville.

[3] Lee, I., Pappas, G., Cleaveland, R., Hatcliff, J., Krogh, B.,
Lee, P. , Rubin, H. , and Sha, L., High-Confidence Medical
Device Software And Systems. Computer, 2006. 39(4): pp. 33
- 38.

[4] European Council, Council Directive 2007/47/EC
(Amendment). 2007, Official Journal of The European Union:
Luxembourg.

[5] Rakitin, R., Coping with defective software in medical
devices. Computer, 2006. 39 (4): pp. 40 - 45.

[6] McCaffery, F., Dorling, A., “Medi SPICE Development”,
Software Process Maintenance and Evolution: Improvement
and Practice Journal. Volume 22 Issue 4, pp. 255 – 268
http://www3.interscience.wiley.com/journal/122580316/abstr
ac

[7] Faris, T. H., (2006) “Safe and Sound Software: Creating an
Efficient and Effective Quality System for Software Medical
Device Organizations” ASQ Quality Press, 2006

[8] Mc Hugh, M., Mc Caffery, F. & Casey, V. 2011. Standalone
Software as an Active Medical Device In: O'CONNOR ET
AL (ed.) The 11th International SPICE Conference Process
Improvement and Capability dEtermination. Dublin: Springer.

[9] Ge, X., Paige, R. F. & McDermid, J. A. 2010. An Iterative
Approach for Development of Safety-Critical Software and
Safety Arguments. Agile 2010.

[10] ISO 13485:2003 (2003) Medical devices — Quality
management systems — Requirements for regulatory
purposes. Second ed. Geneva, Switzerland, ISO.

[11] FDA 2007. Title 21--Food and Drugs Chapter I --Food and
Drug Administration Department of Health and Human
Services subchapter h--Medical Devices part 820 Quality
System Regulation. U.S. Department of Health and Human
Services.

[12] Denger, C., Feldmann, R., Host, M., Lindholm, C. & Shull, F.
(2007) A Snapshot of the State of Practice in Software
Development for Medical Devices. First International
Symposium on Empirical Software Engineering and
Measurement. Madrid, Spain.

[13] McCaffery, F., Burton, J., Casey, V., and Dorling, A., (2010)
Software Process Improvement in the Medical Device
Industry, in Encyclopedia of Software Engineering, P.
Laplante, Editor. 2010, CRC Press Francis Taylor Group:
New York. pp. 528 - 540.

[14] CMMI Product Team (2006) Capability Maturity Model®
Integration for Development Version 1.2. Software
Engineering Institute, Pittsburch PA.

[15] ISO/IEC 15504-5:2006 (2006) Information technology -
Process Assessment - Part 5: An Exemplar Process
Assessment Model. Geneva, Switzerland, ISO.

[16] Casey, V. (2010) Virtual Software Team Project
Management. Journal of the Brazilian Computer Society, 16,
pp 83 – 96.

[17] ISO/IEC 12207:2008 (2008) Systems and software
engineering - Software life cycle processes. Geneva,
Switzerland, ISO.

[18] ISO/IEC 15504-2 (2003) - Software engineering — Process
assessment — Part 2: Performing an assessment. 2003:
Geneva, Switzerland.

[19] Spice user Group, http://www.spiceusergroup.org/, accessed
31/09/2012

259Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 277 / 729

Mapping Between Service Designs Based on SoaML

and Web Service Implementation Artifacts

Michael Gebhart

Gebhart Quality Analysis (QA) 82

Karlsruhe, Germany

michael.gebhart@qa82.de

Jaouad Bouras

ISB AG

Karlsruhe, Germany

jaouad.bouras@isb-ag.de

Abstract—Because of the increasing complexity of service

landscapes and the requirement to fulfill quality attributes,

such as loose coupling and autonomy, services have to be

designed in detail before implementing them. For this purpose,

the Object Management Group has standardized the Service

oriented architecture Modeling Language, which enables the

abstract formalization of service designs. However, existing

mappings between abstract formalizations and web service

implementation artifacts focus on certain modeling elements

and do not consider service designs as self-contained

development artifacts. In this article existing and applicable

mapping rules for transforming service designs based on the

Service oriented architecture Modeling Language into

implementation artifacts are identified and missing rules are

defined. For illustration purposes, service designs of a scenario

in the context of a workshop organization system are

transformed into web service implementation artifacts.

Keywords-service design; SoaML; implementation; mapping;

transformation.

I. INTRODUCTION

Today, services as methodology to integrate distributed
systems become increasingly important. Software vendors
enhance their products with service interfaces and enterprises
organize their Information Technology (IT) according to
service-oriented architecture (SOA) principles [18]. As
result, services constitute the building blocks of today’s IT
and the complexity of the service landscape increases.
Additionally, due to their influence, services are required to
fulfill certain quality attributes [21], such as loose coupling
and autonomy [20]. These attributes have been identified as
important as they influence higher-value quality attributes of
the entire architecture, such as its flexibility, maintenance,
and cost-efficiency. In order to ensure the fulfillment of
quality attributes with simultaneous handling of the service
landscape complexity, a detailed planning of the services
during their development and prior to their implementation is
necessary. This phase is called service design phase. As part
of a quality assurance process that analyses the quality of
services based on abstract formalizations, a design of
services has to be derived from implementation artifacts.

In order to enable a vendor-independent formalization of
service designs with a common understanding and tool
support, the Object Management Group (OMG) decided to
work on a standardized meta model and profile for the

Unified Modeling Language (UML) that enables the
modeling of service-oriented architectures and their
elements, the services. The result of this effort is the Service
oriented architecture Modeling Language (SoaML), which is
currently released in version 1.0. Compared to UML, SoaML
adds several stereotypes necessary for the specifics of
service-oriented architectures, such as service interfaces and
participants. Today, SoaML gains increasing tool support,
even IBM decided to replace their proprietary UML profile
for software services with SoaML [24].

However, using SoaML in a service development process
requires a systematic mapping between formalized service
designs and implementation artifacts, such as web service
artifacts. Otherwise, the service designs cannot act as
development artifact within a model-driven approach as
introduced by Hoyer et al. [22]. Furthermore, quality
analyses that base on abstract SoaML models, such as
introduced by Gebhart et al. in [1][2][16], cannot be applied
on already implemented services as there is no way to derive
an abstraction with guaranteed correct semantic. Mapping
rules that are available today mostly focus on the mapping of
certain selected modeling elements, such as the
transformation of UML Classes into data types represented
by XML Schema Definition (XSD). However, they do not
consider a service design as a whole.

In this article, existing mapping rules based on UML and
SoaML that are applicable for service designs are identified
and summarized. Furthermore, additional mapping rules are
defined if necessary. In this context, web services are
assumed as implementation using in particular the Web
Service Description Language (WSDL) and XSD to describe
the service interface, Service Component Architecture (SCA)
as component model, and the Business Process Execution
Language (BPEL) for the implementation of composed
services. As result, the mapping of service designs as self-
contained development artifact is described which enables
the modeling of service designs using SoaML within model-
driven service development and quality assurance processes.

The article is organized as follows: Section II introduces
the concept of service designs and analyzes mapping rules in
existing work regarding their applicability for service
designs. After introducing service designs of a workshop
organization system in Section III, in Section IV, these
service designs are mapped onto web services. Section V
concludes this article and introduces future research work.

260Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 278 / 729

II. RELATED WORK

This section describes the fundamental terms and existing
work in the context of specifying service designs and their
mapping onto implementation artifacts.

A. Service Design

According to Gebhart et al. [15][16] and Erl [19], a
service design consists of a service interface as external point
of view and a service component fulfilling the functionality.
In order to formalize service designs and to enable their
transformation into implementation artifacts, Mayer et al.
[19] introduce a UML profile for describing behavioral and
structural aspects of service interactions. Similarly, within
the SENSORIA project [13] a UML profile for the service
interaction is specified. Also IBM [23] introduced a UML
profile for modeling software services. Even though all of
these UML profiles enable the modeling of services they
lack in acceptance as they are not standardized. For that
reason the OMG decided to work on a standardized UML
profile [26] and a meta model to formalize service-oriented
architectures and their services. As result, SoaML has been
created [3].

According to Gebhart [4], in SoaML a service interface is
described by a stereotyped UML Class that realizes a UML
Interface describing the provided operations. A second UML
Interface can be used for specifying callback operations the
service consumer has to provide. An interaction protocol can
be added as owned behavior. It is described by means of a
UML Activity and determines the valid order of operation
calls. The service component is represented by a UML
Component stereotyped by a Participant. Ports with Service
or Request stereotype constitute the access points to provided
or required functionality and are typed by a certain service
interface. An Activity as owned behavior visualized as UML
activity diagram enables the specification of the internal
logic. Figure 2 and Figure 6 illustrate a service interface and
a service component.

B. Mapping Rules

In the context of mapping formalized service designs
onto web service implementation artifacts based on XSD,
WSDL, SCA, and BPEL approaches exist that consider
either the derivation from SoaML-based models, UML
models with own UML profiles applied, or standard UML
models. This work is analyzed in order to identify applicable
mapping rules to transform service designs.

For the generation of XSD, IBM [6] and Sparx Systems
[7] provide adequate mapping rules that map UML class
diagrams onto XSD artifacts and support both the
transformation of classes and their relationships like
aggregations, compositions, associations, and generalization.
Both vendors integrate the mapping rules into their own
tools, which enable a model-driven development with
graphical tool support. The transformations are applicable to
all UML models without any constraints. The applied rules
can be used in our approach to map message types of service
designs onto XSD.

Regarding WSDL, Grønmo et al. [9] discuss the
advantages and disadvantages between using WSDL-

independent and WSDL-dependent models. Their conclusion
is that WSDL-dependent models obscure the behavior and
content of modeled services and make service designs
incomprehensible. WSDL-independent models in contract
simplify building complex web services and integrating
existing web services. For that reason they provide
transformations based on UML class diagrams with custom
WSDL-independent stereotypes. However, most of the
presented transformations are based on standard UML
elements and are thus applicable for service designs based on
SoaML as it abstracts from WSDL details too. Also IBM[8]
introduces mapping rules and an automatic transformation
from UML to WSDL in [8]. These rules fully cover the
transformation of standard UML elements into WSDL but
are not described in detail. Only the relationships between
source and target elements can be inferred and used in our
work. In contradistinction to the previous related work the
transformation generates also needed namespaces not bound
to the source models but bound to the project structure used
during the transformation. The project structure has the form
of a file system containing source models and the relative
paths will be used in order to generate namespaces for the
target artifacts. This strategy may generate correct
namespaces for a simple project. However, when merging
the generated artifacts from many projects or changing the
project structure during development the resulting
namespace changes will make the WSDL files ambiguous.

Hahn et al. [12] present a transformation from a Platform
Independent Model (PIM) to a Platform Specific Model
(PSM), which converts SoaML to BPEL, WSDL, and XSD
artifacts. Compared to our approach requiring a generation of
BPEL processes from a UML activity diagrams, the authors
use a BPMN processes as a source models for the generation
of executable BPEL processes. Even though no detailed
mapping rules are provided, a promising and consistent
output is generated and the mapping is illustrated using a
simple scenario. The approach can be considered as a proof
for the possibility of producing web service artifacts from
SoaML service designs. The authors restrict that a SoaML
service interface is mapped onto one and only one WSDL
document containing XSD types that represent the SoaML
Messages. A new capability supported by the SoaML to
WSDL transformation is the ability to generate Semantic
Annotations for WSDL (SAWSDL).

For generating BPEL, Mayer et al. [5] discuss the
difficulties when transforming a UML Activity illustrated by
means of a UML activity diagram into an executable
language, such as BPEL. They introduce two alternatives on
generating BPEL constructs. The first alternative is to
generate a BPEL process similar to the UML Activity where
control nodes of the UML are replaced with edge and
activity guards. The second alternative is to create a BPEL
process with constructs in UML converted to their equivalent
BPEL constructs. The first alternative is easy to be
implemented and results in an unreadable and complex
BPEL process whereas the second one results in a better
structured orchestration. The approach presents a robust and
promising transformation into BPEL. However, the WSDL
artifacts are inferred from elements described by a custom

261Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 279 / 729

«ServiceInterface»

WorkshopOrganization

«interface»

WorkshopOrganization

consumer :

«interface» WorkshopOrganizationRequester

provider :

«interface» WorkshopOrganization

Interaction Protocol

: provider : consumer

organize

«interface»

WorkshopOrganizationRequester

«use»

+ organize(: OrganizeRequest) : OrganizeResponse

+

UML profile. Further mapping rules to transform workflows
modeled using UML Activity elements onto BPEL artifacts
are presented by IBM [14]. The approach handles some
constraints of a UML Activity and provides adequate
solutions. For example, to specify needed information, as for
instance the partner links, the activity diagram should be
extended with UML elements, such as input and output pins.
Another constraint handled by the authors is how to model
loop nodes in an Activity. Here, the authors propose a
specific representation in UML to enable an easy and
consistent generation of a BPEL loop element. These
enhancements among others can be applied to consistently
transform a UML Activity as the internal behavior of service
components into an executable BPEL process.

SCA is a new technology for building applications and
systems applying a service-oriented architecture paradigm.
Combined with other technologies, such as WSDL and
BPEL, SCA provides the underlying component model. In
[10] Digre provides mapping rules for SoaML elements and
SCA. The transformation is executed manually and the
author mentions that ambiguities in the SoaML model may
prevent from producing proper SCA models. This is exactly
the reason, why a certain self-contained and well-understood
design artifact, such as the service design in this article, has
to be chosen when describing transformations. Another fully
automated and tool-supported mapping of SoaML onto SCA
artifacts is proposed by IBM [11]. The tool allows the
application of SCA stereotypes to the source models in order
to add more details specific to the SCA domain.

III. SCENARIO

In order to illustrate the transformation of service designs
based on SoaML into web service implementation artifacts,
in this section the scenario of a workshop organization at a
university and the involved systems are introduced.
Additionally, the development steps for creating the required
service designs are explained.

A. Business Requirements

In a first step, the business requirements have to be
formalized. For this purpose, beside business use-cases and
the domain model as explained in [2] the business process

expected to be supported by IT is described using the
Business Process Model and Notation (BPMN) [25]. The
process for the considered scenario is illustrated in Figure 1.
The system based on this process helps visitors and members
of the university in organizing a meeting or a workshop at a
room located at the university campus. Two existing systems
are involved in the realization of the business process namely
the KITCampusGuide system and the facility management
system. The KITCampusGuide system provides operations
to manage Points of Interest (POI) and supports the
determination of all relevant POIs (Parking, Cafeteria etc.) in
the area surrounding the target and the provision of route
guidance to all relevant POIs. The facility management
system is concerned with room searches and enables the
reservation of a room for a given number of attendees and at
the desired time interval. Both systems are provided by the
university.

University

Search for

a suitable room

Book a suitable

room

Search for relevant

POIs in the area

Create an

information

brochure

Determine route between

room and each POI

Direction committee
E

v
e

n
t

p
la

n
n

e
r

R
o
o

m

c
o

o
rd

in
a
to

r

O
rg

a
n

iz
e

r

Perform a workshop

organization

Reservation confirmationAttendee count

Attendee

count and

time interval

Room Room Confirmation

Room POIs
Room and

POI
Route (including map sections)

Figure 2. Designed service interface.

Figure 1. Business process of the workshop organization scenario.

262Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 280 / 729

B. Service Designs

In the second phase of the development process, the
service design phase, a set of service designs has to be
designed and modeled using SoaML. Each service design is
built according to the understanding introduced in the
Fundamentals section. In this article we demonstrate the
approach using the “WorkshopOrganization” service that
enables the orchestration of involved services. Figure 2
shows the designed service interface. The UML Interface
realized by the ServiceInterface element lists the provided
operation “organize” with its input and output parameters.
The input and output parameters are defined using the
message types “OrganizeRequest” and “OrganizeResponse”
described in Figure 3. As the interface associated by means
of the usage dependency does not contain any operation, the
service consumer does not have to provide callback
operations. This corresponds to the interaction protocol.
Additionally, a service component is specified for this
service representing the component that fulfills the
functionality. The service component and its internal
behavior are illustrated in Figure 4 and Figure 5.

IV. MAPPING BETWEEN SERVICE DESIGNS BASED ON

SOAML AND IMPLEMENTATION ARTIFACTS

In this section the steps necessary for mapping service
design artifacts onto web service implementation artifacts are
illustrated. Divided into four parts the first subsection targets
the derivation of data types and their definitions using XSD.
For the provided and required interfaces of the service
interface, service interface descriptions based on WSDL with
associated message types are generated. For realizing the
orchestration of services, BPEL is derived from UML
Activity elements added as owned behavior of the service
component. Finally, a SCA component model describing the
structure of the application is derived from the service
component. For each step and for each transformation
performed existing mapping rules are applied.

A. Derivation of Data Types

Data types contained within the SoaML service designs
are expected to be mapped onto XSD to describe request and
response messages used within WSDL operations.

The service interface in Figure 2 provides the operation
“organize”, which contains input and output messages in the
form of UML DataTypes stereotyped by MessageType. They
constitute containers for further data types described using
attributes or UML Associations to other UML Classes. We
follow the mapping rules provided by Sparx Systems [7].
Each input and output parameter is mapped onto an element
with a complexType and a sequence of XML elements
defining the attributes of the messages as demonstrated in
Figure 3. The XSD descriptions are stored in separate files in
order to allow other WSDL documents to reuse the data
types. The separated XSD files are then imported into the
WSDL document using an import statement with the
corresponding namespace and schema location as shown in
Source Code 1.

<wsdl:types>

 <xs:import namespace="http://.../OrganizeRequest"

 schemaLocation="http://.../organize.xsd"/>

</wsdl:types>

<wsdl:message name="OrganizeRequestMessage">

 <wsdl:part name="body" element="OrganizeRequest"/>

</wsdl:message>

Source Code 1. Derived WSDL message types.

The following table summarizes the transformation,

provides more details about the mapping rules, and lists the

source and the target elements with necessary attribute

configurations. Due to the lack of space, the following

transformations are described in textually only.

TABLE I. SOAML ARTIFACTS TO XML SCHEMA DEFINITION

SoaML Artifact XML Schema Definition

Package A schema element with the “targetNamespace“
attribute to identify and reference the XSD is

generated.

Class

(MessageType)

An element as a root element and a

complexType definition containing a sequence

of child elements are generated. The “name”

attribute corresponds to the name of the class.

Attributes

(ownedAttributes)

An attribute is mapped onto an element with the
“name” and “type” attributes set to the same as

in the source.

PrimitiveType,
Datatype and

MessageType

Are mapped onto the “type” attribute of an
element generated while mapping the member

attributes of a class. For each referenced data

type an import element is used to add the
corresponding external schema.

Association An element is declared for each association
owned by a class. The “name” attribute is set to

the one of the association role. The
“minOccurs” and “maxOccurs” reflect the

cardinality of the association.

Generalization

(Inheritance)

An extension element is generated for a single
inheritance with the “base” attribute set to the

base class name. The UML Attributes of the
child class are then appended to an “all” group

within the extension element.

«MessageType»

OrganizeResponse

+ reservation: Conf irmation

«MessageType»

OrganizeRequest

+ attendeeCount: Integer

+ startTime: DateTime

+ endTime: DateTime

<xs:schema targetNamespace="http://.../OrganizeRequest">

<xs:element name="OrganizeRequest">

<xs:complexType>

<xs:sequence>

<xs:element name="attendeeCount“ type="integer"/>

...

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 3. Derived XML Schema Definitions from SoaML messages.

263Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 281 / 729

B. Derivation of Service Interfaces

After generating data types, the operation definitions and
their parameters can be derived from the SoaML service
interface and its realized interface.

According to IBM [8], a port type acting as container for
the operations is generated and each parameter is mapped
onto a part element as shown in Source Code 1. The name of
the port type is derived from the name of the realized
interface in the SoaML service design and enhanced with the
suffix “PortType”. The WSDL operation element includes
the attribute “name”, which corresponds to the operation
name within the service design. Additionally, the previously
derived input and output messages are associated. In case of
service inheritance the operations of the parent interface are
copied into the same generated port type as stated by Hahn et
al. [12]. This enables to overcome the not supported WSDL
inheritance limitation.

<wsdl:portType name="WorkshopOrganizationPortType">

 <wsdl:operation name="organize">

 <wsdl:input message="OrganizeRequestMessage"/>

 <wsdl:output message="OrganizeResponseMessage"/>

 </wsdl:operation>

</wsdl:portType>

Source Code 2. Derived port type in WSDL.

Till now, the abstract part of a WSDL was generated.

The concrete part encompasses deployment-specific details
about how and where to access a service. A binding
definition specifying the communication technology that can
be used by the consumer is generated. The binding is named
as a combination of the interface name and the suffix
“SOAP”. Additionally, it is associated with the prior defined
port type by setting the attribute “type” to the name of the
interface including the suffix “PortType”. The messaging
protocol binding and the transport protocol binding are set to
Simple Object Access Protocol (SOAP) and Hypertext
Transfer Protocol (HTTP). In this work we use SOAP as a
default protocol. The final part focuses on the physical
endpoint of the service. The endpoint is specified by a URL
that has to be specified by the developer.

<wsdl:binding name="WorkshopOrganizationSOAP"

 type="WorkshopOrganizationPortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="organize"/>

</wsdl:binding>

<wsdl:service name="WorkshopOrganization">

 <wsdl:port binding="tns:WorkshopOrganizationSOAP"

 name="WorkshopOrganizationSOAP">

 <soap:address location="<server>:<port>"/>

 </wsdl:port>

</wsdl:service>

Source Code 3: Derived binding and service definition.

Figure 4. Interaction protocol for the operation “organize”.

C. Derivation of Executable Business Logic

The mapping rules provided by IBM [14] cover all UML
artifacts of a UML Activity involved in the derivation of
control flow elements of a BPEL process. Additionally, new
mapping rules to set attribute values were identified in this
article and are also mentioned in the following
transformation description.

The UML activity diagram in Figure 4 describes the
internal behavior of a service operation “organize” and is
considered to demonstrate the transformation for most often
used control flow elements of a UML activity diagram. The
first generated fragment for the BPEL process is the main
scope, which exists only once and consists of a sequence of
other activities. The first partition in the activity diagram
contains an initial node which is mapped onto a receive
activity with the attribute “partnerLink” set to the label of the
partition namely “workshopOrganization”. The attribute
“operation” corresponds to the operation name in the
interaction protocol. This activity is located at the top of the
main scope and waits for an arriving message.

The involved web services are specified by separate
WSDL definitions containing partnerLink definitions. In
order to call these web services, the BPEL process sets a
partnerLink for each invoke activity. The partnerLinks are
derived from the label of the partitions, such as “room” or
“rootDetermination”.

<bpel:partnerLinks>

 <bpel:partnerLink name="client"

 partnerLinkType="WorkshopOrganization"

 myRole="WorkshopOrganizationProvider"/>

 <bpel:partnerLink name="room"

partnerLinkType="Room"

 partnerRole="RoomProcessProvider"/>

...

</bpel:partnerLinks>

Source Code 4. Derived partnerLinks in the BPEL process.

: workshopOrganization

organize

Reservation

Confirmation

: room

get

: pOI : rootDetermination

book get

determine
For each POI

264Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 282 / 729

The partition containing the initial node is mapped onto a
partnerLink definition with the attribute “name” set to the
value “client” representing the BPEL process itself. For the
other partitions the attribute “name” is equal to the label of
the respective partition. Moreover, the partnerLink defining
the process itself has the attribute “myRole”, whereas other
partnerLinks have an attribute “partnerRole” representing the
role of an invoked web service. Source Code 4 shows the
derived partnerLinks for the considered service operation
and the invoked service “Room”.

After defining the partnerLinks, which belong to the
abstract part of a BPEL process, the actions within the
partitions are mapped onto invoke activities. Each activity
has the attributes “name” and “operation” set to the name of
the action. The attribute “partnerLink” is set to the
corresponding partnerLink prior defined. The activities are
located within the corresponding scopes of flow elements
mapped later. The action “ReservationConfirmation” in the
first partition is an opaque action executed by the BPEL
process itself and thus is not mapped onto an invoke activity.
After a skeleton for the BPEL process has been created, the
control flow elements are derived from corresponding UML
elements. The decision node is mapped onto a BPEL if-else
construct. The condition of the node has to be added
manually by the developer. The black bar representing a fork
node and a parallel execution of the contained action is
mapped onto a BPEL flow construct. The black bar
representing a join node with incoming arrows is implicitly
included in the earlier derived BPEL flow construct. The
loop node is illustrated using a dashed area and is mapped
onto a forEach construct with the attribute “parallel” set to
the value “no”. If the loop node in UML contains a fork and
a join node, the attribute “parallel” is set to “yes”.

D. Derivation of Component Models

In order to embed the already generated artifacts into an
entire component model, SCA elements are derived from the
service designs. Figure 5 illustrates the mapping between
service components described by SoaML Participants and
SCA elements, such as SCA Composites, Components,
Services, References, and Wires, using mapping rules
provided by Digre et al. in [10].

Figure 5. Derivation of SCA component model.

Regard naming conventions, each Participant is mapped
onto a SCA component with name set to the label of the
Participant. Since each SoaML Participant contains Services
and Requests representing provided and required services,
SCA Services and SCA References are generated. The
names of these elements are set to the names of the ports
within the SoaML Participant.

The SCA Composite is the basic unit of a composition in
an SCA Domain and is an assembly of SCA Components,
Services, References, and Wires. The service component
presented earlier deals with the orchestration of external
services and contains also a reference to an internal
component for creating the reservation confirmation. These
two components are to be grouped into an SCA Composite,
whereas SoaML service channels wiring the Services to
Requests are mapped onto SCA Wire elements. Additionally,
if two Services or two Requests are wired together to
delegate service calls, a promote element is added. Figure 6
illustrates the final SCA Composite in a graphical
visualization as introduced by the standard.

Figure 6. SCA Composite for the workshop organization process.

SCA requires that Service and Reference elements are

compatible. The compatibility is assured by means of the
assigned interfaces. The interfaces used in this context can be
derived from service interfaces in SoaML as illustrated in
section B. The resulting service interface descriptions based
on WSDL can be embedded into the SCA Composite. For
this purpose, based on the realized and used UML Interfaces
representing provided and required interfaces within the
service designs, a bidirectional service interface description
using WSDL with a base and a callback interface is
generated. An “interface.wsdl” element is added to the
Service element with the attribute “interface” set to the URL
of the WSDL service reprsenting the provided service
interface “WorkshopOrganization”. The “callbackInterface”
attribute of the Service element is set to the port type
representing the “WorkshopOrganizationRequester”. For the
corresponding SCA Reference, the assignment is reversed,
i.e., the attribute “interface” of the interface element within
the SCA Reference is set to the required interface and the
attribute “callbackInterface” is set to the provided interface.

<sca:component name="Composition Component">

<sca:service name="workshopOrganization"/>

<sca:reference name="room"/>

...

</sca:component>

«Participant»

Composition

Component
«Service»

workshopOrganization:

WorkshopOrganization

«Request»

room: Room

«Request»

reservationConf irmation

Internal
Component

Composition
Component

WorkshopOrganizationComposite

265Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 283 / 729

V. CONCLUSION AND OUTLOOK

In this article, we illustrated the mapping between service
designs that are based on SoaML as standardized modeling
language and web service implementation artifacts. As most
mapping rules between abstract formalizations and
implementation artifacts focus on UML or SoaML in
general, we identified mapping rules that can be used for a
transformation of service designs as self-contained service
development artifacts.

The usage of the mapping rules was illustrated by means
of a business process for organizing workshops at a
university. In this context several service designs have been
created and the most complex one was transformed into
implementation artifacts. As implementation technologies
web services based on XSD, WSDL, BPEL, and SCA have
been chosen as they are most wide-spread today.

By identifying and describing necessary mapping rules,
on the one hand this article enables IT architects and
developers to systematically transform service designs into
implementation artifacts. As result, this supports the usage of
SoaML within a model-driven development processes for
services as models based on this language can act as valuable
development artifacts. On the other hand, the mapping rules
help to derive abstract service designs from already
implemented web services. As we work on automatic quality
analyses of services designs based on SoaML as introduced
in [1] and exemplified in [17], a systematic derivation of
service designs from implementation artifacts is necessary.
As result the mapping rules described in this article support
quality analysis processes in the context of service-oriented
architectures.

In order to leverage the mapping rules within our QA82
Architecture Analyzer tool [28] that enables the automatic
quality analysis of service designs, the rules will be
implemented by means of Query Views Transformation
(QVT) [27]. This enables the automatic derivation of service
designs from implemented web services that can be analyzed
regarding wide-spread quality attributes, such as loose
coupling and autonomy. As result, IT architects and
developers will be able to automatically evaluate, whether
developed web services support the flexibility,
maintainability, and cost-efficiency of the IT.

REFERENCES

[1] M. Gebhart and S. Abeck, “Metrics for evaluating service designs
based on soaml”, International Journal on Advances in Software,
4(1&2), 2011, pp. 61-75.

[2] M. Gebhart and S. Abeck, “Quality-oriented design of services”,
International Journal on Advances in Software, 4(1&2), 2011, pp.
144-157.

[3] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.0, 2012.

[4] M. Gebhart, “Service Identification and Specification with SoaML”,
in Migrating Legacy Applications: Challenges in Service Oriented
Architecture and Cloud Computing Environments, Vol. I, A. D.
Ionita, M. Litoiu, and G. Lewis, Eds. 2012. IGI Global.
ISBN 978-1-46662488-7.

[5] Philip Mayer, Andreas Schroeder and Nora Koch, MDD4SOA
Model-Driven Service Orchestration, 2008.

[6] IBM, Generating XSD Schemas from UML Models, Rational
Systems Developer Information Center.
http://publib.boulder.ibm.com/infocenter/rsdvhelp/v6r0m1/index.jsp.
[accessed: July 11, 2012]

[7] Sparx Systems, XML Schema Generation,
http://www.sparxsystems.com.au/resources/xml_schema_generation.
html, 2011. [accessed: July 11, 2012]

[8] IBM, Transforming UML models into WSDL documents, Rational
Software Architect. http://publib.boulder.ibm.com/infocenter/
rsahelp/v7r0m0/index.jsp. [accessed: July 11, 2012]

[9] Roy Grønmo, David Skogan, Ida Solheim and Jon Oldevik, Model-
driven Web Services Development, SINTEF Telecom and
Informatics, 2004.

[10] Tom Digre, ModelDriven.org, http://lib.modeldriven.org/MDLibrary/
trunk/Applications/ModelPro/docs/SoaML/SCA/SoaML to
SCA.docx, May 2009. [accessed: July 11, 2012]

[11] IBM, Transforming UML models to Service Component Architecture
artifacts, Rational Software Architect. http://publib.boulder.ibm.com/
infocenter/rsahelp/v7r0m0/index.jsp. [accessed: July 11, 2012]

[12] Christian Hahn, David Cerri, Dima Panfilenko, Gorka Benguria,
Andrey Sadovykh and Cyril Carrez, Model transformations and
deployment, SHAPE 2010.

[13] SENSORIA, “D1.4a: UML for Service-Oriented Systems”,
http://www.sensoria-ist.eu/, 2006. [accessed: July 11, 2012]

[14] IBM: Transforming UML models to BPEL artifacts, Rational
Software Architect. http://publib.boulder.ibm.com/infocenter/rsahelp/
v7r0m0/index.jsp, 2010. [accessed: July 11, 2012]

[15] M. Gebhart, M. Baumgartner, and S. Abeck, “Supporting service
design decisions”, Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, August 2010, pp.
76-81.

[16] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,
“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[17] M. Gebhart, S. Sejdovic, and S. Abeck, “Case study for a quality-
oriented service design process”, Sixth International Conference on
Software Engineering Advances (ICSEA 2011), Barcelona, Spain,
October 2011, pp. 92-97.

[18] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[19] T. Erl, Service-Oriented Architecture – Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[20] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[21] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, Addison-Wesley, 2003. ISBN 978-0321154958.

[22] P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck,
“A model-driven development approach for service-oriented
integration scenarios”, 2009.

[23] S. Johnston, “UML 2.0 profile for software services”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/05/
419_soa/, 2005. [accessed: July 11, 2012]

[24] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language – part 1 – service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: July 11, 2012]

[25] OMG, “Business process model and notation (BPMN)”, Version 2.0
Beta 1, 2009.

[26] OMG, “Unified modeling language (UML), superstructure”, Version
2.2, 2009.

[27] OMG, “Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification”, Version 1.1, 2011. [accessed: July 11, 2012]

[28] Gebhart Quality Analysis (QA) 82, QA82 Architecture Analyzer,
http://www.qa82.de. [accessed: July 11, 2012]

266Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 284 / 729

Constructing Tool Chains Based on SPEM Process Models

Matthias Biehl, Martin Törngren
Embedded Control Systems

Royal Institute of Technology
Stockholm, Sweden

{biehl,martin}@md.kth.se

Abstract—The development of embedded systems requires a
number of tools and it is widely believed that integrating the
tools into an automated tool chain can improve the productivity
of development. However, tool chains are not accepted by
practitioners if they are not aligned with the established
development culture, processes and standards. Process models
exist for a variety of reasons, i.e., for documenting, planning
or tracking progress in a development project and SPEM is
the standardized formalism by the OMG for this purpose. We
explore in how far a SPEM process models can be used for
creating the skeleton of a tool chain, which is aligned with the
process. We identify a number of relationship patterns between
the development process and its supporting tool chain and show
how the patterns can be used for constructing a tool chain.
In two case studies, we examine the practical applicability of
the patterns, when tailoring the design of a tool chain to a
development process.

Keywords-Generative Approach; Model Driven Development;
Process Modeling; Tool Integration; Embedded Systems.

I. INTRODUCTION

The engineering of an embedded system requires experts
from a number of different engineering disciplines. Each
engineering discipline prefers a different set of development
tools that excel in that particular discipline [1]. The use of
single, specialized tools has the potential to improve the
development process, depending on the degree of automation
they provide [2]. Since engineers need to exchange data
and these tools do not interoperate well, a software external
to the tools – a tool chain – is needed to facilitate the
integration. Multiple tools have the potential to improve the
productivity in the development process, depending on how
well they are integrated with each other and their degree of
automation [3]. Tool chains can provide different coverage of
the development process; therefore, we distinguish between
task-oriented tool chains with a small coverage and lifecycle-
oriented tool chains with a larger coverage.

Many existing tool chains cover only one task in the
development process, e.g., the tool chain between source
code editor, compiler and linker. We call these tool chains
task-oriented. The tools are used in a linear chain, so that
the output of one tool is the input for the next tool. These
tool chains have a relatively small scope and integrate a
small number of tools from within one phase in the lifecycle.
Characteristic for these traditional tool chains are their linear

connections, using a pipes and filter design pattern [4].
In contrast, lifecycle-oriented tool chains have a larger

scope, they focus on supporting the complete lifecycle from
requirements engineering over verification and implemen-
tation to maintenance. In embedded systems development,
these tool chains may span multiple disciplines such as
software engineering, hardware engineering and mechanical
engineering. These tool chains integrate a large number of
different development and lifecycle management tools. In
addition, modern development processes put new demands
on the tool chain: processes might be agile, iterative or
model-driven, which implies that the supporting tool chain
cannot be linear.

When building a tool chain, it is thus important to study
which development tools need to be connected. This infor-
mation about the relationship of development tools is often
already available in a formalized model. The Software &
Systems Process Engineering Metamodel (SPEM) [5] can be
used to describe the lifecycle. A SPEM model might already
be available independently from a tool integration effort,
e.g., as it is the case development with the Automotive Open
Software Architecture (AUTOSAR) [6]. The information
available in process models forms the skeleton of a tool
chain, i.e., which tools are involved and how are they
connected in the process. To construct an executable tool
chain as a software solution, more detailed information is
needed than is available in process models, e.g., information
about the data of tools, how to access it, how to convert it
and how to describe the relation between data of different
tools. In this paper we evaluate to what extent information
from existing SPEM models can be used for constructing a
tool chain.

This paper is organized as follows: In Section II, we
explain our approach for creating an initial design of a tool
chain from a SPEM process model. We introduce SPEM for
describing the processes and TIL to describe the architecture
of a tool chain in Section II-A. This allows us to describe
the relationship between process and tool chain as patterns
in Section II-B and introduce ways of using the patterns
in Section II-C. We apply the approach in two case studies
in Section III. In the remaining sections, we discuss our
approach, relate it to other work in the field, sketch future
work and consider the implications of this work.

267Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 285 / 729

II. APPROACH

Tool chains are intended to increase the efficiency of
development by providing connections between tools [3].
Ideally, connections for all tools used throughout the devel-
opment process are provided; and in this case the tool chain
supports the development process. The process provides
constraints and requirements for the construction of the tool
chain. While generic process models are available, e.g., the
SPEM models for the Rational Unified Process (RUP) [7] or
for AUTOSAR [6], companies also create individual process
models for various purposes, e.g., to customize these generic
models to their individual environments, to document the
development process, to plan the development process, to
track the progress in the development or to document their
selection of tools.

If the process and the tool chain are described in a
model, information from the process model can be reused for
constructing a tool chain model. This approach ensures that
the tool chain and the process are aligned. Process models
only contain some, but not all information necessary for
specifying tool chains. Especially the type of the connection
between tools needs to be added later on.

A. Formalized Description of Processes and Tool Chains

In this section, we introduce modeling languages that are
used for both the process and the design of the tool chain.
We select two specific modeling languages, which on the
one hand limits the scope of the work, on the other hand
is a necessary preparation for formalizing and using the
relationship between process and tool chain (cf. future work
in Section VI).

1) Modeling the Product Development Process: There
are both formal and informal processes in companies, doc-
umented to different degrees and there is an increasing
trend to model processes. Several established languages
exist for modeling processes or workflows. These languages
have various purposes, BPMN [8] and BPEL [9] describe
business processes and SPEM describes development pro-
cesses. We apply SPEM, since it is a standardized and
relatively widespread language for modeling development
processes with mature and diverse tool support. A SPEM
model describes both the product development process and
the set of tools used and can thus be applied to describe the
process requirements of a tool chain. An example model is
provided in Figure 2. A number of concepts are defined in
SPEM, we introduce here the core concepts that are relevant
in the context of tool chains: a Process is composed of
several Activities; an Activity is described by a set of linked
Tasks, WorkProducts and Roles. A number of relationships,
here represented by �.�, are defined between the con-
cepts of the metamodel: a Role, typically an engineer, can
�perform� a Task and a WorkProduct can be marked as
the �input� or �output� of a Task. A WorkProduct can
be �managed by� a Tool and a Task can �use� a Tool.

2) Modeling the Design of the Tool Chain: We need an
early design model that describes all important design deci-
sions of a tool chain and chose to use the Tool Integration
Language (TIL) [10], a domain specific modeling language
for tool chains. TIL allows us not only to model a tool
chain, but also to analyze it and generate code from it.
The implementation of a tool chain can be partly synthe-
sized from a TIL model, given that metamodels and model
transformations are provided. Here we can only give a short
overview of TIL, for an elaborated description of concrete
graphical syntax, abstract syntax and semantics we refer to
[10]. TIL has two basic types: Components and Channels,
where Components are connected by Channels. The most
important Components are ToolAdapters. For each tool, a
ToolAdapter describes the set of data and functionality that
is exposed by that tool in form of a tool adapter metamodel.
Events can be triggered by Users. The relation between the
tool adapters is realized as any of the following Channels:
a ControlChannel describes a service call, a DataChannel
describes data exchange by a model transformation and a
TraceChannel describes the creation of trace links.

B. Relationship Patterns between Process and Tool Chain

If the process and tool chain are formalized as a model, we
can also model the relationship between them more formally.
A process described in SPEM might provide several oppor-
tunities for tool integration. Such an opportunity involves
two tools and a direct or indirect connection between them.
The tools and the connections found in SPEM are included
into the tool chain architecture as ToolAdapters and Chan-
nels. The direction of the data flow can be determined by
the involved work products, which have either the role of
input or output of the task. Tasks connected to only one
tool or tasks dealing with work products connected to the
same tool do not require support from a tool chain; in these
tasks engineers work directly with this tool, e.g., by using
the GUI of the tool. To describe this relationship in more
detail, we list patterns of both SPEM and TIL models and
their correspondences.

Table I
CORRESPONDENCES BETWEEN SPEM AND TIL METACLASSES

SPEM Metaclass TIL Metaclass
RoleDefinition User
ToolDefinition ToolAdapter
TaskDefinition Channel

The relationship patterns consist of a SPEM part, which
matches a subgraph of a process model in SPEM, and a
TIL part, which will become a new subgraph in the tool
chain model in TIL. In the following, we show four SPEM
patterns that describe tool integration related activities, they
are illustrated in Figure 1, (1) - (4). The corresponding
TIL pattern is the same for all SPEM integration patterns,

268Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 286 / 729

Figure 1. SPEM and TIL Patterns

visualized in (5). This mapping is established by pairs of
model elements from both SPEM and TIL, whose name
attribute is equivalent and whose types are of the metaclasses
presented in Table I.

• Task-centered Integration Pattern: For each TaskDefi-
nition in SPEM that has associated WorkProducts as
input and output, where the input WorkProduct has
a different associated ToolDefinition than the output
WorkProduct, this pattern produces ToolAdapters and
a Channel between them in the TIL model. The SPEM
pattern is shown in (1) and can be observed in case
study 1 in Figure 2 for the Task TraceReq2UML con-
necting the WorkProduct RequirementsDatabase and
the WorkProduct UMLFile.

• Multi-tool Task-centered Integration Pattern: For each
SPEM TaskDefinition with two SPEM ToolDefinitions
associated with it, this pattern produces ToolAdapters
and a Channel between them in the TIL model. The
SPEM pattern is illustrated in (2).

• WorkProduct-centered Integration Pattern: For each
SPEM WorkProduct that is both input and output
of its associated TaskDefinitions, which have a dif-
ferent associated ToolDefinition, this pattern produces
ToolAdapters and a Channel between them in the TIL
model. The SPEM pattern is illustrated in (3) and
can be observed in case study 2 in Figure 4 for the
WorkProduct ECUConfigurationDescription, which is
output of the Task GenerateBaseECUConfiguration and
input to the Task GenerateRTE.

• Multi-tool WorkProduct-centered Integration Pattern:
For each SPEM WorkProduct in SPEM that is as-
sociated to two different ToolDefinitions, this pattern
produces ToolAdapters and a Channel between them in
the TIL model. The SPEM pattern is illustrated in (4).

For all relationship patterns, the following constraints
need to be fulfilled: For each RoleDefinition in SPEM that
is connected to the TaskDefinition, we create a User model
element in the TIL model. If a ToolAdapter corresponding to
the ToolDefinition already exists in the TIL model, the exist-
ing ToolAdapter is connected, otherwise a new ToolAdapter
is produced.

1) Implementation as Model Transformations: The im-
plementation of the patterns offers possibilities for automa-
tion of the pattern usage. We implement the relationship
patterns as model transformations, with SPEM as the source

metamodel and TIL as the target metamodel. We chose the
model-to-model transformation language in QVT-R, with the
mediniQVT engine, and the Eclipse Modeling Framework
(EMF) for realizing the metamodels. We use the SPEM
metamodel, which is provided by the Eclipse Process Frame-
work (EPF) under the name Unified Method Architecture
(UMA), and for the visualization of SPEM models we use
Enterprise Architect. For modeling and visualization of TIL,
we use the TIL Workbench described in [10].

Patterns (1) to (5) are graphical representations of the
relational QVT model transformation rules. Since QVT
relational is a declarative language, the implementation
describes the source patterns (1) - (4) and the target pattern
(5) in the form of rules. Additionally, the attributes between
source and target pattern are mapped, as described in Table
I. Due to space constraints, the QVT rules are not included
here.

C. Usage of Relationship Patterns

The relationship patterns can be used in different ways.
Here, we apply the relationship patterns for constructing the
initial design of a new tool chain starting from a process
model. Other forms of using the relationship patterns are
possible, but are not considered in depth here. We can use the
patterns, e.g., for verification: based on a process model and
a tool chain model we check if the requirements provided
by the process are realized by the tool chain model.

The focus of this paper is the application of the re-
lationship patterns to create an initial tool chain design
in TIL from the process requirements expressed in the
SPEM model. The patterns can be applied to a SPEM
model that is complete and contains all necessary references
to ToolDefinitions. The patterns ensure that the design of
the tool chain is aligned with the process, a necessity for
acceptance of the tool chain with practitioners. This design
of the tool chain can be created in an automated way and
might need to be iteratively refined by adding details.

The process model only provides the skeleton for the
specification of a tool chain, such as the tools, which tools
are connected and which user role is working with the
tools. The process model does not provide the nature of
the connections and the exact execution semantics of the
automated tool chain. The nature of the connection can
be data exchange, for creating trace links between tool
data or for accessing specific functionality of the tool. This

269Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 287 / 729

information needs to be added manually by configuring and
choosing the right type of channel in TIL, a DataChannel,
TraceChannel or ControlChannnel. Also, events need to be
specified that trigger the data transfer or activate the tracing
tool. For each ToolAdapter, a metamodel describing the data
and functionality of the tool need to be added to the TIL
model. For each DataChannel, a model transformation needs
to be added.

To handle these cases, we add a refinement step, which
complements the automated construction. Once this infor-
mation is added, the TIL model can be used as input to a
code generator for tool chains, as detailed in [11].

III. CASE STUDIES

In this section, we apply the identified relationship pat-
terns between a process model and a tool chain in two
industrial case studies. This gives us the opportunity to study
different ways of using the patterns and to explore the impact
of different modeling styles.

A. Case Study 1: Construction of a Tool Chain Model for
a Hardware-Software Co-Design Process

This case-study deals with an industrial development
process of an embedded system that is characterized by
tightly coupled hardware and software components. The
development process for hardware-software co-design is
textually described in the following:

• The requirements of the embedded system are captured
in the IRQA1 tool. The system architect designs a UML
component diagram and creates trace links between
UML components and the requirements.

• The UML model is refined and a fault tree analysis is
performed by the safety engineer. When the results are
satisfactory, the control engineer creates a Simulink2

model for simulation and partitions the functionality
for realization in software and hardware.

• The application engineer uses Simulink to generate C
code, which is refined in the WindRiver3 tool. The
data from UML and Simulink is input to the IEC-
61131-3 conform ControlBuilder tool. The data from
ControlBuilder, Simulink and WindRiver is integrated
in the Freescale development tool for compiling and
linking to a binary for the target hardware.

• A hardware engineer generates code in the hardware
description language VHDL from Simulink and refines
it in the Xilinx ISE4.

Based on the description of the process, we have created the
corresponding SPEM model visualized in Figure 2.

We apply the model-to-model transformation that realizes
the relationship patterns on the SPEM model in Figure 2.

1http://www.visuresolutions.com/irqa-web
2http://www.mathworks.com/products/simulink
3http://www.windriver.com
4http://www.xilinx.com/ise

This yields a tool chain model that is aligned with the
process, as shown in Figure 3. By applying the task-centered
integration pattern shown in (1), we identify integration
tasks that are linked to two work products that in turn
are linked to different development tools (e.g. the task
Trafo UML2Safety). Some other tasks are not concerned
with integration, they are related to one tool only (e.g. the
task Use UML).

The TIL model resulting from application of the rela-
tionship patterns is internally consistent; this means that
there are no conflicts, missing elements or duplications
in the model. All tools mentioned in the SPEM model
are also present in the TIL model as ToolAdapters and
all ToolAdapters are connected. In addition, the approach
ensures that the design of the tool chain matches the process.

Since the tool chain is modeled, we can easily change,
extend and refine the initial model before any source code
for the tool chain is developed. The TIL model is relatively
small compared to the SPEM model, thus hinting at its effect
to reduce complexity. When using the simple complexity
metric of merely counting model elements and connections,
we see that in the TIL model their number is reduced by
2/3 compared to the SPEM model (cf. table II).

Table II
SIZE OF THE SPEM AND TIL MODEL OF CASE STUDY 1

Count Model Elements Connections
SPEM Model 43 71
TIL Model 13 26

The important architectural design decisions of the tool
chain (such as the adapters and their connections) can be
expressed in TIL, while the complexity has been decreased
compared to a SPEM model (cf. table II). The tool chain
model can be analyzed and - after additional refinement
with tool adapter metamodels and transformations - can be
used for code generation, as detailed in [11], [10]. Moreover,
the presented model-driven construction of the tool chain
ensures that the tool chain is aligned with the process.

B. Case Study 2: Verification of a Tool Chain Model for
AUTOSAR ECU Design

In this case study, we model a tool chain for AUTOSAR.
AUTOSAR is developed by the automotive industry and de-
fines an architectural concept, a middleware and in addition
a methodology for creating products with AUTOSAR. The
AUTOSAR methodology describes process fragments, so
called capability patterns in SPEM. Generic AUTOSAR tool
chains are implemented in both commercial tools and open
frameworks, however, it is a challenge to set up tool chains
consisting of tools from different vendors [12] and tool
chains customized to the needs of a particular organization.

The SPEM process model is provided by the AUTOSAR
consortium and is publicly available, which contributes to

270Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 288 / 729

Figure 2. Case Study 1: Product Development Process of the Case Study as a SPEM Model

Figure 3. Case Study 1: Tool Chain of the Case Study as a TIL Model

271Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 289 / 729

Figure 4. Case Study 2: Excerpt of the AUTOSAR Methodology for
Designing an ECU [6].

Figure 5. Case Study 2: AUTOSAR Tool Chain for Designing an ECU
as a TIL Model

the transparency of this case study. An excerpt of this
model that is relevant for the design of a ECU, is depicted
in Figure 4. We use this excerpt of the SPEM model to
initialize a tool chain. Applying the patterns creates the
tool chain model in TIL, illustrated in Figure 5. Out of the
four different SPEM parts of the relationship patterns (1)
- (4), only the workproduct-centered integration pattern (3)
matched several times in the SPEM model. This is due to the
modeling style used in the AUTOSAR methodology, where
WorkProducts are used as an interface for integrating tools.

The generated skeleton of the tool chain lays the founda-
tion for ensuring that the AUTOSAR methodology can be
realized by this tool chain. The skeleton can now be refined
with metamodels, model transformations and the behavior.

IV. DISCUSSION

This approach assumes that an appropriate process model
for tool chains is available. We assume that the process
model does not contain any integration related overhead,
i.e., explicit representation of a model transformation tool
and intermediate data model. We assume that tools have
been assigned to process activities. The choice for certain

tools is usually independent of automating the tool chain,
the choice merely needs to be documented in the process
model.

The use of the presented patterns is limited to processes
represented in SPEM and tool chains modeled in TIL.
However, the patterns could be adapted to similar process
metamodels.

While it is possible to describe a part of the require-
ments for a tool chain with SPEM, SPEM models are not
executable. We thus extract the relevant information from
SPEM models to ensure that all tools and connections are
represented in the tool chain. Based on this information, we
generate a TIL models, which can be made executable by
following a well-defined process, described in [10].

We have evaluated the approach in two case studies from
the area of embedded systems. We do not see any reason
why the patterns could not be applied for creating tool chain
from process models in other application areas in the future.

V. RELATED WORK

Related work can be found in the areas tool integration
and process modeling. There are a number of approaches
for tool integration, as documented in the annotated bibli-
ographies [13], [14]. Most of the approaches do not take
the process into account; in this section we focus on those
approaches that do. We also take approaches from process
modeling into account and classify them according to two di-
mensions: The first dimension comprises different execution
mechanisms, which can be interpretation vs. compilation.
The second dimension comprises different process modeling
languages, which can be proprietary vs. standardized.

Interpretation-based approaches [15], [16], [17] use the
process definition for tool integration. This technique is also
known as enactment of process models. Since the description
of the process is identical to the specification of the tool
chain, no misalignment between process and tool chain is
possible. There are two preconditions for this approach: the
process model needs to be executable and the access to
data and functionality of the development tools needs to
be possible. The use of a proprietary process model for
interpretation in tool chains is introduced in [18], as the
process-flow pattern. Approaches that extend SPEM make
the process model executable [15], [16]. The orchestration
of tools by a process model is shown in [17]. However,
the interpretation of integration related tasks is often not
possible, since the interfaces to the development tools are
not standardized. Thus, the use of process enactment to build
tool chains is limited.

Compilation-based approaches transform the process
model into another format, where the process model serves
as a set of requirements. Proprietary process models provide
great flexibility to adapt them to the specific needs of tool
integration. An integration process model is developed in
[19], where each process step can be linked to a dedicated

272Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 290 / 729

activity in a tool. For execution, it is compiled into a low-
level process model. The proprietary process model needs to
be created specifically for constructing a tool chain. In this
work, we use the standardized process metamodel SPEM
[5], which allows us to reuse existing process models as a
starting point for building tool chains and as a reference for
verification for tool chains.

VI. CONCLUSION AND FUTURE WORK

Process models exist for a variety of reasons, i.e., for
documenting, planning or tracking progress in a develop-
ment project and SPEM is the standardized formalism by
the OMG for this purpose. In this paper, we recognize
the development process modeled in SPEM as a set of
requirements for the architecture of tool chains. We devise a
number of patterns for creating the skeleton of a tool chain,
which is aligned with the process.

In this work, we have selected specific languages to ex-
press the patterns; in the future, we would like to experiment
with additional languages for describing the process model,
such as BPMN. This might help us to further generalize the
patterns.

Acknowledgement

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agree-
ment 100203.

REFERENCES

[1] J. El-khoury, O. Redell, and M. Törngren, “A Tool
Integration Platform for Multi-Disciplinary Development,” in
31st EUROMICRO Conference on Software Engineering and
Advanced Applications, pp. 442–450, 2005.

[2] T. Bruckhaus, N. H. Madhavii, I. Janssen, and J. Henshaw,
“The impact of tools on software productivity,” Software,
IEEE, vol. 13, no. 5, pp. 29–38, Sep. 1996.

[3] M. Wicks and R. Dewar, “A new research agenda for
tool integration,” J. of Sys. and Sw., vol. 80, no. 9, pp.
1569–1585, Sep. 2007.

[4] M. Shaw and D. Garlan, Software architecture. Prentice
Hall, 1996.

[5] OMG, “Software & Systems Process Engineering Metamodel
Specification (SPEM),” ”OMG”, Tech. Rep., Apr. 2008.

[6] AUTOSAR Consortium. (2011, Apr.) Automotive open
software architecture (AUTOSAR) 3.2. [Online]. Available:
http://autosar.org/

[7] P. Kruchten, The Rational Unified Process. Addison-Wesley
Pub (Sd), 1998.

[8] OMG, “Business Process Model And Notation (BPMN),”
”OMG”, Tech. Rep., Jan. 2011.

[9] OASIS, “OASIS Web Services Business Process Execution
Language (WSBPEL) TC,” ”OASIS”, Tech. Rep., Apr. 2007.

[10] M. Biehl, J. El-Khoury, F. Loiret, and M. Törngren, “On
the Modeling and Generation of Service-Oriented Tool
Chains,” Journal of Software and Systems Modeling, vol.
275, 2012 [Online]. Available: http://dx.doi.org/10.1007/
s10270-012-0275-7

[11] M. Biehl, J. El-Khoury, and M. Törngren, “High-Level
Specification and Code Generation for Service-Oriented Tool
Adapters,” in ICCSA2012, pp. 35–42, Jun. 2012.

[12] S. Voget, “AUTOSAR and the automotive tool chain,” in
Proceedings of the Conference on Design, Automation and
Test in Europe, ser. DATE ’10, pp. 259–262, 2010.

[13] M. N. Wicks, “Tool Integration within Software Engineering
Environments: An Annotated Bibliography,” Heriot-Watt
University, Tech. Rep., 2006.

[14] A. W. Brown and M. H. Penedo, “An annotated bibliography
on integration in software engineering environments,”
SIGSOFT Softw. Eng. Notes, vol. 17, no. 3, pp. 47–55, 1992.

[15] A. Koudri and J. Champeau, “MODAL: A SPEM Extension
to Improve Co-design Process Models New Modeling
Concepts for Today’s Software Processes, LNCS vol. 6195,
ch. 22, pp. 248–259, 2010.

[16] R. Bendraou, B. Combemale, X. Cregut, and M. P. Gervais,
“Definition of an Executable SPEM 2.0,” in APSEC, pp.
390–397, 2007.

[17] B. Polgar, I. Rath, Z. Szatmari, A. Horvath, and I. Majzik,
“Model-based Integration, Execution and Certification of De-
velopment Tool-chains,” in Workshop on model driven tool
and process integration, pp. 36–48, Jun. 2009.

[18] G. Karsai, A. Lang, and S. Neema, “Design patterns for open
tool integration,” Software and Systems Modeling, vol. 4,
no. 2, pp. 157–170, May 2005.

[19] A. Balogh, G. Bergmann, G. Csertán, L. Gönczy, Horváth,
I. Majzik, A. Pataricza, B. Polgár, I. Ráth, D. Varró, and
G. Varró, “Workflow-driven tool integration using model
transformations,” in Graph transformations and model-driven
engineering, pp. 224–248, 2010.

273Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 291 / 729

Tracing Requirements and Source Code during Software Development

Alexander Delater, Barbara Paech
Institute of Computer Science

University of Heidelberg
Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

{delater, paech}@informatik.uni-heidelberg.de

Nitesh Narayan
Institute of Computer Science

Technical University of Munich
Boltzmannstrasse 3, 85748 Garching, Germany

narayan@in.tum.de

Abstract—Traceability links between requirements and
source code are often created after development. This re-
duces the possibilities for developers to use these traceability
links during the development process. Additionally, existing
approaches applied after development do not consider artifacts
from project management, which are used for planning and
organizing a project. These artifacts can serve as a mediator
between requirements and source code. In contrast to these
existing approaches, we present an approach that creates
traceability links between requirements and source code as the
development progresses by incorporating artifacts from project
management. In this paper, we make two key contributions.
First, a Traceability Information Model integrating require-
ments, source code and artifacts from project management.
Second, an approach for the (semi-) automatic creation of
traceability links between artifacts from the Traceability In-
formation Model achieving traceability between requirements
and source code during the development process. We identified
a catalog of information needs of developers from literature
regarding requirements, source code that realizes these re-
quirements, and work done by co-workers implementing these
requirements. The presented approach satisfies the information
needs of the developers during the development process, while
keeping the traceability links up-to-date.

Keywords-traceability; requirements; source code; software
development; information needs.

I. INTRODUCTION

Traceability information supports the software develop-
ment process in various ways, amongst others, program
comprehension, change management, software maintenance,
software reuse and prevention of misunderstandings [1].
Traceability between requirements and source code has been
extensively researched in the past years and much progress
has been made in this field. Because the manual creation of
traceability links between requirements and source code is
cumbersome, error-prone, time consuming and complex [2],
a major focus in research is on (semi-) automatic approaches.
Existing approaches use various techniques, e.g., informa-
tion retrieval [3] [4], execution traces [5], static/dynamic
analysis [6], subscription-based or rule-based link mainte-
nance [7] or combinations of them [8]. However, all these
approaches do not use artifacts from project management,
but such artifacts, e.g., sprints and work items, are widely
used in software development projects nowadays. Thus,

the first key contribution of this paper is a Traceability
Information Model (TIM) integrating requirements, source
code and project management artifacts.

Traceability links between requirements and source code
are often created after development [9] using the afore-
mentioned approaches. This reduces the possibilities for
developers not only to use their project knowledge to
improve the quality of the traceability links, but also to
use the traceability links during software development and
maintenance. Therefore, we argue that traceability links
between requirements and source code should also be cre-
ated during the software development process and not only
after development. Thus, the second key contribution of
this paper is a (semi-) automatic approach for creating
traceability links between artifacts from the TIM achieving
traceability between requirements and source code during
the development process.

Additionally, while creating traceability links between
requirements and source code, the information needs of the
developers during development should play a major role.
The importance of such information needs is presented by
Ko et al. [10] for collocated software development teams,
and Sillito et al. [11] on questions raised during a program
change task. We identified a catalog of information needs of
developers from the contributions of Ko et al. and Sillito et
al. regarding requirements, source code that realizes these
requirements, and work done by co-workers implementing
these requirements. The presented approach satisfies the
information needs of the developers during development
while keeping the traceability links up-to-date.

The paper is structured as follows: Section II provides
background knowledge about a model unifying system de-
velopment and project management that we built upon, and
the subset of artifacts from this model that we focus on
in this work. Section III defines a model for source code
representation and introduces the TIM integrating artifacts
from system development model, project management model
and source code model. Section IV introduces an approach
to (semi-) automatically create traceability links between
artifacts in the TIM. Section V provides a fictional example
project to highlight the benefits of the presented approach.
Section VI introduces a catalog of information needs and

274Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 292 / 729

how they are satisfied using the artifacts and relations
from the TIM created for the example project. Section
VII describes related work and Section VIII provides a
discussion of the presented contributions. Finally, Section IX
summarizes the contributions and discusses future work.

II. BACKGROUND

This section provides background knowledge about a
model unifying system development and project manage-
ment, and the subset of artifacts from this model that we
focus on in this work.

A. MUSE Model

In software development projects, two different types
of models are used for abstraction: the system model and
project model [12]. Artifacts from the system model describe
the system under construction, such as requirements, compo-
nents or design documents. Artifacts from the project model
describe the on-going project, such as work items, develop-
ers, sprints or meetings. These two models have already been
integrated within a model called MUSE: Management-based
Unified Software Engineering [12].

While the MUSE model describes the system under
development and its project management, it does not pro-
vide traceability to the source code. The MUSE model is
implemented in the model-based CASE tool UNICASE [13],
which is a plugin for the Eclipse integrated development
environment (IDE) and is developed in an open source
project [14]. For this work, we build upon the MUSE
model and extend it with a new code model to support
traceability to the source code. The code model is introduced
in Section III.

B. Focus on Subset of Artifacts

The MUSE model supports a large amount of artifacts.
Therefore, we focus on a subset of artifacts that are required
by the information needs of the developers regarding require-
ments and co-workers implementing these requirements.
From the system model, we focus on the artifacts of feature
and functional requirement representing requirements at
different levels of detail. A feature is an abstract description
of a requirement, and it is detailed by one or more functional
requirements. From the project model, we focus on the
artifacts of developers, work items and sprints. Work items
represent a unit of work and are the task descriptions used in
software development projects (we use the term work item
instead of task to avoid misunderstandings with the term
task used in requirements engineering). They can describe
work for new implementations and bug fixing. As they are
the basis of the daily work, they are regularly kept up-to-
date [15]. Developers are assigned to work items. Sprints
are used to organize work items in work packages and they
provide a time frame to realize the work items.

III. MODELING CODE AND TRACEABILITY
INFORMATION

In this section, we define the representations of source
code that extend the MUSE model by a new code model.
Furthermore, we define a TIM integrating the artifacts we
focus on from the MUSE model and the representations of
source code from the code model.

A. Code Model

The code model contains file-based and change-based
representations of source code. We chose to use these
representations because they are widely used in software de-
velopment projects and are independent of any programming
language. This is supported by a comprehensive literature
survey by Kagdi et al. [16]. For file-based representations,
we focus on code files containing source code. For change-
based representations that are supported by a version control
system (VCS), we focus on revisions. Revisions themselves
contain changed code files. Other representations would be
possible, e.g., class, method or interface. However, not all
programming languages support these artifacts, reducing the
applicability of the code model. Table I shows the different
representations of source code and their attributes.

Table I
ATTRIBUTES OF REPRESENTATIONS OF SOURCE CODE

Type Attributes
Code File fileName, projectName, pathInProject

Revision
date, author, number, repositoryUrl, pathInRepository,
commitMessage, changedCodeFiles [added, modified, or
deleted]

In the following, we describe the reasons for choosing
these attributes. For code files, we require the attributes
fileName, projectName and pathInProject to locate them
in a project. For revisions, we require the attributes date
and author to tell when and by whom the revision was
created. We also need the attributes number, repositoryUrl
and pathInRepository to reliably locate the revision in a
VCS. Moreover, the attribute commitMessage is required to
describe the changes contained in this new revision. This
comment is usually written by the author of the revision and
is optional. The most important information of a revision is
stored in the list changedCodeFiles and each artifact in this
list has the same attributes as the artifact code file. Moreover,
each changed code file in the revision has a state [added,
modified, or deleted] that shows if the code file was newly
added, existed before and was only modified or was deleted
in the revision.

B. Traceability Information Model

Traceability in a project should be documented in and
driven by a Traceability Information Model [17]. A basic
TIM consists of two types of entities: traceable artifacts

275Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 293 / 729

and traceability links between these artifacts. It also defines
which types of artifacts are intended to be traced to which
related artifact types and by what type of traceability link.
We define a TIM that realizes the artifacts from the MUSE
model that we focus on and extends it by the two represen-
tations of source code. The TIM (see Figure 1) shows all
artifacts that we want to connect: system model artifacts
(feature, functional requirement), project model artifacts
(sprint, work item, developer) and code model artifacts (code
file, revision).

Code ModelProject ModelSystem Model

name
description
feature

Functional
Requirement

name
assignments

Developer

date
author
number
repositoryUrl
pathInRepository
commitMessage
changedCodeFiles

Revision

fileName
projectName
pathInProject

Code File

name
description
priority
functionalReqs

Feature

details

name
features
workItems
dueDate
status

Sprint

identifier
name
description
assignee
dueDate
status

Work Item

assigned to

contained in
contained in

Legend

Traceable artifact type
Existing trace types

creates

realized in

realized in 1 1..*

1..*

1..*

1..*

1..*

1..*

1

1

1..*

1..*

1..*

1..*

1..*

related to

Inferred trace types

1..*

1..*

1..*

related to
1..*1..*

Figure 1. Traceability Information Model integrating system model, project
model and code model

Figure 1 depicts the core traceable components. A feature
is realized in a sprint and is detailed in one or more func-
tional requirements. Functional requirements are realized by
work items. A work item must have one or more linked
functional requirements. A feature can be related to a work
item, e.g. during bug fixing. Work items are contained in a
sprint and are assigned to developers. One work item can
create one or more revisions. A revision contains one or
more changed code files. All these traceability links between
the artifacts are represented as straight lines in Figure 1. All
artifacts from the TIM can be found in common software
development projects.

The central artifact is the work item, as it connects the
artifacts from the system model to artifacts from the code
model. Using work items, we can achieve traceability be-
tween requirements and source code by inferring traceability
links. An inferred traceability link between two artifacts is
derived from all artifacts in between these two artifacts. For
example, a functional requirement is realized in one or more
work items, and a work item creates one or more revisions
containing code files. Thus, we can infer traceability links
between the functional requirement and the code files. The

inference process and the used algorithm is explained in
detail in Section IV. The inferred traceability links are
represented as dashed lines between features, functional
requirements and code files in Figure 1.

IV. TRACING REQUIREMENTS AND SOURCE CODE
DURING SOFTWARE DEVELOPMENT

This section presents a (semi-) automatic approach for
creating traceability links between artifacts from the TIM
during the software development process, especially between
requirements and source code using work items.

We presume that the following situation is present in the
software development project. First, there exists a list of
features and detailing functional requirements. Second, a
project manager has planned the realization of the features
in sprints and s/he has broken down the realization of the
functional requirements into work items for the developers
in the software development project. Third, the work items
are already assigned to developers, e.g. manually by the
project manager or using an approach by Helming et al.
for semi-automatic assignment of work items [15]. For the
presented approach, we assume that all artifacts from the
TIM are available in one integrated environment supporting
traceability links between all artifacts. Such an integrated
environment can be supported by the model-based CASE
tool UNICASE [13].

A. Capturing Traceability Links

Figure 2 depicts the process of capturing traceability links
and every activity is described in detail in the following.
The core idea of creating traceability links between artifacts
of the TIM is letting the developers create these links
themselves. First, the developer selects a work item from
his/her list of assigned work items and tells the system that
s/he starts implementing source code. While working on
the work item, all features or functional requirements the
developer looks at during implementation are automatically
captured by the system, meaning that the system logs these
types of artifacts while a developer opens them during im-
plementation. The developer can look at the linked features
or functional requirements of the work item or look at
other artifacts of these types to get a better understanding
during implementation. After finishing the implementation
of a work item in the source code, the developer tells the
system that s/he has stopped implementation.

The developer does not immediately commit the changes
to the VCS. Instead, before the commit, s/he has to validate
two lists of artifacts: one list of all changed code files in
the source code, and another list of all captured features or
functional requirements that s/he looked at during implemen-
tation. While the former is standard in software development
and already supported by any VCS, the latter represents ad-
ditional work for the developers. This validation is necessary
to only create relevant traceability links between the work

276Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 294 / 729

Documentation
Process

Traceability Link
Creation Process

Validation & Selection ProcessImplementation & Capturing Process

Developer selects
one assigned work

item and starts
implementation

Developer finishes
implementation of the

work item

Developer may add
additional F and R

Developer validates
changed code files

System creates new
revision in VCS

containing selected
code files and links it

to work item

System captures code
files changed by the

developer during
implementation

System presents lists
of changed code files
and captured F and R

Developer may enter
commit message for

new revision

System links selected
F and R to work item

System captures F
and R the developer

looks at during
implementation

Developer validates
captured F and R

Developer may add
additional information
to description of work

item

Legend
mandatory optional

R = Functional RequirementF = Feature

Figure 2. Process of Capturing, Validating and Creating Traceability Links (UML Activity Diagram)

item and these artifacts. For example, a developer can look at
a functional requirement during development, which is not
directly involved in the implementation, but related to the
work item. During validation, a developer removes unrelated
artifacts from the list. Furthermore, an optional activity for
the developer is to select additional features or functional
requirements that are related to the work item, but that s/he
has not had a look at during implementation. Two other
optional activities are to enter a commit message for the new
revisions or add additional information to the description of
the work item.

After validating all artifacts and optionally adding further
features or functional requirements, the developer selects
to commit all information to the VCS. The system then
creates a new revision containing only the selected code
files. The work item is linked to the newly created revision,
and the attribute identifier of the work item is inserted at
the end of the commit message of the revision to achieve
bi-directional traceability between work item and revision.
Moreover, the system links all validated and selected features
and functional requirements to the work item.

B. Inferring Traceability Links between Requirements and
Source Code

The created traceability links are used to infer links
between requirements and code, specifically between fea-
tures, functional requirements and code files. The Algo-
rithm IV.1 for creating inferred traceability links is ex-
ecuted when the status of a work item is changed by
the developer from assigned to done. The algorithm con-
nects in a brute force manner all linked requirements
(features, functional requirements) of a work item with
all the code files in the linked revisions of the work
item. The statement workItem.getLinkedRequirements() re-
turns all features and functional requirements. The statement
workItem.getRevisions() returns the linked revisions of a
work item sorted by attribute date in ascending order. This is
important because the algorithm applies change operations
to the artifacts which need to be in the order they occurred.
If the algorithm identifies already existing links, it does not
create them again. If a code file was modified, its informa-
tion consisting of the attributes fileName, projectName and
pathInProject is updated for each linked requirement. If a
code file is deleted, the link to the requirement is removed.

Algorithm IV.1: INFERTRACES(workItem)

allReqs = workItem.getLinkedRequirements()
allRevisions = workItem.getRevisions()
for each rev ∈ allRevisions

allCodeF iles = rev.getAllChangedCodeF iles()
for each cf ∈ allCodeF iles

state = cf.getState()
if state = ADDED

for each req ∈ allReqs
if req.isNotConnectedTo(cf)

req.addLinkTo(cf)
if state = MODIFIED

for each req ∈ allReqs
if req.isNotConnectedTo(cf)

req.addLinkTo(cf)
req.getLinkedCodeF ile(cf)

.update(fileName, projectName
pathInProject)

if state = DELETED
for each req ∈ allReqs

req.removeLinkTo(cf)
return (workItem)

V. EXAMPLE

We use a fictional example project to highlight the benefits
of the presented approach and to support discussion. The
example project is a Java application called Movie Manager
that one can use to manage his/her movie collection. Users
can add, modify and delete movies as well as rate them.
The application supports importing data about performers
(actor/actress) of a movie from an Internet movie database.
Presenting all information about the artifacts in the project is
beyond the purpose of this paper. Therefore, we only provide
a list of used artifacts with short descriptions to support basic
understanding. There are two features (F) and six detailing
functional requirements (R) (see Table III). The project is
planned in two sprints with feature F1 developed in Sprint 1
and feature F2 developed in Sprint 2. Amy, Bill and Carl are
members of a team collaborating to develop the application
and they have eight work items (W) (see Table IV). Amy is
mainly focusing on the data objects within the application,
Bill is responsible for the user interface, and Carl is doing
bug fixing.

277Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 295 / 729

Table II
CHANGED CODE FILES AND CAPTURED TRACEABILITY LINKS OVER TEN REVISIONS OF MOVIE MANAGER

C1 C2 C3 C4 C5 R1 R2 R3 R4 R5 R6 F1 F2 Work
Item Dev. Rev. Commit Message

c LB CL W1 Amy 1 Created Data Object ’Movie’ #W1

m c CL LB LB CL W2 Bill 2 Implemented basic UI for listing Movies
#W2

m CL LB CL W2 Bill 3 Display and change information of Movie
#W2

m c LB W3 Bill 4 Added basic Rating Control and added it
to Movies UI #W3

m LB CL W3 Bill 5 Completed 5 star Rating Control #W3
c LB CL W4 Amy 6 Created Data Object ’Performer’ #W4

m m LB W5 Bill 7
Display information of Performers for
Movie, currently showing dummy data as
import needs to be implemented #W5

m LB CL W6 Carl 8 BugFix for Rating Control #W6
c LB CL W7 Amy 9 Performer Import #W7
m LB CL W8 Carl 10 Bugfix for Performer Import #W8

c = created m = modified LB = Linked Before CL = Captured Link

Table III
FEATURES AND FUNCTIONAL REQUIREMENTS

Arti-
fact Description Detailing

F1 Movie Management: Add, modify and delete
movies as well as rate them -

F2 Performer Management: Import performers from
Internet movie database -

R1 Users should be able to add and remove a movie
from the list F1

R2 Users should be able to display and change the
textual information about a selected movie F1

R3 Users should be able to display a list of available
movies and select one from the list F1

R4 Users should be able to rate movies F1

R5
Users should be able to import textual infor-
mation about the performers of a movie from
Internet movie database

F2

R6 Users should be able to display textual informa-
tion about the performers of a movie F2

F = Feature R = Functional Requirement

A number of code files are developed to achieve Movie
Manager: Movie.java (C1), MoviesUI.java (C2), RatingCon-
trol.java (C3), Performer.java (C4), PerformerImport.java
(C5). Table II provides an overview about the ten created
revisions, created (c) and modified (m) code files, used
traceability links (LB) from the TIM and captured trace-
ability links (CL) during the software development (in the
small example, there are no code files that needed to be
deleted). Furthermore, all three developers have entered
commit messages for each revision that roughly describe
how they have modified the source code.

The team used the presented process (see Figure 2) during
development. In the following, the creation of revisions 1
and 2 is shortly explained. All other revisions were created

Table IV
DEVELOPERS AND WORK ITEMS

Arti-
fact Description Assigned To

Amy Database Expert W1 W4 W7
Bill UI Expert W2 W3 W5
Carl Bug Fixing W6 W8

Arti-
fact Description Realizing Sprint

W1 Create Data Object for Movie R1 S1
W2 UI for Movies R2 R3 S1
W3 UI Control for Rating R4 S1
W4 Create Data Object Performer R6 S2
W5 UI for Performers R6 S2
W6 Bugfix for Rating Control R4 S2
W7 Performer Import R5 S2
W8 Bugfix for Performer Import R5 S2

W = Work Item R = Functional Requirement

in the same way. Work item W1 was assigned to Amy and
she had to implement the data object for storing movies.
First, she looked at the linked functional requirement R1 of
her work item to get a better understanding of the attributes
of the data object. She started implementing Movie.java (C1)
and looked at F1 for the feature description. She finished
implementation and validated and confirmed all captured
links to F1 and R1. Next, she entered a commit message
and the system created a new revision with the new code
file C1.

Work item W2 was assigned to Bill and he was supposed
to implement a user interface for listing the movies. Thus,
he first looked at the linked functional requirements R2 and
R3. Bill looked during implementation at feature F1 because
it was already linked to R3. Furthermore, he looked at R1
because this requirement was also linked to F1. Bill used

278Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 296 / 729

Table V
INFORMATION NEEDS ON REQUIREMENTS DURING DEVELOPMENT ACTIVITIES WITH USED TRACEABILITY LINKS

Nr. Information Need on Requirement Development Activity Used Traceability Links
1. What is the program supposed to do? Implementation, Program Comprehension F-R, F-W, R-W, F-C*, R-C*
2. Why was this code implemented this way? Program Comprehension C-Rev
3. What have my co-workers been doing? Change Awareness F-W, R-W, W-D, W-S
4. Which code is involved in the implementation of this feature? Maintenance F-C*, R-C*
5. To move this feature into this code, what else needs to be moved? Change Management F-C*, R-C*
6. What will be the impact of this change? Change Management F-R, F-W, R-W, F-C*, R-C*

F = Feature R = Functional Requirement W = Work Item S = Sprint D = Developer C = Code File Rev = Revision * = inferred

the inferred traceability link from F1 to Movie.java (C1) to
change Movie.java because it missed an attribute that Amy
forgot to implement, and created the code file MovieUI.java
(C2). The inferred traceability link was created after Amy
changed the status of her work item from assigned to done.
He finished implementation and validated and confirmed all
captured traceability links to R1, R2, R3 and F1. Finally,
he entered a commit message and the system created a new
revision with new code file C2 and modified code file C1.

F1 F2

C2 C3 C4

R2 R3 R4

C1

R1

C5

R6R5

Legend

Traceable artifact type
Existing trace types
Inferred trace types

Figure 3. Existing and Inferred Traceability Links

After the completion of each work item, traceability links
were inferred using the presented algorithm (see Algorithm
IV.1). In revision 10, this resulted in the traceability links be-
tween features, functional requirements and code files shown
in Figure 3. The straight lines show the traceability links that
existed before. Furthermore, the inferred traceability links
are shown as dashed lines.

VI. INFORMATION NEEDS ON REQUIREMENTS

Developers have various information needs during the
software development process. Ko et al. [10] identified
21 and Sillito et al. [11] identified 44 information needs,
respectively. From these 65 information needs represented
as questions, we have identified those which are asked
by developers during software development focusing on
requirements, code that implements these requirements, and
work done by co-workers related to these requirements.
We looked through all information needs and used the
following criteria for identification: a) mentioning terms that
are related to requirements, e.g., feature, concern, behavior
or expressions like supposed to, b) mentioning the term
impact in conjunction with a changing requirement, and

c) mentioning terms like developer or co-worker. We have
identified six information needs (see Table V, Nr. 1-3 from
Ko et al. and Nr. 4-6 from Sillito et al.) that met these
criteria. All other information needs are rather specific for
implementation and do not focus on requirements, e.g. repro-
ducing a failure during bug fixing or understanding execution
behaviour. We defined in Table V for each information
need on requirements during what development activity the
information need occurs and the used traceability links.

A. Identified Information Needs on Requirements

In the following, we explain how these information needs
of developers can be satisfied by employing the TIM (see
Figure 1), the captured traceability links from the process
(see Figure 2) and the inferred traceability links (see Algo-
rithm IV.1) for the example project mentioned in Section V.

1) What is the program supposed to do?: The features
and functional requirements define what the program is
supposed to do. As a work item needs to have a relation
to functional requirements and can be related to features,
an assigned developer can use the linked artifacts during
implementation and program comprehension. For example,
Amy knows during implementation what attributes the data
object for movies requires since the functional requirement
R1 is linked to her work item W1. However, she forgot
to implement one attribute in revision 1; so, Bill had to
change the data object again in revision 2. Furthermore,
if a developer is interested in the purpose of a code file
during program comprehension, s/he can use the inferred
traceability links from the code file to the features and
functional requirements. For example, if Carl is interested
in the purpose of C3 (RatingControl.java), he can use the
inferred traceability links to F1 and R4 that were created
when Bill finished the work item W3 in revision 5.

2) Why was this code implemented this way?: Starting
from the code files, a developer can look at the linked
revisions. The commit messages may contain information
concerning why the code was implemented this way. For
example, Bill decided to implement the Rating Control
with a 5 star rating and documented his decision in the
commit message of revision 5. Documenting these decisions
as artifacts of type rationale would be part of future work.

279Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 297 / 729

3) What have my co-workers been doing?: Since all work
items are contained in a sprint and assigned to developers,
a developer is able to see on what features or functional
requirements his/her co-workers will be working on or have
been working on in the past, which is supporting change
awareness. Furthermore, a developer is able to see the co-
workers that have previously worked on the same feature
or functional requirement. Using this information, s/he can
seek further knowledge from these co-workers. For example,
Carl can see that Bill has worked previously on the Rating
Control and he can ask him for advice during bug fixing.

4) Which code is involved in the implementation of this
feature?: A feature is detailed in functional requirements.
A developer can use the inferred traceability links from
features and functional requirements to code files to quickly
identify code that is involved in the implementation of
a feature. For example, Carl can see that code files C4
(Performer.java) and C5 (PerformerImport.java) are involved
in feature F2 (Performer Management) during bug fixing
described in W8. This enables to identify not realized
features and functional requirements as well as the progress
of their implementation.

5) To move this feature into this code, what else needs
to be moved?: ’Moving a feature’ means that an entire
feature with all its detailing functional requirements and
realizing code can be moved from one development project
to another project. As one feature is connected to detailing
functional requirements, and these artifacts are connected by
inferred traceability links to code files, related code files can
be identified during change management. For example, the
code files C1, C2 and C3 are related to feature F1 through
their relations to the requirements R1, R2, R3 and R4 (see
Figure 3). Therefore, if a feature needs to be moved, all its
related functional requirements and the realizing code files
can be easily identified. However, this may require additional
code files to be moved that are required by the to-be-moved
code files. Additional work on integrating the moved code
files in the new environment may be necessary, as well.

6) What will be the impact of this change?: If a feature
or a functional requirement need to be changed to reflect
changed customer demands, all related artifacts maybe af-
fected by this change can be identified easily during change
management. For example, suppose R4 is changed to support
a different rating, it can be identified that W3, W6 and C3
are maybe affected by this change. Affected work items
can be identified, e.g. if a change in a feature or functional
requirement is comprehensive, the planning of the realization
in the work items needs to be adapted. An initial set of code
files can be identified potentially affected by this change.
The changes in the code files can result in additional changes
in other code files. The initial set of code files can be a
starting point for detailed change impact analysis.

B. Frequently Unsatisfied Information Needs

Many of the frequent information needs are problematic,
because the searches for this information are often unsatis-
fied and have long search times. It is of particular interest
that the most difficult information needs to satisfy are ques-
tions regarding requirements and co-workers working on
these requirements [10]. Ko et al. have identified seven most
frequently unsatisfied information needs, from which three
are exactly the same information needs 1-3 from Table V that
met our criteria. For example, searches for the information
need 1. Why was the code implemented this way? resulted in
44% of unsatisfied searches and a maximum of 21 minutes
of observed search time.

One of the most frequently sought and acquired infor-
mation by a developer includes what co-workers have been
doing, which corresponds to the information need 3. What
have my co-workers been doing?. To determine who to ask,
developers often identify co-workers by inspecting commit
logs, but such information is not always accurate [10]. Our
approach helps developers determining co-workers who have
worked on the same requirements as themselves in the past
to seek further information.

VII. RELATED WORK

Approaches related to our work can be divided into two
groups: approaches achieving traceability between require-
ments and source code after development and approaches
capturing traceability links as we do during development.

A. Traceability between Requirements and Source Code

In [18], a general overview about requirements traceability
is provided. As the manual creation of traceability links
between requirements and source code is error-prone, time
consuming and complex [2], research focuses on (semi-) au-
tomatic approaches. Existing approaches create traceability
links between requirements and source code using various
techniques, e.g., information retrieval [3], [4], [19], [20],
[21], execution-trace analysis [5], [22], [23], static/dynamic
analysis [6], subscription-based or rule-based link mainte-
nance [7] or combinations of them [8], or only create links
between work items and code [24]. However, no approach
uses artifacts from project management to create traceability
links between requirements and source code, as we do with
our approach using work items.

B. Capturing Traceability Links

An approach similar to ours for the automatic capturing
of links was presented by Omoronyia et al. [25]. They have
achieved traceability between use cases and source code.
In contrast, our approach supports features and functional
requirements. Their approach is based on tracing the oper-
ations carried out by a developer called navigation trails.
However, this approach requires an elaborate model with
rankings of navigation trails to derive the most relevant

280Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 298 / 729

links. Rankings of links are currently not supported by our
approach. Thus, in future work we want to analyze whether
the availability of work items can support this ranking.

Their approach is also able to identify which developer
is involved in the realization of a specific use case, which
is also supported by our approach. The contribution of
Omoronyia et al. shows that tracking changes displays some
advantages over the other approaches. For example, relating
a developer to the source code and requirements is almost
impossible with the other approaches, but very easy if
changes/operations are tracked, like in our approach. Fur-
thermore, their approach does not support work items from
project management and revisions in a VCS. However, such
artifacts are widely used in software development projects
nowadays. Therefore, our approach is more easily applicable
in practice compared to the approach by Omoronyia et al.

Omoronyia et al. [25] also claim to satisfy certain infor-
mation needs. However, they did not use a structured method
to identify these information needs like we did and only
proposed those that were satisfied by their approach. Fur-
thermore, their information needs are not based on project
management and co-workers within the project. The benefit
of our approach is that we can satisfy these information
needs of developers during the development process.

VIII. DISCUSSION

Egyed et al. [26] investigated the effort of recovering
traceability links between requirements and code after devel-
opment. In general, these traceability links were recovered
by project members who were not directly involved in
the realization of a particular requirement, but knew the
code base. Our approach distributes the effort of creating
traceability links over all developers actively participating in
the project while they perform their implementation work.
Using our approach, the developers are now involved in
the traceability process, they can use their expertise and
project knowledge to create reliable traceability links and
these links also help them to satisfy their information needs
during development. As a developer benefits not only from
these traceability links himself/herself, but also his/her co-
workers, we expect that they are better motivated to create
and validate traceability links during software development.

Additionally, one might ask: ”Why is (manually) creating
links between requirements and work items, and between
work items and code files less complex compared to existing
work on linking requirements to source code directly?”. We
argue that our approach is less cumbersome and error-prone
than manually creating direct links between requirements
and code, because the only manual work is to establish initial
links between work items and requirements (which is typical
for issue management) and to validate the automatically
captured links (which should be easy as the links refer to the
work just finished). Creating direct links manually requires
the developer to keep every relationship in mind.

In the current approach, developers might make mistakes
when adding non-related features or functional requirements
to a work item. However, this risk is reduced since we
let the developer validate all traceability links before they
are created. It has been shown that humans were better at
validating links as opposed to searching for missing links
[27]. This strengthens our approach of letting the developers
validate the links going to be created instead of recovering
links or searching for missing links. The additional work
of the developers introduced by validating traceability links
and manually adding additional ones is considered as small,
compared to the effort to establish traceability links after
development using various approaches mentioned before.

Currently we are developing tool support based on UNI-
CASE, which is a plugin for the Eclipse IDE. The Eclipse
IDE supports various programming languages through addi-
tional plugins, e.g. Java, C++, Python etc. By integrating
UNICASE and Eclipse with plugins for VCSs like Sub-
version or Git, a comprehensive tool environment can be
provided supporting developers while they perform various
development activities. By using these plugins, file-based
as well as change-based representations of source code
can be accessed. We looked at various research tools, e.g.,
TagSEA [28], and commercial tools, e.g., IBM Rational
Team Concert [29]. Some of these tools do support all the
elements that we have (requirements, work items, code).
However, our tool would provide, unlike all other tools,
complete traceability between all these elements as well as
(semi-) automatic linkage of requirements and code.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach for tracing re-
quirements and source code during software development to
satisfy information needs of developers regarding require-
ments during development. We defined a TIM that inte-
grates requirements, source code and artifacts from project
management. We also presented an approach for the (semi-)
automatic creation of links between artifacts from the TIM.

In this work, we only focused on information needs of
developers. However, we are aware that also information
needs of other project participants can be satisfied with
the created links, e.g., of project managers or requirements
engineers, which is subject to future work. Furthermore, we
are aware that the algorithm for inferring links is very basic
and might create a lot of links. Therefore, we will investigate
possibilities for more advanced inference algorithms, e.g. an
algorithm providing a relevance ranking for each link based
on the change history of the artifacts connected by the link,
to identify relevant links from the large set of inferred links.
Currently we develop tool support based on our approach.
Once the tool is finished, we will empirically evaluate the
approach in the UNICASE project itself and apply it in
various case studies. We will compare our approach to
existing baseline approaches w.r.t. precision and recall.

281Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 299 / 729

REFERENCES

[1] Egyed, A. and Grünbacher, P. Supporting software under-
standing with automated requirements traceability. Interna-
tional Journal of Software Engineering and Knowledge En-
gineering, vol. 15, no. 5, pp. 783-810 (2005)

[2] Spanoudakis, G. and Zisman, A. Software traceability: A
roadmap. Handbook of Software Engineering and Knowledge
Engineering, World Scientific Publishing, pp. 395-428 (2004)

[3] Hayes, J.H., Dekhtyar, A., and Osborne, J. Improving require-
ments tracing via information retrieval. International Confer-
ence on Requirements Engineering, pp. 138-147 (2003)

[4] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G. Re-
covering traceability links in software artifact management
systems using information retrieval methods. Transactions on
Software Engineering Methodology, vol. 16, no. 4, art. 13,
ACM (2007)

[5] Eisenberg, A.D. and De Volder, K. Dynamic feature traces:
Finding features in unfamiliar code. In ICSM 05: Proceed-
ings of the 21st IEEE International Conference on Software
Maintenance, pp. 337-346 (2005)

[6] Antoniol, G. and Gueheneuc, Y.G. Feature identification: A
novel approach and a case study. In ICSM 05: Proceedings of
the 21st IEEE International Conference on Software Mainte-
nance, pp. 357-366 (2005)

[7] Maeder, P. and Gotel, O. Towards Automated Traceability
Maintenance. Journal of Systems and Software, vol. 85,
no. 10, pp. 2205-2227 (2011)

[8] Eaddy, M., Aho, A.V., Antoniol G., et al. CERBERUS:
Tracing requirements to source code using information re-
trieval, dynamic analysis, and program analysis. In ICPC 08:
Proceedings of the 16th IEEE International Conference on
Program Comprehension, pp. 53-62 (2008)

[9] Cleland-Huang, J., Heimdahl, M., Huffman Hayes, J., Lutz,
R., and Maeder, P. Trace queries for safety requirements in
high assurance systems. In REFSQ 12: Proceedings of the
18th International Conference on Requirements Engineering:
Foundation for Software Quality, pp. 179-193 (2012)

[10] Ko, A.J., DeLine, R., and Venolia, G. Information needs in
collocated software development teams. In ICSE 07: Pro-
ceedings of the 29th International Conference on Software
Engineering, pp. 344-353 (2007)

[11] Sillito, J., Murphy, G.C., and Volder, K.D. Asking and an-
swering questions during a programming change task. IEEE
Trans. Softw. Eng., vol. 34, no. 4, pp. 434-451 (2008)

[12] Helming, J., Koegel, M., and Naughton, H. Towards traceabil-
ity from project management to system models. In TEFSE 09:
Proceedings of the 2009 ICSE Workshop on Traceability in
Emerging Forms of Software Engineering, pp. 11-15. IEEE
Computer Society (2009)

[13] Bruegge, B., Creighton, O., Helming, J., and Koegel, M.
Unicase - an Ecosystem for Unified Software, In ICGSE 08:
Distributed software development: methods and tools for risk
management, pp. 12-17 (2008)

[14] UNICASE Open Source Project. http://www.unicase.org/ [re-
trieved: September, 2012]

[15] Helming, J., Arndt, H., Hodaie, Z., Koegel, M., and Narayan,
N. Automatic Assignment of Work Items. In ENASE 10:
Evaluation of Novel Approaches to Software Engineer-
ing, Communications in Computer and Information Science,
vol. 230, pp. 236-250 (2011)

[16] Kagdi, H., Collard, M.L., and Maletic, J.I. A Survey and
Taxonomy of Approaches for Mining Software Repositories
in the Context of Software Evolution, Journal of Software
Maintenance and Evolution, vol. 19, pp. 77-131 (2007)

[17] Maeder, P., Gotel, O., and Philippow, I. Getting Back to Ba-
sics: Promoting the Use of a Traceability Information Model
in Practice. In TEFSE 09: Proceedings of the 2009 ICSE
Workshop on Traceability in Emerging Forms of Software
Engineering, pp. 21-25. IEEE Computer Society (2009)

[18] Dahlstedt, A. and Persson, A. Requirements interdependen-
cies: State of the art and future challenges. In Engineering
and Managing Software Requirements, Aurum and Wohlin
(eds.) Springer, pp. 95-116 (2005)

[19] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E. Recovering traceability links between code and
documentation. IEEE Transactions on Software Engineering,
pp. 970-983 (2002)

[20] Marcus, A. and Maletic, J.I. Recovering documentation-to-
source-code traceability links using latent semantic indexing.
In ICSE 03: Proceedings of the 25th International Confer-
ence on Software Engineering, pp. 125-135. IEEE Computer
Society (2003)

[21] Marcus, A., Maletic, J.I., and Sergeyev, A. Recovery of
traceability links between software documentation and source
code. International Journal of Software Engineering and
Knowledge Engineering, vol. 15, no. 5, pp. 811-836 (2005)

[22] Egyed, A. A Scenario-Driven Approach to Trace Dependency
Analysis. Transactions on Software Engineering, vol. 29,
no. 2, pp. 116-132, IEEE (2003)

[23] Burgstaller, B. and Egyed, A. Understanding where require-
ments are implemented. In ICSM 10: Proceedings of the 26th
IEEE International Conference on Software Maintenance,
pp. 1-5 (2010)

[24] Anvik, J. and Storey, M.A. Task articulation in software
maintenance: Integrating source code annotations with an
issue tracking system. In ICSM 08: Proceedings of the 24th
IEEE International Conference on Software Maintenance,
pp. 460-461 (2008)

[25] Omoronyia, I., Sindre, G., Roper M., Ferguson J., and Wood,
M. Use case to source code traceability: The developer
navigation viewpoint. In RE 09: Proceedings of the 17th IEEE
International Requirements Engineering Conference, pp. 237-
242 (2009)

[26] Egyed, A., Graf, F., and Grünbacher, P. Effort and quality
of recovering requirements-to-code traces: Two exploratory
experiments. In RE 10: Proceedings of the 18th International
IEEE Requirements Engineering Conference, pp. 221-230
(2010)

[27] Kong, W.-K., Huffman Hayes, J., Dekhtyar, A., and Holden,
J. How do we trace requirements: an initial study of analyst
behavior in trace validation tasks. In Proceedings of the 4th
International Workshop on Cooperative and Human Aspects
of Software Engineering, In conjunction with CHASE 11,
pp. 32-39 (2011)

[28] TagSEA. http://tagsea.sourceforge.net/ [retrieved: September,
2012]

[29] IBM Rational Team Concert. http://www.ibm.com/software/
rational/products/rtc/ [retrieved: September, 2012]

282Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 300 / 729

An Empirical Study Identifying High Perceived Value
Requirements Engineering Practices in Global Software

Development Projects

Mahmood Niazi a, b, c, Mohamed El-Attar a,
a Department of Information and Computer Science, King
Fahd University of Petroleum and Minerals, Saudi Arabia
b Faculty of Computing, Riphah International University

Islamabad, Pakistan
c Keele University, Keele, ST5 5BG, UK

{mkniazi, mettar}}@kfupm.edu.sa

Muhammad Usman d and Naveed Ikram c
c Faculty of Computing, Riphah International University

Islamabad, Pakistan
d International Islamic University Islamabad, Pakistan

naveed.ikram@riu.edu.pk, m.usman@iiu.edu.pk

Abstract—Requirements-related problems are reported to be
the main reason in failures of global software development (GSD)
projects. There is not much work done to improve requirements
practices for GSD projects. In this paper, we report results of a
study conducted in an ongoing project whose aim is to develop a
framework for the requirements engineering process of global
software development projects. The objective of this paper is to
report a recent empirical study which was aimed in identifying
high perceived value RE practices in the GSD projects. We used
an online survey questionnaire to collect data from 39 RE
practitioners of GSD organizations. We have identified 11
frequently cited high value RE practices that should be planned
and implemented in GSD projects to avoid frequently occurring
requirements related problems.

Keywords - Global Software Engineering; Requirements
Engineering.

I. INTRODUCTION

In global software development (GSD), software or part
of software is developed by geographically dispersed teams
and companies whereby the vendor company in one country
provides its services at low costs to the client company in
another country. GSD has been growing steadily and an 18-
fold increase in the outsourcing of IT-enabled business
processes is projected [21]. Over the last decade, many firms
in Europe have outsourced software development projects to
other countries such as India, China and Russia. Low cost,
time saving, access to global IT talent are main reasons for
software development outsourcing for the client companies
[2]. Moreover, offshore vendors improve their skills and
service quality with the experience of offshore outsourcing
projects, learning new ways to satisfy the clients’ needs.

GSD, however, has many challenges and risks [9].
Significant failure rates have also been reported in GSD
projects [4]. Nam et al. [12] investigated 93 client companies
and found that 36 did not intend to continue their relationships
with vendors. King [10] reports that JP Morgan decided to
perform many software activities that it previously outsourced,
and did not renew its $5 billion contract with IBM. At the root
of many failures is the increased complexity that outsourcing
brings to development projects. This complexity results in:
high coordination costs, information security problems, lack of

direct communication [19], perceived loss of expertise in the
outsourced activity [5], cultural misunderstandings [11] and
infrastructure problems [1].

Although a variety of software development tasks are
outsourced, previous work suggests that most of the factors
contributing to the failure of outsourcing are related to
requirements [17]. This is not surprising given that the
requirements engineering (RE) process has a huge impact on
the effectiveness of all software development processes [20].
A previous UK study of non-outsourced projects found that
out of 268 documented development problems, requirements
problems accounted for 48% of all software problems [6]. In
another study of GSD projects, RE problems in multi-site
software development organisations were identified [3]. The
evidence is clear: problems in the requirements phase have a
wide impact on the success of software development projects
[6, 20] and an even greater impact on the success of GSD
projects [3].

In order to improve the RE process Sommerville and
Ransom [20] have suggested 66 RE practices. All of these RE
practices were designed for non-GSD projects and it is hard to
know if these practices can also be used in the GSD projects.
Despite the importance of RE in the GSD projects, no
empirical study has been conducted to observe the perceived
benefit RE practices in the GSD projects.

We propose to adapt and customize these 66 RE practices
specifically for GSD projects. The objective of this paper is to
report a recent empirical study which was aimed in identifying
high perceived value RE practices in the GSD projects. To
achieve this we address the following Research Question
(RQ):
RQ: Which RE practices can be effectively used in the GSD
projects?
In order to address this RQ we will:
• Determine what the most important of all the RE practices

advocated by Sommerville and Ransom are for GSD
projects.

• Identify any additional RE practices important for GSD
projects that may lack from the list of Sommerville and
Ransom [20] practices.

283Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 301 / 729

In earlier research works [15], we discussed preliminary
results based on a pilot study with five GSD organisations. In
this paper, we discuss the findings of a broader survey of 39
RE experts of GSD projects.

This paper is organised as follows. In Section II
background is provided. Section III describes the research
methodology. In Section IV the findings of this work are
presented and analysed with some discussion. Section V
describes the summary of results. Section VI provides the
conclusion and future work.

II. BACKGROUND

A. RE practices designed by Sommerville and Ransom

Sommerville et al. [20] suggested a requirements
framework that includes 66 requirements practices that can
lead to RE process improvement and ultimately business
benefits [20]. The 66 requirements practices are classified as
basic, intermediate and advanced. There are 36 basic practices
concerned with the fundamental activities required to gain
control of the RE process; 21 intermediate practices mostly
concerned with the use of methodical approaches and tools;
and 9 advanced practices concerned with methods such as
formal specification used typically for critical systems
development. The 66 RE practices are grouped into 8 major
categories [20].

Thus far, no research has considered using these 66
practices in global software development projects. Few studies
have used these practices for non-outsourced projects such as
[14] and [20]. It is important to identify best RE practices for
GSD projects as previous work suggests that half of the
companies that have tried GSD have failed to realize the
anticipated outcomes, the root cause of which is often related
to RE problems [17, 18].

B. Perceived Benefits.

We assert that “perceived benefits” of a particular RE
practice can be used as a judgement criterion for determining
the degree of importance (value) placed on a RE practice by
requirements stakeholders. This is because where requirements
stakeholders from different organisations perceive a RE
practice as having a high-perceived or medium-perceived
benefits then that practice should be considered for its
importance in a RE process of GSD projects. The information
about relative “perceived benefits” can help researchers and
requirements stakeholders to better understand various RE
practices within the GSD initiatives.

III. RESEARCH METHODOLOGY

A. Data Collection

Based on the available resources and nature of this
research, we set up an online survey questionnaire to collect
data from RE practitioners of GSD organizations. A pilot
study was conducted with five RE experts to validate the

questionnaire. We invited 150 RE experts from different
software companies involved in GSD projects via emails.
Basic information about the software companies was available
on their respective websites. Besides request for participation,
emails contained the link of the survey site. Out of 150
invitations, only 39 RE experts agreed to participate so the
response rate is 26%.

Each requirements stakeholders was asked to choose and
rank 66 RE practices against four types of assessments that
have been developed previously [13, 20]. These assessments
were:
• High Perceived Benefits (H): A practice has a

documented standard and is always followed as part of
the organisation’s GSD process i.e., it is mandatory.

• Medium Perceived Benefits (M): This means that the
practice is widely followed in the organisation’s GSD
process but is not mandatory.

• Low Perceived Benefits (L): Some GSD projects may
have introduced the practice only for that project. This
practice is described as ‘low’ perceived benefit.

• Zero Perceived Benefits (Z): The practice is never or
rarely applied to any GSD projects.

From this list, we have the ‘perceived benefit’ associated
with each RE practice, i.e. the degree of importance placed on
a RE practice by requirements stakeholders based on their
experience from previous GSD projects.

We received responses from 39 RE practitioners working
in software companies involved in GSD. Participants were RE
practitioners with experience ranging from 1 year (minimum)
to 13 years (maximum) with average experience equal to 6
years. 70% of participants were from multinational companies.
Most of the participants’ companies develop business
applications and data processing applications. Few participants
also work in the domain of real time, safety critical and
embedded systems. The majority of the participants work in
large sized companies having staff sizes greater than 200.

B. Data Analysis

In order to analyse the perceived benefit of each identified
RE practice, the occurrence of a perceived benefit (high,
medium, low, zero) in each response was counted. By
comparing the occurrences of one RE practice’s perceived
benefits obtained against the occurrences of other RE
practices’ perceived benefits, the relative benefit of each RE
practice was identified. We have also used this approach to
identify high and low valued RE practices and software
process improvement de-motivators in our previous research
[13]. For most of the data analysis, we have used statistical
analysis. We believe that the presentation of data using
statistical analysis is an effective mechanism for comparing
and contrasting within, or across groups of variables.

IV. RESULTS AND ANALYSIS

This section is divided into 8 sub-sections, each of which
corresponds to one of the eight Sommerville and Ransom
categories of RE practices.

284Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 302 / 729

A. Requirements Document Practice

This category has eight practices which are labelled RD1
to RD8. Table 1 shows the participant responses for this
category. RD1 ‘define a standard document structure’ is
frequently cited high value requirements document practice.
Because of temporal, geographical and cultural barriers in
GSD, communication and coordination becomes challenging
[8]. This leads to problems caused by a lack of shared
understanding and other knowledge management issues. Use
of predefined document structure improves shared
understanding and helps the readers in reading, following and
updating the document. Our results indicate that using agreed
upon standard documents can assist in reducing many issues in
GSD projects. RD4 ‘include a summary of the requirements’ is
also one of the frequently cited high value practices in this
category. This practice can help readers of the requirements
documents to get the overview of the whole requirements
document.

TABLE I. REQUIREMENTS DOCUMENT PRACTICES

ID Requirements Documents Practice Type of Assessment
(n=39)
H M L Z

RD1 Define a standard document structure 20 13 5 1
RD2 Explain how to use the document 15 11 11 2
RD3 Include summary of the requirements 19 13 5 2
RD4 Make a business case for the system 15 18 4 2
RD5 Define specialized terms 14 15 9 1
RD6 Make document layout readable 17 16 5 1
RD7 Help readers find information 11 20 5 3
RD8 Make the document easy to change 11 21 4 3

B. Requirements Elicitation Practices

There are 13 practices in this category which are labelled
RE1 to RE13 as shown in Table 2. The results show that the
most common ‘high’ value requirements elicitation practice is
RE3 ‘Identify and Consult System Stakeholders’. It is an
interesting result as GSD system stakeholders are usually not
directly available to the vendor team. They are available on the
client side. To overcome this problem different tools are used
ranging from asynchronous communication media (email,
blogs etc.) to synchronous media (instant messaging, video
conferencing etc.). System stakeholders are the domain
experts and if they are not available for consultation because
of different GSD barriers then the requirements related issues
will not be resolved. Other most common (19 out of 39) high
value practice is RE5 ‘define the proposed system’s operating
environment’. Many GSD organisations define the proposed
system’s operating environment during or before requirements
elicitation. It is critical to determine the scope of the
environment where the system will be deployed [7].

It is interesting to see in Table 2 that 12 out of 39
participants consider RE10 ‘prototype poorly understood
requirements’ as a low and zero value practice. This is not in
line with the general view in RE literature about prototyping
misunderstood requirements. One probable reason can be the

cost and effort associated with prototyping of misunderstood
requirements.

TABLE II. REQUIREMENTS ELICITATION PRACTICES

ID Requirements Elicitation Practices Type of Assessment
(n=39)
H M L Z

RE1 Assess System Feasibility 17 17 4 1
RE2 Be sensitive to organizational /political

consideration
16 13 8 2

RE3 Identify, consult system stakeholders 27 11 0 1
RE4 Record requirements sources 16 17 5 1
RE5 Define system’s operating

environment
19 15 3 2

RE6 Use business concerns to drive
elicitation

14 18 5 2

RE7 Look for domain constraints 18 14 5 2
RE8 Record requirements rationale 11 13 3 2
RE9 Collect reqs. from multiple viewpoints 14 19 4 2
RE10 Prototype poorly understood

requirements
8 19 9 3

RE11 Use scenarios to elicit requirements 12 17 8 2
RE12 Define operational processes 15 15 6 2
RE13 Reuse requirements 9 16 11 3

C. Requirements Analysis and Negotiation

This category contains 8 practices; labelled as RA1 to
RA8. Table 3 presents the participants’ responses for the
practices in this category. RA1 ‘Define system boundaries’ is
rated as most common high value practice. Clear definition of
the system boundary early in the project helps clarify the
system scope and identifying the interfaces and dependencies
with other systems. Early definition of the system boundary
also helps in effort and size estimation. RA3 ‘Use software to
support negotiation’ and RA7 ‘Use interaction matrices’ are
frequently cited low value practices. It seems as if they are not
commonly understood and used practices in GSD projects.

TABLE III. REQUIREMENTS ANALYSIS AND NEGOTIATION
PRACTICES

ID Requirements Analysis and
Negotiation Practices

Type of Assessment
(n=39)
H M L Z

RA1 Define system boundaries 20 14 3 2
RA2 Use checklists for analysis 13 12 12 2
RA3 Use software to support negotiation 6 11 17 5
RA4 Plan for conflict resolution 14 12 9 4
RA5 Prioritise requirements 19 17 2 1
RA6 Classify requirements using a

multi-dimensional approach
11 12 13 3

RA7 Use interaction matrices to find
conflicts and overlaps

5 10 17 7

RA8 Assess requirements risks 15 12 10 2

D. Describing Requirements Practices

This category has five practices which are named as DR1
to DR5 as shown in Table 4. The most common high value
practices are DR1 ‘Define standard templates for describing
requirements’ and DR3 ‘Use diagrams appropriately’. The
high value of DR1 corresponds well with the high value of
RD1 ‘Define a standard document structure’ described in

285Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 303 / 729

section IV (A). Use of standard templates for describing
requirements in GSD facilitates shared understanding and
handles differences in the organizational culture. Templates
help reduce the ambiguities of natural language as it poses a
control and structure on the form the requirements are
expressed. RE practitioners also see high value in using
diagrams for describing requirements. Diagrams and models
help visualize and understand requirements quickly. The high
value for DR3 is indicative of the desire of RE practitioners to
have a clear, common and unambiguous view of system
requirements before the design and development of system
commences. DR5 ‘Specify requirements quantitatively’ and
DR4 ‘Supplement natural language with other description of
requirement’ are the most common medium value practices in
this category.

TABLE IV. DESCRIBING REQUIREMENTS PRACTICES

ID Describing Requirements Practices Type of Assessment
(n=39)
H M L Z

DR1 Define standard templates for describing
requirements

19 12 7 1

DR2 Use languages simply and concisely 17 15 5 2
DR3 Use diagrams appropriately 19 10 4 5
DR4 Supplement natural language with other

description of requirement
13 19 5 2

DR5 Specify requirements quantitatively 9 19 10 1

E. System Modelling Practices

This category has six practices labelled SM1 to SM6. The
results show that the most common high value requirements
modelling practices are SM5 ‘Use a data dictionary’ and SM3
‘Model the system architecture’. Appropriate use of data
dictionary helps in removing the ambiguities and
inconsistencies in the requirements document. It is also an
important practice in building the same understanding of
different terms, concepts and definitions. Modelling the system
architecture (SM3) early is important for the realization of
non-functional requirements of a system. Non-functional
requirements are vital for the success of a system. We see SM3
as an important practice as it prompts the consideration of
non-functional requirements on board as early as the
requirements phase.

TABLE V. SYSTEM MODELLING PRACTICES

ID System Modelling Practices Type of
Assessment (n=39)
H M L Z

SM1 Develop complementary system
models

9 15 11 4

SM2 Model the system’s environment 9 15 13 2
SM3 Model the system architecture 14 17 6 2
SM4 Use structured methods for system

modelling
13 14 9 3

SM5 Use a data dictionary 15 12 10 2
SM6 Document links between stakeholder

requirements and system models
11 13 12 3

F. Requirements Validation Practices

There are eight practices in this category (Table 6). RV1
‘Check that requirements document meets your standards’ is
the most frequently cited high value practice. This practice
corresponds well with other similar practices in our study, i.e.
RD1 and DR1. GSD practitioners believe that the compliance
with standard document structure or template is important and
should be ensured. RV7 ‘Propose requirements test cases’ is
another common high value practice. One of the criteria of
writing better requirements is that they should be testable and
verifiable. If test cases are written for requirements then this
will improve the quality of the requirements. Prototyping is
generally considered to be an important and useful validation
technique. However, prototyping was a low value practice in
the requirements elicitation section. The cost and effort
associated with prototyping seem be the inhibitors of using it
as an elicitation or validation technique.

TABLE VI. REQUIREMENTS VALIDATION PRACTICES

ID Requirements Validation Practices Type of Assessment
(n=39)
H M L Z

RV1 Check that requirements document
meets your standards

21 10 5 3

RV2 Organise formal reqs. inspections 13 11 12 3
RV3 Use multi-disciplinary teams to review

requirements
16 11 8 4

RV4 Define validation checklists 14 14 6 5
RV5 Prototyping to animate requirements 7 15 13 4
RV6 Write a draft user manual 13 13 10 3
RV7 Propose requirements test cases 17 12 7 3
RV8 Paraphrase system models 5 14 12 5

G. Requirements Management Practices

There are nine practices in this category as shown in Table
7. RM1 ‘Uniquely identify each requirement’ and RM7
‘Identify global system requirements’ are most frequently cited
high value practices. Unique identification of each requirement
helps in traceability and management of all requirements.
Identification of global system requirements establishes the
required system level properties. They are concerned with the
system architecture and should be appropriately handled in
early stages of the requirements phase.

TABLE VII. REQUIREMENTS MANAGEMENT PRACTICES

ID Requirements Management
Practices

Type of Assessment
(n=39)
H M L Z

RM1 Uniquely identify each requirement 20 12 5 2
RM2 Define policies for reqs. management 16 11 8 4
RM3 Define traceability policies 16 12 5 6
RM4 Maintain a traceability manual 13 10 8 8
RM5 Use database to manage requirements 14 9 7 9
RM6 Define change management policies 16 12 7 4
RM7 Identify global system requirements 17 10 8 4
RM8 Identify volatile requirements 9 14 10 6
RM9 Record rejected requirements 7 8 16 8

286Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 304 / 729

H. RE for Critical Systems Practices

There are nine practices in this category that are labelled
CS1 to CS9. Most of the practices in this category have similar
frequency. This category of practices seems less relevant to
GSD as critical systems are usually not developed in GSD or
outsource setting.

TABLE VIII. RE FOR CRITICAL SYSTEMS PRACTICES

ID RE for Critical Systems Practices Type of Assessment
(n=39)
H M L Z

CS1 Create safety requirement checklists 14 10 8 7
CS2 Involve external reviewers in the

validation process
9 14 9 7

CS3 Identify and analyse hazards 14 10 9 6
CS4 Derive safety requirements from

hazard analysis
14 12 7 6

CS5 Cross-check operational and
functional reqs. against safety reqs.

16 7 11 5

CS6 Specify systems using a formal
specification

11 14 10 4

CS7 Collect incident experience 12 13 9 5
CS8 Learn from incident experience 16 11 8 4
CS9 Establish an organizational safety

culture.
11 15 7 6

V. SUMMARY OF RESULTS

In this section, we summarise our results and also give
recommendations to RE practitioners about high perceived
value RE practices which can be used in GSD projects. These
high valued practices should be planned and implemented in
GSD projects to avoid frequently occurring requirements
related problems. Table 9 lists the most commonly cited high
value practices in each category. Implementation of RD1, DR1
and RV1 will help reduce inconsistencies and ambiguities in
the requirements document. It will also help to build a shared
understanding of system requirements. Client and vendor
organisations, being in different countries, usually have
different nomenclatures. Promoting the use of standard
templates will help dealing with the issues related to cultural
differences of client and vendor sides. RE3 has the highest
frequency count in elicitation. In GSD, vendor teams usually
do not have direct access to the system stakeholders. We
recommend that managers should plan to compensate for this
limitation in GSD projects. GSD managers can use technology
(e.g. video conferencing) or occasional visits to allow
development team representative(s) to have direct
communication with system stakeholders. The system
boundaries (RA1) should be defined as it will help in clear
definition of scope, identification of system interfaces with
other systems and in project estimation and scheduling. When
it comes to the requirements descriptions, we recommend that
the diagrams should be used appropriately (DR3) as many
concepts or processes are better explained with diagrams. This
also increases the understanding of a problem domain and
facilitates knowledge transfer. Use of data dictionary (SM5) is
also a recommended practice for system modelling as
appropriate use of data dictionary helps the readers in better

understand different documents. It also avoids the inconsistent
use of terms and concepts.
TABLE IX. MOST COMMONLY CITED HIGH VALUE RE PRACTICES

ID Practice Category
RD1
RD3

Define a standard document structure
Include summary of the requirements

Documentation

RE3
RE5

Identify and consult system stakeholders
Define system’s operating environment

Elicitation

RA1
RA5

Define system boundaries
Prioritise requirements

Analysis &
Negotiation

DR1 Define standard templates for describing
requirements

Description

DR3 Use diagrams appropriately Description
SM5 Use a data dictionary Modelling

RV1 Check that the requirements document
meets your standards

Validation

RM1 Uniquely identify each requirement Management

VI. CONCLUSION AND FUTURE WORK

 To the best of our knowledge, this is the first attempt to
investigate the most relevant RE practices for GSD
organizations. We have identified frequently cited high value
RE practices which should be used in GSD projects to avoid
frequently occurring requirements related problems. We have
observed that not all 66 RE best practices are perceived as high
value practices for GSD projects

Our ultimate goal is to develop a framework for
improving RE in GSD projects (GlobReq). The proposed
GlobReq will be an easy to use framework which will be
accompanied by a website and tool support to facilitate its use
in industry. The aim is to help companies avoid randomly
implementing promising new models and frameworks just to
see them discarded.

The following two research questions are our future work
in this project:
RQ1. How can we develop GlobReq?
The basis of the GlobReq framework will be Sommerville and
Ransom’s framework of requirements practice, empirical study
with GSD organisations and our questionnaire based survey.
We will collect detailed empirical data from GSD
organisations and practitioners to construct and validate the
GlobReq frameworks. The following initial criteria will be
used for the development of the GlobReq framework. We have
used this approach successfully in previous empirical research
with software development organisations [13; 16].
• User satisfaction: stakeholders need to be satisfied with

the results of the GlobReq framework. Stakeholders (e.g.
requirements engineers, systems analysts, outsourcing
project staff) should be able to use the GlobReq to
achieve specified goals according to their needs and
expectations without confusion or ambiguity.

• Ease of use: complex models and standards are rarely
adopted by organisations as they require resources,
training and effort. The structure and contents of GlobReq
should be simple, flexible and easy to follow.

287Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 305 / 729

• Better requirements: GlobReq should aid the development
of high quality requirements (e.g. less ambiguous, more
comprehensive, consistent and feasible).

Based on the empirical data, Sommerville’s Requirements
Framework will be rationalised to GSD environments.
GlobReq framework will be developed from the rationalised
Sommerville Framework together with additional empirical
data collected from GSD collaborators. The frequently cited
RE practices with ‘high’ and ‘medium’ perceived value’ will
be the basis of the GlobReq framework.

RQ2. How can we evaluate the effectiveness of GlobReq?

The evaluation of the end product is important in order to
show up areas where the end product has deficits. The
evaluation assists in future planning and decision making. In
the evaluation process the lessons learned and results are used
to enlighten future projects. We will use an expert panel
review to seek the opinions of software outsourcing experts
about the GlobReq framework. The criteria described in
“GlobReq framework development” will be used, i.e. ease of
use, user satisfaction and better requirements as the basis of
this evaluation.

We will identify GSD experts for the evaluation of the
GlobReq framework. These experts will be selected on the
basis of their practical and/or academic experience of GSD
projects. These experts will be from other organisations (i.e.
not from organisations who participated in the data collection
process). We have made preliminary discussions with these
experts and we are in the process of explaining their role in
this project.

ACKNOWLEDGEMENT

We are thankful to King Fahd University of Petroleum and Minerals,
Saudi Arabia for supporting this research project via a project
number IN111030.

REFERENCES

[1] Barthelemy, J. The hidden cost of IT outsourcing, Sloan
Management Review 42 (3). 60-69. 2001
[2] Bush, Ashley A. , Tiwana, Amrit and Tsuji, Hiroshi. An
Empirical Investigation of the Drivers of Software Outsourcing
Decisions in Japanese Organizations, Information and Software
Technology Journal, 50(6), 499-510, 2008
[3] Damian, D., E. and Zowghi, D. Requirements Engineering
challenges in multi-site software development organizations,
Requirements Engineering Journal, published by Springer Verlag. 8
(3). 149-160. 2003
[4] Foote, D. Recipe for offshore outsourcing failure: Ignore
organization, people issues, ABA Banking Journal 96 (9). 56-59.
2004
[5] Gonzalez, R., Gasco, J. and Llopis, J. Information systems
outsourcing risks: a study of large firms, Industrial management and
data systems 105 (1). 45–62. 2005

[6] Hall, Tracy, Beecham, Sarah and Rainer, Austen. Requirements
Problems in Twelve Software Companies: An Empirical Analysis,
IEE Proceedings - Software (August). 153-160. 2002
[7] Jackson, M. Software Requirements and Specifications. Addison-
Wesley / ACM Press. 1995
[8] Khan, Siffat Ullah, Niazi, M. and Rashid, Ahmad. Barriers in the
selection of offshore software development outsourcing vendors: an
exploratory study using a systematic literature review, Journal of
Information and Software Technology 53 (7). 693-706. 2011
[9] Khan, Siffatullah, Niazi, Mahmood and Rashid, Ahmad. Critical
Barriers for Offshore Software Development Outsourcing Vendors:
A Systematic Literature Review. 16th IEEE Asia-Pacific Software
Engineering Conference, APSEC09. Penang, Malaysia. 2009
[10] King, W. Outsourcing becomes more complex, IT Strategy and
Innovation - ISM Journal 22 (2). 89 - 90. 2005
[11] Kobitzsch, Werner, Rombach, Dieter and Feldmann, Raimund,
L. Outsourcing in India, IEEE Software March/ April 2001 78-86.
2001
[12] Nam, K., Chaudhury, A., Rao, Raghav and H., Rajagopalan, S.
A Two-Level Investigation of Information Systems Outsourcing,
Communications of ACM 39 (7). 36-44. 1996
[13] Niazi, M, Cox, K. and Verner, J. An empirical study identifying
high perceived value requirements engineering practices. Fourteenth
International Conference on Information Systems Development
(ISD´2005) Karlstad University, Sweden August 15-17. 2005
[14] Niazi, M and Shastry, Sudha. Role of Requirements Engineering
in Software development Process: An empirical study. IEEE
International Multi-Topic Conference (INMIC03). 402-407. 2003
[15] Niazi, M., El-Attar, Mohamed, Usman, Muhammad and Ikram,
Naveed. GlobReq: A Framework for Improving Requirements
Engineering in Global Software Development Projects: Preliminary
Results. International Conference on Evaluation & Assessment in
Software Engineering (EASE 2012) Spain. 2012
[16] Niazi, Mahmood, Cox, Karl and Verner, June. A Measurement
Framework for Assessing the Maturity of Requirements Engineering
Process, Software Quality Journal: in press for publication 16 (2).
157-298. 2008
[17] Oza, Nilay V. and Hall, Tracy. Difficulties in managing offshore
outsourcing relationships: An empirical analysis of 18 high maturity
Indian software companies, Journal of Information Technology Case
and Application Research 7 (3). 25-41. 2005
[18] Oza, Nilay V. and Hall, Tracy. Difficulties in managing offshore
outsourcing relationships: An empirical analysis of 18 high maturity
Indian software companies. 4th International Outsourcing
Conference, Washington DC. 2005
[19] Pyysiainen, J. Building trust in global inter-organizational
software development projects: problems and practices. International
Conference on Software Engineering: Global Software Development
Workshop. 2001
[20] Sommerville, Ian and Ransom, Jane. An empirical study of
industrial requirements engineering process assessment and
improvement, ACM Transactions on Software Engineering and
Methodology 14 (1). 85-117. 2005
[21] United-Nations. World Investment Report. The shift towards
services, New York and Geneva. 2004

288Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 306 / 729

Towards Automated Process Assessment in Software Engineering

Gregor Grambow and Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

{gregor.grambow, roy.oberhauser}@htw-aalen.de

Manfred Reichert
Institute for Databases and Information Systems

Ulm University
Ulm, Germany

manfred.reichert@uni-ulm.de

Abstract—When assessing software engineering processes,
current reference models approaches typically rely on manual
techniques for acquiring evidence of practices, which is then
correlated with expected model attributes to assess compliance.
This is costly, error-prone, and assessment feedback is
infrequent and detached from the original context. Automated
data acquisition could improve this situation, but must
overcome various challenges. This paper presents an
automated approach for process assessment that relies on
semantic extensions to a process-aware information system to
provide an in-the-loop automated process assessment
capability. This can reduce the effort required to determine
process compliance, maturity, or improvement, and can
provide more timely and precise feedback compared to current
manual process assessment methods and tools. The evaluation
showed the approach’s technical feasibility, model
diversifiability across various process assessment models
(CMMI, ISO/IEC 15504, ISO 9001), and suitable performance
and scalability. All in all, this paper contributes a practical,
variable approach for automating parts of the assessment of
executed processes.

Keywords-software engineering process assessment; semantic
technology; Capability Maturity Model Integration; ISO/IEC
15504; ISO 9000

I. INTRODUCTION
Processes - be they technical, managerial, or quality

processes, are an inherent part of software engineering (SE),
and subsequently so is process assessment and process
improvement [1]. Software process improvement typically
involves some assessment, and common reference model
assessment standards utilize external audits (CMMI [2], ISO
15504 [3], and ISO 9001 [4]) that are performed manually to
gather compliance evidence. Often the maturity of software
organizations is assessed based primarily on their process-
orientation and correlation of processes to a reference model.

If SE processes were supported or enacted by process-
aware information systems (PAIS), then the efficiency of
data acquisition and analysis for process assessment could
also be improved. One necessary prerequisite - the adoption
and use of automated process enactment support is relatively
rare in SE projects. This can be attributed to a number of
factors, some of which are that: while all projects are unique,
software development projects face a high degree of new and
changing technological dependencies, which typically

impact project tool environments, knowledge management,
process integration, and process data acquisition; significant
process modeling effort is necessary and PAIS usage has
been somewhat restrictive [5]; SE processes are knowledge
processes [6], and thus, the exact operational determination
and sequencing of tasks and activities is not readily
foreknown, while process models are too inflexible to mirror
such operational dynamics.

We developed the Context-aware Software Engineering
Environment Event-driven frameworK (CoSEEEK) [7] to
improve SE process support and guidance in an automated
fashion. That way, enhanced support features are possible,
such as automatically gathering information from the
environment and users, uniting it with information from a
knowledge base, and utilizing this information for on-the-fly
process optimization (Section IIIC provides more
information on CoSEEEK). Given such a context-aware
event-driven automated process guidance system, we
investigated the feasibility of enabling in-the-loop automated
process assessment support. Our ontology-based approach
semantically enhances a PAIS for SE operational process
enactment and assessment support.

The paper is organized as follows: Section II describes
the attributes of three common process models. Section III
describes our automated process assessment solution
approach. An evaluation of this approach is described in
Section IV. Section V discusses related work. Section VI
concludes the paper.

II. PROCESS ASSESSMENT MODELS
Three of the most mature and prevalent process

assessment approaches used in software projects (CMMI,
ISO/IEC 15504 / SPICE, and ISO 9001) are described in
order to later show how automation was achieved. Despite
the differences, with ISO 9000 being more of a requirement
model and CMMI and SPICE meta-process models, they are
similarly used for assessing process compliance or maturity.
All three models have several basic concepts in common:
They define basic activities to be executed in a project such
as ‘Identify Configuration Items’ for configuration
management. (These will be mapped by a concept called
base practice in our approach.) These activities are grouped
together (e.g., ‘Establish Baselines’ in the configuration
management example, with these groupings being mapped
by a concept called process in our approach.) In turn, the

289Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 307 / 729

latter are further grouped (e.g., ‘Configuration
Management’) to allow further structuring. (This will be
mapped by a concept called process category in our
approach.) To be able to rate these practices and processes,
the assessment models feature a performance scale to
quantify the assessment. Finally, most models use the
quantified assessments to assign capability levels to
processes.

A. CMMI
CMMI (Capability Maturity Model Integration) [2] is one

of the most widely used assessment models. It exists in
different constellations, from which CMMI-DEV (CMMI for
Development) is utilized in our context. The CMMI staged
representation model comprises five maturity levels (1-
‘Initial’, 2-‘Managed’, 3-‘Defined’, 4-‘Quantitatively
Managed’, 5-‘Optimizing’). The levels indicate ‘Degree of
process improvement across a predefined set of process
areas, in which all goals within the set are attained’ (cf. [2]).
To implement this, each of the levels has subordinate
activities that are organized as follows: A maturity level
(e.g., ‘2’) has process categories (e.g., ‘Support’) that have
process areas (e.g., ‘Configuration Management’) that have
specific goals (e.g., ‘Establish Baselines’) that finally have
specific practices (e.g., ‘Identify Configuration Items’). To
quantify the assessment, CMMI has a performance scale (1-
‘unrated’, 2-‘not applicable’, 3-‘unsatisfied’, 4-‘satisified’).
Using these concepts, process assessment is applied as
follows:

• Rate each generic and specific goal of a process area
using the introduced performance scale.

• A maturity level is achieved if all process areas
within the level and within each lower level are
either 2 or 4 (cf. the performance scale introduced).

In addition to these concrete activities and maturity
levels, CMMI features generic goals (e.g., ‘Institutionalize a
Managed Process’) with generic practices (e.g., ‘Control
Work Products’). These are subordinate to capability levels
(0-‘Incomplete’, 1-‘Performed’, 2-‘Managed’, 3-‘Defined’,
4-‘ Quantitatively Managed’, 5-‘ Optimizing’). The latter
indicate ‘Achievement of process improvement within an
individual process area’ (cf. [2]).

SCAMPI (Standard CMMI Appraisal Method for Process
Improvement) [8] is the official CMMI appraisal method. It
collects and characterizes findings in a Practice
Implementation Indicator Database.

B. ISO/IEC 15504 (SPICE)
The SPICE (Software Process Improvement and

Capability Determination) [3][9] model is an international
standard for measuring process performance. It originated
from the process lifecycle standard ISO/IEC 12207 [10] and
maturity models such as CMM (the predecessor of CMMI).
SPICE comprises six capability levels (0-‘Incomplete
process’, 1-‘Performed process’, 2-‘Managed process’, 3-
‘Established process’, 4-‘Predictable process’, 5-‘Optimizing
process’). Each of the latter has one or multiple process
attributes (e.g., ‘2.1 Performance Management’). A process
reference model was included in the initial version of the

standard. This was later removed to support different process
models (or the ISO/IEC 12207). Thus, mappings to various
process models are possible. In this paper, the examples use
the initial process model specifications for illustration. These
comprised process categories (e.g., ‘Organization’) with
processes (e.g., ‘Improve the process’) that contained base
practices (e.g., ‘Identify reusable components’). SPICEs
measurement model applies the following performance scale
for assessment: 1-‘not achieved’ (0-15%), 2-‘partially
achieved’ (16% - 50%), 3-‘largely achieved’ (51% - 85%),
and 4-‘fully achieved’ (86% - 100%).

As opposed to the CMMI, SPICE does not use
assessments of practices to directly determine whether an
overall capability level is achieved, but uses them to assign
to each process one or more capability levels and to use them
to recursively calculate assessments for projects and
organizations. The assessment comprises the following steps:

• Assess every base practice with respect to each of
the process attributes.

• Determine the percentage of base practices of one
process that have the same performance scale with
respect to one process attribute.

• Assessment of the processes: Assign the capability
level for process attributes where all base practices
of the process have performance scale 3 or 4 and for
all lower capability levels the same applies with
performance scale 4.

• Assessment of a project is done by using the
mathematical mean of the ratings of all of its
processes.

• Assessment of an organization is done by using the
mathematical mean of the ratings of all of its
projects.

C. ISO 9001
ISO 9000 comprises a family of standards relating to

quality management systems. ISO 9001 [4] deals with the
requirements organizations must fulfill to meet the standard.
Formal ISO 9001 certifications have gained great importance
for organizations worldwide. The ISO 9001 assessment
model uses no capability scale; it only determines whether or
not a certain practice is in place. Therefore, a simple
performance scale suffices: 0-‘not satisfied’, 1-‘satisfied'.
The assessed practices are structured by process sub-systems
(e.g., ‘Organization Management’) that contain main topic
areas (e.g., ‘Management responsibility’). In turn, the latter
contain management issues (e.g., ‘Define organization
structure’). Based on these concepts, a recursive assessment
can be applied rating an organization by its process sub-
systems and the contained management issues with a pass
threshold of 100%. Our approach is targeted at creating more
quality awareness in companies, not at replacing or
conducting formal reviews. Therefore, the standard ISO
19001:2011 (Guidelines for auditing management systems)
[11] is not taken into account here.

D. Summary
As shown by these three assessment models, the

approaches to process assessment differ significantly. This

290Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 308 / 729

applies for the concepts utilized as well as for the applied
procedures: For example, CMMI knows two different types
of levels that have subordinate activities. For ISO/IEC
15504, the levels have certain attributes that serve to assess
all existing practices. As opposed to the two other models,
ISO 9001 does not apply levels or different performance
scales. These differences hamper convergence to a unified
model or approach and present the primary technical
challenge.

III. AUTOMATED PROCESS ASSESSMENT
This section describes the approach taken to provide

automated process assessment including the conceptual
framework and procedure applied. The approach extends and
annotates process management concepts, enhancing them
with additional information required for assessment. The aim
of our approach is not to replace manual ratings of processes
conducted by humans or to be used in formal process audits.
It shall rather contribute to the quality awareness of a
company and provide information on the current state of the
process as it is executed. Therefore, our approach, despite
adding automated rating facilities, still integrates and relies
on manual ratings or confirmations for ratings. The newly
introduced Context Management component actively uses
this information and interacts with the process execution
component. The latter is tightly integrated with a Process
Management component that executes workflows to
operationally support a SE process.

A. Conceptual Framework
To achieve extended assessment functionality, process

management concepts were enhanced. These are defined in
the Context Management component and are associated with
a Process Management component that manages process
execution. This is illustrated by Figure 1.

Figure 1 shows a simple workflow in the Process
Management component: This workflow is defined by
‘Workflow Template 1’ that contains four activity templates.
Both of these concepts are mirrored in the Context
Management component by the Work Unit Container
Template that contains Work Unit Templates. When the
workflow is to be executed, it is instantiated in the Process
Management component and then represented by a workflow
instance (‘Workflow Instance 1’) containing the activities to
be processed. These two concepts are again mirrored in the
Context Management component by the Work Unit
Container that contains Work Units. These have explicitly
defined states that are automatically synchronized with the
states in the Process Management component. That way, the
Context Management component is aware of the current
execution state of workflows and activities.

Similar to the Work Unit Containers and their templates,
the concepts for process assessment are separated into
template concepts for definition and individual concepts
holding the actual values of one execution. The Assessment
Process Template defines one process assessment model. In
alignment to the aforementioned assessment approaches, it
features templates for Process Categories, Processes, and
Base Practices as well as Capability Levels. The latter are

general level concepts used to model various capability or
maturity levels that can be calculated for other concepts such
as Base Practices or Assessment Processes. To explicitly
configure how the capability level achievement will be
determined, Capability Determinator Templates are used.
The Assessment Process Template also defines a number of
Performance Scales that are used for the assessment later.
For all these concepts, there are individual counterparts used
for each concrete assessment that are based on the template
concepts. Table 1 depicts their relevant properties including
a short description.

Figure 1. Conceptual framework for automating process assessment.

TABLE I. CONCEPTS PROPERTIES

Property Description
Assessment Process Template
capabilityLevels all defined capbility levels templates
procCatTempls all defined process category templates
Capability Level Template
calcFor concept, for which the level is calculated
capDet attached capability determinator templates
perfScale required performance scale for achievement

scaleRatio
ratio of capability determinators that must meet
required performance scale

subCL subordinate capability template template
subCLPerfScale required performance scale of subordinate level
Level number indicating the level
Capability Determinator Template
Source base practice to be assessed
Target capability level, for which this determinator is used

291Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 309 / 729

For flexibility in the assessment calculation, the
Capability Level Templates have a property ‘calcFor’ that is
used to attach them to the target concept to be calculated
(e.g., the whole assessment process when calculated for a
project of a single process). As proposed by the three
introduced models, level achievement calculation can rely on
the assessment of the practices or subordinate levels.
Therefore, the achievement of a capability level is
determined by the following properties: ‘perfScale’ defines
which Performance Scale the attached Capability
Determinators has, and via ‘scaleRatio’ a ratio of Capabiltiy
Determinators can be defined as required for the
Performance Scale. Additionally, as the Capability Levels
are connected to other subordinate levels, the Performance
Scale of their determinators can also be used (cf. SPICE,
required by the ‘subCLPerfScale’ property).

The assessment of the concrete individual concepts is
then applied via the explicit Rating concept, which connects
a Performance Scale with a Base Practice and a Capability
Determinator. It can also be connected to a concrete Person
who will then be asked to do the assessment. To support
automation in the assessment procedure and unburden the
users, it is also possible to automate ratings with Automated
Rating. It can be connected to an Event Template concept
that, in turn, is connected to the States of Artifacts or Work
Unit Containers. That way, it can be configured so that when
the Concept Management component receives certain status
change events, a certain Performance Scale is assigned to a
certain rating. Examples of such a definition include: ‘Assign
Performance Scale 1 if workflow x is present (created)’ or
‘Assign Performance Scale 2 if workflow x is completed’ or
‘Assign Performance Scale 3 if Artifact y is in state z’.

B. Assessment Procedure
The concrete assessment procedure applied to rate

process performance is shown in Listing 1. The following
algorithm describes how a concrete Assessment Process is
created from its template, how the ratings are applied to the
different Base Practices contained in the process, and how
achievement of maturity/capability levels is determined.

Listing 1. The Rate Process Performance algorithm in pseudocode.

Require: Project P, AssessmentProcessTemplate APT,
Person Pers
01: AssessmentProcess AP ← createConcept(APT)
02: linkConcepts(P, AP)
03: for all APT.processCategoryTemplates PCT do
04: ProcessCategory PC ← createConcept(PCT)
05: linkConcepts(AP, PC)
06: for all PCT.processTemplates PT do
07: Process PR ← createConcept(PRT)
08: linkConcepts(PC, PR)
09: for all PRT.basePracticesTemplates BPT do
10: BasePractice BP ← createConcept(BPT)
11: linkConcepts(PR, BP)
12: end for
13: end for
14: end for
15: for all APT.capabilityLevelTemplates CLT do
16: CapabilityLevel CL ← createConcept(CLT)
17: linkConcepts(AP, CL)
18: linkConcepts(CL, CLT.calculatedFor)

19: for all CLT.capabilityDeterminatorTemplates
 CDT do
20: CapabilityDeterminator CD ←
 createConcept(CDT)
21: linkConcepts(CL, CD)
22: List relatedBPs ← getRelatedBasePracts(CD,
 AP)
23: for all relatedBPs BP do
24: new rating(CD, BP,
 AP.getStandardPerformanceScale,Pers)
25: end for
26: end for
27: end for
28: automatedRating(AP)
29: manualRating(AP)
30: for all AP.capabilityLevels CL do
31: checkAchievement(CL)
32: end for

The algorithm requires a concrete project and an
Assessment Process Template to be used for that project. The
first part of the algorithm (lines 01-14) then creates a
structure comprising Process Categories, Processes and
Base Practices for the new Assessment Process. For this
paper, the following two functions are used: ‘createConcept’
creates an individual concept from a given template and
‘linkConcepts’ links two individual concepts together.

The second part of the algorithm (line 15-27) creates the
Capability Level structure. Therefore, the Capability Levels
and their attached Determinators are created first. Thereafter
the Determinators are linked to the Base Practices they use
for determining capability. This is done using the function
‘getRelatedBasePractices’ that gets all Base Practices in the
current Assessment Process that are configured to be
connected to a certain Capability Determinator via their
templates. For each of these Base Practices, a new Rating is
created linking them to the Capability Determinator. To this
Rating, a standard Performance Scale (usually the one equal
to ‘not achieved’) and a responsible person are attached.

The third part of the algorithm (lines 28-32) deals with
the concrete assessment. During the whole project, an
automated rating is applied whenever a matching event or
status change happens. At the end of a project (or anytime an
assessment is desired), the manual rating is applied,
distributing the rating information to the responsible person,
who can then check the automated rating, rate practices that
have not yet been rated, or distribute certain parts of the
assessment to others who can provide the missing
information needed to rate the practices. The final action
applied is to check the achievement for each Capability
Level of an Assessment Process.

C. Technical Realization
The aforementioned conceptual framework was

technically realized via integration in CoSEEEK [7], a
framework whose purpose is to provide holistic support for
SE projects and processes. This contains the Context
Management component with semantic web technology (i.e.,
an OWL DL ontology [12] and the reasoner Pellet [13]),
enabling better knowledge reusability and logical
classification capabilities regarding the contained
knowledge. This knowledge is extended by contextual

292Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 310 / 729

information automatically received by sensors using the
Hackystat framework [14]. In turn, the Process Management
component integrates the dynamic PAIS AristaFlow [15],
which enables the correct dynamic adaptation of running
workflows. For further information on these components and
their application for integrating areas such as knowledge
management or quality management, see [16][17].

IV. EVALUATION
This section evaluates our approach by applying it to the

three different process assessment models introduced in
Section II, and further elucidates technical realization details.
A selection of the applied concepts is shown in Figure 2 for
all of the three models.

A. CMMI
An excerpt of the implementation of the CMMI model is

shown in Figure 2(a). On the upper half, the templates for
defining the CMMI concepts are shown: The structure of the
process is built by the Process Category Template (used for
the process areas CMMI), the Process Template (used for the
specific goals CMMI), and the Base Practice Template (used
for the specific practice of CMMI). Connected to the ‘CMMI
Template’ (implemented by the Assessment Process
Template) are also the ‘Maturity Levels’ (implemented by
the Capability Level Template concept). In addition to this
structure with the specific goals and maturity levels, the
applied concepts can also be used to implement the generic
goals of CMMI with their generic practices and the relating
capability levels as illustrated. For the Assessment Process
Template, the maturity levels are connected to the Capability
Determinators of all specific practices that belong to the
relating maturity level. The Capability Determinators also
realize connections to Base Practices that implement
CMMIs generic practices applied to the respective process
area (implemented by a connection from the Base Practice,
the Process, and the Process Category, cf. ‘Establish an
Organizational Policy’, ‘Institutionalize a Managed Process’,
and ‘Configuration Management’ in Figure 2). Similar
connections can be established for the capability levels, so
that the staged or the continuous representation of CMMI to
assess respectively the maturity of a whole organization or
its capabilities concerning the different process areas. For the
capability determination, the Assessment Process Template is
also connected to the Performance Scales that will be used
for it. The figure shows one example of them (4 – Satisfied).

On the lower part of Figure 2(a), the individual concepts
for the assessment of one concrete project with CMMI are
illustrated. It shows one exemplary maturity level and one
process area with one specific goal with one specific
practice. The Capability Determinators of the maturity level
are connected to the specific practices that shall be rated via
the Rating that has an assigned Performance Scale. A similar
excerpt of the structure is shown for the capability levels and
generic goals in the figure.

The achievement calculation for the maturity levels is
done with the ‘perfScale’ and ‘scaleRatio’ properties of the
Capability Level Template: That way it can be defined that
100% of the Capability Determinators must have the

Performance Scale ‘4’ or ‘2’ as defined in the CMMI model.
If calculations for all of the projects of an organization were
in place, maturity indicators for the entire organization could
use the lowest maturity level achieved by all projects.

B. ISO/IEC 15504 (SPICE)
An excerpt of the implementation of the SPICE model is

shown in Figure 2(b). In this case the names of the concepts
match with the names used in SPICE (e.g., for capability
levels or base practices). The Performance Scales are
defined for the Assessment Process Template similar to the
CMMI implementation, e.g., 4 – Fully Achieved (86%-
100%) as shown in the figure. The process areas that are
subordinate to the capability levels in SPICE are
implemented using the Capability Determinator Templates.
Each of the latter is connected to all Base Practice Templates
to enable their rating concerning all process attributes as
required by SPICE.

The lower part of Figure 2(b) again shows an excerpt of
the individual concepts used for the assessment of a concrete
project. It comprises an exemplary capability level with its
two process attributes and an exemplary process category
with one process and one base practice.

The SPICE assessment works as follows: All base
practices are rated according to all process attributes, and
capability levels are determined for the processes. A level is
achieved if all its related process areas have only ratings with
Performance Scales ‘3’ or ‘4’, and the process areas of the
subordinate levels all have Performance Scale ‘4’. The
assessment of the project is the mathematical mean of the
assessments of the processes, and can thus be easily
computed without explicit modeling. The same applies to the
assessment of a whole organization.

C. ISO 9001
As ISO 9001 is a requirement and not a process model, it

must be mapped to the organization’s process. This can be
applied by connecting automated ratings to events occurring
in the execution of work unit containers representing the real
execution of a related workflow or be applied manually by a
person doing a manual rating. An excerpt of the
implementation of the ISO 9001 assessment model is shown
in Figure 2(c). In this case, the upper part of the figure again
shows the template concepts for defining the model.
Compared to the other two models, ISO 9001 is simpler: It
knows no capability levels and only two performance scales
(as shown in the figure). Therefore, there is only one
Capability Level Template defined that is used to determine
achievement for the whole ISO 9001 assessment. That
template has one Capability Determinator Template for each
management issue.

The lower part of Figure 2(c) again shows the individual
concepts used for a concrete assessment using a concrete
example for a process subsystem, a main topic area, and a
management issue. The assessment is applied by the
‘perfScale’ and ‘scaleRatio’ properties of the single
Capability Level, specifying that all Capability
Determinators must have the Performance Scale ‘1’. As ISO

293Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 311 / 729

Process
Category
Template

Capability
Level

Template

Process
Template

Base
Practice

Template

Process
Category Process

Perfor
mance
Scale

Base
Practice

Assessment
Process

Assessment
Process

Template

Capability
Determinator

Template

Capability
Level

Capability
Determin

ator
Rating

CMMI
Template

SPICE
Template

ISO 9001
Template

CMMI ISO 9001SPICE

Process
Category
Template

Process
Area

Template Process
Subsystem
TemplateGeneric

Goal
Template

Specific
Goal

Template

Process
Template Main Topic Area

Template

Generic
Practice

Template

Base
Practice

Template

Specific
Practice

Template

Specific
Practice

Template

Base
Practice

Template Management
Issue Template

Capability
Level 2

Maturity
Level 2

Maturity
Level 1

Capability
Level 2 Capability

Level 1

Achievement

Cap
Det

Cap
Det

Cap
Det Cap

Det

Process
Area 1

Process
Area 2

Process
Area 3

4 –
Satisfied 4 – Fully

Achieved

0 – Not
satisfied

1 –
Satisfied

Configuration
Management

Organization Configuration
Management

Establish
Baselines

Institutionalize
a Managed

Process
Improve the

process
Establish
Baselines

Establish an
Organizational

Policy Identify
Configuration

Items

Identify
reusable

components

Identify
Configuration

Items

Capability
Level 2

Maturity
Level 2

Capability
Level 2

AchievementCapability
Determinator

Capability
Determinator

Performance
Management

Work Product
Management

Capability
Determinator

Rating

Rating

Rating

Rating

RatingRating
Rating

2
1

4

2

4

4

2

(a) CMMI (b) ISO 15504 (c) ISO 9001

In
di

vi
du

al
 C

on
ce

pt
s

Te
m

pl
at

e
C

on
ce

pt
s

Figure 2. Realization for specific reference models: (a) CMMI (b) ISO 15504 (c) ISO 9001.

9001 knows no project level, this can be added by using a
separate Assessment Process for each project, and
cumulating the assessment over the whole organization (if all
projects have achieved, the whole organization has
achieved).

D. Performance and Scalability
Process assessment approaches often comprise dozens or

even hundreds of concepts (e.g., SPICE has over 200 base
practices), which implies the creation of an even higher
number of concepts in the ontology to enable automated
assessment. Therefore, the utilization of a separate ontology
for process assessment is considered to keep the operational
ontology of the CoSEEEK framework clean. Furthermore, to
support stability and performance, the CoSEEEK ontologies
are not managed as plain files but stored in a database (using
Protégé functionality). The test configuration consisted of a
PC with an AMD Dual Core Opteron 2.4 GHz processor and
3.2GB RAM with Windows XP Pro (SP3) and the Java
Runtime Environment 1.5.0_20, on which CoSEEEK was
running networked via Gigabit Ethernet to a virtual machine
(cluster with VMware ESX server 4.0, 2 GB RAM allocated
to the VM, dynamic CPU power allocation) where the
AristaFlow process server is installed.

The approach supports model diversity, and thus the
ontology size can vary based on various reference models.
Scalability of the approach was assessed, since a large
number of concepts can be required with complicated
models such as SPICE - which has over 200 Base Practices
that require linking to all process areas and calculation of all
Capability Levels for the Processes. The most resource

intensive point is when the entire Assessment Process for a
project is created, thus performance and scalability tests were
conducted for the automatic creation of linked ontology
concepts, scaling the number of concepts to account for
smaller to larger models.

The results obtained were: 1.7 seconds for the creation
and linking of 100 concepts, 14.2 seconds for the creation
and linking of 1000 concepts, and 131.4 seconds for the
creation and linking of 10000 concepts. The results show
that the computation time is acceptable with approximately
linear scaling. The slight reduction in average creation time
for a single concept is perhaps explainable by reduced
initialization percentages and caching effects. At this stage,
the performance of the Rate Process Performance algorithm
(Listing 1) was not assessed since it is fragmented across a
project timescale (at the beginning the concepts are created
and later the ratings are applied), it is dependent on human
responses (manual ratings), and live project data has not as
yet been collected.

V. RELATED WORK
As to related work, a multi-agent system approach is

presented in [18] to enable automatic measurements for the
SW-CMM (Software Capability Maturity Model). The latter
is combined with the GQM (Goal-Question-Metric) [19]
method, where Goals of the SW-CMM are used as first step
for GQM.

An OWL ontology and reasoner approach for CMMI-SW
(CMMI for Software) is presented in [20]. In contrast to our
approach, the size of the ontology caused issues for the
reasoner. A software process ontology in [21] enables the

294Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 312 / 729

capturing of software processes on a conceptual level. An
extension includes specific models such as SPICE or CMMI.
Ontological modeling of both CMMI and ISO 9001 as well
as certain process interoperability features is shown in [22].
The authors identify issues in consistently implementing
both models simultaneously. This problem was addressed in
our approach by including concepts abstracted from a single
model. In [23], a Process-Centered Software Engineering
Environment supports process implementation focused on
CMMI and a Brazilian process improvement model. For
CMMI-specific appraisals, multiple supportive tools are
available such as the Appraisal Assistant [24]. However,
these focus only on CMMI / SCAMPI support.

We provide a more general and flexible approach, since
the applied concepts are abstracted from a single model. In
contrast to above related work that focused on one or two
specific models, ours is capable of assessment model
diversity as shown in Section IV. Furthermore, it integrates
automated SE process enactment support and supports a
combination of automated and manual ratings. That way, the
assessment is tightly and automatically integrated with SE
process execution support, providing the option of automatic
on-the-fly assessments while preserving the ability for
humans to manually rate practices and processes. This can
support quality awareness.

VI. CONCLUSION AND FUTURE WORK
This paper has described an approach for automating the

assessment of software engineering processes, first
elucidating the differences between three common SE
process reference models, and thereafter presenting our
conceptual framework with semantic extensions to a process-
aware information system. It was shown how process
reference models such as CMMI, ISO 15504, and ISO 9001
were unified in the ontology and the algorithm that performs
the assessment was described. The evaluation demonstrated
the technical feasibility, model diversity, and that
performance with current technology for expected
application scenarios is sufficient.

Our approach is not meant to replace manual ratings or
formal appraisals. In our opinion, this is not possible in an
automated fashion due to the many factors influencing such
ratings in real world process execution. However, our
approach can support data collection, contribute to the
quality awareness of an organization, and highlight areas for
process optimization. Furthermore, it can help prepare an
organization for a formal appraisal.

Future work involves empirical studies to evaluate the
effectiveness of the approach in industrial settings with a
variety of software organizations, with various SE process
lifecycle models in various projects, at various process
capability levels and utilizing different process assessment
standards simultaneously.

ACKNOWLEDGMENT
This work was sponsored by the BMBF (Federal

Ministry of Education and Research) of the Federal Republic
of Germany under Contract No. 17N4809.

REFERENCES
[1] P. Bourque and R. Dupuis, (ed.), “Guide to the Software Engineering

Body of Knowledge”, IEEE Computer Society, 2004.
[2] CMMI Product Team, “CMMI for Development, Version 1.3,”

Software Engineering Institute, Carnegie Mellon University, 2010.
[3] ISO, “ISO/IEC 15504-2 -- Part 2: Performing an assessment,” 2003.
[4] R. Bamford, and W. J. Deibler, “ISO 9001: 2000 for software and

systems providers: an engineering approach,” CRC-Press, 2004.
[5] M. Reichert and B. Weber, “Enabling Flexibility in Process-aware

Information Systems – Challenges, Methods, Technologies,”
Springer, 2012.

[6] G. Grambow, R. Oberhauser, and M. Reichert, “Towards Dynamic
Knowledge Support in Software Engineering Processes,” 6th Int’l
Workshop Applications of Semantic Technologies, 2011, pp. 149.

[7] R. Oberhauser and R. Schmidt, “Towards a Holistic Integration of
Software Lifecycle Processes using the Semantic Web,” Proc. 2nd
Int. Conf. on Software and Data Technologies, 3, 2007, pp. 137-144.

[8] SCAMPI Upgrade Team, "Standard CMMI Appraisal Method for
Process Improvement (SCAMPI) A, v. 1.3," Software Engineering
Institute, 2011.

[9] ISO, “ISO/IEC 15504-5:2012 -- Part 5: An exemplar software life
cycle process assessment model,” 2012.

[10] ISO, “ISO/IEC 12207:2008 -- Software life cycle processes,” 2008.
[11] “ISO 19011 - Guidelines for auditing management systems,” 2011.
[12] World Wide Web Consortium, “OWL Web Ontology Language

Semantics and Abstract Syntax,” 2004.
[13] E. Sirin, , B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet:

A practical owl-dl reasoner,” Web Semantics: Science, Services and
Agents on the World Wide Web, 5(2), 2007, pp. 51-53.

[14] P.M. Johnson, “Requirement and design trade-offs in Hackystat: An
in-process software engineering measurement and analysis system,”
Proc. 1st Int. Symp. on Empirical Software Engineering and
Measurement, 2007, pp. 81-90.

[15] P. Dadam and M. Reichert, “The ADEPT project: a decade of
research and development for robust and flexible process support,”
Computer Science-Research & Development, 23(2), 2009, pp. 81-97.

[16] G. Grambow, R. Oberhauser, and M. Reichert, “Knowledge
Provisioning: A Context-Sensitive Process-Oriented Approach
Applied to Software Engineering Environments,” Proc. 7th Int’l
Conf. on Software and Data Technologies, 2012.

[17] G. Grambow, R. Oberhauser, and M. Reichert, “Contextual Injection
of Quality Measures into Software Engineering Processes,” Int'l
Journal on Advances in Software, 4(1 & 2), 2011, pp. 76-99.

[18] M.A. Seyyedi, M. Teshnehlab, and F. Shams, “Measuring software
processes performance based on the fuzzy multi agent
measurements,” Proc. Intl Conf. on Information Technology: Coding
and Computing (ITCC'05) – Vol. II, IEEE CS, 2005, pp. 410-415.

[19] V.R. Basili, V.R.B.G. Caldiera, and H.D. Rombach, “The goal
question metric approach,” Encycl. of SW Eng., 2, 1994, pp. 528-532.

[20] G.H. Soydan and M. Kokar, “An OWL ontology for representing the
CMMI-SW model,” Proc. 2nd Int'l Workshop on Semantic Web
Enabled Software Engineering, 2006, pp. 1-14.

[21] L. Liao, Y. Qu, and H. Leung, “A software process ontology and its
application,” Proc. ISWC2005 Workshop on Semantic Web Enabled
Software Engineering, 2005, pp. 6–10.

[22] A. Ferchichi, M. Bigand, and H. Lefebvre, “An ontology for quality
standards integration in software collaborative projects,” Proc. 1st
Int'l Workshop on Model Driven Interoperability for Sustainable
Information Systems, 2008, pp. 17-30.

[23] M. Montoni et al., “Taba workstation: Supporting software process
deployment based on CMMI and MR-MPS,” Proc. 7th Int’l Conf. on
Product-Focused Software Process Improvement, 2006, pp. 249-262.

[24] Appraisal Assistant,
http://www.sqi.gu.edu.au/AppraisalAssistant/about.html [July 2012]

295Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 313 / 729

Specification of Formalized Software Patterns for the

Development of User Interfaces

Danny Ammon, Stefan Wendler, Teodora Kikova, Ilka Philippow

Software Systems / Process Informatics Department

Ilmenau University of Technology

Ilmenau, Germany

{danny.ammon, stefan.wendler, teodora.kikova, ilka.philippow}@tu-ilmenau.de

Abstract — The aim of this paper is the development of

specifications for a general analysis model for user interface

patterns that can be applied in a model-based user interface

development process. To accomplish this, we compile a detailed

definition of what user interface patterns are and how they can

be classified. Furthermore, we analyze how available methods

and notations can be used for a pattern application in user

interface development, based on two exemplary applications of

the pattern “Advanced Search” in the formal notations UIML

and UsiXML. From the resulting possibilities and limitations

in identification, selection, instantiation and integration of user

interface patterns, we derive specifications for a sufficient

pattern description and development integration method: an

exact definition, a metamodel, a specialized language, and, in

practice, a repository or pattern management software.

Keywords — user interface patterns; user interface

development; pattern specifications; UIML; UsiXML.

I. INTRODUCTION

A. Motivation

The design and implementation of user interfaces is still a
complex and resource-consuming task. In general, pattern-
based software development is a means to more efficient
implementation by applying reusable solutions for
miscellaneous software design problem classes. In this
regard, the use of software patterns in user interface
development would offer generic solutions for recurring
components of a user interface, depending on a certain
interface paradigm. Navigation through tabs, for example,
would be a feasible solution for the need to switch between
complex sets of documents, websites, forms, etc. in graphical
and touch user interfaces.

Currently, the application of such user interface patterns
is situated only on an informal level with textual descriptions
of common design solutions [1]. There is only limited
research into generative, formalized user interface patterns,
which can be applied for the automation of re-use of design
solutions [1]. In this regard, methods for the development of
user interfaces were introduced, starting at the stage of task
or system models and matching user interface patterns with
parts of these models [2][3].

However, we found no consistent suggestion of a pattern-
based user interface design and implementation process,
which combines a sufficient pattern repository, consisting of
formalized user interface patterns, and an end-to-end solution
of model-based pattern matching, selection, instantiation,
and code generation. In addition, a generally accepted

notation for user interface patterns is missing, which allows
an abstract formulation of human-computer interaction
components. Being transferable into concrete user interface-
part descriptions and, finally, instantiable into source code,
these abstract components could be deployed to form
elements of real user interface patterns and thus facilitate
reuse in GUI development.

B. Objectives

The aim of this paper is the development of a
specification for a general analysis model that describes
generative user interface patterns so that their common
aspects can be identified and captured. This basic
specification and its understanding are needed for the
integration of methods that enable the matching and code
generation based on the application of these patterns. We
explicate how available methods and notations could be used
for a user interface pattern repository or pattern manager.
Moreover, we analyze the strengths and weaknesses of these
existing assets and point out what better suitable methods
and formats would have to be capable of. A sufficient
solution for pattern-based user interface development should
particularly meet the following criteria:

• reusability and variability of stored user interface
patterns

• ability of user interface patterns to be composed in
order to form a hierarchy of GUI components

• instantiation of user interface patterns into varying
interface paradigms and types

Based on these criteria, we review the state of the art and
describe a perspective on user interface patterns that paves
the way for the specification of a sophisticated metamodel
needed in model-based user interface development
environments.

C. Structure of the Paper

In Section II, we analyze existing methods of user
interface development and independent interface description
languages. We also outline the current status of the
application of user interface patterns in the development
process. In Section III, we propose a definition and
characterization of user interface patterns, their inclusion
criteria and dimensions. We use this definition to establish
and utilize a formalized pattern, advanced search, for the
application of current methods and notations in Sections IV
and V. We show the results and weaknesses of our work and
derive requirements for a fully applicable formal pattern
description language in Section VI. Finally, in Section VII

296Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 314 / 729

we conclude with specifications for formalized user interface
patterns, which will meet the three criteria mentioned in our
objectives.

II. RELATED WORK

A. User Interface Development and Description

Today, the design and implementation of a software user
interface mainly concentrates on the basic conditions and
abilities of the before-chosen programming language and
used software frameworks or libraries. After the general
design of a user interface, the implementation is in focus,
whether it is in Java Swing, HTML and CSS or C# and the
XAML, to name only a few examples. While there has been
a lot of research conducted on model-based user interface
development, only a limited number of generic model
concepts for a methodic interface design exist. One of these
can be found in [4], where common steps of a user interface
development process are explicated. Four model layers and
corresponding transformations to derive user interface
specifications from requirement models are proposed by
Ludolph.

Another approach relies on a UML-based design of user
interface software architecture [5]. Chlebek describes a
comprehensive process and provides several perspectives
onto the user interface development. Also, a special
description language for the development process, which is
independent from target source code, is used by him.

A greater number of platform-independent user interface
description languages do exist. These languages are often
XML-based and thus markup languages. Some of them have
been developed for certain software projects or company-
specific programming tools, such as XUL [6] and XAML
[7]. Others, like UIML [8][9] and UsiXML [10], are results
of research projects, but are rarely used in practice.

None of those generic concepts for interface development
processes we found enabled the application of user interface
patterns. Neither do independent user interface description
languages have sufficient capabilities to store user interface
patterns in their format. The GUI aspects described by these
languages tend to be invariant and too concrete in
specification [11] so that they do not provide any means to
adapt the user interface to varying contexts. However,
several special approaches for an integration of patterns into
user interface development exist, which are outlined in the
following subsection.

B. Pattern-based User Interface Development

Currently, there is no generally accepted definition of
software patterns for user interface development. Instead,
different concepts and terms exist, such as user interface
patterns, user interface design patterns, or human-computer
interaction patterns. Most of them refer to textual and
graphical descriptions as solutions of a user interface design
problem concerning mostly visual aspects and interaction
concepts. These are termed descriptive user interface patterns
[1]. Several libraries of descriptive patterns exist, such as
[12][13][14]. Rarely do such descriptive pattern collections
provide implementation details [15].

For a direct integration of reusable patterns for the user
interface into a development environment, formal models or

notations are needed, which enable a certain functionality
and can be instantiated into certain model stages or source
code, like design patterns. This variant is called generative
pattern [1].

Generative patterns can be applied in a pattern-based user
interface development process. One example of such a
development process has been created by the University of
Rostock in Germany [3][16][17][18][19][20]. Therein,
model-based and pattern-driven design has been integrated
by using several model layers (task, dialog, presentation and
layout) to perform an identification and a selection, an
instantiation and an integration of user interface patterns
during the generation of the used models [3]. A tool has been
developed, which supports this integrated development [3].
The user interface patterns are stored as fragments of the
used models (“patterns in modeling”). They are used for
more efficient modeling steps (“accelerating the design”)
[18]. In a similar approach, an enhanced CASE tool was
suggested, where user interface patterns are stored as class
diagrams [2]. The static description of classes is then
matched with the existing patterns, enabling a high level
design of systems and their user interface. Identified classes
can be replaced by the corresponding stored pattern, which is
again a contribution to efficiency of the interface
development process at the modeling level.

Other approaches go further to the generation of formal
user interface description or source code [16][17]. Here,
XUL is used to store formalized patterns, or a combination
of PLML [21], UsiXML and additional components [22].

However, due to the used description languages, only one
interaction paradigm is supported — the so-called WIMP
(windows, icons, menus and pointer) interface typical for
modern desktop computer and notebook operating systems.
Furthermore, a major issue of the suggested integration of
patterns in the development process is the need for manual
retouching work. In this respect, the pattern instances have to
be created manually by adapting them to their application
context. In addition, not all kinds of patterns are supported.
The occurrence of sub-patterns is the only relation between
user interface patterns, which is dealt with in detail.

Starting with the definition itself, currently there is no
consent to the arrangement of software patterns for the
development of user interfaces, their structure and
characteristics, as well as their relations among each other
and to other software patterns.

III. USER INTERFACE PATTERNS: DEFINITION AND

CHARACTERISTICS

A generally acceptable definition of software patterns in
user interface development should not only describe
precisely what a pattern is and how it can be reused and
adapted. Additionally, it should combine the several
dimensions these patterns can be classified with. Thus, we
propose the following definition:

In general, user interface patterns are software patterns,
which can be applied for the specification, description and
development of user interfaces.

As there is no common basis in literature for user
interface pattern characteristics, the definition above is to be
refined by our findings and arguments focused on the

297Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 315 / 729

compositional view on user interface patterns we gathered
during our observations in an industry project. The
argumentative perspective presented here leads to
requirements for a formal definition of user interface patterns
that can be implemented by a metamodel in future work. To
establish a more detailed clarification we describe the aspects
a user interface pattern basically consists of in the following
sub-section.

A. User Interface Pattern Aspects

Firstly, a user interface pattern incorporates a stereotype
but abstract view. This aspect defines the selection,
arrangement and types of user interface controls. Regarding
this aspect, the user interface pattern does not refer to certain
GUI frameworks so that the view can be implemented using
different languages and technologies. In addition, the view is
abstract in order to allow its application in various contexts.
The abstract manner of view is backed by other user
interface pattern specification language sources. For
instance, the “facets” and “Abstract Interaction Objects” of
the “abstract UI model” in [1] imply a view that has to be
refined and transformed to certain platforms and renderings
[10]. Besides UsiXML, UIML [8] specifications can be used
to define a view composed of abstract elements in its
structure section, which will be refined by a peer section to
translate the view elements to certain GUI framework
components or user interface controls.

Many user interface pattern libraries like [12][13] only
focus on the view aspect. Metaphors [4][11] like trash bins
and shopping carts may represent the foundation for the
views of user interface patterns, but they also drive the
aspect of interaction.

Secondly, a user interface pattern embodies a stereotype
interaction. An interaction between a user and several user
interface pattern instances of a certain type is always
perceived and performed in the same way by the user. For
example, each time a user interacts with a “Search Box”
[12], he inputs the search string, selects the search category
using the list box and finally triggers the actual search with
the button. The options and sequences of interaction along
with related behavior are defined independently from the
context the pattern is being used in. Another example
underlines that: A set of checkboxes is used to select only
two options out of many available. The user interface pattern
has to enable this constraint in its definition, regardless of the
actual number of checkboxes within the possible pattern
instances. Forming a unit of general purpose and
applicability together with the view aspect, the interaction
aspect adds essential value to the user interface pattern
definition, which is reusable in many contexts, accordingly.
The interaction strongly relies on and refers to the view
aspect. This unity of view and interaction primarily forms the
reusable entity and distinguishes the user interface pattern
from ordinary GUI framework components and composite
user interface controls.

Thirdly, besides the first two mandatory aspects, a user
interface pattern may define an optional context dependent
control. This aspect is primarily needed for user interface
patterns that are composed of several user interface controls
or even other user interface patterns. These composite

patterns react on the context they are applied to by selecting,
instantiating and configuring their child elements. An
example for such a pattern is given by the “Advanced
Search” [12], which enables the user to select search criteria
depending on the object to be searched. This particular
pattern offers “a special function with extended term
matching, scoping and output options”, when “users need to
find a specific item in a large collection of items” [12]. A
possible interface of an advanced search pattern instance is
drawn in Figure 1.

Figure 1. Interface example for an advanced search dialog

Each search criterion line refers to one of the object
attributes’ data type and thus can be regarded as a smaller
user interface pattern that is instantiated on demand. For all
money types, as shown in Figure 1, two values can be
entered as search parameters. Each time a money type
occurs, the same view and behavior are to be instantiated,
hence this type of search criterion line is defined as a user
interface pattern.

Another example is depicted in Figure 2. This dialog is
composed of several user interface patterns working
together. A “Data Table” [13], which is configured
according to the object to be displayed, is arranged on the
right hand side. On the left hand side, a search refinement
can be specified using the given criteria, which are derived
from the objects’ attributes and their data. The main user
interface pattern defines the entire “Search Results” tab,
configures and instantiates its child patterns depending on
the object and its attributes to be searched. Eventually, the
interaction aspect of the dialog is distributed along the
pattern instances. The controlling aspect of the main pattern
handles the lifecycle of each child pattern instance and
queries their interaction events in order to complete its own
interaction sequence. For example, only the activated search
criteria in Figure 2 are considered for compiling search data,
when the button “Refine Search” is activated. Thus, the
second aspect of user interface patterns provides the input for
the controlling mechanism of more sophisticated or
hierarchical user interface patterns. The need for a
controlling aspect depends on the structure and purpose of
the pattern itself. The simple search box does not need the
third aspect, since it always features the same visuals,
configured data and output events or data. Its behavior is
limited to states that can be determined at design time easily.
In contrast, the states of the “Advanced Search” or “Search
Refinement” can be determined only at runtime, with

298Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 316 / 729

knowledge about the application context, and finally, user
inputs.

Figure 2. Interface example for a search results dialog

According to the need for the controlling aspect, more
examples of user interface patterns are “Wizard” [12] or
reusable dialog types like the “Search Refinement” that may
act as templates for several dialog instances. The context the
controlling aspect of the pattern relies on can be embodied
by a static artifact, e.g., an object and its attributes, or
dynamic artifact, e.g., a state machine or task model. By
referring to the latter, an implicit connection to the dialog
controller of the software architecture can be established.

B. Variability Perspective on User Interface Patterns

The instantiation of a user interface pattern for varying
contexts will result in implementations of given architectural
components that differ in certain aspects. That is why we
refer to the common architectural pattern MVC [23] as a
perspective for discussing the adaptability, variability and
reuse of user interface patterns in different contexts.

Firstly, the easiest way of applying a user interface
pattern in various contexts can be established by adapting it
to accept a range of data types for its defined view aspect
elements. For instance, a “Data Table” [13] being part of a
user interface pattern view aspect will be instantiated for
displaying a variety of business objects with different data
types in their attributes. Another example is given by “Event
Calendar” [12] or similar patterns, which interpret the given
values within the model by proving an appropriate display of
data. This kind of reuse would only affect the model part of
the architecture.

Secondly, user interface patterns need to be adapted to
the actual dialog layout. A “Double Tab Navigation” [12]
needs to be shaped to the actual menu contents and layout to
be displayed, for example. This results in a change of the
presentation (view) component and related events, where the
number, ordering and layout of required user interface
controls have to be determined and implemented
accordingly. Consequently, user interface patterns act as
templates for the static and dynamic aspects of the view
component and its presentation control. Therefore, the view
and its related controller have to be adapted.

Thirdly, besides the prior concerns, composite user
interface patterns have to feature variability regarding their
controlling aspect. The controller of an MVC triad can be
considered to be acting on two different levels. One part of
the controller is responsible for the visual event handling
only and is closely related to the view aspect of a user
interface pattern instance. Due to cohesion and coupling
concerns, the scope of this controller should be limited to
one visual design unit, meaning one user interface pattern
instance and its specified behavior at a time. The other part
of the controller should handle the application related or
logical behavior. Since user interface patterns can be
composite, controllers should follow the same structure and
be assigned to the individual pattern instances. With this
compositional structure of the patterns and the controllers
accordingly, the reuse of certain combinations of patterns
will be facilitated.

An example depicting the variability of user interface
patterns is given in Figure 3. On each side of the upper half a
visual representation of a user interface pattern specification
is shown. The first dialog sketch defines the view used for a
business object and the tabs, which establish the navigation
structure a user might interact with. The second dialog sketch
above visualizes a sub-pattern that is used for the
“Properties” tab. Therefore, the example consists of a
composite user interface pattern. Possible instances of the
two patterns are shown below. Concerning variability of
model data and presentation (view), the specific dialog on
the lower right hand side shows that displayed data and
corresponding user interface controls are chosen dynamically
for the object the pattern instance is assigned to.

Figure 3. User interface pattern templates (above) and instances (below)

Especially the “Search Term” attribute is to be mentioned, as
there is a distinction between text fields and list boxes
regarding the data type. The lower left hand side dialog
sketch has fixed visuals and data assignments, but it is
variable, as it considers the actual type and number of
associations an object may possess. For each association, an
assignment dialog is presented that can be accessed by the
dynamically instantiated tab. In the example, “Products” and
“Quotes” tabs refer to the associations of the object
“Supplier”.

299Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 317 / 729

To conclude, a user interface pattern specification has to
enable the definition and distinction of all three aspects in
order to provide the preconditions for effective reuse and
variability. User interface patterns are meant to be adapted to
different data types to be displayed. In addition, they need to
be aware of the number and layout of their view components.
Lastly, user interface patterns do not only need to adapt to
their own variable interaction, which depends on actual view
component instances, furthermore they need to define a
variable control to enable the collaboration of and interaction
with their child elements.

C. Classifying Dimensions for User Interface Patterns

We refer to the following dimensions to classify user
interface patterns:

The degree of formalization distinguishes between
descriptive and generative patterns [1]. The argument has
been raised that a user interface pattern needs a rich human
understandable specification. The latter resembles merely a
description in prose and represents descriptive patterns,
which cannot be processed by generators and other tools of
the development environment. Thus, a machine-readable
form amends the user interface pattern entity to a generative
pattern [1].

The user paradigm reflects how the users’ tasks will be
supported by the entire user interface. Ludolph [4] mentions
the design of object-oriented user interfaces, which enable
the user to manipulate only one object in a dialog at once, as
well as the procedural paradigm, which allows the user to
accomplish a complete process consisting of several steps in
a defined sequence. These options are complemented by the
function-oriented paradigm, which provides a dialog for
completing a certain step or complex task out of a process
working with more than one object. The user interface
patterns vary in their capability to support the three
paradigms. For instance, the “Wizard” [12] is intended to
build a procedural user interface. Other user interface
patterns can be compiled to display the data of several
business objects and form a collaboration to support the user
concerning a certain function.

The variability of the user interface pattern can also
serve as a dimension. There are patterns, which hardly
feature any variability between their instances. For instance,
“Breadcrumbs” [13], an “Event Calendar” [12], or a “Date
Selector” [12] always feature the same abstract visuals and
interactive behavior. So these patterns are called static or
invariant patterns, with respect to the visual and interaction
aspects. The other patterns with true variability in view,
interaction and even control can be called dynamic user
interface patterns.

A final dimension can be proposed with the application
area: Firstly, user interface patterns can be interface-specific
(graphical user interfaces — GUI, text-based interface or
spoken dialog systems, etc.). Secondly, paradigm-specific
(WIMP or touch-based interface, etc.) patterns can be
differed. Thirdly, some system-specific patterns (Windows,
MacOS, Android or iOS, etc.) have emerged from the
appropriate GUI specification guidelines. Finally, user
interface patterns can be closely associated with a certain
domain (eBusiness, simulation systems, etc.). Remarkable

reuse across different systems in similar use cases of a
domain may be driven by a stable set of user interface
patterns.

Finally, user interface patterns within the given
dimension can be related to each other. For example,
interface-specific user interface patterns often do have
different system-specific appearances. Particularly for
descriptive and generative descriptions of one pattern, we
suggest that they should be made available in a linked form
in future user interface pattern libraries in order to facilitate
the understandability of both human and machine involved
in the same development process. In this context, current
(descriptive) patterns libraries also have to be checked if all
containing pattern descriptions fulfill the aforementioned
definition and criteria of a user interface pattern.

IV. FORMAL DESCRIPTION OF GUI PATTERNS

In the following two sections, we describe an assessment
of the capabilities of pattern-based user interface
development with respect to the application of current
methods and notations. To accomplish this, we outline two
practical examples of formalizing and utilizing patterns from
general description to their application in source code. Since
the state of research in generative user interface patterns
mainly focuses on the WIMP paradigm, we also concentrate
on that area.

GUI patterns are generative user interface patterns with
an application area in WIMP software. Formal notations are
necessary to implement generative GUI patterns. Since there
is no generally used pattern language, independent user
interface description languages are widely applied for
formalizing GUI patterns (see Section II). In our prior work,
we conducted an extensive investigation on formal graphical
user interface specification languages and their applicability
for GUI patterns. Such languages offer elements like
templates (UIML) and abstract as well as concrete models
(UsiXML). Both have been developed further by extensive
work of research and have reached a high level of maturity.
Therefore, we used UIML and UsiXML for the formalization
of exemplary GUI patterns. For our analysis, we focus on the
GUI pattern “Advanced Search” (Figure 1).

For a formalization of the advanced search pattern in
UIML and UsiXML, at first we analyzed the components
and dynamics of the pattern and found the following
contents:

Advanced search view aspect:

• User interface controls: text field, dropdown list,
checkbox, button

• Possible sub-pattern: „Date Selector“ [12] for date
data types within the objects

• Layout: four-column grid with a dynamically
varying number of rows (search attribute, search
criterion or value, logical conjunction, add or
remove function)

Advanced search interaction aspect:

• Input parameters consisting of attributes and their
values of searchable objects

• Output result: logical conjunction of search clauses

300Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 318 / 729

Advanced search control aspect:

• 1. Selection of search criteria from dropdown list
determines input form of search value,

• 2. Click on plus button adds another search clause,

• 3. Click on minus button deletes last search clause,

• 4. Click on search button sends finished search
clauses

These results can be used as specifications for a formal

notation of the advanced search pattern. In UIML, a static
interface part (view aspect) is described in structure tags,
while changes in this part during runtime, which are
triggered by user interaction, can be described in behavior
tags (Figure 4). By implementing certain rules of changing
structural code depending on input, the interface can be
manipulated in various ways. These rules contain the
condition they are triggered by and the specific action, which
is performed. Through the application of parameter-driven
templates, parts of structural code, and thus portions of the
view aspect, can also be reused. By implementing these
UIML concepts, the view and interaction aspects of an
advanced search can be represented.

u im l

head

in te rfa ce

stru c tu re

behav io r

con ten t

pa rt

pa rt

va r iab le

ru le

ru le

co nd it ion

act ion

..... .

.. .

Figure 4. UIML structure for advanced search description

The UsiXML language relies on more complex and
methodic specifications. Here, different kinds of models in a
model-based interface development process are proposed.
The most important are the following: The abstract user
interface model (AUI), where a user interface can be
described independently from the type of interface,
paradigm, system or software (see Section III, application
area of user interface patterns). Such abstract models can be
concretized in the concrete user interface model (CUI),
which relies on GUI description, much like UIML. Other
models describe the processes of interaction with the planned
interface (task model), static data and functions of it (domain
model) or show connections between the different models
(mapping model) [10]. For our description of an advanced
search GUI pattern we focused on the CUI, where a GUI part
can be differentiated into several windows with their own
user interface controls and behaviors (Figure 5). However,
UsiXML does not allow the use of variables or dynamic
manipulations of already described window contents, like
UIML does. Therefore, a complete advanced search with a
potentially unlimited number of search clauses could not be
implemented.

u iM ode l

head

cu iM ode l

w indow

w indow

......

com boBox

inputText

buttonVU I

...

content

behav io r

behav io r

Figure 5. UsiXML structure for advanced search description

While XML is a good format for the view aspect of
machine and human readable user interface patterns and
therefore, in a way, generative as well as descriptive patterns,
major problems of the use of interface description languages
arise from the nature of patterns: Those languages are not
created for the storage of incomplete, template-like interface
descriptions, which are missing all concrete specifications,
e.g., of user interface controls. This incomplete description
often cannot be fully linked to the interaction or control
aspects of the pattern. Certain limitations of the description
languages, especially in UsiXML, also prevent the complete
implementation of the interaction or control aspect.
Furthermore, most of the languages are adapted to graphical
user interfaces under the WIMP paradigm and do not allow
the description of other interface types (an exception is the
UsiXML AUI model). To achieve a full variability, which
supports all mentioned aspects and dimensions outlined in
Section III, the option to describe other interface types would
be necessary. Finally, code in independent user interface
description languages is built to be rendered in the user
interface programming language, once the development is
nearing completion. Here, several renderers for UIML and
UsiXML already exist. The integration of user interface
patterns into the code generation process, however, is not
comparable to a rendering, since these patterns need to be
instantiated first. The following subsection deals with a
concept for these necessary development steps.

V. INSTANTIATION AND CODE GENERATION

Necessary for the application of existing generative user
interface patterns is their procedural and technical integration
into user interface development. This includes the steps of
identification, selection, instantiation and integration of user
interface patterns [3].

An identification of patterns in a planned user interface
can take place at the modeling stage. The occurrence of user
interface patterns can be identified in dynamic descriptions
of a desired interaction process, namely in task models, or in
static model components, like class diagrams. This part of
pattern-based development is well-researched (see
Subsection II.B for references to examples).

Also, the selection of patterns can be accomplished
easily. Formalized and generative user interface patterns
have to be stored in a pattern repository. Upon identification
of patterns in a model, a list of suggestions with identified
patterns should be displayed and desired patterns can be
selected. Again, suggestions for pattern storage and selection
have been made in the references in Subsection II.B.

Identification and selection of patterns are part of system
interface modeling. Thus, the described technical solutions

301Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 319 / 729

can be plugins or special applications for the integration of
patterns in this process.

The next necessary step is the instantiation of patterns.
Since software patterns are general descriptions, which are
independent from a concrete modeling or implementation
scenario, specific details are missing. For this reason, the
user interface descriptions outlined in Section IV are
incomplete, template-like. For example, in the advanced
search pattern, as described above, the content and layout of
the dropdown list a user selects attributes of the searchable
objects with is missing, since these objects and their
attributes vary in each specific implementation of an
advanced search (searching in emails, products, pictures,
etc.).

The instantiation fills these gaps in a user interface
pattern with specific values. Thus, the result of an
instantiated user interface pattern is a complete description of
this special part of the user interface. For the use of
independent interface descriptions, like UIML and UsiXML,
that means a complete description and a valid XML-based
document is achieved only after instantiation. An instantiated
user interface pattern in UIML or UsiXML can be rendered
in the final interface language. Therefore, the general process
of generating source code from user interface patterns will be
as depicted in Figure 6.

Figure 6. User interface pattern instantiantion and rendering

The next step is the integration of instantiated patterns in
the interface implementation. Besides rendering, the main
task of the integration is the establishment and application of
a relation between selected patterns or patterns and other
parts of the source code. The key to these relations is the
existence of defined input parameters and output results for
each pattern. For the advanced search pattern as an example,
input parameters and output results are defined in Section IV.
The output result of a user interface pattern, e.g., a set of
found objects from an advanced search, can serve as an input
for another pattern, in this case a search results pattern [12].
Or, input parameters and output results of interactions in user
interface patterns can be used to connect the integration of
patterns in components of finished source code manually.

For XML-based user interface description languages,
renderers can be applied to get source code from instantiated
patterns. Since for our example, advanced search, no
sufficient renderer was available, we implemented XSLT
scripts for the transformation of UIML and UsiXML patterns
into JavaScript and HTML code.

VI. RESULTS AND DISCUSSION

Through the exemplary formalization, instantiation and
code generation of the user interface pattern “Advanced
Search”, we could assess the possibilities and limitations of
current methods for pattern-based user interface
development. Basically, a formal description of GUI patterns
is possible, and after that, they can be instantiated and
transformed into source code.

The application of UsiXML shows that, while it supports
abstract user interface models, it does not allow dynamic
creation and manipulation of interface parts in a UsiXML
document yet. Therefore, UIML is better suited to store user
interface patterns in an existing XML-based interface
description language.

However, user interface description languages are not
exactly suitable for the storage of user interface patterns, as
shown in the previous sections. They are missing options of
template-like interface descriptions without layout or content
specifications, so that only after instantiation, valid
descriptions are established. Thus, the first of our criteria for
the analysis of current pattern-based interface development
methods from Section I.B, the variability and reusability of
stored patterns, is not met through the use of general XML-
based description languages.

A composition of user interface patterns and their
integration into the source code is also possible through the
steps outlined in Section V. A full composition ability of
user interface patterns to form a hierarchy of GUI
components, however, fails with current established methods
because there is no standardized functionality of pattern
storage, instantiation and code integration. Such a part of
development tools could be called pattern manager and
should be able to suggest, instantiate, connect and generate
source code of user interface patterns, which are stored in a
pattern repository. A standard exchange format of
communication between patterns is also missing, since our
definition of input parameters and output results is
applicable, but arbitrary and not further developed. Thus, the
second criterion of our objectives is also not met.

A pattern instantiation into varying interface paradigms
and types as named in our last criterion is not possible with
the application of GUI-specific description languages.
UsiXML supports an abstract user interface model, but only
as a component of a GUI description, not as a separately
usable model. The degree of abstraction of the AUI is too
high; it does not contain a complete interaction or
communication model, so that it is not sufficient for the
storage of a complete user interface pattern.

An implementation of variability, hierarchy and
interaction of a composition of user interface patterns with
the application of current notations is a very difficult task.
Moreover, a pattern lifecycle with independent
formalization, instantiation and code generation is very
extensive and could be less complex.

In our conclusion we will use the developed criteria and
found shortcomings of current pattern-based interface
development to define first specifications of improved
methods and notations.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have shown that current solutions for
pattern-based user interface development do not meet the
criteria of a complete and efficient design method for any
kind of user interface.

Based on the results of our practical formalization,
instantiation and code generation of the advanced search user
interface pattern, we propose the following specifications of

302Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 320 / 729

a sufficient pattern description and development integration
method:

• An exact definition of generative user interface
patterns: inclusion and exclusion criteria,
characteristics, adaptability and composition ability
should be established to describe them as artifacts in
the development process. We proposed a first
version in Section III.

• A metamodel for the structure and behavior of user
interface patterns, which reflects the defined aspects.
It would serve as a guideline for a standardized
pattern implementation, as well as a method for
traceability of certain aspects between different
phases of the interface development.

• A specialized pattern language, which allows an
exact and formal representation of patterns according
to the definition and their metamodel.

And, as a practical addition:

• A development tool or module for user interface
development, which contains the pattern repository
and the pattern manager and offers the
functionality described in Section VI. Here, it should
be resorted to implementation and storage standards
to assure the availability of such a tool in different
development environments. The full lifecycle of user
interface patterns, from their creation to their
application and further development, should be
supported.

Based upon these specifications, a practical solution can

be approached. In our further research, we plan to
concentrate on proposing a metamodel for generative user
interface patterns as well as a first draft for a special
description language for user interface patterns.

REFERENCES

[1] J. Vanderdonckt and F.M. Simarro, “Generative pattern-based
Design of User Interfaces,” Proc. 1st International Workshop
on Pattern-Driven Engineering of Interactive Computing
Systems (PEICS '10), ACM, June 2012, pp. 12-19, doi:
10.1145/1824749.1824753.

[2] R. Beale and B. Bordbar, “Pattern Tool Support to Guide
Interface Design,” Human-Computer Interaction (INTERACT
2011), LNCS Vol. 6947, 2011, pp. 359-375.

[3] F. Radeke, P. Forbrig, A. Seffah, and D. Sinnig, “PIM Tool:
Support for Pattern-driven and Model-based UI
development,” Proc. the 5th International Conference on Task
Models and Diagrams for Users Interface Design
(TAMODIA'06), LNCS Vol. 4385, 2006, pp. 82-96.

[4] M. Ludolph, “Model-based User Interface Design: Successive
Transformations of a Task/Object Model,” in User Interface
Design: Bridging the Gap from User Requirements to Design,
CRC Press, Boca Raton, Ed.: L.E. Wood, 1998, pp. 81-108.

[5] P. Chlebek, “User Interface-orientierte Softwarearchitektur,”
Mainz: Vieweg, 2006.

[6] Mozilla Developer Network, “XUL,” https://developer.
mozilla.org/en/XUL 25.06.2012.

[7] Microsoft, “XAML in WPF,” http://msdn.microsoft.com/en-
us/library/ms747122.aspx 25.06.2012.

[8] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster, “UIML: An Appliance-
Independent XML User Interface Language,” Proc. Eighth
International World Wide Web Conference (WWW’8),
Elsevier Science Pub., May 1999.

[9] UIML 4.0 specification, http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=uiml 10.05.2012.

[10] J. Vanderdonckt, Q. Limbourg, B. Michotte, L. Bouillon, D.
Trevisan, and M. Florins, “UsiXML: a User Interface
Description Language for Specifying multimodal User
Interfaces,” Proc. W3C Workshop on Multimodal Interaction
(WMI'2004), 19-20 July 2004.

[11] S. Wendler, D. Ammon, T. Kikova, and I. Philippow,
“Development of Graphical User Interfaces based on User
Interface Patterns,” Proc. PATTERNS 2012, 22-27 July 2012.

[12] M. van Welie, “A pattern library for interaction design,”
http://www.welie.com 10.05.2012.

[13] Open UI Pattern Library, http://www.patternry.com
10.05.2012.

[14] A. Toxboe, “User Interface Design Pattern Library,”
http://www.ui-patterns.com 10.05.2012.

[15] J. Engel, C. Herdin, and C. Maertin, “Exploiting HCI Pattern
Collections for User Interface Generation,” Proc. PATTERNS
2012, 22-27 July 2012.

[16] A. Wolff, P. Forbrig, and D. Reichart, “Tool Support for
Model-Based Generation of Advanced User Interfaces,” Proc.
MoDELS'05 Workshop on Model Driven Development of
Advanced User Interfaces, Montego Bay, Jamaica, 2 October
2005.

[17] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Tool
Support for an Evolutionary Design Process using Patterns,”
Proc. Workshop on Multi-channel Adaptive Context-sensitive
(MAC) Systems: Building Links Between Research
Communities, Glasgow, 15 May 2006.

[18] M. Wurdel, P. Forbrig, T. Radhakrishnan, and D. Sinnig,
“Patterns for Task- and Dialog-Modeling,” J.A. Jacko (ed.)
HCI International 2007, Beijing, 22-27 July 2007, pp. 1226-
1235.

[19] D. Reichart, A. Dittmar, P. Forbrig, and M. Wurdel, “Tool
Support for Representing Task Models, Dialog Models and
User-Interface Specifications,” Interactive Systems, Design,
Specification, and Verification (DSVIS'2008), LNCS Vol.
4323, 2008, pp. 92-95.

[20] A. Wolff and P. Forbrig, “Deriving User Interfaces from Task
Models,” Proc. the 4th International Workshop on Model
Driven Development of Advanced User Interfaces (MDDAUI
2009). Sanibel Island, USA, 8 February 2009.

[21] S. Fincher, “PLML: Pattern Language Markup Language,”
http://www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html
25.06.2012

[22] F. Radeke and P. Forbrig, “Patterns in Task-based Modeling
of User Interfaces,” M. Winckler, H. Johnson, P. Palanque
(Eds.): Proc. 6th International Workshop on Task Models and
Diagrams for User Interface Design (TAMODIA'07),
Toulouse, France, 7-9 November 2007.

[23] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stahl, A System of Patterns, New York: Wiley, 1996.

303Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 321 / 729

Lowering Visual Clutter of Clusters in Component
Diagrams

Lukas Holy, Jaroslav Snajberk, and Premek Brada
Department of Computer Science and Engineering, Faculty of Applied Sciences,

University of West Bohemia, Pilsen, Czech Republic
{lholy, snajberk, brada}@kiv.zcu.cz

Abstract—Nowadays, component applications can easily con-
sist of hundreds or thousands of components and it is thus
difficult to understand their structure. Diagram visualization does
not help much because of visual clutter caused by big amount
of elements and connections. This paper describes an approach
of removing a large part of connections from the diagram while
preserving the information about component interconnections. It
also describes a viewport technique for showing all information
about interfaces for selected group of components right in the
diagram area. After that it presents novel integration of above
mentioned techniques which maps a group of components to the
content of a viewport. These techniques are among other benefits
useful in the reverse engineering process. The main idea of this
technique can be used in a similar way to reduce the clutter in the
node-link graphs. To show the effect of this technique, example
reduction of lines is discussed. So the better understanding of a
diagram is also shown on preliminary results.

Keywords-software visualization; component; visual clutter.

I. INTRODUCTION

Software applications become more and more complex and
although there are lots of tools, which help the development
process, they are still limited in helping human understanding
of the application structure. Software components are one of
the ways to handle this complexity as they encapsulate parts
of functionality to unified components. Even with the usage
of components, applications can easily consist of hundreds
or thousands of them. It is therefore difficult to explore the
structure of the application and create a mental model of the
whole system.

One of the ways how to get an insight into a compo-
nent application structure can be UML (Unified Modeling
Language) component diagram. When the diagram becomes
large there are many problems with exploring it. One is the
contradictory need of providing enough details and showing
the complete diagram (application structure) at the same time.
Another question is how to reduce visual clutter caused by
the large number of elements and connections between them.
This visual clutter makes tracing of dependencies difficult and
hinders orientation in the diagram. Current tools do not offer
features designed for work with such large diagrams, as we
have shown in our previous paper [1]. In this work, we present
several techniques to reduce visual clutter in UML component
diagrams and help user to form clusters of components.

A. Structure of the Paper

In the following section, a problem of visual clutter is de-
fined first. After that, a related work is described in Section III.
Then, in Sections IV and V a SeCo (Separated Components)
technique and its implementation is presented. This technique
helps to reduce the visual clutter in large graphs. Also, another
technique called viewport is shown in Section VI ,which helps
to form component clusters. After that, the novel integration
of SeCo and viewport techniques is proposed in Section VII.
Finally, our contribution is discussed in Section VIII and
summarized in Section IX.

II. PROBLEM DEFINITION

Developers face multiple challenges in large diagrams visu-
alization such as difficult orientation, limited amount of visible
elements on the screen while showing its details, insufficient
details when showing overview or the visual clutter [2].

This paper focuses on the problem with highly connected
components and the clutter caused by their connection visual-
ization as well as the component clusters visualization.

Very often, only a small amount of components is connected
to a large number of other components. Such components are
often, among developers, informally called “God Objects”. It
is difficult to trace the connections in the surrounding area of
these objects. Another problem in visualization is forming and
working with clusters of components, which usually represent
one feature or logical unit of the system. These problems cause
exhausting space, which is one of the essential resources in
the visualization and can be used for easing the work with
large component diagrams.

III. RELATED WORK

Visual clutter can be reduced by many techniques. The
whole taxonomy of these techniques has been described by
Ellis and Dix in [3]. A short description of those techniques
related to our work is provided.

The clutter caused by the lines is often reduced by edge
bundling [4]. Although this approach reduces the clutter, it
can be difficult to trace the dependencies between connected
nodes leading through the edge bundles.

The visual clutter can be also lowered by using node clus-
tering, where one cluster usually represents multiple nodes.
The overview of clustering algorithms can be found in [5].

304Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 322 / 729

Fig. 1. Complex Component Application Explorer tool demonstration

Another influencing factor is the chosen layout algorithm,
which can ease orientation in both clustered graphs [6] and
a non-clustered ones [7]. In the following section, our visual
clutter reduction approach is described.

IV. THE SEPARATED COMPONENTS AREA TECHNIQUE

The technique proposed in [8] reduces the visual clutter by
removing the components with a large number of connections
from the main diagram into a so called separated components
area (abbreviated to SeCo) placed on the border of a window
(right sidebar in Figure 1).

When a user moves components from the main diagram to
this area, the lines between these components and remaining
components are elided. SeCo consists of a list of items. Each
item consists of clustered interfaces (indicated with mark (T)
in Figure 1), components (U) and one corresponding symbol
(S). Interfaces are clustered into two sets (T): all provided
interfaces (displayed as “lollipops”) and all required interfaces
(displayed as “sockets”). Numbers inside the clustered inter-
faces represent the number of elements clustered in the given
symbol.

The purpose of symbols is to create clear and easily
recognizable key, which uniquely identifies one item within
SeCo. Then, these symbols can be used in the diagram area
to represent connection between a given component and the
corresponding item placed in SeCo. They are shown as small
rectangles neighboring the displayed components (K) and
containing the symbol, which corresponds to the connected
item (S).

It is possible that a particular functionality of the system is
implemented by several components. When this functionality
is used by a large number of other components in the system,
it is beneficial to represent them as a group in SeCo (M).

V. THE SEPARATED COMPONENTS AREA TECHNIQUE’S
IMPLEMENTATION

SeCo technique implemantation is called CoCA-Ex (Com-
plex Component Applications Explorer). CoCA-Ex works on
the ComAV platform (Component Application Visualizer) [9],
so it could use ComAV’s reverse-engineering and manage-
ment features. ComAV can automatically reverse-engineer the
whole component-based application of a supported component
model. Further component models can be easily added using
an extension mechanism offered by RCP (Rich Client Plat-
form). ComAV is also able to add other visualization styles.
It means that CoCA-Ex is only one way how structures of
applications can be visualized on ComAV platform.

The CoCA-Ex tool can be used via desktop application
interface or web interface. In a desktop interface version,
structure of all analyzed applications is saved for future visu-
alization. Such structure is handled as a project by the ComAV
– it is shown in a project view with other projects (structures),
it can be renamed, deleted or updated. Such project oriented
approach is known from Eclipse IDE (Integrated Development
Environment). In a web interface version the user starts the
visualization process by picking desired components from
the local machine and uploading them to the server. The
ComAV platform creates the model of the application and the
CoCA-Ex shows the application diagram in the web page. The
demonstration of the CoCA-Ex’s interface is shown in Figure
1.

CoCA-Ex use servlets from the JEE technology, as the
back-end technology. Servlets are used mainly because of the
Java implementation of the ComAV tool. HTML5, JavaScript,
jQuery framework and CSS3 (Cascading Style Sheets) were
used for the front-end. Canvas and SVG (Scalable Vector
Graphics) elements from HTML5 (Hypertext Markup Lan-
guage) are used to represent the nodes of the diagram. Al-
though the HTML5 technology is still not fully supported by

305Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 323 / 729

all main browsers, its current state is sufficient for CoCA-
Ex purposes. Also desired features such as SVG support or
Canvas are likely to be stable in the near future.

The tool provides standard features such as panning and
zooming. There are two modes of manipulating the compo-
nents with appropriate icons in the toolbar. First mode is
for moving components (A) where the user can manually
adjust the layout of the diagram. Second mode (B) serves
for removing components from the diagram area to the SeCo
area simply by clicking on the desired components, which
should be removed. Last two icons in the toolbar serve for the
automatic removal of a configured amount of components from
the diagram to the SeCo area. The tool is currently configured
to remove 15% of most connected components. The icon (C)
is used for removing these components and adding them to
SeCo area as individual items. The next icon (D) creates one
group for all of them.

CoCA-Ex offers a fulltext search in components’ names. In
Figure 2, one can see the search for a word “relations”. Seven
components in the diagram contain this word as indicated by
the number seven (F). Matching components are highlighted
by orange color (E).

If one clicks on the provided interfaces of a component
in SeCo, these interfaces and connected components become
highlighted by green color. An example is shown on de-
pendency between the Nuxeo Common component’s provided
interfaces (Y) and Nuxeo Platform Imaging API component
(G). Similarly, for interfaces required by components in SeCo
highlighting by yellow color is used. It is demonstrated on
dependency between Nuxeo URL API component (H) and
Nuxeo ECM Web Platform UI component’s required interfaces
(Y).

For several components from the SeCo area (those with
symbols’ background highlighted by different colors (S)) there
are delegates shown in the diagram area, e.g., (K). For inspect-
ing interfaces, the tool offers highlighting of a connection by a
red color and showing the interfaces involved in the connection
(P), as shown in the green tooltip. Each individual component
shown in SeCo has its own button (R) to remove it back to
its original position in the diagram area.

VI. VIEWPORT FOR COMPONENT DIAGRAMS

The viewport technique shows the diagram zoomed-out to
provide the appropriate overview of the complete architecture,
with elements displayed without details. Besides that it shows
selected components in detail inside a viewport area plus all
their relations with other components in the diagram in an
interactive border area (see gray area marked with (11.) in
Figure 2). These relations are clustered into two sets for each
component: all provided interfaces (displayed as ”lollipops”)
and all required interfaces (displayed as ”sockets”).

These interfaces are then connected to clustered proxy
components, visually represented as rectangles with rounded
corners. Each rectangle represents one or more components.
Numbers inside the clustered interfaces and proxy components
represent the number of elements clustered in a given symbol.

VII. VIEWPORT FOR GROUPS OF COMPONENTS

This section presents the novel integration of viewport
and SeCo technique. For showing groups of components (as
described in Section IV) in the diagram area a viewport can
be used. A group of components shown in the SeCo can be
moved to the diagram area and shown as a viewport. Similarly
the viewport and its content can be moved from the diagram
area to the SeCo.

According to level of details of a viewport, it is possible to
show:

1) a viewport as a symbol belonging to a group only,
2) a viewport with all details for all components and their

relations in given group.
These possibilities are described in following sections.

A. Viewport with Details

For moving a group from SeCo to the diagram area there
is an icon (indicated with mark (1.) in Figure 2). After a user
clicks on this icon the group will disappear from the SeCo
and will be shown in the diagram area as a viewport.

Each viewport has its small toolbar, which contains a
symbol representing a group (2.) and icons for important
actions. The symbol has similar meaning as symbols used in
SeCo. In Figure 2 there is the icon for canceling the viewport
(4.). It releases the components from the viewport to the
diagram area and deletes the viewport itself. Also there is the
icon (3.) for moving a whole viewport to SeCo, which removes
the viewport from diagram area and shows its contents in the
SeCo as a group. Finally one can see icon (6.) for minimizing
viewport to be represented as a icon only, which is described
in following section.

B. Viewport as a Symbol

One of the viewport’s important features is its ability to
be collapsed into an symbol (7.). It is very important part
of visible elements reduction process as well as visual clutter
reduction. Viewport symbol represents the whole viewport and
its content. It means that components included in the viewport
are not visible at the time the viewport is collapsed into the
symbol. When a user hovers a mouse over the this symbol a
small toolbar appears. There are icons for following actions:

• showing viewport in full details (8.), which shows view-
port in a way described in previous section,

• moving viewport from diagram area into a SeCo (5.),
which creates a group in SeCo from components con-
tained in viewport,

• releasing components from given viewport and removing
the viewport itself (9.).

VIII. DISCUSSION AND EXAMPLES

In a lot of situations one can use the SeCo features to
form groups of components. These groups can serve as named
categories according to, which the user can classify the rest of
the components in the diagram area and thus form a logical
units of an investigated system.

306Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 324 / 729

Fig. 2. Viewport with SeCo

A viewport gives an alternative to form groups in the
diagram area. Its benefit is also the ability to be moved to
the place in the diagram where a user forms the group. It
should enable to explore and understand the dependencies in
large diagrams by showing the context of a selected diagram
subset. The proxy elements should reduce the need for the
disorienting pan&zoom otherwise necessary while exploring
dependencies and provide user relevant information in one
place. The viewport is placed on a given position in the
diagram, thus there can be more viewports in a diagram. At
the moment when a group inside a viewport is not important,
it can be collapsed into a viewport symbol. It gives a user a
possibility of showing several groups and still have enough
space in diagram area to work with rest of the components.

Several experiments using the proposed technique were
performed. In one of them only 7 Nuxeo components have
been removed from the diagram area into SeCo leading to
241 of 698 interface connection lines remaining in the graph.
Therefore, the graph was reduced of about 65% of lines.

It shows that by using the proposed technique, significant
visual clutter reduction may be achieved.

IX. CONCLUSION AND FUTURE WORK

In this paper, an advanced technique was described. This
technique helps to reduce the amount of lines in UML
component diagram of large applications, by removing the
selected components from the diagram area. It uses SeCo
where the selected components are shown, and symbolic
delegates, which represent the connections instead of lines. A
viewport technique was also described. This technique is used
for showing all the information about interfaces for selected
group of components right in the diagram area. The novel
integration of above mentioned techniques was proposed.
These techniques maps a group of components to the content
of a viewport. Viewport symbols for graphical representation
of groups were also described. These symbols saves a space
in the diagram area. Appropriate interactions were proposed
for all these techniques.

These techniques are, among other benefits, useful in the

reverse engineering process when the user is interactively get-
ting familiar with the whole diagram. It helps with creating the
mental model of the application by easing the process of clus-
ters creation. Which is the reason why these techniques will
be part of a ComAV platform, that already supports reverse-
engineering of applications of various component models.

Preliminary evaluation shows that the presented ideas are
helpful in large graph visualization, where one suffers from
visual clutter caused by the large number of connection lines.

Implementation of viewport technique is scheduled for
integration into CoCA-Ex application to enable users to form
relevant clusters comfortably and validate the ideas on con-
crete tasks. We also plan to evaluate above mentioned ideas
by users or case study.

ACKNOWLEDGMENT

The work was supported by the UWB grant SGS-2010-
028 Advanced Computer and Information Systems. Authors
would like to thank Jindra Pavlikova for the work on the
implementation.

REFERENCES

[1] L. Holy, J. Snajberk, and P. Brada, “Evaluating component architecture
visualization tools - criteria and case study,” 2012.

[2] R. Rosenholtz, Y. Li, and L. Nakano, “Measuring visual clutter,” Journal
of Vision, vol. 7, no. 2, August 2007.

[3] G. Ellis and A. Dix, “A taxonomy of clutter reduction for information
visualisation,” Visualization and Computer Graphics, IEEE Transactions
on, vol. 13, no. 6, pp. 1216 –1223, nov.-dec. 2007.

[4] D. Holten, “Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741–748, Sep. 2006. [Online].
Available: http://dx.doi.org/10.1109/TVCG.2006.147

[5] S. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1, no. 1,
pp. 27–64, 2007.

[6] Q. Feng, “Algorithms for drawing clustered graphs,” 1997.
[7] S. Hachul and M. Jnger, “Large-graph layout algorithms at work: An

experimental study,” http://jgaa.info/ vol. 11, no. 2, pp. 345369, 2007.
[8] L. Holý, K. Ježek, J. Snajberk, and P. Brada, “Lowering visual clutter in

large component diagrams,” in 16th International Conference Information
Visualisation, 2012.

[9] J. Snajberk, L. Holy, and P. Brada, “Comav - a component application
visualisation tool,” in Proceedings of International Conference on Infor-
mation Visualization Theory and Applications. SciTePress, 2012.

307Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 325 / 729

A Framework for Characterizing Usability Requirements Elicitation and Analysis
Methodologies (UREAM)

Jos J.M. Trienekens
IE&IS
TUE

Eindhoven, The Netherlands
j.j.m.trienekens@tue.nl

Rob J. Kusters
Management Sciences

Open University
Heerlen, The Netherlands

rob.kusters@ou.nl

Abstract—Dedicated methodologies for the elicitation and
analysis of usability requirements have been proposed in
literature, usually developed by usability experts. The usability
of these approaches by non-expert software engineers is not
obvious. In this paper, the objective is to support developers
and managers in a software development project in deciding
on which methodology to select, taking into account local
strengths and weaknesses. We define a framework based on a
set of criteria that allow for the comparison of methodologies.

Keywords-usability; usability requirements.

I. INTRODUCTION

In the development of interactive systems, usability is
increasingly considered to be a crucial factor for the success
of a software system [13]. However, identifying and
specifying usability requirements are not trivial tasks. It is
even further complicated by the existence of multiple,
different definitions of usability. Multiple approaches have
been proposed on how to elicit and analyze usability
requirements. Therefore, a need arises to compare the
available methodologies in order to make a well-founded
decision about which can be used in a project, based on the
specific characteristics of the project. In this paper, we
present a structured comparison of usability elicitation and
analysis approaches that is designed to help the stakeholders
of a project, e.g., project coordinators, managers, and
developers, decide on a methodology to use for usability
requirements elicitation and analysis. We define a
framework for extracting specific properties of a
methodology so as to allow for a direct comparison of
different approaches presented in literature. The selected
methodologies represent a selection of what we believe are
the most important approaches to usability requirements
elicitation and analysis.

In Section 2, we give definitions of terms required to
compare usability requirements elicitation and analysis
approaches. Section 3 describes the aforementioned
framework, and, in sections 4 to 7, this framework is applied
to each methodology. Section 8 gives a comparison of the
results obtained for each of the methodologies and section 9
concludes with an overview of the most relevant findings
from this comparison.

II. DEFINITIONS

The following section gives definitions for the most
relevant terms used throughout this paper:

 Usability: the extent to which a product can be used
by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a
specified context of use [7].

 UREAM: usability requirements elicitation and
analysis methodology.

 Methodology: a coherent and structured set of
procedures to carry out usability requirements
elicitation and analysis in a step-wise and well-
defined way.

 Method: a coherent set of steps in a methodology is
defined as a method.

 Technique: a systematic way to carry out a particular
procedure (for example: a survey and a questionnaire
are techniques for a method that focuses on an
analysis of user tasks.

 HCI: Human-Computer Interaction is a research area
that studies of how people interact with computers
and to what extent computers are or are not
developed for successful interaction with human
beings.

III. TOWARDS A FRAMEWORK FOR UREAM COMPARISON

As it is stated in the introduction, there are many
different methodologies to elicit and analyze usability
requirements. In order to support the developers or managers
to compare the methodologies and to provide them with the
criteria needed to select one to deploy, we propose the
following framework to compare the different
methodologies. The framework consists initially of three
steps. First, each methodology will be decomposed into
methods. Methods are coherent elements of a methodology.
They describe a single function resulting in a sub-deliverable
of the methodology. Examples are ‘pre-study’, ‘user
profiling’, ‘task analysis’ and ‘usability specification’. In
second step each method will be assessed using a set of
criteria. Finally, the results of the assessment of each method
will be combined to obtain the result for a methodology. This
combination can be done in several ways according to the
type of criterion. Some, such as required effort, can be added

308Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 326 / 729

across methods but if, e.g., a single method requires the
availability of an HCI expert, this requirement translates to
the methodology as a whole.

The reason we decompose the methodology into methods
is to achieve a more accurate and concrete comparison. The
methods employed are as will be shown easier to identify,
describe and therefore easier to assess while the
methodology as a whole will tend to be a fairly complex
amalgamation of these constituent parts, which makes direct
characterization of this combination much more difficult and
dubious. Using the criteria to assess the methods first and
then combining the result for each methodology will focus
each discussion on a manageable level, thus helping
developers to understand what the differences are and why
there is a difference between the methodologies. Reasons
may be, among others, that different methods or different
techniques are used. Methodologies containing different
methods will have different properties and therefore different
results, but methodologies that include the same methods
might also have different properties because the methods use
different techniques.

The proposed framework consists of a set of criteria that
can be used to assess the methodologies. This set of criteria
is divided into four categories, namely the external factors
(Section 3.1), the characteristics of the methodology (Section
3.2), the effort (Section 3.3) and the quality and effectiveness
(Section 3.4). In the following, a short description of each
criterion is given, and the arguments for selecting the criteria
are described. Moreover, it is explained how the score is
calculated and how the scores are combined for a particular
methodology.

A. External factors

The first category concerns external factors. Information
about the requirements of a methodology about the external
environment in which it is to function is crucial for
developers and managers to decide whether or not to apply
this methodology in a particular context (also mentioned by
Davis [8] as a first step of choosing a strategy for
requirement elicitation). The external factors category
consists of three criteria:

C1.1 Does a methodology / method need a human
computer interaction (HCI) expert?

This criterion answers whether an HCI expert is needed
to do this method or methodology properly. It is included in
the framework because there are projects that do not allow
for the involvement of an HCI-expert, e.g., due to budget
reasons or a lack of qualified personnel. This criterion is
mentioned in all four assessed methodologies [1], [2], [4],
[3]. Each method and the methodology can be given either a
plus or a minus for this criterion. A score of ‘+’ indicates that
the method/methodology needs an HCI-expert and a score of
‘-‘ indicates that it does not need one. If one of the methods
needs an expert then the methodology needs an expert as
well.

C1.2 Does a methodology / method need access to
representative users?

This criterion indicates whether the methodology /
method requires access to representative users. Involving

users in the project increases the dependencies on external
factors. Having access to the representative users and
working with them is not a simple task. This property is also
mentioned in all four assessed methodologies. Each method
gets a plus or minus for this criterion to indicate whether or
not it involves representative users. If the methodology does
not involve users, a score of ‘-‘ is assigned. If there is some
user involvement in a methodology, ‘+’ is the result. A
methodology that very strongly relies on user involvement
gets a score of ‘++’.

C1.3 Does a methodology / method work with non-
experienced users?

Some methods/methodologies require a certain level of
knowledge or experience of the users to ensure an efficient
communication and collaboration with them [8].
Inexperienced users might have difficulties with articulating
their requirements [9], [10]. If this criterion is applicable for
the method, then a score between 1 and 5 is assigned. If a
method does not involve the user, this criterion is not
applicable. For the methodology, a combined score on the
same scale is calculated. However, this is not necessarily the
arithmetic mean of the results for the methods because some
methods may have greater influence on the overall score than
others.

B. Characteristics

The second category focuses on the characteristics of the
methodology. The characteristics provide the developers
with insight whether a methodology is appropriate.

C2.1 Does a methodology / method give strict guidance
to help the developers to carry it out?

The methods of the given methodology are assessed on
how accurately they are described. Or in other words,
whether a non-experienced developer can execute it well
based on the description. A scale of ‘- -‘ to ‘++’ is the range
of the evaluation for this criterion. A combined score for the
methodology (also‘- -‘ to ‘++’) is assigned.

C2.2 Does a methodology / method take the user
feedback into account for further improvement?

It is very important to take the user feedback into account
for further improvement with respect to usability of the
system design [11]. A score of ‘+’ or ‘-‘ is assigned to
indicate whether feedback from users is taken into account.
We consider user feedback as the input from the user that is
based on a proposal made to the user or a prototype
presented to them. If the methodology contains a certain
number of methods which take the user feedback for further
improvement, then it is argued that the methodology will
also get a plus for this criterion.

C. Maintaining the Integrity of the Specifications

The third category is the effort, i.e., the time and the cost
that is needed for a methodology. This helps the developer to
make tradeoffs.

C3.1 Is a methodology / method time consuming?
This criterion indicates how time-consuming the methods

are. A score between ‘- -‘ and ‘++’ is the result of this
criterion applied on the methods. A score of ‘++’ indicates
the method is very time consuming, while a ‘- -‘ indicates

309Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 327 / 729

that executing the method can be completed in a very short
time. A cumulative score of each method is assigned to the
methodology. If a project has a time constraint within which
it needs to be finished, the cumulative score will help the
developers to decide on a methodology.

C3.2 Is a methodology / method common in the software
development process?

Time consumption is not an absolute value. It is also
related to the degree of integration in common software
engineering methods. Integration means less additional work
and also will promote more experience with the approach
among software engineers, impacting positively on the
amount of effort required. The methods that are used in the
elicitation and analysis process of the usability requirements
might already be included or commonly used in the
development process of the product for other reasons. Then
the methods might be easily adapted such that it would not
take any additional time. A list of commonly used functional
requirements elicitation techniques indicate the answer to
this criterion [12]. A value between ‘–‘ and ‘+’ is assigned to
each method to assess whether the method is common or not
for software development processes. Of course, this provides
only a guideline. Actual fit with a local process will still need
to be determined when actually adopting an approach.

D. Quality and effectiveness

The last category is the quality and effectiveness of each
method and the methodology. This will also help the
developers to make the trade-offs. The objective of this set of
criteria is to indicate the level of detail that is elicited.

C4.1 Does a methodology / method elicit enough
information to help the developer specify the fit criterion?

Because it is hard to measure the non-functional
requirements, eliciting information to specify the fit criterion
of the usability requirement might be a crucial factor for
selecting a certain methodology [12]. Juristo et al. argued
that some proposed methodologies in the literature did not
derive enough information to help the developers design and
implement the elicited requirements [4]. The methods get a ‘-
‘, a neutral or ‘+’ for this criterion depending on whether
they do not elicit enough information, it depends or it does
(explicitly) elicit enough information, respectively. An
average within the same range is given to the corresponding
methodology.

C4.2 Does a methodology / method elicit the
dependencies between the usability requirements and other
functional and non-functional requirements?

Usability requirements are sometimes related to specific
functional requirements [12]. Knowing the
interdependencies between requirements is important for the
system design and change management. Therefore, this
criterion can be an important factor when selecting a
methodology. A scale including ‘+’, neutral, and ‘-‘ is used
to indicate that dependencies are completely, partially, or not
elicited, respectively. The proposed framework is applied to
four selected methodologies of respectively Nielsen [1],
Carlshamre et al. [2], Seffah et al. [3] and Juristo et al. [4].

IV. METHODOLOGY 1: THE USABILITY ENGINEERING

LIFECYCLE (EUL)

The methodology, Usability Engineering Lifecycle
(UEL) [1], was proposed in 1992 as one of the first
approaches to usability engineering. It presents a practical
usability engineering process that can be incorporated into
the product development process. This methodology
provides a very comprehensive set of methods that can be
applied to elicit and analyze the usability requirements.
Some of the other methodologies select a subset of the
methods that are presented in this methodology. Therefore,
this methodology is chosen to be assessed first and the
framework is applied.

Ten methods are included in this methodology. Each
method will be described shortly.
1. “Know the user”. This is used to analyze the individual

user’s characteristics (e.g., work experience, knowledge
level, work environment and social context), the user’s
current task (e.g., the overall goals, how they approach
the task, the needed information, the way of dealing
with exceptional circumstances or emergencies), to do
functional analysis (e.g., the underlying functional
reason for the task) and to have the evolution of the user
(e.g., an educated guess about future users and uses).

2. “Doing competitive analysis”. This analyzes the existing
products heuristically according to established usability
guide lines (e.g., usability goals and levels) and
performs empirical user tests with these products.

3. “Setting usability goals”. This is specified according to
the five main usability characteristics (i.e., learnability,
efficiency, ability of infrequent users to return to the
system without having to learn it all over, frequency and
seriousness of user errors and user satisfaction).

4. “Participatory design”. This involves users in the design
process through regular meetings to help the designer by
asking questions and reacting to the designs that they do
not like.

5. “Coordinated design of the total interface”. This is to
achieve consistency of the total interface. This can be
approached by using interface standards and the product
identity statement (a high-level description of what kind
of product it is).

6. “Doing guidelines and heuristic analysis”. A list of well-
known principles of guidelines for user interface design
should be followed. And a heuristic evaluation can be
performed on the basis of the guidelines. Prototyping
and empirical testing should be combined into iterative
design to capture the design rationale, analyze the trade-
offs, make the right decision and evolve the design. This
combination will be considered as a method.

7. “Prototyping”. This is commonly known and often
deployed in software engineering.

8. “Empirical testing”.
9. “Collect feedback from field use”. This method is

similar to empirical testing.
Each method is first analyzed separately. The result of

applying the framework for all methods and methodologies
can be found in Table 1.

310Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 328 / 729

TABLE I. RESULTS PER METHOD AND METHODOLOGY

Methods / Methodologies External factors Characteristics Effort Qual. and Effectiv.
C1.1
HCI

expert

C1.2
User

access

C1.3
Non

experts

C2.1
Strict

guidance

C2.2
User

feedback

C3.1
Effort

C3.2
Common
in SRM

C4.1
Info for fit

C4.2
Depend-
dencies

Know the user - + 5 + - 0 + 0 -
Competitive analysis - + 5 0 + 0 - 0 -
Setting usability goals - - n/a + + 0 - + -
Participatory design - ++ 3 + + - - 0 -
Coordinated design - - n/a - - + 0 + -
Guidelines and heuristic
analysis

+ - n/a 0 - + - - 0

Prototyping - - n/a - 0 0/++ + - +
Empirical testing - ++ 5 + + +/++ 0 + +
Collect feedback from field use - ++ 5 0 + + 0 + +

Total for UEL + +/++ 5 0 + ++ - + +
Pre-study - - n/a - - - + - -
User profiling - + 4 + - - + - -
Task analysis - + 2 + + ++ 0 - -
Usability specification - - n/a + - - + + -
Prototype and usability testing - + 2 - + ++ - + -

Total for Delta - + 3 + + - + + -
System summary form - + 4 + - + + - -
Compile system summary
form

+ - n/a - - + - - -

Context of use portfolio + - n/a -- - + - - -
Frs portfolio - - n/a -- - +/- + - +
Review and validate integrated
picture

+ + 3 -- + ? - - -

Total for ACUDUC + + 4 -- + + + - +
Apply the patterns - - n/a ++ - 0 - + -
IFR table - + 2 ++ + + - + ++

Total for GEUF - + 2 ++ 0 0 - + +

Combining the results from the individual methods
allows us to judge the methodology as a whole. In order to
deploy this methodology, the following criteria for the
external factors have to be fulfilled: The developers need to
have access to an HCI expert to do the guidelines and
heuristic analysis properly (C1.1: +). The methodology needs
frequent and reliable access to the representative users in
order to perform some of the methods (C1.2: +/++), but it
does not require the users to be experienced (C1.3: 5). The
methodology does not give very strict guidance to help the
developers (C2.1: 0). It suggests a set of techniques to do
some of the methods. And the methodology includes
methods such as participatory design and empirical testing to
elicit the user feedback and take it into account to improve
the usability (or the specification of requirements) (C2.2: +).
The effort that needs to be put into the methodology is high.
Because of the comprehensive set of methods, the
methodology is very time consuming. And only a small part
of methods are a part of the regular software engineering
process (C3.2: -). The rest needs to be added (C3.1: ++). But,
the quality of the methodology is fair. It gives enough
information about the quantities of usability requirement to
specify the fit criterion and it gives an indication about the
dependencies between the requirements (C4.1, C4.2: +).

V. METHODOLOGY 2: THE DELTA METHOD

The Delta method [2] is a task-based and usability-
oriented approach to requirement engineering. This method

was applied in a project to improve the overall usability of
the systems delivered. The results prove that the delta
method rendered usable systems and helped in eliciting
functional requirements in a natural way. This methodology
derives its method from the usability definitions in ISO
25062 [7]. Each method corresponds to the users, goals and
context of use in the usability definition. This methodology
consists of five methods.
1. “Pre-study”. Here the scope of the prospective system,

the customer categories, and the fundamental services of
the system are identified.

2. “User profiling”. This provides an overview of the
prospective users by means of questionnaire.

3. “Task Analysis”. This captures the work tasks of the
users through interviews.

4. “Usability specification”. This defines an agreed level of
usability that the system should supply.

5. “Prototype and usability testing”. This tests the results
of the last method.

The results for all methods can be found in Table 1.
Combining the results from the individual methods delivers
the following results. This methodology does not involve
usability experts in any of its methods (C1.1: -).
Representative users are accessed in most of the methods and
this methodology works well with users of moderate level of
experience (C1.2: +; C1.3: 3). Guidance is provided by
means of questionnaire, activity graph and usability levels
(C2.1: +), but most of the methods do not give quantitative

311Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 329 / 729

results and users feedback is considered only in prototype
testing method (C4.1: +). This methodology proves not to be
very time consuming (C3.1: -).

VI. METHODOLOGY 3: APPROACH CENTERED ON

USABILITY AND DRIVEN BY USE CASES (ACUDUC)

Seffah, Djouab and Antunes [3] present a method that
combines usability-centered requirements engineering
processes with those based on use cases. They compare
similar approaches in both processes and define their own
method, called ACUDUC, Approach Centered on Usability
and Driven by Use Cases. This is based on the Unified
Software development Process [5] as a representative of use-
case-driven software engineering methodologies and the
RESPECT framework (Requirements Specification in
Telematics) [6], a user-centered requirements process. They
use the definitions of usability given by ISO 9241 and ISO
9126. The methodology involves five methods.
1. “System Summary form”. Here, the stakeholders fill in a

form about general characteristics of the system.
2. “Compile System Summary forms”. A usability expert

combines the stakeholder’s forms into a summary form.
3. “Creating the context of use portfolio”. This results in a

document, which describes all the aspects that have an
important impact on the system usability [3].

4. “Creating the functional requirements portfolio”. This
document consists of use cases and system
functionalities as well as characteristics and constraints
of the system and UI-prototypes.

5. “Review”. Here, all artifacts are being reviewed to
ensure integrity and consistency among them.

The results can be found in Table 1. Combining the
results from the individual methods delivers the following
results. As some of the methods involve usability experts and
need representative users, the overall methodology does so
as well (C1.1: + and C1.2: +). However, most of the methods
do not directly involve users. Those methods that do involve
users, can deal with inexperienced users and therefore the
overall methodology can be considered to work with
inexperienced users rather well (C1.3: 4). The description of
the methodology is rather vague in parts and therefore it does
not provide the stakeholders of the software engineering
project with strict guidance (C2.1: ‘- -‘). There is only one
method that takes the user feedback into account. However,
we consider this sufficient to conclude that the methodology
takes the user feedback into account (C2.2: +). Many of the
methods can be assumed to be rather time consuming and so
is the complete methodology (C3.1: +). However, it
combines, as stated earlier, the elicitation and analysis of
functional and usability requirements in a single
methodology. Therefore, the methodology overall can be
considered to be common for requirements elicitation and
analysis because no work is done exclusively for elicitation
and analysis of usability requirements (C3.2: +). From the
methods as they are described by the methodology’s authors,
it can be doubted that the non-functional requirements are
quantified very precisely as there is no method that does so.
Therefore, the whole methodology is judged as not eliciting
enough information about quantity (C4.1: -). Because of its

integrative (functional and nonfunctional) approach, the
methodology can elicit the relation between functional and
non-functional requirements rather well (C4.2: +).

VII. METHODOLOGY 4: GUIDELINES FOR ELICITING

USABILITY FUNCTIONALITIES (GEUF)

The methodology Guidelines for Eliciting Usability
Functionalities (GEUF) was proposed in 2007 [4]. It refines
the method guidelines and heuristic analysis of the first
methodology (UEL). The methodology addresses usability
requirements as functional requirements during the
requirements engineering stage. Based on the guidelines that
are provided in the usability literature, the authors have listed
a list of functional usability features as a starting point for
identifying usability features with an impact on software
system functionality. Based on the HCI literature about each
feature (if enough is found), the subtypes are listed for each
of the features (called usability mechanisms). For each
mechanism, the elicitation and specification guides are
defined from a development perspective. A set of issues is
derived from the elicitation process and needs to be
discussed with stakeholders. An initial common vision of
system functionality is built before the developers and the
users can discuss whether and how specific usability
mechanisms affect the software. Two methods are used.
1. “Apply the patterns”. Here a template derived from the

research is applied to the specific situation.
2. “Applying the Issue/Functionality/Requirement (IFR)

table to the issues”.
The results for all methods can be found in Table 1.

Combining the results delivers the following results.
The result of the methodology is combined as follows. If

the developers select this methodology, there is no
requirement for having access to an HCI expert (C1.1: -).
The methodology does require the involvement of users to
discuss the issues (C1.2: +). Therefore, the users should have
a high level of knowledge and/or experience to help the
developers find correct answers to the issues (C1.3: 2). It was
already indicated that the methodology does take the user
feedback into account. But this happens only once, there is
no iterative design and continuous involvement of the users,
therefore it only gets a neutral (C2.2: 0). The methodology is
well explained and makes it easy to systematically apply the
templates and the table. Hence, it does give a very strict
guidance (C2.1: ++). It is not time consuming as it is a one-
time task and only considered the proposed mechanisms
(C3.1: 0). It does not elicit other functional requirements nor
analyze other aspects (e.g., task analysis). But it does take
some effort to learn it because it is a new methodology and
needs patience to apply it. The template helps the developers
to specify the fit criterion using standardized sentences and
using the results of IFR table to fill in the specification
(C4.1: +). It also explicitly captures the dependencies
between requirements in the table (C4.2: +).

VIII. DISCUSSION

For the external factors, there are only few differences.
Both methodologies Delta Method and GEUF can be used

312Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 330 / 729

without access to an HCI expert or with only little
involvement of such an expert. Unsurprisingly, all
methodologies rely on having access to representative users.
This can be attributed to the fact that usability requirements
are very individual and therefore cannot be properly
identified and analyzed without contacting the prospective
users. The biggest difference within this category can be
identified for criterion C1.3. While the UEL methodology
works especially well with inexperienced users, the GEUF
methodology should not be used with inexperienced users
because it is likely that their needs would not be captured
correctly within this methodology. Within the category
characteristics, the most noticeable difference lies in C2.1.
While Delta method and GEUF give good guidance and
UEL earns a neutral score, the ACUDUC methodology
scores poorly. The only methodology that does not
sufficiently take user feedback into account is GEUF. The
third category, time and effort, shows notable differences in
results for both of the criteria. The results for criterion C3.1
have great variance. While we consider the Delta method
methodology to be least time consuming, the UEL
methodology is considered most time consuming. This can
be attributed to its comprehensive set of methods. Overall,
ACUDUC and Delta method are considered to mainly
consist of methods that are common in software
development. For ACUDUC, this can at least partially
outweigh the relatively high effort in time needed for this
methodology. For Delta method, it points to a comparatively
small overall effort. Within the category of effectiveness,
only the Delta method cannot elicit dependencies between
functional requirements and usability requirements. All
methodologies except ACUDUC have the potential to
analyze the requirements in enough detail to be able to
specify a fit criterion.

IX. CONCLUSIONS AND FUTURE WORK

By comparing the four different methodologies for
usability requirement elicitation and analysis on the basis of
our UREAM framework we could reach the following
conclusions. In terms of external factors (like the need of
usability experts, access to representative users and their
experience) the Delta method and GEUF are probably most
cost-efficient as they can be executed without the help of an
HCI expert. All methodologies need access to representative
users. However, the Delta method and GEUF can be applied
well even with non-experienced users. In terms of
characteristics of the methodology, the internal factors like
taking user feedback into account is considered in all
methodologies except GEUF. Both the Delta method and
GEUF provide a strict guidance to the developer for
executing the methods. So the Delta method obtains a better
score in characteristics compared to the other methodologies.
In terms of effort, the Delta method is probably more
effective as it can handle a tight project schedule and most of
the methods are in common to functional elicitation and
analysis, so that the effort to capture them is minimized. In
terms of quality and effectiveness, GEUF scores well as the

developers can do a quantitative analysis with respect to
most of the methods, and the methods support the developers
to understand the dependencies between other functional
requirements. We suggest that regarding UREAM selection
for a concrete project, first the individual characteristics of
the project have to be considered, and subsequently the
framework-based tables can be used. We are convinced that
the (initial) UREAM framework has been validated in this
research project. However, further research is needed to
elaborate the UREAM framework further so that it (i.e.,
dimensions and criteria) can also offer a structured basis for
the development of new and advanced usability requirements
elicitation and analysis methodologies.

ACKNOWLEDGMENT

We would like to acknowledge the support of X. Lu, P.
Meenakshy, and T. Milde in preparing this paper.

REFERENCES
[1] J. Nielsen, “The usability engineering life cycle”’ IEEE

Computer vol. 25, nr. 3 (March) 1992, pp. 12-22.
[2] P. Carlshamre and J. Karlsson, “Usability-oriented approach

to requirements engineering”, Proc. ICRE96, IEEE Computer
Society Press, Los Alamitos, CA, pp. 145-152., 1996.

[3] A. Seffah, R. Djouab, and H. Antunes, “Comparing and
Reconciling Usability-Centered and Use Case-Driven
Requirements Engineering Processes”, Australian Computer
Science Communications, Vol. 23, nr. 5, 2001, pp. 132 – 139.

[4] N. Juristo, A.M. Moreno, and M. Sanchez-Segura,
“Guidelines for eliciting usability functionalities”, IEEE
Trans Softw Eng 2007; Vol. 33, nr. 11, pp. 744-758.

[5] Jacobson I., Booch G., Rumbaugh J. The Unified Software
Development Process. Object Technology Series. Addison
Wesley, 1999.

[6] M.C. Maguire, User-centred requirements handbook. EC
Telematics Applications Programme, Project TE 2010
RESPECT (Requirements Engineering and Specification in
Telematics), WP4 Deliverable D4.2, version 3.3, May 1998.

[7] ISO IEC 25062 Software engineering — Software
productQuality Requirements and Evaluation(SQuaRE) —
Common Industry Format(CIF) for usability test reports,
Geneva, International Organization for Standardization

[8] G.B. Davis, “Strategies for information requirements
determination”, IBM Systems Journal, Vol. 21, nr. 1, pp. 4-
30, 1982.

[9] B. Nuseibeh, and S. Easterbrook, “Requirements Engineering:
A Roadmap”, The Future of Software Engineering, Special
Issue 22nd International Conference on Software
Engineering, ACMIEEE, pp. 37-46, 2000.

[10] S. Adikari, C. McDonald, and N. Lynch, “Usability in
Requirements Engineering”, Proc. ACIS 2006, Adelaide,
Paper 76.

[11] K. Van de Berg, J.M. Conejero, and R. Chitchyan, AOSD
Ontology 1.0 - Public Ontology of Aspect-Orientation, Report
UTwente, 2005.

[12] H. van Vliet, Software engineering: principles and practice.
Wiley, 2008.

[13] A.E. Bayraktaroglu, F. Calisir, and C.A. Gumussoy,
“Usability and functionality: A comparison of project
managers' and potential users' evaluations”, Procs. IEEE
IEEM, 8-11 Dec. 2009, Hongkong, pp. 2019 – 2023.

313Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 331 / 729

A Multilevel Contract Model for Quality-Driven Service Component Architecture

Maryem Rhanoui

IMS Team, SIME Laboratory

ENSIAS

Rabat, Morocco

mrhanoui@gmail.com

Bouchra El Asri

IMS Team, SIME Laboratory

ENSIAS

Rabat, Morocco

elasri@ensias.ma

Abstract—Service Component Architecture (SCA) is a recent

approach and an industry standard for developing complex

and distributed systems. Despite the growing research work it

still lacks a formal basis for handling trust and reliability of

quality-driven systems. In this paper, we present main

techniques and models for assuring quality and

trustworthiness of component-based systems in general, and

then we present our contract-aware service component meta

model. We propose a multilevel contract model that aims to

address reliability and quality issues for service component

oriented systems by expressing a set of its properties and

constraints.

Keywords-Service Component; Service Component

Architecture; Quality-Driven System; Contract; Aspects.

I. INTRODUCTION

Service Oriented Architecture (SOA) is a promising
paradigm for developing complex systems that utilizes
services as fundamental elements for developing
applications. In this perspective, Service Component
Architecture (SCA) is a new concept that offers a component
model for building SOA architecture.

In the context of a growing interest in reuse of business
components, the development of critical and complex
systems is confronted with limitations and challenges as
service assembly difficulties and the complexity related to
numerous SOA standards, therefore SCA emerged as a
unifying response.

Official SCA specification document includes SCA
assembly model specification [1] and SCA policy framework
[2]. However, as an expanding approach, it still needs more
formal models and frameworks for modeling and verifying
systems.

In spite that the main purpose of software engineering is
to find ways of building quality software [3], our literature
review shows that most research efforts have focused on
technical aspects of Service Component Architecture,
leaving aside the treatment of quality issues and extra-
functional properties of service component.

In this scope, our fields of research focus on the design
and development of complex and safety-critical systems.
Critical systems [4] are systems whose failure could cause
loss of human lives, cause property damage, or damage to
the environment, such as aviation, nuclear, medical
applications, etc.

As a matter of fact, dependability [5], which is the
property that allows placing a justified confidence in the
quality of the delivered service, is becoming increasingly
important in complex systems design.

In this paper, we remind the definition of Service
Component Architecture and present main techniques and
models for handling quality and trustworthiness of
component-based systems.

Among the presented approaches, we are interested by
the contract-based approach [6], which is a light-weight
formal method for designing quality-driven systems by
specifying its non-functional and quality properties. Despite
the fact that the concept of component contracts was
formerly proposed, it still not commonly used in software
development.

Our contribution is as follow: we propose a multilevel
contract model for modeling both functional and non-
functional / quality properties of service components, this
model covers different levels of systems, that is the
component, composite and final system. Furthermore, it will
allow the verification and validation of the constraints
outlined in the contract.

In this article, we propose a meta-model for multilevel
contracts for service component architecture.

The remainder of this paper is organized as follows:
Section II will be dedicated to the presentation of the concept
of service component and a survey of main techniques and
models for assuring trustworthiness and quality of
component-based systems.

Section III will present and justify the choice of our
proposed multilevel contract model. In Section IV we will
present a meta-model for contract-aware service component
architecture. Finally in Section V we illustrate our approach
with a case study.

II. QUALITY-DRIVEN SERVICE COMPONENT

ARCHITECTURE

Service-oriented computing (SOC) is the computing
paradigm that utilizes services as fundamental elements for
developing applications [7]. Service Component
Architecture (SCA) proposes a programming model for
building components based applications following the SOA
paradigm.

The purpose of SCA is to provide a model for creating
service-oriented component independent of any specific
programming language and to unify the methods of

314Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 332 / 729

encapsulation and communication in service-oriented
architectures by providing a component model.

In this section, we describe, at a glance, the SCA
architecture, present the component model and survey the
main quality approaches for component-based systems.

A. Service Component Architecture

1) Architecture

An SCA application consists of one or more components

that can be implemented in different languages.

A component is a software entity and the basic element

of a business function that contains zero or more services

and / or reference. A component may have properties and

can be either an implementation itself, or a composite. Fig. 1

shows an example of SCA component.

2) Benefits
SCA had emerged as a new architecture for addressing

complexity issues of developing SOA solutions. Its offers
many advantages:

 Simplify the development of business component
and assembly and deployment of business solutions
built as networks of services;

 Increase agility and flexibility and protects business
logic assets by shielding from low-level technology
change and improves testability.

3) Component Model
Various component models of Service Component

Architecture were proposed in literature.
For Ding [8] proposed component model, a service

component provide and require services. A service can be
described by operation activities as by well-defined business
function. A component provides and consumes services via
ports.

A port p is a tuple (M,t, c), where M is a finite set of
methods, t is the port type and c is the communication type.

A component Com is a tuple (Pp, Pr,G,W), in which Pp
is a finite set of provided ports, Pr is a finite set of required
ports, G is a finite sub component set.

Figure 1 - SCA Component [10]

Moreover, Du et al [9] included contract concept in the
Service Component meta-model.

A contract Ctr is a quadruple (P, Init, Spec, Prot) where

 P is a port;

 Spec maps each operation m of P to its

specification (am,, gm , pm) where:

 am contains the resource names of the port P

and the input and output parameters of m.

 gm is the firing condition of operation m,

specifying the environments under which m can

be activated.

 pm is a reactive design, describing the

behaviour of m.

 Init identifies the initial states.
Prot is a set of operations or service calling events.

B. Quality Approaches

There are a wide variety of works and techniques to

ensure systems quality, we have identified the main

techniques used for component-based systems during all

phases of the system’s life-cycle as shown in Fig. 2.

Hence, in design phase, functional and extra-functional

requirements (as reliability, availability…) are defined and

expressed. For this, Design by Contract [6] is an approach

and method of software design. It is based on the legal

definition of contracts which binds both parties and

highlights the interest to precisely specify the interfaces

behavior of a software component in terms of pre-

conditions, post conditions and invariants.
Subsequently, the reliability of the components and the

composite system is evaluated and predicted.
The evaluation and prediction of reliability is to predict

the failure rate of components and overall system reliability.

They can be used in the operational phase and the early

stages of system design software.

Figure 2 - Quality efforts in CBSs

315Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 333 / 729

In addition, the system should continue to operate even in

the presence of a failure of one of its components; fault

tolerance is the techniques and mechanisms that allow a

system to be reliable, available and secure despite the

presence of failures.

Furthermore, the development and build process should

conform to quality standards; quality assurance is a planned

and systematic pattern of all necessary actions to ensure that

the item or project conforms to technical requirements [11].

Finally, the achieved quality and trustworthiness is

certificated and asserted. Third-party certification is a

method to ensure software components are conform to the

defined standards; based on this certification, trusted

assemblies of components can be constructed [12].

III. MULTILEVEL CONTRACTS

A. Design by Contract

The contract-based approach provides proofs of non-

functional and quality properties without requiring the full

formality of proof-directed and mathematical development.

The requirements can be specified as preconditions, post

conditions and invariants.

 A precondition is a constraint that must meet a

client when calling a service.

 A postcondition is a constraint that must be met by

the supplier after use of the service.

 Invariants are constraints that must meet all

entities that fold to the contract.

This approach is particularly appropriate in the

component-based context. In fact, a pre-condition on the

parameters of an operation or a service defines a contract

that the required/given component agrees to respect.

Conversely, post-conditions on the return types of a required

component define the customer's expectation from the

service provider. Any violation of the contract is the

manifestation of a software bug; a pre-condition violation is

a bug in the client side and a post condition violation a bug

in the supplier side.

It is important that quality is considered during all stages

of the development lifecycle of the software. In fact, the

contract-based approach allows both defining the desired

quality properties and verifying and validating their

accuracy.

B. Why Contracts?

Dependability is a major requirement of modern systems
which consists of the system's ability to offer a trusted
service. It is important to be able to affirm the respect of
quality assertions of these systems.

To meet these requirements, we choose a contractual
approach [13]. Indeed, within the component and service
paradigms, contracts have become an integral part of their
definition [14]:

A software component is a unit of composition with
contractually specified interfaces and explicit context

dependencies only. A software component can be deployed
independently and is subject to composition by third parties.

A contract defines the constraints between components
that is to say, the rights and obligations between the service
provider and the client. It has the advantage of expressing the
conditions of use of a service by clarifying the obligations
and benefits of stakeholders.

We believe that design by contracts can address some of
the quality problems of large and complex systems
development by explicitly specifying functional and non-
functional properties of its components.

Unlike mathematical evaluation and prediction
techniques, the contract-based approach is a light-weight
formal method for specifying and designing quality-driven
systems, it can be introduced in an early stage during the
design phase.

To our knowledge, there is still no research work for
introducing the concept of contract in service component
based systems in order to manage and handle quality
requirements.

C. Contracts Levels

Beugnard [15] proposed a classification of contracts into
four categories:

 Basic contracts that ensure the possibility of
running the system properly;

 Behavioral contracts that improve trust in the
system functionalities;

 Synchronization contracts that specify
synchronization strategies and policies;

 QoS contracts which is the highest level and specify
quality of service attributes.

This classification has a good coverage of functional and

qualitative aspects of components, nevertheless, they don’t

handle trustworthiness of composition operations and

composite components, yet we have defined three levels of

component contracts:

 Intra-component contracts concerns the good
operations of the component and the respect of its
quality requirements;

 Inter-component / Compositional contracts ensure
the safe composition and trusted assembly of
components;

 System contracts concerns properties and
requirement of the whole system.

D. Contracts by Aspects

Separation of concerns is the process of dividing
software into distinct features that overlap in functionality as
little as possible, Aspect-Oriented Programming (AOP) [16]
aims at providing a means to identify and modularize
crosscutting concerns, by encapsulating them in a new unit
called aspect.

It was already stated that the design by contract
methodology is an aspect of the software system [17]. As
such, a contract can be expressed in AOP terminology.

Lorenz [18] classifies aspects for design-by-contract in
three types:

316Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 334 / 729

 Agnostic aspects that don’t affect a method’s
assertions,

 Obedient aspects where the input and output states
remains unchanged

 Rebellious aspects which changes the behavior of
existing methods.

Our proposed solution is based on the aspect oriented
programming (AOP) for building contract-aware service
component based systems. The essential advantage of AOP
is the externalization and isolation of crosscutting concerns
so that requirement contracts will be expressed outside of the
business code of the system.

As AspectJ [19] is one of the first and best known
Aspect-Oriented Programming tools, we choose it to
implement our approach.

E. Constraint Specification Language

In addition, we formalize contracts in UML's Object
Constraint Language (OCL) [20], which is a concrete
specification language that will help improving the
expressiveness of the contracts.

IV. META MODEL

As part of the Model Driven Architecture [21], the Object

Management Group (OMG) has defined a meta-metamodel

called MOF (Meta Object Facility) [22]. MOF is a

specification that defines the concepts to be used to define

meta-models.

We propose a MOF compliant meta-model of quality-

driven service component architecture; we introduce

contract concept and a support of quality requirements as

shown in Fig 3.

The meta-model can be divided into two parts: the

service component meta-model and its extension with

multilevel contract.

A. Service Component

Component: A component is the unit of construction of
Service Component Architecture and an instance of an
implementation; it is characterized by services executing
operations, properties and references to other services.

Components can be combined into a composite.
Service: Services provided by the component for other

components. A Composite Service can promote a

Component Service.

Figure 3 - Service Component Meta Model

317Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 335 / 729

Reference: Services required by the component from
other components. A Component Reference can promote a
Composite Service.

Property: External set values or attributes of a
component or composite.

Implementation: Implementation is a program code
implementing business functions; a component can
implement different implementation technologies such as
Java, C++, BPEL, etc.

Wire: Wiring that describes the connections between
services (source) and references (target) of components.

Composite: A composite contains assemblies of service
components. Composites also contain services, references
and properties.

B. Contract

Constraint: The expressed constraints of the system,
defines the obligations that must be verified by the software
components.

Contract: A contract specifies the interfaces behavior of
a component in terms of a configuration of pre-conditions,
postconditions and invariants.

A contract is associated to:

 Component element, to ensure the good operations
of the component and the respect of its quality
requirements.

 Composite element, to ensure the good operations of
the composite and the respect of its quality
requirements.

 Wire element, to define a contract on the binding of
two components.

A contract can express both functional and nonfunctional
requirements.

Requirement: Functional and non-functional
requirements expressed by the contract. The requirements
are described by a structure of boolean expressions and can
be constituted of a set of other requirements. A functional
requirement is a property related to the functionality of a the
service component. A non-functional requirement is the
quality or characteristics of a service component that
determines how and under which conditions the service will
be delivered. These requirements are not directly related to
the functionality provided by the component.

V. CASE STUDY

In this section, we present a simplified case study to

illustrate our multilevel contract approach and apply the

enunciated concepts. We consider an Airport Management

System. The airport has high reliability and dependability

requirements. Our system is composed of five components

as shown in Fig. 4.

BoardingComponent manage the boarding operations in

the airport, it has one service which is promoted by the

composite and has two references toward

CheckInComponent and

SecurityInformationComponent.

Figure 4 - Airport Management System

CheckInComponent manage the check in process of the

passengers, it has one service wired with

BoardingComponent and has a reference toward

LuggageComponent.

SecurityInformationComponent manage the security

information of the passengers. It has one service wired with

BoardingComponent.

LuggageComponent manage the luggage check and

control of the passengers.

FlightInformationComponent gives the necessary

informations of the flights in the airport. It has one service

wired with CheckInComponent.

To ensure the reliability of our system, we first identify

its requirements and then we define the corresponding

contracts.

To check in, the passengers must respect the check-in

deadline, that is to say, the time beyond which they cannot

not register or leave their luggage. Depending on the

destination and departure airport, the check-in deadline

varies from 15 to 90 minutes before departure time.

Moreover, the check in service has to be available 7d/7 at

any time of the day and respond within an acceptable period

of time. This represents the functional and non-functional

requirements of the check in component, then we define a

component contract.

Furthermore, the component has two references towards

luggage and flight information components; its good

operation depends on the correct assembly of these

components. Then we define an inter-component or

assembly contract.

Finally the airport management system should be reliable

and available, which correspond to a system quality

contract.

The functional and quality contracts are defined in the

design phase of the system development lifecycle, are

implemented in the construction phase and are verified

during the execution of the components, which allows us to

monitor and confirm the compliance with the formerly

defined requirements.

318Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 336 / 729

VI. RELATED WORKS

Some research works related to implementing contracts
by using aspects were proposed in the literature, as
Contract4J [23] and ContractJava [24].

Contract4J [23] is an open source tool that uses Java 5
annotations and AspectJ. Contract4J offers three annotation
types: pre-, post-conditions, and class-invariants. However,
although it is still functional Contract4J is no longer
maintained since 2007.

ContractJava [24] is a Java extension in which contracts
are specified in interfaces. However, class invariants and
“result” or “old” variables are not supported.

Handshake [25] is a Java extension that can be enabled
where contracts are specified in a separate file with special
syntax. However it is not compatible with recent JVM
releases.

CONA [26] is a tool that extends the Java and AspectJ
syntax with support for Design by Contract and enforces
their runtime validation. However its architecture is very
complex.

Besides they are not suitable for component-based
systems they are mostly limited and academic tools and do
not offer a complete and available framework.

Furthermore, our approach is more generic; it handles

both functional and non-functional properties of service

component, and covers the single component and the

composite levels.

VII. CONCLUSION

This work presented our proposed meta-model of
multilevel contract for service component architecture.

Based on a review of main techniques and models for
modeling and verifying quality-driven systems; we
concluded that contract-based approach is very suitable for
component-based systems in general and consequently for
service component based systems.

 Contracts is a design approach for describing both
functional and non-functional properties of complex and
quality-driven systems, it also involves synchronization and
Quality of Service (QoS) aspects. We will implement it
using aspect oriented programming.

We propose a multilevel contract model for expressing
and verifying functional and non-functional properties in all
levels of service component based systems.

As a continuation of this work, our objective is to
propose a modeling framework with a tooling environment
and adapt it to Service Component Architecture for safety-
critical and quality sensitive systems.

REFERENCES

[1] M. Beisiegel, “Service Component Architecture Specification.” 2007.

[2] G. Barber, “SCA Policy Framework Specification”, 2011, Available:
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.html.
[Sep. 15, 2012].

[3] B. Meyer, Object-Oriented Software Construction. 1997.

[4] U. Isaksen, J. P. Bowen, and N. Nissanke, “System and Software
Safety in Critical Systems,” 1996.

[5] J.-C. Laprie, Guide de la sûreté de fonctionnement. 1995.

[6] B. Meyer, “Applying ‘Design by Contract’,” Computer, vol. 25, no.
10, pp. 40–51, 1992.

[7] M. P. Papazoglou and D. Georgakopoulos, “Introduction: Service-
Oriented Computing,” Communcications of the ACM - Service-
Oriented Computing, vol. 46, no. 10, pp. 24–28, 2003.

[8] Z. Ding, Z. Chen, and J. Liu, “A Rigorous Model of Service
Component Architecture,” Electronic Notes in Theoretical Computer
Science, vol. 207, pp. 33–48, 2008.

[9] D. Du, J. Liu, and H. Cao, “A Rigorous Model of Contract-based
Service Component Architecture,” IEEE Computer Society, vol. 2,
pp. 409–412, 2008.

[10] SCA Consortium, “Service Component Architecture - Building
Systems using a Service Oriented Architecture.” 2005.

[11] ANSI/IEEE Std. 730-1981, IEEE Standard for Software Quality
Assurance Plans, 1981.

[12] B. Councill, “Third-Party Certification and Its Required Elements,” in
Proceedings of the 4th Workshop on Component-Based Software
Engineering, 2001.

[13] M. Rhanoui and B. E. Asri, “Toward a Quality-Driven Service
Component Architecture, Techniques and Models,” in Proceedings of
the 14th International Conference on Enterprise Information System,
pp. 192–196, 2012.

[14] C. Szyperski, Component Software : Beyond Object-Oriented
Programming. Addison-Wesley, 2002.

[15] A. Beugnard, J.-M. Jezequel, N. Plouzeau, and D. Watkins, “Making
Components Contract Aware,” Computer, vol. 32, pp. 38–45, 1999.

[16] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-Oriented
Software Development. Addison-Wesley, 2004.

[17] F. Diotalevi, Contract Enforcement With AOP. IBM, 2004.

[18] D. H. Lorenz and T. Skotiniotis, “Extending Design by Contract for
Aspect-Oriented Programming,” 2005.

[19] The AspectJ Team, “The AspectJ Programming Guide.” 2003.

[20] Object Management Group, “Unified Modeling Language (UML) 2.0
OCL Convenience Document.” 2005.

[21] Object Management Group, “Model Driven Architecture (MDA),”
2003.

[22] Object Management Group, “Meta Object Facility (MOF) V2.4.1.”
2011.

[23] D. Wampler, “Contract4J for Design by Contract in Java: Design
Pattern-Like Protocols and Aspect Interfaces,” in Proceedings of the
Fifth AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software, 2006.

[24] R. B. Findler and M. Felleisen, “Contract Soudness for Object
Oriented Languages,” in Proceedings of the 16th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, 2001.

[25] A. Duncan and U. Hoelzle, “Adding Contracts to Java with
Handshake,” 1998.

[26] T. Skotiniotis and D. H. Lorenz, “Conaj: Generating Contracts as
Aspects,” 2004.

319Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 337 / 729

Call for Software Tenders: Features and Research Problems

Jorge Hochstetter, Carlos Cares

Departamento de Ingeniería de Sistemas

Universidad de La Frontera

Temuco, Chile

jhoch@ufro.cl, carlos.cares@ceisufro.cl

Abstract— A relevant part of software industry deals with ad

hoc software solutions, which are externalized by software

consumers. The process of acquirment follows a public

procedure of requesting proposals. This procedure is based on

a call-for-tenders document that contains, at least, a software

specification and project constraints, such as budget and time.

The general assumption is that the requirements stage happens

prior to the call-for-tender process. However, public

documents of software tendering processes support the

contrary assumption. The aim of this paper is to sustain that

call-for-tender processes require additional study from an

empirical point of view in order to solve problems derived

from current industry practices. We have analyzed call for

tenders in relation to requirements engineering proposals and

also under a procedural approach. In order to sustain the

inclusion of call for tenders in the scope of software

engineering a set of different open problems is identified.

Keywords: call for tenders; software tenders; requirements

engineering; tendering process; software projects.

I. INTRODUCTION

Currently, organizations are increasingly becoming
acquirers of needed capabilities by obtaining products and
services from suppliers and the development of these
capabilities are diminishing in-house [1]. This scenario also
holds true for public institutions. In particular, organizations
in the public sector who are normally required by law to
make public bids for their purchases in order to achieve a
transparent process. In several countries, the government is
the main buyer of goods and services [2]. For this reason,
these countries have invested a great deal of money and
effort in defining purchasing policies [4],[5]. The Software
industry is a particular case where this has happened.

Therefore, organizations stimulate the competition in the
software industry by way of performing calls for tenders
(C4T). A call for tenders is the process where a company
invites the providers to satisfy particular needs, goods or
services. In this paper, we are considering the case of
software tendering processes that imply software
development, i.e., a software project.

The bidding process associated with a software product is
constituted by a set of common practices related to Software
Engineering (SE), which have been explored mainly from
the Requirements Engineering (RE) perspective. Indeed,
within the various problems and challenges of the
Requirements Engineering, there is improvement of the
quality associated with the specification process, as part of
the software process [6].

The literature about calls for tenders is contradictory to
the practice. On the one hand, Requirements Engineering
promotes a complete and consistent software requirements
specification (SRS) before starting the software process.
Thus, the theoretical suggestions and corresponding
assumptions indicate that the call to public notice phase
occurs after the ER stages. Therefore, an SRS becomes part
of the call-for-tenders document [6],[7],[8],[9]. On the other
hand, on the practice side, we have found that it is very
difficult to find a SRS as part of the call-for-tenders
document. What we find is that just some of these are
included as part of the bid, i.e., the need of including a
requirements elicitation and specification phase [10]. Other
sources confirm that call-for- tenders documents just include
a first approximation of Requirements Engineering’s stages
and products [9],[11],[12].

With this information, we can conclude that software
industry generates its offers for software development
projects in a scenario with uncertain and incomplete
information. Moreover, if we are aware that this phase is the
seed of a software project, then, it is obvious that uncertain
and incomplete information at the level of a call-for-tenders
document can imply a high frequency of two deviations: (a)
under the given budget, time and project conditions, the
software can be well developed, which probably also means
that projects conditions are relaxed, hence the customer is
losing efficiency, or (b) under the given scenario, the project
cannot be developed, which implies that the provider will
not accomplish the project goals, or should spend extra
money to achieve them. The worst case would reach a state
where the project results are aborted. These cases have been
illustrated by both theoretical simulations [13],[14] and
empirical findings [15],[16].

As a position paper, the goal of this essay is to sustain
that call-for-tenders processes require additional study and
research with respect to what is happens in industry today.
To cover this problem, we analyze the call-for-tenders
process stages comparing them to Requirements Engineering
stages, recognizing different research problems and
proposing research approaches to these sets of problems.

Furthermore, in Section II, we present the basics for
differentiating call-for-tenders documents and processes
from SRS documents and RE stages. In Section III, we
present a generic call-for-tenders process from both
customers’ and software providers´ perspectives, and we
argue about research problems associated to call-for-tenders
activities. To conclude, we summarize our point of view of
differentiating but, at the same time, integrating

320Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 338 / 729

Requirements Engineering body of knowledge to call-for-
tenders processes, as a first step to covering call-for- tenders
problems.

II. DIFFERENTIATING REQUIREMENTS ENGINEERING

AND CALL FOR TENDERS

To our knowledge, public tender processes for software
products have been scarcely investigated in technical
literature. Normally, the problem is put in the context of RE
activities.

However, in Software Engineering, the acquisition
problem has already been recognized as an independent
process having its own stages and deliverable products. A
clear example is CMMI for acquisitions [1]. In this case, the
process view point is the customer´s; therefore, it includes
engaging and managing suppliers. Although it is not
common, the problem of Call for Tenders has been
separately analyzed. For example, Costa et al. [12] address
the problem of systematically performing the bidding phase
of the public tender process, and propose a multicriteria
socio-technical approach to increase the transparency and
efficiency of the process.

TABLE I. CALLS FOR TENDERS AND REQUIREMENTS ENGINEERING

DIFFERENCES

Requirements Engineering
Stage

Call-for-tenders Process

The product is a software

requirements specification.

The product is a call-for-tenders

document.

The software requirements
specification includes software

requirements.

The call-for-tenders document
includes managerial, economic,

budget and software requirements.

It is assumed that the list of

software requirements in the
software requirements

specification is complete.

It is assumed that the list of

software requirements in the call-
for-tenders document may be

incomplete.

Normally it occurs after a
contract.

Normally it occurs before a
contract.

The software developer may be

selected.

The software developer should be

selected.

Most of the time a software

requirements specification
constitutes a specific technical

solution.

Most of the time a call-for-tenders

document looks for a specific
technical solution.

Most of the time it´s focuses are

software requirements.

Most of the time it´s focuses are

business goals.

There are a set of modelling

languages for representing

Requirements Engineering
deliverables.

There are not modelling languages

for representing call for tenders’s

deliverables.

The involved actors are

requirements engineers and

stakeholders.

The involved actors are customers

and providers.

On the other hand, when practice and theory are
confronted, there is evidence that call-for-tenders processes
are not following literature recommendations [10],[17],[18].
Moreover, by analyzing different call-for-tenders documents
from public distributions [19],[20],[21] we can see that many
call-for-tenders documents include, as part of the project, the
requisite of formulating a Requirements Engineering stage
and a software requirements specification as a deliverable
product of the outsourced project.

We sustain that, from the perspective of Software
Engineering, i.e., from software production point of view,
the generation of a Call for Tenders is a completely different
stage from requirements engineering. For example, we have
detected a high dispersion of extensions, level of detail,
technical specifications, and business goals descriptions
among other differences. Moreover, a software requirements
specification is only part of the call-for-tenders document, if
at all, and there is a low and controlled interaction between
suppliers and customers. The detected differences are
presented in Table I.

III. CALL FOR TENDERS’ RELATED WORK

In spite of the already recognized differences, it is worth
mentioning that RE appears to be similar to the call-for-
tenders process and, most of the time, they even appear as
one phase in the software process. In order to describe
current proposals regarding Requirements Engineering and
Call for Tenders we summarize them.

Renault et al. [9] present the case of the elicitation and
selection of software components. These processes are
driven by public tender processes and the use of a
Requirement Patterns Catalogue is proposed to save time and
reduce errors. Carvallo & Franch [7] present a similar case
study where the activities undertaken to obtain, analyze and
structure the requirements to be included in a public tender
process for an ERP are analyzed.

Lauesen [17] provides a set of guidelines for the creation

of the call-for-tenders documents, i.e. the point of view is

from the customer, although it is also recognized that these

guidelines could also support the suppliers. In a practical

sense he affirms that customers do not normally apply these

guidelines.

Paech et al. [18] report a set of experiences of a supplier
company analyzing call-for-tenders documents for
generating technical proposals. They found that existing
challenges can be confronted by using requirements
engineering techniques.

Additionally, we have started a research line to analyze
call-for-tenders documents from the perspective of
requirements engineering metrics and it´s comparison to
software providers’ decision variables. Thus, on one hand
[10], we present an approach for analyzing call-for-tenders
documents adapting an ontology of speech from goal-
oriented requirements engineering to generate metrics. On
the other, [3] we describe the application of a focus group
technique that provides some clues to understand providers’
analyses for applying, or not, for a call-for-tenders process.
An initial set of variables are identified in order to describe
critical decision points.

From this review, our opinion is that the topic of Call for
Tenders is almost unmentioned in Software Engineering
literature, but, at the same time, is an underlying topic, i.e.,
it seems to be present, however, it is not referred to by it´s
name (or similar names). This way, several results from
Software Engineering research could be applied to different
stages of a call-for-tenders process.

321Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 339 / 729

In order to make these relationship explicit, i.e., between
call-for-tenders process and existing research approaches,
we offer an analysis which is based on call-for-tenders
stages. We consider the stages starting from the internal
requirements collection, to the software development stage
made by an external provider. In each stage we have looked
for existing software engineering approaches which support
it. In addition, we also identify specific problems at each
stage to which we have not found any approaches.
Therefore, we call them open problems.

IV. CALLS FOR TENDERS SUPPORT AND OPEN

PROBLEMS

In this section, we present the general stages of a call-
for-tenders process. In the left part of Table 1 we have
summarized these stages from both customer´s and
provider´s perspectives. Further on, we describe each stage
and we analyze how existing software engineering
approaches support the technical task at each stage.
However, it is necessary to consider that different referred to
authors, most of the time, do not distinguish if they are
assuming the existence of a call-for-tenders process.

1) Gather organizational needs. We assume that an
organization can have a set of planned systems to develop.
Requirements Engineering’s proposals adopt a top-down
focus, i.e. they can conceive software systems from Business
strategies [22],[23] or from Business goals [6],[24]. These
systems should accomplish specific functionalities and
quality attributes in order to deliver business goals. However,
there are two processes to which we have not found
approaches. Firstly, computational units collect requirements
as part of a day-to-day routine. Therefore, the process is not
exclusively top-down. Thus, here is an open problem: given
a set of already gathered requirements, how could the
parameters of future computational systems be established in
order to get convenient bids? Although the “natural” answer
seems to be hybrid approaches (top-down and bottom-up
together) we have found neither hybrid approaches
considering bottom-up requirements, nor the way of
combining requirements to conceive a set of future software
systems.

2) Estimate budget and time for conceiving systems. To
trigger a system development process it is necessary to have
a good estimation of both the business value of the system
and the cost of the system (including software and
organizational adoption). Regarding the business value there
are several approaches [13],[25]. In the case of estimating
the software development effort, in spite of it being a
familiar topic in software engineering [26],[30] the methods
require a previous estimation of software size (measured by
lines of code, function points or use case points), most of
these methods consider particular features of software teams.
Therefore, from the perspective of a call-for-tenders process,
an early estimation method is required for a generic team
which considers the current context. Thus, these methods
consider special requirements such as interoperability of
existing systems and the reuse of existing libraries or
software components, but overall, an incomplete
requirements specification. Thus, an open problem here is

how budget can be better estimated to incentivize providers
to apply and, at the same time, to pay the “fair” price.

3) Specify a call-for-tenders document. At this stage, the
customer should produce the document which will be
published. Although components of a call for tenders could
be well-established, [1] it is necessary to reach an
equllibrium between collecting enough information for
providers, in order that they formulate good solutions to the
problem, and the cost of collecting this information. A
related problem is how much detail should the specified
solution have (if any) because, on one hand, an open
perspective should enable creative and unexpected technical
solutions, and at the same time present new organizational
challenges to adopt them. On the other hand, a closed
perspective allows for the presentation of tailored solutions
but, at the same time, reduces the amount of providers,
hurting the competitiveness of call-for-tenders process.

4) Search and select requests for proposals. Now, from the
perspective of providers, several calls could be available in a
specific time period. The providers must decide from a set of
call-for-tenders documents which of them they will apply
for. Normally, just to study one call-for-tenders document
could take too much time. We have not found approaches to
make the decision, about how to select calls to evaluate nor
how to evaluate them. Derived problems are: how to promise
proper software functionality if this has been (normally)
poorly specified. A particular problem detected by
Hochstetter et al. [3] is how to match the specified problem
to existing software assets in order to apply with a
competitive offer.

5) Questions and answers. Normally, a public call-for-
tenders process considers a public questions and answers
process where providers can resolve doubts emerging from
the interpretation of call-for-tenders documents. Questions
and answers are published, thus, new variables are added to
the process. For example, the number of questions should be
an indicator of providers’ interest in applying and hence an
indicator of process` competitiveness which could imply that
more than one potential provider may abandon the process.
At the same time a resolved doubt, also resolves any doubt
regarding competition. Therefore, the open problem for
providers is to achieve an equilibrium between resolving
uncertainness to the public and resolving uncertainness over
competitiveness. From the perspective of a public-sector
customer, answers should show an efficient use of public
resources and a transparent way of spending them.

6) Prepare a proposal. Once a provider has decided to
apply, the next problem is how to build a “good” proposal.
Some work has been done about how to present requirements
in a clear and structured way [9],[26] However, the problems
seem wider. We have detected that multiple applications
from the same organization is normal practise. Therefore, we
can even consider the problem about how many proposals
can be made and then answer how to make them. Therefore,
“good” proposals should consider not only technical content,
but available time, assets and team among internal resources
and existing systems, standards, assets and stakeholders
availability among the external ones. Also, it is necessary to

322Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 340 / 729

achieve an equilibrium between the cost of preparing the
offer and the probability of losing it. We formulate the
problem of how to build an offer considering socio-technical
constraints from the customer and provider.

7) Select an offer (provider). Following providers’
applications, a selection process is initiated. Normally, this
process has an administrative stage where legal constraints
are verified. Only then is a technical evaluation begun. It
seems to be a stage where different approaches from
Software Engineering have been proposed: quality models
including non-technical factors [7], framework for selecting
COTS [28], particular suggestions from acquisition standards
[1], and other contemporary approaches such as trust
relationships [29]. In order to acknowledge this stage as an
already addressed topic, we do not add open problems here.

8) Negotiate the contract. The main goal of this stage is to
sign the final contract. In the case of call for tenders from the
private sector, it could imply an opportunity to detail some
“risky sentences” from both, call for tenders and the bid.

However, in the case of government calls, bureaucracy
should seriously delay the starting of the process, which
would mean changes of socio-technical conditions under
which the offer was formulated. To start, or not to start, the
project without a contract could be a relevant decision to
make. Therefore, trust is a variable key here. There are no
studies showing a complete set of variables and how to deal
with them. Thus, intermediate payment, engineering
deliverables, intellectual property and exploitation of it,
stakeholders’ availability, post-end availability from the
provider, and associated penalties are variables to consider
and balance in order to reach a final agreement.

9) Develop Software. At this stage, the traditional software
life cycle is activated. As we have sustained, most of the
time it involves requirements elicitation and specification.
Therefore, traditional approaches can be applied regarding
additional aspects, such as imposed project milestones,
external monitoring, programming practices and technology
imposed by the contract and other considerations derived
from a supervised project.

TABLE II. CALL FOR SOFTWARE TENDERS, EXISTING APPROACHES AND OPEN PROBLEMS

Customer Supplier Approaches Open Problems

Gather

organizational
needs

Top-down proposals from Requirements
Engineering e.g. goal-oriented requirements

engineering [23],[31] and strategic IT

alignment [32] produce systems to-be.

How to combine incomplete requirements
to conceive systems which could be,

moreover, separately developed even by

different external teams.

Estimate budget

and time

Traditional software engineering economics
considers software size metrics and team

features as part of estimation models [25].

How to calculate early software projects
estimations under incomplete and

uncertain information.

Specify a call-

for-tenders

document

There are some proposed standards for
software acquisition processes including topics

to include in call-for-tenders documents [1].

Additionally, other Requirements Engineering

approaches results are useful for call-for-

tenders specifications [9],[10],[11].

How to aid the writing of call-for-tenders

documents balancing detailed information
and enough space for creative solutions.

Search and

select call for
tenders

No accessible approaches

How to select calls for tenders and how to

efficiently evaluate them in order to build
competitive bids with low effort.

Ask for doubts
in tender process

No accessible approaches

How to select what doubts to address or

what kind of questions or answers could

lose other competitors.

Answer

questions

No accessible approaches

How to show, in answers, high
consistency to call-for-tenders document,

a transparent process and efficient use of

public resources (if it corresponds).

Prepare a

proposal

The challenges can be confronted by using
requirements engineering techniques for

generating technical proposals [14],[18].

How to generate a bid regarding the cost

of prepare it, the probability of losing it

and the involved risks coming from
incomplete information.

Select an offer
(provider)

There are studies for applying techniques to

select software components and providers [12],

[26], [27].
 .

Negotiate the contract

No accessible approaches

 How to handle and balance variables such
as changing requirements, stakeholders’

availability, penalties, post-sale service at

contract time.

Develop

Software

It corresponds to the classical scope of
Software Engineering; therefore, its results are

applicable to this stage.

How to develop software under a scenario

of external supervising, monitoring and

even, sometimes, under different
developing conditions.

323Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 341 / 729

V. CONCLUSIONS AND FURTHER LINES OF RESEARCH

In this paper, we have presented the problem of
producing and applying to a public call for software tenders
as a Software Engineering problem which requires additional
approaches. Because it appears to be closely related to
Requirements Engineering Stages, we have presented a set of
differences among them. Moreover, we have sustained that
the common theoretical assumption regarding to call for
tenders happening after the requirements stage is not
necessary true, therefore, a set of new problems are derived
from actual practices. In order to analyze this situation we
have followed call-for-tenders phases under the perspective
of a customer-supplier interaction. In each phase, we have
identified current Software Engineering approaches but we
have also obtained a list of open problems corresponding to
the different call-for-tenders phases.

Therefore, we have provided enough arguments to sustain
that the call-for-tenders process is a different Software
Engineering stage and deserves additional research attention,
especially in the way that it takes place in industry.
Particularly, we propose to focus on the set of problems
partially treated which seem to have a high impact on
software projects. After all, the call-for-tenders process is the
seed of software process.

ACKNOWLEDGMENTS

This work has been sponsored by the Investigation
Direction, University of La Frontera, Temuco, Chile,
DIUFRO DI11-0015 Project.

REFERENCES

[1] C. Team, "CMMI for acquisition, version 1.3," Technical Report,
Carnegie Mellon University, Pitts burgh, 2010.

[2] T. P. Hill, "On goods and services," The Review of Income and
Wealth, vol. 23, no. 4, pp. 314-339, 1977.

[3] J.Hochstetter, C. Cachero, C. Cares, and S. Sepúlveda, "Call for
Tender Challenges in Practice: a Field Study," in Proc. XV Congreso
Iberoamericano en Software Engineering, Buenos Aires, Argentina,
2012.

[4] C. C. Pimenta, "Gestión de compras y contrataciones
gubernamentales," RAE-electrónica, vol. 1, no. 1, pp. 1-12, 2002.

[5] S. Lauesen and J. P. Vium, "Communication gaps in a tender
process," vol. 10, no. 4, pp. 247-261, Nov. 2005.

[6] A. v. Lamsweerde, "Requirements engineering: from craft to
discipline," in Proc. of the 16th ACM SIGSOFT Int. Symposium on
Foundations of software engineering, Atlanta, Georgia, 2008, pp.
238-249.

[7] J. P. Carvallo and X. Franch, "On the Use of Requirements for
Driving Call-for-Tender Processes for Procuring Coarse-grained OTS
Components," in Proc. Requirements Engineering Conference, 2009.
RE '09. 17th IEEE International, pp. 287 - 292, 2009.

[8] S. Biffl, D. Winkler, R. Höhn, and H. Wetzel, "Software process
improvement in Europe: potential of the new V-modell XT and
research issues," Software Process Improvement Practice, Wiley
2006, vol. 11, no. 3, pp. 229–238.

[9] S. Renault, Ó. Ménez-Bonilla, X. Franch, and C. Quer, "A Pattern-
based Method for building Requirements Documents in Call-for-
tender Processes," International Journal of Computer Science and
Applications, vol. 6, no.5 pp. 175 -202, 2009.

[10] J. Hochstetter, C. Díaz, and C. Cares, "Licitaciones Públicas de
Software: Métricas Basadas en Actos de Habla," in Proc. Information

Systems and Technologies (CISTI), 2012 7th Iberian Conference on,
Madrid, España, 2012, pp. 451-456.

[11] J. Brender and P. McNair, "User requirements specifications: a
hierarchical structure covering strategical, tactical and operational
requirements," International Journal of Medical Informatics, vol. 64,
pp. 83-98, 2001.

[12] C. B. e. Costa, E. Corrêa, J.-M. D. Corted, and J.-C. Vansnickd, "
Facilitating bid evaluation in public call for tenders: A socio-technical
approach," Omega, vol. 30, no.30, pp. 227-242, 2002.

[13] B. A. Aubert, S. Rivard, and M. Patry, "A transaction cost approach
to outsourcing behavior: some empirical evidence," Information and
Management, vol. 30, no. 2, pp. 51-64, 1996.

[14] S. Whang, "Contracting for software development," Management
Science, vol. 38, no.3, pp. 307-324, 1992.

[15] D. Gefen, S. Wyss, and Y. Lichtenstein, "Business familiarity as risk
mitigation in software development outsourcing contracts," MIS
Quarterly, vol.32, no.3, pp. 531-551, 2008.

[16] R. T. Nakatsu and C. L. Iacovou, "A comparative study of important
risk factors involved in offshore and domestic outsourcing of
software development projects: A two-panel Delphi study,"
Information & Management, vol. 46, no. 1, pp. 57-68.

[17] S. Lauesen, "COTS tenders and integration requirements," In Proc. of
the IEEE Int. Req. Eng. Conf. (RE), 2004, pp. 166-175.

[18] B. Paech, R. Heinrich, G. Zorn-Pauli, A. Jung, S. Tadjiky, B. Regnell,
and D. Damian, "Answering a Request for Proposal – Challenges and
Proposed Solutions Requirements Engineering: Foundation for
Software Quality," in Proc. REFSQ, Essen, Germany, 2012, pp.16-29.

[19] ChileCompras, "Website. http://www.mercadopublico.cl (04 2012)."

[20] Comprasnet, "Website. http://www.comprasnet.gov.br (04 2012)."

[21] Compranet, "Website. http://www.compranet.gob.mx (04 2012)."

[22] E. J. Braude and M. E. Bernstein, "Software engineering: Modern
Approaches," J. Wiley & Sons. Second Edition, 2011. ISBN 978-0-
471-69208-9.

[23] E. Yu, "Modelling Strategic Relationships for Process
Reengineering," Ph.D. thesis, also Tech. Report DKBS-TR-94-6,
Dept. of Computer Science, University of Toronto, 1995.

[24] P. Keil, "Principal agent theory and its application to analyze
outsourcing of software development," in ACM SIGSOFT Software
Engineering Notes, vol. 30, pp. 1-5, 2005.

[25] B. W. Boehm, "Software Engineering Economics," Software
Engineering, IEEE Transactions on, vol. 10, no. 1, pp. 4-21, 1984.

[26] N. Aissaoui, M. Haouari, and E. Hassini, "Supplier selection and
order lot sizing modeling: A review," Computers \& operations
research, vol. 34, no. 34, pp. 3516-3540, 2007.

[27] D. Lowe, "A framework for defining acceptance criteria for web
development projects," Web Engineering, pp. 279-294, 2001.

[28] H. C. Esfahani, E. Yu, and M. C. Annosi, "Strategically balanced
process adoption," in Proc. of the 2011 International Conference on
Software and Systems Process, Hawaii, USA, pp. 169-178, 2011.

[29] A. Heiskanen, M. Newman, and M. Eklin, "Control, trust, power, and
the dynamics of information system outsourcing relationships: A
process study of contractual software development," The Journal of
Strategic Information Systems, vol. 17, no. 4, pp. 268-286, 2008.

[30] H. Erdogmus, B. W. Boehm, W. Harrison, D. J. Reifer, and K. J.
Sullivan, "Software engineering economics: background, current
practices, and future directions," in Proc. of the 24th International
Conference on Software Engineering, 2002, pp. 683-684.

[31] A. v. Lamsweerde, "Goal-oriented requirements engineering: A
guided tour," in Requirements Engineering, 2001. Proceedings. Fifth
IEEE International Symposium on: IEEE, 2001, pp. 249-262.

[32] S. J. Bleistein, K. Cox, J. Verner, and K. T. Phalp, "B-SCP: A
requirements analysis framework for validating strategic alignment of
organizational IT based on strategy, context, and process,"
Information and Software Technology, vol. 48, no. 9, pp. 846-868,
2006.

324Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 342 / 729

BPEL-RF Tool: An Automatic Translation from WS-BPEL/WSRF S pecifications
to Petri Nets

Maŕıa D́ıaz, Valent́ın Valero, Hermenegilda Macià, Jose Antonio Mateo, Gregorio Dı́az
Informatics Research Institute of Albacete (I3A) Albacete, Spain

Email: {Maria.DiazTello, Valentin.Valero, Hermenegilda.Macia,JoseAntonio.Mateo, Gregorio.Diaz}@uclm.es.

Abstract—Composite Web services technologies are
widely used due to their ability to provide interoperability
among services from different companies. Thus, orchestra-
tion languages like WS-BPEL have recently appeared to
manage the interactions of multiple services in order to
achieve a global aim. Web services are usuallystateless,
which means that no state is stored from the clients
viewpoint. However, some new applications and services
have emerged, which require to capture the state of some
resources. Therefore, new standards to model Web services
states have arisen, such as Web Services Resource Frame-
work (WSRF). In this paper, we present a tool, which
takes as input a specification in BPEL-RF (a language
defined on the basis of both standards), and transforms it
into a prioritised-timed coloured Petri net (PTCPN). These
PTCPNs can be verified and validated with the well-known
tool, CPNTools.

Keywords-Web Service compositions; WS-BPEL; WSRF;
Coloured Petri nets; Tool support; Stateful workflows

I. I NTRODUCTION

The development of software systems is becoming
more complex with the appearance of new computational
paradigms such as Service-Oriented Computing (SOC),
Grid Computing and Cloud Computing. In January of
2004, several members of theGlobus Allianceorgani-
zation and the computer multinationalIBM with the help
of experts from companies such asHP, SAP, Akamai, etc.
defined the basis architecture and the initial specification
documents of a new standard to describe distributed
resources, Web Services Resource Framework (WSRF)
[10]. The WSRF elements that are considered in the
language BPEL-RF are:

• WS-ResourceProperties: There is a precise
specification to define WS-Resource properties,
based on a Resource Properties Document (RPD),
which represents the properties of the associated
resource (disk size, processor capacity, etc.).
Nevertheless, for simplicity, we only consider a
single property for each resource, which is an
integer value. Resources are identified by their
EPRs (End-Point References); so, we will also use
this mechanism for identification purposes, but,
for simplicity, we will consider these references as
static, instead of assuming a dynamic mechanism
to assign them. As a shorthand notation, EPRs will
also be used to denote the resource property values.
Among the operations allowed by the standard are
GetResourceProperty and SetResourceProperty,
which are used to manipulate the resource property
values.

• WS-ResourceLifetime: The WSRF specification
does not provide a standard way to create resources.
However, resources have an associated lifetime,
which means that once this time has elapsed, the
resource is considered to be destroyed. We have then
included, for completeness, an operation to create
resources,createResource, in which the initial value
of the resource, its lifetime and the activity that must
be launched upon its destruction are indicated. We
also have an operation in order to modify the current
resource lifetime,setTimeout.

• WS-Notification: Clients can subscribe to WSRF
resources in order to be notified about some topics
(resource conditions). We therefore include thesub-
scribeoperator, indicating the condition under which
the subscriber must be notified, and the activity that
must be executed upon that event.

WS-BPEL [3], for short BPEL, is an OASIS orchestra-
tion language for specifying actions within Web service
business processes. BPEL is an orchestration language
in the sense that it is used to define the composition of
services from a local viewpoint, describing the individual
behaviour of each participant. BPEL processes usevari-
ables to temporarily store data. Variables are, therefore,
declared on a process or on a scope within that process.
In our case, there will be a single scope (root); so, no
nesting is considered here. Besides, for simplicity again,
we will only deal with integer variables.

An orchestrator consists of a main activity, representing
the normal behaviour of this participant. There are also
event and fault activities, which are executed upon the
occurrence of some events, or due to some execution
failures, respectively. BPEL activities can bebasic or
structured. Basic activitiesare those which describe the
elemental steps of the process behaviour, such as the
assignment of variables (assign), empty action (empty),
time delay (wait), invoke a service (invoke) and receive a
message (receive), reply to a client (reply), and throw an
exception (throw). We also have an action toterminate
the process execution at any moment (exit). For technical
reasons, we have also included a barred form ofreply
action, which is used when a service invocation expects
a reply, in order to implement the synchronization with
the reply action from the server.Structured activities
encode control-flow logic in a nested way. The considered
structured activities are the following: asequenceof
activities, separated by a semicolon, the parallel composi-
tion, represented by two parallel bars (‖), the conditional
repetitive behaviour (while), and a timed extension of the

325Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 343 / 729

receive activity, which allows to receive different types of
messages with a time-out associated (pick).

The main motivation of this work is to provide a for-
mal semantics for WS-BPEL+WSRF to manage stateful
Web services workflows by using the existing machinery
in distributed systems, and specifically a well-known
formalism, such as prioritised-timed coloured Petri nets
(PTCPN), which are a graphical model that also provide
us with the ability to simulate and analyse the modelled
system. In order to deal with the integration of BPEL plus
WSRF in a proper way, we have realised that it is more
convenient to introduce a specific semantic model, which
covers properly all the relevant aspects of WSRF such
as notifications and resource time-outs. The integration
of both standards is not new; in the literature, there are
a bundle of works defining this integration, but none of
these works define a formal semantics in terms of Petri
nets.

In [16], the integration of BPEL in Grid environments
is considered, and the author discusses the benefits and
challenges of extensibility in the particular case of OGSI
workflows combined with WSRF-based Grids. Other two
works centred around Grid environments are [8] and
[11]. The first one justifies the use of BPEL extensibility
to allow the combination of different GRIDs, whereas
Ezenwoye et al. [8] share their experience on BPEL to
create and manage WS-Resources that implement the
factory/instance pattern in bioinformatics. On the other
hand, Ouyang et al. [15] define the necessary elements
for translating BPEL processes into Petri nets. Thus, they
cover all the important aspects in the standard such as
exception handling, dead path elimination, and so on. The
model they consider differs from ours in that we formalise
the whole system as a composition of orchestrators with
resources associated, whereas they describe the system
as a general scope with nested sub-scopes leaving aside
the possibility of administering resources. Besides, we
have also formalized the event handling and notification
mechanisms. Following this translation, in [14], Ouyang
et al present the tool WofBPEL and a companion tool,
BPEL2PNML. The idea behind is to provide tool support
for the analysis of BPEL processes. Related toπ-calculus
semantics, Dragoni and Mazzara [6] propose a theoretical
scheme focused on dependable composition for the WS-
BPEL recovery framework. In this approach, the recovery
framework is simplified and analysed via a conserva-
tive extension ofπ-calculus. The aim of this approach
clearly differs from ours, but it helps us to have a better
understanding of the WS-BPEL recovery framework. In
addition, we also consider time constraints. Moreover, we
would like to highlight the work of Farahbod et al. [9]
and Busi et al. [4]. In the first one, the authors extract an
abstract operational semantics for BPEL based on abstract
state machines (ASM) defining the framework BPELAM

to manage the agents who perform the workflow activi-
ties. In this approach, time constraints are considered, but
they do not formalize the timed model. In the second one,
they also define aπ-calculus operational semantics for
BPEL and describe a conformance notion. They present
all the machinery to model web service compositions

(choreographies and orchestrations). The main difference
with our work is that we deal with distributed resources.

Finally, in the literature one can find several tools per-
forming the opposite translation, i.e., from Petri nets into
BPEL. In [2], van der Aalst and Lassen present the theory
and implementation of a translation between WF-nets
and BPEL. The implementation is performed via the tool
WorkflowNet2BPEL4WS. This tool automatically trans-
lates coloured Petri nets, CPNs, into BPEL code. These
CPNs are specified using CPN Tools [5]. Other similar
proposal, WoPeD [7], is a Java-based tool that provides
an easy-to-use software for modelling, simulating and
analysing workflow processes and resource descriptions.
WoPeD supports the CPN notation and the standard file
format of WoPeD is PNML, allowing model exchange
with other Petri net tools. After this introduction, Section
II shows briefly the language BPEL-RF, whereas Section
III presents indeed the tool. Section IV contains a case
study so as to illustrate how the tool works. Finally,
Section V finishes the paper with some conclusions and
possible future work.

II. BPEL-RF LANGUAGE

In this section, we are going to present briefly the
main characteristics of the language called BPEL-RF
(Business Process Execution language for the Resource
Framework). An operational semantics for this language
was presented in our previous work [12], and the cor-
responding translation to prioritised-timed coloured Petri
nets in [13]. Due to the lack of space, we omit here these
transformations, so the interested reader can refer to [12],
[13] for them.
We use the following notation:ORCH is the set of
orchestrators in the system,Var is the set of integer
variable names,PL is the set of necessary partnerlinks,
OPSis the set of operations names that can be performed,
EPRSis the set of resource identifiers, andA is the set of
basic or structured activities that can form the body of a
process. Note that each orchestrator uses its own variables
despite we have not separatedVar in its corresponding
subsets.

The specific algebraic language, then, that we use for
the activities is defined by the following BNF-notation:

A ::= throw | receive(pl, op, v) | invoke(pl, op, v1) | exit |

reply(pl, v) | reply(pl , op, v2) | assign(expr, v1) | empty |
A ;A | A ‖A |while(cond,A) | wait(timeout)|
pick({(pli, opi, vi, Ai)}

n
i=1

, A, timeout) |
createResource(EPR, val, timeout,O,A) |
getProp(EPR, v)| setProp(EPR, expr) |
setTimeout(EPR, timeout) |
subscribe(O,EPR, cond′, A)

whereO ∈ ORCH ,EPR ∈ EPRS , pl , pli ∈ PL, op,

opi ∈ OPS , timeout ∈ IN,expr is an arithmetic
expression constructed by using the variables in
Var and integers;v , v1 , v2 , vi range over Var, and
val ∈ Z. A condition cond is a predicate constructed
by using conjunctions, disjunctions, and negations over
the set of variablesVar and integers, whereascond ′

is a predicate constructed by using the corresponding
EPR (as the resource value) and integers. Notice that

326Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 344 / 729

setPropand getProp do not contain the property name
since, for simplicity, we are only considering a single
property for each resource. We therefore use its EPR as
representative of this property, as we already observed
in the introduction. Note that we do not take into
consideration correlation sets, dynamic partnerlinks or
instance creation, since we only deal with the static
aspects of WS-BPEL. We plan as part of our future
work an extension of this operational semantics enriched
with these additional constructions, as well as with
the inclusion of structured variables, instead of just
considering all variables as integers. An orchestration
is now defined as a tupleO = (PL,Var ,A,Af ,Ae),
whereA and Af are activities defined by the previous
syntax andAe is a set of activities. Specifically,A
represents the normal workflow,Af is the orchestrator
fault handling activity andAe = {Aei}

m
i=0

are the event
handling activities.

III. BPEL-RF TOOL

As WS-BPEL and WSRF are XML-based languages,
and the PTCPNs supported by CPNTools are also rep-
resented by XML files, we have used XSLT stylesheets
to transform the BPEL-RF document into another XML
document representing the PTCPN in a format supported
by CPNTools. These XSL stylesheets are created us-
ing a XSLT editor. The obtained XML document can
be visualized, simulated and verified with CPNTools.
As the tool has been developed in Java, it is multi-
platform, i.e., runs on Windows/Linux/Mac systems under
the Java virtual machineR© (the tool is available at [1]).
The XSLT transformation sheets (eXtensible Stylesheets
Language/Transform) are a W3C declarative language to
transform XML documents into other XML documents or
to some other kind of documents. The XSLT stylesheets
are widely used, as an easy way to apply transformation
rules to a source document in order to obtain the corre-
sponding output documents. Nowadays, XSLT is widely
recommended in web edition area, due to its ability to
generate HTML or XHTML sheets.

For making that transformation, XSLT allows to con-
vert the input in two ways: On the one hand, the pro-
grammer can manipulate the contents of the document
to organize them without changing the document format,
whereas, on the other hand, the programmer can use
XSLT sheets to transform the contents into other different
formats.

We have then defined a number of rules to extract
the PTCPN elements from the choreography defined as
a composition of WS-BPEL documents. Thus, our tool,
BPEL-RF, is used to achieve this transformation in an
automatic way, presenting to the user a.cpn file, which
can be opened with CPNTools. After doing this, the user
can analyse and verify the model by using the features of
CPNTools.

The XSLT stylesheet document starts with the instruc-
tion 〈 ?xml version =′ 1.0′?〉. The element root is a
stylesheet, which contains all other elements. In an XSLT
stylesheet, the name of reserved elements by the specifi-
cation comes from the same namespace, so they must be
written preceded by the appropriate alias that must point

to the URL: http://www.w3c.org/1999/XSL/Transform.
In Fig. 1, we show a piece of the structure of the XSLT
document.
Once we have located the initial and final mark of the root
element “xsl:stylesheet”, we define the transformation
rules:

• Each rule is defined by an “xsl:template”.
• In the rules, we indicate those elements of the XML

document that will be transformed.
• The rules also indicate how each element must be

transformed.
• Each rule is applied to all elements of the XML

document.
• In the XSLT rules, between their initial and final

marks, one can include:

– Text to be written literally in the output docu-
ment.

– Marks that are added to the XML output docu-
ment.

– Reserved elements to perform an action such as
retrieving the value of an item, sorting results,
calling other rules of the stylesheet, etc.

<?xml version="1.0" ?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform

version="1.0">
<xsl:output indent="yes" />
<xsl:template match="/">
<workspaceElements>
<generator tool="CPN Tools" version="3.2.2" format="6" />
<cpnet>
...
<page id="ID6">
<template>
<xsl:for-each select="//process">
<xsl:for-each select="child::*">
<xsl:if test="(name()=’pick’)">
<xsl:call-template name="pick" />
<xsl:call-template name="picktrans" />
</xsl:if>
....
</template>
</page>
...
</cpnet>
</workspaceElements>
</template>
</stylesheet>

Figure 1. Illustration of an XSLT template

For the sake of simplicity, BPEL-RF Tool has a very
simple and intuitive interface shown in Fig. 2. It consists
of a main frame with separated elements such as a file
menu and the transformation panel. The file menu has
three different submenus, namely:File, CPN Toolsand
Help. TheFile submenu offers two options. The first one,
Open WS-BPEL WSRF File, opens a BPEL-RF document
previously edited and saved with the tool; whereas the
second one,Exit, exits the program. TheCPN Tools
submenu only offers one option,Save Coloured Petri
Net, which saves the translated XML code to a .cpn file.
Finally, the last submenu,Help, consists of two options
Help and About. The optionAbout only informs users
about the tool version, the optionHelp offers users a wide
user manual with the possibility of searching through the
information using either a table of contents or a search
option.

327Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 345 / 729

Figure 2. Main screen of the tool.

The main elements of the interface are:

• The WS-BPEL / WSRF Textbox permits users
to introduce XML code following the specification
given by WS-BPEL and WSRF. This XML is used
as the source code to be translated into PTCPN.
This code can be introduced in two ways; either
by writing the XML code by hand or by loading
a previously saved document using theOpen WS-
BPEL WSRF Filesubmenu mentioned above. A
dialog window will be shown to the user asking him
to select the document to be opened. If the file is
not valid, an error message will be displayed on the
screen.

• In theCPNTools Textbox, after clicking on the but-
ton “Transform”, the corresponding Petri Net XML
specification is shown. To save this specification, the
user must click on theSave Colored Petri Net File
option in the CPN Tools menu. A dialog window
will be shown to the user to choose the destination
folder.

Moreover, we have another two buttons on the screen:

• The Transform button generates the corresponding
PTCPN. The result will be automatically displayed
in the CPN Tools Textbox after a few seconds. If
the WS-BPEL WSRF Textbox is empty, pressing the
Transform button will have no effect.

• The Clear button is used to clean the contents of
both text boxes. If both are empty, pressing on this
button will have no effect.

IV. CASE STUDY: AUTOMATIC MANAGEMENT

SYSTEM FOR STOCK MARKET INVESTMENTS

The case study concerns a typical automatic
management system for stock market investments,
which consists ofn+1 participants: the online stock
market system andn investors, Ai, i = 1, . . . , n. Here,
the resource will be the stocks of a company that the
investors want to buy just in case the price falls below
an established limit, which the investors fix previously
by means of subscriptions, i.e., an investor subscribes
to the resource (the stocks) with a certain guard (the

value of the stocks he/she want to pay for it). The
lifetime lft will be determined by the stock market
system and the resource price will be fluctuating to
simulate the rises/drops of the stock. Notice that we
do not take into account the stock buy process since
our aim is to model an investors’ information system.
Thus, the participants will be notified when their bids
hold or the resource lifetime expires. Let us consider
the choreography C = (Osys ,O1 , . . . ,On), where
Ok = (PLk ,Vark ,Ak ,Af k

,Aek
), k=sys, 1,..., n;Varsys =

{at , vEPR},Vari = {vi}, Af k
= exit . Variable vEPR

serves to temporarily store the value of the resource
property before being sent;vi is the variable used for the
interaction among participants, and, finally,at controls
the period of time in which the auction is active. Note
that the valuex indicates the resource value at the
beginning,at0 is the time that the “auction” is active,
and, finally, xi is the value of the stocks that he/she
wants to pay for. Suppose that all the variables are
initially 0:

Asys = assign(x + 1 , vEPR); assign(at0 , at);
CreateResource(EPR, lft , x , empty);
while(actualTime() <= at ,Abid)

Abid = getProp(EPR, vEPR); assign(vEPR + bid(), vEPR);
setProp(EPR, vEPR);wait(1 , 2)

Ai = wait(1 , 2); subscribe(Oi ,EPR,EPR < xi ,Acondi);
pick((pli , buy , vi , empty), empty , at0)

Acondi = getProp(EPR, vEPR); invoke(pli , buy , vEPR)

Here, the functionbid is used to increase/decrease the
stocks value simulating the fluctuation of the stocks price.

0

0

0

0

0

0

0

0

0

0

0

0

0

(EPR,max)

0

0

t1

0

0

at

at

at

at

0

vEPR

vEPR

0

[not(actualTime()<=at)]

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

(EPR,max,value)

INTxINTxINT

(EPR,max)

INT

0

(EPR,max)

vEPR

vEPR-p1

at

0

(EPR,max)

(EPR,max,value)

1001

@+discrete(1,2)

0

INT

PingetProperty0

INT

getProperty10

[actualTime()<=at]

INT

value1

0

at

0

0

at

0

0@+max

INT

0

condfalsewhileini0

getProperty20

Assign3

(EPR,max,value)

INT

Pinassign1

Assign1

Assign2PincreateResource0 Pinassign2createResource0

createResource10

at

0

0

(EPR,max)

PergetProperty0

(EPR,max)

PricreateResource0

(EPR,max,1040)

PracreateResource0

Pokwait0

[actualTime()<=at]

PinsetProperty0

pt1

(EPR,max,value)

(EPR,max,vEPR)valuePinassign3

pvEPR

Pinwhile0

0

condtruewhileini0

Pinwait0

Pinassign0

Assign0

setProperty20

t0

2

at[not(actualTime()<=at)]

INTxINT

wait0

condtruewhileend0

vEPR

setProperty0

PersetProperty0

pat

condfalsewhileend0Pokwhile0

Figure 3. PTCPN of the online stock market.

In Figs. 3 and 4, the PTCPNs for one buyer and for
the system are depicted. These figures have been obtained
automatically by using our tool.

328Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 346 / 729

0

0

z0

0

0

0@+1

0

0

x

x

x-1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

PLOW

INT

INT
UINT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

wait1

INT

@+discrete(1,2)

subscribe10 Persubscribe0

INT

Pinsubscribe0

Pinpick0Psub0 pick20

[x=0]

0

x

INT

Subscribe0

0

STRINGxSTRINGxINT

PingetProperty1 getProperty21

invoke31

invoke21

getProperty11

PergetProperty1

Subscribe20

[value<1000]

timeout+1

[x>0]

Pinempty2

empty2 Pokempty2

Pininvoke1

invoke1
("pl1","buy1",value)

("pl1","buy1",value)

Precpick0

Papick0

tr0

ta0

pick30

Pickbuy1pl10

empty1

[x>0]

PLrinvoke1

PLsinvoke1

Pokpick0

pick100 Pokempty1

Pinempty1

Pinwait1

Pokinvoke1

Figure 4. PTCPN of one buyer.

A. Analysis

CPNTools offers us two forms to check the correct-
ness of our system: formal verification and simulation.
First, the simulation helps designers to understand how
the system exactly works and it is a mean to detect
possible errors in early stages of the development pro-
cess in order to refine the model according the clients’
requirements. Besides, formal verification through state
space analysis could be done in order to ensure that our
system achieves some formal properties such as liveness,
deadlock-freeness, and so on. In this way, Table I shows
the results obtained considering 1, 2, 3, 4 or 5 investors.
Note that we have considered the following assumptions:

• The “auction” timeat0 is limited to 10 time units.
• The resource is active during 15 time units (lft=15).
• The resource valuex is 100 money units.
• The value of subscription of each investori, xi, is

x−(9+i), that is, if the system has only one investor
its subscription guard will bex < 90, whereas with
5 investors, the last investor will have a subscription
guard ofx < 86.

• The function bid will fluctuate the stocks price
between -2 and 1 in order to simulate that the price
only can rise 1 and drop 2 at most each time unit.

We will focus on deadlock-freeness to ensure that the
system never gets stuck while the participants have
activities to do in their workflow. We have leveraged
the functions offered by CPNTools to demonstrate that
in all dead markings of the system the final place
is marked, which leads us to conclude the system
has finished correctly. This final place,Pokfinal0,
is marked by a transition when all the participants
have finished their workflow. For the sake of clarity,
we have not drawn this place in each figure. Thus,

the next SML code checks when this situation occurs:
fun DesiredTerminal n =((Mark.PetriNet’Pokfinal0 1 n) == 1’true),
which returnstrue if the placePokfinal0 is marked. In
addition, it is needed to evaluate the following predicate:
PredAllNodes DesiredTerminal=ListDeadMarkings(), to

check
that the list of dead marking contains the marking of the
Pokfinal0place.

Number of investors
Properties 1 2 3 4 5

State Space Nodes 3561 7569 16983 50350 89879
State Space Arcs 5203 12843 33271 112101 262215

Time (s) 2 7 23 146 1140
Dead Markings 124 244 454 1108 874

Table I
STATE SPACE ANALYSIS RESULTS

In Fig. 5, we show the results offered by CPNTools to
our queries for the case ofthree investors. Here, it can
be appreciated that all dead markings hold the predicate
DesiredTerminal, and, therefore, when the system reaches
a dead marking is because system has terminated, which
demonstrates the absence of deadlocks in our case study.

Figure 5. Result of the queries in CPNTools.

V. CONCLUSIONS ANDFUTURE WORKS

In this paper, a tool which permits the automatic
translation between BPEL-RF specifications and PTCPNs
supported by CPNTools has been presented. This is a
great advantage with respect to our previous works in
such a way the user only needs to provide the XML code
for the orchestration and the tool will extract automati-
cally the corresponding translation in order to effectuate
the formal analysis of the system. This analysis can be
done by simulation or by formal verification. In the case
study, we have centred on formal verification looking for
the absence of deadlocks in the model. Finally, as future
work, we plan to extend our work with additional features
of both WS-BPEL and WSRF, as the discovery of existing
resources. We are also working on the demonstration of
the equivalence between the operational semantics of [12]
and the Petri nets semantics of [13].

ACKNOWLEDGMENT

This work has been partially supported by CI-
CYT project TIN2009-14312-C02-02, and JCCM project
PEII09-0232-7745.

REFERENCES

[1] [retrieved:September,2012] BPEL-RF tool web site,
http://www.dsi.uclm.es/retics/BPELRF/

[2] W. M. P van der Aalst and K. B. Lassen. Translating
unstructured workflow processes to readable BPEL:
Theory and implementation, Journal of Information
Software Technology, vol. 50, number 3, pp. 131-159,
2008.

[3] [retrieved:September,2012] Alexandre Alves,
Assaf Arkin, Charlton Barreto, Ben Bloch,

329Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 347 / 729

Francisco Curbera, and Rania Khalaf. Web
Services Business Process Execution Language,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[4] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and
G.Zavattaro, Choreography and Orchestration: A
Synergic Approach for System Design. In Inter-
national Conference of Service Oriented Computing
(ICSOC), Lecture Notes in Computer Science, vol.
3826, pp. 228-240, 2005.

[5] [retrieved:September,2012] CPNTools official web
site, http://cpntools.org.

[6] N. Dragoni and M. Mazzara, A formal Semantics
for the WS-BPEL Recovery Framework - Thepi-
Calculus Way. In International Workshop on Web
Services and Formal Methods (WS-FM). Lecture
Notes in Computer Science, vol. 6194, pp. 92-109,
2009.

[7] A. Eckleder and T. Freytag, WoPeD 2.0 goes BPEL
2.0. In 15th German Workshop on Algorithms and
Tools for Petri Nets, Algorithmen und Werkzeuge
für Petrinetze (AWPN 2008). CEUR Workshop
Proceedings, vol. 380, pp. 75-80, 2008.

[8] O. Ezenwoye, S.M. Sadjadi, A. Cary, and M. Robin-
son, Grid Service Composition in BPEL for Scientific
Applications. In OTM Conferences, pp. 1304-1312,
2007.

[9] R. Farahbod, U. Glässer, and M. Vajihollahi, A
Formal Semantics for the Business Process Execution
Language for Web Services. In Joint Workshop on
Web Services and Model-Driven Enterprise Informa-
tion Services (WSMDEIS), pp. 122-133, 2005.

[10] [retrieved:September,2012] I. Foster, J. Frey, S. Gra-
ham, S. Tuecke, K. Czajkowski, D. Ferguson, F.
Leymann, M. Nally, T. Storey, and S. Weerawaranna,
Modeling Stateful Resources with Web Services,
http://www.globus.org/wsrf/.

[11] F. Leymann, Choreography for the Grid: towards
fitting BPEL to the resource framework. Journal of
Concurrency and Computation : Practice & Experi-
ence, vol. 18, issue 10, pp. 1201-1217, 2006.

[12] J.A. Mateo, V. Valero, and G. Diaz, An Operational
Semantics of BPEL Orchestrations Integrating Web
Services Resource Framework. In International Work-
shop on Web Services and Formal Methods (WS-
FM), 2011.

[13] [retrieved:September,2012] J.A. Mateo, V.
Valero, H. Macìa, and G. Diaz. A Coloured
Petri Net Approach to Model and Analyse
Stateful Workflows Based on WS-BPEL and
WSRF. Technical Report DIAB-12-04-2,
University of Castilla-La Mancha. Available at:
http://www.dsi.uclm.es/trep.php?codtrep=DIAB-12-04-2

[14] C. Ouyang, E. Verbeek, W. M. P. van der Aalst,
S. Breutel, M. Dumas, and A. ter Hofstede, Wof-
BPEL: A Tool for Automated Analysis of BPEL
Processes., In Third International Conference on
Service-Oriented Computing (ICSOC 2005). Lecture
Notes in Computer Science, vol. 3826, pp. 484-489,
2005.

[15] C. Ouyang, E. Verbeek, W.M.P. van der Aalst, S.

Breutel, M. Dumas, and A.H.M. ter Hofstede. Formal
semantics and analysis of control flow in WS-BPEL.
Science of Computing Programming, vol. 67, issue
2-3, pp. 162-198, 2007.

[16] A. Slomiski. On using BPEL extensibility to imple-
ment OGSI and WSRF Grid workflows. Journal of
Concurrency and Computation : Practice & Experi-
ence, vol. 18, pp. 1229-1241, 2006.

330Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 348 / 729

Automated Reuse of Software Reuse Activities
in an Industrial Environment – Case Study Results

Marcus Zinn
University of Plymouth

Plymouth, UK
marcus.zinn@plymouth.ac.uk

Klaus-Peter Fischer-Hellmann
University of Applied Science

Darmstadt, Darmstadt, Germany
k.p.fischer-hellmann@digamma.de

Ronald Schoop
Schneider Electric Automation

Seligenstadt, Germany
ronald.schoop@schneider-electric.com

Abstract - The reuse of prefabricated software units, such as
classes, components and services is one of the central topics of
software engineering and requires lot of knowledge and
experience. Instead of focusing on the knowledge management
processes and a resulting lifelong learning process of
individuals, this paper shows an experimental study based on
an approach of automation of knowledge based reuse activities.
This is done by employing a unified view of software
construction activities and software units used by these
activities in an industrial environment. It concludes that
software engineers of different industrial business units and
knowledge levels can be supported by performing different
software construction activities with only one approach, the
result of which avoids a long learning process for software
engineers.

Keywords-Automated software unit reuse; software reuse
activities; industrial environment; case study.

I. INTRODUCTION

The reuse of software units (like classes, components, or
services) requires professional knowledge or expertise. A
software unit is a technical unit, and can, therefore, be
defined like a software component in the context of this
paper:
 “A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition of third
parties”. [1]

Typically, software engineers have to acquire this
knowledge. In industrial environments, the knowledge
depends not only on the technical properties of a software
unit but also on the technical environment, technical topic

(e.g., embedded devices) and the business topics (e.g.,
Automation, Datacenters, Mines & Minerals). Today
knowledge about software units in a reuse context is a broad
field. As adequate description of knowledge in the context
of this paper following definition is used:

“... the capability of a man (or an intelligent machine) to
use information for problem-solving” [2]

Starting from this point of view a software engineer has
to have different kinds of information to perform software
reuse, as for example: (1) Information about technical
properties such as programming language, necessary

technical environment, and dependencies. A software
engineer has to know this information. [3]

(2) Information about interfaces and business context. A
software unit solves at least one problem. Typically, the
interfaces and provided data types are related to this fact. By
handling such a software unit a software engineer have to be
aware about this information. [3] (3) Information about the
reusable artefact. Today a reusable software unit is more
than a single binary file. Related information like test cases,
documentation, and versioning are also reusable and
sometimes implied. A software engineer has to deal with
this related information. [4] (4) Information about related
reuse concepts and processes. Software unit reuse is not
undertaken if a software engineer decides to perform reuse.
Many activities such as search, validation, integration,
transformation, and testing are part of a reuse process. A
software engineer must be aware of the existence of
different reuse processes and technologies.

As a result of these perspectives, reusing a software unit
may define as the use of different information about a
software unit and a given environment to perform a number
of reuse activities. The result is a reused software unit in a
software development project.

Based on the high number of different technologies,
business context, reuse artefact information and possible
reuse concepts or technologies, the amount of necessary
knowledge is high. This results in a problem for software
engineers. Each time they wish to reuse a software unit they
have to know about the relevant activities, and the related
knowledge and information. If this knowledge is missing
the reuse cannot be carried out successfully.

A solution may be the automation of reuse activities. As
shown in the automation industry, this requires the
development of supporting systems that are able to perform
activities for a user. By automating software reuse activities,
software engineers are able to perform these activities
without having acquired the complete knowledge. Such an
approach would reduce the problem of missing knowledge
and was discussed in the past [5] and [6] under the name of
“Service based Software Construction Process (SSCP)”.
However, the experimental proof of this concept is still
missing.

This paper describes the setup and the results of the first

331Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 349 / 729

phase of an experiment validating the concept of SSCP,
which is described by the following hypothesis:

“Automated Software reuse activities will reduce the
problem of missing knowledge in software unit reuse”

This work forms part of the research on a Service-based
Software Construction Process (SSCP) incorporating the
field of Software Unit Reuse. The goal of this research is to
identify a semantic model (about finding, adapting,
integrating, and deploying of software units) combined with
service technology that supports software engineers by
performing software reuse (finding, adapting, integrating,
and deploying) without having all needed information. The
paper contributes to the research area by demonstrating the
positive effect of automated software reuse activities, based
on software reuse knowledge on the problem of missing
knowledge in software unit reuse, in a real world
experiment.

After the problem statement in the next section, the
Section 3 shows the focused solution of this paper. This is
used in Section 4 to describe the experiment setup and
execution. Section 5 discusses the experiment results
followed by the conclusion section (Section 6)

II. THE PROBLEM OF REUSE IN MULTIPLE INDUSTRIAL

SOFTWARE DEVELOPMENT TEAMS

Typical aims of software reuse are to reduce costs and
time in development projects [6]. These are two reasons
why reuse of software units is an important part of software
development in industrial areas [5]. However, the use of
reuse in industrial projects does not guarantee a successful
project, a fact, which has been demonstrated by several
project studies in the past [6]. Typical problems are [6], e.g.
,: Misconceptions (reuse == repository, reuse == OO), No
non-reuse specific processes modified, No reuse specific
processes installed, No training/awareness actions, Reusable
assets produced but then not used, Multi contractor / Multi
company project, and No production of assets.

The last problem ‘No production of assets’ differs from
the others. This problem deals with the fact that a software
unit must be developed in order to be reusable [7]. If this is
not the case, the amount of required resources is decreased
by reuse [6][7]. Based on this statement, the effort to reuse
increases after the creation of a software unit and should
remain at the same value continuously for each reuse.

An internal study conducted by Schneider Electric [8]
indicates a complex but interesting picture. A set of around
50 software units (so-called ‘bricks’ in industry area) has
been created and widely reused. The average reuse number
is between 9 and 10. The distribution of reuse for different
bricks is shown in Figure 1. It starts with a minimum of 3
reuses (the point where typically a cost breakeven would
start compared to a non reuse approach) and spans up to 36
reuses.

Relating to the above mentioned fact ‘No production of

0

5

10

15

20

25

30

35

40

C2 C4 S7 S9 S2 S3 S4 C1 C3 S6 S8 S5 S1

Figure 1. Distribution of reusable bricks [8]

assets’ the study of Schneider Electric shows a dilemma of
reuse in industrial environments. A reusable software unit
creates additional reuse effort during the creation phase and
in reuse phases of each development team which reuses this
unit.

Creation Phase Dilemma (CPD): The creation of
reusable software includes different phases, which focus the
reusability. Typical examples are given by Software Product
Line approaches [7]: (1) Generalisation – The interfaces and
functions of a software unit must be generalised to increase
the reuse probability. (2) Integration – The software unit
must be built in a way that it can be integrate in the
development projects of other teams. (3) Support – The
software unit must be ‘equipped’ with additional reuse

artefacts, which support the reuse, e.g., reuses
documentation. Additionally, such a unit have to be
installed in a system, which provides access to it.
All of these steps require knowledge from an expert user.

Reuse Phase Dilemma (RPD): Each development team
has now different challenges for reusing such a software
unit. Typically, each team has to find and download the
software unit [8]. In the next steps, they have to understand
and integrate the unit into their development projects [7].
Sometimes software units must be adapted (transformed) for
that specific application [9]. Figure 2 shows also the typical
support and maintenance effort, which is created during
these steps. This effort is the results from the problem that
the development teams have not enough knowledge to
perform the described reuse steps.

CPD and RPD are typical theoretical examples discus-

Figure 2. Support and maintenance effort [8]

332Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 350 / 729

sions of problems. The reality creates two additional
dilemmas in the context of CPD and RPD. (1) Creator
dilemma (CD): The creation team is not available for
support at the time of reuse (people are loaded with other
projects or change team or organization) (2) Reuser
dilemma (RD): The reuse teams are different for each
development projects, and therefore the exchange of a
‘learning curve’ between the teams is not possible.

Figure 2 shows that each development team has nearly
the same problems and need nearly the same amount of
resources. The challenge of reuse based software
development in industrial areas is to reduce the sketched
dilemmas. The purpose of this study is to show that reuse of
a single software unit in multiple teams does not need this
amount of resource on both sites: creator and reuser.

III. CONTEMPORARY SOLUTIONS

Nowadays, there are different approaches for the above-
mentioned problems. The first approach is so called
information systems, which, in general, enable the storage
of information. This enables a user to search for
information. However, such systems are not designed
specifically to address the issue of transformation, but treat
the subject of information generally [10]. Generally, such
systems can be used to save information about an area of
knowledge in textual form, but without the context of
knowledge (see [10]). Each software construction activity
may be described in this form and may be stored in an
information system. The user is now faced with the problem
of obtaining this information and interpreting it correctly in
order to perform a successful transformation. Usually,
information systems are not intended to apply their stored
information automatically. But they can be extended for this
task [10].

Despite this lack of functionality, information systems
comprise a part of this article’s advocated solution.
Extensions of information systems are so-called Knowledge
Base System (KBS) [10]. Such systems are defined as:

 “… a method that simplifies the process of sharing,
distributing, creating, capturing, and understanding a
company’s knowledge.” [11]

Knowledge systems are not fundamentally designed for
the subject of software construction activities. Furthermore,
the authors of this article believe knowledge systems are
missing a fundamental property: the automated application
of stored knowledge for specific tasks. However, there is a
lack of systems that have asserted themselves and are not
focused on the typical software construction activities of
software units. The latter property 'application of
knowledge', is also a part of the solution discussed in this
article. Basically, the knowledge that is necessary for
perform an reuse activity can be stored in knowledge

systems.
The area of software development has currently seen a

number of interesting approaches dealing with specific
subjects of a software reuse activity. Most of them are
specific for one reuse activity type. For example there are
two existing approaches for the activity of software unit
transformation which are of interest: Model transformation
[12] and generative programming [13]. Both approaches
have existed for some time and form the basis for
approaches that are being used today. Both support software
engineers in generating reusable transformation models or
rules. However, additional knowledge is necessary to make
use of both approaches. This can be found in other activity
areas like deployment [14] and Integration [15]. For the
integration of software units into Integrated Development

Environments (IDE) very specialised solutions exits e.g.,
Packaging for Eclipse or Packaging for Visual Studio. But
these products are too specialised and require different kinds
of specialised knowledge from the user.

The above mentioned solutions have one common
problem. They assume a high learning curve. But learning
how to implement every existing technology or solution for
knowledge based problems cost too much time. It is
necessary to identify a solution, which is able to support
software engineers by performing software reuse activities
without a lifelong learning process.

IV. FOCUSED SCENARIO

The basic idea of the targeted solution is that an expert
applies knowledge (knowledge extraction) about the
software reuse activity of a specific software unit to a
system, which is able to perform the activity automatically
with a minimum of human interaction based on knowledge.
Users who do not have the necessary knowledge are now
able to perform this activity (knowledge injection). A
learning process for this specific activity and the specific
software unit is not necessary. Figure 3 shows this scenario.

The idea was presented in previous [5][6] where its
advantage was demonstrated for two reuse activity
examples: Integration of software units into integrated
development environments (IDEs) [15], and deployment of
software units into embedded devices [14].

Figure 3. Concept of the focused solution

333Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 351 / 729

For the experiment demonstrated in this publication the
software construction activities ‘Integration’ and
‘Transformation’ were chosen.

V. THE EXPERIMENTAL SETUP

A. Technical structure and infrastructure

The following section utilises this theoretical description
to create the basis for the activities of integration,
transformation and deployment of real models. The
experiment is performed by software engineers using these
models. Theses engineers try to perform different
transformation and integration software construction
activities with and without the support of the proposed
solution. The second step comprises a description of the
design and implementation of the experiment. These
descriptions are intended for the replication of the
experiment, and to ensure the sustainability of the
experiment for the study’s results. The setup of the
experiment is divided into three distinct areas:

(1) Description of the environment,
(2) Description of the technical structure of the

experiment, the necessary elements, and
(3) Description of the measurement process.

 Description of the environment: The experiment was

conducted at a German location of the company Schneider
Electric (Address Steinheimer Strasse 116, 63500
Seligenstadt, Germany). The company has participated by
means of employees at this site and from other international
locations using the company intranet. The experiment itself
was conducted in normal offices, which provide a
connection to this intranet source.

 Description of the technical structure of the
experiment, the necessary elements: The technical design
of the experiment is mainly a hardware and software
infrastructure. Figure 4 shows this structure in the
environment of the Schneider Electric intranet. Six
important elements are involved. The first element is the
intranet (1), which is used to connect the various other
elements of the technical structure. The second elements (2)
are the connected databases, including the software units
and complete information about the re-use activities. Four
databases are important for the experiment:

1) SOA4D: This is an open source repository software

unit with further information about device profiles,
including four web services. This repository is based
on the Forge technology and offers a web interface.

2) Prometheus SQL: this is a specially developed
Repository. It belongs to the approach and uses a

Microsoft SQL database and Microsoft SQL
database interface.

Figure 4. Experimental environment and setup

3) DDXML repos: This is a Schneider Electric internal
repository that contains XML elements describing
embedded devices. Communication with this
repository will be achieved via a Web service.

4) Brick Catalogue: This is, Schneider Electric internal
repository used by all Schneider Electric business
units containing software unit.

The third element (3) in the experiment’s design is the

Prometheus Server. This comprises the core of the technical
structure. The server maintains information about software
units and software construction activities in the connected
databases and makes this information available to the user.
Finally, the Prometheus Server performs requested activities
and presents the available results to users. The fourth
element (4) is a website through, which the user can
communicate with the Prometheus Server. The website runs
on a further server and contains a web application giving the
user the ability to query information from the server or to
perform reuse activities on the server. This web application
is named ‘Ecostruxure repository’ and for this experiment
the 4.1 version was used. The basic technology of the Web
application is Microsoft Silverlight version 4.0. The website
used the endpoint ‘/RepositorySearch.html’ and was
available within the company’s intranet. The fifth element
(5) of the structure is a VM-Ware server. This server is used
to fulfil the experiment’s required operating system
environment and runs as a virtual machine (VM) to make
this available. For the connection to the server VM-Ware
Workstation software with version 8.0 was installed on a
laptop (6). These elements are common office laptops used
within the company Schneider Electric. The laptops were
used with the VM-Ware Workstation software with version
8.0. In addition to the computer network environment, there
is the possibility to use telephone, internet, voice,
conversation, or literature. This is also reflected in the
working environment within the company’s sites.

334Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 352 / 729

Figure 5. - Basic experiment scenario

Figure 4 shows the scenario based on the experimental
setup. Users are able to view the test environment (operating
system, the virtual machine) from element (5) (VM-Ware
server) by using element (6) (office laptop). Within this test
environment, all necessary software applications are found
by means searching for information on the Internet, or
performing activities on the intranet, as well as various
means of communication usually employed by Schneider
Electric (FTP, Skype, TELNET). Furthermore, users can
now click element (4) (the website) to access and use the
Web application, which allows communication with element
(3) (Prometheus server). The Prometheus server
communicates with the databases that are marked as
element (2). Also the Prometheus server interacts with the
elements (5) (VM-Ware server) by using element (6) (office
laptop) (see Section III). Figure 5 shows this interaction
scenario.

Figure 6 shows the different measurement variants in the
experimental setup. This can be accomplished by three
different (technical) variants. The first is the purely visual
recognition of the user’s actions and does not require any
technical measure (called ‘Observer’). The second is to
record the user’s interactions with the virtual machine as
video recording (called ‘Recording’). For this, the installed
VM Ware Workstation software with version 8.0 is used,
which already includes the feature of video recording. The
third variant is to log the information (called ‘Logging’).
This is done in three elements of the experiment’s design:
 Create the user data in virtual machines. These data can

be analysed after the experiment.
 The Prometheus Server attracts all incoming server

requests and performed activities. This information can

Figure 6. Overview measurement utilities

also be queried after the end of the experiment and used
for analysis.

 The data and information are generated and stored in the
databases through the interaction of the user.

Description of the technical setup for the measurement
and the measurement process itself:
(1) Experimental groups and scenarios: There are a total
of three experimental groups: the first group (1) consists of
experts for one particular software unit. These individuals
receive expert status either because they have created this
software unit or are well acquainted with its use. The
selection of experts is performed via the Internet from
public data of Schneider Electric software units. These data
also contain the contact person responsible for this software
unit. These people are also asked directly whether they have
created the software unit and / or have used it frequently.
Altogether the study requires 5 experts. The second
experimental group (2) consists of 10 software engineers
with the following characteristics: first, the people should
actively participate in the software development of a project
at the time the experiment takes place. On the other hand, it
is important that these people do not have the same expert
status as the previously selected 5. The last criterion is that
these people are neither expert in the software unit nor in the
technology standard development platform for this unit.

The third group (3) is similar to the second experimental
group and consist of 10 participants. Therefore, the same
rules used for selection of the second experimental group
apply.

Note: In this the next phase of the experiment, the total
number of participants will be increased up to 30 per group.

Procedure: In principle, there are 3 different experimental
groups required to perform seven scenarios. Table 1 shows
the different scenarios related to the different groups.

TABLE I. SCENARIOS OF THE EXPERIMENT

Scenario Description / (GroupID)
(1)
Observation
of experts

The experts from experimental group (1) performs
transformation and / or integration activities
(manually). / (1)

(2) Collection
of software
units and
activities

Collection of software units and activities: In this
scenario, each of the selected experts from
experimental group (1) insert the knowledge about
the unit and the specific transformation and, or
integration activity into the Prometheus Server./ (1)

(3)
Prometheus
Validation

The experts perform the same activities as in
scenario (1) but now with Prometheus Server
support. The expert validates the results. / (1)

(4) Reuse
activities with
Prometheus

Participants from the group (2) are asked to take
over one transformation and integration task. They
have to use the Prometheus Server for this purpose.
/ (2)

(5) Reuse
activities
without
Prometheus

In this scenario, the people placed in the
experimental group (3) are asked to take over a
transformation or integration task. Activities are
repeated so they correspond to those of the experts
from scenario (1), The Prometheus Server is not

335Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 353 / 729

used / (3)
(6)/(7)
Validation of
the results

Validation of the results: This scenario will test the
results of the experimental group (2) and (3) by the
experts for the respective software unit from
experimental group (1) and (2). / (1)

 (2) Measurement

In the following section, the methodology of
measurement of the experiment will be explained. This
includes the definition of the measurable variables and the
process of measuring.

Definition of variables: The results of the measurement
procedures are stored in the form of variables. In addition,
each variable is assigned a unique name within the
experiment. In this section, all variables are named and
briefly presented. Table 2 shows the different measurable
variables in the different scenarios.

TABLE II. OVERVIEW OF VARIABLES

Sc. ID
/ ID

Name: Description

(1,3,4,
5)/
(A)

ActivityDuration: How long does it take an expert/user
to perform an activity? This variable contains a value that
expresses how long the expert takes for the preservation
of the task.

(1,3,4,
5)/(B)

TaskAnalysisActivityDuration: How long did it take the
expert/user to analyse the task initials? This variable
describes the time between being presented with the task
and the start of work on the computer.

(1,3,4,
5)/(C)

TaskActivityDuration: How much time does expert/user
spend working on the computer in order to perform the
activity? This variable describes the time between the start
and completion of work on the computer activity.

(1,3,4,
5)/(D)

ActivityCarriedOutSuccessfully: Has the expert/user
completed the activity successfully? This variable
represents whether an activity was successful or not.

(1,3,4,
5)/(E)

UseKnowledgeSources: What kind of knowledge sources
did the expert/user use to perform the activity? This
variable describes the sources consulted to perform the
activity such as the Google phone or contacting another
expert for information.

(1,3,4,
5)/(F)

MadeSubTasks: What sub tasks did the expert undertake
in order to perform an activity?

(2)/(G) EnterUnitDuration: How long does it take the user to
enter all necessary information about a software unit into
the Prometheus system? This variable contains a value of
the expert testimony of how much time was needed from
commencing work on the computer to enter the
information of its software unit.

(2)/(H) EnterActivityDuration: How long does the expert take
to enter an activity for a software unit in the Prometheus
system? This variable contains a value of the experts’
statement of how long since commencing work on the
computer it took to input the specific activity of entering
the activities information.

(2)/(I) TotalInputDuration: How long does it take the expert to
enter all the information into the Prometheus system? This
variable contains a value of expert testimony on how long
the whole process of entering all their data took.

(2)/(J) SuccessfulEntry: Could the expert enter all the important
information? This variable tells us whether an expert
could enter all the information about a software module
and complete activities in the system.

(2)/(K) MadeSubTasks: What sub tasks did the expert undertake
in order to perform an activity?

(3,6,7)/
(L)

ResultIsValid: Is the result of an activity conducted by
Prometheus or without equivalent to the result of the same
activity conducted by an expert? This variable indicates
whether the expert considers the result of activities
performed by Prometheus or without it as good as the
result, which was achieved through manual execution of
the same activity.

Measurement Execution Process: In Figure 6, three
variants of measurement used to measure the variables were
introduced. The following section shows, which of these
techniques are used for the different variables.

In Scenarios (1), (3), (4), and (5), seven measurements
are raised per cycle: (A) The variable ‘ActivityDuration’ is
measured by the observer (measurement variant 1). Here,
the observer measures from the time, which he assigns the
task to the expert/user up to the time the expert says the task
was completed. The time is recorded in whole minutes. (B)
The variable ‘TaskAnalysisActivityDuration’ is determined
by the interaction of measurement variant (1) and (2). Here,
the observer notes the time at which the task is assigned to
the expert/user (see variable ‘ActivityDuration’). The end of
this phase can be measured at the time when the expert
commences an activity on the virtual machine. The time is
recorded in whole minutes. (C) The variable activity of
’TaskActivityDuration’ determines the interaction of the
measurement variants (2) and (1). The point in time at
which the activity is started on the virtual machine is
measured. The endpoint is the time the expert/user tells the
observer that the task was completed. The time is recorded
in whole minutes. (E) The variable ‘UseKnowledgeSources’
is determined by the measurement variants (1) and (2). The
observer notes all information coming from the expert’s
behaviour that cannot be measured by measurement variant
(2). The type of measurement (2) also used to analyse,
which sources of information accessed through the use of
the virtual machine. Typically such sources can be classified

by using source names and the type of resource, e.g., (1) co-
worker, telephone, and (2) website, Google (Web browser).
(D) The variable ‘ActivityCarriedOutSuccessfully’ is
measured by measurement variant (1). The expert/user is
asked after the completion of the activity if he has done this
successfully. The variable can only be set to yes or no. (F)
The variable ‘MadeSubTasks’ is determined by the
measurement variants (1) and (2). Here, the observer notes
the progress of the entire task. This can be done based on
the recording of the activities in the virtual machine itself,
which is operated by the observer both on the external
(outside the virtual machine) and internal (within the virtual
machine) view. The observer here notes, which activities

were measurable, including their start and end time, e.g.,
starts 10:41 expert uses web browser.

In scenario (2), five measurements are made: (G) The
variable input ‘EnterUnitDuration’ determines the
measurement variants (1) and (3). The website (see Figure

336Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 354 / 729

4) logs every activity of the user. Accordingly, the entry of
the website is the start time and represents the initial value
used for the measurement. To avoid error, the observer
compares measured time with the automatically measured
time. The end time is determined by the expert’s signal
indicating that he/she has to finish the task. The observer
notes down this time. Time is measured in whole minutes.
(H) The variable ‘EnterActivityduration' is measured by the
measurement variant (3) on the Prometheus Server (see
Figure 4) and the website (see Figure 4). The server and the
website recognize the time of a user’s request. Each

measurement contains the time and the names of tasks, e.g.,
10:00:00 user creates a new software unit. (I) The variable
‘EnterActivityDuration’ is measured by the measurement
variant (1). The observer records the start time point at
which he/she hands over the task to the experts. The end
time is determined by the expert’s signal that he/she has
finished the task. The observers take note of this point in
time. Time is measured in whole minutes. (J) The variable
‘SuccessfulEntry’ is measured with the measured variants
(1) and (3). Firstly, the expert must inform the observer that
he/she was able to enter all information into the system.
Secondly, the Prometheus server writes all values into the
database. The variable can only be set to yes or no. (K) The
variable ‘MadeSubTasks’ is measured in the same way than
in Scenario (1,3,4,5)/(F).

In scenarios (4), (6), and (7) one measurement is made:
(L) The variable ‘ResultIsValid’ is captured by the
measurement variant (1). The expert examined the results of
the performed activity from the scenarios (3), (4), and (5)
with the same activity carried out in scenario (1). It tells the
observer whether the result has the same value and is usable.
The variable can only be set to ‘yes’ or ‘no’.
Definition of Software units and reuse activities: The
different scenarios 1-7 are performed in this experiment
with the software units shown in Table 3.

TABLE III. USED SOFTWARE UNITS

Name /
ID

Description Tec/ Unit
Type /
Repository

Integration effort /
Transformation
effort

DPWS /
SU1

Enable devices
for WS*
profiles

Java /
Component /
SOA4D

Advanced into
Eclipse/Advanced
using IKVM

DPWS /
SU2

Enable devices
for WS*
profiles

C++ /
Component /
SOA4D

Advanced into
Visual Studio /
None

CWS
/ SU3

Webservice for
data exchange
of business
units

Soap-C# /
Webservice /
Prometheus

Normal into Visual
Studio / Advanced
using SVCUtil

CWS
/ SU4

Webservice for
data exchange
of BUs

Java-Android
/ Class /
Prometheus

Advanced into
Eclipse / Advanced
using Java2SOAP

Code
Signing
/ SU5

Webservice for
Code signing

Soap-C# /
Webservice /
Brick Repos.

Normal into Visual
Studio / Normal
using SVCUtil

Table 3 shows that five integration and four
transformation activities are connected with the five
software units. The integration activities typically focus
integration of software units on the most common IDEs
(Visual Studio and Eclipse). The transformation activities
include the transformation of software units on three
different transformation tools (IKVM [16], SVCUtil [17]
and WSDL2Soap [18]

VI. EXPERIMENT RESULT DISCUSSION

A. Experiment Results

The experiment’s results were collected in the way
described in the previous section. The next step is to discuss
these results. First of all, the result of one software unit with
a transformation activity will be discussed in more detail.
After this analysis, the results of all software units will be
summarised and compared. For this purpose, two
perspectives were used for analysing the summarised
results: Comparing different groups from the perspectives of
(1) activity execution and (2) use of knowledge.

1) Detailed result example

One of the measured software unit is the ‘Device Profile
for WebServices’ Java stack, which enables Java based
embedded devices to handle mutable WS* Protocols like
WebService discovery. The transformation task for this
software unit was to use IKVM transformation tool to
transform the complete DPWS Java Stack into a C# Stack.
This task requires knowledge about the DPWS Java Stack
(especially the references of the 20 different JAR Files), the
.NET Platform and experience in using IKVM. This
scenario was taken from a real development scenario of
Schneider Electric in the European research project for
industrial automation SOCRADES [19].

Expert scenarios (1-3): Scenario 1: In the first scenario,
the Expert was measured by performing this task manually.
The main result is that the experts needs 14:23 min.. In
Scenario 2 it was measured how long the expert needs to
insert the software unit and the transformation activity. The
initial creation of the software unit into Prometheus needs
12:06 min. and the transformation needs 38:03 min.. In
Scenario 3, the expert was observed by using the
Prometheus Server to perform this task. He needs 2:04 min.
to perform the task and received a 2:56 min. training into
the system (this training will only be necessary once per
expert). The expert validated the result as a correct
transformation.

Non-expert scenarios (4-5): In Scenario 4, five non-
experienced software engineers of the industrial areas of
Building, Power and Industry (Automation) did the task
without support of the Prometheus Server.

337Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 355 / 729

Figure 7. Results of the different groups for DPWS transformation
ctivities

The different participants need 42 min., 90 min., 77 min., 69
min., and 104 min. (rounded off). Thus, the average time
was 76 min. (rounded off). The expert validates all final
results as valid. In Scenario 5 the participants of group (3)
use Prometheus to perform the task. The measured
introduction task performing times (in minutes) were
(3:03/2:23), (2:56/2:10), (2:33/1:59), (2:45/2:22), and
(2:43/2:23). The average time was (2:48/2:18). The expert
validates the results as correct results. Figure 7 summaries
the results. The validation in Scenario 6 and 7 are not shown
in Figure 7 because of all results were valid. Additionally to
the measured time the kind of used knowledge resources
were measured. Only online websites, downloaded
documentation, and the expert were used as knowledge
resource. The expert in scenario 1 uses only one knowledge
resource (an older development project) 4 times. By adding
the necessary information into the Prometheus system of
Scenario 2 the expert only uses one knowledge resource (the
introduction). In Scenario 3, the experts need only the
introduction to perform the activity. The non-expert group
(2) of scenario 4 needs multiple resources multiple times.
Figure 8 shows the used number of knowledge resources in
each scenario (average values).

Figure 8. Overview of number of used knowledge resources

The non-expert group (3) of scenario 5 needs only one
knowledge resource (the introduction).

2) Comparing of different groups from the perspective
of activity execution
Figure 9 and Figure 10 show the results of the three groups
in transformation and integration activities measured in the
Scenarios 1, 3, 4, and 5. The different results of the software
units are summarised by using this type of view. In the
context of transformation, Figure 9 demonstrates a clear
separation of the different groups. Starting with the Expert
Users without Prometheus support (Expert, Scenario 1) as
the 100% comparison line, the

Figure 9. Results of the different groups for transformation activities (5
software units)

measured values of the second group (User with Prometheus
support – User (P)) are significantly decreased. This fact is
mentioned especially in the variable ‘ActivityDuration’ (1).
On the other hand, the Variable ‘TaskAnalysis-
ActivityDuration’ (2) is much closer to the comparison line.
As a result, Prometheus Users are able to perform a specific
activity much faster than an expert user or a Non-Expert
user. In comparing the two variables of the comparison line
with user (without Prometheus support User) Figure 9
shows a further significant difference. Both variables of the
user are decreased. The normal user needed much more time
to fulfill the given tasks. But this difference changes by
analyzing the results of users (with Prometheus support).
Compared to the expert with Prometheus support this group
has no significant differences, but compared to the expert
group without Prometheus support the measured values
decrease significantly. In Figure 9, the two lines of
Prometheus supported users are more or less congruent.

As a result of this consideration, it is clear that the
Prometheus approach creates a positive effect for Non-
Expert User and even for expert users.

Figure 10 shows the measured values for the integration
activity. The first interesting point is the general comparison
to the results shown in Figure 9. Both pictures show nearly
the same result, but the positive characteristics are not so
distinct. Only the users (without Prometheus support)
performing the integration activity need less time (compared
to the 100% comparison line) then the same group was

338Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 356 / 729

performing the transformation activity. That both results a
nearly the same indicates that the used approach supports
software engineers by performing these kinds of activities.

Figure 10. Results of the different groups for integration activities

All users (experts and non-expert user) were able to perform
the given activities correctly and needed less time than the
expert user (without Prometheus support).

3) Comparing of different groups from the perspective
of the use of knowledge

In Figure 9 and Figure 10, it is also mention that most of
the expert users (80%) (without Prometheus support) did not
use a measurable knowledge base. The other 20% used
exactly one knowledge base. All experts or users (with
Prometheus support) only used the knowledge base that was
the documentation of the Prometheus system. The users
(without Prometheus support) performing both the
transformation and the integration activity used much more
knowledge bases. The most used knowledge base was the
internet.

B. Impacts on industrial reuse

In applying the aforementioned approach to industrial
environments faced with both creator and reuse phase
dilemmas, and therefore no knowledge transfer, leads to the
following effect, shown in Figure 11: The effort for the
creation team increases by adding the software unit
information into the Prometheus system. The theoretical
very useful but missing support effort is mostly replaced by
the effort for this ‘knowledge injection’.

Figure 11. Effects on MTwKIE

The major effect is visible at the reuse site. Even without or
just less support, the effort for reuse for single users or team
is significantly reduced. In the case of this experiment the
reduction of the measured variable are ~38,5% in the
transformation activity case compared to the expert user
(perform manually) (see Figure 9), ~ 73,21% in the
transformation activity case compared to the non-expert user
(perform manually) (see Figure 9), ~38,5% in the
integration activity case compared to the expert user
(perform manually) (see Figure 10), and ~ 73,21% in the
integration activity case compared to the non-expert user
(perform manually) (see Figure 10). This is mainly based on
the fact, that expert and non-expert Prometheus users do not
spend much time in searching a software unit and
preparation/execute a specific reuse task. The same positive
effect is expected in the reuse of a software unit multiple
teams of different business units. The approach detailed in
this paper has two positive effects. First of all, the solution
is sustainable for all teams as it is available to all once it has
been stored in the system. This is shown by using different
participants from different business units. As consequents,
all teams will obtain the same result and the same effects
described in Figure 9 and 10. Therefore, the way of reuse
planned in the creation phase is more sufficient. The second
positive effect is the adaptation towards knowledge created
in the “reuse” steps. If a team recognizes an alternative way
to perform the reuse activities it is able to store this
knowledge in the system. This requires training for the use
of the Prometheus system, but other teams are now able to
decide, which kind of transformation rule they want to use.
(Reuser is Creator) Figure 11 shows both positive effects.

VII. CONCLUSION AND FUTURE WORK

The reuse of a software unit consists of different reuse
activities. To perform such activities knowledge is required.
Especially in an industrial environment this constitutes
problem for a single team and in different teams of different
business units. This paper shows the structure and result of
an experiment aiming to demonstrate that it is possible to
automate chosen reuse activities so that less experienced
users are able to perform the activities. By comparing a
group of software unit experts, a group of less experienced
users within a normal development environment, and a
group of less experienced users with the support of the
focused automation approach following results are obtained:
(1) It is possible to automate reuse activities. Expert users
store their knowledge into a system, which is then able to
perform the activity (knowledge extraction). (2) Less
experienced users who are normally unable to perform such
activities are now able to do this. (knowledge injection) (3)
Analysing of the results demonstrated that this approach has
positive effects for reuse of software units in industrial

339Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 357 / 729

environments. (4) With automated support, a single team
can decrease their reuse costs from the first time of reuse
and thereby make it sustainable. Users utilizing the new
approach are able to perform an activity faster than the
software unit expert because the system provides the
complete environment for the activity based on the expert
users’ knowledge. (5) By reusing the expert’s knowledge,
the variations are minimized. All teams use the same
activity based on the same knowledge. (6) New automated
activities are sustainable because the activity will be
changed or a new one is stored in the system, therefore it
can be used in each new reuse step of each team. Next to the
positive effects, this paper’s experiment is limited to two
software reuse activities: Transformation and Integration.
These activities were chosen because they require different
amount of knowledge about tools, environment, and
software units. But there also other reuse activities like test,
validation, and deployment. Especially for deployment, for
example on embedded devices, knowledge is required, but
not all activities may be automated completely. The next
step is the phase two of the experiment. The number of
software units is raised to 10 and the number of
inexperienced software engineers in the groups 2 and 3 is
increased up.

Next to the fact that the results have to be confirmed by
repeating the experiment with new software units and other
software engineer the process has to be proofed by other
companies. For that purpose the process of the experiment
has to be formulated in a formal way. Additionally the
following aspects are interesting for the future.

Horizontal extension of the research field: The concept
presented in this work was demonstrated by using the
example of integration and transformation. But, much more
than the activities made use of in this experiment still exist
in the area of software unit reuse. First, standard activities
exist such as testing and validation of interfaces. These
activities usually have a high degree of automation.
However, these approaches are lacking in one approach,
which is used to represent knowledge uniformly and then re-
applied to the different existing automation systems. The
scientific task is thus to consider whether the approach
presented in this work can also be used for other horizontal
activities. On the other hand, technological progress can
ensure new activities in the area of reuse. The scientific
problem in this case is to check whether the approach
presented in this work is can also be used for new activities.

VIII. REFERENCES

[1] I. Sommerville, Software engineering, Pearson, 2011.
[2] F. Bobillo, M. Delgado, and J. Gómez-Romero,

“Representation of context-dependant knowledge in
ontologies: A model and an application,” Expert Systems with
Applications, vol. 35, no. 4, pp. 1899–1908, 2008.

[3] N. Juristo and A. M. Moreno, “Reliable knowledge for
software development,” IEEE Software, vol. 19, no. 5, pp.
98–99, 2002.

[4] R. Oliveto, G. Antoniol, A. Marcus, and J. Hayes, “Software
Artefact Traceability: the Never-Ending Challenge,”, pp.
485–488, 2007.

[5] M. Zinn, “Service based software construction process,” in
Proceedings of the Third Collaborative, Plymouth, UK, pp.
169–184, 2007.

[6] M. Zinn, G. Turetschek, and A. D. Phippen, “Definition of
software construction artefacts for software construction,” in
In proceedings of the, pp. 79–91, 2008.

[7] J. Bosch and P. Bosch-Sijtsema, “From integration to
composition: On the impact of software product lines, global
development and ecosystems,” Journal of Systems and
Software, vol. 83, no. 1, pp. 67–76, 2010.

[8] V. C. Garcia, E. S. de Almeida, L. B. Lisboa, A. C. Martins,
S. R. L. Meira, D. Lucredio, and R. P. de M. Fortes, “Toward
a Code Search Engine Based on the State-of-Art and
Practice,”, 13th Asia Pacific Software Engineering
Conference (APSEC’06), Bangalore, India, pp. 61–70, 2006

[9] T. Mens and P. Vangorp, “A Taxonomy of Model
Transformation,” Electronic Notes in Theoretical Computer
Science, vol. 152, pp. 125–142, 2006.

[10] R. Stair and G. Raynolds, Principles of information systems,
10th ed. Boston Mass.: Course Technology Cengage
Learning, 2011.

[11] T. Davenport, Working knowledge : how organizations
manage what they know, Harvard Business School Press,
2000.

[12] A. Kleppe, MDA explained : the model driven architecture :
practice and promise., Addison-Wesley, 2003.

[13] K. Czarnecki, Generative programming : methods, tools, and
applications., Addison Wesley, 2000.

[14] M. Zinn, K. P. Fischer-Hellmann, and R. Schoop, “Reuseable
Software Unit Knowledge for Device Deployment,” presented
at the Entwurf komplexer Automatisierungssysteme (EKA
2012), 2012.

[15] M. Zinn, K. P. Fischer-Hellmann. “Reusable Software Units
Integration Knowledge in a Distributed Development
Environment,” International Workshop on Software
Knowledge (SKY'11), pp. 24–35, 2011.

[16] J. Frijters, “IKVM,” IKVM.NET Home Page, [Online],
http://www.ikvm.net/. [retrieved: 09,2012].

[17] Microsoft, “ServiceModel Metadata Utility-Tool,”[Online],
http://msdn.microsoft.com, [retrieved: 09,2012].

[18] Apache, “WebServices - Axis.” [Online]. http://ws.apache.org
/axis/java/user-guide.html, [retrieved: 09,2012].

[19] Socrades, “Socrades Website”, [Online], http://www.socr
ades.org [retrieved: 09,2012].

340Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 358 / 729

Learning Best K analogies from Data Distribution for Case-Based Software Effort

Estimation

Mohammad Azzeh, Yousef Elsheikh
Faculty of Information Technology

Applied Science University

Amman, Jordan

e-mail: {m.y.azzeh, y_elsheikh}@asu.edu.jo

Abstract— Case-Based Reasoning (CBR) has been widely used

to generate good software effort estimates. The predictive

performance of CBR is a dataset dependent and subject to

extremely large space of configuration possibilities. Regardless

of the type of adaptation technique, deciding on the optimal

number of similar cases to be used before applying CBR is a

key challenge. In this paper we propose a new technique based

on Bisecting k-medoids clustering algorithm to better

understanding the structure of a dataset and discovering the

optimal cases for each individual project by excluding

irrelevant cases. Results obtained showed that understanding

of the data characteristic prior prediction stage can help in

automatically finding the best number of cases for each test

project. Performance figures of the proposed estimation

method are better than those of other regular K-based CBR

methods.

Keywords- Software Effort Estimation; Case-Based

Reasoning; Adjustment Techniques.

I. INTRODUCTION

Estimating the likely software project effort is a vital task
for project planning, control and assigning resources [5, 23,
26, 28]. Although a variety of software effort estimation
models have been proposed so far, the Case Based
Reasoning (CBR) method is still the most widely
investigated method. CBR is a knowledge management
method based on premise that history almost repeats itself
which leads to problem solving can be based upon retrieval
by similarity [30]. It has been favored over regression
techniques since software datasets often exhibit complex
structure with a lot of discontinuities [2, 6, 20, 21].

The predictive performance of CBR suffers from
common problems such as very large performance deviations
as well as being highly dataset dependent. This is due to a
large space of configuration possibilities and design
decisions induced for each individual dataset [16]. Recent
publications reported the importance of discovering the
optimal K closest cases for generating better estimates in
CBR [11, 27]. Conventional K-based CBR methods start
with a single analogy and increase this number depending on
the overall performance of the whole dataset then it uses the
K value that produces the overall best performance.
However, a fixed K value that produces overall best
performance does not necessarily provide the best
performance for individual projects. Our claim is that we can
avoid sticking to a fixed best performing number of cases

which changes from dataset to dataset or even from a single
project to another within the same dataset. We propose an
alternative technique to calibrate CBR by using Bisecting k-
medoids (BK) clustering algorithm. The k-medoids is a
clustering algorithm related to the centroid-based algorithms
which groups similar individual instances within a dataset
into N clusters known a priori [29, 30]. This enables us to
discover the structure of dataset efficiently and automatically
come up with the best number of K closest cases as well as
excluding irrelevant cases for each individual test instance.

 The rest of the article is organized as follows: Section 2
provides the Background of Case-Based Effort Estimation.
Section 3 defines the Research question and introduces main
problem. Section 4 presents the proposed technique. Section
5 presents experimental design. Section 6 presents the results
we obtained. Section 7 presents threats to validity of this
study. Lastly, Section 8 summarizes our conclusions and
future work.

II. BACKGROUND

Case-Based effort estimation is a variant of CBR which
makes prediction for a new project by retrieving previously
completed successful projects that have been encountered
and remembered as historical projects [12, 13]. The data
driven CBR method involves four major stages [25]: (1)
retrieve the most similar training projects using Euclidean
distance function as depicted in Eq. 1. Then (2) reuse the
past solutions from the set of retrieved analogues to solve the
new problem. (3) revise the proposed solution and to better
adapt the target problem. Finally, (4) retain the solved
problem for future problem solving.

 


m

t
jtitji pp

m
ppd

1
),(

1
),((1)

where d is the similarity measure. m is the number of
predictor features, t is the index of feature, pi and pj are
projects under investigation and:

 































jtit

jtit

tt

jtit

jtit

ppandlcategoricaistif

ppandlcategoricaistif

continuousistif
pp

pp

≠1

0

min-max

-

),(

2

 (2)

341Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 359 / 729

Although CBR generates successful performance figures

in certain datasets, it still suffers from local tuning problems
when they were to be applied in another setting [3]. Local
tuning requires mainly learning appropriate K cases that fits
procedure of adjustment and reflects dataset characteristics
[16]. The classical approach uses a fixed number of cases
(K=1, or 2 or…etc.) for all test projects, which is somewhat
considered simpler but it relies heavily on the estimator
intuitions [3]. In this direction, Kirsopp et al. [15] proposed
making predictions from the K=2 nearest cases as it was
found as the best value for their investigated datasets. In a
further study Kirsopp et al. have increased their accuracy
values with case and feature subset selection strategies. On
the other hand, Idri et al. [9] proposed using all projects that
fall within a certain similarity threshold. This approach could
ignore some useful projects which might contribute better
when similarity between selected and unselected cases is
negligible. Li et al. [17] performed rigorous trials on actual
and artificial datasets and they observed effect of various K
values. However, we believe that reflection on dataset prior
applying to different algorithms under multiple settings is of
more significance. But, this is not enough because the
selection of K cases is not only a dataset dependent but also
adjustment method dependent. In this study we focus only on
discovering the best number of cases to be used for each
individual test project from the characteristics of the dataset.

III. RESEARCH QUESTIONS

Finding the appropriate number of cases to be used in
CBR is a challenge on its own, and has a strong impact on
the overall predictive performance. Conventional K-based
CBR methods start with a single analogy and increase this
number depending on the overall performance of the whole
dataset then it uses the K value that produces the overall best
performance. However, a fixed K value that produces overall
best performance does not necessarily provide the best
performance for individual projects. Furthermore, previous
studies reported that the proper selection of K cases is a
dataset dependent and subject to underlying distribution of
the dataset [16]. For these reasons, we propose a new
technique based on Bisecting k-medoids clustering algorithm
to find the optimal number of cases to tune and configure
CBR method. To the best of our knowledge, it has not been
used previously in software effort estimation domain. Unlike
regular K-based CBR methods, the proposed technique starts
with all projects in the train dataset and gradually excludes
irrelevant projects on the basis of compactness degree. The
proposed work attempts to answer the following research
questions:
1. How can we better understand the characteristics of a
particular dataset and dynamically come up with optimum K
number of analogies?
2. Does the performance of CBR improve with automatic
dynamic selection of K cases for each individual project?

IV. THE PROPOSED CBR BASED BISECTING K-MEDOIDS

ALGORITHM CBR(BK)

The k-medoids is a clustering algorithm related to the
centroid-based algorithms which groups similar individual
instances within a dataset into N clusters known a priori [29,
30]. It is more robust to noise and outliers as compared to k-
means because it minimizes the sum of pairwise
dissimilarities instead of a sum of squared Euclidean
distances. A medoid can be defined as the instance of a
cluster, whose average dissimilarity to all the instances in the
cluster is minimal i.e. it is a most centrally located point in
the cluster. The popularity of making use of k-medoids
clustering is its ability to use arbitrary dissimilarity or
distances functions, which also makes it an appealing choice
of clustering method for software effort data as software
effort datasets also exhibit very dissimilar characteristics.

Regardless of the k-medoids algorithm advantages it still
has some challenges such as guessing the number of clusters
that can be used to find the partitions that best fits the
underlying data [30]. To avoid this challenge we employed
bisecting procedure with k-medoids algorithm and propose
Bisecting k-medoids algorithm (BK). BK is a variant of k-
medoids algorithm that can produce hierarchical clustering
by recursively applying the basic k-medoids. It starts by
considering the whole dataset to be one cluster. At each step,
one cluster is selected and bisected further into two sub
clusters using the basic k-medoids. Note that by recursively
using a bisecting k-medoids clustering procedure, the dataset
can be partitioned into any given number of clusters in which
the so-obtained clusters are structured as a hierarchical
binary tree. The decision whether to continue clustering or
stop it depends on the comparison of compactness degree
between childes and their direct parent in the tree. If the
maximum of compactness of child clusters is smaller than
compactness of their direct parent then clustering is
continued. Otherwise it is stopped and the parent cluster is
considered as a leaf node. This criterion enables the BK to
uniformly partition the dataset into homogenous clusters. In
this paper the average cluster compactness as a measure of
homogeneity of each cluster is used, it is defined as:

Compactness=
2

1 1

1
  


k

i

n

Cx,j
ij

ij

vx
n

 (3)

where || • || is the usual Euclidean norm, xj is the j

th
 data

object, vi is the center of i
th
 cluster (Ci) and k is the number of

clusters. A smaller value of this measure indicates a high
homogeneity (less scattering).

Figure 1. Illustration of Bisecting k-medoids algorithm

342Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 360 / 729

Figure 1 is a very simple BK tree that can be formed on a
simple dataset of 15 projects. It shows how the main cluster
is bisected recursively into four leaf clusters are: C2, C3, C5
and C6. Tricky point here is that unlike K-based CBR
methods, BK does not need any expert interference to
discover dataset characteristics so as to decide on the number
of trees to be built or the number of cases to be used in
estimation. To better understand the BK algorithm, see the
pseudo code in Figure 2.

1: Input: The dataset X

2: Output: The set of k clusters S={C1, C2, C3, C4, ..Ck}

3: Initialization: Let V=X , S={}, NextLevl={}

4: Repeat while size(V)> 0

5: foreach Cluster C in V

6: Comp compactness (C)

7: [C1,C2]  k-medoids(C,2)

8; Comp1 compactness(C1)

9: Comp2 compactness(C2)

10: If(max(Comp1,Comp2)<Comp)

11: NextLevel NextLevel  {C1,C2}

12: Else

13: S S  {C}

14: End

15: VNextLevel

16: NextLevel  {}

17: End

Figure 2. Bisecting k-medoids algorithm

Finally once BK tree is built, the estimation process
starts. The un-weighted mean effort of the train projects of
the leaf cluster whose medoid is closest to the test project
becomes the estimated effort value for that test project as
shown in Eq. 4. i.e. we choose to use K-many cases for
estimation where K is the number of train instances that are
in the selected cluster.

 


K

i
it pEffort

K
pEffort

1
)(

1
)((4)

V. EXPERIMENTAL DESIGN

As it was reported [16] most of the methods in literature

were tested on a single or a very limited number datasets,

thereby reducing the credibility of the proposed method. To

avoid this pitfall, we included nine datasets from two

different sources namely PROMISE [4] and ISBSG [10].

PROMISE is an on-line publically available data repository

and it consists of datasets donated by various researchers

around the world. The datasets come from this source are:

Desharnais [7], Kemerer [14], Albrecht [1], COCOMO [4],

Maxwell [19], Telecom [4] and NASA93 [4] datasets. The

other dataset comes from ISBSG data repository (release 10)

which is a large data repository consists more than 4000

projects collected from different types of projects around the

world. Since many projects have missing values only 500

projects with quality rating “A” are considered. 14 useful

features were selected, 8 of which are numerical features and

6 of which are categorical features. The descriptive statistics

of such datasets are summarized in Table 1.

TABLE 1 Statistical properties of the datasets

Dataset Cases #
Effort

min

Effort

max

Effort

mean

ISBSG 500 668 14938 2828.5

Desharnais 77 546 23940 5046.3

COCOMO 63 5.9 11400 683.5

Kemerer 15 23.2 1107.3 219.2

Albrecht 24 0.5 105.2 21.87

Maxwell 62 583 63694 8223.2

NASA93 18 8.4 824 624.4

China 499 26 54620 3921

Telecom 18 23.45 1115.5 284.3

For each dataset we follow the same testing strategy, we

used Leave-one-out cross validation to identify test and train

projects such that, in each run, we select one project as test

set and the remaining projects as training set. This

procedure is performed until all projects within dataset are

used as test projects. In each run, The prediction accuracy of

different techniques is assessed using MMRE, PRED(0.25)

performance measure as shown in Eqs. 5 and 6. MMRE

computes mean of the absolute percentage of error between

actual and predicted project effort values. PRED(0.25) is

used as a complementary criterion to count the percentage

of estimates that fall within less than 0.25 of the actual

values.

 


N

i i

ii

)p(Effort

|)p(Effort)p(Effort|
MMRE

1

-
 (5)

where)p(Effort i and)p(Effort i are the actual value and

predicted values of project pi.

100250 
N

).(PRED


 (6)

where  is the number of projects that have magnitude

relative error less than 0.25, and N is the number of all

observations. We also used Wilcoxon sum rank test to

investigate the statistical significance of all the results,

setting the confidence limit at 0.05. The Wilcoxon sum rank

test is a nonparametric test that compares the medians of

two samples. The reason behind using these tests is because

all absolute residuals for all models used in this study were

not normally distributed. In turn, the obtained results from

the proposed approach have benchmarked to other regular

K-based CBR methods that use a fixed number of K cases.

VI. RESULTS

A. Results for Research Question 1

This study explores the feasibility of learning best K

analogy number from the dataset structure prior building

343Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 361 / 729

CBR method. The previous results and conclusions indicate

that a single best performing K value that is producing the

lowest MRE values for the whole dataset does not

necessarily produce lowest MRE value for every single

project. To illustrates our viewpoint and better understand

this problem we carried out an extensive search to find the

mean effort value of the best K number of analogies that

produces lowest MRE value for every single test project as

shown in Figure 3. For a dataset of size n, the best K value

can range from 1 to n − 1. Since a few number of datasets

were enough to illustrate our viewpoint, we selected 3

datasets that vary in the size (i.e. one small dataset

(Albrecht), one medium (Maxwell) and one large

(Desharnais)). Figure 3 shows the histogram of best selected

K numbers for the three examined datasets, where x-axis

represents K analogy number and y-axis represents

frequency of K number (i.e. number of projects that chose

that K value). It is clear that there is no global K number for

all projects, for example in Albrecht dataset, two projects

selected only the closest case (K=1), whilst four projects

selected two closest cases (K=2) and so on. This indicates

that every single project favors different number of closest

analogies. The conclusion can be drawn here that using a

fixed K number of cases for all test projects will far from

optimum and there is provisional evidence that choosing of

best K analogy for each individual project is relatively

subject to data structure.

The conclusion can be drawn from previous empirical

results that the optimum K number of analogies is not global

and every project favors different K number. However, our

first research question was how can we better understand the

characteristics of a particular dataset and dynamically come

up with optimum K number of analogies? In this paper we

proposed Bisecting k-medoids algorithm to better

understand the characteristics of software datasets and

automatically come up with the optimum K number. To

illustrate that, we executed CBR(BK) over all employed

datasets and we recorded the best obtained K for every test

project. Figure 4 shows the histogram of K number of

analogies for every test project. This demonstrates the

capability of BK technique to dynamically discovering the

various K values for every test project that takes into

account the characteristics of each dataset on the basis of

compactness degree. The procedure of selecting has become

easier than first (i.e. where the estimator intuition is heavily

used to choose the optimum number of analogy) since the

entire best K selection process has been left to the BK. The

performance figures of the proposed technique are discussed

in the next section.

B. Results for Research Question 2

The second research question was whether the predictive

performance of CBR method can be improved when using

BK algorithm? Apart from being able to choose the number

of cases for each test instance on its own, BK outperforms

all the other K-based CBR methods as can be seen in Table

2.

Figure 3. Distribution of K-cases

TABLE 2 MMRE results

Dataset CBR

(BK)

CBR

(K=1)

CBR

(K=2)

CBR

(K=4)

CBR

(K=8)

CBR

(K=16)

Albrecht 45.4 71.0 66.5 73.9 89.1 146.5

Kemerer 41.9 55.9 77.7 86.2 91.5 N/A

Desharnais 29.4 60.2 51.5 50.2 61.0 79.9

COCOMO 60.43 157.1 363.2 327.3 401.8 606.55

Maxwell 41.3 182.6 132.7 149.3 138.2 145.6

China 27.7 45.2 44.2 48.5 53.8 63.0

Telecom 35.7 60.0 45.2 77.4 115.3 175.3

ISBSG 37.0 72.6 73.2 74.7 71.7 71.7

NASA 39.4 81.2 97.5 77.6 77.1 227.6

When we look closer at the MMRE values in Table 2, we

can see that in all 9 datasets, BK has never been

outperformed by other methods with the lowest MMRE

values, which suggest that BK has attained better predictive

performance values than all other regular K-based CBR

methods. This also shows the capability of BK to support

small-size datasets such as in Kemerer and Albrecht.

However, although it proved inaccurate in this study, the

strategy of using fixed K-analogy the effort values may be

344Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 362 / 729

appropriate in situations where a potential analogues and

target project are similar in size feature and other effort

drivers. On the other hand, There may be little basis for

believing that either increasing or decreasing the K-cases

effort values of K-based CBR methods will not improve the

accuracy of the estimation.

Table 3 shows that the proposed technique has achieved

larger PRED values over eight datasets, which demonstrated

that most of the predictions have very good accuracy with

MRE vales are less than 0.25. However, overall results from

Tables 2 and 3 revealed that there is reasonable believe that

using dynamic K-cases for every test project has potential to

improve prediction accuracy of CBR in terms of PRED.

Concerning discontinuities in the dataset structure, there is

clear evidence that the proposed method has capability to

group similar projects together in the same cluster as

appeared in the results of Maxwell, COCOMO, Kemerer

and ISBSG.

Figure 4. Histogram of K analogies obtained by

 CBR(BK) for all employed datasets

345Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 363 / 729

TABLE 3 PRED results

Dataset CBR

(BK)

CBR

(K=1)

CBR

(K=2)

CBR

(K=4)

CBR

(K=8)

CBR

(K=16)

Albrecht 40.8 29.2 33.3 37.5 37.5 33.3

Kemerer 43.3 40.0 20.0 13.3 20 N/A

Desharnais 40.3 31.2 31.2 37.6 32.5 22.1

COCOMO 19.3 12.7 19.1 15.9 12.7 12.7

Maxwell 22.6 9.7 19.4 14.5 16.1 29

China 52.7 38.3 43.5 41.9 38.1 33.7

Telecom 53.3 33.3 50 44.4 38.9 22.2

ISBSG 38.4 39.6 30.7 29.7 25.7 22.2

NASA 39.3 33.3 38.9 22.2 11.1 0

The variants of CBR methods are taken and compared

using Wilcoxon sum rank test. The results of Wilcoxon sum

rank test of absolute residuals are presented in Table 4.

Surprisingly, predictions based on CBR(BK) model

presented statistically significant but necessarily accurate

estimations than others, confirmed by the results of MMRE

as shown in Table 2. Except for small datasets such as

Albrecht, Kemerer, Telecom and NASA, the statistical test

results demonstrate that there is no significant difference if

the predictions generated by any CBR(BK) and other

regular K-based CBR methods. So it seems that the small

datasets are the most challenging ones. These datasets have

relatively small number of instances and large degree of

heterogeneity between projects so it is difficult to obtain a

cluster of sufficient number of instances.

TABLE 4 Wilcoxon sum rank test results

Dataset CBR

(K=1)

CBR

(K=2)

CBR

(K=4)

CBR

(K=8)

CBR

(K=16)

Albrecht 0.8 0.64 0.39 0.45 0.69

Kemerer 0.7 0.17 0.07 0.07 0.69

Desharnais 0.01* 0.01* 0.03* 0.01* 0.01*

COCOMO 0.03* 0.01* 0.02* 0.03* 0.01*

Maxwell 0.01* 0.01* 0.01* 0.01* 0.04*

China 0.01* 0.01* 0.01* 0.01* 0.01*

Telecom 0.79 0.76 0.42 0.91 0.03*

ISBSG 0.04* 0.01* 0.01* 0.01* 0.01*

NASA 0.68 0.84 0.19 0.04* 0.01*

VII. THREAT TO VALIDITY

This section presents the comments on threats to
validities of our study based on internal, external and
construct validity. Internal validity is the degree to which
conclusions can be drawn with regard to configuration setup
of BK algorithm including: 1) the identification of initial
medoids of BK for each dataset, 2) determining stopping
criterion. Currently, there is no efficient method to choose
initial medoids so we used random selection procedure. So
we believe that this decision was reasonable even though it
makes the k-medoids is computationally intensive. For
stopping criterion we preferred to use the compactness
performance measure to see when the BK should stop.
Although there are plenty of compactness measures we
believe that the used measure is sufficient to give us

indication of how instances in the same clusters are strongly
related.

Concerning construct validity which assures that we are
measuring what we actually intended to measure. However,
despite special emphasis was placed on the effectiveness of
the performance measures, complete certainty with regard to
this issue was challenged and we had to rely on common
estimation-error based performance measures such as
MMRE and PRED, which we no longer believe to be a
completely trustworthy accuracy indicator [8, 24]. We do not
consider that choice was a problem because (1) They are
practical options for majority of researchers [2, 11, 13, 16,
22], and (2) using such measures enables our study to be
benchmarked with previous effort estimation studies. On the
other hand, in order to make apple-to-apple comparisons
between different adaptation techniques we preferred to use
Leave-one cross-validation strategy, though some authors
favored n-Fold cross validation. The principal reason is that,
the Leave-one cross-validation has been used in some
previous studies and recommended to do comparison
between different estimation models.

With regard to external validity, i.e. the ability to
generalize the obtained findings of our comparative studies,
we used 8 datasets from 2 different sources to ensure the
generalizability of the obtained results. The employed
datasets contain a wide diversity of projects in terms of
their sources, their domains and the time period they
were developed in. We also believe that reproducibility of
results is an important factor for external validity. Therefore,
we have purposely selected publicly available datasets.
However, we consider that some datasets are very old to be
used in software cost estimation because they represent
different software development approaches and technologies.
The reason for this is that these datasets are publically
available, and still widely used for benchmarking purposes.

VIII. CONCLUSION AND FUTURE WORK

This paper proposed a new technique based on utilizing

Bisecting k-medoids clustering algorithm and compactness

degree to find the best K analogies number from the structure

of dataset for each test project. Thus, rather than proposing a

fixed best-K value a priori as the traditional CBR methods

do, what CBR(BK) does is starting with all the training

samples in the dataset, learning the dataset to form BK

binary tree and excluding the irrelevant cases on the basis of

compactness degree and then discovering the best-K value

for each individual project. The proposed technique has the

capability to support different-size datasets that have a lot of

categorical features. Empirical results on various datasets

indicate the performance of the proposed method over other

regular K-based CBR methods. So the conclusion can be

drawn that the choice of best K value is subject to the

characteristics of a software dataset, and this value should be

discovered from the structure of dataset. A future work is

planned to study the impact of feature selection and

weighting on discovering the optimal K value.

346Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 364 / 729

ACKNOWLEDGMENT

The authors are grateful to the Applied Science
University, Amman, Jordan, for the financial support granted
to cover the publication fee of this research article.

REFERENCES

[1] A. J. Albrecht and J. Gaffney, “Software function, source
lines of code, and development effort prediction”, IEEE Trans
on Software Engineering 9:639–648, 1983.

[2] M. Azzeh, “A replicated assessment and comparison of
adaptation techniques for analogy-based effort
estimation”, Empirical Software Engineering 17(1-2): 90-127,
2012.

[3] M. Azzeh, D. Neagu and P. Cowling, “Fuzzy grey relational
analysis for software effort estimation”, Empirical Software
Engineering, 15: 60-90, 2010.

[4] G. Boetticher, T. Menzies, T. Ostrand, PROMISE Repository
of empirical software engineering data http://promisedata.org/
repository, West Virginia University, Department of
Computer Science, 2010.

[5] L. C. Briand, K. El-Emam, D. Surmann and I. Wieczorek, K.
D. Maxwell. An assessment and comparison of common cost
estimation modeling techniques. Proceeding of the 1999
International Conference on Software Engineering, pp. 313–
322, 1999.

[6] N. H. Chiu and S. J. Huang, “The adjusted analogy-based
software effort estimation based on similarity distances”,
Journal of Systems and Software 80:628–640.
doi:10.1016/j.jss.2006.06.006, 2007.

[7] J. M. Desharnais, Analyse statistique de la productivitie des
projets informatique a partie de la technique des point des
foncti on. University of Montreal, 1989.

[8] T. Foss, E. Stensrud, B. Kitchenham and I. Myrtveit, “A
simulation study of the model evaluation criterion MMRE”,
IEEE Trans Softw Eng 29:985–995, 2003.

[9] A. Idri, A. Abran and T. Khoshgoftaar, Fuzzy Analogy: a
New Approach for Software Effort Estimation, In: 11th
International Workshop in Software Measurements, pp. 93-
101, 2001.

[10] ISBSG, International software benchmark and standard group,
Data CDRelease 10, www.isbsg.org, 2007

[11] M. Jorgensen, U. Indahl and D. Sjoberg Software effort
estimation by analogy and “regression toward the mean”.
Journal of Systems and Software 68:253–262, 2003.

[12] G. Kadoda, M. Cartwright, L. Chen and M. Shepperd,
Experiences using case based reasoning to predict software
project effort, in proceedings of EASE: Evaluation and
Assessment in Software Engineering Conference, Keele, UK,
2000.

[13] J. Keung, B. Kitchenham and D. R. Jeffery, Analogy-X:
Providing Statistical Inference to Analogy-Based Software
Cost Estimation. IEEE Transaction on Software Engineering.
34(4): 471-484, 2008.

[14] C. F. Kemerer, “An empirical validation of software cost
estimation models”, Comm. ACM 30: 416–429, 1987.

[15] C. Kirsopp, E. Mendes, R. Premraj, M. Shepperd, An
empirical analysis of linear adaptation techniques for case-
based prediction. International Conference on CBR. pp.231–
245, 2003.

[16] E. Kocaguneli, T. Menzies, A. Bener and J. Keung,
“Exploiting the Essential Assumptions of Analogy-based
Effort Estimation”, IEEE transaction on Software
Engineering. ISSN: 0098-5589, 2011.

[17] J. Z. Li, G. Ruhe, A. Al-Emran and M. Richter, “A flexible
method for software effort estimation by analogy”, Empirical
Software Engineering 12(1):65–106, 2007.

[18] Y. F. Li, M. Xie and T. N. Goh, “A study of the non-linear
adjustment for analogy based software cost estimation”,
Empirical Software Engineering 14:603–643, 2009.

[19] K. Maxwell, Applied statistics for software managers.
Englewood Cliffs, NJ, Prentice-Hall, 2002.

[20] E. Mendes, N. Mosley and S. Counsell, Web metrics—
Estimating design and authoring effort. IEEE Multimedia,
Special Issue on Web Engineering, 50–57, 2001.

[21] E. Mendes, N. Mosley and S. Counsell, A replicated
assessment of the use of adaptation rules to improve Web cost
estimation, International Symposium on Empirical Software
Engineering, pp. 100-109, 2003.

[22] E. Mendes, I. Watson, C. Triggs, N. Mosley and S Counsell,
“A comparative study of cost estimation models for web
hypermedia applications”, Empirical Software Engineering
8:163–196, 2003.

[23] T. Menzies, Z. Chen , J. Hihn and K. Lum, “Selecting Best
Practices for Effort Estimation”, IEEE Transaction on
Software Engineering. 32:883-895, 2006.

[24] I. Myrtveit, E. Stensrud and M. Shepperd, “Reliability and
validity in comparative studies of software prediction
models”, IEEE Trans on Software Engineering 31(5):380–
391, 2005.

[25] M. Shepperd and C. Schofield, “Estimating software project
effort using cases”, IEEE Transaction Software Engineering
23:736–743, 2006.

[26] M. Shepperd and G. Kadoda, “Comparing software prediction
techniques using simulation”, IEEE Trans on Software
Engineering 27(11):1014–1022, 2001.

[27] M. Shepperd and M. Cartwright, A Replication of the Use of
Regression towards the Mean (R2M) as an Adjustment to
Effort Estimation Models, 11th IEEE International Software
Metrics Symposium (METRICS'05), pp.38, 2005.

[28] F. Walkerden and D. R. Jeffery, “An empirical study of
analogy-based software effort Estimation”, Empirical
Software Engineering 4(2):135–158, 1999.

[29] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley, New York, 1990.

[30] H-S. Park and C-H. Jun, “A simple and fast algorithm for K-
medoids clustering”, J. Expert Systems with Applications,
Volume 36, Issue 2, Part 2, Pages 3336-3341, 2009.

347Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 365 / 729

Predicting Risky Program Source Files

Syed Nadeem Ahsan, Syed Haider Abbas Naqvi and Kamran Raza
Faculty of Engineering Sciences and Technology

Iqra University, Karahi, Pakistan
sn ahsan@yahoo.com, {haider0202, kraza}@iqra.edu.pk

Abstract—Change in source codes is an essential and
routine activity of software development and maintenance. It
has been observed that this activity might result in faults that
might harm the use of the software. Therefore, it is always
useful for software managers and programmers that before
making any changes in source files, they should know the
degree of risk associated with changing source files. In this
paper, we present our approach to identify source files, which
are risky or at least sensitive to new changes. We defined a
set of metrics to compute the degree of risk associated to a
source file. To validate our approach, an experiment has been
performed by using Mozilla project’s data. The experimental
results show that the source files having higher risk values are
more risky when applying the next change and thus should
be tested more thoroughly.

Keywords-Software evolution; code metrics; risk estimation;

I. INTRODUCTION

In the field of software engineering, research studies
reveal that over 90% of the software development cost
spends on software maintenance and evolution. Moreover,
software testing consume most of the development time
and money [6]. Therefore, in today’s software industry,
software quality assurance personnel need those techniques
which predict risky source code modules, so that more
thorough testing can be performed for risky source code
modules. Moreover, a developer can use such predictions
to focus quality assurance activities.

In recent years, much research work has been performed
to build models to predict risky or faulty source code
modules. Mostly, researchers extract knowledge from the
repository of software evolution [3][14]. This knowledge
have been used to build models to predict faulty source
code modules in the new release of a software product
[2][7][9]. Therefore, the goal of our research work is to
use the software evolution data, and define a new set of
metrics to compute the degree of risk associated to the new
changes in the source files. Such information is not only
useful for developers but also for software managers in
order to assign resources, e.g., for testing.

It has been found that the history of software change
patterns might be used for the analysis of risky or faulty

program files [1][10]. Therefore, in our research work,
we first classify the changes in the source code into four
well known types of software changes i.e., clean-changes,
bug-introducing changes, bug-fix and introducing changes,
and finally bug-fix changes [7]. Then, we define a set of
metrics using the four different types of software changes.
Finally, we derive an empirical relation for the risk model.
To validate our research approach, we performed an
experiment by extracting the change history data of source
files from the software repository of Mozilla Project. After
extracting the data, we applied an approach that allows
us to identify the different types of code changes like,
bug fixing, clean, bug introducing, and bug fix-introducing
transactions [7]. We used the data of software changes and
computed a set metrics. Finally, we used these metrics in
our propose risk estimation model and obtained the degree
of risk associated to source files.

The paper is organized as follow: In Section 2, we
discuss related work. In Section 3, we describe the types of
software changes. In Section 4, we describe our approach.
In the next sections, i.e., Section 5 and 6, we discuss the
obtained empirical results and conclude the paper.

II. RELATED WORK

Software evolution data have been used to construct
models for the classification of clean and faulty source
code [3][14]. Asundi [8] highlight the importance and the
major challenges of the risk estimation model of program
source files. Whereas, most of the research works are
based on data driven techniques and used machine learning
algorithm to build model for the prediction of faulty source
code modules [13]. It has been observed that very few
attempts have been made to build empirical models for the
computation of risk factor associated with the new changes
in source codes [1][2].

Porter and Selby [4] used classification trees based on
metrics from previous releases to identify components
having high-risk properties. Mockus and Weiss [2]
presented a model to predict the risk of new changes,
based on previous information. The authors modeled
the probability of causing failure of a change made to

348Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 366 / 729

software, using properties of a change as model parameters.
Sliwerski et al. [7] analyzed the CVS repository of Mozilla
and Eclipse together with the information stored in the
corresponding Bugzilla bug reporting system to identify
fix inducing changes. Robert et al. [10] used code churn
metrics (metrics which are based on addition, subtraction
and modification of source code lines) for predicting faults
in software. They found that change in the prior release
is an essential component of fault prediction method.
Similarly, our research work is focused to use the source
code modification data, but instead of using direct code
churn metrics, we used a new set of metrics, and derived
a relation for the risk model of program source file.
The research work present in this paper is the further
enhancement in our previous risk model [12].

III. TYPES OF CHANGES IN SOURCE CODE

In this paper, we propose an approach to build model for
the prediction of risky source code module. Our approach is
based on software repository data, i.e., version controlling
system (CVS) and bug tracking system (Bugzilla) [14].
First, we process the software repository data, and compute
a set metrics using the following four types of source
code changes: clean, bug introducing, bug fixing and bug
fix-introducing changes. To obtain these types of source
code changes, we used an approach which was given by
Sliwerski et al. [7]. After obtaining the metrics data, we use
these metrics in our risk model, and compute the risk factor
associated to each source files. In the following paragraph
we briefly describe the four different types of changes in
source code (for details see [3][7]).

1) Bug Fixing Change: This type of changes are oc-
curred when developers want to change the source
code to fix a bug.

2) Bug Introducing Change: Once we identify that the
change is a bug fixing change in the source file, then
it is required to locate those changes in the source file
revisions, which actually introduced the bug.

3) Bug Fix-Introducing Change: After identifying all
the Bug-Introducing and the Bug-Fixing changes, then
the next step is to list all those source file changes,
which have both type of changes, i.e., Bug Fixing and
Bug Introducing Changes.

4) Clean Change: Finally, the set of source file changes,
which are not identified as bug fix or bug introducing
or bug fix-introducing, are listed as clean changes.

IV. OUR APPROACH TO BUILD A RISK MODEL

Our approach is based on a mathematical model, which
can be derived using the definition of risk. In engineering
risk corresponds to the costs in case of an accident [5],

and according to IEEE, the standard definition of risk is:
“An expression of the impact and possibility of a mishap
in terms of potential mishap severity and probability of
occurrence (MIL-STD-882-D, IEEE 1483).” Whereas, in our
approach, “accident” or probability of “mishap” is basically
the probability of faulty change in source code, which may
introduce one or more bugs in a software, and “costs” is the
time or effort needed to fix those bugs. Therefore, we process
the data of source code’s change history, and compute the
probability of faulty change of each source file. Finally,
to obtain the risk value, we multiply the probability of
faulty/buggy changes with the costs factor, and compute the
risk value. Hence, in our case, risk can be defined as:

Risk = (Prob. of Bug)× (Bug Impacts/Costs) (1)

Riskj = pBUG × Cj (2)

where, Riskj is the risk that a change in a source file could
be a faulty change, and it could introduce j number of
bugs. pBUG is the probability that a new change could be a
faulty change, and Cj represent the expected impact/costs
of that faulty change. Cj represent the impact in term
of an estimated costs that need in fixing the introducing
number of faults. A faulty change in a program file may
introduce j number of faults into a software system. Cj

is the costs of fixing j faults. Therefore, the risk that a
faulty change may introduce j faults is given by equation (2).

The probability of a change to lead to a bug (or
accident), i.e., pBUG can be obtained from the history of
bug introducing and bug fix-introducing changes of a source
file. For this purpose, the number of bugs introducing (nI)
and bug fix-introducing changes (nFI) has to be divided by
the number of all changes (nC), e.g.,

pBUG =
nI+ nFI

nC
(3)

Now, to find the risk value of a source file, we have
to know the expected costs of the bugs that could
be generated. Let, pj be the probability of introducing
j bugs by a faulty change, and cj is the costs of fixing j bugs.

Cj = pj × cj =
nj
nC
× cj (4)

Riskj =
nI+ nFI

nC
× nj

nC
× cj (5)

where, nj is the number of changes that introduced j bugs per
change. Its value can be obtained from the previous history
of source file. If we consider the costs of each bug as a
constant value, i.e., c, then Eq. (5) can be written as,

349Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 367 / 729

Riskj =
nI+ nFI

nC
× nj

nC
× j× c (6)

In case of Open Source Software (OSS), there is no
information regarding the costs for correcting a fault in
terms of amount of work necessary, and moreover there
is no information available about costs related to the bug
when the program is executed. Hence, we might assume
unit costs for each fault, i.e., c=1.

Riskj =
nI+ nFI

nC
× nj

nC
× j (7)

Equation (7) can be used to find the risk associated with
source files, which could generate j faults. Every change
might lead to several bugs. Hence, the expected costs can
be estimated by averaging the costs of correcting “k” faults
multiplied with the probability that a change causes “k”
faults, i.e.,:

Riskavg(j) =
nI+ nFI

nC
× 1

k

k∑
j=1

nj

nC
× j (8)

Riskavg(j) =
nI+ nFI

nC
× 1

k
× 1

nC
×

k∑
j=1

(nj × j) (9)

where,
k∑

j=1

(nj × j) = nB , and nB is the total number of

bugs occurred during the life of a source file. Its value can
be obtained by adding the value of bug counts nBI , which
is generated by bug introducing changes and bug count
value nBFI , which is generated by bug fix-introducing
changes (nB=nBI+nBFI).

Riskavg(j) =
nI+ nFI

nC
× 1

k
× nB

nC
(10)

where, “k” is the maximum number of faults introduced by
a single change in a source file. Furthermore, equation (10)
can be used to compute the maximum risk instead of an
average risk.

Riskmax(j) =
nI+ nFI

nC
× nB

nC
(11)

Equation (11) may be used to measure the maximum
risk associated with the new changes in a source files.
In equation (11), nB

nC
is the average number of faults per

change. It may be written as Cmax(j). In our experiment,

we used equation (11) to measure the risk value. In equation
(11), we considered unit cost i.e., c=1, if we do not consider
unit cost then equation (11) may be written as,

Riskmax(j) =
nI+ nFI

nC
× nB

nC
× c (12)

Equation (12) is the main equation to compute the
maximum risk factor associated with source file. The major
challenge is to compute the cost value, i.e., “c” in equation
(12). Since, in case of open source, the costs related to
software change is not recoded, therefore, it is difficult to
compute the costs value of software changes. However, we
can make some assumption for costs value, like we did in
equation (7). Moreover, it has been found in literatures that
some attempts have been made to compute the effort or costs
value of software changes [8] [11]. We are still working to
find some better technique to compute the costs value of
software changes. Now, In the next section, we discuss some
experimental results, which are based on Eq. (1) to Eq. (11).

V. RESULTS AND DISCUSSION

In order to validate our approach, we performed an
experiment by downloading source files and bug reports
data from the Mozilla project (evolution data is freely
available on website). After downloading, we used an
approach to process the downloaded data, and find the
distribution of four different types of changes in source
codes (for details see [7] [12]). Our experimental results
are shown in Table I.

Table I depicts the obtained results of risk associated with
7 different source files of Mozilla project. For example,
consider a source file, i.e., CBrowserShell.cpp from Table
I. The number of fault-introducing changes and the number
of fault-fix-introducing changes are 17 and 49 respectively.
Hence, the probability of a change to introduce at least
one bug in this example is: pBUG = (nI + nFI) / nC =
(17+49)/93= 0.71. Moreover, the data of Table I, can easily
be used to compute the expected cost of fault fixing in
source file. Like in case of CBrowserShell.cpp source file,
the cost is Cmax(j) =nB

nC
= 69

93 = 0.74. From this, the risk
factor associated with the new changes in the source file
CBrowserShell.cpp can be computed as follow: Rmax(j) =
pBUG × C = 0.71 × 0.74 = 0.53.

Similarly, the risk can be computed for each source
files. The results of this computation on sample data set
of seven source files are given in Table I. Figure 1 shows
the normalized risk factor associated with each source files.
In our sample data set, the source file calDateTime.cpp is

350Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 368 / 729

Table I
COMPUTATION OF RISKY SOURCE FILES USING THE DISTRIBUTION OF FOUR DIFFERENT TYPES OF SOURCE FILE CHANGES

Mozilla
Source Files
(.cpp)

Four types of changes Total
Change

Total
Faults

Total
Faulty
Changes

pBUG =
(nI+nFI) /
nC

Cmax(j) =
nB / nC

Riskmax(j)
= pBUG ×
Cmax(j)

(sample data) Clean Fix nI nFI nC nB nI+nFI

calDateTime 2 5 21 82 110 112 103 0.94 1.02 0.95
calICSService 1 6 9 60 76 73 69 0.91 0.96 0.87
CBrowserShell 11 16 17 49 93 69 66 0.71 0.74 0.53
CNavDTD 42 46 147 263 498 418 410 0.82 0.84 0.69
COtherDTD 8 20 57 65 150 128 122 0.81 0.85 0.69
dlldeps 32 44 35 92 203 132 127 0.63 0.65 0.41
EmbedPrivate 15 33 20 84 152 110 104 0.68 0.72 0.50

Figure 1. Risk factor associated with seven source files of Mozilla project

the most risky source file for further changes. Whereas,
the source file dlldeps.cpp is the less risky file for further
changes. A graph which is similar to Figure 1 can be used
during software maintenance phase to identify those source
files which have a high risk factor. Such information helpful
to perform software maintenance task.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented our approach to build a
mathematical model, which computes the risk factor
associated with the new changes in source codes. Our risk
model is based on a set of metrics. We obtained these set
of metrics by using the evolution data of source codes.
Furthermore, to validate our risk model, we performed
an experiment by using the software evolution data of
Mozilla project. We found that our model successfully
measured the risk factor associated with source files. The
source files which have higher risk factor values are more
risky when applying the next change and thus should
be tested more thoroughly. Currently, we are working
to develop a method which can be used to compute the
actual costs/impact value of a bug. Moreover, in future, we
will further enhance our risk model by adding more metrics.

REFERENCES

[1] A. A. Phadke and E. B. Allen, “Predicting Risky Modules in
Open-Source Software for High-Performance Computing,” In
proceeding of IWSEHPCS, 2005.

[2] A. Mockus and D. M. Weiss, “Predicting risk of software
changes,” Bell Labs Tech., vol. 5, Apr-June 2000, pp 169-180.

[3] M. Fischer, M. Pinzger, and H. Gall, “Populating a release his-
tory database from version control and bug tracking systems.”
In Proceeding of the International Conference on Software
Maintenance (ICSM), 2003, pp 13-23.

[4] A. A. Porter and R. W. Selby, “Empirically Guided Software
Development Using Metric-Based Classification Trees,” IEEE
Software, volume 7(2), 1990, pp 46-54.

[5] E. Addison, “Managing Risk: Methods for Software Systems
Development(Sei Series in Software Engineering),” Addison
Wesley, February 28, 2005.

[6] L. Erlikh, “Leveraging legacy system dollars for e-business,”
IT professional, volume 2(3), 2000, pp 17-23.

[7] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?,” Proceedings of the 2005 international workshop
on Mining software repositories, 2005, pp 1-5.

[8] J. Asundi, “The need for effort estimation models for open
source software projects.” In Proceedings of the fifth workshop
on Open source software engineering (5-WOSSE), ACM, New
York, NY, USA, 2005, pp 1-3.

[9] K. A. Gunes and L. Hongfang, “Building Defect Prediction
Models in Practice,” IEEE Software, 22(6), 2005, pp 23-29.

[10] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “Does measuring
code change improve fault prediction?,” In Proceedings of the
7th International Conference on Predictive Models in Software
Engineering (Promise), 2011.

[11] S. N. Ahsan, J. Ferzund and F. Wotawa, “Program File Bug
Fix Effort Estimation Using Machine Learning Methods for
OSS,” 21st Int. Conference on Software Engg. and Knowledge
Engg. (SEKE), Boston, USA, July 1-3, 2009, pp 129-134.

[12] S. N. Ahsan, J. Ferzund, and F. Wotawa, “A Database for
the Analysis of Program Change Patterns,” In proceeding of
the 4th International conference on Networked Computing and
Advanced Information Management, 2008.

[13] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying Software
Changes: Clean or Buggy?,” IEEE Transactions on Software
Engineering, March/April, 2008, pp. 181-196.

[14] T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller, “Mining
Version Histories to Guide Software Changes,” In Proceedings
of the 26th International Conference on Software Engineering,
May 23-28, 2004, pp 563-572.

351Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 369 / 729

Supporting Time Planning Aligned with CMMI-DEV and PMBOK

Rafael Q. Gonçalves, André M. Pereira, Christiane Gresse von Wangenheim
Department of Informatics and Statistics

Universidade Federal de Santa Catarina (UFSC)
Florianópolis – SC – Brazil

rafael.q.g@hotmail.com, andremarquespereira@gmail.com, gresse@inf.ufsc.br

Abstract— Software projects often fail, because they are not
adequately managed. The establishment of effective and
efficient project management practices especially with respect
to time management still remains a key challenge to software
organizations. Striving to address these needs, “best practice”
models, such as, the Capability Maturity Model Integration
(CMMI) or the Project Management Body of Knowledge
(PMBOK), are being developed to assist organizations in
improving project management. Yet, so far there does not exist
a unified model focusing on the context of small and medium
enterprises (SMEs). Therefore, this paper presents a generic
model for time planning aligned with CMMI and PMBOK. In
order to facilitate its application in practice an open-source
tool (dotProject) has been enhanced and evaluated by project
management specialists. The results of this research are
expected to facilitate the adoption of time planning practices in
SME contributing positively to their competitiveness.

Keywords- time planning; PMBOK; CMMI; dotProject.

I. INTRODUCTION
Many software development projects still have problems

to be delivered on time, within budget and with the complete
scope defined [1]. In this context, one of the most important
processes in the project management life cycle is time
planning [2]. The aim of time planning processes is to
deliver the project on time [2].

One of the reasons for these problems is a lack of project
management, which indicates that establishing effective and
efficient project management practices is still a challenge for
many organizations [3].

As an attempt to improve this situation, "best practices"
models have been developed to guide organizations
interested in improving the project management process.
This includes the CMMI-DEV (Capability Maturity Model
Integration for Development) that guides the improvement
and appraisal of a software organization’s processes [4]. This
model, although comprehensive, covers also "best practice"
for project management. Another more specific “best
practice” model for project management is the PMBOK
(Guide to the Project Management Body of Knowledge) [2],
which describes the life cycle of managing a project and the
respective knowledge areas. Such maturity models, e.g., the
CMMI, also indicate the importance of improving the project
management process, as it is typically one of the first
processes indicated to be improved associated to maturity
level 2.

However, a large part of the IT market is composed of
SMEs [5]. Many of these organizations typically struggle to
implement these models [6]. Thus, in order to facilitate the

adoption of best practices for time planning in SMEs, this
work presents a generic model for a time planning process
aligned with PMBOK and CMMI and customized to the
characteristics of SMEs. In order to support the application
of the model in practice we also enhanced one of the most
popular open-source tools – dotProject – in conformance
with the proposed model. The use of tools is important for
SMEs as it can support and partially automate steps,
increasing efficiency and improving the maturity of the
process [7].

We first present the background to our research in
Section 2. Analyzing and comparing both models, we map
the respective best practices developing a unified model with
respect to time planning as presented in Section 3. Section 4
describes the proposed generic model for time planning,
demonstrating how processes/practices recommended by
reference models could be applied to SME context. The tool
enhancement and evaluation is presented in Section 5.
Finalizing the paper, we discuss the results.

II. BACKGROUND
This section presents the key concepts with respect to

project management and especially time planning and
introduces PMBOK and CMMI.

Project management is the application of knowledge,
skills, tools and techniques to project activities to meet their
requirements [2]. A project is a temporary endeavor
undertaken to create a unique product, service, or result. To
achieve the goals defined in the project, knowledge,
techniques and tools are applied that constitute project
management. The project management life cycle is
composed of five process groups [2] (Figure 1):
 Initiation: performed to initiate a new project or phase

and obtain the authorization for its realization.
 Planning: performed to establish the project goals and

scope and to define the actions necessary to ensure that
the project meets its objectives.

 Execution: processes related to the execution of the
project during which the work is carried out to complete
the activities defined in the project plan.

 Monitoring and controlling: performed to monitor,
review and adjust the project performance and progress,
realizing corrective actions.

 Closing: performed to finalize all project activities in a
formal way.

352Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 370 / 729

Figure 1 - Project management life cycle [2]

Orthogonal to this, project management processes are
divided into 9 knowledge areas [2]: Integration, Scope,
Time, Cost, Quality, Human Resource, Communication,
Risk, and Procurement.

According to PMBOK, time planning requires processes
to:
 Define Activities: a process to define the actions to be

executed in order to produce project deliverables.
 Sequence activities: a process to define the logical

dependencies between project activities, and also to
define its execution order.

 Estimate activities resources: plan human and non human
resources needed to execute project activities.

 Estimated activities duration: estimated the total time
period needed to conclude the project activities. To do so
it is necessary to know the activities scope, the resources
available and others restrictions.

 Develop schedule: this process defines that each project
activity has its own start and end dates, effort, duration,
and resources estimated, as well the activity
dependencies. Often it is represented as a Gantt chart.

A. CMMI
The Capability Maturity Model Integration (CMMI)

provides a framework for improvement development
process for software products and services. It describes the
best practices associated to activities covering the life cycle
of products from conception to delivery and maintenance
[4]. Currently, there exist 3 different constellations: CMMI
for Development (CMMI-DEV), CMMI for Acquisition
(CMMI-ACQ) and CMMI for Services (CMMI-SVC).
Here, due to our scope on software development, we focus
on the CMMI-DEV constellation [4]. Its purpose is to help
organizations improve their development and maintenance
processes for both products and services. Within the CMMI
Product Suite, a project is defined as a managed set of
interrelated resources which delivers one or more products
to a customer or end user. A project has a definite beginning
and typically operates according to a plan. Such a plan is
documented and specifies what is to be delivered or
implemented, the sources and funds to be used, the work to
be done, and a schedule for doing the work.

CMMI constellations are basically composed through
two dimensions: process areas and capability/maturity
levels. CMMI-DEV v1.3 defines 22 process areas grouped
in four process categories. In this research, we focus mainly
on project planning (PP) process area associated to maturity
level 2, due to our specific focus on time planning practices

that are supported by this process area. Specific practices
related to time planning are:
 PP/SP 1.1 Estimate the Scope of the Project: practice

related to project activates definition, derived from
project Work Breakdown Structure (WBS).

 PP/SP 1.2 Establish Estimates of Work Product and
Task Attributes: Accomplish estimations for work
products size and task attributes, as estimated duration,
start and end dates.

 PP/SP 2.1 Establish the Budget and Schedule: The
budget is out of the scope of time planning, but the
schedule is included, involving activities duration
estimation and sequencing activities.

 PP/SP 2.4 Plan for Project Resources: Estimate for each
project activity the human and non human resources and
its quantities for accomplishing the activity.

 PP/SP 1.4 Determine Estimates of Effort and Cost: The
cost estimation is out of scope of time planning, but the
effort estimation is included. Estimation effort means the
number of work periods that are needed to realize an
activity.

III. PMBOK AND CMMI PRACTICES UNIFICATION
As a first step into the direction of a harmonized support

aligned with both models, we analyzed and compared the
best practices as required by both models for time planning
and mapped them (TABLE I – column 3 and 4). The work is
based on earlier research of the authors on unifying and
harmonizing CMMI-DEV v1.2 (PP, PMC, SAM) and
PMBOK processes [10], which has been revised and
updated with respect to the new current version of CMMI-
DEV v1.3.
Based on this we defined a set of Unified Best Practices
(UBPs) covering completely both models (TABLE I – column
1 and 2).

TABLE I - UNIFIED BEST PRACTICES FOR TIME PLANNING

UBP Description CMMI-DEV
v1.3:2010

PMBOK
4ed:2008

P1 Define
Activities

PP/SP 1.1 Estimate the
Scope of the Project

6.1 Define
Activities

P2 Establish
Estimates of
Work Product
and Activity
Attributes

PP/SP 1.2 Establish
Estimates of Work
Product and Task

-

P3 Sequence
Activities

PP/SP 2.1 Establish
the Budget and
Schedule

6.2 Sequence
Activities

P4 Plan for Project
Resources

PP/SP 2.4 Plan for
Project Resources

6.3 Estimate
Activity
Resources

P5 Estimate
Activity
Durations

PP/SP 2.1 Establish
the Budget and
Schedule

6.4 Estimate
Activity
Durations

353Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 371 / 729

P6 Estimate Effort PP/SP 1.4 Determine
Estimates of Effort
and Cost

P7 Develop
Schedule

PP/SP 2.1 Establish
the Budget and
Schedule

6.5 Develop
Schedule

IV. GENERIC PROCESS MODEL
In accordance to the defined unification of both models

and taking into consideration characteristics and needs of
SMEs, we propose a generic process model for time
planning. The proposed model (Figure 11) is defined using
the formal notation SPEM which is maintained by OMG
[8].

The model is composed of artifacts, processes, and tools
(techniques and methods). The sequence of the processes is
defined as shown in Figure 11. For each process inputs and
outputs artifacts are defined. Each process is detailed in next
sections.

A. Define activities
This process goal is to identify and document the work

that has to be done to build the project deliveries. Project
activities are identified based on the defined work packages
in the WBS (Work Breakdown Structure). For each of the
work packages one or more activities are identified –
representing the work that has to be done to create the
respective results. A technique to execute this process is
named decomposition [2]. If existent, an organizational
process model can also used as a basis.

B. Sequence activities
Sequence activities is the process related to identifying

and documenting the logical relationships between project
activities.

A technique used to define activities’ dependencies is
PDM (Precedence Diagram Method) [2]. It is based on a
network diagram to represent all project activities and its
dependencies (Figure 2).

Figure 2 - Precedence diagram method

C. Establish Estimates of Work Product and Activity
Attributes
This process aims at the estimation of the size and

complexity of work packages. It is also related to the
estimation of activity attributes as start and end dates, effort
and duration.

The work package size is used to estimate the software
dimension in a quantitative way. Size and complexity can be
estimated using several units, for instance, size could be

estimated using lines of code, function points or use case
points [2]. It is considered an initial parameter, to perform
other estimations as effort and cost.

D. Plan for Project Resources
This process aims at the estimation of the resources

(people, equipments, etc.) and its quantities that will be
needed to execute the project activities. Resources are
typically estimated based on specialized opinion based on
the roles defined in the organizational chart.

E. Effort estimation
The effort is the amount of work needed to execute an

activity. Effort is typically estimated in terms of person-
hours, person-months etc. Well accepted techniques for the
estimation process include either the usage of historical data
(often not available in organizations with an immature
process such as many SMEs) or consensus-based techniques
including wideband delphi [11] or planning poker [12].

F. Estimate activities duration
This process aims at estimating the duration of the

activities. Typically the duration is estimated in periods of
work (e.g.: hours or days) that are needed to conclude it.
Several techniques typically adopted include:
 Expert opinion: Specialists provides their estimations for

the duration of activities based on previous experiences.
 Analogue estimation: The duration of a similar activity,

which was executed in a previous project to estimate the
duration of this new activity, is used.

 Parametric estimation: The estimation is realized in a
quantitative way. Making arithmetic calculus based on
the amount of work and team productivity.

G. Schedule development
The schedule development is the process that determines

the planned dates for start and ending each project activity.
To develop the schedule in an optimized way, techniques
typically adopted include:
 Schedule network analysis: It indicates the project

duration. By applying this technique it is possible to
know the project end date on worse and better cases.

 Critical path method (CPM): It identifies all activities
which can’t suffer any delay. A sequence of activities
which can’t suffer delay are called critical path. When
some critical path activity suffers delay, the entire
project will be delayed.
The main output for this process is the project schedule.

The schedule typically is as a Gantt chart (Figure 3).

354Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 372 / 729

Figure 3 - Project schedule

V. TOOL SUPPORT
To facilitate the application of the proposed generic

model in practice, tool support has been developed. Due to
financial restrictions in the context of SMEs, we opted for
enhancing one of the most popular free open-source tools -
dotProject. One of the main reasons for choosing this tool, it
is that new features can be built and installed as add-on
modules using the tool's development framework. This
possibility to adapt the tool usually is not available in
commercial tools, e.g., ms project (microsoft.com/project)
or primavera (oracle.com/primavera).

A. DotProject
DotProject [13] is a web-based tool for project

management. It supports user management, projects listing,
hierarchical task definition and schedule visualization
(Gantt), client management, besides offering features such
as contact list, file repository and calendar (Figure 4). The
software supports MySQL or ADOdb databases and has
been developed using PHP. Released in 2000, its current
version is 2.1.6. It is an open-source system, published
under General Public License (GPL), which means it can be
customized and redistributed once the GPL is maintained.

Figure 4 – dotProject

The current core version of dotProject does already
partially support the time planning process. In a first step we
analyzed the degree of support provided in conformance
with the set of unified best practices (including PMBOK
and CMMI). To assess the degree of support provided by
dotProject in relation to each time planning UBP (TABLE I)
we defined a 4-point ordinal rating scale as presented in
TABLE II.

TABLE II - RATING SCALE [3]

Rating Description

- Does not provide any support.

* Offers basic support, covering less than half of the UBP.

** Covers more than half of the UBP.

*** Offers a complete set of elaborate functionalities for this
UBP.

As a result, we identified that basically all required best
practices are supported at least in a very simple way
(TABLE III), yet with exception to the process “Develop
Schedule” all processes need to be enhanced to provide full
support.

TABLE III - DOTPROJECT TIME PLANNING SUPPORT [14]

UBP [3] Description dotProject version
2.1.6

P1 Define Activities **

P2 Establish Estimates of Work
Product and Task Attributes

*

P3 Sequence Activities **

P4 Plan for Project Resources **

P5 Estimate Activity Durations **

P6 Estimate Effort *

P7 Develop Schedule ***

VI. ENHANCEMENTS TO DOTPROJECT IN ORDER TO
SUPPORT THE GENERIC MODEL

Based on the identified shortcomings as presented in
TABLE III, we enhanced dotProject in alignment with
PMBOK and CMMI [14]. This section presents the step by
step modifications made.

Besides evolving functionality directly related to time
planning processes, we also identified the need to develop
features related to other processes, but required as inputs to
the time planning processes, such as defining a WBS, so far
not supported by dotProject core modules.

A. Defining Work Breakdown Structure (WBS)
In order to allow the systematic registration of the

project scope in form of a WBS, we developed a new
functionality, which supports the representation of project’s

355Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 373 / 729

WBS (Figure 5). The created WBS is used as input to the
process Define Activities.

Figure 5 - Defining WBS

B. Defining activities based on work packages
Following PMBOK, activities are defined by

decomposing work packages into activities. To support this
process, we developed a functionality that visualizes the
defined WBS and supports the addition of activities for each
of the defined work packages (Figure 6).

Figure 6 - Defining project activities by work package

C. Sequence activities
The core implementation of dotProject allows the

identification of relationships between activities, but not
clearly.

Yet, in order to provide a better support we developed a
feature that supports the definition of the dependencies
between activities using the Precedence Diagram Method
(PDM) in a graphical way visualizing project activities
linked as a network.

Figure 7 - Sequence activities

D. Creating a meeting minute for estimation sessions
In accordance with the proposed process, estimations are

made based on consensus, e.g., in planning poker sessions.
In this context, tools support is basically required in terms
of documenting how the estimates have been determined.
Therefore, a new feature has been added to the tool, which
supports the registering of a meeting minute for estimation
sessions. As part of this meeting minute it is possible to
document what has been estimated, when the session has
taken place, who participated, as well as details with respect
to the estimates (Figure 8).

Figure 8 - Estimation minute form

The determined estimates (size/complexity) can be
registered with respect to the specific work package. For
each activity effort and/or duration estimates can be
registered (Figure 9).

356Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 374 / 729

Figure 9 - Activities estimations details

For each activity, the tool also supports the estimation of
the required resources by selecting required roles from the
organizational chart.

E. Schedule development
To support schedule development a new functionality

has been developed based on the Critical Path Method
(CPM). It can be executed after all activities have been
sequenced and their efforts have been estimated. This
method calculates the start and end dates for activities based
on project start date, sequence of activities, and estimated
efforts. As a result, the tool also automatically creates a
Gantt chart with this information in order to visualize the
schedule (Figure 10).

Figure 10 - Gantt chart

In this respect several enhancements have been
developed in order to facilitate the application of the generic
time planning process in practice, partially even automating
steps as far as possible.

VII. EVALUATION
As part of our research we also evaluated the proposed

generic model and the developed tool enhancements. Our
evaluation goals are:

 Goal 1: Evaluate, if the enhancement of dotProject is
helpful to support time planning in software projects in
SMEs.

 Goal 2: Analyze if the generic process model is
complete, consistent, and adequate for SMEs.

 Goal 3: Identify the strong points and the
improvements points of proposed solution.

 Goal 4. Compare the degree of alignment of the
enhancements of dotProject with dotProject v2.1.6.

With respect to the identified evaluation goals, we
performed two types of studies. With respect to goals 1-3
we performed an expert panel and with respect to goal 4 we
repeated the heuristic evaluation done in the beginning.

A. Expert panel
Adopting the GQM method [5], we decomposed these

goals into questions and metrics. The required data has been
collected through an expert panel capturing the opinion of
software project management experts. Therefore, a
questionnaire has been designed, transforming the metrics
into affirmations and using a 5-point scale (1 – strongly
disagree to 5 – strongly agree) (TABLE V).

TABLE IV – QUESTIONNAIRE ITEMS

Goals Questions
Goal 1 1.1 I consider the evolution of dotProject useful for activity

definition.
1.2 I consider the evolution of dotProject useful for activity
sequencing.
1.3 I consider the evolution of dotProject useful for the
documentation of size/effort/duration estimations.

1.4 I consider the evolution of dotProject useful for the
documentation of resources estimation documentation.
1.5 I consider the evolution of dotProject useful for
schedule development.

1.6 The enhanced version of dotProject completely
supports time planning.
1.7 The enhancement of dotProject is consistent.
1.8 The evolution of dotProject is adequate to support time
planning on SME.

Goal 2 2.1 I consider the generic process model for time planning
adequate for SMEs.
2.2 I consider the generic process model for time planning
consistent.
2.3 The generic process model for time planning covers
time planning completely to realize time planning.

Goal 3 3.1 What are the main strengths you observed?
3.2 What are the main improvements suggestions?
3.3 Do you have any other comment?

The evaluation was realized by project management
specialists in SME context. The participants were chosen
based on their availability to participate in a short period of
time.

The specialists invited to join the experiment, did so in a
voluntary capacity.

Beside the questionnaire the experts received an
evaluation guide that explains the generic process model
(Figure 11), and also demonstrates the enhanced tool

357Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 375 / 729

functionality (Section V). The experts have been asked to
follow the process model using dotProject on a time
planning example and afterwards to respond the
questionnaire.

B. Results
The evaluation was realized during the months of May

and June 2012. We invited 34 experts, selection based on
their software project management expertise and their short
term availability. In total, we received 10 responses,
representing a response rate of 29%. The invitation was sent
by e-mail, containing the evaluation guide and the link to
the online questionnaire.

Analyzing the experts’ responses, TABLE V shows the
median for each of the items.

TABLE V – MEDIANS PER ITEM/GOAL

Questionnaire item Median
Goal 1

1.1 I consider the evolution of dotProject useful for activity
definition.

5

1.2 I consider the evolution of dotProject useful for activity
sequencing.

5

1.3 I consider the evolution of dotProject useful for the
documentation of size/effort/duration estimations.

4

1.4 I consider the evolution of dotProject useful for the
documentation of resources estimation documentation.

4

1.5 I consider the evolution of dotProject useful for schedule
development.

5

1.6 The enhanced version of dotProject completely supports
time planning.

4

1.7 The enhancement of dotProject is consistent. 5
1.8 The evolution of dotProject is adequate to support time
planning on SME.

4

Goal 2
2.1 I consider the generic process model for time planning
adequate for SMEs.

4

2.2 I consider the generic process model for time planning
consistent.

4

2.3 The generic process model for time planning covers time
planning completely to realize time planning.

4

B. Heuristic evaluation
As in the beginning of the enhancement of dotProject,

we repeated the same heuristic evaluation with respect to the
defined UBPs. The results are presented in TABLE VI.

TABLE VI - EVALUATION OF ENHANCEMENTS ON DOTPROJECT
[14]

UBP
[3]

Description dotProject
version 2.1.6

Enhanced
version

dotProject

P1 Define Activities ** ***

P2 Establish Estimates of
Work Product and
Task Attributes

* ***

P3 Sequence Activities ** ***

P4 Plan for Project ** ***

Resources

P5 Estimate Activity
Durations

** ***

P6 Estimate Effort * ***

P7 Develop Schedule *** ***

Among the project management open-source tools,
dotProject is considered the one that most provides support
to the best practice models [3]. The enhancements made in
this work, added several important features, such as,
definition of WBS, and activities creation based on
decomposition technique [2], clearly distinguishing the
concepts of project work package and project activity. The
sequence of the activities using the PDM [2], and also the
estimations registration are important improvements to
support the development of project schedule, which is the
main output of time planning process.

C. Discussion
Analyzing the presented results, we can identify a very

positive feedback in general.
In relation to Goal 1, we observed a strong tendency for

total agreement of the experts regarding the questions
whether the tool enhancement is helpful – all medians are
between 4 and 5.

With respect to Goal 2, the experts also agreed that the
proposed generic process model is complete, consistent, and
adequate for SME. Experts agreed on all items with a
median of 4. Yet, as no strong agreement has been obtained
on average we can also identify that some further small
improvements could be carried out.

With respect to Goal 3 the experts highlighted as
strengths principally the harmonization between CMMI and
PMBOK aligned to one single process model for time
planning. One expert also stressed very positively the
enhancement of an open-source tool to support the model.
Several experts highlighted that the explicit separation,
between work packages and project activities is a very
useful feature, as most project management tools don’t
separate these concepts clearly.

In respected with Goal 4, we identified that the
enhancement in fact has been done in correspondence with
the PMBOK and CMMI and that with the enhancement
made a full support in conformance with these models is
provided.

D. Threats to validity
The evaluation we performed of course represents only a

starting point. There can be identified several threats to
validity of the results due to limitations of the evaluation for
practical reasons. One threat is the small number of software
project managers involved. As this number does not by any
means provide statistical representativeness. At this point of
time, we also involved only experts from Brazil. This of
course limits strongly the generalization of the obtained
results.

358Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 376 / 729

Another threat to validity can be the definition of metrics
and data collection instruments. Yet, adopting GQM to
systematically derive the metrics and questionnaire issues,
such a threat may be small.

Another issue to be considered is the fact that dotProject
in itself presents several usability problems and is therefore
not very intuitive to be used.

Thus, evaluators may have found difficulties in the
executing of the exemplar time planning tasks not related to
the feature itself but due to general usability problems.

VIII. CONCLUSION AND FUTURE WORK
This work intends to facilitate the adoption of systematic

time planning in SMEs in conformance with the PMBOK
and CMMI. Therefore, we unify best practices from both
models, propose a generic process model for time planning
customized to the context of SMEs and enhance a free open-
source tool to support the process in practice.

A first evaluation provided a very positive feedback,
stressing principally the tool enhancement as one of the
strengths of the work.

Based on the obtained feedback, we are currently
improving the process model and the dotProject evolution.

The evaluation we have performed focused on the
application of generic process model in SMEs, and it was
evaluated by project manager experts in SMEs context.
There is a possibility that this model also could be applied in
large organizations, but for that a new evaluation focused in
this context should be applied.

As future work, we are amplifying the scope of our work
aiming at the coverage of the complete project management
life cycle, including e.g., monitoring & control, as well as all
relevant knowledge areas (scope, cost, risks, etc.).

ACKNOWLEDGMENT
This work was supported by the CNPq (Conselho

Nacional de Desenvolvimento Científico e Tecnológico –
www.cnpq.br), an entity of the Brazilian government
focused on scientific and technological development.

REFERENCES
[1] The Standish Group International, “Chaos Summary for

2010”. Boston, MA, USA, 2010.

<http://insyght.com.au/special/2010CHAOSSummary.pdf>
18.09.2012

[2] PMI – Project Management Institute, “A Guide to the Project
Management Body of Knowledge”. 4th edition, Project
Management Institute (PMI), Newtown Square, Pennsylvania,
USA, 2008.

[3] C. Wangenheim, J. Hauck, and A. Wangenheim, “Enhancing
Open Source Software in Alignment with CMMI-DEV”,
IEEE Software, vol. 26, no. 2, 2009, pp.59-67.

[4] SEI – Software Engeenering Institute, “CMMI for
Development (CMMI-DEV), Version 1.3”, Technical Report,
CMU/SEI-2010-TR-033, 2010.

[5] ABES - Associação Brasileira das Empresas de Software,
“Brazilian Software Market”. São Paulo, 2011.
<http://www.abes.org.br/UserFiles/Image/PDFs/Mercado_BR
2011.pdf > 18.09.2012.

[6] SEI - SOFTWARE ENGINEERING INSTITUTE, “Process
Maturity Profile CMMI/SCAMPI Class A Appraisal Results
2011 Mid-Year Update”. Pittsburgh: Carnegie Mellon®
University, 2011.
<http://www.sei.cmu.edu/cmmi/casestudies/profiles/pdfs/uplo
ad/2011SeptCMMI-2.pdf > 18.09.2012.

[7] H. Young, T. Fang, and C. Hu. “A Successful Practice of Applying
Software Tools to CMMI Process Improvement”. Journal of Software
Engineering Studies, vol. 1, no. 2, 2006, pp.78-95.

[8] OMG – Object Management Group, “Software & Systems
Process Engineering Meta-Model Specification - 2ed
version”, 2008. <http://www.omg.org/spec/SPEM/2.0/PDF>
18.09.2012 .

[9] V. Basili, G. Caldiera, and D. Rombach, “The experience
factory”. Encyclopedia of Software Engineering, 1994, pp.
469-476.

[10] C. Wangenheim, D. Silva, L. Buglione, R. Scheidt, and R.
Prikladnicki, “Best practice fusion of CMMI-DEV v1.2 (PP,
PMC, SAM) and PMBOK 2008”. Journal on Information and
Software Technology, vol. 52, no. 7, 2010, pp.749-757.

[11] B. Boehm, Software Engineering Economics, Prentice Hall
PTR Upper Saddle River, NJ, USA, 1981.

[12] M. Cohn, Agile Estimating and Planning, Prentice Hall, USA,
2005.

[13] DotProject, “Project Management Software”. <
www.dotproject.net > 26.10.2012

[14] R. Gonçalves, A. Pereira, C. Wangenheim, and J. Hauck,
“Supporting time planning by enhancing an Open Source
Software in Alignment with CMMI-DEV and PMBOK”.
International. International Free Software Workshop. Porto
Alegre, Brazil, 2012.
<http://people.softwarelivre.org/wsl/2012/18.pdf> 18.09.2012

359Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 377 / 729

Figure 11 - Generic model for time planning aligned with CMMI-DEV and PMBOK for SME

360Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 378 / 729

Specification of UML Classes by Object Oriented Petri Nets

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic

{koci,janousek}@fit.vutbr.cz

Abstract—The UML class diagram defines a basic architec-
tonic model of the system. Its behavior is then usually described
by other UML diagrams, such as activity diagrams, sequence
diagrams, etc. These models serve for the design purposes
and are automatically or manually transformed in the next
development stages, typically to the models with formal basis
or to implementation (production) environment. There is no
backward step allowing to investigate the system structure and
its behavior with the designed models. On the other hand, there
are approaches to system design combining design, testing,
and implementing stages into one development technique. One
of them uses Object Oriented Petri Nets (OOPN) as basic
modeling formalism. Nevertheless, OOPN lacks for advisable
architectonic view of modeled systems as it is offered by UML
class diagram. The paper is aimed at using UML class diagrams
for system architecture description and the OOPN formalism
for description of classes behavior. Since UML classes and
OOPN classes partially differs, we define formal transformation
between UML classes and OOPN classes.

Keywords-Class diagram; Object-Oriented Petri Nets; UML;
transformation.

I. INTRODUCTION

Design methodologies use models for system specifica-

tion, i.e., for defining the structure and behavior of developed

system. The most popular modeling language in software

engineering is UML [1]. It serves as a standard for analytics,

designers and programmers. But, own phraseology of UML

does not have enough power allowing to realize some

fundamental relationships and, in particular, rules, that are

branch of every modeled system. To model dynamic aspects

of the system, the designer usually describes them by static

diagrams in a design phase and he cannot make certain of his

partial ideas about the system behavior. Although the UML

language can be completed by extensions, e.g., OCL (Object

Constraint Language), making the system description more

precise, it makes the checking of models correctness or

validity by means of simulation complicated.

Therefore, new methodologies and approaches are in-

vestigated and developed for many years. They are com-

monly known as Model-Driven Software Development or

Model-Based Design (MBD) [2], [3], [4]. An important

feature of these methods is the fact that they use exe-

cutable models, e.g., Model Driven Architecture (MDA)

[5] and Executable UML [6], allowing to simulate models,

i.e., to provide simulation testing. The created models can

be (semi)automatically transformed to implementation lan-

guage (the code generation). Nevertheless, the result has to

be finalized manually, so it entails a possibility of semantic

mistakes or imprecision between models and transformed

code.

There are other similar methods that use the pure formal

models (e.g., Petri Nets, calculus, etc.) allowing to use

formal or simulation approaches to complete the design,

testing, and implementation activities. In comparison with

semi-formal models, formal models bring clear and under-

standable modeling and the possibility to test correctness

with no need for model transformations. The design method,

which is taken into account in this paper [7], [8], derives

benefit from formalisms of Object Oriented Petri Nets

(OOPN) [9], [10]. The paper is aimed at the class description

using Object Oriented Petri Nets (OOPN). Since the UML

classes and OOPN classes partially differ, we define formal

transformation between UML classes and OOPN classes and

formal constraints the classes and objects have to satisfy. The

goal is to keep an eye to the system at the architectonic view

with UML and at the behavioral view with the formalism of

OOPN.

The paper is organized as follows. First, we briefly

introduce used design methodology in Section III. Then

the formalisms will be described in Section IV. Section V

introduces relationships between UML classes and OOPN

classes and a mechanism of class transformations. The

proposed mechanism will be demonstrated with the example

in Section VI.

II. RELATED WORK

The are works that are similar to the proposed one. First,

the formalism of nets-within-nets (NwN) was introduced by

Valk [11] and Moldt [12], [13]. The formalism of NwN is

similar to OOPN, but OOPN fully support an integration

of formal description of objects and objects from target

environment, which facilitates, e.g., reality-in-the-loop sim-

ulation or usage of formal models into target application.

Second, there are tools merging UML and Petri nets, for

instance ArgoUML [14]. The difference is similar to the

previous situation—these tools allow to model systems using

361Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 379 / 729

combination of different formalisms, but do not allow to use

formal models in system implementation.

III. DESIGN METHODOLOGY

The design methodology [15] stems from the classic

approach of class identification and definition and extends

it to the new features. Primarily, there have to be found

essential objects of a modeled system and their relationships.

There we can successfully employ resources of UML such

us Use Case, Activity, and Class diagrams. Thus, the design

process comprises, among others, the identification of use

cases of the system and the specification of classes and

their behavior. To specify the behavior, the methodology

distinguishes roles and activity nets as a special kinds of

classes. These mentioned nets represent appropriate roles

and use cases in the system and are layered hierarchically.

Each role encapsulate activity nets and, moreover, each role

can encapsulate another role. It allows to get a new view to

the role based on the existing one.

Each role has its own set of allowed activities (activity

nets) described by OOPN. If anybody wants to perform the

activity, it has to ask the role for creating an instance of the

activity and then it can use this activity as a use case of the

system. The execution of nets are synchronized by means of

synchronous ports. The nested nets define synchronous port

for synchronization of executions and the net at higher layer

is controlled by calling these ports. This principle will be

demonstrated at the appropriate places in following parts.

IV. FORMALISMS

We will present a short introduction to formalisms and

models used in this section.

A. Structural and Behavioral Views with UML

The UML modeling [1] uses a notion of view. A view

of a system is a projection of the system on one of its

relevant aspects. Such a projection focuses on certain aspects

and ignores others. For our purposes, we mention only

two views. The structural view describes layout between

objects and classes, their associations and their possible

communication channels. As an example, we can mention

Class diagram. The behavioral view describes, how the

system components interact, and characterizes the response

to external system operations. For our purposes, we will not

use UML diagrams, but OOPN for behavioral view.

B. Formalism of OOPN

An Object Oriented Petri net (OOPN) is a set of classes

specified by high-level Petri nets. Formally, OOPN com-

prises constants CONST , variables V AR, net elements

(such as places P and transitions T), class elements (such

as object nets ONET , method nets MNET , synchronous

ports SY NC, negative predicates NPRED and message

selectors MSG), classes CLASS, object identifiers OID,

and method net instance identifiers MID. We denote

NET = ONET ∪MNET and ID = OID ∪MID.

A class is mainly specified by an object net (an element of

ONET), a set of synchronous ports and negative predicates

(a subset of SY NC and NPRED), a set of method nets (a

subset of MNET), and a set of message selectors (a subset

of MSG) corresponding to its method nets, synchronous

ports, and negative predicates. Object nets describe possible

autonomous activities of objects, while method nets describe

reactions of objects to messages sent to them from the

outside.

An example illustrating the important elements of the

OOPN formalism is shown in Figure 1. There are depicted

two classes C0 and C1. The object net of the class C0

consists of places p1 and p2 and one transition t1. The

object net of the class C1 is empty. The class C0 has a

method init:, a synchronous port get:, and a negative

predicate empty. The class C1 has a method doFor:.

Synchronous ports are special (virtual) transitions, which

cannot fire alone but only dynamically fused to some other

transitions, which activate them from their guards via mes-

sage sending. Every synchronous port embodies a set of

conditions, preconditions, and postconditions over places of

the appropriate object net, and further a guard, and a set of

parameters. Parameters of an activated port s can be bound

to constants or unified with variables defined on the level of

the transition or port that activated the port s. An example

is shown in Figure 1, the port named get: having one

parameter o. This port is called from the transition t2 (class

C1) with unbound variable n—it means that the variable n

will be unified with the content of the place p2 (class C0).

Negative predicates are special variants of synchronous

ports. Its semantics is inverted—the calling transition is

fireable if the negative predicate is not fireable. The passed

variable cannot be unbound (the unification is impossible)

and the predicate cannot have a side effect. An example

is shown in Figure 1, the predicate named empty. This

predicate is called from the transition t3 (class C1)—it

means that the transition t3 will be fireable if the place

p2 (class C0) will be empty.

o

o := Rand next

t1

p2

p1

#e

C0 is_a PN

init: x
x

x

t1

x

return

x‘#e

o

get: o

o

C1 is_a PN

doFor: x

return

x

c := C0 new.

c init: x.

x t1

t2

c

c get: n

s := s + n
c empty

t3

c

s

c

ss
s

p1

p20

empty

Figure 1. An OOPN example.

362Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 380 / 729

V. RELATIONSHIP BETWEEN UML AND OOPN CLASSES

We will present a relationship between classes of UML

and OOPN and their reciprocal mapping.

A. Prerequisites

First, we define formal structures that will be used in next

definitions. In pure object systems, everything is understood

as an object, so that there is no requirement for defining

special kind of types. Nevertheless, for our purpose we de-

fine TY PE = CLASS ∪OCLASS ∪{ε}, where CLASS
is a set of domain (OOPN) classes, OCLASS is a set of

other types (e.g., classes from the production environment

or primitive types), and ε represents a special kind of type

meaning unspecified type. Let the symbol ⊳ determines a

relationship is of a type (is an instance of). For example,

o ⊳ A means that the object (value) referred by the variable

o is an instance of a class A (is of a type A).

The class can be defined as a tuple (n, VC , IC , BC), where
n is a class name, VC is a set of instance variables, IC is an

interface (a set of operations), and BC is a behavior, usually

defined as a set of methods. The OOPN class be alternatively

defined as a tuple (n, PON , IPN , BPN), where n is a class

name, PON is a set of places from the object net representing

instance variables, IPN ⊆ MSG is an interface, and BPN

is a behavior.

B. Interface

The interface of an OOPN class is defined as a subset of

message selectors IPN ⊆MSG, whereMSG =MSGM ∪
MSGS ∪MSGP . MSGM corresponds with method nets,

MSGS corresponds with synchronous ports, and MSGP

corresponds with negative predicates.

There are several ways how IC can be mapped to IPN .

Let fI be a non-specific mapping IC → MSGM . In this

case, each operation is mapped into a message selector

of a method net. This way is easy, but not sufficient for

design methods that use Petri Nets [15]. Therefore, the

operations from IC are classified into three groups: action

group IAct
C

⊆ IC performing some actions on the object;

test group IT
C

⊆ IC performing some tests on the object,

and access group IAcc
C

⊆ IC which sets or gets a value of an

instance variable. Analogically, let us define IAct
PN

, IAcc
PN

, and

IT
PN

for the OOPN class. Then, the second way of mapping

defines specific functions for appropriate group:

fAct

I : IAct

C → IAct

PN ,where I
Act

PN =MSGM ∪MSGS

fAcc

I : IAcc

C → IAcc

PN ,where I
Acc

PN =MSGM ∪MSGS

fT

I : ITC → ITPN ,where I
T

PN =MSGS ∪MSGP

The action and access groups are mapped into the same

subset of selectors of method nets and synchronous ports.

The synchronous ports can influence on the object net during

its firing (e.g., an object can be removed from or put into

places in an object net), so that the calling a synchronous

port from the interface has a direct effect in changing an

object net state. Consequently, it can cause an activity of

an object net. The negative predicate cannot have any side

effects from the definition, so it cannot be a part of action

and access groups. The testing group is mapped into a subset

of synchronous ports or negative predicates—it depends on

the positive or negative sense of the testing.

We can suppose, that the following statement holds for

the UML class: IAct
C

∩ IT
C
∩ IAcc

C
= ∅. It means, that each

operation is a member of only one group. For OOPN class,

we can say IAct
PN

∩(IAcc
PN

∪IT
PN

) = ∅. It means, that operations

from IAct
PN

cannot be members of other groups. Due to the

definition of synchronous ports, the same synchronous port

can serve for testing as well as for data accessing, so IAcc
PN

∩
IT
PN

not have to be ∅.

C. Instance variables and types

A mapping of instance variables is defined as an injection

fV : VC → PON , where PON is a set of places of the

object net. The consequence is that the variable is always a

multiset of values. If the only one value has to be assigned

to the place, as for an ordinary variable, it is possible to

define a constraint, see Section V-D. The place in OOPN

has assigned no type. But, for analysis and testing purpose,

it is possible to 1) assign a set of types the objects can be

of, 2) derive a set of types the objects are of from the model

analysis or simulation.

Let TP be a surjection TP : P → P(TY PE) assigning

a set of types to a given place. The type of the place can

be derived from the associations between classes, whereas

there is no necessary to define only one type (and, thus,

to allow all subtypes), but the set can be extended to next

types. Implicitly, each place has assigned a type ε.

D. Constraints

Although the OOPN classes bring more intuitive modeling

of behavior, they do not offer intrinsic definitions of invari-

ants, a state of the place, or type checking. Nevertheless,

there is very simple way how to define and test these

conditions by means of OOPN. The advantage of this

approach is that the designer has this feature under the

control. We will call these definitions as constraints. Each

such a constraint is defined formally and the definition is

followed by its implementation in OOPN showed in Figure

2.

The test of empty place is defined as ϕ(p) = ∄x ∈ p. It

is implemented by the negative predicate emptyPlace in

the OOPN formalism (see Figure 2). If there is no object in

the place, the condition is not satisfied and it implies, that

the negative predicate is evaluated as true.

The test of nonempty place is defined as ψ(p) = ∃x ∈ p. It

is implemented by the synchronous port nonEmptyPlace

in the OOPN formalism (see Figure 2). If there is at least

363Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 381 / 729

p

nonEmptyPlacexemptyPlace x

oneItemInPlace

x ~= y

x
y

twoOrMoreItemsInPlace

x ~= y

y

x

typeConsistency

self checkTypes: x

xcheckTypes: x

x isKindOf: A ||

x isKindOf: B || ...

Figure 2. Invariants and testing conditions.

one object in the place, the condition is satisfied and the

synchronous port is evaluated as true.

The test of at most one item (or the capacity of the place is

1) is defined as τ(p) = ∄x, y ∈ p : x 6= y. It is implemented

by the negative predicate oneItemInPlace in the OOPN

formalism (see Figure 2). If there is no object or only one

object in the place, the conditions are not satisfied and the

negative predicate is evaluated as true. In the other cases, it

is evaluated as false.

The test of two or more items is defined as ς(p) = ∃x, y ∈
p : x 6= y. It is implemented by the synchronous port

twoOrMoreItemsInPlace in the OOPN formalism (see

Figure 2). If there are at least two different objects in the

place p, the synchronous port is evaluated as true.

The test of type consistency is defined as θ(p,ET) =
ψ(p) ∧ ∃x ∈ p : ∄t ∈ ET ∧ x ⊳ t. It is implemented by the

synchronous port typeConsistency and the associated

negative predicate checkTypes: in the OOPN formalism

(see Figure 2). If there is an object x in the place p and there

is no type t from the expected types set ET , the conditions

of the negative predicate are not satisfied and it implies the

negative predicate is evaluated as true. Then the synchronous

port is evaluated as true for the object x—it means that this

object x does not satisfy the expected types of the place p.

E. Behavior

The behavior BPN is not simply a set of methods because

the synchronous ports from interface can influence on the

object net during its firing, as mentioned in Section V-B.

The object net n ∈ ONET is defined as a graph of

Petri nets. The concrete behavior is usually provided by

its part—a valid subnet of the Petri net graph. So we

can define S(ONET) as a set of all valid subnets of the

object nets. Then, the behavior BPN can be defined as

BPN ⊆MNET ∪ S(ONET).

VI. EXAMPLE

This section will present the relationship between UML

and OOPN classes. To demonstrate this relationship, a very

small part of the PNtalk system [16] was chosen. PNtalk is

the tool intended to model and to simulate systems using

OOPN. We depict a functionality of the method look-up.

A. UML Class Diagram

By following the design methodology [7], [15], we have to

identify roles and use cases and classify them into classes.

In the example, the only one role of object is identified

and its use case lookFor (it does not strictly correspond

with the real system, but for demonstration it is sufficient).

These elements are classified into two classes, the class

Object for the role and LookFor for the activity of

method searching (the use case).

Figure 3. The class diagram of the method look-up.

The Object has attributes of the object name, the

object’s superobject (in the terms of inheritance hierarchy),

and the list of object’s methods. It offers methods for

getting values of attributes (see the stereotype <<Acc>>

in Figure 3) and methods for testing the object’s state (see

the stereotype <<T>> in Figure 3).

The LookFor has an attribute of the role the activity

is intended for. It offers a method for the look-up (see the

stereotype <<Act>> in Figure 3), a method for testing the

result of searching (see the stereotype <<T>> in Figure 3),

and methods for getting values (see the stereotype <<Acc>>

in Figure 3).

B. The class Object

Let us analyze the class Object. It contains three

instance variables, so that there will be three places in

the OOPN class, according to the function fV (Object) =
{name → name, methods → methods, superObj →
superObject}.
We can identify the following operations from

the interface: IAct
C

(Object) = ∅, IAcc
C

(Object) =
{getName, getMethod, getSuperObj}, IT

C
(Object) =

{hasSuperObj, containsMethod}. The class Object

offers no operations in IAcc
C

, so that there is

nothing to transform. There are three operations in

IAcc
C

(Object), that are transformed into synchronous ports:

fAcc
I

(Object) = {getName → name:, getMethod →
method:named:, getSuperObj → superObject:}.
The test group IT

C
(Object) offers two operations,

that are transformed into synchronous ports and

negative predicates: fT
I
(Object) = {hasSuperObj →

{superObject:, notSuperObject}, containsMethod →

364Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 382 / 729

methods

notMethodNamed: n method: m named: n(n,m)

name

name: nn

(n,m)

superObject

notSuperObject superObject: ooo
nil o ~= nilo ~= nil

Figure 4. The OOPN class Object.

{method:named:, notMethodNamed:}}. The syn-

chronous ports allow to get a value of instance variables

(using the unification principle) and, at the same time, to test

if the variable contains a given value. So, the test operation

is transformed usually into a pair of a synchronous port (it

allows also for accessing, so that it is a part is the access

group) and a negative predicate.

Finally, the interface of the OOPN class Object is

defined as follows: IAct
PN

(Object) = ∅, IAcc
PN

(Object) =
{name:,method:named:, superObject:}, IT

PN
(Object) =

IAcc
PN

(Object) ∪ {notMethodNamed:, notSuperObject}.
The graphic notation is shown in Figure 4.

C. The class LookFor

Let us analyze the class LookFor. It contains one in-

stance variable, so that there will be one place in the OOPN

class, according to the function fV (LookFor) = {role →
role}.
We can identify the following operations from the in-

terface: IAct
C

(LookFor) = {lookFor}, IAcc
C

(LookFor) =
{getMethod, getRole}, IT

C
(LookFor) = {found}. There

self role: o.

o notMethodNamed: n.

o superObject: so.

an := Activity new for: so.

self role: o.

o notMethodNamed: n.

o notSuperObject: so.

self role: o.

o method: m named: n.

(an, n)

an lookFor: n.

(an, n)

an

an found: m. an failed.
mm

n
n n

m

lookFor: n n

role: r

r

failedfound: mm

p1
role

p3

p2

p4

p5

t2

t1

t3

t4 t5

t6

Figure 5. The OOPN class LookFor.

is one operation in IAct
C

(LookFor), which is trans-

formed into the synchronous port fAct
I

(LookFor) =
{lookFor → lookFor:}. There are two operations in

IAcc
C

(LookFor), that are transformed into the synchronous

ports fAcc
I

(LookFor) = {getRole→ role:, getMethod→
found:}. There is one operation in IT

C
(LookFor), which

is transformed into the synchronous port and the negative

predicate fT
I
(LookFor) = {found → {found:, failed}}

testing the positive or negative state of the search result.

Finally, the interface of the OOPN class LookFor

is defined as follows: IAct
PN

(LookFor) = {lookFor:},
IAcc
PN

(LookFor) = {role:, found:}, IT
PN

(LookFor) =
IAcc
PN

(LookFor) ∪ {failed}. The graphic notation is shown

in Figure 5.

D. Behavior

The behavior of the activity net LookFor can be divided

into three basic subnets (the subnet is described as a set of

vertexes, i.e., places and transitions): δ1 = {p1, t1, p2}, δ2 =
{p1, t2, p3, t3, p4, t4, p2, t5, p5}, and δ3 = {p1, t6, p5}. The
δ1 is a behavior for a situation if the method is found directly

in the object (see the transition t1). The δ3 is a behavior for a
situation if the method is not found directly in the object and

the object does not have an superobject (see the transition

t6). The δ2 is a behavior for a situation if the method is not

found directly in the object and the object has an superobject.

Then the new activity net is created for the superobject (see

the transition t2). Then the operation lookFor: is called (the

transition t3) and the result is tested (the transitions t4 and

t5). The places p2 and p5 store the state of the operation,

which can be tested by found: and failed. The synchronous
port found: serves even as an access operation for getting

the found method.

E. Constraints

Now, we demonstrate an usage of constraints in the class

definition. We chosen the place superObject from the class

Object. First, the place is initialized by a special value

nil representing an information that the object does not

have a superobject. If the object has an superobject, the

value nil is replaced. So there is one invariant: the place

superObject contains just one value. This constraint is

tested by ς(superObject). Second, the place can contain

only objects of a type Object. This constraint is tested by

θ(superObject, {Object}). Declaration of both constraints

in the OOPN class is shown in Figure 6a.

The constraints are realized by synchronous ports or

negative predicates. Their definition does not evocate any

activity or testing without its calling. Hence, it is possible

to define many constraints on the classes with no influence

on the system performance. In order to activate the tests,

they have to be called, as shown in Figure 6b. The tested

object is stored in the place p and the associated transitions

provide the appropriate tests. These transitions can be a part

365Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 383 / 729

superObject

nil

ς: twoItemsInPlace (Object): testTypeθ

p

o twoItemsInPlace

self warning: ’...’

o testType

self warning: ’...’

o o

a) constraints definition

b) constraints testing

Figure 6. The class Object: a) constraints definition and b) testing.

of any object nets (then the transition is fired immediately

the condition occurs) or any method net (then the tests are

provided on demand).

VII. CONCLUSION AND FUTURE WORK

The paper dealt with a formal approach to describe

system structure and behavior. Proposed approach extends

system modeling using formalism of Object Oriented Petri

Nets (OOPN) with selected UML diagrams. First, the

class diagram was taken into account. The approach stems

from UML classes for system structure specification, where

classes behavior is modeled by OOPN. Since the UML

classes and OOPN classes differ, the transformation tech-

nique has been introduced. The presented approach is a

part of the development methodology, which allows to use

formal models in all phases of system development. Formal

models should be used as basic design, analysis and also

programming means with a vision to allow for combining of

simulated and real components and to deploy models as the

target system with no code generation. Using UML classes

together with formalism of OOPN satisfies the development

methodology, because one-to-one assignability enables to

keep an eye to the system with UML and OOPN formalisms

and, together, to use OOPN models as a programming

means. In the future, we plan to complete transformation

mechanisms with class associations, extend modeling with

use case diagrams, and investigate simulation techniques for

an assistance in the system modeling.

Acknowledgment: This work has been supported by the

European Regional Development Fund in the IT4Innovations

Centre of Excellence project (CZ.1.05/1.1.00/02.0070), by

BUT FIT grant FIT-S-11-1, and by the Ministry of Educa-

tion, Youth and Sports under the contract MSM 0021630528.

REFERENCES

[1] J. Arlow and I. Neustadt, UML and the Unified Process:
Practical Object-Oriented Analysis and Design. Addison-
Wesley Professional, 2001.

[2] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development. Springer-Verlag, 2005.

[3] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi,
Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Wiley, 2004.

[4] M. Broy, J. Gruenbauer, D. Harel, and T. Hoare, Eds., Engi-
neering Theories of Software Intensive Systems: Proceedings
of the NATO Advanced Study Institute. Kluwer Academic
Publishers, 2005.

[5] D. S. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing, ser. 17 (MS-17). John Wiley & Sons,
2003.

[6] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie,
Model Driven Architecture with Executable UML. Cam-
bridge University Press, 2004.

[7] R. Kočı́ and V. Janoušek, “System Design with Object
Oriented Petri Nets Formalism,” in The Third International
Conference on Software Engineering Advances Proceedings
ICSEA 2008. IEEE Computer Society, 2008, pp. 421–426.

[8] R. Kočı́ and V. Janoušek, “OOPN and DEVS Formalisms
for System Specification and Analysis,” in The Fifth Interna-
tional Conference on Software Engineering Advances. IEEE
Computer Society, 2010, pp. 305–310.

[9] M. Češka, V. Janoušek, and T. Vojnar, PNtalk — a Com-
puterized Tool for Object Oriented Petri Nets Modelling, ser.
Lecture Notes in Computer Science. Springer Verlag, 1997,
vol. 1333, pp. 591–610.

[10] R. Kočı́ and V. Janoušek, Simulation Based Design of Control
Systems Using DEVS and Petri Nets, ser. Lecture Notes in
Computer Science. Springer Verlag, 2009, vol. 5717, pp.
849–856.

[11] R. Valk, “Petri Nets as Token Objects: An Introduction
to Elementary Object Nets.” in Jorg Desel, Manuel Silva
(eds.): Application and Theory of Petri Nets; Lecture Notes
in Computer Science, vol. 120. Springer-Verlag, 1998.

[12] D. Moldt, “OOA and Petri Nets for System Specification,” in
Object-Oriented Programming and Models of Concurrency.
Italy, 1995.

[13] L. Cabac, M. Duvigneau, D. Moldt, and H. Rölke, “Modeling
dynamic architectures using nets-within-nets,” in Applications
and Theory of Petri Nets 2005. 26th International Conference,
ICATPN 2005, Miami, USA, 2005, pp. 148–167.

[14] Tigris.org, “ArgoUML: open source UML modeling tool,”
http://argouml.tigris.org/, 2012.

[15] R. Kočı́ and V. Janoušek, “Modeling and Simulation-Based
Design Using Object-Oriented Petri Nets: A Case Study,” in
Proceeding of the International Workshop on Petri Nets and
Software Engineering 2012, vol. 851. CEUR, 2012, pp. 253–
266.

[16] V. Janoušek and R. Kočı́, “Embedding Object-Oriented Petri
Nets into a DEVS-based Simulation Framework,” in Proceed-
ings of the 16th International Conference on System Science,
ser. volume 1, 2007, pp. 386–395.

366Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 384 / 729

A Report on Using Simplified Function Point

Measurement Processes

Luigi Lavazza Geng Liu

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria

Varese, Italy

luigi.lavazza@uninsubria.it, giulio.liu@gmail.com

Abstract—Background: Function Point Analysis is widely used,

especially to quantify the size of applications in the early stages of

development, when effort estimates are needed. However, the

measurement process is often too long or too expensive or

requires more knowledge than available when development effort

estimates are due. To overcome these problems, simplified

methods have been proposed to measure Function Points.

Objectives: The work reported here concerns the

experimentation of simplified functional size measurement

methods in the sizing of both “traditional” and real-time

applications. The goal is to evaluate the accuracy of the sizing

with respect to full-fledged Function Point Analysis.

Method: A set of projects, which had already been measured by

means of Function Point Analysis, have been measured using the

NESMA and Early&Quick Function Points simplified processes:

the resulting size measures were compared.

Results: while NESMA indicative method appears to quite

overestimate the size of the considered applications, the other

methods provide much more accurate estimates of functional

size. EQFP methods proved more accurate in estimating the size

of non Real-Time applications, while the NESMA estimated

method proved fairly good in estimating both Real-Time and non

Real-Time applications.

Conclusions: The results of the experiment reported here show

that in general it is possible to size software via simplified

measurement processes with an acceptable accuracy. In

particular, the simplification of the measurement process allows

the measurer to skip the function weighting phases, which are

usually expensive, since they require a thorough analysis of the

internals of both data and operations.

Keywords-Functional Size Measures; Function Points;

Simplified measurement processes; Early&Quick Function Points

(EQFP); NESMA estimated; NESMA indicative.

I. INTRODUCTION

Function Point Analysis (FPA) [1][4][2][3] is widely used.
Among the reasons for the success of FPA is the fact that it can
provide measures of size in the early stages of software
development, when they are most needed for cost estimation.

However, FPA performed by a certified function point
consultant proceeds at a rather slow pace: between 400 and 600
function points (FP) per day, according to Capers Jones [13],
between 200 and 300 function points per day according to
experts from Total Metrics [14]. As a consequence, measuring
the size of a moderately large application can take too long if

cost estimation is needed urgently. Also the cost of
measurement can be considered excessive by software
developers. In addition, cost estimates may be needed when
requirements have not yet been specified in detail and
completely. To overcome these problems, simplified FP
measurement processes have been proposed. Among these are
the NESMA (Netherland Software Metrics Association)
indicative and estimated methods, and the Early & Quick
Function Points method. The proposers of these methods claim
that they allow measurers to compute good approximations of
functional size measures with little effort and in a fairly short
time.

The goal of the work reported here is to test the mentioned
simplified functional size measurement processes on real
projects in both the “traditional” and real-time domains.
Function Points are often reported as not suited for measuring
the functional size of embedded applications. The motivation is
that FP –conceived by Albrecht when the programs to be sized
were mostly Electronic Data Processing applications– capture
well the functional size of data storage and movement
operations, but are ill-suited for representing the complexity of
control and elaboration that are typical of embedded and real-
time software. However, a careful interpretation of FP counting
rules makes it possible to apply FPA to embedded software as
well [10].

In this paper we apply the International Function Points
User Group (IFPUG) measurement rules [2] to size a set of
programs for non-real time playing on the internet, and we
apply the guidelines given in [8] (which are as IFPUG-
compliant as possible) to measure a set of embedded real-time
avionic applications. All these measures are used to test the
accuracy of simplified functional size measurement processes.

The goal of the paper is therefore to evaluate if simplified
functional size measurement processes can be used to size real-
time and embedded applications, as well as “traditional”
business applications.

The paper is organized as follows: Section II briefly
introduces the simplified functional size measurement
processes used in the paper. Section III describes the projects
being measured and gives their sizes measured according to the
full-fledged, canonical FPA process. Section IV illustrates the
sizes obtained via simplified functional size measurement
processes. Section V discusses the accuracy of the measures
obtained via the simplified methods used and outlines the
lessons that can be learned from the reported experiment.

367Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 385 / 729

Section VI accounts for related work. Finally, Section VII
draws some conclusions and outlines future work.

II. A BRIEF INTRODUCTION TO SIMPLIFIED SIZE

MEASUREMENT PROCESSES

The FP measurement process involves (among others) the
following activities:

− Identifying logic data;

− Identifying elementary processes;

− Classifying logic data as internal logic files (ILF) or
external interface files (EIF);

− Classifying elementary processes as external inputs
(EI), outputs (EO), or queries (EQ);

− Weighting data functions;

− Weighting transaction functions.
Simplified measurement processes allow measurers to skip

–possibly in part– one or more of the aforementioned activities,
thus making the measurement process faster and cheaper.

The most well-known approach for simplifying the process
of FP counting is probably the Early & Quick Function Points
(EQFP) method [5][7]. EQFP descends from the consideration
that estimates are sometimes needed before the analysis of
requirements is completed, when the information on the
software to be measured is incomplete or not sufficiently
detailed.

Since several details for performing a correct measurement
following the rules of the FP manual [2] are not used in EQFP,
the result is a less precise measure. The trade-off between
reduced measurement time and costs is also a reason for
adopting the EQFP method even when full specifications are
available, but there is the need for completing the measurement
in a short time, or at a lower cost. An advantage of the method
is that different parts of the system can be measured at different
detail levels: for instance, a part of the system can be measured
following the IFPUG manual rules [2][3], while other parts can
be measured on the basis of coarser-grained information. In
fact, the EQFP method is based on the classification of the
processes and data of an application according to a hierarchy
(see Figure 1. [7]).

Application to

be measured

Macro
process

General
data group

General

process

General

process

Transactional

BFC

Transactional

BFC

Transactional

BFC

Transactional

BFC

Data

BFC

Data

BFC

Data

BFC

……

Figure 1. Functional hierarchy in the Early & Quick FP technique

Transactional BFC (Base Functional Components) and
Data BFC correspond to IFPUG’s elementary processes and
LogicData, while the other elements are aggregations of
processes or data groups. The idea is that if you have enough
information at the most detailed level you count FP according
to IFPUG rules; otherwise, you can estimate the size of larger

elements (e.g., General or Macro processes) either on the basis
of analogy (e.g., a given General process is “similar” to a
known one) or according to the structured aggregation (e.g., a
General process is composed of 3 Transactional BFC).
Therefore, by considering elements that are coarser-grained
than the FPA BFC, the EQFP measurement process leads to an
approximate measure of size in IFPUG FP.

Tables taking into account the previous experiences with
the usage of EQFP are provided to facilitate the task of
assigning a minimum, maximum and most likely quantitative
size to each component. For instance, TABLE I. provides
minimum, maximum and most likely values for generic (i.e.,
not weighted) functions as given in [7]. Using this method
involves the activities indicated in TABLE III. The time and
effort required by the weighting phases are saved. Such saving
can be relevant, since weighting a data or transaction function
requires analyzing it in detail.

TABLE I. EQFP: FUNCTION TYPE WEIGHTS FOR GENERIC FUNCTIONS

Function type
Complexity

Low Likely High

Generic ILF 7.4 7.7 8.1

Generic EIF 5.2 5.4 5.7

Generic EI 4 4.2 4.4

Generic EO 4.9 5.2 5.4

Generic EQ 3.7 3.9 4.1

The size of unspecified generic processes (i.e., transactions
that have not been yet classified as inputs, outputs or queries)
and unspecified generic data groups (i.e., logical files that have
not been yet classified as ILF or EIF) as given in [7] are
illustrated in TABLE II. When using this method, only the
identification of logical data and elementary processes needs to
be done, as shown in TABLE III. Both the classification of
data and transaction functions and their weighting are skipped.
Consequently, sizing based on unspecified generic processes
and data groups is even more convenient –in terms of time and
effort spent– than sizing based on generic (i.e., non weighted)
functions.

TABLE II. EQFP: FUNCTION TYPE WEIGHTS FOR UNSPECIFIED GENERIC

PROCESSES AND DATA GROUPS

Function type
Complexity

Low Likely High

Unspefied Generic Processes 4.3 4.6 4.8

Unspefied Generic Data Group 6.4 7.0 7.8

Methods for simplifying the counting of FP, the Indicative
NESMA method [6] simplifies the process by only requiring
the identification of LogicData from a data model. The
Function Point size is then computed by applying predefined
weights, whose value depends on whether the data model is
normalized in 3

rd
 normal form:

Non normalized model: Function Points = Number of ILF ×

35 + Number of EIF × 15

Normalized model: Function Points = Number of ILF × 25

+ Number of EIF × 10

368Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 386 / 729

The process of applying the NESMA indicative method
involves only identifying logic data and classifying logic data
as ILF or EIF. Accordingly, it requires less time and effort than
the EQFP methods described above, in general. However, it is
quite clear that the Indicative NESMA method is quite rough in
its computation. The official NESMA counting manual
specifies that errors in functional size with this approach can be
up to 50%.

The Estimated NESMA method requires the identification
and classification of all data and transaction functions, but does
not require the assessment of the complexity of each function:
Data Functions (ILF and EIF) are assumed to be of low
complexity, while Transactions Functions (EI, EQ and EO) are
assumed to be of average complexity. Accordingly, the
Estimated NESMA method is expected to be more
approximated than the EQFP method based on generic
functions, as the latter uses likely values for transactions of
unknown complexity, derived from statistic analysis.

TABLE III. ACTIVITIES REQUIRED BY DIFFERENT SIMPLIFIED

MEASUREMENT PROCESSES

Measurement
activities

IFPUG
NESMA

indic.
NESMA

estim.

EQFP
Generic

func.

EQFP
Unspec.
generic
func.

Identifying logic data � � � � �

Identifying elementary
processes

�

� � �

Classifying logic data
as ILF or EIF

� � � �

Classifying
elementary processes
as EI, EO, or EQ

�

� �

Weighting data
functions

�

Weighting transaction
functions

�

The activities required by the simplified functional size
measurement methods considered in the paper are reported in
TABLE III. Of course, the IFPUG method requires all the
activities listed in TABLE III.

III. THE CASE STUDY

A. Real-time projects

The real-time projects measured are from a European
organization that develops software for avionic applications,
and for other types of embedded and real-time applications.

The projects’ FUR were modeled using UML as described
in [9], and were then measured according to IFPUG
measurement rules [2]. When the real-time nature of the
software made IFPUG guidelines inapplicable, we adopted ad-
hoc counting criteria, using common sense and striving to
preserve the principles of Function Point Analysis, as described
in [10].

The same projects were then sized using the NESMA and
EQFP simplified functional size measurement processes, using
the data that were already available as a result of the IFPUG
measurement.

All the measured projects concerned typical real-time
applications for avionics or electro-optical projects, and
involved algorithms, interface management, process control
and graphical visualization.

For each project the measurement of the functional size was
carried out in two steps. First, a model of the product was built.
The models were written in UML and represented the
requirements, including all the information needed for the
measurement of FPs and excluding the unnecessary details [9].
Then, the function points were counted, on the basis of the
model, according to IFPUG rules.

TABLE IV. reports the size in FP of the measured projects,
together with the BFC and –in parentheses– the number of
unweighted BFC. For instance, project 1 involved 18 Internal
Logic Files, having a size of 164 FP.

TABLE IV. REAL-TIME PROJECTS’ SIZES (IFPUG METHOD)

Project

ID.
ILF EIF EI EO EQ FP

1
164

(18)

5

(1)

90

(21)

8

(2)

22

(5)
289

2
56

(8)

0

(0)

21

(6)

18

(3)

6

(1)
101

3
73

(7)

0

(0)

12

(2)

47

(8)

4

(1)
136

4
130
(15)

15
(3)

44
(11)

0
(0)

6
(1)

195

5
39

(4)

0

(0)

28

(8)

39

(8)

0

(0)
106

6
71

(9)

5

(1)

8

(2)

139

(28)

0

(0)
223

7
7

(1)

0

(0)

3

(1)

5

(1)

0

(0)
15

B. Non Real-time projects

The non real-time project considered are programs that
allow users to play board or card games vs. remote players via
the internet.

The projects were measured –as the real-time ones– in two
steps: the UML model of each product was built along the
guidelines described in [9]; then, the function points were
counted, on the basis of the model, according to IFPUG rules.

TABLE V. reports the size in FP of the measured projects,
together with the BFC and –in parentheses– the number of
unweighted BFC.

TABLE V. NON REAL-TIME PROJECTS’ SIZES (IFPUG METHOD)

Project

ID.
ILF EIF EI EO EQ FP

1
45

(6)

7

(1)

34

(10)

6

(1)

0

(0)
92

2
28

(4)

20

(4)

37

(9)

5

(1)

4

(1)
94

3
21

(3)

5

(1)

27

(7)

8

(2)

18

(6)
79

4
31

(4)

0

(0)

49

(16)

13

(3)

3

(1)
96

5
24

(3)

0

(0)

45

(14)

21

(5)

0

(0)
90

6
49

(7)

0

(0)

36

(9)

0

(0)

6

(2)
91

369Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 387 / 729

IV. RESULTS OF SIMPLIFIED MEASUREMENT

Simplified measurement processes were applied following
their definitions, which require data that can be easily derived
from the tables above. So, for instance, the data required for
Real-Time project 1 are the following:

− The NESMA indicative method requires the numbers of
ILF and EIF. TABLE I. shows that the number of ILF is
18, and the number of EIF is 1.

− The NESMA estimated method and the EQFP generic
functions methods require the numbers of ILF, EIF, EI,
EO and EQ. TABLE I. shows that the numbers of ILF,
EIF, EI, EO and EQ are, respectively, 18, 1, 21, 2, and 5.

− The EQFP unspecified generic functions method requires
the numbers of data groups (that is, the number of ILF plus
the number of EIF) and the number of transactions (that is,
the sum of the numbers of EI, EO and EQ). TABLE I.
shows that the number of data groups is 18+1 = 19, and
the number of transactions is 21+2+5 = 28.

A. Applying NESMA indicative

The applications to be measured were modeled according
to the guidelines described in [9]. The logic data files –modeled
as UML classes– provide a data model that cannot be easily
recognized as normalized or not normalized. Therefore, we
applied both the formulae for the normalized and not
normalized models.

TABLE VI. MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE

NESMA METHODS

Project

ID
IFPUG

NESMA

indicative

non

normalized

NESMA

indicative

normalized

NESMA

estimated

1 289 645 460 245

2 101 280 200 99

3 136 245 175 101

4 195 570 405 168

5 106 140 100 100

6 223 330 235 216

7 15 35 25 16

TABLE VII. MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE

NESMA METHODS

Project

ID
IFPUG

NESMA

indicative

non normalized

NESMA

indicative

normalized

NESMA

estimated

1 92 225 160 81

2 94 200 140 82

3 79 120 85 73

4 96 140 100 91

5 90 105 75 83

6 91 245 175 82

The formulae of the NESMA indicative method were
applied to the number of ILF and EIF that had been identified
during the IFPUG function point counting process. The results

are given in TABLE VI. for Real-Time projects and in TABLE
VII. for non Real-Time projects.

B. Applying NESMA estimated

The formulae of the NESMA indicative method were
applied to the number of ILF, EIF, EI, EO, and EQ that had
been identified during the IFPUG function point counting
process. The results are given in TABLE VI. for Real-Time
projects and in TABLE VII. for non Real-Time projects.

C. Applying EQFP

As described in Figure 1. , the EQFP method can be applied
at different levels. Since we had the necessary data, we used
the BFC aggregation level.

TABLE VIII. MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE

EQFP METHOD

Project ID IFPUG

EQFP – unspecified

generic processes and

data groups

EQFP –generic

transactions and

data files

1 289 262 262

2 101 102 106

3 136 100 108

4 195 181 182

5 106 102 106

6 223 208 229

7 15 16 17

At this level it is possible to use the data functions and
transaction functions without weighting them or even without
classifying transactions into EI, EO and EQ and logic data into
ILF and EIF. In the former case (generic functions) the weights
given in TABLE I. are used, while in the latter case
(unspecified generic functions) the weights given in 0are used.

The results of the application of EQFP are given in TABLE
VIII. for Real-Time projects, and in TABLE IX. for non Real-
Time projects.

TABLE IX. MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE

EQFP METHOD

Project ID IFPUG

EQFP – unspecified

generic processes and

data groups

EQFP –generic

transactions and

data files

1 92 100 99

2 94 107 99

3 79 97 92

4 96 120 118

5 90 108 108

6 91 100 100

V. SUMMARY AND LESSONS LEARNED

To ease comparisons, all the size measures of RT projects
are reported in TABLE X. and those of non RT projects are
reported in TABLE XI.

370Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 388 / 729

TABLE X. MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE

VARIOUS METHODS

Proj

ID
IFPUG

NESMA

ind.

non norm.

NESMA

ind.

norm.

NESMA

estim.

EQFP

unspec.

EQFP

generic

1 289 645 460 245 262 262

2 101 280 200 99 102 106

3 136 245 175 101 100 108

4 195 570 405 168 181 182

5 106 140 100 100 102 106

6 223 330 235 216 208 229

7 15 35 25 16 16 17

TABLE XI. MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE

VARIOUS METHODS

Proj

ID
IFPUG

NESMA

ind.

non norm.

NESMA

ind.

norm.

NESMA

estim.

EQFP

unspec.

EQFP

generic

1 92 225 160 81 100 99

2 94 200 140 82 107 99

3 79 120 85 73 97 92

4 96 140 100 91 120 118

5 90 105 75 83 108 108

6 91 245 175 82 100 100

It is easy to see that the NESMA indicative method yields

the greatest errors. On the contrary, the NESMA estimated and
EQFP methods yield size estimates that are close to the actual
size.

The relative measurement errors are given in TABLE XII.
and TABLE XIII. , where the least error for each project is in
bold. It is easy to see that the NESMA indicative methods are
generally outperformed by the other methods. For Real-Time
projects EQFP (either in the unspecified or generic flavor) tend
to provide the most accurate results, while the NESMA
estimated method provides quite reasonable estimates. For non
Real-Time projects the NESMA estimated method appears
even better than the EQFP methods. Quite noticeably, NESMA
estimated underestimates all non Real-Time projects except
one.

TABLE XII. RELATIVE MEASUREMENT ERRORS (REAL-TIME PROJECTS)

Proj

ID

NESMA ind.

non norm.

NESMA

ind. norm.

NESMA

estim.

EQFP

unspec.

EQFP

generic

1 123% 59% -15% -9% -9%

2 177% 98% -2% 1% 5%

3 80% 29% -26% -26% -21%

4 192% 108% -14% -7% -7%

5 32% -6% -6% -4% 0%

6 48% 5% -3% -7% 3%

7 133% 67% 7% 7% 13%

TABLE XIII. RELATIVE MEASUREMENT ERRORS (NON REAL-TIME

PROJECTS)

Proj

ID

NESMA ind.

non norm.

NESMA

ind. norm.

NESMA

estim.

EQFP

unspec.

EQFP

generic

1 145% 74% -12% 9% 8%

2 113% 49% -13% 14% 5%

3 52% 8% -8% 23% 16%

4 46% 4% -5% 25% 23%

5 17% -17% -8% 20% 20%

6 169% 92% -10% 10% 10%

The accuracy of the used methods is summarized in
TABLE XIV. , where the mean and standard deviation of the
absolute relative errors are given for Real-Time projects, for
non Real-Time projects and for the entire set of projects.

TABLE XIV. MEAN AND STDEV OF ABSOLUTE RELATIVE ERRORS

NESMA

ind.

non norm.

NESMA

ind. norm.
NESMA

estim.

EQFP

unspec.

EQFP

generic

Mean

(RT only)
112% 53% 10% 9% 8%

Stdev

(RT only)
62% 42% 8% 8% 8%

Mean

(non RT)
90% 41% 9% 17% 14%

Stdev

(non RT)
61% 37% 3% 7% 7%

Mean

(all)
102% 47% 10% 13% 11%

Stdev

(all)
60% 38% 6% 9% 8%

VI. RELATED WORK

Meli and Santillo were among the first to recognize the
need of comparing the various functional size methods
proposed in the literature [18]. To this end, they also provided a
benchmarking model.

In [12], van Heeringen et al. report the results of measuring
42 projects with the full-fledged, indicative and estimated
NESMA methods. They found a 1.5% mean error of NESMA
estimated method and a 16.5% mean error of NESMA
indicative method.

Using a database of about 100 applications, NESMA did
some research on the accuracy of the estimated and indicative
function point counts. They got very good results
(http://www.nesma.nl/section/fpa/earlyfpa.htm), although no
statistics (e.g., mean relative error) are given.

In [16] Frank Vogelezang summarized the two techniques
to simplified measuring given in the COSMIC measurement
manual: the approximate technique (comparable to NESMA's
indicative technique) and the refined approximate technique
(comparable to NESMA's rough technique). In the approximate
technique the average size of a functional process is multiplied
with the number of functional processes the software should
provide. In the refined approximate technique the functional
processes to be provided can already be classified as small,
medium, large or very large, each with its own average size.
The precision of the COSMIC-FFP approximate technique is

371Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 389 / 729

good enough with less than 10% deviation on a portfolio and
less than 15% on a project within a specified environment [16].

Popović and Bojić compared different functional size
measures –including NESMA indicative and estimated– by
evaluating their accuracy in effort estimation in various phases
of the development lifecycle [15]. Not surprisingly, they found
that the NESMA indicative method provided the best accuracy
at the beginning of the project. With respect to Popović and
Bojić, we made two quite different choices: the accuracy of the
method is evaluated against the actual size of the software
product, not the required development effort, and –
consistently– all the information needed to perform
measurement is available to all processes.

There is no indication that real-time projects were among
those measured by van Heeringen et al. or by NESMA.

VII. CONCLUSION

Sometimes, FPA is too slow or too expensive for practical
usage. Moreover, FPA requires a knowledge of requirements
that may not be available when the measures of size are
required, i.e., at the very first stages of development, when
development costs have to be estimated. To overcome these
problems, simplified measurement processes have been
proposed.

In this paper we applied simplified functional size
measurement processes to both traditional software
applications and Real-Time applications. The obtained results
are fairly good, as a few of the tested methods provided
average errors not greater than 13% (with fairly small standard
deviations).

EQFP methods proved more accurate in estimating the size
of non Real-Time applications, while the NESMA estimated
method proved fairly good in estimating both Real-Time and
non Real-Time applications. However, the relatively small
number of projects involved in the analysis does not allow
generalizing these results.

Even considering the relatively small dataset, it is however
probably not casual that the NESMA estimated method
happened to underestimate all projects. Probably NESMA
should consider reviewing the weights used in the estimated
method, in the sense of increasing them.

It is noticeable that all the used methods underestimated
one of the Real-Time projects by over 20%. This can be quite
dangerous, as underestimating size usually leads to
dramatically underestimating the development effort, which
can very easily cause the failure of the project. Our
observations seem to suggest that the projects that are most
likely to be underestimated by simplified methods are those
characterized by the need to store or communicate many data at
a time. The frequent occurrence of this condition should be
checked before adopting a simplified measurement process.

Finally, we must point out that the results presented here
are based on datasets in which the largest project has size of
289 FP. Further work for verifying the precision of simplified
measurement methods when dealing with larger project is
needed.

 Among the future work is also the experimentation of
simplified measurement processes in conjunction with
measurement-oriented UML modeling, as described in [11].

ACKNOWLEDGMENT

The research presented in this paper has been partially
supported by the project “Metodi, tecniche e strumenti per
l’analisi, l’implementazione e la valutazione di sistemi
software” funded by the Università degli Studi dell’Insubria

REFERENCES

[1] A.J. Albrecht, Measuring Application Development Productivity, Joint
SHARE/ GUIDE/IBM Application Development Symposium, 1979.

[2] International Function Point Users Group. Function Point Counting
Practices Manual - Release 4.3.1, 2010.

[3] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1 Unadjusted
functional size measurement method – Counting Practices Manual, ISO,
Geneva, 2003.

[4] A.J. Albrecht and J.E. Gaffney, “Software function, lines of code and
development effort prediction: a software science validation” IEEE
Transactions on Software Engineering 9(6), 1983.

[5] L. Santillo, M. Conte and R. Meli, “Early & Quick function point: sizing
more with less”, Software Metrics, 2005. 11th IEEE International
Symposium, Como, 19-22 Sept. 2005.

[6] ISO, Iec 24570: 2004, Software Engineering-NESMA Functional Size
Measurement Method version 2.1 - Definitions and Counting Guidelines
for the Application of Function Point Analysis. International
Organization for Standardization, Geneva, 2004.

[7] Early & Quick Function Points for IFPUG methods v. 3.1 Reference
Manual 1.1, April 2012.

[8] L. Lavazza and C. Garavaglia, “Using Function Point in the Estimation
of Real-Time Software: an Experience”, Software Measurement
European Forum – SMEF 2008, Milano, 28-30 May 2008.

[9] L. Lavazza, V. del Bianco, C. Garavaglia, “Model-based Functional Size
Measurement”, ESEM 2008, 2nd International Symposium on Empirical
Software Engineering and Measurement, Incorporating ISESE and
Metrics, Kaiserslautern, Germany. October 9-10, 2008.

[10] L. Lavazza and C. Garavaglia, “Using Function Points to Measure and
Estimate Real-Time and Embedded Software: Experiences and
Guidelines”, ESEM 2009, 3rd Int. Symp. on Empirical SW Engineering
and Measurement, October 15-16, 2009, Lake Buena Vista, Florida.

[11] V. del Bianco, L. Lavazza, and S. Morasca, “A Proposal for Simplified
Model-Based Cost Estimation Models”, 13th International Conference
on Product-Focused Software Development and Process Improvement –
PROFES 2012, Madrid, June 13-15, 2012.

[12] H. van Heeringen, E. van Gorp, and T. Prins, “Functional size
measurement - Accuracy versus costs - Is it really worth it?”, Software
Measurement European Forum – SMEF, Rome, 28 - 29 May 2009

[13] C. Jones, “A new business model for function point metrics”,
http://www.itmpi.org/assets/base/images/itmpi/privaterooms/capersjones
/FunctPtBusModel2008.pdf, 2008

[14] “Methods for Software Sizing – How to Decide which Method to Use”,
Total Metrics, www.totalmetrics.com/function-point-
resources/downloads/R185_Why-use-Function-Points.pdf, August 2007.

[15] J. Popović and D. Bojić, “A Comparative Evaluation of Effort
Estimation Methods in the Software Life Cycle”, Computer Science and
Information Systems, Vol. 9, n. 1, January 2012)

[16] F.W. Vogelezang, “COSMIC Full Function Points, the Next
Generation”, in Measure! Knowledge! Action! – The NESMA
anniversary book, NESMA, 2004.

[17] F.W. Vogelezang, A.J.E. Dekkers, “One year experience with COSMIC-
FFP”, Software Measurement European Forum – SMEF 2004, January
28-30, Rome, 2004.

[18] R. Meli and L. Santillo, “Function point estimation methods: a
comparative overview”, FESMA ’99, Amsterdam October, 4-8, 1999.

372Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 390 / 729

An Empirical Evaluation of Effort Prediction Models
Based on Functional Size Measures

Luigi Lavazza Sandro Morasca
Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria
Varese, Italy

e-mail: {luigi.lavazza, sandro.morasca}@uninsubria.it

Gabriela Robiolo
Facultad de Ingeniería
Universidad Austral

Buenos.Aires, Argentina
e-mail: grobiolo@austral.edu.ar

Abstract— Software development effort estimation is among
the most interesting issues for project managers, since reliable
estimates are at the base of good planning and project control.
Several different techniques have been proposed for effort
estimation, and practitioners need evidence, based on which
they can choose accurate estimation methods.
The work reported here aims at evaluating the accuracy of
software development effort estimates that can be obtained via
popular techniques, such as those using regression models and
those based on analogy.
The functional size and the development effort of twenty
software development projects were measured, and the
resulting dataset was used to derive effort estimation models
and evaluate their accuracy.
Our data analysis shows that estimation based on the closest
analogues provides better results for most models, but very
bad estimates in a few cases. To mitigate this behavior, the
correction of regression toward the mean proved effective.
According to the results of our analysis, it is advisable that
regression to the mean correction is used when the estimates
are based on closest analogues. Once corrected, the accuracy of
analogy-based estimation is not substantially different from the
accuracy of regression based models.

Keywords- Functional size measurement; function points;
effort estimation; Regression Toward the Mean; Least Median of
Squares.

I. INTRODUCTION

Several different types of models have been proposed for
estimating the effort required to develop a software system
whose functional size is known.

In this paper, we use a dataset of 20 projects to evaluate
the accuracy of different estimation models. For each project
in the dataset, we assume that the other 19 projects’ sizes and
effort data are known, and that the considered project
development effort is estimated based on this data.

The model types considered are:

Estimated_Effort = a + b  Size (1)

Estimated_Effort = a Sizeb (2)

Estimated_Effort = Size / Productivity (3)

where Productivity is defined as the ratio Size/Effort; Effort
is measured in person hours and Size is measured in
Function Points [1][2].

Models of type (1) are obtained via Ordinary Least
Square (OLS) and Least Median of Squares (LMS) linear
regressions, while models of type (2) are obtained via OLS
regression after log-log transformation. Models of type (3)
are obtained using two different values of productivity:
a) ProductivityCA: the productivity of the projects that are

Closest Analogues (CA) to the project to be estimated.
b) ProductivityRTM: the productivity obtained from

ProductivityCA by correcting Regression Toward the
Mean (RTM).

The goal of the paper is to evaluate the accuracy of
software development effort estimates obtained via popular
techniques, such as regression and analogy. These estimation
techniques are among the most used by practitioners. Maybe
LMS is not so widely used as the other ones, however, since
its introduction [3], LMS has been used in several Empirical
Software Engineering studies (a list appears in [4]). The
great advantage of LMS for practitioners is that it takes the
burden of dealing with outlier identification and exclusion
away from the user. A disadvantage for practitioners is that
LMS excludes half of the datapoints from the model, so that
relatively large datasets are needed to apply it.

More sophisticated techniques were not considered
because they have not yet achieved great popularity among
practitioners. In fact, our paper is mainly directed to
practitioners that have collected –often with some difficulty
and effort– a set of historical data, and wonder what is the
best way to use this data. Accordingly, we show how some
popular estimation methods can be applied to historical
datasets of average size, and what the accuracy of the
resulting estimates is. This may help practitioners choosing
among the many available types of effort estimation models.

The paper is organized as follows: Section 2 describes
the dataset and illustrates the derivation of models for every
project in the dataset, and the application of such models to
get effort estimates. Section 3 evaluates the accuracy of the
obtained estimates. Section 4 discusses the threats to the
validity of this study. Section 5 accounts for related work.
Finally, Section 6 discusses the results found, draws some
conclusions and outlines future work.

II. MODEL BUILDING

The analysed projects are a superset of those described in
[5]. Also, the data is available from the authors on request.

373Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 391 / 729

They were selected because they have the following
characteristics:
a) Requirements specifications were documented in a

homogeneous way, namely via use cases.
b) Use cases were completely implemented, therefore the

effort employed in every project concerns the same
overall activity, consisting in complete implementation.

c) The hours worked in each project were homogeneously
and accurately registered.

Some projects were developed at Universidad Austral, in
a software engineering undergraduate context, as an
assignment, consisting in the development of a business
application. The hours worked on programming were
verified and measured by the team leader and by a professor,
as this was one of the academic requirements. The other
projects were developed in two different contexts: the
System and Technology (S&T) Department at Universidad
Austral and a CMM level 4 Company. The S&T Department
develops software for the university and other parties, with a
contractual relationship with the students, similar to that one
they would have in a company. The hours worked on
programming were obtained from the company registration
files. The information about such hours was used in each
company to do quality control or for future project
estimation. The involved human resources in both
environments shared a similar profile: advanced
undergraduate students –who had been similarly trained–
worked in academy, at the S&T Department and at the CMM
level 4 Company.

Table I reports the values of ProductivityM (the mean
productivity), ProductivityCA, and ProductivityRTM. These
productivity values were computed for each project by
taking into account the rest of the project data. So, for
instance, ProductivityM for project 1 is given by the mean of
the productivity values of projects 2 to 20.

ProductivityCA was computed as the mean productivity of
the two projects having minimum size distance with respect
to the considered project. In case three or more projects had
the same distance, they were all considered. Let us consider
project 5, which has size of 110 UFP: the closest analogue is
project 14 (distant just 1 UFP), while projects 4 and 13 are at
a distance of 3 UFP. In this case, ProductivityCA is given by
the average of the productivities of projects 4, 13 and 14, i.e.,
Productivity values (113/285 + 107/348 + 111/242.5)/3 =
0.386 UFP/PersonHour.

Having computed ProductivityCA, it was then possible to
check for the conditions under which the regression to the
mean phenomenon is bound to occur. In our case, the RTM
is expected to occur in ProductivityCA with respect to the
actual productivity, which is given by the ratio size/effort.

The conditions for RTM are: a) the distributions of the
actual productivity and ProductivityCA are normal, b) they
have similar variance, and c) they are not perfectly
correlated. In our case, all these conditions are satisfied
since:

TABLE I. PRODUCTIVITY VALUES

ProjID Actual Mean CA RTM corrected

1 0.451 0.397 0.543 0.515

2 0.568 0.391 0.450 0.438

3 0.447 0.397 0.240 0.270

4 0.396 0.400 0.515 0.493

5 0.335 0.403 0.386 0.389

6 0.434 0.398 0.269 0.294

7 0.170 0.412 0.266 0.294

8 0.296 0.405 0.072 0.136

9 0.867 0.375 0.786 0.707

10 0.658 0.386 0.525 0.498

11 0.878 0.375 0.553 0.519

12 0.161 0.412 0.236 0.270

13 0.307 0.405 0.317 0.333

14 0.458 0.397 0.389 0.391

15 0.133 0.414 0.179 0.224

16 0.401 0.400 0.373 0.378

17 0.361 0.402 0.386 0.389

18 0.595 0.389 0.256 0.281

19 0.037 0.419 0.072 0.139

20 0.039 0.419 0.068 0.135

a) the Shapiro-Wilk test applied to ProductivityCA and the
actual productivity rejects the hypothesis of non-
normality (p-value > 0.4 for both distributions);

b) the standard deviations of the two distributions are
similar (being 0.24 and 0.19);

c) the Pearson correlation factor r is 0.808 (p-value < 10-3).
Accordingly, the percent of regression effects –computed
via the formula (1 – r)  100– is 19.2%.
Even though the effect of regression toward the mean is

not extremely relevant, we wanted to check whether RTM
could still provide good results (as in [6]) or even better
ones, when compared to other techniques. Moreover, some
values of ProductivityCA are quite far from the actual
productivity: it is thus worthwhile trying RTM correction to
see if such deviations can be eliminated. To this end, we
applied a correction formula suggested by Campbell and
Kenny [7]:

ProductivityRTM = ProductivityCA + (1-r) 
(ProductivityM - ProductivityCA) (4)

The resulting values of ProductivityRTM are given in the
rightmost column of Table I: it is easy to see that the RTM
correction decreases high values of productivity and
increases the small ones. This is exactly what RTM
correction is expected to do. We shall evaluate if such
correction actually improves the accuracy of estimates.

374Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 392 / 729

We also computed Effort vs. Size models using OLS
regression, both with and without log-log transformation,
and using LMS regression. As for productivity, each
project’s model was derived by excluding the project’s data
from the dataset.

When deriving the models via OLS regression, we
excluded outliers according to Cook’s distance [8]. Cook’s
distance is commonly used to identify projects that jointly
exhibit a large influence and large residual. Projects with
Cook’s distance greater than 4/n, where n represents the total
number of projects, are considered to have a high influence
on the results [9].

This explains why some projects are associated with the
same model. Consider for instance project 7: during the
computation, Cook’s distance of project 8 suggests that
project 8 be excluded from the dataset. Similarly, project 7 is
an outlier for project 8, according to Cook’s distance.
Therefore, the models for projects 7 and 8 are computed over
the same dataset, which excludes the data from projects 7
and 8.

LMS linear regressions compute the model using only
half the available data, thus it is quite expected that several
projects share the same model.

We applied the models found to get effort estimates. The
resulting estimates are given in Table II.

TABLE II. EFFORT ESTIMATES

ID
Actual
Effort

Estimates

Lin.
OLS

LogLog
OLS

Linear
LMS

CA
RTM
corr.

1 – 322 351 341 341 360

2 – 433 494 405 598 614

3 – 321 332 331 712 633

4 285 279 285 287 220 229

5 328 237 232 216 285 283

6 198 208 196 270 320 293

7 442 190 175 235 282 255

8 723 408 405 451 2972 1574

9 392 605 586 647 433 481

10 – 369 369 397 341 359

11 131 263 271 297 208 222

12 1042 336 334 380 712 623

13 348 230 225 211 338 321

14 243 279 283 285 285 284

15 300 107 106 181 223 178

16 147 169 144 250 158 156

17 169 168 136 251 158 157

18 121 196 182 230 282 256

19 16809 1049 951 1087 8600 4484

20 5221 387 385 431 2972 1488

A 0.05 statistical significance threshold was used
throughout the paper, as is customary in Empirical Software
Engineering studies. All the results reported in the paper are

characterized by p-value < 0.05. All validity requirements
for the proposed models (e.g., the normal distribution of
residuals of OLS regressions) were rigorously verified.

III. EVALUATION OF MODELS

After having obtained the estimates for all projects using
the different models (Table II), we computed the estimation
errors as the differences between the actual and estimated
efforts.

With effort estimation, the size of an error is possibly not
as relevant as its relative size. For instance, a 10
PersonMonth error is generally more easily accepted for a
200 PersonMonth project than a 4 PersonMonth error is
considered acceptable for a 12 PersonMonth project. In fact,
even though the former error is two and a half times the
latter, it is just 5% of the entire effort, while in the second
case it is 33%.

Accordingly, we computed the relative errors of the
estimates, and reported them in Table III. Table III shows
that the biggest errors occur with the estimation based on
analogy. It is noticeable that the four biggest (in absolute
terms) errors with ProductivityCA (concerning projects 8, 18,
3 and 6) are effectively reduced by the RTM correction.
However, RTM correction has also the effect of increasing
the estimation error for some projects (see, for instance,
projects 11 and 15).

TABLE III. ESTIMATION RELATIVE ERRORS

ID
Linear
OLS

Loglog
OLS

Linear
LMS

CA
RTM
corr.

1 – -14% -17% -17% -12%

2 – 4% -14% 26% 30%

3 – -13% -13% 86% 65%

4 -2% 0% 1% -23% -20%

5 -28% -29% -34% -13% -14%

6 5% -1% 36% 62% 48%

7 -57% -60% -47% -36% -42%

8 -44% -44% -38% 311% 118%

9 54% 50% 65% 10% 23%

10 – 35% 46% 25% 32%

11 101% 107% 127% 59% 69%

12 -68% -68% -64% -32% -40%

13 -34% -35% -39% -3% -8%

14 15% 17% 18% 18% 17%

15 -64% -65% -40% -25% -40%

16 15% -2% 70% 7% 6%

17 -1% -20% 49% -7% -7%

18 62% 50% 90% 133% 111%

19 -94% -94% -94% -49% -73%

20 -93% -93% -92% -43% -71%

The distribution of errors is represented via boxplots in
Figure 1, where the errors concerning projects 19 and 20 are
omitted. As shown in Table II, all models estimate these

375Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 393 / 729

projects with large errors. Including them in the boxplot
would have resulted in squeezing the plots, thus making
them hardly readable.

The distribution of relative errors is represented via
boxplots in Figure 2. The mean value of errors is represented
as a diamond on each boxplot. It is easy to see that the
estimation based on the closest analogues provides good
accuracy with respect to other models, except for a single
project (project 8). It is also quite evident that the RTM
correction eliminates such anomaly, though negative errors
worsen slightly.

To fully appreciate the differences in accuracy, it is
useful to look also at absolute relative errors, which are
illustrated by the boxplots in Figure 3. It is also quite
apparent in Figure 3 that the RTM correction eliminates the
problem of huge relative estimation errors, at the expense of
a higher median absolute relative error.

However, the effects of RTM correction should be
evaluated by taking into consideration the effects on the
projects (19 and 20) that required the biggest effort. By
looking at Table II, it is easy to see that the effort of such
projects is estimated much better by analogy without
correction than with RTM correction. The fact that the
corrections concerning these projects are relatively smaller
than others (e.g. the one concerning project 8) does not imply
that they are acceptable. Actually, all the models based on
regression consider projects 19 and 20 outliers, thus
excluding them from the models. Estimation based on closest
analogues is the only way of taking into account these
projects, but ,unfortunately, RTM corrections in these cases
operate in the wrong direction, decreasing estimates that are
already underestimated. In conclusion, we must be aware
that projects (like 19 and 20) that feature quite unusual
productivity values, can reduce the effectiveness of RTM
correction.

Concerning RTM correction, our results are similar to
those reported in the literature. In particular, the MMRE and
MdMRE [10] for our set of projects (see Table IV), are close
to those reported in [6] and [11].

Table V summarizes the results of some representative
papers. It can be seen that our results (given in Table IV),
are in line with these studies.

TABLE IV. MMRE AND MDMRE OF ANALOGY BASED ESTIMATES

CA RTM
MMRE 49.3% 42.3%

MdMRE 25.5% 36.0%

TABLE V. ACCURACY OF ESTIMATES REPORTED IN THE LITERATURE

Ref.
Results

MMRE MdMRE

[12] [23.2 -51.1] [14.8 – 48.0]

[13] [36.15 – 73.85] [14.23 – 44.95]

[14] [11.3 – 32.8] [7. 2– 24.3]

[15] [32.82 – 82.20] [20.44 – 50.54]

[16] N.A. [26 – 85]

Figure 1. Boxplot of errors.

Figure 2. Boxplot of relative errors.

Figure 3. Boxplot of absolute relative errors.

376Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 394 / 729

IV. THREATS TO VALIDITY

Some of the projects that originated the dataset were
carried out in industry, while some others were carried out in
academia. So, treating all these projects as a single class of
projects could be inaccurate, in principle. To make data as
homogeneous as possible, academic developments were
organized and conducted as industrial ones.

During the construction of models, we tested alternate
ways of searching for analogue projects; one included the
usage of projects carried out in the same environment. In
such case, we also used different ProductivityM to correct
RTM. So, for instance, the productivity of academic projects
was estimated on the basis of the academic projects of
similar size. Then RTM was corrected using in equation (4)
the mean productivity of academic projects only. However,
taking into account the development environment did not
change much the results presented in Section III.

Another issue that deserves attention is the size of the
considered projects: only three projects are substantially
bigger than 200 FP. Accordingly, practitioners have to be
cautious when applying the results reported in this paper to
larger projects.

V. RELATED WORK

The phenomenon of “regression towards the mean”
(RTM) is thoroughly described in [7]. RTM occurs where
the estimation model is inaccurate and extreme observations
appear, i.e., the values of the attribute of interest are much
higher or lower than the expected value. The presence of
these “extreme” values calls for the correction of regression
models. Several adjustment approaches were proposed by
Campebell and Kenny [7]. Jørgensen et al. were the first
authors who described the occurrence of RTM in the context
of software effort estimation and used one of the adjustment
approaches by Campebell and Kenny [7] to evaluate five
data sets [6]. They showed that analogy based effort
estimates can be significantly improved through RTM-
adjustments. Jørgensen et al. also hypothesized that, in cases
with less extreme analogues and more accurate estimation
models, there would be an expected improvement, if the
underlying assumptions of the RTM-adjustment are met.
However, they did not prove this hypothesis in [6].

Shepperd and Cartwright [11] performed an independent
replication of the study by Jorgensen et al.: they used two
further industrial data sets in which they compared accuracy
levels with and without the RTM adjustment. Their results
were consistent with those reported in [6], as using the RTM
resulted in a small increase in predictive accuracy. However,
for one data set it was necessary to first partition it into more
homogeneous subsets. Their results added further support for
the RTM approach, in that there is a small, but positive,
effect upon prediction accuracy.

The RTM adjustment was improved by using the Model
Tree adaptation strategy. Model Tree based attribute distance
was proposed by Azzeh to adjust estimation by analogy and
derive new estimates [17]. This is advantageous because it
deals with categorical attributes, minimizes user interaction
and improves the efficiency of model learning through

classification. The experimental results showed that the
proposed approach produced better results when compared
to those obtained by using analogy based linear size
adaptation, linear similarity adaptation, 'regression towards
the mean' and null adaptation. However, this approach may
only be applied to complex data sets with large number of
categorical attributes.

The interest of finding analogies arises when historical
data sets are available, thus making it possible to look for
projects that are “similar” to the one for which an estimate
is required. Similarity is defined as Euclidean distance in n-
dimensional space where n is the number of considered
project features. Each dimension is usually standardized, so
that all dimensions have equal weight. The known effort
values of the nearest neighbors to the new project are then
used as the basis for the prediction. Shepperd and Schofield
argued that estimation by analogy is a viable technique that
can be used by project managers to complement current
estimation techniques [18].

Several papers propose improvements of estimation
based on closest analogues method. Chiu and Huan [19]
investigated the effects on estimates obtained when a genetic
algorithm method is adopted to adjust historical effort based
on the similarity of distances between pairs of projects. The
empirical results obtained using two data sets of 23 and 21
projects each showed that applying a suitable linear model to
adjust the analogy-based estimations is a feasible approach to
improve the accuracy of software effort estimates. A project
selection technique for analogy-based estimations (PSABE),
was then added to reduce the whole project base into a small
subset that consists only of representative projects. The
experimental results showed that applying the genetic
algorithm to determine suitable weighted similarity measures
of software effort drivers is a feasible approach to improve
the accuracy of software effort estimates analogy-based.
They also demonstrated that the nonlinearly weighted
analogy method has better estimate accuracy than those
obtained by using other methods [20].

Li and Ruhe [21] pointed out that a careful selection and
weighting of attributes may improve the performance of the
estimation methods. They considered the impact of
weighting (and selecting) attributes as extensions of their
estimation by analogy method AQUA+. With AQUA+ a
qualitative analysis pre-step using rough set analysis –a
machine learning technique for classification of objects– is
performed to weight attribute. They reported that AQUA+
can improve the estimation accuracy, according to the
empirical studies performed with six data sets.

Mittas, Athanasiades and Angelis [22] exploited the
relationship between the estimation by analogy method and
the nearest neighbor non-parametric regression technique in
order to suggest a resampling procedure, known as iterated
bagging, to reduce the prediction error. The positive effect of
iterated bagging on estimation by analogy was validated
using both artificial and real datasets from the literature.

Azzeh, Neagu, and Cowling [13] proposed a new formal
estimation by analogy model based on the integration of the
Fuzzy set theory with the Grey Relational Analysis (GRA) to
overcome the inherent uncertainty in software attribute

377Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 395 / 729

measurement. The Fuzzy set theory provides a representation
scheme and mathematical operations to deal with uncertain,
imprecise and vague concepts. GRA is a problem solving
method that is used to assess the similarity between two
tuples with M features, which is mainly used to reduce the
uncertainty in the distance measurement between two
software projects, for both continuous and categorical
features. Both techniques are suitable when the relationship
between effort and other effort drivers is complex.
Experimental results showed that using integration of GRA
with Fuzzy logic produced credible estimates, when
compared to the results obtained using Case-Based
Reasoning, Multiple Linear Regression and Artificial Neural
Networks methods. In another paper [12], the same authors
proposed a new approach to deal with each attribute, which
has different influence on the project retrieval, based upon
the idea of Kendall's coefficient of concordance between the
similarity matrix of project attributes and the similarity
matrix of known effort values of the dataset. The results
showed improved prediction accuracy when multiple project
attributes are used with certain weights. Moreover, they
integrated analogy-based estimation with Fuzzy numbers in
order to improve the performance of software project effort
estimation during the early stages of a software development
lifecycle, using all the available early data [14]. Particularly,
this paper proposes a new software project similarity
measurement and a new adaptation technique based on
Fuzzy numbers. The results have also shown that the
proposed method outperforms some well known estimation
techniques, such as case-based reasoning and stepwise
regression.

To overcome the inherent uncertainties of the estimation
process, Li, Xie, and Goh focused on the generation of
interval based estimates with a certain probability [15]. They
proposed a novel method named Analogy Based Sampling
(ABS) and compared it to the well established Bootstrapped
Analogy Based Estimation method (BABE), which is the
only existing variant of the analogy based method which has
the capability to generate interval predictions. The results
and comparisons showed that ABS could improve the
performance of BABE with much higher efficiency and
more accurate interval predictions. In another paper [23] they
proposed a genetic algorithm to simultaneously optimize the
K parameter and the feature weights for. Experiment results
showed that their methods could significantly improve the
prediction accuracy of conventional ABE.

Walkerden and Jeffery [24] stated that Analogy-based
estimation is potentially easier to understand and apply than
algorithmic methods. They compared several methods of
analogy-based software effort estimation with each other
and also with a simple linear regression model. The results
showed that people are better than tools at selecting
analogues. In particular, estimates based on selections made
by people, with a linear size adjustment to the analogue’s
effort value, proved more accurate than estimates based on
analogues selected by tools, and also more accurate than
estimates based on the simple regression model.

However, controversial results were reported on this
subject. Briand, Langley and Wieczorek [16] agree with

Stensrud and Myrtveit [25] that estimation by analogy does
not outperform regression models. Myrtveit and Stensrud
[26] suggested that the results are sensitive to the
experimental design, including dataset characteristics,
criteria for removing outliers, test metrics, significance
levels, the involvement of people, etc. Also, they pointed
out that neither their results nor previous ones were robust
enough to claim general validity.

Similarly, Mair and Shepperd found that there is
approximately equal evidence in favour of and against
analogy-based methods [27].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have tested a few estimation models,
using an experimental dataset. To the best of our knowledge,
this is the first time that an effort prediction accuracy
comparison is performed for a set of methods including OLS
models, LMS models, and analogy-based methods both with
and without RTM correction.

By looking at the results given in the tables and boxplot
in Section III, it is possible to conclude that all the
considered models yield similar performances, as far as
estimation accuracy is concerned. Actually, the model based
exclusively on analogy is slightly less precise then the others,
but RTM correction makes the precision of analogy based
estimation very close to that of regression models. It is also
possible to consider RTM corrected models preferable over
those based on regression because the median is closer to
zero (Figure 2).

In conclusion, we can say that our results are of interest
for practitioners, especially considering that a small dataset –
i.e., a dataset very similar to the datasets that can be collected
in most development environment– and popular techniques
were used.

In the future, we aim at gaining a deeper theoretical
understanding of, and generalizing the results presented here
by studying larger projects, possibly involving additional
effort-related factors, like product complexity and factors
depending on the development environment.

ACKNOWLEDGEMENT

The research presented here was partially funded by the
project “Metodi, tecniche e strumenti per l’analisi,
l’implementazione e la valutazione di sistemi software”
funded by Università degli Studi dell’Insubria, and by the
Research Fund of Austral University School of Engineering.

REFERENCES

[1] A. Albrecht, Measuring application development productivity, IBM
Application Development Symp. I.B.M. Press, 1979.

[2] ISO. 2003. ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1
Unadjusted functional size measurement method – Counting Practices
Manual.

[3] P. J. Rousseeuw and A. M Leroy, Robust regression and outlier
detection, John Wiley & Sons, Inc., New York, 1987.

[4] L. Lavazza and S. Morasca, “Using a Generalized Robust Linear
Regression Technique to Predict Effort in Software Engineering
Projects”, 16th Int. Conf. on Evaluation and Assessment in Software
Engineering (May 2012).

378Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 396 / 729

[5] L. Lavazza and G.Robiolo, “The Role of the Measure of Functional
Complexity in Effort Estimation”, 6th Int. Conf. on Predictive Models
in Software Engineering, ACM, New York, NY, USA, Article 6, 10
pages, 2010.

[6] M. Jørgensen, D. I. K. Sjøberg and U. Indahl, “Software effort
estimation by analogy and regression toward the mean”, Journal of
Systems and Software 68, 3 (Dec. 2003), pp. 37-46

[7] D. Campbell and D. Kenny, A primer on regression artifacts. The
Guilford Press, 2002.

[8] R. D. Cook and S. Weisberg, Residuals and Influence in Regression.
Chapman and Hall, London, 1982.

[9] E. Mendes, Cost Estimation Techniques for Web Projects. IGI
Publishing, Hershey, New York, 2008.

[10] S. Conte, H. Dunsmore, and V. Shen, Software Engineering, Metrics
and Models. Benjamin/Cummings, 1986.

[11] M. Shepperd, and M. Cartwright, “A replication of the use of
regression towards the mean (R2M) as an adjustment to effort
estimation models”, 11th IEEE Int. Symp. on Software Metrics
(Como, Italy, Sept. 19-22 2005), METRICS 2005, pp. 38-47.

[12] M. Azzeh, D. Neagu, and P. Cowling, “Software effort estimation
based on weighted fuzzy grey relational analysis”, 5th Int. Conf. on
Predictor Models in Software Engineering (PROMISE '09). ACM,
New York, NY, USA, 2009.

[13] M. Azzeh, D. Neagu, and P. Cowling, “Fuzzy grey relational analysis
for software effort estimation”, Empirical Software Engineering, 15,
1. Springer, 2010.

[14] M. Azzeh, D. Neagu and P. Cowling,“Analogy-based software effort
estimation using Fuzzy numbers”, Journal of Systems and Software,
84, 2, Elsevier, 2011, pp. 270-284.

[15] Y.F. Li, M. Xie, and T.N. Goh, “A Study of Analogy Based Sampling
for interval based cost estimation for software project management”,
4th IEEE Int.Con. on Management of Innovation and Technology
(Bangkok, 2008). ICMIT 2008, pp. 281 – 286.

[16] L.C. Briand, T. Langley and I. Wieczorek., “A replicated assessment
and comparison of common software cost modeling techniques”, in
Proceedings of the 22nd international conference on Software
engineering (ICSE '00), ACM, New York, NY, USA, pp. 377-386,
2000, doi: 10.1145/337180.337223.

[17] M. Azzeh, “Model Tree Based Adaption Strategy for Software Effort
Estimation by Analogy”, 2011 IEEE 11th International Conference on
Computer and Information Technology (CIT), Pafos, Sept. 2 2011,
pp. 328 – 335.

[18] M. Shepperd, C. Schofield, "Estimating Software Project Effort
Using Analogies," IEEE Trans. on Software Eng., vol. 23, no. 11, pp.
736-743, Nov. 1997.

[19] N.H Chiu and S.J. Huang, “The adjusted analogy-based software
effort estimation based on similarity distances”, Journal of Systems
and Software, 80, 4 (April 2007), pp. 628-640.

[20] Y.F. Li, and M. Xie, and TN. Goh, “A study of project selection and
feature weighting for analogy based software cost estimation”,
Journal of Systems and Software, 82, 2, Elsevier, pp. 241-252.

[21] J. Li, and G. Ruhe, “Analysis of attribute weighting heuristics for
analogy-based software effort estimation method AQUA+”,
Empirical Software Engineering, 13, 1, Springer, 2008.

[22] N.Mittas, M. Athanasiades, and L. Angelis. “Improving analogy-
based software cost estimation by a resampling method”, Information
and Software Technology, 50, 3, Elsevier, 2008.

[23] Y.F Li., M. Xie, and T.N. Goh, “Optimization of feature weights and
number of neighbors for Analogy based cost Estimation in software
project management”, IEEE Int. Con. on Industrial Engineering and
Engineering Management (Singapore, 2008) IEEM 2008, pp. 1542 –
1546.

[24] F. Walkerden and R. Jeffery, “An Empirical Study of Analogy-based
Software Effort Estimation”, Empirical Softw. Engg. 4, 2 (June
1999), pp. 135-158, doi:10.1023/A:1009872202035.

[25] E. Stensrud and I. Myrtveit, “Human Performance Estimating with
Analogy and Regression Models: An Empirical Validation”, in
Proceedings of the 5th International Symposium on Software Metrics
(METRICS '98), IEEE Computer Society, Washington, DC, USA,
1998, pp. 205-.

[26] I. Myrtveit, E. Stensrud, "A Controlled Experiment to Assess the
Benefits of Estimating with Analogy and Regression Models", IEEE
Trans. on Software Eng., vol. 25, no. 4, pp. 510-525, 1999.

[27] C. Mair, M. J. Shepperd, “ The consistency of empirical comparisons
of regression and analogy-based software project cost prediction”, in
2005 International Symposium on Empirical Software Engineering
(ISESE 2005), 17-18 November 2005, Noosa Heads, Australia, pp.
509-518, IEEE, 2005.

379Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 397 / 729

Mapping ASM Specifications to Spec Explorer: Guidelines, Benefits and Challenges

Jameleddine Hassine
Department of Information and Computer Science

King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
jhassine@kfupm.edu.sa

Abstract—Model-based testing (MBT) focuses on the gener-
ation of test suites, using models of system requirements and
behavior. In order to get full benefits from model-based testing
and to drive its adoption by practitioners, automation support
is required. Spec Explorer 2010 is an MBT tool that offers
a rich set of features allowing for modeling and analyzing
software behavior using graphical visualization and automatic
generation of test code from models. In this paper, we propose
and discuss a set of guidelines to map the core Abstract State
Machines (ASM) concepts and constructs into Spec Explorer
2010. We illustrate our mapping approach using examples
and features from ASM-based formal specification languages
CoreASM and AsmL. Furthermore, we discuss the benefits,
the challenges and the limitations of our proposed mapping
guidelines. Finally, we illustrate our approach using a case
study of the well known dining philosophers problem.

Keywords-Model-based testing; Spec Explorer 2010; Abstract
State Machines (ASM); CoreASM; AsmL

I. INTRODUCTION

Model-based testing (MBT) is a variant of testing that
relies on explicit behavior models that describe the intended
behaviors of a System Under Test (SUT) and/or the behavior
of its environment. Test cases are then generated from one
of these models or their combination, and then executed on
the SUT [1]. MBT offers significant promise in reducing the
cost of test suite generation, increasing the effectiveness of
the produced test cases, and shortening the testing cycle.

Driven by technological advances and by the ever-growing
need for producing high quality software, model-based test-
ing (MBT) has emerged as a potential research domain.
Given the popularization of models in software design and
development, MBT has moved from a research topic [2],
[3] to an emerging practice in the industry [4], [5], with
increasing commercial tool support [6]. Dias-Neto et al.
[2] have performed a systematic review of MBT research
literature and have proposed a classification of the MBT
approaches. A recent systematic review of state-based MBT
tools by Shafique and Labiche [6] provides a detailed
classification of nine commercial and research MBT tools.
In a more recent work, Utting et al. [1] have developed a
taxonomy of six dimensions that covers the key aspects of
MBT approaches.

Model-based testing relies on three key aspects - the mod-
eling notation, the algorithms used to guide test generation

and the tools supporting on-the-fly generation or off-line
realization of executable tests.

Many different notations and languages, with different
expressive power, have been used for modeling the behavior
of systems for test generation purposes. Many of these
languages are discussed and classified by Hierons et al. [3]
and, more recently, by Utting et al. [1]. Examples of such
notations classification include state-based Notations (e.g.,
Z, B, etc.), transition-based Notations (e.g., FSMs, state-
charts, etc.), history-based notations (e.g., temporal logics,
MSC, etc.), operational notations (e.g., process algebra such
as CSP and CCS).

Many test generation algorithms have been proposed
[1], [2], [3]. Examples of such test generation approaches
include Random generation (achieved by sampling the input
space of a system), Search-based algorithms (e.g., graph
search algorithms), Model Checking (for checking system
properties), Symbolic execution (generating symbolic traces
that should be instantiated to obtain test cases), Deductive
theorem proving (used to check the satisfiability of formu-
las), Constraint solving (useful for selecting data values from
complex data domains), etc.

Utting et al. [1] have proposed a classification of MBT
tools [6] according to which kinds of test selection criteria
they support (e.g., structural model coverage, data coverage,
requirements-based coverage, fault-based criteria, etc.). Mi-
crosoft’s Spec Explorer 2010 [7], is one of the commercial
tools that have led the MBT scene. The new release of Spec
Explorer 2010 [7], version 3.5 and integrated within Visual
Studio 2010, offers a rich and powerful set of features for
modeling and analyzing system functional behavior, as well
as automatically generating test code.

The widespread interest in model-based testing techniques
and tools provides the major motivation of this research. In
particular, this paper serves the following purposes:

• Bridge the gap between ASM-based languages (e.g.,
CoreASM [8], AsmL [9], etc.) and the new release
of Microsoft Spec Explorer 2010 [7], where the SUT
model is specified using .NET C#. The previous
version, Spec Explorer 2006 [10], accepts models writ-
ten in AsmL (Abstract State Machines Language) [9],
which is no longer supported in Spec Explorer 2010
[7]. To bridge this gap, we propose a set of guidelines
to map ASM core concepts and constructs into Spec

380Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 398 / 729

Explorer 2010 modelling notation (i.e., C# program
models and Cord scripts [11]).

• Allow for ASM model exploration and analysis. Indeed,
Microsoft Spec Explorer 2010 [7] provides several
strategies for managing the exploration of a model,
including data coverage of parameter values and struc-
tural model criteria [1]. Furthermore, the resulting Spec
Explorer 2010 models can be used to automatically
generate test cases.

• Discuss the benefits, the challenges, and the limitations
of the ASM to Spec Explorer 2010 mapping approach.

The remainder of this paper is organized as follows. The
next section presents some related work. A brief introduction
to Spec Explorer 2010 and an overview of its specification
language are presented in Section III. Section IV represents
the core of our paper, where we describe and discuss the
ASM to Spec Explorer 2010 mapping guidelines. In order
to demonstrate the applicability of our proposed mapping
approach, a case study of the well known Dining Philoso-
phers problem is presented in Section V. A discussion of
the challenges and the limitations of our proposed approach
is presented in Section VI. Finally, conclusions are drawn
in Section VII.

II. RELATED WORK

Several approaches have been proposed to translate ASM
specifications to languages and notations in order to enable
testing and verification. Winter [12] has proposed a schema
for transforming ASM models into the language of SMV. A
similar approach has been implemented in AsmetaSMV by
Arcaini et al. [13] for mapping and verifying ASM models,
written in AsmetaL, into NuSMV notation. Gargantini et al.
[14] have introduced an algorithm to automatically encode
an ASM specification in Promela, the language of the model
checker SPIN.

Grieskamp et al. [15] have proposed an algorithm that
derives a finite state machine (FSM) from a given abstract
state machine (ASM) specification. The generated ASM
states, often infinite, are grouped into hyperstates which are
the nodes of the FSM. The links of the FSM are induced by
the ASM state transitions. This transformation allows for the
integration of ASM specifications with the existing tools for
test case generation from FSMs. In a related work, Barnett et
al. [16] have presented a tool environment for model-based
testing with the Abstract State Machine Language (AsmL)
[9]. The environment supports semi-automatic parameter
generation, FSM generation from ASMs [15], call sequence
generation and conformance testing.

The most closely related work to ours is the one by
Veanes et al. [17]. The authors have provided a symbolic
analysis of model programs written in AsmL [9], in terms of
a background T of linear arithmetic, sets, tuples and maps.

III. OVERVIEW OF SPEC EXPLORER 2010

Spec Explorer 2010 [7], which we simply refer to as Spec
Explorer, provides a model editing, composition, explo-
ration, and visualization environment within Visual Studio,
and can generate on-line and off-line test suites. A Spec
Explorer model consists of a set of rules, written in C#,
expressed in a model program (i.e., the .cs file) combined
with behavioral descriptions coded in a scripting language
called Cord [11] (i.e., the .cord file). The model program
and the Cord script work together to make a testable model
of the SUT.

Using myNameSpace

config Main

{

action abstract static void RuleAdapter.Rule1();

action abstract static void RuleAdapter.Rule2();

}

machine Program() : Main

{

construct model program from Main

}

machine Interleaving() : Main

{

Rule1() ||| Rule2()

}

machine TestSuite() : Main

{

construct test cases where Strategy =

"ShortTests" for Interleaving

}

Coordination Script (.cord)

// importing libraries

using System;

using System.Collections.Generic;

// / other libraries

namespace myNameSpace

{

public static class myClass

{ // Defined state variables

static int x, y;

[Rule(Action = "Rule1()")]

static void Rule1()

{ // Rule1 body

}

[Rule]

static void Rule2()

{ // Rule2 body

}

}

}

Model (.cs)

Spec Explorer 2010 Specification

Figure 1. Structure of a typical Spec Explorer specification

Figure 1 illustrates a typical structure of a Spec Explorer
specification. The model program (.cs) defines the classes
of the system (e.g., myClass), the fields used to hold state
data (e.g., x, y), and the rule methods for the actions (e.g.,
Rule1 and Rule2) already declared in the Cord configuration.
The model program is joined by a Cord script that defines
the context signature (e.g., Main) and action machines (e.g.,
Program) expressing behaviors that further constrain the
model for purposes of exploring submodels and generating
practical test cases. A machine is based on one or more
configurations and represents the unit of exploration. Many
operators can be used to compose machine behavior from
configurations and other behaviors. For example, the parallel
behavior operator ||| is used in machine Interleaving to
construct the interleaved parallel composition of Rule1 and
Rule2. Cord scripts also provide the means to generate test
cases from the model. For a detailed description of Spec
Explorer, we refer the reader to [7].

IV. ASM TO SPEC EXPLORER MAPPING GUIDELINES

In this section, we present a brief overview of the basic
ASM concepts and we provide a set of guidelines for trans-
lating them into Spec Explorer. For a detailed description of
Abstract State Machines concepts and features, an interested
reader is referred to [18].

381Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 399 / 729

Table I
EXAMPLES OF MAPPINGS OF ASM BUILT-IN TYPES

CoreASM [8] AsmL [9] Spec Explorer [7]

Boolean Boolean bool
enum/universe enum enum
String String string
Number Integer/Byte/short int/byte/short

Long/Float/Double long/float/double
Set Set of T SetContainer<T>
List Seq of T SequenceContainer<T>
Map Map of T to S MapContainer<T,S>

Although we illustrate the mapping guidelines using
features and examples from CoreASM [8] and AsmL [9]
languages, our proposed mapping guidelines can be applied
to any ASM-based language, thus maintaining the generality
of the discussion.

A. Mapping of States

Abstract State Machines (ASM) [18] define a state-based
computational model, where computations (runs) are finite
or infinite sequences of states {Si} obtained from a given
initial state S0 by repeatedly executing transitions δi:

S0
δ1 // S1

δ2 // S2
. . . δn // Sn

The states of an ASM are multi-sorted first-order struc-
tures, i.e., domains of objects with functions and predicates
defined on them.

1) Domains:: A domain consists of a set of declara-
tions that establish the ASM vocabulary. Each declaration
establishes the meaning of an identifier within its scope.
Spec Explorer is based on C# language and it offers a
rich set of data types covering almost all domains of ASM-
based languages. Hence, the mapping of domains into their
corresponding Spec Explorer data types is straightforward.
Table I shows some examples of supported ASM-based
built-in types and their corresponding Spec Explorer data
types.

In order to match the mutable nature of ASM sets,
sequences, and maps, we use the Spec Explorer muta-
ble containers types: SetContainer, SequenceContainer and
MapContainer.

2) Function Names:: Each function name f has an arity
(number of arguments that the function takes). Function
names can be static (i.e., fixed interpretation in each com-
putation state) or dynamic (i.e., can be altered by transitions
fired in a computation step). Static nullary (i.e., 0-ary)
function names (i.e., called constants) and dynamic nullary
functions (i.e., called variables) are mapped respectively into
Spec Explorer constants and variables of the types presented
in Table I.

ASM n-ary functions (i.e., f : T1 x T2 x Tn → T),
may be described using the Spec Explorer MapContainer
construct. The same mapping applies to the ASM monitored,

public enum T1 {A1, B1};

public enum T2 {A2, B2};

public enum T {A, B};

public class T1T2

{

public T1 p1;

public T2 p2;

public T1T2(T1 Param1, T2 Param2)

{

this.p1 = Param1;

this.p2 = Param2;

}

}

public class MyModelProgram

{

public static MapContainer<T1T2, T> foo = new MapContainer<T1T2, T>();

}

Model.cs

Figure 2. Implementing n-ary functions in Spec Explorer

controlled and shared functions. For example, the following
CoreASM code defines three enumeration domains T1, T1
and T, each having 2 elements, and a 2-ary function foo
defined over T1 and T2 and returning a value of type T:

enum T1 = {A1,B1}
enum T2 = {A2,B2}
enum T = {A,B}
foo: T1 * T2 -> T

Figure 2 illustrates its corresponding Spec Explorer model
implementation. A new class T1T2 is created to map func-
tion foo input types T1 and T2. The arity of the function
defines the number of the new class attributes. The function
name foo is mapped to a MapContainer object having keys
of type T1T2 and values of type T. It is worth noting that the
new class T1T2 could have been created as CompoundValue
(i.e., public class T1T2 : CompoundValue), which is mutable
but it cannot be updated outside of the constructor.

Another possible solution, proposed by Arcaini et al. [13],

is to create
n∏

i=1

|Di| variables to cover all combinations of

the domains elements. Considering the example above, four
variables of type T can be created to cover the product
of enumerations T1 and T2: public static T foo A1 A2,
foo A1 B2, foo B1 A2, foo B1 B2; This solution does not
scale well in presence of domains with large sets of ele-
ments.

B. Mapping of Transition Rules

The transition relation is specified by guarded function
updates, called rules, describing the modification of the
functions from one state to the next. An ASM state transition
is performed by firing a set of rules in one step.

1) Conditional Rule:: Typically, an ASM transition sys-
tem appears as a set of guarded rules:

if cond then RuleThen else RuleElse endif

RuleThen and RuleElse are transition rules and cond, the
guard, is a term representing a boolean condition. The ASM
conditional rule can be implemented using Spec Explorer

382Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 400 / 729

Condition class, which provides conditions that can control
the exploration of a rule. Spec Explorer does not generate
a transition for a rule if it encounters in the execution
path of the rule any condition that is not satisfied. The
Condition class contains a rich set of methods for con-
trolling exploration (e.g., IsTrue(Boolean), IsFalse(Boolean),
IsNull(Object), etc.

Figure 3 illustrates the mapping of the ASM condi-
tional rule. Condition Condition.IsTrue(cond) enables the
exploration of RuleThen() if cond evaluates to true, while
condition Condition.IsFalse(cond) enables the exploration of
RuleElse() if cond evaluates to false.

static class ModelProgram

{

static bool cond=true;

static int stateVar;

[Rule(Action = "RuleThen()")]

static void RuleThen()

{

Condition.IsTrue(cond);

// update state Variables

}

[Rule(Action = "RuleElse()")]

static void RuleElse()

{

Condition.IsFalse(cond);

// update state Variables

}

}

Figure 3. Implementation of the conditional rule in Spec Explorer

2) Update Rule:: The basic form of a transition rule is a
function update:

f(t1,t2,. . .,tn):= value

(f, (t1,t2,. . .,tn)) represents the location and value is its
content. An update can be implemented in Spec Explorer
as a rule containing simple assignment statements in the
case of dynamic nullary functions (e.g., var = value) or as
an update of a MapContainer in case of n-ary functions,
where an update results in adding a new element to the
MapContainer (if the key does not exist), or as an up-
date of a MapContainer element (if the key does exist).
Figure 4 illustrates the mapping of the ASM update rule
to Spec Explorer using the data structures introduced in
Figure 2. The MapContainer class method ContainsKey(D)
returns whether the key exists in the MapContainer (e.g.,
foo.ContainsKey(key)), while the method Add(D, R) adds
a key-value pair to the MapContainer (e.g., foo.Add(key,
value)).

public static MapContainer<T1T2, T> foo = new MapContainer<T1T2, T>();

[Rule]

public static void UpdateRule(T1T2 key, T value)

{

if (foo.ContainsKey(key))

foo[key] = value;

else

foo.Add(key, value);

}

Model.cs

Figure 4. Spec Explorer implementation of the update rule

3) Sequence Rule:: The sequence rule aims at executing
rules/function updates in sequence:

seq Rule1, . . ., RuleN or seq Update1, . . ., Updaten

The resulting update set is the sequential composition of the
updates, generated by Rule1 . . . RuleN in case of rules and
generated by Update1, . . ., Updaten in case of function
updates. ASM sequential function updates can be mapped
into one single rule in Spec Explorer as described in Figure
5(a), while ASM sequential rules can be implemented using
the Cord composition operator “;” as described in Figure
5(b).

[Rule]

static void SequentialUpdates()

{ // Update1

var1 = v1;

// UpdateN

varN = vN;

}

Model.cs

(a) Model program for sequential function updates

config Main

{

action abstract static void RuleAdapter.Rule1();

action abstract static void RuleAdapter.Rule2();

action abstract static void RuleAdapter.Rule3();

}

machine Program() : Main

{

construct model program from Main

}

machine Sequence() : Main

{

Rule1() ; Rule2() ; Rule3()

}

Config.cord

(b) Cord file and generated FSM for the sequential rules

Figure 5. Spec Explorer implementation of the sequence rule

4) Choose Rule:: The choose rule consists in selecting
elements (non deterministically), from specified domains,
satisfying the guard φ, and then evaluates Rule1. If no such
elements exist (i.e., ifnone), Rule2 is evaluated.

choose x in D with φ(x) do Rule1 ifnone Rule2

[Rule(Action = "ChoiceRule()")]

static void ChoiceRule()

{

Predicate<int> P = (y => (y >= 1 && y <= 4));

if (x == Choice.Some<int>(P))

Rule1(x);

else

Rule2();

}

Model.cs

Figure 6. Spec Explorer implementation of the choose rule

The choose rule may be implemented in Spec Explorer
using the non-deterministic method Some of the Choice class

383Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 401 / 729

(i.e., Choice.Some<T>(Predicate<T> predicate)), which
selects a value from a range of a specific type T, that satisfies
a certain condition: predicate. If such an element exists,
it will be passed to Rule1, otherwise a call to Rule2 is
performed. Figure 6 illustrates an example of a mapping
of the ASM choose rule to Spec Explorer. The predicate P
corresponds to the guard φ, while the selected value, if any,
is stored in variable x. An integer value is selected randomly
from the range 1 . . . 4, then passed to Rule1.

5) Extend Rule:: The extend rule is used to construct new
elements and add them to a specific domain. The resulting
update set is the updates generated by Rule1.

extend D with x1, . . ., xn do Rule1

In Spec Explorer, the extend rule may be implemented
by adding new elements to a mutable container such as
SetContainer, SequenceContainer, MapContainer, etc., then
call Rule1. As shown in Figure 7, a new integer x1 is added
(using the Add method) to the existing SetContainer D, then
Rule1 is called on the new added element.

static SetContainer<int> D= new SetContainer<int>(1,2);

[Rule]

static void ExtendRule(int x1)

{

D.Add(x1);

Rule1(x1);

}

Model.cs

Figure 7. Spec Explorer implementation of the extend rule

It is worth noting that the CoreASM [8] extend rule has
different semantics depending on whether D is a background
(e.g., Collection, List, Set, etc.) or a universe. Such distinc-
tion is not made at the Spec Explorer level.

6) Block Rule:: If a set of ASM transition rules have to
be executed simultaneously, a block rule is used:

par Rule1 . . . Rulen endpar

CoreASM uses the par. . . endpar syntax, while AsmL
uses step Rule1 . . . Rulen syntax to describe parallel
updates. The update generated by this rule is the union of all
the updates generated by Rule1 . . . Rulen. A set of ASM
updates is called inconsistent, if it contains updates with the
same locations, i.e., two elements (loc,v) and (loc,v’) with
v̸=v’. In the case of inconsistency, the computation does not
yield a next state. For example, Figures 8(a) and 8(b) show
respectively CoreASM code for (1) a rule (rule1) having a
conflicting parallel function update of variable x, and (2) one
block rule (InitRule) firing conflicting parallel updates from
rule1 and rule2. Both examples do not yield a next state.

Since Spec Explorer is based on .NET, a rule method
code is not different from an ordinary sequential C# code.
Hence, statements within a rule are executed in sequence,

// Two conflicting

// parallel updates

rule rule1 =

par

x := 1

x := 5

endpar

(a) Inconsistent set of
function updates

rule rule1 = x := 1

rule rule2 = x :=5

// Conflicting call to rule1 and rule2

rule InitRule =

par

rule1

rule2

endpar

(b) Inconsistent set of rule up-
dates

Figure 8. Inconsistent ASM updates

not concurrently. At every step, Spec Explorer enables all the
rules satisfying their respective preconditions, leading to a
non-deterministic interleaving of rule executions. Therefore
the parallel update semantics, previously supported in Spec
Explorer 2006 [10]), is abandoned because it conflicts with
the default sequential semantics of C#.

If we consider rules updating different locations (i.e.,
consistent updates), Spec Explorer parallel execution of
the selected rules can be reduced to a non-deterministic
interleaving (with extra created transitions and states). It
can be achieved using the Cord composition operator ||| as
shown in Figure 9.

config Main
{
action abstract static void RuleAdapter.Rule1();
action abstract static void RuleAdapter.Rule2();
action abstract static void RuleAdapter.Rule3();
}
machine Interleaving(): Main
{
Rule1() ||| Rule2() ||| Rule3();
}

Config.cord

(a) SpecExplorer implementation of the block Rule

(b) Block rule associated FSM

Figure 9. Spec Explorer implementation of the block rule and its
corresponding FSM

A possible work-around for detecting inconsistent updates
is to design a wrapper method to check and analyze whether
there are any inconsistencies between the different update
statements.

7) Let Rule:: The let rule assigns a value of a term t to
the variable x and then executes the rule Rule. The syntax

384Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 402 / 729

of a Let rule is:

let (x = t) in Rule endlet

The let rule may be implemented in Spec Explorer using
the LetBehavior construct. This construct introduces a set of
local variables with an optional associated constraint. The
scope of the declared variables is the given behavior. Figure
10 shows an example of a Cord configuration relative to a
machine that produces a transition of Rule1 on x equal to 2.

config Main

{

action abstract static void Implementation.Rule1(int x);

}

machine LetMachine() : Main

{

(let int x where (. x == 2 .) in Rule1(x))

}

Config.cord

Figure 10. Spec Explorer implementation of the let rule

Other ASM rules such as forall rule, iterate rule, etc., are
not covered in this work due to the lack of space.

V. CASE STUDY: THE DINING PHILOSOPHERS PROBLEM

The dining philosophers problem is a classic problem in
concurrent programming invented by E. W. Dijkstra. Con-
sider five philosophers who spend their lives thinking and
eating. The philosophers share a circular table surrounded
by five chairs, each belonging to one philosopher. In the
center of the table there is a bowl of rice, and the table is
laid with five single chopsticks. In what follows, we map
the CoreASM specification of the Dining Philosophers [19]
into Spec Explorer.

CoreASM DiningPhilosophers

use Standard

enum Chopstick = {c1, c2, c3, c4, c5}

enum Philosophers = {Albert,Herbert,Fredrich,Sina,Juan}

function eating: Philosophers -> BOOLEAN

function hungry: Philosophers -> BOOLEAN

function leftChop: Philosophers -> Chopstick

function rightChop: Philosophers -> Chopstick

function chopOwner: Chopstick -> Philosophers

init initRule

DiningPhilosopher.casm

(a) Dining Philosophers CoreASM Declara-
tion

public enum Philosophers {Albert,Herbert,Fredrich,Sina,Juan};

public enum Chopstick { c1, c2, c3, c4, c5 };

public class DiningPhilosopher

{

public static DiningPhilosopher I = new DiningPhilosopher();

public static MapContainer<Philosophers, bool> Eating;

public static MapContainer<Philosophers, bool> Hungry;

public static MapContainer<Philosophers, Chopstick> leftChop;

public static MapContainer<Philosophers, Chopstick> rightChop;

public static MapContainer<Chopstick, Philosophers> ChopOwner;

//...

DiningPhilosopher.cs

(b) Dining Philosophers Spec Explorer Declaration

Figure 11. Dining philosophers CoreASM declarations and their mappings
in Spec Explorer

Figure 11 illustrates the CoreASM declarations and their
mappings in Spec Explorer. Enumerations are mapped to
Spec Explorer enumerations and functions are mapped to
MapContainers. The creation of the set of philosophers
(through agents in CoreASM) is done implicitly through the
class constructor in SpecExplorer. In addition, there is no
need to initialize ChopOwner as undef in Spec Explorer
since its MapContainer is initially empty. Figure 12 illus-
trates the CoreASM init rule and its mapping as a constructor
of the class DiningPhilosopher.

/* ---- Initializing the Table ----- */

rule initRule = {

forall p in Philosophers do {

Agents(p) := true

program(p) := @PhilosopherProgram

eating(p) := false

hungry(p) := false

}

rightChop(Albert) := c5

leftChop(Albert) := c1

rightChop(Herbert) := c1

leftChop(Herbert) := c2

rightChop(Fredrich) := c2

leftChop(Fredrich) := c3

rightChop(Sina) := c3

leftChop(Sina) := c4

rightChop(Juan) := c4

leftChop(Juan) := c5

/* all chopsticks are intially free */

forall c in Chopstick do

chopOwner(c) := undef

print "TABLE: c1 Herbert c2 Fredrich

c3 Sina c4 Juan c5 Albert c1\n"

Agents(self) := false

}

DiningPhilosopher.casm

(a) CoreASM init rule

public DiningPhilosopher()

{

Hungry = new MapContainer<Philosophers, bool>();

Eating = new MapContainer<Philosophers, bool>();

leftChop = new MapContainer<Philosophers, Chopstick>();

rightChop = new MapContainer<Philosophers, Chopstick>();

ChopOwner = new MapContainer<Chopstick, Philosophers>();

foreach (Philosophers value in Enum.GetValues(typeof(Philosophers)))

{

Eating.Add(value, false);

Hungry.Add(value, false);

}

// Initialize leftChop

leftChop.Add(Philosophers.Albert, Chopstick.c5);

leftChop.Add(Philosophers.Herbert, Chopstick.c1);

leftChop.Add(Philosophers.Fredrich, Chopstick.c2);

leftChop.Add(Philosophers.Sina, Chopstick.c3);

leftChop.Add(Philosophers.Juan, Chopstick.c4);

// Initialize rightChop

rightChop.Add(Philosophers.Albert, Chopstick.c1);

rightChop.Add(Philosophers.Herbert, Chopstick.c2);

rightChop.Add(Philosophers.Fredrich, Chopstick.c3);

rightChop.Add(Philosophers.Sina, Chopstick.c4);

rightChop.Add(Philosophers.Juan, Chopstick.c5);

}

DiningPhilosopher.cs

(b) Spec Explorer class constructor

Figure 12. CoreASM init rule and its mapping in Spec Explorer

Figure 13 describes the CoreASM derived functions and
their mappings in Spec Explorer.

Figure 14 shows the three rules of the system and their
mappings in Spec Explorer. CoreASM rules StartEating and
StopEating are called only from the PhilosopherProgram
rule. In Spec Explorer, these two rules are enabled at
every transition (see Figure 14(b)). To mimic the CoreASM

385Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 403 / 729

/* ---- Derived Functions ----- */

derived canPickBothChopsticks =

(chopOwner(leftChop(self)) = undef)

and (chopOwner(rightChop(self)) = undef)

// flip of a coin

derived flip = pick b in BOOLEAN

DiningPhilosopher.casm

(a) CoreASM Derived Functions

public static bool canPickBothChopsticks(Philosophers P)

{

if (!ChopOwner.ContainsKey(leftChop[P]) &&

!ChopOwner.ContainsKey(rightChop[P]))

return true;

else

return false;

}

public static bool flip()

{

return Choice.Some<bool>();

}

DiningPhilosopher.cs

(b) Spec Explorer Functions

Figure 13. CoreASM derived functions and their mappings in Spec
Explorer

behavior, two guard conditions StartEatingEnabled and Sto-
pEatingEnabled are added to protect the execution of rules
StartEating and StopEating respectively (see Figure 14(c)).

VI. ASM TO SPEC EXPLORER MAPPING CHALLENGES
AND LIMITATIONS

At first glance, the mapping seemed to be simple because
Spec Explorer supports the concept of rules with actions.
Later, it appeared that it was a challenging task from many
perspectives:

• The most important challenge was dealing with parallel
updates/rules generating a single next step when there
are no inconsistencies. Indeed, Spec Explorer 2010 is
based on .NET, so a rule method is not different from
an ordinary C# sequential code. Spec Explorer 2010
[7] differs from the original Spec Explorer 2006 [10],
where ASMs were supported directly through AsmL.
As a core difference, ASM parallel updates semantics
are not directly supported in Spec Explorer 2010 but
have to be encoded, if desired.

• A related challenge to encoding parallel updates, is the
detection of inconsistencies in updates. One possible
work-around for this limitation is to design a wrapper
method to check and analyze whether there are any
inconsistencies between the different update statements.

• An ASM-based language, such as CoreASM, may de-
fine a program rule from which all other rules are called
(see Figure 14(a)). Spec Explorer 2010 will fire all rules
whenever their preconditions are satisfied. To imple-
ment such behavior, the called rules can be guarded
with entry and exit boolean conditions (as described in
Figure 14(c) using variables StartEatingEnabled and
StopEatingEnabled).

• The proposed mapping guidelines represent a good and
direct translation of ASM constructs into Spec Explorer.
However, different mapping may also be valid. One
example is to map an ASM initialization rule as a
regular rule, as an event or as a class constructor.

VII. CONCLUSION AND FUTURE WORK

The general goal of this work is to apply advanced model-
based testing techniques to Abstract State Machines. More
precisely, this paper aimed to bridge the gap between ASM-
based languages and the new version of Spec Explorer.
It discussed the core aspects of ASMs and how one can
map them to Spec Explorer 2010, where modeling is done
through a special extension of C# and coordination lan-
guage Cord. The major limitation of the proposed mappings
is the implementation of ASM parallel updates semantics,
which are not directly supported in Spec Explorer 2010.
We believe, this was mainly due to the conceived ease of
adoption by testers, and therefore the parallel update se-
mantics was abandoned because it conflicts with the default
sequential semantics of C#.

As a future work, we are planning to extend this work to
cover more ASM constructs and to investigate the automa-
tion of the proposed guidelines in a target ASM language
such as CoreASM.

REFERENCES

[1] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of
model-based testing approaches,” Software Testing, Verifica-
tion and Reliability, 2011, published online. Paper version to
appear.

[2] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H.
Travassos, “A survey on model-based testing approaches:
a systematic review,” in Proceedings of the 1st ACM in-
ternational workshop on Empirical assessment of software
engineering languages and technologies, ser. WEASELTech
’07. New York, NY, USA: ACM, 2007, pp. 31–36.

[3] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland,
J. Derrick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor,
P. Krause, G. Lüttgen, A. J. H. Simons, S. Vilkomir, M. R.
Woodward, and H. Zedan, “Using formal specifications to
support testing,” ACM Comput. Surv., vol. 41, pp. 9:1–9:76,
February 2009.

[4] M. Sarma, P. V. R. Murthy, S. Jell, and A. Ulrich, “Model-
based testing in industry: a case study with two mbt tools,” in
Proceedings of the 5th Workshop on Automation of Software
Test, ser. AST ’10. New York, NY, USA: ACM, 2010, pp.
87–90.

[5] K. Stobie, “Model based testing in practice at Microsoft,”
Electron. Notes Theor. Comput. Sci., vol. 111, pp. 5–12,
January 2005.

[6] M. Shafique and Y. Labiche, “A systematic review of model
based testing tool support,” Department of Systems and
Computer Engineering, Carleton University, Ottawa, Canada,
Tech. Rep. SCE-10-04, May 2010.

386Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 404 / 729

/* ---- Program of Every Philosopher ---- */

rule PhilosopherProgram = {

if hungry(self) and (not eating(self)) then

if canPickBothChopsticks then

StartEating

else

print self + " is hungry but can't eat."

if (not hungry(self)) and eating(self) then

StopEating

hungry(self) := flip

}

rule StartEating = {

chopOwner(leftChop(self)) := self

chopOwner(rightChop(self)) := self

eating(self) := true

print self + " starts eating."

}

rule StopEating = {

chopOwner(leftChop(self)) := undef

chopOwner(rightChop(self)) := undef

eating(self) := false

print self + " stops eating."

}

DiningPhilosopher.casm

(a) CoreASM Rules

[Rule]

public static void

PhilosopherProgram(Philosophers P)

{

if ((Hungry[P]) && !Eating[P])

if (canPickBothChopsticks(P))

StartEating(P);

else

Console.WriteLine(P+" is hungry but

can't eat !");

if (!Hungry[P] && Eating[P])

StopEating(P);

Hungry[P] = flip();

}

[Rule]

public static void

StartEating(Philosophers P)

{

ChopOwner[leftChop[P]] = P;

ChopOwner[rightChop[P]] = P;

Eating[P] = true;

Console.WriteLine(P+" starts

eating.");

}

[Rule]

public static void StopEating(Philosophers

P)

{

ChopOwner.Remove(leftChop[P]);

ChopOwner.Remove(rightChop[P]);

Eating[P] = false;

Console.WriteLine(P+" stops eating.");

}

DiningPhilosopher.cs

(b) Spec Explorer Rules

[Rule]

public static void

PhilosopherProgram(Philosophers P)

{

if ((Hungry[P]) && !Eating[P])

if (canPickBothChopsticks(P))

{

StartEatingEnabled = true;

StartEating(P);

StartEatingEnabled = false;

}

else

Console.WriteLine(P + " is hungry but

can't eat !");

if (!Hungry[P] && Eating[P])

{

StopEatingEnabled = true;

StopEating(P);

StopEatingEnabled = false;

}

Hungry[P] = flip();

}

[Rule]

public static void StartEating(Philosophers P)

{

Condition.IsTrue(StartEatingEnabled);

...

}

[Rule]

public static void StopEating(Philosophers P)

{

Condition.IsTrue(StopEatingEnabled);

...

}

DiningPhilosopher.cs

(c) Spec Explorer Rules Adjusted

Figure 14. CoreASM rules and their mappings in Spec Explorer

[7] Microsoft, “Spec Explorer 2010 Vi-
sual Studio Power Tool, Version 3.5,”
http://visualstudiogallery.msdn.microsoft.com/271d0904-
f178-4ce9-956b-d9bfa4902745, 2010.

[8] R. Farahbod, V. Gervasi, and U. Glässer, “CoreASM: An Ex-
tensible ASM Execution Engine,” Fundamenta Informaticae,
vol. 77, pp. 71–103, January 2007.

[9] AsmL, “Microsoft Research: The Abstract State
Machine Language,” http://research.microsoft.com/en-
us/projects/asml/, 2006.

[10] Microsoft, “Microsoft Research: Spec Explorer 2006 tool,”
http://research.microsoft.com/en-us/downloads/b33add8c-
6172-444d-b1b1-6a91323ad7cc/default.aspx, 2006.

[11] W. Grieskamp and N. Kicillof, “A schema language for
coordinating construction and composition of partial behavior
descriptions,” in Proceedings of the 2006 international work-
shop on Scenarios and state machines: models, algorithms,
and tools, ser. SCESM ’06. New York, NY, USA: ACM,
2006, pp. 59–66.

[12] K. Winter, “Model checking for abstract state machines,”
Journal of Universal Computer Science, vol. 3, no. 5, pp.
689–701, 1997.

[13] P. Arcaini, A. Gargantini, and E. Riccobene, “AsmetaSMV: A
Way to Link High-Level ASM Models to Low-Level NuSMV
Specifications,” in Abstract State Machines, Alloy, B and Z,
Second International Conference, ABZ 2010, Orford, QC,
Canada, 2010, pp. 61–74.

[14] A. Gargantini, E. Riccobene, and S. Rinzivillo, “Using Spin
to generate tests from ASM specifications,” in Proceedings
of the abstract state machines 10th international conference
on Advances in theory and practice, ser. ASM’03. Berlin,
Heidelberg: Springer-Verlag, 2003, pp. 263–277.

[15] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes,
“Generating finite state machines from abstract state ma-
chines,” in Proceedings of the International Symposium on
Software Testing and Analysis, July 22-24, Roma, Italy. IS-
STA’02, 2002, pp. 112–122.

[16] M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte,
N. Tillmann, and M. Veanes, “Towards a tool environment
for model-based testing with AsmL,” in Formal Approaches
to Software Testing, Third International Workshop on Formal
Approaches to Testing of Software, FATES 2003, Montreal,
Quebec, Canada, 2003, pp. 252–266.

[17] M. Veanes, N. Bjørner, Y. Gurevich, and W. Schulte, “Sym-
bolic bounded model checking of abstract state machines,”
Int. J. Software and Informatics, vol. 3, no. 2-3, pp. 149–
170, 2009.

[18] E. Börger and R. F. Stark, Abstract State Machines: A Method
for High-Level System Design and Analysis. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2003.

[19] G. Ma and R. Farahbod, “Dining Philosphers: A Sample
Specification in CoreASM,” 2006. [Online]. Available:
http://coreasm.svn.sourceforge.net/viewvc/coreasm/engine-
carma/trunk/sampleSpecs/DiningPhilosophers.coreasm

387Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 405 / 729

Object Segmentation by Edges Features of Graph Cuts

Weiwei Du, Yuki Masumoto, Nobuyuki Nakamori

Dept. Information Science

Hashigamicho, Matugasaki, Kyoto, 606-8585 Japan

e-mail: {duweiwei, m2622037, nakamori}@kit.ac.jp

Abstract—This paper proposes a simple graph cuts algorithm

based edges features to object segmentation problems. Graph

cuts are used to find the global optimum of a cost function

based on boundary and region of an image. Gaussian Mixture

Models (GMMs) are built based on the seeds which are given

by user to the object and background in an image. The

contribution of this paper is to add edges features to GMMs.

The proposal can segment an object region having noisy edges

and colors similarity between the object and background.

Experimental results illustrate the validity of the proposal.

Keywords-object segmentations; edges features; graph cuts;

Gaussian Mixture Models

I. INTRODUCTION

Object Segmentation in static images is one of the most

fundamental tasks in image content analysis, object
recognition, image matting and so on. Many algorithms of
object segmentation have been proposed. For example, an
object can be segmented by obtaining a  which is

expressed at I= F +B (1- ). F, B and  are foreground

colors, background colors, opacity respectively. However, F,
B and  are unknown, object segmentation is the highly ill-

posed problem. In order to solve the above problem, some
object segmentation algorithms have proposed such as the
trimap algorithm [1][2], membership propagation algorithm
[3]. However, they are time-consuming.

Alternatively, from minimize certain energy functions
view, graph cuts algorithms are widely explored such as
early organ segmentation [4], interactive graph cuts [5], and
recently efficient N-D image segmentation [6], image
segmentation using multi-scale smoothing [8] and graph cuts
segmentation using local texture features [9]. The goal of
these algorithms is to obtain a minimize certain energy
function which is defined in terms of boundary and region in
an image. Their basic idea of the algorithms is Min-
Cut/Max-Flow in graph theory. The minimize energy can be
obtained based on adding or removing any constraints by
user.

Early graph cuts algorithms developed with an image are
difficult to segment an image with complex noisy edges,
because these noisy edges interfere with the values among
neighboring pixels. Thus, [8] proposed a coarse-to-fine
approach to detect the true boundaries using graph cuts.
However, [8] cannot segment the kind of images which have
some analogue colors between the object and background.
Graph cuts segmentation using local texture features of

multiresolution [9] can solve the above problem, to some
extent, but it is not easy to get the texture features from an
image.

This paper proposes a simple graph cuts algorithm based
on edges features to object segmentation problems. Graph
cuts are used to find the global optimum of a cost function
based on boundary and region of an image. Gaussian
Mixture Models (GMMs) are built based on the seeds which
are given by user to the background and foreground in an
image. The contribution of this paper is to add edges features
to GMMs. The proposal can segment an object region having
noisy edges and colors similarity between the background
and foreground, and improve precision. Experimental results
illustrate the validity of the proposal.

The paper is organized as following: Section two
introduces theory of graph cuts in an image. Section three
interprets the proposal of this paper. Section four expounds
the procedures of the approach. Section five draws a
conclusion and gives a future work.

II. GRAPH CUTS FOR AN IMAGE SEGMENTATION

Boykov et al. [4][5][6] apply the theory of graph cuts

algorithm to image segmentation. An undirected graph
G=(V,E) is defined as a set of nodes V and a set of
undirected edges E that connect these nodes. A simple graph
corresponding to an image is shown in Figure 1. In the graph,
there are two terminals which are called as "a source" and "a
sink". In the image, the source is considered as the object and
a sink is considered as the background. The image can be
segmented when every pixel corresponds to the source or the
sink. However, all pixels of an image cannot be labeled, we
must judge the unlabeled pixels which belong to the object
or the background based on labeled pixels. We call the edges
of the labels corresponding to a source or a sink t-link. The
edges of neighboring pixels are called n-link. We obtain the
segmentation boundary between the object and the
background by computing n-link and t-link. Obtaining the
segmentation boundary means finding the minimum cost cut
on the graph. It is note that locations with high intensity
gradient correspond to cheap n-link. Thus, they are attractive
choices for optimal segmentation boundary. The minimum
cut can be computed exactly in polynomial time using well
known algorithms such as max-flow [10] or push-relabeled
[11].

388Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 406 / 729

Figure 1. Graph representing a 3 3 image

Actually, image segmentation is considered as a binary

labeling problem. The nodes are pixels p on the image P and
the edges have adjacency relationships with four or eight

connections between neighboring pixels Nq . N is a set of

neighboring pixels. The labeling problem is assigned a

unique label A to each node.),...,...,,(||21 pp AAAAA 

can be obtained by minimizing the energy E(A) in Eq.(1). A

is a binary vector i.e. }"","{" bkgobjAp  . "obj" and O

are represented object while "bkg" and B are represented
background in an image. P is the number of pixels on the
image.

)()()(ABARAE   (1)

Where

)()(p

Pp

p ARAR 


 (2)





Nqp

qpqp AABAB
},{

},{),()( (3)



 


otherwise

AA
AA

qp

qp
0

1
),(

The coefficient 0 in Eq. (1) specifies the relative

importance of the region properties term R(A) shown at Eq.
(2), to the boundary properties term B(A) shown at Eq. (3).
The term R(.) reflects how the intensity of pixel p fits into a
known intensity model of object and background. The term
B(A) comprises the boundary properties of segmentation.
B(A) is interpreted as a penalty for discontinuity between

pixels p and q. },{ qpB is normally large when p and q are

similar.

Table I

EDGE COST

edge cost for

n-link {p, q} },{ qpB Nqp },{

t-link

{p, S}

)"("bkgRp BOpPp  ,

K Op

0 Bp

{p, T}

)"("objRp BOpPp  ,

0 Op

K Bp

Table I lists the edge costs of the graph. The region term and
boundary term in Table I are calculated by:









)|Pr(ln)"("

)|Pr(ln)"("

pp

pp

CBbkgR

COobjR
 (5)

),(

1
)

2

)(
exp(

2

2

},{
qpdist

II
B

qp

qp 





 (6)







Nqpq

qp
Pp

BK
},{:

},{max1 (7)

pI is the brightness values and pC is RGB color

features at pixel p. In Eq. (5), the likelihood is computed
based on Gaussian Mixture Models. The boundary between
the object and the background is found by searching for the
minimum cost [7] on graph G.

III. OUR APPROACH

 The paper proposes a simple graph cuts algorithm based

edges features to object segmentation problems. Graph cuts

are used to find the global optimum of a cost function based

on boundary and region of an image. Smoothing the image

using downsampling and upsampling is to obtain the

minimize energy while we do not need add or reduce seeds

by user. The n-link can be computed after downsampling

and upsampling of the image. Gaussian Mixture Models

(GMMs) are built based on the seeds which are given by

user to the background and foreground in an image. The t-

link is computed by GMMs. The contribution of this paper

is to add edges features to GMMs. The proposal can

389Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 407 / 729

segment an object region having noisy edges and colors

similarity between the object and background.

A. Smoothing image by downsampling and upsampling(n-

link)

We use a max flow algorithm [10] to determine the

minimum cut corresponding to the optimal segmentation.
The max flow algorithm gradually increases the flow sent
from the source S to the sink T along edges in G given their
capacities (weights). Upon termination the maximum flow
saturates the graph. The saturated edges correspond to the
minimum cost cut on G giving us an optimal segmentation.
In original image segmentation by graph cuts [4], User added
or reduced seeds for changing the capacities of graph. In this
paper, we change the capacities of graph by the coarse-to-
fine level which is shown at the Figure 2. It is the same as
Nagahashi [8].

Figure 2. Smoothing the image by downsampling

B. Edges features by the monochrome images

As we all know, the traditional graph cuts algorithm is

difficult to handle the kind of images which have some noise
or analogue colors between the object and background. That
is because GMMs just used the colors information. Thus, we
add the edges features to GMMs. As a sobel filter has the
characteristic to control the noise, we adopt it for obtaining
edges features of the image. The monochrome images are
used with formula Y=0.299R+0.587G+0.114B in order to
compute the sobel filter conveniently. Y stands for
luminance. We need obtain edges features of every image
which is shown in Figure3.

Figure 3. Edges features in the monochrome image

C. Object segmentation by graph cuts

4 dimensional features },{ ppp ECX  are derived

from R, G, B color features pC and edges features pE . In

Eq. (5), t-link edge costs are transformed to the posterior

probability to achieve greater further accuracy as follows:











)|Pr(ln)"("

)|Pr(ln)"("
'

'

pp

pp

XBbkgR

XOobjR
 (8)

The posterior probability is proportional to the product of

the prior probability (Pr(O), Pr(B)) and the features

likelihood according to Bayes' theorem as follows:

















)Pr(

)Pr()|Pr(
)|Pr(

)Pr(

)Pr()|Pr(
)|Pr(

p

p

p

p

p

p

X

BBX
XB

X

OOX
XO

(9)



















)Pr(1)Pr(

1
)Pr(

BB

otherwised

ddd
O

obj

bkgobjobj

 (10)

The feature likelihoods)|Pr(OX p ,)|Pr(BX p are

derived using Gaussian Mixture Models. The GMMs is

obtained by:





K

i

iipiip XpX
1

),|()|Pr( (11)

))()(
2

1
(

2
1

2
4

1

)2(

1
),|(






 





p

T
p XX

p eXp

 (12)

We use the EM algorithm to fit the GMMs.

We initialize Pr(O)=Pr(B)=0.5 in d level, As we

consider a pixel of the image just has two classes which are

the object or background. The likelihood)|Pr(OX p ,

)|Pr(BX p are derived using Gaussian Mixture Models

with seeds of the object and background by user. t-links of

the object and background are computed as the (d-1)th level

image in Eq. (8). The (d-1)th level image can be segmented

based in Eq. (13). The prior probabilities Pr(O) and Pr(B) of

(d-2)th level are computed using the distance transform of

390Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 408 / 729

the segmentation result of (d-1)th level based on Eq. (10).

The distance from the boundary is normalized from 0.5 to

1.0. objd is defined as the normalized distance to the

object, and bkgd is defined as the normalized distance to the

background.)|Pr(OX p ,)|Pr(BX p of (d-2)th level

are computed based on (d-1)th level image segmentation. It

is shown in Figure 4. This processing is repeated until d=0.











































},{:

},{

'

},{:

},{

'

},{:

},{

'

},{:

},{

'

)"("

)"("

)"("

)"("

qpq

qpp

Nqpq

qpp

qpq

qpp

Nqpq

qpp

BbkgR

BobjR

Bp

BbkgR

BobjR

Op









 (13)

Figure 4. The posterior probability for {p, S} and {p, T}

IV. STEPS OF OUR ALGORITHM

Figure 5 shows the process of the algorithm. It is carried

out according to the following procedure.

1) Degrade a color image to the low resolution image

with a downsampling method.

2) Give some seeds the dth level color image.

3) Obtain Y value of the low resolution monochrome

image with the formula Y=0.299R+0.587G+0.114B.

4) Extract the edges features of the monochrome image.

5) Obtain t-link using the prior probability GMMs.

6) Obtain n-link by the dth level color image.

7) Obtain a segmentation image by graph cuts.

Repeat from step 3 to step 6 until the original image is

obtained. After that, go ahead to step 7 in order to get a

segmentation image.

Figure 5. Flowchart on the process of our proposal

V. EXPERIMENT

The images of segmentation experiments come from the

Grab Cuts Database [12]. The image database has the
original images and mask images of humans, animals,
landscapes and so on. User gives seeds to the original images
and the differences between mask images given in the
database and output images are computed as error rate as
shown in Figure 11. We compare interactive graph [5]
(method1), image segmentation using multi-scale smoothing
[8] (method2), graph cuts segmentation by texture features
[9] (method3) and our proposal. The segmentation error rate
is defines as:

%100)

det
([%]





sizeimage

objectinpixelsdundertecte

sizeimage

backgroundinpixelsectedun
Error

 (14)

391Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 409 / 729

A. An image with noise and analogue colors between the

foreground and background

We give two images for describing our approach. Figure

6 is a difference colors image between the object and
background by their histograms which are shown at Figure 8.
Figure 7 is an analogue colors image between the object and
background by their histograms which are shown at Figure 9.
The horizontal axis of figure 8 and 9 is bins from 0 to 255
and the vertical one is the average values of R, G and B.
Figure 6 and Figure 7 give the accurate objects and
backgrounds based on [12]. We consider that figure 7 has an
analogue colors image between the object and background,
because they have analogue histograms between the object
and background like a Gaussian distribution based on Figure
9. Conversely, we obtain a failure result referring to figure
12, because they have a difference colors image between the
object and background based on Figure 8.

Finally, we add Gaussian noises to Figure 7. The
experimental result is shown at Figure 10. The error rate of
mehtod1 without edges features is 6.78% while the error rate
of our approach with edges features is 2.06%. Our approach
is effective to the kind of images which have noise and an
analogue colors image between the foreground and
background.

Figure 6. A different colors image between the foreground

and background

Figure 7. An analogue colors image between the foreground

and background

Figure 8. Histogram of the kangaroo image between the

foreground and background

Figure 9. Histogram of the book between the foreground

and background

Figure 10. The results of the book image with noises

B. Comparison with other methods

Our approach obtains the smallest error rate comparison

with other methods. The results are shown in Figure 11.
However, our proposal does not always obtain the smallest
error rate to all images such as Figure 12. Generally speaking,
our approach is always prior to method1 and method2. When
the image has heavy texture change, our approach is inferior
to method3.

VI. CONCLUSION AND FUTURE WORK

We propose a simple graph cuts algorithm for object

segmentation based on edge features of an image. We just
add the edges features in GMMs in order to compute t-link.
The proposal can improve the segmentation error rate
compared to the conventional methods to the kind of the
images which have an object region having noisy edges and
colors similarity between the object and background.
Experiments’ results also certified the effectiveness of the
approach. However, we must find the appropriate the values

of  and  in order to apply our proposal. Therefore,

future work is required adding texture feature for

segmentation and the appropriate parameters  and  can

be obtained automatically.

REFERENCES

[1] Ruzon, M. and Tomasi, C.: “Alpha estimation in natural images,”

Proc. CVPR, pp. 18-25, 2000.

[2] Chunang, Y. Y., Curless, D., Salesin, D., and Szeliski, R. : “A
bayesian approach to digital matting,” Proc. CVPR, pp. 264-271,
2000.

[3] W. Du and K. Urahama : “Natural image matting with membership
propagation,” IPSJ Trans. CVA, vol. 1, no. 1, pp. 3-11, 2009.

392Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 410 / 729

[4] Y.Boykov and M.-P. Jollu.:”Interactive organ segmentation using
graph cuts,” In Medical Image Computing and Computer-Assisted
Intervention, pp. 276-286, 2000.

[5] Y.Boykov, Y., Jolly, and M.-P.: “Interactive graph cuts for optimal
boundary and region segmentation of object in N-D image
segmentation,” Internation Conference on Computer Vision, vol. I, pp.
105-112, 2001.

[6] Y.Boykov and G. Funka-Lea: “Graph cuts and efficient N-D image
segmentation,” Int. J. Comput. Vis. vol. 70, no. 2, pp. 109-131, 2006.

[7] Y.Boykov and V. Kolmorov: “An experimental comparison of
mincut/max-flow algorithms for energy minimization in vision,”
IEEE Trands. Pattern Anal. Mach. Intell. vol. 26, no. 9, pp. 1124-
1137, Sep. 2004.

[8] T. Nagahashi, H.Fujiyoshi, and T.Kanade: “Image segmentation
using iterated graph cuts based on multi-scale smoothing,” Asian

Conference on Computer Vision, Part II, LNCS 4844, pp. 806-816,
2007.

[9] K. Fukuda, T. Takiguchi, and Y. Araki: “Graph cuts segmentation by
using local texture features of multiresolution analysis,” IEICE
TRANs. INF. and SYST. vol. E92-D, no. 7, pp. 1453-1460, 2009.

[10] L. Ford and D. Fulkerson.: “Flows on networks,” Princeton
University Press, 1962.

[11] A. Goldberg and R. Tarjan. : “A new approach to the maximum flow
problem,” Journal of the Association for Computing Machinery,
35(4): 921-940, October 1988.

[12] http://research.microsoft.com/en-us/um/cambridge/projects/
visionimagevideoediting/segmentation/grabcut.htm/. Retrieved:
September, 2012

Figure 11. Examples of segmentation results

Figure 12. A failure example of segmentation result

393Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 411 / 729

Product Development Time Improvement with
Requirements Reuse

Semra Yilmaz Tastekin
Informatics Institute

Middle East Technical University
Ankara, Turkey

e-mail: syilmaz@aselsan.com.tr

Yusuf Murat Erten
Innova Inc.

Ankara, Turkey
e-mail: merten@innova.com.tr

Semih Bilgen
Electrical and Electronics Engineering

Middle East Technical University
Ankara, Turkey

e-mail: bilgen@eee.metu.edu.tr

Abstract—Product development time estimation is important for
project management tasks. This study investigates the impact of
requirements reuse on product development duration for differ-
ent products in a similar domain. We propose an analytical tool
to estimate the minimum time to be saved given the percentage
of requirements reused from earlier projects. Empirical results
of industrial case studies are used as inputs to this study. Three
cases from different organizations have been studied for software
and system development projects, which consist of hardware
and software components. The results of the case studies are
compared with a study in the literature on product development
time. According to the industrial empirical results, a modified
product development time estimation method is proposed for
software projects.

Keywords - requirements reuse; product development time.

I. INTRODUCTION

In most organizations, project deliverables are generally
systems that combine hardware and software components.
For system projects, which include hardware and software
components, software is becoming an increasingly significant
constituent [1][2] and project management is accordingly
becoming more complex.

Engineers working in these projects discover most of the
problems at the integration phase. Isolation of the source of
these problems at this stage can take time and this may affect
the project duration. According to [3], 50% of total time and
cost of a project is spent for testing. So, minimizing possible
system faults at earlier stages will minimize the test efforts.
Since most defects are found in the integration and test phases,
these phases are generally stressful for developers and testers
since they are responsible for correcting the defects. Therefore,
reuse of the components created during each phase of different
projects has an important role in eliminating the defects in the
product, correspondingly reducing the engineering effort in the
project.

This study focuses on reducing some of the sources of
defects hence the product development time via requirements
reuse. The motivation behind the reuse of requirements items
from previous projects is that these are already validated and
accepted by end users in previous projects. In this study,
three case studies are presented to demonstrate the benefits
of requirements reuse for a system project (containing both

hardware and software) and a software product. In the litera-
ture, there are some studies on the reuse of some components
and they have generally been performed for software code
reuse. One of the contributions of the present study is to
provide empirical results, which demonstrate the reduction
of project duration due to requirements reuse for industrial
products. Another contribution is to show that the product
development time estimations proposed earlier in the literature
for manufacturing industries [19] can be applied to system
and software projects. We also propose a modification to the
current formulation to represent software-based projects more
accurately [19].

This paper is organized as follows. Section II briefly reviews
the software product line literature, focusing specifically on
product development time. Section III discusses the impact of
requirements reuse in the context of industrial case studies.
Section IV presents a modified product development time
proposal. Section V concludes the paper and suggests future
directions for reuse in project management.

II. RELATED WORK

This section reviews the literature on Software Product Line
(SPL) and product development time.

A. Software Product Line

When reuse is applied in all stages of the product devel-
opment cycle, this corresponds to the product line concept.
The aim of the product line concept is to enhance the quality
of the product and decrease the engineering cost. In the
literature, there are many studies, which evaluate the estab-
lishment of software and system product lines in organizations
[5][6][9][10].

The accepted SPL approach is based on two-life cycles,
which are Domain Engineering (DE) and Application Engi-
neering (AE). SPL mostly focuses on the DE activities [5],
which create a common infrastructure for the related domain.
On the other hand, AE is active when there is a new project.
To produce a product, the required assets are selected from the
common assets created by DE. For the remaining part of the
product, new assets are created from scratch. Although SPL
applies to all phases of projects life cycle, this study covers
only the requirements definition phase. Thus, in the following

394Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 412 / 729

sections, requirements definition phase, which is a part of SPL,
is studied.

B. Product Development Time
While preparing project proposals, little information is

available concerning the development details. Before starting
the development, it is important to have information about
development time to estimate the cost of the project used for
proposals.

In the literature, there is some information about the meth-
ods for estimating the duration for product development. Grif-
fin [18] classifies the metrics, which affect the development
time in four groups as;

• Changes during the product generation,
• The complexity of product,
• Whether a formal process is used in the organization, and
• Whether a cross functional team is used.
Changes in requirements have a considerable effect on the

development workload ([11][20][21]). Therefore, it is impor-
tant to define the requirements accurately to ensure minimum
change during the development stage. The number of main
functions the product performs gives the complexity of the
product [19]. If organizations do not have formal development
processes, the development time is higher compared to those
with formal development processes. A study by Olson et al.
[12] emphasizes that the use of a cross functional team is also
an important parameter in increasing project performance.

Griffin [18][19] defines Development Time (DT) and
Concept To Customer (CTC) as two separate parameters. DT
begins from design up to the introduction to the customer
and CTC begins with concept development and continues to
specification definition until the introduction to the customer.
Requirements engineering activities are covered within
CTC. If DT is subtracted from CTC this will give the time
spent for requirements engineering activities. DT and CTC
formulations proposed for the manufacturing industries are
given below [19].

DT = α+ β1DT ∗ PC + β2DT ∗NN +

β3DT ∗ (PC ∗ FP) + β4DT ∗ (NN ∗XFT) + εDT (1)

CTC = α+ β1CTC ∗ PC + β2CTC ∗NN + β3CTC

∗(PC ∗ FP) + β4CTC ∗ (NN ∗XFT) + εCTC (2)

where α is the cycle time constant, PC and NN are product
complexity and product newness/uncertainty, respectively. If
NN value increases, the change probability on the product
during the development also increases. FP and XFT show
whether formal processes and cross functional teams are used,
respectively. If formal development processes are not used,
then FP=0. ε is the error term. The unit of β1 and β3 are the
months/function designed in the product. The unit of β2 and
β4 are the months/percentage of change in the product. The
estimation of the coefficients α and β, based on data collected
from many companies, is given in Table I [19].

TABLE I. COEFFICIENTS USED IN THE DT AND CTC FORMULATIONS

α β1 β2 β3 β4

DT 8.4 4.2 0.09 -1.9 -0.09
CTC 10.4 3.7 0.16 0.1 -0.16

III. PROBLEM DEFINITION AND QUANTITATIVE DATA

The requirements phase will have the greatest impact on
the subsequent steps in the project life cycle. If there are
defects in the requirements phase, its negative effect is re-
flected on the later phases. Considering that 7-15% of the
total project resources are used for requirements engineering
[14][15], requirements-related phases of the development life-
cycle should be realized as effectively as possible. Besides,
the customer generally needs the product within the shortest
possible time. This puts pressure on the project manager and
engineers to find ways to shorten the project duration. This
can be achieved by shortening the phases in the life cycle.

The requirements engineering stage can be shortened by
effective reuse of requirements, which are generated at the
initial step of the project. In the final step, test activities are
performed to determine whether the system meets defined
requirements. Once the system is accepted by the customer,
all the requirements defined at the beginning of the project
are tested and approved. So, reusing these requirements in
other projects will enable easy acceptance of the same features
in similar systems. This will increase the quality of the
requirements and will reduce the project duration [8][13][22].

In the literature, there are many studies discussing guide-
lines for reuse but few compare project development time
with reuse and without reuse. For example, Johnson [23]
proposes a model, which integrates SPL with a software
development environment; however, this study does not have
measured results. Similarly, Catal and Diri [4] proposes a
framework for software fault prediction in SPL but does not
present an analysis due to the lack of fault data. There are
several theoretical studies concerning software components
reuse [6][7][8][16][17], but little research about hardware
components. In the present study, the requirements engineering
phase in software intensive systems projects is analyzed for
two different organizations using a reuse approach. Following
paragraphs present the quantitative data from these organi-
zations. The results of the case studies are compared with
the results of Griffin’s study [19]. Of the three case studies
the first involved the reuse of the requirements for a system
with hardware and software functionalities. The second and
third cases involved the reuse of the requirements for software
products. Cross functional teams are not used for the projects
in these case studies.

A. Characteristics of the Case Studies

To analyze the product development time using the require-
ments reuse approach, it was intended to gather data from
different companies and the requirements engineering phase
would be analyzed for three different organizations. Data is
collected with a joint effort of the project technical managers

395Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 413 / 729

and the authors. Unfortunately, there were some difficulties in
gathering data from different companies. First, organizations
generally do not keep the project related data in a systematic
way. To overcome this difficulty, some interviews with the
project technical managers were undertaken and the related
data were collected using related documents and organizational
database. Second, even when metrics were kept systematically,
the organizations would prefer not to release this data for
external use.

The data collected in this study is quantitative ([24]). The
necessary data to perform the case studies include the total
number of requirements, the number of requirements reused
from a previous project and the duration of the requirements
definition phase. These data are presented in tabular format
below (Table II, Table III, Table V, Table VI, Table VII, Table
VIII, Table X, Table XI).

The project related data are derived from the responses to
the questions given below, following the methods as described:

Question 1: Are there any similar products which can be in
the same domain or are derivative products in the company?

Method Used for Answering Question 1: Discussions with
different project technical managers from different companies
are performed and the details of the projects are evaluated.

Question 2: Is there recorded data for the number of
requirements for each project in the same domain?

Method Used for Answering Question 2: The System Re-
quirements Documents for each project are used to obtain the
necessary data.

Question 3: Is there recorded data for reused requirements?
Method Used for Answering Question 3: If the metrics

are kept systematically, data is retrieved from organization
database. If they are not kept in an organizational database,
reused requirements are derived from the system requirements
documents by technical personnel involved in the projects.

Question 4: Is there duration data for requirement definition
phases?

Method Used for Answering Question 4: The enterprise
resource planning systems of the companies are used to extract
this data.

Question 5: What is the complexity level of the product to
be studied?

Method Used for Answering Question 5: As defined in [19],
the main functions of the products are defined to obtain the
complexity level of the product with the help of technical
managers of the projects. If there is critical technology to
be developed within the scope of the product, this factor is
also added to the complexity. For example, if the product has
4 main functions and includes 2 technological infrastructure
developments, the complexity level is defined for this product
as 6.

The data from the case studies are used for the following
purposes;

• Deriving the realized duration for requirement definition
phases of system products and software products,

• The comparison of durations for different projects in the
same domain,

• Comparison of realized duration with the theoretically
predicted product development time ([19]),

• Separately analyzing the software products and system
products,

• Definition of any necessary modification to product de-
velopment time proposed in [19] if required.

Using Griffin’s study [19] and case studies data from current
research, the following issues will be resolved at the end of
this study;

• The product development time proposed in [19] was
appropriate for system products which involve hardware
and software components,

• But product development time proposed in [19] was not
appropriate for software products,

• There was a need to modify the product development
time prediction for more accurate estimations for software
products.

B. Case Study-1

Project A1 and Project A2 in the same domain from
Company A were analyzed. Some of the requirements of
Project A1 have been reused in Project A2. Table II shows
the number of requirements in Project A2. Project A2 had
183 requirements in total. 104 requirements of those were
reused from Project A1. Remaining 79 requirements were
created from scratch for Project A2. The realized duration for
requirements engineering (RE) activities for both projects is
given in Table III.

Change probability of 104 reused requirements was very
low in Project A2, because they were tested, and approved by
the customer previously. This implies that;

• 57% of total requirements (104 requirements) for Project
A2 were almost fixed.

• 43% of total requirements (79 new requirements) could
still be changed in Project A2.

By reusing the requirements, change probability in the
product (NN) is minimized. While NN varies between 0% and
100%, by reusing the requirements it can be decreased in the
range of 0% to 43% for Project A2. By using Griffin’s CTC
formulation (2), this situation indicates that for all possible
changes in the requirements, the organizations would require
an additional 16 months (β2CTC ∗ NN = 0.16 ∗ 100%)
if requirements were not reused. On the other hand, the
organization would only require an additional 6.88 months
(0.16*43%) maximum when requirements were reused. So,
change effect is reduced by 9.12 months for Case Study-1.

TABLE II. REQUIREMENTS USED IN PROJECT A2

Total # of Req.
in Project A2

Req. of Project A1 Reused in
Project A2

Total 183 104 (57% of Project A2)

TABLE III. DURATION EXPENDED IN PROJECT A1 AND PROJECT A2

Project A1 Project A2 Possible Impact of Reuse
Total Duration
(months) 8 5 37 % decrease in duration

396Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 414 / 729

To estimate the time spent for RE activities, the calculations
of DT and CTC given in Appendix-A for 100% and 43%
cases are performed using (1) and (2). 100% indicates that
product requirements/features were totally new. 43% indicates
the amount of new requirements, and is taken as the change
probability of the requirements. The complexity level of the
product developed in the scope of Project A2 was taken
as 6 based on the number of main functions the product
has. Eventually, calculated time spent for RE activities is
summarized in Table IV.

Even if the maximum change (43%) occurs in the require-
ments, there would be at least 22% decrease (from 18 months
to 14.01 months) in the duration of RE activities. If the
change in the requirements were less than 43% change, the
improvement would be expected to be greater than 22%.

When this result is compared with the actual results of Case
Study-1 in Table III, the decrease in the Project A2 shows
agreement with these calculations. Griffin’s formulation pre-
dicts at least 22% reduction in duration, likewise a reduction
of 37% (more than 22%) was obtained. Thus, formulations
proposed by Griffin for the estimation of project duration
applies for the system, which involves both hardware and
software.

C. Case Study-2

For this case, three software projects from Company B were
analyzed; Projects B2 and B3 used Project B1 as a baseline.
Table V and Table VI show the number of requirements in
Project B2 and Project B3. Project B2 had 376 requirements
in total. 314 of those were reused from Project B1. Remaining
62 requirements were created from scratch for Project B2.
Similarly, Project B3 had totally 323 requirements, 230 of
those were reused from Project B1 and 93 new requirements
were created. For the requirements engineering phase of both
projects, the duration data are given in Table VII and Table
VIII.

As shown in Table V, for Project B2;
• 84% of total requirements (314 requirements) were al-

most fixed and change probability of those was very low.
• 16% of total requirements (62 new requirements) could

still be changed during the product cycle time.
Similarly for Project B3, as shown in Table VI;
• 71% of total requirements (230 requirements) were al-

most fixed and change probability of those was very low.
• 29% of total requirements (93 new requirements) could

still be changed during the product cycle time.
When the requirements are reused, changes in product could

be decreased in the range of 0% to 16% for Project B2 and
0% to 29% for Project B3. Using (2), if the requirements were
not reused, the organizations would require an additional 16

TABLE IV. CASE STUDY-1: ESTIMATED TIME SPENT FOR RE WORKS

RE works for
100% change

RE works for
43% change

% of Decrease in
RE works

CTC-DT 18 months 14.01 months ≥ 22%

TABLE V. REQUIREMENTS USED IN PROJECT B2

Total # of Req.
in Project B2

Req. of Project B1 Reused in
Project B2

Total 376 314 (84% of Project B2)

TABLE VI. REQUIREMENTS USED IN PROJECT B3

Total # of Req.
in Project B3

Req. of Project B1 Reused in
Project B3

Total 323 230 (71% of Project B3)

months (0.16*100%). On the other hand organization would
only require an additional 2.56 months (0.16*16%) maximum
for Project B2 and 4.64 months (0.16*29%) maximum for
Project B3 if requirements were reused.

Detailed calculations of DT and CTC are given for possible
changes of 100%, 16% and 29% in Appendix-B using (1)
and (2). 16% and 29% indicate those requirements, which
were new and can be changed for Project B2 and Project B3,
respectively. The complexity level of the products in Project
B2 and B3 was taken as 3 again based on the number functions
in the software. By using the results of calculations, the time
spent for RE activities is summarized in Table IX.

However, calculated results are not similar to the actual
results of Case Study-2 in Table VII and Table VIII. The
decreases in both Project B2 and Project B3 were 34% in
real life. But Griffin’s formulation predicts at least 44% and
37% decreases in Project B3 and Project B4, respectively. This
is explained and tackled in Section IV.

D. Case Study-3

Two software projects from Company A were studied as
Project A3 and Project A4. In Project A4, some of the
requirements from Project A3 were reused as well as some
additional requirements included by the customer. Table X
shows the number of requirements in Project A4. Project A4
had 342 requirements in total. 255 of those were reused from
Project A3. For the requirements engineering phase of both
projects, the data related to the duration are given in Table
XI.

As shown in Table X, for Project A4;
• 75% of total requirements (255 requirements) were al-

most fixed and change probability of those was very low.
• 25% of total requirements (87 new requirements) could

still be changed during the product cycle time.
By reusing the requirements, changes in product could

be decreased in the range of 0% to 25% for Project A4.

TABLE VII. DURATION EXPENDED IN PROJECT B1 AND PROJECT B2

Project B1 Project B2 Possible Impact of Reuse
Total Duration
(months) 7,5 5 34 % decrease in duration

TABLE VIII. DURATION EXPENDED IN PROJECT B1 AND PROJECT B3

Project B1 Project B3 Possible Impact of Reuse
Total Duration
(months) 7,5 5 34 % decrease in duration

397Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 415 / 729

TABLE IX. CASE STUDY-2: ESTIMATED TIME SPENT FOR RE WORKS

RE works for
100% change

RE works for
16% and 29%

change

% of Decrease in
RE works

CTC-DT 13.5 months 7.62 months
8.53 months

≥ 44% (16% change)
≥ 37% (29% change)

Using (2), if requirements were not reused, the organizations
would require an additional 16 months (0.16*100%), while
the organization would only require an additional 4 months
(0.16*25%) maximum for Project A4 if requirements were
reused.

Detailed calculations of DT and CTC are given for 100%
and 25% changes in Appendix-C using (1) and (2). The
durations for 100% and 25% changes is summarized in Table
XII. The complexity level of the product was defined as 5.

Again, these results are not similar to the actual results of
Case Study-3 in Table XI. The decrease in the Project A4 was
25% in real life. But Griffin’s formulation predicts at least
32% decrease in Project A4.

The results of all case studies are tabulated in Table XIII.

IV. DISCUSSION

According to the empirical results of Case Study-1, Griffin’s
formulation for product development time is validated for
system projects. But, empirical results of Case Study-2 and
Case Study-3 show that it is necessary to modify Griffin’s
formulation for software projects. Software requirements may
change more easily when compared to hardware requirements.
The nature of software allows the customer to feel more com-
fortable while requesting changes. Thus, changes in software
projects were more than expected. There are some decreases in
project durations for Case Study-2 and Case Study-3, but these
are less than what would be expected according to Griffin’s
formulation.

Changes in product features, i.e., in requirements are de-
noted by NN (newness/uncertainty) variable in (1) and (2). NN
variable in [19] should be re-evaluated for software projects
as this parameter should have a more significant effect on
the software product development time according to the case
studies performed in the scope of this study. By referring to
these case studies, if the effect of NN variable is multiplied
by at least 2.1 but not more than 3.4 for the cases where the
product is not totally new, the results of Griffin’s formulation
show similarities with the real life results. Using a multiplier
out of this range does not produce the realized results for the
case studies. When the multiplication coefficient (referred as

TABLE X. REQUIREMENTS USED IN PROJECT A4

Total # of Req.
in Project A4

Req. of Project A3 Reused in
Project A4

Total 342 255 (75% of Project A4)

TABLE XI. DURATION EXPENDED IN PROJECT A3 AND PROJECT A4

Project A3 Project A4 Possible Impact of Reuse
Total Duration
(months) 6 4.5 25 % decrease in duration

TABLE XII. CASE STUDY-3: TIME SPENT FOR RE WORKS

RE works for
100% change

RE works for
25% change

% of Decrease in
RE works

CTC-DT 16.5 months 11.25 months ≥ 32%

TABLE XIII. EXPECTED AND ACTUAL CHANGES IN DURATION OF RE
ACTIVITIES FOR PROJECTS A2, B2, B3, A4 USIG GRIFFIN’S

FORMULATION

Project Max. Expected %
of Change in Req.

Expected % of
Duration Decrease

in RE Works

Actual % of
Duration Decrease

in RE Works
A2 43% ≥ 22% 37%
B2 16% ≥ 44% 34%
B3 29% ≥ 37% 34%
A4 25% ≥ 32% 25%

δ) is chosen to be close to 3.4, the decrease in the duration is
going to be smaller. For values larger than 3.4, the results are
similar to the case where requirements are not reused at all. So,
δ is selected as 2.1 to see the best effect of requirements reuse.
The projects for each case study selected from Company A and
Company B are in the same domain and share the common
requirements. Therefore, evaluations regarding the results of
the case studies do not cover totally new products.

The modified versions of (1) and (2) are proposed as
below. The duration estimations include the engineering
efforts during the requirements engineering phases. Other
departments such as marketing, finance etc. are not included
in the scope of the case studies. Therefore, this modification
assumes that a cross functional team is not used in the
organizations.

DT = α+ β1DT ∗ PC + β2DT ∗ δ ∗NN +

β3DT ∗ (PC ∗ FP) + εDT (3)

CTC = α+ β1CTC ∗ PC + β2CTC ∗ δ ∗NN + β3CTC

∗(PC ∗ FP) + εCTC (4)

where 2.1 ≤ δ ≤3.4.

Calculations for Case Study-2 of Company B are repeated
in Appendix-D using (3) and (4). Equations (1) and (2) are
used without any modification for the case when the product is
totally new (NN=100%). Even if the maximum change (16%)
occurred in the requirements for Project B2, the calculation
indicates that there would be at least a 34% decrease in
the duration (from 13.5 months to 8.85 months) of the RE
activities. Real-life duration reduction, which was 34% as
given in Table VII is in agreement with this result.

Similarly, if the maximum change (29%) occurred in the
requirements for Project B3, the calculation indicates that there
would be at least a 20% decrease in the duration (from 13.5
months to 10.76 months) of the RE activities. Consequently,
real-life reduction of duration, which was 34% as given in
Table VIII is in agreement with this result.

Similar calculations for Case Study-3 of Company A are
performed in Appendix-E using (3) and (4). Again (1) and (2)

398Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 416 / 729

are used for NN=100%. Even if the maximum change (25%)
occurred in the requirements for Project A4, the calculation
indicates that there would be at least a 20% decrease in
the duration (from 16.5 months to 13.17 months) of the RE
activities. The actual reduction in the duration, which was 25%
as given in Table XI is in agreement with this result.

Summarized results of Case Study-2 and Case Study-3 using
proposed formulations are given in Table XIV.

V. CONCLUSION AND FUTURE WORK

The focus of this study is the reuse of requirements for
different products in similar domains. The effects of require-
ment reuse for two different product types, one consisting of
hardware and software, and the other purely software, have
been investigated. For this investigation three case studies have
been performed and their results have been compared with a
theoretical study ([19]). It is very likely that different projects
in the same domain have many common requirements and
if these requirements were maintained and shared in a com-
mon database that employees could access, systems engineers
would choose to use these requirements in different projects.
In the context of such an opportunity, the product would be
developed within a common understanding of the require-
ments. Besides, availability of applicable product development
time estimations has an importance on the project management
tasks. By using an applicable estimation model for industrial
products, it should be possible to make project budget and
resource allocation with minimum error. It might be difficult
to work with minimum error at the beginning of the project
with less information about the development details. From the
case studies it is concluded that the proposed method [19] can
be applied to system projects with hardware and software.
However, it does not yield the same results with real-life
software projects. This is because software requirements may
change more easily when compared to hardware requirements.
So, Griffin’s formulation is revised for the software products
and proposed formulation has more effect for the change
probability of the product.

A. Future Work

This study showed the effects of requirements reuse on
project duration based on empirical results of the case studies
in which the data are collected from industry. This study covers
only the requirements analysis phase. In terms of the future
work, the duration can be further reduced by investigating
reuse in the other phases of the project life cycle.

TABLE XIV. EXPECTED AND ACTUAL CHANGES IN DURATION OF RE
ACTIVITIES FOR PROJECTS B2, B3, A4 USING THE PROPOSED

FORMULATION

Project Max. Expected %
of Change in Req.

Expected % of
Duration Decrease

in RE Works

Actual % of
Duration Decrease

in RE Works
B2 16% ≥ 34% 34%
B3 29% ≥ 20% 34%
A4 25% ≥ 20% 25%

To enhance the validity of the δ value in proposed method,
additional case studies can be performed. The effect of reuse
can also be studied for the organizations in which cross
functional teams are used.

APPENDIX

A. Calculations for Case Study-1

CTC100 = 10.4+3.7∗6+0.16∗100%+0.1∗6 = 49.2 months

CTC43 = 10.4+3.7∗6+0.16∗43%+0.1∗6 = 40.08 months

DT100 = 8.4+4.2 ∗ 6+0.09 ∗ 100%− 1.9 ∗ 6 = 31.2 months

DT43 = 8.4 + 4.2 ∗ 6 + 0.09 ∗ 43%− 1.9 ∗ 6 = 26.07 months

The time spent for requirements engineering is:

CTC100 −DT100 = 49.2− 31.2 = 18 months

CTC43 −DT43 = 40.08− 26.07 = 14.01 months

B. Calculations for Case Study-2

CTC100 = 10.4+3.7∗3+0.16∗100%+0.1∗3 = 37.8 months

CTC16 = 10.4+3.7∗3+0.16∗16%+0.1∗3 = 24.36 months

CTC29 = 10.4+3.7∗3+0.16∗29%+0.1∗3 = 26.44 months

DT100 = 8.4+4.2 ∗ 3+0.09 ∗ 100%− 1.9 ∗ 3 = 24.3 months

DT16 = 8.4 + 4.2 ∗ 3 + 0.09 ∗ 16%− 1.9 ∗ 3 = 16.74 months

DT29 = 8.4 + 4.2 ∗ 3 + 0.09 ∗ 29%− 1.9 ∗ 3 = 17.91 months

The time spent for requirements engineering is:

CTC100 −DT100 = 37.8− 24.3 = 13.5 months

CTC16 −DT16 = 24.36− 16.74 = 7.62 months

CTC29 −DT29 = 26.44− 17.91 = 8.53 months

C. Calculations for Case Study-3

CTC100 = 10.4+3.7∗5+0.16∗100%+0.1∗5 = 45.4 months

CTC25 = 10.4+3.7∗5+0.16∗25%+0.1∗5 = 33.4 months

DT100 = 8.4+4.2 ∗ 5+0.09 ∗ 100%− 1.9 ∗ 5 = 28.9 months

DT25 = 8.4 + 4.2 ∗ 5 + 0.09 ∗ 25%− 1.9 ∗ 5 = 22.15 months

The time spent for requirements engineering is:

CTC100 −DT100 = 45.4− 28.9 = 16.5 months

CTC25 −DT25 = 33.4− 22.15 = 11.25 months

D. Calculations for Case Study-2 according to the proposed
formulation (δ = 2.1)

CTC100 = 10.4+3.7∗3+0.16∗100%+0.1∗3 = 37.8 months

399Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 417 / 729

CTC16 = 10.4+3.7∗3+2.1∗0.16∗16%+0.1∗3 = 27.18 months

CTC29 = 10.4+3.7∗3+2.1∗0.16∗29%+0.1∗3 = 31.54 months

DT100 = 8.4+4.2 ∗ 3+0.09 ∗ 100%− 1.9 ∗ 3 = 24.3 months

DT16 = 8.4+4.2∗3+2.1∗0.09∗16%−1.9∗3 = 18.33 months

DT29 = 8.4+4.2∗3+2.1∗0.09∗29%−1.9∗3 = 20.78 months

Time spent for requirements engineering is calculated as;

CTC100 −DT100 = 37.8− 24.3 = 13.5 months

CTC16 −DT16 = 27.18− 18.33 = 8.85 months

CTC29 −DT29 = 31.54− 20.78 = 10.76 months

E. Calculations for Case Study-3 according to the proposed
formulation (δ = 2.1)

CTC100 = 10.4+3.7∗5+0.16∗100%+0.1∗5 = 45.4 months

CTC25 = 10.4+3.7∗5+2.1∗0.16∗25%+0.1∗5 = 37.8 months

DT100 = 8.4+4.2 ∗ 5+0.09 ∗ 100%− 1.9 ∗ 5 = 28.9 months

DT25 = 8.4+4.2∗5+2.1∗0.09∗25%−1.9∗5 = 24.63 months

Time spent for requirements engineering is calculated as;

CTC100 −DT100 = 45.4− 28.9 = 16.5 months

CTC25 −DT25 = 37.8− 24.63 = 13.17 months

ACKNOWLEDGMENTS

The authors would like to thank the companies who have
contributed the necessary data for the case studies to complete
this work.

REFERENCES

[1] Matthew R. Kennedy and David A. Umphress, “An Agile Systems
Engineering Process - The Missing Link”, CrossTalk, The Journal of
Defense Software Engineering”, May-June 2011.

[2] Richard Turner, “Toward Agile Systems Engineering Processes”, Cross
Talk, The Journal of Defense Software Engineering, April 2007.

[3] Shaojie Guo, Weiqin Tong, Juan Zhang, and Zongheng Li, “An Appli-
cation of Ontology to Test Case Reuse”, International Conference on
Mechatronic Science, Electric Engineering and Computer, pp. 775-778,
2011.

[4] Cagatay Catal and Banu Diri, “A Conceptual Framework to Inte-
grate Fault Prediction Sub-process for Software Product Lines”, 2nd
IFIP/IEEE International Symposium on Theoretical Aspects of Software
Engineering, pp. 99-106, 2008.

[5] Timo Kkl, “Standards Initiatives for Software Product Line Engineering
and Management within the International Organization for Standard-
ization”, Proceedings of the 43rd Hawaii International Conference on
System Sciences, pp. 1-10, 2010.

[6] Sholom Cohen, “Guidelines for Developing a Product Line Concept of
Operations”, Technical Report. CMU/SEI-99-TR-008, August 1999.

[7] John K. Bergey, Gary Chastek, Sholom Cohen, Patrick Donohoe,
Lawrence G. Jones, and Linda Northrop, “Software Product Lines:
Report of the 2010 U.S. Army Software Product Line Workshop”,
Technical Report, CMU/SEI-2010-TR-014, June 2010.

[8] Parastoo Mohagheghi and Reidar Conradi, “An Empirical Investigation
of Software Reuse Benefits in a Large Telecom Product”, ACM Trans-
actions on Software Engineering and Methodology, Vol. 17, Issue 3,
Article No 13, June 2008.

[9] Frank Dordowsky, Richard Bridges, and Holger Tschpe, “Implementing
a Software Product Line for a complex Avionics System”, 15th Inter-
national Software Product Line Conference, pp. 241-250, 2011.

[10] Kentaro Yoshimura, Jun Shimabukuro, Takatoshi Ohara, Chikashi
Okamoto, Yoshitaka Atarashi, Shinobu Koizumi, Shigeru Watanabe, and
Kazumi Funakoshi, “Key Activities for Introducing Software Product
Lines into Multiple Divisions: Experience at Hitachi”, 15th International
Software Product Line Conference, pp. 261-266, 2011.

[11] Andy J. Nolan, Silvia Abraho, Paul C. Clements, and Andy Pickard,
“Requirements Uncertainty in a Software Product Line”, 15th Interna-
tional Software Product Line Conference, pp. 223-231, 2011.

[12] Eric M. Olson, Orville C. Walker, Robert W. Ruekert, and Joseph M.
Bonner, “Patterns of Cooperation During New Product Development
Among Marketing, Operations and R&D: Implications for Project Per-
formance”, Journal of Product Innovation Management, Vol 18, Issue
4. pp. 258-271, July 2001.

[13] Wayne C. Lim, “Effects of Reuse on Quality, Productivity, and Eco-
nomics”, IEEE Software, Vol. 11, Issue 5. pp. 23-30, 1994

[14] Gerald Kotonya and Ian Sommerville, Requirements Engineering Pro-
cesses and Techniques, John Wiley & Sons Press, 1998.

[15] Tony Gorschek and Alan M. Davis, “Requirements Engineering: In
Search of the Dependent Variables”, Information and Software Tech-
nology, Vol. 50, No. 1-2. pp. 67-75, January 2008.

[16] Oscar Lopez Villegas and Miguel Angel Laguna, “Requirements Reuse
for Software Development”, 5th IEEE International Symposium on
Requirements Engineering, 2001.

[17] Donald Firesmith, “Achieving Quality Requirements with Reused Soft-
ware Components: Challenges to Successful Reuse”, 2nd International
Workshop on Models and Processes for the Evaluation of off-the-shelf
Components, 2005.

[18] Abbie Griffin, “Metrics for Measuring Product Development Cycle
Time”, Journal of Product Innovation Management, Vol. 10, No. 2, pp.
112-125, March 1993.

[19] Abbie Griffin, “The Effect of Project and Process Characteristics on
Product Development Cycle Time”, Journal of Marketing Research, Vol.
34, No. 1, pp. 24-35, February 1997.

[20] He-Biao Yang, Zhi-Hong Liu, and Zheng-Hua Ma, “An Algorithm for
Evaluating Impact of Requirement Change”, Journal of Information and
Computing Science, Vol. 2, No. 1, 2007.

[21] Susan Ferreira, James Collofello, Dan Shunk, and Gerald Mackulak,
“Understanding the Effects of Requirements Volatility in Software
Engineering by Using Analytical Modeling and Software Process Sim-
ulation”, Journal of Systems and Software, Vol. 82, Issue 10, pp. 1568-
1577, October 2009.

[22] William W. Thomas, Alex Delis, and Victor R. Basili, “An Analysis
of Errors in a Reuse-Oriented Development Environment”, Journal of
Systems and Software, pp. 211-224, 1997.

[23] Mark Johnson, “From Engineering to System Engineering to System of
Systems Engineering”, IEEE SMC Third International Conference on
System of Systems Engineering, pp. 1-6, 2008.

[24] Per Runeson and Martin Host, “Guidelines for Conducting and Report-
ing Case Study Research in Software Engineering”, Journal of Empirical
Software Engineering, Vol. 14. pp. 131-164, 2009.

400Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 418 / 729

Specifying Class Hierarchies and MOOSE Metrics in Z

Younès El Amrani

LCS laboratory, faculty of Sciences

University Mohamed V-Agdal

Rabat, Morocco

e-mail: elamrani@fsr.ac.ma

Abstract—Metrics put into numbers the quality of software’s

design and contribute to reinforce an organization’s software

development competitive advantage. Ultimately, an

organization would gain impressive benefits in terms of

quality, costs, cycle time and productivity in using metrics to

quantify software artifacts. Metrics should be formally defined

to ensure every stakeholder understands what is measurable in

design, and what is actually measured. The formal

specification should be easily formulated. A short and concise

formal model is introduced in this article and is used to specify

the MOOSE metrics suite. The formal specification proposed

provides, for the first time, an unambiguous specification of

the LCOM metric.

Keywords-Metric; Design; Quality; Measure; MOOSE;

LCOM; Z; Formal Specification.

I. INTRODUCTION

Even though the main concern of this article is to
formally specify the MOOSE metrics suite [1], one should
put one’s mind to understand object-oriented terminology at
first place. This article reviews the basic concepts in object-
oriented terminology in the formal specification language Z
[2]. Z provides not only a means for formulating concise
specifications, but also an integrated framework for
conducting proofs. One of the advantages of using pure Z is
that one is unencumbered by many of the complications
evolved in syntax-extensions introduced to reflect object-
oriented concepts.

Section 2 is devoted to related works. Section 3 settles
notation for expressing object-oriented concepts and reviews
those features of object-orientation that will emerge again in
Section 4 later on. Many aspects of object-orientation, of
which there is abundance, are not covered. Only those that
are needed to specify the MOOSE metrics suite [1] are
covered. For fuller coverage, the reader is referred to the
standard reviews published on the subject, some of which are
mentioned in the references, such as [3]. Our main purpose is
to set landmarks that will help readers to navigate through
the concepts behind all object-oriented design metrics.
Section 4 is intended to specify formally the MOOSE
metrics suite [1] using Z. The remaining Section 5 is used to
conclude and to explore future works that extend this
research.

II. RELATED WORKS

It is vitally important to precisely specify the metrics used in

software engineering to gain confidence in obtained

measurements. Such precision is particularly important

since the object-oriented paradigm abounds in terms and

concepts. Introducing formalisms into the paradigm is

important to the establishment of a sound theoretical

foundation for the measurements in software engineering.

The reader is referred to existing surveys, such as [3], in the

combination of the object-oriented paradigm and formal

specification. Three combinations are possible [3]: the first

incarnates in a full transformation into an object-oriented

language, the second proposes extension to the syntax of the

formal language to cope with object-oriented concepts and

necessitates to set up a transformational semantic, and

finally, the third proposes to specify the system in an object-

oriented fashion to keep available the proof system. The

model proposed in the Section 3 belongs to the third

approach.
Most of the third approach’s specifications fall into two

basic styles, depending on whether the properties are
modeled as functions from identities to property values or
modeled by a value in the object state. Hall’s style [4-5] falls
in the latter approach, whereas France’s style [6-7] falls in
the former approach. Both styles specify functional
properties, called methods or function-members in object-
oriented jargon, using schema operation. This common
feature in both styles has tremendous consequences on the
expressiveness of the specifications. The first limitation is
that “there is no way of stating that a subclass must have all
the operations of its superclass” [4] and a second limitation,
in both styles, is that: “if the methods of different subclasses
are in fact different in any way at all, it is not possible to give
them the same name in Z” [4]. In the next section, the model
presented circumvents these two limitations and empowers
the object-oriented paradigm with an expressive formal
model. The MOOSE metrics suite [1] is formally specified to
illustrate the usefulness of the model. The MOOSE metrics
suite [1] is also formally specified using the formal language
Z in [8]; the main difference between our specification and
[8] is that they used a formal specification of the UML [9]
metamodel to express the same set of metrics, whereas in
this article a smaller and more concise model is achieving
more by adding several object-oriented consistency rules in
the inheritance tree specification. However, object-oriented

401Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 419 / 729

consistency rules are not the main target of this article; the
reader is referred to [10] for a devoted article to UML [9]
consistency rules using Z and Hall’s style. The scientific
contribution of this work is to formally define the object-
oriented concepts that could not be defined in other models
[14], notably the concept of virtual methods. The formal
definition of the MOOSE metrics is provided to illustrate
how the problem of a formal definition of some metrics, like
Lack of Cohesion Metric (LCOM), encountered when using
other models [14] is circumvented then overcome in the
model presented in this article.

III. FORMAL SPECIFICATION OF CLASS HIERARCHIES IN Z

At the heart of formal specification in Z is the ability to
introduce new datatypes and to define functions and
operations that manipulate their values. Datatypes can be
introduced as given sets. The model proposed, uses five
given sets: ID is the set of all identifiers, SIGNATURE is
used for method’s signature. NAME is the set of all names,
including methods’ names and variables’ names.
EXPRESSION defines the set of all expressions found in
methods’ bodies. Finally, the given set TYPE is the set of all
variable types in the specification.
[ID, TYPE, SIGNATURE, EXPRESSION, NAME]

Sets can also be defined using Z enumerated sets. Only

one enumerated set is used in this model. It is used to specify
the concept of visibility for properties (methods and
attributes)

Visibility ::public private protected package

Identifiers’ sets for the main set are specified as subsets

of ID: the set of all identifiers introduces earlier.

ClassID, ObjectID, AttributeID, MethodID, PropertyID:  ID


AttributeID MethodID partition PropertyID

The method and attributes are modeled as Cartesian
products. This specification allows different methods to
share the same name (this is commonly called operator’s
overloading)

Method MethodID  Visibility  NAME  SIGNATURE

Attribute AttributeID  Visibility  NAME  TYPE

Variable and attribute are the same in the model: they

define two syntaxic equivalences.

Variable Attribute

VariableID AttributeID

The method’s body is itself modeled, the state variables

is the set of all the variables used in the method’s body.

Whereas methods is the set of all the methods called in a

given implementation. A set of expressions is defined. To

specify a sequential execution, the power set can be

replaced by seq EXPRESSION. Finally, the complexity of

the method is provided as an instance variable.

MethodBody 
variables:  AttributeID

calls:  MethodID

expressions:  EXPRESSION

complexity: 



A small set is defined as a return value for get functions.

It can easily be replaced by a Boolean set.

YesNo ::Yes No

We use a forward declaration for a method that checks
whether a method is abstract in a class ancestry. The
method’s complete definition will be defined later on.

isMethodAbstractInParentClass: MethodID  ClassID  YesNo

The method getMethodID is used to obtain the method’s

ID.

getMethodID: Method  MethodID


 method: Method; methodid: MethodID; visibility: Visibility; name:

NAME;
 signature: SIGNATURE

 method = methodid visibility name signature
  getMethodID method = methodid

Now we can define a class. The defined attributes are

separated from the inherited attributes (iattributes) as well as
the defined methods are separated from the inherited
methods (imethods).

Class
self: ClassID

parents:  ClassID

children:  ClassID

attributes:  Attribute

methods:  Method

iattributes:  Attribute

imethods:  Method

isAbstract: YesNo

implementation:  MethodID  MethodBody

 m: methods getMethodID m  dom implementation isAbstract =

Yes

 m: imethods

 isMethodAbstractInParentClass getMethodID m self = Yes

  getMethodID m  dom implementation isAbstract = Yes



402Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 420 / 729

The first predicate states that if a defined method (not

inherited) has no implementation then the class is abstract:

the condition is sufficient. The second predicate states that if

a method is abstract in class’ ancestry and has not been

attributed an implementation, then the class is abstract.

Inheritance is specified with a relation named

inheritFrom. When a class C1 inherits from a class C2, then

the pair (C1,C2) belongs to inheritsFrom. This relation is

sematically equivalent to the relation subSuper used in

Hall’s style.

inheritsFrom: Class  Class


inheritsFrom

 =  C1: Class; C2: Class C1  getClassFromID  C2.parents  C1
C2

Now, the inheritance tree can be formally specified.

InheritanceTree
children: Class   Class

parents: Class   Class

offspring: Class   Class

ancestry: Class   Class


 C: Class

 children C = inheritsFrom  C 
  C  children C

  children C = getClassFromID  C.children 
 C: Class

 parents C = inheritsFrom ~  C 
  C  parents C

  parents C = getClassFromID  C.parents 
 C: Class offspring C = inheritsFrom +  C   C  offspring C

 C: Class ancestry C = inheritsFrom ~ +  C   C  ancestry C



The first and the second predicate use the inheritsFrom

relation to specify the children and the parents of a class. The

third and the fourth predicate define respectively the

offspring as the transitive closure of the relation

inheritsFrom whereas ancestry is the transitive closure of the

inverse relation.

Two utility functions named getAncestryOf and

getOffspringOf are formally introduced now. Both functions

use relation inheritsFrom. This two functions are introduced

now because both are used in the next section introducing the

formal definition of the MOOSE metrics suite [1].

The first utility function getAncestryOf returns the

ancestry of the class provided as input.

The method isMethodAbstractInParentClass, previously

declared, can now be defined (Z does not allow using a

function before declaring it) The definition is provided in the

second predicate following the first predicate which defines

the function getAncestryOf.

getAncestryOf: Class   Class


 C: Class getAncestryOf C = inheritsFrom +  C 
isMethodAbstractInParentClass

 =  mid: MethodID; Cid: ClassID; C: Class; ancestry:  Class

 if C = getClassFromID Cid

  ancestry = getAncestryOf C

  mid    C1: ancestry dom C1.implementation
 then mid Cid  Yes

 else mid Cid  No

The second utility function getOffspringOf returns the

offspring of the class provided as input.

getOffspringOf: Class   Class


 C: Class getOffspringOf C = inheritsFrom ~ +  C 

The formal specification of the MOOSE metrics suite [1]

is now illustrated in Section 4.

IV. FORMAL SPECIFICATION OF THE MOOSE METRICS

SUITE

The MOOSE Metrics Suite defines a set of six metrics:

NOC is the total number of children in a class, DIT

measures the depth of the inheritance tree, LCOM measures

the lack of cohesion in the set of methods in a class, RFC

measures the response for a class, WMC is the weighted

methods per class it measures the complexity of the set of

methods of the class, finally CBO measures the coupling

between object. In the subsequent subsection, we define

formally and precisely this set of metrics.

A. The NOC metric

The NOC metric is defined informally as the number of

children of a given class. Its formal definition is

straightforward in the model introduced in section 3.

NOC: Class  


 C: Class NOC C = # C.children

B. The DIT metric

The DIT metric is defined informally as the longest path

from the input class to the inheritance tree root. Firstly the

formal specification of the set of all paths leading to the root

is provided, secondly the maximum length is specified and

that is DIT.

A function isRoot is used to check if a class is a root. A

class is a root when is has no parent.

isRoot: Class  YesNo


 C: Class if C.parents =  then isRoot C = Yes else

isRoot C = No

403Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 421 / 729

The function getClassFromID returns the class
associated to the input ClassID

getClassFromID: ClassID  Class

The function allPathLengthToRoot returns the set of all

paths to root.

allPathLengthToRoot: Class   


 C: Class

 allPathLengthToRoot C

 =  path: seq Class; i: 

 i  1 .. # path

  path 1 = C

  path i  getClassFromID  path i - 1.parents 
  isRoot last path = Yes # path

The function maxi returns the maximum of a set of
Integers.

maxi:    


 I:    n: I 1 m: I m  n maxi I = m

The DIT metric is now straightforward to define
formally: it is the longest path to root.

DIT: Class  


 C: Class DIT C = maxi allPathLengthToRoot C

C. The LCOM metric

The LCOM metric comes also easily, the two sets P and

Q defined in [1] are formally specified as follow:
P: Class   Method  Method

 C: Class

 P C

 =  m1: C.methods; m2: C.methods

 C.implementation getMethodID m1.variables

  C.implementation getMethodID m2.variables = 

 m1 m2

P is the set of all methods couples that do not use any

variable (attribute) in common.

Q: Class   Method  Method

 C: Class

 Q C

 =  m1: C.methods; m2: C.methods

 C.implementation getMethodID m1.variables

  C.implementation getMethodID m2.variables  

 m1 m2

Q is the set of methods couples which implementations

have some attributes in common.

LCOM is equal to zero if there a more couples in Q than

in C, otherwise it is equal to the difference between the two.

LCOM: Class  


 C: Class

 if # Q C  # P C then LCOM C = 0 else LCOM C = # P C - #

Q C

D. The RFC metric

The RFC metric computes how many different calls can

occur as a response to a message received by a class. Of

course defined methods and inherited methods are counted

and added to the number of different calls that occur in

implementations.

RFC: Class  


 C: Class

 RFC C

 = # C.methods + # C.imethods

 + #   mob: MethodBody

 mob  C.implementation  getMethodID  C.methods  
 mob.methods
 + #   imob: MethodBody

 imob  C.implementation  getMethodID  C.imethods  
 imob.methods

E. The WMC metric

The WMC metric computes the sum of methods

complexities. The method complexity is a state variable of

the method’s body. A function that sums all the

complexities of a set of method’s bodies is defined and is

used to compute the complexity of a class.


sumComplexity:  MethodBody  


 B:  MethodBody

 if B = 

 then sumComplexity B = 0
 else  mb: B

 sumComplexity B = mb.complexity + sumComplexity B \

mb

WMC: Class  


 C: Class

  B:  MethodBody B = C.implementation  getMethodID 
C.methods  
 if B = 

 then WMC C = 0

 else  mob: B WMC C = mob.complexity + sumComplexity B \

mob

404Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 422 / 729

F. The CBO metric

The remaining metric from the MOOSE metrics suite [1]

is the CBO metric. This metric computes the coupling of a

class with all the other classes of a provided design.

First, the function useMethods is defined. It has the

value Yes if at least a method of one class uses one methods

of the other class:

useMethods: Class  Class  YesNo


 C1: Class; C2: Class

 if dom C1.implementation  getMethodID  C2.methods   

 then useMethods C1 C2 = Yes

 else useMethods C1 C2 = No

Second, the function useVariables is defined. It has the

value Yes if at least a method of one class uses some

attributes of the other class:

getAttributeID: Attribute  AttributeID


 attribute: Attribute; attributeid: AttributeID; visibility: Visibility;

 name: NAME; type: TYPE

 attribute = attributeid visibility name type
  getAttributeID attribute = attributeid

useVariables: Class  Class  YesNo


 C1: Class; C2: Class

 if   mob: MethodBody

 mob  C1.implementation  getMethodID  C1.methods  
 mob.variables
  getAttributeID  C2.attributes   

 then useVariables C1 C2 = Yes

 else useVariables C1 C2 = No

Then, the coupling between two classes is defined:

CBO1: Class  Class  0 1

 C1: Class; C2: Class

 if useVariables C1 C2 = Yes

  useVariables C2 C1 = Yes

  useMethods C1 C2 = Yes

  useMethods C2 C1 = Yes

 then CBO1 C1 C2 = 1

 else CBO1 C1 C2 = 0

An object oriented design is formally specified as a set

of classes.
Design  Class

And the coupling metric for a class is the sum of all

coupling with other classes except the class itself.

CBO: Class  Design  


 C: Class; design: Design

 if design \ C =   C  design

 then CBO C design = 0

 else  C1: design \ C
 CBO C design = CBO1 C C1 + CBO C design \ C1

All presented specifications have been thoroughly

checked using the Z/EVES [12] system.

V. CONCLUSION AND FUTURE WORK

This article provided a formal specification for object-

oriented concepts and illustrated the power of the proposed

specification by providing a complete and formal definition

of the MOOSE metrics suite [7]. A formal definition of the

MOOD metrics suite [11] and others metrics can be

specified with the model presented in Section 3. Additional

object-oriented consistency rules can be specified by adding

predicates in the inheritance tree. Concepts like the

overriding in object-oriented paradigm can easily be

specified with this framework. There are many object-

oriented concepts that could be clarified and put in a clear

mathematical predicate along the road. All the specifications

presented in this article have been thoroughly tested using

the Z/EVES [12] system. Because of its importance to the

subsequent development of software engineering, the

proposed formal specification of MOOSE metrics should be

extended, in future work, to the set of metrics reviewed in

[13].

[1] Chidamber S.R. and Kemerer, C.F.: A metric suite for Object

Oriented Design. J. Trans. on Soft. Eng. vol. 20. IEEE Press, New
York (1994)

[2] Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall
International, Oxford (1998)

[3] Ruiz-Delgado, A., Pitt, D., Smythe, C.: A Review of Object-oriented
Approaches in Formal Methods. J. Comp. vol. 38, pp. 777-784 (1995)

[4] Hall, J.A.: Specifying and Interpreting Class Hierarchies in Z. In:
Bowen J.P., Hall J.A. (eds.) Cambridge 1994. Z User Workshop, pp.
120-138. Springer, New York (1994)

[5] Hall, J.A.: Using Z as a Specification Calculus for Object-Oriented
Systems. In: Bjorner, D., Hoare, C.A.R., Langmaack, H. (eds.) VDM
and Z, Third International Symposium on VDM Europe Kiel, 1990.
LNCS, vol. 428, pp. 290-318. Springer, Heidelberg (1990)

[6] France, R.B., Bruel, J.M., Larrondo-Petrie, M.M., Shroff, M.:
Exploring the Semantics of UML Type Structures with Z. In:
Proceedings of the Formal Methods for Open Object-based
Distributed Systems. FMOODS, pp. 247-257. Springer, New York
(1997)

[7] Shroff, M., France, R.B.: Towards a Formalization of UML Class
Structures in Z. In: 21th Computer Software and Application.
COMPSAC, pp. 646-651. IEEE Press, New York (1997)

[8] Lamrani, M., El Amrani, Y., Ettouhami, A.: Formal Specification of
Software Design Metrics. In: Sixth International Conference
on Software Engineering Advances. Barcelona (2011)

[9] The Object Management Group: UML 2.3 superstructure
specification. http://www.omg.org/spec/uml/ (09/11/2012)

[10] El Miloudi, K., El Amrani, Y., Ettouhami, A.: An Automated
Translation of UML Class Diagrams into a Formal Specification to

405Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 423 / 729

Detect UML Inconsistencies. In: Sixth International Conference
on Software Engineering Advances. Barcelona (2011)

[11] Abreu, F.B.: The MOOD Metrics Set. In: Workshop on Metrics,
ECOOP. Aarhus (1995)

[12] 12. Saaltink, M.: The Z/EVES System. In: Bowen, J.P., Hinchey,
M.G., Hill, D. (eds.) Ten International Conference of Z Users
Reading 1997. LNCS, vol. 1212, pp. 72-85. Springer, Heidelberg
(1990)

[13] Xenos, M., Stavrinoudis, D., Zikouli, K., Christodoulakis, D.:

Object Oriented Metrics: A Survey. In: Proceedings of the

Federation of European Software Measurement Association.

FESMA 2000. Madrid (2000)

[14] Wieringa, R.: A Survey of Structured and Object-Oriented

Software Specification Methods and Techniques. In: ACM

Computing Surveys. Vol. 30, No. 4, pp. 459-527, New-York

(1998) doi=10.1145/299917.299919

406Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 424 / 729

Applying Algebraic Specification To Cloud Computing
-- A Case Study of Infrastructure-as-a-Service GoGrid

Dongmei Liu
School of Computer Science and Technology

Nanjing University of Science and Technology
Nanjing, 210094, P.R. China
Email:dmliukz@njust.edu.cn

Hong Zhu and Ian Bayley
Dept of Computing and Communication Technologies

Oxford Brookes University
Oxford, OX33 1HX, UK

Email:hzhu@brookes.ac.uk, ibayley@brookes.ac.uk

Abstract— Cloud Computing has attracted attention from both
the research community and the industry. It is highly desirable
to specify the syntax and semantics of the services precisely
and accurately without giving away any design and
implementation details. This challenge is even greater for cloud
services based on RESTful web services techniques, where the
invocation is through HTTP queries and there is no agreed
standard exists for their specifications. In this paper, we
propose an algebraic approach and apply it, as a case study, to
the GoGrid Cloud Computing API. Not only does this give a
formal unambiguous specification that is easy to write and
understand, but it also identifies and eliminates errors in the
existing documentation.

Keywords-cloud computing; formal specification; algebraic
specification; RESTful Web services, Infrastructure-as-a-Service

I. INTRODUCTION

Precise and accurate documentation of software systems
has long been a challenge to the software engineering
communities. The advent of cloud computing, and other
forms of service-oriented computing, has raised the demands
further, since software engineers, when developing their
applications, have to depend solely on documents of the
services provided by the cloud. Moreover, when services are
dynamically discovered and composed at runtime, the
specifications of the services must be machine readable, in
the senses of both syntax and semantics.

To meet the challenges of software specifications, formal
methods have been developed in the past forty years and
have advanced significantly [1]. However, their application
to services thus far has been limited, restricted to ontology
definition languages and business process description
languages, such as the Business Process Execution Language
BPEL [2].

A formal specification technique for services must satisfy
two requirements. First, it must be uniformly applicable to
each of the various levels of services: Infrastructure,
Platform and Software as a service. Secondly, it must be
flexible enough to support dynamic discovery and
composition of services without revealing vendor-specific
design and implementation details.

This paper explores the applicability of algebraic
specification to RESTful web services [3], which is widely
employed by cloud service providers.

A. Related works
Many cloud services provide an application

programming interface (API) with which their customers can
dynamically configure, manage and use their resources
through a programmatic interface. For Infrastructure-as-a-
Service (IaaS), the resources are hardware entities, such as
servers and load balancers, etc. For Platform-as-a-Service
(PaaS), and Software-as-a-Service (SaaS), the resources are
platform and software entities respectively. Examples
include virtual machines, network middleware, databases,
software components, etc.

The current practice is to define the API informally with
an open specification. The API is accessed through the
RESTful web service protocol. In contrast to traditional
SOAP-based web services [4], no agreed standards exist for
describing RESTful services, either at the semantic level or
the syntactic level. Documentation is often in natural
language, leaving space for ambiguity and for errors in the
definition of the services. The formal specification of
RESTful web services is still an open problem. It is highly
desirable that the API specification is formalized to reduce
ambiguity, redundancy and inconsistency to the minimum,
whilst still being easy to understand and requiring minimal
training.

Current research on the description of RESTful web
services is mostly focused on formats for annotating the
syntax and semantics of RESTful web services. The most
well-known such efforts include WADL [5], hRESTS/
MicroWSMO [6], and SA-REST [7]. They describe the
syntax and data types of the input and output as well as the
operations of the WS using a machine readable format in
XML or HTML. The main problem of these approaches is
that they rely heavily on the RPC-based operation model,
which does not align well with the principles of RESTful
web service. Moreover, the semantics are described at the
level of ontology, rather than the effect on the states of the
resources that the services operate on. In [8], Liskin et al.
proposed an extension to UML state machine diagram to
describe in graphic notation how RESTful web services
changes the states of the resources. However, it is open to
dispute whether graphic notations can capture the full
complexity of the state changes involved in resources
managed and manipulated by these services.

Algebraic specification was first proposed in the 1970s as
an implementation-independent specification technique for

407Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 425 / 729

abstract data types [9][10]. Since then, it has been extended
to concurrent systems, state-based systems and software
components, all by applying theories of behavioural algebras
[11] and co-algebras [12][13][14][15]. The specifications
produced are at a high level of abstraction, completely
independent of any implementation detail. Properties can be
proven for these specifications, they can be refined to
implementations, and implementations can be proven correct
with respect to the specifications [16], etc.

A particularly attractive feature of algebraic
specifications is that they can be used directly by automated
software testing tools [17][18]. This is particularly important
when services bind dynamically since testing must be done
on-the-fly.

B. Main Contributions of the paper
This paper reports a case study of an algebraic

specification of GoGrid [19], a real industrial-strength
system that provides infrastructure-as-a-service. GoGrid
provides an API, defined by an open specification [21] and
accessed through a RESTful interface. The specification
language used in the case study is CASOCC-WS, which we
proposed in [20] for the specification of SOAP-based web
services. By successfully specifying every operation of the
GoGrid API, we demonstrate that CASOCC-WS can be used
for RESTful Web services too.

During the formalization, we detected non-trivial errors
in GoGrid’s documentation. These errors included
ambiguity, inconsistency and also incompleteness. This case
study shows, therefore, that formal specification can improve
the precision and accuracy of service documentation.

It shows too that algebraic specifications can be abstract
and implementation independent, since the GoGrid API, like
many other RESTful web services, supports multiple
programming languages, such as Java, Ruby, Python, C#, as
well as shell script languages such as Bash.

Finally, our case study also demonstrates that algebraic
specifications can be easy to understand with minimal
training, confirming the findings in [22].

To our knowledge, there is no similar work in the
literature on the algebraic specification of web services, nor
on RESTful web services in particular.

C. Organisation of the paper
The remainder of this paper is organized as follows.

Section II briefly outlines the algebraic specification
language CASOCC-WS. In Section III, we use GoGrid API
as a case study to demonstrate how the algebraic approach
can be used to specify cloud computing interface. Section IV
discusses some of the benefits of applying algebraic
approach on cloud computing interface. Section V concludes
the paper and discusses possible future work.

II. ALGEBRAIC SPECIFICATION LANGUAGE CASOCC-WS

The CASOCC-WS language is an extension of the
CASOCC language [17][18]. The specifications in
CASOCC-WS are modular. A specification is built from a
number of units, one for each software entity in the system.
A software entity can be an abstract data type, a class, a

component, a web service, and so on. A specification has the
following syntactic form, in a variant of BNF:

<Specification> ::= {<Spec Unit>}
<Spec Unit> ::=
 Spec <Sort Name> [<Observability>]; <Signature> [<Axioms>]
 End
<Sort Name> ::= <Identifier>
<Observability> ::=
 is observable by <Operator ID> | is unobservable
<Operator ID> ::= <Identifier>

Each specification unit contains two main parts: a
signature and a set of axioms. The <Sort Name> is an
identifier that names the main sort of the unit. Observability
is an important property of software entities. A software
entity is directly observable if its state or value can be tested
for equality; otherwise, its state or value has to be checked
by other means, e.g. through observers. The operator for an
observable entity must be a Boolean function.

A. Signature
The signature specifies the syntactic aspect of the

software entity. A signature has the following syntactic form:

<Signature> ::= [<Imported Sorts>;] <Operations>
<Imported Sorts> ::= Sort <Imported Sort List>
<Imported Sort List> ::= <Sort Name>[, <Imported Sort List>]
<Operations> ::=
 Operators: [<Creators>;][<Transformers>;][<Observers>;]
<Creators> ::= Creator: <OpList>
<Transformers> ::= Transformer: <OpList>
<Observers> ::= Observer: <OpList>
<OpList> ::= <Operation> [; <OpList>]
<Operation> ::= <Operator ID> :['['<Context Sort>']']
 [<Domain Type>] ‐> <Co‐domain Type>
<Context Sort> ::= <Sort Name>
<Domain Type> ::= <Type> | VOID
<Co‐domain Type> ::= <Type> | VOID
<Type> ::= <Sort Name> [, <Type>]

The Imported Sorts clause is a comma-separated list of
the sorts upon which the sort currently being specified
depends. The operators defined for a sort are classified into
creator, transformer and observer. Take STACK for example,
its signature is as follows.

Spec STACK;
 Sort BOOL, NAT;
 Operators:
 Creator: newStack: ‐> STACK;
 Transformer: push: STACK, NAT ‐> STACK;
 pop: STACK ‐> STACK;
 Observer: isNewStack: STACK ‐> BOOL;
 top: STACK ‐> NAT;
End

This means that STACK depends on BOOL for Boolean
values and NAT for natural numbers. newStack is a creator,
push and pop are transformers, isNewStack and top are

408Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 426 / 729

observers.
Note that, in a traditional algebraic specification

language, the co-domain of an operator must be a singleton.
Such a signature is called algebraic; STACK has such a
signature. More recent languages, based on co-algebras,
require instead the domain to be singleton; such signatures
are called co-algebraic, and can be used.

CASOCC-WS extends the algebraic and co-algebraic
approaches by allowing both the domain and the co-domain
of an operator to be non-singleton at the same time. This
makes it possible to specify stateful services naturally. For
example, infinite streams of natural numbers are specified as
follows. Each application of the operator next to a stream
will give a natural number and change the state of the stream.

Spec STREAM is unobservable;
 Sort NAT;
 Operators:
 Transformer: next: STREAM ‐> STREAM, NAT;
End

In general, when the main sort of the unit occurs in both
the domain and the co-domain of an operator, we call it the
context sort of the operator. In such a case, CASOCC-WS
use the following format to indicate the context sort, while
omitting it from the domain and co-domain.

Op : [s] s1, … , sn → s'1, … , s'k,
where s is the context sort.

If the main sort is the only sort in an operator's domain or
co-domain, we write VOID for the type of the latter. For
example, the signature of the operator push of STACK and the
operator next of STREAM can now be specified respectively as
follows.

 push: [STACK] NAT ‐> VOID;
 next: [STREAM] VOID ‐> NAT;

B. Axiom
Each specification unit consists of logical axioms

describing the properties that functions are required to
satisfy. An axiom consists of a variable declarations block
and a list of conditional equations.

<Axioms> ::= Axiom: <Axiom List>
<Axiom List> ::= <Axiom> [<Axiom List>]
<Axiom> ::= <Var Declarations> <Equations> End
<Equations> ::= <Equation> [<Equations>]

1) Variable declarations

Variable declarations declare a list of variables and their
types. Variables are declared "globally" to all equations in
the axiom using "For all" keywords.

<Var Declarations> ::= For all <Var‐Sort Pairs> that
<Var‐Sort Pairs> ::= <Var IDs> : <Sort Name> [, <Var‐Sort Pairs>]
<Var IDs> ::= <Var ID> [, <Var IDs>]
<Var ID> ::= <Identifier>

where the sort name can only be the main sort or a sort listed
in the imported sorts clause. The variable identifiers must be
unique: they must not clash with sort names, operator names
nor with any such names in any sorts imported and other
variables in this axiom.

2) Equation
Equations declare a list of conditional equations. The

syntax rule of an equation is as follows.

<Equation> ::= [<Label ID>:] <Condition> [, if <Conditions>];
 | Let <Var Definitions> in <Equations> End
<Label ID> ::= <Identifier>
<Conditions> ::= <Condition> [(, | or) <Conditions>]
<Condition> ::= <Bool Term> | <Term> <Relation OP> <Term>
<Bool Term> ::= True | False
<Relation OP> ::= "==" | "<>" | ">" | "<" | ">=" | "<="
<Var Definitions> ::= <Var Assignment> [, <Var Definitions>]
<Var Assignment> ::= <Var ID> = <Term>

The most basic form of an equation is thus t1 == t2. Here
is an example of sort STACK, assuming that sort BOOL is
predefined.

For all s: STACK, n: NAT that
 isNewStack(push(s,n)) == False;
 pop(push(s, n)) == s;
 top(push(s, n)) == n;
End

The second syntax rule for equations is designed to allow
local variable definitions in the form

 Let x1 = τ1, …, xn = τn in equs End
where x1, …, xn are local variables, limited in scope to equs,
and τ1, …, τn are terms denoting the values that are assigned
to the variables. Local variables must have unique names,
not clashing with other variables in this equation and any
other names, just as with global variables. The above
example can be specified as follows.

For all s: STACK, n: NAT that
 Let s1 = push(s,n) in
 isNewStack(s1) == False;
 pop(s1) == s;
 top(s1) == n;
 End
End

3) Term
A term is constructed from constants and variables by the

application of operators. All names used in terms may be
qualified with the intended type and the intended sort of the
term may be specified. In particular, a term is called ground
term if it contains no variable. The syntax rules for term are
as follows.

<Term> ::= <Var ID> | "(" <Term> ")" | "<" <Term List> ">"
 | <Operator ID> ["(" [<Parameters>] ")"]
 | "[" <Term> "]" | <Term> "." <Term> | NULL
 | <Term> "#" <Term> | <numeric_expression>

409Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 427 / 729

 | <string_expression> | <literal_expression>
<Parameters> ::= <Term List>
<Term List> ::= <Term> [, <Term List>]
<numeric_expression> ::= <Term> <Algorithm OP> <Term>
<string_expression> ::= <Term> ("+"|"+=") <Term>
<literal_expression> ::= <integer_literal> | <float_literal>
 | <string_literal> | <character_literal>
<Algorithm OP> ::= "+" | "‐" | "*" | "/"

Any operator in a term must either be declared in the
signature part of the sort being specified or in the signature
of an imported sort. For example, if s is a variable of the
STACK sort, and m and n are variables of the NAT sort, then the
following are STACK-terms of the STACK sort.

 push(s, n)
 push(push(s,n),m)
 pop(push(push(s,n),m))
 pop(push(pop(push(s,n)),m))

Note that when an operator ϕ is declared in the form ϕ:
[s]s1 → s2 using a sort s as the context, the type of a term like
ϕ(τ) is s2, rather than (s, s2). The new context state in the sort
s after applying the operator ϕ to τ is given by the expression
[ϕ(τ)]. For example, let NatSt: STREAM be an infinite stream
of natural numbers. Then NatSt.next is the natural number at
the front of the stream and [NatSt.next] is state of the stream
after the next operation; i.e., the stream after taken the front
number away.

III. CASE STUDY

In this section, we specify GoGrid API in CASOCC-WS
as a case study.

GoGrid is the world's largest pure-play Infrastructure-as-
a-Service (IaaS) provider specializing in Cloud infrastructure
solutions. It provides an API, defined by an open
specification, with which its customers can deploy and
manage their applications and workloads through a
programmatic interface.

A. GoGrid API
The GoGrid API is a REST-like query interface.

RESTful web services, unlike SOAP/WSDL, are based on
the HTTP protocol, so each GoGrid API call is an individual
HTTP query. For HTTP GET calls, the input data are passed
via the query string. For HTTP POST calls, the input data are
passed in the request body, which is URL-encoded. Only
GET and POST are used in GoGrid API. The server
responds to each request by changing the internal state of the
service if need be and by returning a message to the service
requester.

The latest version of GoGrid API (version 1.8) has 11
different types of objects and 5 types of common operators.
Some of the operators are not applicable to some types of
objects. There are 3 types of objects that are only used as
parameters of the operators, so no operators are applicable on
them, while some objects have special operators. TABLE 1
gives the applicable operators for each type of object.

TABLE 1. APPLICABLE OPERATORS ON OBJECTS

Object List Get Add Delete Edit Other Ops
Server Yes Yes Yes Yes Yes Power
Server
image

Yes Yes Yes Yes Save,
Restore

Load
Balancer

Yes Yes Yes Yes Yes

Job Yes Yes
IP Yes
Password Yes Yes
Billing Yes
Option Yes

It is worth noting that some operators have different
meanings for different types of object, so in our specification
of GoGrid, the definitions were grouped by object rather than
by operator. For each object, we start by specifying the
requests and responses of the operations, defining their
structures and the constraints on the values of the elements.

The requests (or responses) for one operator are specified
in one specification unit. But, there may be a number of
other specification units that specify the elements in the
structure of the requests (or responses). Then, we specify the
semantics of the operators on the type of objects by defining
the relationships between the requests and the responses.
Note that, the internal states of an object that the operator
changes cannot be observed directly. They can only be
observed by applying observers, which are API requests, too.
The set of operators for one type of object is specified in one
specification unit, but there may be auxiliary specification
units, such as for lists of objects, as found in the responses to
some operators.

Here, we only give the details of the specification of the
operators applicable to the object type Server. This is the
most important object of the system and also the most
complicated to specify. Other operators are similar but less
complex.

B. Requests and Responses

1) Common query parameters in requests
There are four query parameters common to all GoGrid

API calls, and they are specified as follows:

Spec CommonQueryParameter ;
 Operators:
 Observer:
 api_key, sig, v, format:
 CommonQueryParameter ‐> string;
 Axiom:
 For all CQP: CommonQueryParameter that
 CQP.api_key <> NULL;
 CQP.sig <> NULL;
 CQP.v <> NULL;
 End
End

where api_key is a key generated by GoGrid for security in
the access of resources, sig is an MD5 [23] signature of the
API request data, v is the version id of the API, and format is

410Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 428 / 729

an optional field to indicate the response format required.
NULL is a value that represents no information. The signature
can be generated by an MD5 hash from the api_key, which is
obtained before API calls can be made, the user's shared
secret, which is a string of characters set by the user and
known only by the GoGrid server, and a Unix timestamp,
which is the number of seconds since the Unix Epoch of the
time when the request was made. The api_key and shared
secret act as an authentication mechanism.

However, because the signature is time-dependent, and
therefore, also dependent on the context, the relationship
between these query parameters cannot be specified without
the context of the request. So, the axiom part of the
specification states only that these parts cannot be omitted.
We specify the authentication mechanism later in the
systematic specification.

2) Request of the List operator
In addition to the parameters common to all requests,

each type of request also contains variable parts. Below, we
only give the specification of the requests of the List
operation as an example. A server list call returns a list of
server objects of a certain type in the cloud.

Spec ServerListRequest;
 Sort CommonQueryParameter, ListofString;
 Operators:
 Observer:
 para: ServerListRequest ‐> CommonQueryParameter;
 num_items, page, timestamp: ServerListRequest ‐> int;
 server_type, datacenter: ServerListRequest ‐> string;
 isSandbox: ServerListRequest ‐> boolean;
 Axiom:
 For all SLR: ServerListRequest that
 SLR.num_items >=0;
 SLR.page >=0, if SLR.num_items > 0;
 End
End

where para is the common query parameters defined above.
num_items is the number of items to return. Its value is used
to paginate the results into a number of pages so that each
page contains num_items number of items. page is the index
of the page to be returned when the results are paginated.
The index starts from 0. This parameter is ignored if
num_items is not specified. server_type, isSandbox, and
datacenter are used to filter server objects. timestamp is used
in authentication.

3) Responses to the List Operation
The GoGrid API responses can be in three different

formats: JSON (JavaScript Object Notation), XML, and CSV
(Comma Separated Values). The default format, used when
the optional format parameter is omitted, is JSON. However,
one benefit of using algebraic specification is that we need
only one formal specification for all output formats.

The response to a list call contains the response status,
request method, summary of the list and a list of returned
objects. The summary part of the responses can be specified
as follows:

Spec ListResSummary;
 Operators:
 Observer:
 Total, start,
returned, numpages:
 ListResSummary ‐> int;
 Axiom:
 For all LRS: ListResSummary that
 LRS.total >= 0;
 LRS.start >= 0;
 LRS.returned >= 0;
 LRS.numpages >= 0;
 End
End

where total is the total number of objects in the list; start is
the current start index for this list of objects; returned is the
number of objects returned in this list; and numpages is the
total number of pages available given the num‐items value in
the request.

The structure of the responses of the list operator when
applied to server object can be specified as follows.

Spec ServerListResponse;
 Sort ListofServer, ListResSummary, ListofString;
 Operators:
 Observer:
 Status, request_method: ServerListResponse ‐> string;
 summary: ServerListResponse ‐> ListResSummary;
 objects: ServerListResponse ‐> ListofServer;
 statusCode: ServerListResponse ‐> int;
 Axiom:
 For all SLR: ServerListResponse that
 SLR.request_method == "/grid/server/list";
 End
 For all SLR: ServerListResponse, i, j: int that
 SLR.objects.items(i).id <> SLR.objects.items(j).id,
 if status == "success", i <> j,
 0<= i, i <= SLR.summary.returned,
 0<= j, j <= SLR.summary.returned;
 End
 For all SLR: ServerListResponse, i: int,
 X: ServerListRequest that
 search(X.datacenter,SLR.objects.items(i).datacenter.name)
 == True,
 if status == "success",
 0<= i, i <= SLR.summary.returned,
 X.datacenter.length > 0;
 SLR.objects.items(i).type.name == X.server_type,
 if status == "success",
 0<= i, i <= SLR.summary.returned,
 X.server_type <> NULL;
 SLR.objects.items(i).isSandbox == X.isSandbox,
 if status == "success",
 0<= i, i <= SLR.summary.returned,
 X.isSandbox <> NULL;
 End
End

where search is an auxiliary function of the type ListofString,
string ‐> Boolean.

411Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 429 / 729

In addition to status, request method, summary of the list
and a list of returned objects, each response will contain a
status code: 200 means that the call is successful, and 4xx
means there is an error in the client's request, of which 400
means the argument is illegal, 401 means unauthorised, 403
means authentication failed, and 404 means not found. A
status code of 5xx means that a server error occurred.

C. Semantics of the operations
For each type of request, we define an operator that takes

common query parameters and various typed parts as input
and produces a response as the output. All such operators
have GoGrid as the context. Some are transformers, such as
Add, Delete and Edit; some are observers, such as List and
Get. We also need to know the clock time on the grid and
also the shared secret chosen by each user for checking the
authentication of access. Also we define some auxiliary
functions. Thus, we have the following signature for the sort
ServerGoGrid, which represents the Server web service of
GoGrid cloud computing system.

Spec ServerGoGrid;
 Sort Server, ListofServer,
 ServerListRequest, ServerListResponse,
 ServerAddRequest, ServerAddResponse, …
 Operators:
 Observer:
 clockTime: ‐> int;
 sharedSecret: string ‐> string;
 List: [ServerGoGrid]
 ServerListRequest ‐> ServerListResponse;
 Get: [ServerGoGrid]
 ServerGetRequest ‐> ServerGetResponse;
 Transformer:
 Add: [ServerGoGrid]
 ServerAddRequest ‐> ServerAddResponse;
 Delete: [ServerGoGrid]
 ServerDeleteRequest ‐> ServerDeleteResponse;
 Edit: [ServerGoGrid]
 ServerEditRequest ‐> ServerEditResponse;
 Power: [ServerGrid]
 ServerPowerRequest ‐> ServerPowerResponse;

 Axiom
 …
End

where the following auxiliary functions are used.

 MD5: string, string, int ‐> string ;
 abs: int ‐> int;
 insert: [ListofServer]ListofServer ‐> VOID;
 remove: [ListofServer]ListofServer ‐> VOID;
 update: [ListofServer]ServerPowerRequest ‐> VOID;

For each operator, its semantics can be characterised by a
set of axioms. For the sake of space, here we only give the
axioms that define the semantics of the list operator.

First of all, GoGrid checks the authentication of each API
call using the MD5 function to reconstruct the signature from

the api-key, the user's shared secret and the time stamp. It
then compares this to the signature contained in the request
parameter. It also checks the time stamp with its server clock
time, allowing a discrepancy of up to 10 minutes. This
authentication rule can be specified as follows.

Axiom <Authentication>:
 For all G: ServerGoGrid, X: ServerListRequest that
 Let key = X.para.api_key,
 sig_Re = MD5(key, G.sharedSecret(key), X.timeStamp)
 in G.List(X).statusCode == 403,
 If X.para.sig <> sig_Re
 or abs(X.timeStamp ‐ G.clockTime) > 600;
 End
 End

The second axiom is about the semantics of the List
operation. It states that if the number of items per page
required by the request is greater than 0 (i.e., Nper page > 0) and
the call is successful, then, in the response summary, the
number Npages of pages, total number Nitems of items and the
number Nper page of items on each page has the following
relationship:

Npages = ⎡Nitems / Nper page⎤,

Axiom <list.pagination1>:
 For all G: ServerGoGrid, X: ServerListRequest that
 Let res = G.List(X),
 sCode = G.List(X).statusCode,
 itemsPerPage = X.num_items
 in
 res.summary.numpages == res.summary.total/itemsPerPage,
 if sCode == 200, itemsPerPage > 0;
 End
 End

The third axiom of the List operator states that, when
each page contains N items, the i'th item on page k must be
the same as the j'th item when there is no pagination, where

j = k × N + i

Axiom <list.pagination2>:
For all G: ServerGoGrid, i, j: int,
 X, X1: ServerListRequest that
 Let
 res = G.List(X), sCode = G.List(X).statusCode,
 res1 = G.List(X1), sCode1 = G.List(X1).statusCode,
 n = X.num_items, n1= X1.num_items
 k = X.page,
 in
 res.objects.items(i) == res1.objects.items(j),
 if sCode == 200, sCode1 == 200,
 n > 0, n1== 0,
 j == k*n + i,
 0 <= i, i < res.summary.returned;
 End
End

The fourth axiom states that when the number of items

412Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 430 / 729

per page is specified, the list of objects in a page either
contains exactly the number of objects if the page is not the
last, or at most that number if the page is the last. Moreover,
the number of items in the result must equal the value of
parameter returned in the result summary.

Axiom <list.pagination3>:
 For all G: ServerGoGrid, i, j: int,
 X: ServerListRequest that
 Let
 result = G.List(X).objects,
 sCode = G.List(X).statusCode,
 n = X.num_items,
 nr = G.List(X).summary.returned,
 numPages = G.List(X).summary.numpages,
 lpage = X.page
 in
 result.length == nr, if sCode == 200, n > 0;
 nr == n, if sCode == 200, n > 0, lpage < numPages;
 nr <= n, if sCode == 200, n > 0, lpage == numPages;
 End
End

An important property of the List operator is that, being
an observer, it will not change the state of the system to
which it is applied. This can be stated in the following
axiom, though this need not be included in the specification
because we have already declared the operator as an
observer.

Axiom <List‐Op>:
 For all G: ServerGoGrid, X: ServerListRequest,
 X1: ServerXOpRequest that
 [G.List(X)].XOp(X1) == G.XOp(X1);
End

where XOp can be any of the operators List, Get, Add, Edit,
Delete, etc.

Finally, when an operation does changes the state of the
system, the List operator should be able to observe the
difference accordingly. For example, the following axioms
state the effect of Add when observed by the List operator.

Axiom <Add‐List>:
 For all G: ServerGoGrid, X1: ServerAddRequest,
 X2: ServerListRequest that
 [G.Add(X1)].List(X2).objects ==
 insert(G.List(X2).objects, G.Add(X1).objects),
 If X2.num_items == 0, X2.server_type == NULL,
 X2.isSandbox == NULL, X2.datacenter == NULL,
 G.Add(X1).statusCode == 200,
 G.List(X2).statusCode == 200;
 End

The corresponding axioms for other operators are similar and
are omitted to save space.

IV. DISCUSSION

In this section, we report the main findings of the case

study.

A. Improving Document Preciseness
As one may expect, the ambiguity in the original

documentation of the GoGrid API [21] was detected in the
process of formalization. This documentation [21] specifies
the data types of the API request parameters and their
corresponding responses, and describes the meaning of each
in normative text. Sample requests and responses are also
given to explain the semantics and usage of the API.

In most cases, the meanings of the operations are left to
the reader to interpret, according to his understanding. For
example, in the description of the results of the List operator,
the meaning of pagination according to num-items is not
formally defined. We, however, specified it exactly to ensure
that there is only one interpretation.

B. Detecting Incompleteness
Ambiguity in natural language documents is often caused

when the specification is incomplete, meaning that some
information is missing. The GoGrid documentation has this
problem too. For example, in some cases, it is unclear about
the range of values for a parameter and what will happen
when the value is out of the range. An example of this is the
num_items parameter, for the number of items in a page in a
List request, which must be greater than 0, with no
alternative behaviour specified for when it is not. Error codes
are another example. It is unclear when each code will be
returned. Both this and the num_items issue have been left
unresolved because we do not have the relevant information.

There are two more serious cases of incompleteness,
however. The List operation can list all the jobs in the system
for a specified range of dates, but it can also list all the jobs
for a specified object type, of a certain state or belonging to a
certain owner. There is no documentation of these additional
features. Another example concerns the relationship between
requests and responses. The id parameter occurs in both the
request and the response for the Get operator on Job objects.
There is no statement explaining what the id parameter is for
and the two occurrences are different in the samples given in
the document, again with no explanation. Writing the formal
specification has forced us to be precise and complete,
making this incompleteness immediately apparent.

C. Checking Consistency
Cloud Computing is a relatively young field; so, some

evolution in cloud software is inevitable. New API versions
may emerge frequently. This often causes a mismatch
between the software and its documentation. We detected
many such cases for GoGrid. Here are three examples:

1. from version 1.5, GoGrid added a new general attribute
called datacenter as a request query parameter but in the
documentation of the Job object, there is no mention of
this attribute.

2. similarly, there is no description of the attribute
numpages in the documentation of the Get, Edit, and
Delete operators even though it appears in the sample
responses for these operators.

3. moreover, the parameter port in the Edit operation on

413Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 431 / 729

LoadBalancer objects must satisfy port >=0 but the
condition is port >0 for the other operations.

D. Reducing Redundancy
In an unstructured document, redundancy is also a

common problem. The same information may arise in
several different places with different descriptions although
the meanings are the same. This often causes confusion.
Take error code for example. There is a detailed description
of error code in the chapter Anatomy of a GoGrid API Call
but this is duplicated in the documentation for every API
call. Another example is the three different response formats
associated with each operation. These descriptions are
duplications and occupy most of the space. The algebraic
specification that we presented in the paper uses
specification units to organize the document structure.
Consequently, the redundancy is reduced.

E. Understandability of Document
An advantage of natural language documentation is its

understandability. It is widely perceived by industry that
formal methods are difficult to learn and expensive to apply.
However, our case study demonstrates that without much
training ordinary software developers can write algebraic
specification, even for real industrial strength software
systems like GoGrid. This confirms the discovery reported in
[20]; that algebraic specification is easy to write and easy to
understand. It can be part of the job of any ordinary software
developer.

V. CONCLUSION AND FUTURE WORKS

In this paper, we applied the CASOCC-WS specification
language to cloud computing interface with a case study on
the GoGrid system. This demonstrated the value of algebraic
specification for RESTful web services.

We are currently extending the algebraic specification
language and studying its theoretical foundation. We are also
developing a tool that uses the language as input to support
automated testing of a cloud computing interface. The case
study reported in this paper specifies only the functions of
resource management that the GoGrid API original
document specifies. However, the specification of the
properties and dynamic behaviours of the resources are left
as an open problem. Further case studies of the formal
specification of PaaS and SaaS will also be conducted.

ACKNOWLEDGEMENT

The work reported in this paper is partially supported by
EU FP7 project MONICA on Mobile Cloud Computing
(Grant No.: PIRSES-GA-2011-295222) and National Natural
Science Foundation of Jiangsu Province, China (Grant No.
BK2011022).

REFERENCES
[1] A. van Lamsweerde, Formal specification: a roadmap, in Proc. of

ICSE 2000 - Future of SE Track, 2000, pp. 147--159.
[2] M. Juric, B. Mathew and P. Sarang, Business Process Execution

Language for Web Services, 2nd ed., Packt Publishing, Jan 2006.
[3] L. Richardson and S. Ruby, RESTful web services, O'Reilly,

2007.
[4] M. Papazoglou, Web services & SOA: principles and technology,

Prentice Hall, 2012
[5] M. J. Hadley, Web Application Description Language (WADL), Sun

Microsystems Inc., CA, USA, SMLI TR-2006-153, March 2006.
[6] J. Kopecky, K. Gomadam, and T. Vitvar, hRESTS: An HTML

microformat for describing RESTful web services. In: Proc. of WI-
IAT’08, Dec 2008, Sydney, Australia, IEEE/WIC/ACM.

[7] J. Lathem, K. Gomadam and A. P. Sheth, SA-REST and (S)mashups:
Adding Semantics to RESTful Services, in Proc. of ICSC’07, 2007,
pp469-476.

[8] O. Liskin, L. Singer, K. Schneider, Welcome to the Real World: A
Notation for Modeling REST Services, IEEE Internet Computing, pp.
36-44, July-Aug., 2012.

[9] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright, Initial
algebra semantics and continuous algebras, Journal of ACM, vol. 24,
no. 1, pp. 68-95, 1977.

[10] H.-D. Ehrich, On the theory of specification, implementation, and
parametrization of abstract data types, Journal of ACM, vol. 29, no. 1,
pp. 206-227, 1982.

[11] J. A. Goguen and G. Malcolm, A hidden agenda, Theoretical
Computer Science, vol. 245, no. 1, pp. 55-101, 2000.

[12] C. Cirstea, Coalgebra semantics for hidden algebra: Parameterised
objects an inheritance, in Proc. of WADT'97, 1997, pp. 174-189.

[13] J. M. Rutten, Universal coalgebra: a theory of systems, Theoretical
Computer Science, vol. 249, no. 1, pp. 3-80, 2000.

[14] C. Cirstea, A coalgebraic equational approach to specifying
observational structures, Theoretical Computer Science, vol. 280, no.
1-2, pp. 35–-68, 2002.

[15] F. Bonchi and U. Montanari, A coalgebraic theory of reactive
systems, Electr. Notes Theor. Comput. Sci., vol.209, pp.201-215,
2008.

[16] D. Sannella and A. Tarlecki, Algebraic methods for specification and
formal development of programs, ACM Computing Surveys, vol. 31,
no. 3es, p. 10, 1999.

[17] L. Kong, H. Zhu, and B. Zhou, Automated testing EJB components
based on algebraic specifications, in Proc. of COMPSAC'07, vol.2,
2007, pp. 717-722.

[18] B. Yu, L. Kong, Y. Zhang, and H. Zhu, Testing Java components
based on algebraic specifications, in Proc. of ICST'08, 2008, pp. 190-
199.

[19] GoGrid.com, http://www.gogrid.com, last access: July 10, 2012.
[20] H. Zhu and B. Yu, Algebraic specification of web services, in Proc.

of QSIC'10, 2010, pp. 457-464.
[21] GoGrid.com, GoGrid wiki,https://wiki.gogrid.com/wiki/index.php,

last access: July 10, 2012.
[22] H. Zhu and B. Yu, An experiment with algebraic specifications of

software components, in Proc. of QSIC'10, 2010, pp. 190-199.
[23] T. A., Berson, Differential Cryptanalysis Mod 232 with Applications

to MD5. Proc. of EUROCRYPT’92. pp. 71–80, 1992.

414Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 432 / 729

A Holistic Approach to Energy Efficiency Management Systems

Ignacio González

University of Oviedo

Oviedo, Spain

gonzalezaloignacio@uniovi.es

María Rodríguez Fernández

University of Oviedo

Oviedo, Spain

rodriguezfmaria@uniovi.es

Juan Jacobo Peralta

Andalusian Institute of Technology

Málaga, Spain

jjperalta@iat.es

Adolfo Cortés

Ingenia

Málaga, Spain

adolfo@ingenia.es

Abstract—Improvement in energy efficiency is one of the most

effective ways in economic terms to increase supply security

and reduce emissions of greenhouse gases. Furthermore, the

increased cost of energy resources has encouraged the

development of new technologies that allows their efficient use.

Through the identification and control of end users

consumptions - businesses, residential, public, etc. – these

technologies allow us to have more efficient consumption

without lowering the threshold of comfort users are used to.

The Smart Home Energy project makes a profitable use of

these technologies to provide a complete solution that, through

user interaction with electrical devices present in the home and

integrated into the network, allows on one hand to manage,

control, plan and in most cases reduce the electric bill, being

aware about the cost of it, and on the other hand, help to

improve the environment.

Keywords-Digital Home; Energy Efficiency; Bill reduction;

Cloud.

I. INTRODUCTION

A. Interoperability between systems

A Digital Home [1] offers users an intelligent
environment that learns and adapts to the references and
needs of its occupants. However, there are many restrictions:
the high cost of certain systems, capacity problems, lack of
standardization, etc. The most important restriction to solve
is the lack of real interoperability between different systems.

Both domotic systems and service robots allow a major
modernization in Spanish homes and improve energy
efficiency thereof. These two technologies are the ones that
provide the greatest technological advances in homes, public
buildings or workplaces.

The lack of interoperability makes both systems work
and interact independently. This means that if we make them
work together, there would be a duplication of performed
tasks. So if both systems could coordinate, resources will be
optimized and it would improve energy efficiency.

Therefore, it is essential that those devices communicate
with each other in a complementary way, i.e. sharing the

services to know what is happening around them and take
decisions accordingly.

Technically, it is possible to create a common
communication protocol at the application level on the
protocol stack TCP / IP, and the corresponding adapters for
each device. This protocol, as standard, allows the
intercommunication between devices that comply with the
label that ensures the adequacy of their adapters. It is named
DH Compliant [2] and it is a universal and open standard.
Because of this, the Smart Home Energy project (hereinafter
SHE) is based on technology standards, giving them some
advantages that other protocols lack:

 There is neither technological nor brand dependence.

 Savings in solution investment.

 Intellectual and economic richness both in
companies and national research institutions.

 Control and simultaneous management of service
robots, smart home applications and smart
appliances.

B. Device management

In recent years, computers and electrical appliances that
are being incorporated at homes are reaching more and more
energy efficiency levels. However, its contribution is still not
enough in the current energy scenario, where external energy
dependence and indefinite rising prices cast doubt on the
profitability of these devices compared to the useful life and
the necessary investment.

This means that energy saving measures and common
recommendations (energy-efficient light bulbs, A + +
electrical appliances, awareness campaigns , etc.) are
increasingly ineffective in achieving a significant reduction
of consumption, prompting the need for more advanced
strategies.

From a technical point of view, a home is an extremely
complex system with many uncertainty sources depending
on environmental conditions and human behavior.

Therefore, the inclusion of monitoring and control
systems in real time in our homes is becoming increasingly
necessary.

415Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 433 / 729

The incorporation of these management and control
devices allows the quantification of the energy performance
of a home, recording the consumption values in order to
characterize the profiles and habitual patterns. This provides
the user - using appropriate predictive models- with the
necessary information to anticipate and minimize energy
losses.

Figure 1. Elements involved in home energy management

C. Holistic approach

From a physical standpoint, all elements on a system may
interact between each other that may indicate a dependence
level that could be characterized by statistical analysis based
on observation of variables and parameters.

This fact also takes place in the field of HVAC in homes,
since all the elements of the domestic system (people,
electrical appliances, lighting, outdoor conditions, etc.)
exchange heat with each other by changing comfort
conditions (temperature and humidity). For that reason,
quantification and analysis of all variables involved in heat
exchange must be made from a holistic approach, measuring
the contribution of the element of each system and modeling
its interaction to propose real energy-efficient alternatives
within the conditions of comfort that the user sets.

Applying this integration approach to a energy
management system using a suitable learning system,
optimal decisions would be made in real time to reduce

energy losses (based on "experience" of the system from the
beginning of its operation); decisions that could be
ineffective or even counterproductive if the mentioned
approach is not considered.

This will result in most cases in a reduction on the
electric bill, taking into account that the electrical company
has an important role in the system.

Figure 2. Multidevice architecture scheme

As seen in Figure 2, the great advantage of the

architecture stands on the fact of implementing a solution
without having to think about which device is addressed.

The rest of the paper is organized as follows. Section II
describes the state of the art. Section III explains the
proposed solution. In the last section, we draw the
conclusions and indicate the future work.

II. STATE OF THE ART AND DISCUSSION ON HOW TO

IMPLEMENT THE SOLUTION

Integration of various automation and control
technologies in the domestic environment is called “Digital
Home”, an idea not only applying to domestic tasks through
smart home appliances, but also aiming to cover needs of
personal assistance, education and entertainment as well as
security and surveillance.

The following sections will discuss the different points to
be solved and decisions on the most appropriate technologies
to be used in the proposed solution:

A. Efficient energy management

The Digital Home proposes an efficient energy
management by integrating some features in common with
BMS (Building Management System) [3]. such as issues
related to the HVAC control, a correct monitoring of

416Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 434 / 729

lighting, allowing a control of consumption and, therefore,
its associated costs.

Control of electrical appliances and robots is not covered
by these systems, so BMS are a good starting point to define
the features and functionality of SHE, even though their
ultimate goal does not match the prototype to be developed.
In terms of architecture, BMS has a similar structure and
characteristics to those presented by the prototype: hardware
components (sensors, controllers and actuators), computer
processing power and control of all sensors and actuators,
user interface (smart-phones, PCs, tablets, etc.) as well as
means of transmission.

The meters that will be referenced in Section III generate
XML reports, allowing to be processed quickly and giving
the necessary information for operation to the SHE system.
In contrast to other research, all business logic will be in the
cloud and it is going to be described in the next section. As
will be seen, the core protocol requires only basic input
parameters in order to generate configurable and
customizable reports and recommendations, among other
functions, independent of the measuring device.

B. Cloud

It is necessary to store the information from the digital
home in a centralized way in order to have a database that
allows comparative analysis and heuristics. Cloud
technology [4] allows us to centralize the information
without requiring high-capacity storage in homes as well as
to manage and maintain the integrity, security and
availability of data, storing replicated data to ensure recovery
in case of a loss of information.

In turn, the Cloud server-side solution provides an elastic
system that is able to be sized according to demand using an
infrastructure that does not require a high initial investment.
It also allows an adaptive storage capacity and information
processing to specific needs. This adaptive capacity also
improves the overall energy efficiency of the system.

Therefore, this solution provides facilities for software
updating, software improvements and developments. This is
immediate and transparent for the user because most of the
software is centralized and not distributed on each node.

From the user’s perspective, Cloud technology provides
access to the stored information from any device, anywhere
[5].

C. Communication

After the study of various technologies, we chose to use
of DPWS (Devices Profile for Web Services) [7] for the
communication within the housing as it maintains the
philosophy of SOA combined with the convenience of Web
Services.

It is necessary also to take into account that the system
requires the input in an agile way and an easy integration of
different devices. Furthermore, the access to and from the
outside will be made over different types of networks –
wired and wireless- so communications between digital
homes nodes and the Cloud are made using REST API [8].

The implementation of the REST API allows defining a
communication interface between software components

(API) where an URL represents an object or resource whose
content is accessed via HTTP. This solution means that a
digital home can notify captured information to the Cloud.
These are the advantages of the approach:

 Portability between different languages. This is
highly important for integrating different
manufacturers and technologies in digital home
nodes.

 Performance improvement comparing to other APIs
(XML, SOAP, etc.), which is particularly critical due
to the large number of potential nodes of the digital
homes network.

 Easiness of scalability to consider a probable
exponential in the adoption of digital homes.

 REST communication is less "heavyweight"
compared to SOAP, so it is faster and consumes less
bandwidth.

 Lack of strong typing and changeable data structure
at any request.

On the other hand, applications such as consumers’

information transferred to and processed in Cloud also will
make use of REST API and will serve of these facilities.
Furthermore, the REST API functionality can be extended in
client applications using widgets or the own applications or
if the API is opened by applications developed by the users
or communities of these manufacturers, utilities, etc. Next,
the qualities of the REST API to exploit Cloud information
are highlighted:

 Exploitation and use of information and services in
an agile way, as well as easy integration into several
applications and devices.

 Resources access is more accessible than SOAP and
other heavier protocols that require more processing
of the response to its interpretation.

 Customer accessing a REST communication does
not require large resources compared to SOAP.

D. DHC Adapters

The SHE (Smart Home Energy) kernel must be based on
an open, extensible and modular protocol, so DHCompliant
[2] including its open energy service DHC Energy is
considered a very suitable option as it allows integration of
consumption measuring devices, such as CurrentCost, with
the other technologies in the home. The services of DHC
communication protocol are set out below:

 DHC- Security & Privacy service provides the
security and privacy to prevent fraudulent use of
devices and access to data by people or devices
outside the system.

 DHC- Groups service coordinates the
implementation of collaborative tasks between
different devices connected to the system.

 DHC-Localization Service provides the information
to locate devices within the home and help them in
navigation.

417Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 435 / 729

 DHC-Intelligence service provides intelligence to
the system by managing rules that control the tasks
and predicting sensor data from a previous training.

 DHC-Energy Service [9] improves energy efficiency
being probably one of the most effective ways in
economic terms increasing supply security and
reducing emissions of greenhouse gases and other
pollutants.
DHC-Energy arises from that need by establishing
the concept of energy and smart grids [10] in the
DHCompliant communication protocol. It defines a
set of concepts and energy management savings that
allow the user to know in detail the energy
consumption data in the Digital Home environment.

The prototype, using an expert system with a rule editor,

allows the recommendation of actions on a digital home
environment depending on environmental conditions,
creating a knowledge database with the consumption.

For this purpose, the expert system, based on its
experience, uses the rules to model the system. In addition,
this editor enables you to test and simulate the rules. The rule
execution is done with an inference engine based on an
execution of rules and tree forward.

III. PROPOSED SOLUTION

Therefore, after studying the state of the art, the SHE
architecture is proposed. It is specified in SysML, the
standard and open language for systems engineering.

A. Requirements

The need to have an intelligent measuring device, Smart
Meter: will report in real time about the consumption of gas
and electricity, showing the actual rates. The Smart meter [6]
shown in Figure 3 (a) and its adapter for connection in
Figure 3 (b) are examples of the device that are been used:

For tasks that require cooperation among multiple robots,

first a leader is chosen among them, depending on the energy
consumption of each robot.

B. Establishment of the charging information

We selected the most economic energy configuration.
The user can see the types of charging (maximum
consumption, cost per kWh, etc.), being able to select the
best rate, so that the user can choose what time will a device
be enabled or disabled according to tasks being performed,
time of day and the tariffs to be applied.

Figure 4 shows a sequence diagram describing the
process.

Figure 4. Sequence diagram: Obtain pricing information

C. Device states

It is also important to know the user's preferences to be

compared with the data that shows the state of the device

and the power source - either renewable or normal electrical

supply. The sequence diagram that represents the different

states of the device is shown on Figure 5.

Figure 5. Sequence diagram: Device state

D. Temperature regulation

Using metadata is one of the main ways of managing
energy savings. Through that, the internal and external
temperatures are known, as well as other certain
characteristics of the environment (humidity, number of

Figure 3. Smart meter (Current Cost) and his wireless connection

418Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 436 / 729

sunlight hours, rain, wind, etc.). It is described in the
following sequence diagram.

Figure 6. Sequence diagram: Temperature regulation

E. Energy profiles

There is a large number of devices that are held to
regulate their energy consumption (TV, mobile phones,
computers, etc.). Therefore, the DHC-Energy defined a set of
patterns of energy consumption:

 Off – This profile is used to point out that the user
does not need the device and the power consumption
is zero.

 Stand by – The device is awaiting orders. Its power
consumption is minimal.

 Low - The device is operating at low capacity. In
this profile, the energy saving rate will be the
highest.

 High - The device is operating at full capacity. In
this profile, the energy saving rate is the lowest.

 Emergency - Full capacity of use. There will be no
energy savings.

Assignment of a profile for a device: The user will be
able to choose one of the define profiles for each device or
each home.

Figure 7. Sequence diagram: Election of the energy profile

F. Change Profile

If a device remains in an inactive state, the device must
change its energy profile for a lower profile.

G. Service and devices description

The DHCompliant device description should contain a
list of DHC-Energy services. This XML description must
contain the name of the DHC-Energy service and SCPDURL
description with the URL to the extended service description.

This architecture is summarized in a main block, which

is implemented using Cloud Servers, Smart Home Energy

Management System, and blocks for adapters that will have

the common interface ConnectedDevice (device connected).

On the other hand, the recommendation system will have a

distributed architecture between the cloud and the devices in

the home. The information sharing took place by

exchanging an XML file. After being obtained from the

SHE adapter (DHC-Energy), this information is sent to the

cloud.

Figure 8. Prototype interfaces

As it is shown in Figure 8, the information will be
displayed on screens, which take into account different
aspects of usability, accessibility and of course, the
functional aspects of providing the user of the information
that allows to manage the environment devices and Smart
Grid that are in the user digital home. As there are different
manufacturers working within the SHE, implementations
depend on each particular company or manufacturer.
Prototypes that are independent of a particular solution have
been proposed and they are being used by various
technologically neutral members of the consortium.

419Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 437 / 729

IV. CONCLUSION AND FUTURE WORK

This architecture work allows to determine that an open
stage of interaction between devices and the Smart Grid can
be set by providing more capabilities than pure traditional
energy efficiency (such as accounting and reductions in
consumption). It also allows the establishment of a
consumption profile of the different heterogeneous devices a
user has at home, as well as a referral system in the cloud
associated with business intelligence that allows reducing
even more the energy expenditure. All this is done in a
distributed way but through a single point where the user
interacts.

It can be also concluded that this technology has
advantages over other approaches because it is open,
distributed, scalable and requires little or no configuration by
the end user. In addition to the technical advantages, other
advantages include the open environments and standards that
will produce more open market scenarios. The results of
these market changes are beyond the scope of this
communication.

This first interaction has been outlined in architecture,
prototyping the various adapters and software to deploy in
the cloud. It remains to be completed, and tested for selected
use cases in the project Smart Home Environment.

One open issue is the analysis of the scalability of the
technology. Different scenarios could be simulated (for
example using queuing theory) to understand how a large-
scale deployment would consume more or less
computational resources on the Cloud side and of the
recommenders.

ACKNOWLEDGMENT

This project is funded by the Ministry of Economy and
Competitiveness of Spain (IPT-2011-1237-920000).
We are also very grateful to all the members of the
consortium (Ingenia, Satec, Ingho, Tecopysa, Cotesa, IAT,
University of Oviedo) and to the programmers of the entities

participating in the project (Víctor García, Alejandro
Álvarez, José María Ocón).

REFERENCES

[1] I.G. Alonso, O.A. Fres, A.A. Fernandez, P.G. del Torno, J.M.

Maestre, and M.D.A.G. Fuente. Towards a new open

communication standard between homes and service robots,

the DH Compliant case. Robotics and Autonomous Systems.

Volume 60, Issue 6, June 2012, Pages 889–900.

[2] DH Compliant Project, 2009. Web Site.

http://www.dhcompliant.com/ [retrieved: october, 2012]

[3] R. Spinar, P. Muthukumaran, R. Paz, D. Pesch, W. Song, S.

Chaudhry, C.J. Sreenan, E. Jafer, and B. O'Flynn. Demo

Abstract: Efficient Building Management with IP-based

Wireless Sensor Network, 6th European Conference on

Wireless Sensor Networks, Cork, 2009. Pp 1-2.

[4] J. Rhoton and R. Haukioja. Cloud Computing Architected:

Solution Design Handbook. Recursive Press; 2011.

[5] L. Spaanenburg and H. Spaanenburg. Cloud Connectivity and

Embedded Sensory Systems. Available at:

http://www.springer.com/engineering/circuits+%26+systems/

book/978-1-4419-7544-7 [retrieved: july, 2012]

[6] F.J. Casellas, G. Velasco, F. Guinjoan, and R. Piqué. El

concepto de Smart Metering en el nuevo escenario de

distribución eléctrica. Seminario Anual de Automática,

Electrónica Industrial e Instrumentación. Bilbao: 2010, p.

752-757 978-84-95809-75-9

[7] OASIS. Devices Profile for Web Services.

2009.http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01

[retrieved: july, 2012]

[8] M. Masse. REST API Design Rulebook. O’Reilly Media;

2011.

[9] DH Compliant Project. Energy Management. 2009. Web Site.

http://156.35.46.38/index.php/blog/show/DHCompliant-

Protocol-v.0.2-%28Energy-Subsystem%29.html [retrieved:

october, 2012]

[10] S. Chen, S. Song, L. Li, and J. Shen. Survey on Smart Grid

Technology. Power System Technology; 2009-08

420Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 438 / 729

Structuring Software Reusability Metrics
for Component-Based Software Development

Danail Hristov, Oliver Hummel, Mahmudul Huq, Werner Janjic
Software Engineering Group

University of Mannheim
Mannheim, Germany

e-mail: {dhristov, hummel, shuq, janjic}@mail.uni-mannheim.de

Abstract — The idea of reusing software components has been
present in software engineering for several decades. Although
the software industry developed massively in recent decades,
component reuse is still facing numerous challenges and
lacking adoption by practitioners. One of the impediments
preventing efficient and effective reuse is the difficulty to
determine which artifacts are best suited to solve a particular
problem in a given context and how easy it will be to reuse
them there. So far, no clear framework is describing the
reusability of software and structuring appropriate metrics
that can be found in literature. Nevertheless, a good under-
standing of reusability as well as adequate and easy to use
metrics for quantification of reusability are necessary to
simplify and accelerate the adoption of component reuse in
software development. Thus, we propose an initial version of
such a framework intended to structure existing reusability
metrics for component-based software development that we
have collected for this paper.

Keywords- Software Reusability; Software Reusability
Metrics; Component-Based Software Development.

I. INTRODUCTION

The idea of software reuse [1] is not new: its roots date
back to 1968 when McIlroy has presented his seminal work
on reusable components [2] at the NATO Software
Engineering Conference in Garmisch, Germany. However,
there has only been limited practical experience with reuse
until the late 1980s, when large-scale reuse programs were
adopted by companies, mainly in the US (e.g., by IBM and
Hewlett Packard [3]) and Japan (e.g., by Toshiba and
Fujitsu); these efforts have also pushed forward the research
in the 1990s, and in turn created a growing interest in
systematic software reuse and reuse programs for
organizations at that time [4]. After the turn of the
millenium, widely available broadband internet connections
and the raise of the open source movement have clearly
created opportunities for broader inter-organizational reuse
[5] and resulted in a huge amount of source code and
components that is freely available [6]. Even the recently
rising popularity of agile methodologies and practices has
created numerous interesting ideas on how to facilitate reuse
in that context [7,8]. However, as stated by Frakes and Kang,
there are still numerous open issues to be solved [9] –
including a better understanding of reusability.

Before being able to go into more details on the
challenges tackled in this paper, we have to clarify what is
not in its scope since reuse is a broad concept that cannot
only be applied on components, but also on numerous other
artifacts necessary for software development. Such artifacts
are, for example, design structures [3,11,12], architectures
[1,11,12], or even documentation [12]. However, the results
presented in this paper will focus on software components, in
both source code and binary form or in other words on the
white- and black-box reuse of these software building
blocks. In white-box reuse, the source code is available to the
developer and can be changed before it is integrated into a
new context, while in black-box reuse this is not the case and
therefore only a component’s interface (containing the public
methods and attributes) and the documentation are visible
[13]. Services in Service Oriented Architectures (SOA) [14]
are conceptually certainly similar, but research on service
reusability could not be considered in this publication due to
space limitations. Black-box reuse probably tended to be the
more facilitated approach in the past [15], however, the wide
availability of search engines for open source software [7]
has certainly brought the possibility of white-box reuse back
into the center of interest .

It has been observed that software reuse research is rather
scattered than focused and consecutive [9]. It is also evident
that – though the software industry has developed massively
in last decades – the paradigm of component reuse is still
facing numerous issues and hence lacking adoption from
practitioners. One of the central impediments that prevent
efficient and effective reuse today is the difficulty to
determine which artifacts are best suitable to solve a parti-
cular problem in a certain context and how easy it will be to
reuse them. In other words, no comprehensive framework
describing the reusability of software and structuring
appropriate metrics exists in literature so far. Nevertheless, a
good understanding of software reusability as well as
adequate and easy to use metrics for its quantification are
crucial in order to facilitate the adoption of reuse in software
development. The focus of the research presented in this
paper is on the reusability of software components in an ad-
hoc reuse scenario. By “ad-hoc reuse scenario” we mean the
spontaneous decision of a developer to use a component
repository or search engine [7], indexing e.g. open source
software not specifically built for being reused, in order to
search for a component that might match the given
requirements. This type of software reuse is probably one of

421Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 439 / 729

the most promising that does not require larger upfront
investments as for example the creation of a software
product line [17] or a planned reuse program [4]. Never-
theless, it is likely that the insights gained from this work can
be transferred to the latter areas where a measure for judging
the reusability of software artifacts is also important.

Hence, in this paper we are distilling an initial framework
for structuring software reusability metrics in component-
based software development based on a comprehensive
survey of metrics proposed in the literature. Its remainder is
organized in the following order: in Section II we discuss the
general concept of software reusability before we turn to the
current state of the art in reusability metrics in Section III. In
Section IV we propose our novel software reusability
framework for the context of ad-hoc reuse approaches. The
paper is finally concluded with a summary of its findings and
an outlook on potential future work in Section V.

II. REUSE & REUSABILITY

Literature provides a significant number of definitions for
software reuse; probably the most popular one was published
by Krueger [1] who has defined software reuse as the use of
“existing software artifacts during the construction of a new
software system”. Software reuse can be embraced in several
different ways: on the one hand, it can be practiced in a
structured and controlled manner inside organizations, where
software artifacts are systematically designed for reuse when
created according to a software reusability policy [12]. In
this case, the artifacts can be usually reused within a
particular domain, which is nowadays well-known as the
paradigm of software product line engineering [4,9]. It is
based on the presumption that most software systems are not
new but rather a variation (or improvement) of already exis-
ting systems in a domain [9]. For such software reusability
policies to succeed, they have to be systematic [18] and well
planned. Thus, such a scenario of reuse is also known as
planned reuse which indicates that it requires up-front
investments by the organization implementing it, for
example, designing the software for potential future reuse,
establishment of libraries of reusable components, etc.
[3,19]. Such systematic software reuse has been the central
topic of a substantial amount of research papers (as, e.g.,
[12]).

Another interesting scenario is ad-hoc reuse [3, 19]: in
this case, the artifacts for reuse are taken from generic
libraries or search engines. This usually happens on an
individual basis (i.e., per developer) and not per project or
company. Here, the role of the libraries and retrieval
mechanisms is of high importance [20]. With the fast growth
of the World Wide Web and the possibility to store and
retrieve large amounts of data online, it has become much
easier to distribute reusable assets over the Internet even
between organizations [21,22]. According to the body of
existing literature, practicing this kind of reuse in software
development can bring substantial benefits to organizations
as well as the developers [9,19,23,24]. The most widely
expressed and discussed benefits of reuse are: a productivity
and quality increase, easier maintainability and higher
portability.

An important prerequisite for every kind of component
reuse is a “repository for storing reusable assets, plus an
interface for searching the repository” [12]. In case of
planned reuse, companies need to implement and maintain
an internal repository of reusable components to store the
assets produced and keep them ready for reuse [23]. For ad-
hoc reuse, the components are usually stored in a publicly
available library, accessible over the Internet (cf. e.g. [7] for
an overview). However, the issue with the efficient retrieval
of components suitable for reuse is still not completely
solved. However, our screening of literature did not uncover
sufficient empirical evidence of practitioners and
organizations actually experiencing the expected benefits.
Therefore, it should not be concluded that the mere
availability of prerequisites for reuse alone will increase pro-
ductivity and quality in software development already. The
characteristics of the available artifacts also have to be taken
into consideration.

As for software reuse, a large number of definitions for
software reusability can be found in existing literature, e.g.,
Kim and Stohr [19] have defined software reusability as “a
measure for the ease with which the resource can be reused
in a new situation”. It is important to distinguish between
software reuse and reusability as the former is focused on the
practice of reuse itself while the latter tries to make the
potential of artifacts for being reused measureable. Poulin
[25] has stated in this context that knowing what makes
software reusable can help us learn how to build new
reusable components and to identify potentially useful (and
thus reusable) modules in existing programs. The literature
lists several characteristics of software, which are believed to
determine reusability and are therefore repeatedly referenced
in research papers [8,13,20,25]. Such factors are:
adaptability, complexity, composability, maintainability,
modularity, portability, programming language, quality,
reliability, retrievability, size and understandability. Further-
more, the reusability of a component in a certain context
should be comparable to the reusability of other – potentially
functionally equivalent – software components in the same
context. However, most of the existing research is rather
incoherent and only covers one or a few of these aspects so
that to our knowledge there is no publication that has tried to
bring all these aspects together in a single model.

III. EXISTING REUSABILITY DEFINITONS

In order to get an impression of reusability definitions
available in the literature, we performed a systematic
literature review that identified a number of articles
proposing quantitative metrics for assessing the reusability of
software. For that purpose, Google Scholar, IEEE Xplore,
ACM Digital Library, Citeseer and Springer Link were
searched with the keywords “software reusability”. Titles
and abstracts of delivered publications were read in order to
determine whether they could contribute to the aim of our
study, which resulted in a total set of 73 papers that were
deemed worthwhile to be more closely read and investigated.
In general, we found that some of the metrics described were
newly developed solely for the purpose of measuring
reusability, while others were modified or adapted from

422Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 440 / 729

other areas (such as maintainability measurement) and have
not been initially developed with reusability in mind. For the
sake of practicality, we have separated the results of this
survey, i.e., the discovered metrics, into two categories: one
for white-box (allowing to look into the code of the
components) and one for black-box (where usually merely
interface and documentation of a component are available)
reusability. This separation helps to distinguish the different
nature of metrics for these two paradigms. Within these two
categories that are presented in the following two
subsections, the results of previous research are presented in
chronological order to illustrate the development of
reusability measurement. Due to limited space, we can only
briefly describe most of these contributions; the interested
reader is referred to the original sources for more detailed
information.

A. White-Box Reusability

As early as in 1991, Caldiera and Basili [26] have
defined three main (but still relatively abstract) attributes for
assessing the reusability of components – reuse costs,
functional usefulness and quality of components. These
attributes were determined by factors, which are directly or
indirectly measured by classic software metrics such as
Halstead’s Volume [27], McCabe’s Cyclomatic Complexity
[28] or other metrics such as Regularity and Reuse
Frequency [26]. Volume was used in order to estimate two
important attributes, namely reuse costs and quality of
components. The Cyclomatic Complexity was used to assess
all three reusability attributes introduced before,. Regularity
was used to assess the former two attributes, while Reuse
Frequency was merely used to assess functional usefulness.

Seven years later, Barnard [29] has suggested a
composite metric for reusability of object-oriented software,
which was derived from two empirical experiments. As
foundation, again a variety of readily available software
metrics have been used. Based on the experiments, those
metrics that were related best to reusability have been
selected (with corresponding confidence intervals). In order
to come up with this relation, classes from C++, Java and
Eiffel libraries have been considered in the experiments,
assuming that classes in libraries are more reusable.
Barnard’s metric suite is focused on the Simplicity,
Genericity and Understandability of classes’ interfaces,
methods and attributes.

Around the same time, Mao et al. [30] have investigated
the effects of inheritance, coupling and complexity on the
reusability of classes in object-oriented software. Two years
later, Lee and Chang [31] proposed another set of metrics for
measuring the reusability and maintainability of object-
oriented software. The determining criteria here are
complexity and modularity. The corresponding metrics are
Internal and External Class Complexity (for complexity),
and Class Cohesion and Class Coupling (for modularity).

In 2001, Cho et al. [32] have suggested metrics for
component complexity, customizability, reusability and
reuse. Component Reusability is determined by the
functionality that the software components provide for their
domain: it is the ratio between the number of interface

methods in the component that provide commonality
functions in the its domain, and the total number of interface
methods in the component. The more commonality functions
a component provides, its reusability is considered higher.
Additionally to this metric, Cho et al. have suggested metrics
for Component Customizability. They state that if the
possibility to customize a component is not given, the
reusability is low, since developers cannot adapt components
for their purpose. Customizability is determined by the
metric Component Variability, which is defined as the ratio
of the number of customization methods to all methods in a
component’s interfaces.

Also in 2001 Etzkorn et al. [33] have published a model
capturing reusability of object-oriented legacy software.
They suggest a comprehensive metric suite covering
different aspects of the reusability of individual classes. It is
defined as the sum of metrics for Modularity, Interface Size,
Documentation and Complexity of a class, each equally
weighted.

Four years later, Bhattacharya and Perry [34] have stated
that the usefulness of a software component depends not
only on its internal characteristics, but also on the context in
which it should be integrated. Therefore, they suggested
reusability metrics measuring how well a component fits in a
predefined architectural context. The prerequisite is that the
(potentially reusable) components are adapted to the
architectural description of the target system, which includes
a description of the services needed by the system. They
have proposed two metrics for measuring software
reusability, namely Architecture Compliance and Compo-
nent Characteristics. The Architecture Compliance metric is
measured by three different sub-metrics: Architectural
Component Service Compliance Coefficient, Architectural
Component Attribute Compliance Coefficient and Archi-
tectural Component Behavior Compliance Coefficient. A
higher value for the Architecture Compliance metrics
indicates a more reusable component in a given context. The
Component Characteristics metric measures the compliance
of a component with regards to the data and functionality
requirements of all attributes and services in the architectural
description.

In 2008, Gui and Scott [35] have suggested revised
formulas for established coupling and cohesion metrics in
order to measure the reusability of Java components. They
are proposing to measure to which extent classes are coupled
together and to which extend their methods are cohesive.
Additionally, they have considered transitive relationships
and finally defined two metrics for measuring software
reusability, based on their own versions of Coupling and
Cohesion. The authors admit that additional determinants of
a components’ reusability exist; however they are not
considered in their paper. Only very recently, Gill and Sikka
[36] have proposed five new metrics for better assessing
reuse and reusability in object-oriented software develop-
ment. The metrics are Breadth of Inheritance Tree, Method
Reuse per Inheritance Relation, Attribute Reuse Per
Inheritance Relation, Generality of Class and Reuse
Probability.

423Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 441 / 729

B. Black-Box Reusability

To our knowledge, the first set of metrics for measuring
the reusability of black-box components was proposed by
Washizaki et al. [16] in 2003. They proposed to consider
three main factors that are expected to affect reusability:
understandability, adaptability and portability. Through an
empirical analysis of Java Beans components, the authors
have established thresholds for each proposed metric. For
measuring the overall understandability, the metrics
Existence of Meta-Information and Rate of Component
Observability are defined. Rate of Component
Customizability measures adaptability, while Self-
Completeness of Component’s Return Value and Self-
Completeness of Component’s Parameter measure
portability.

In 2004, Boxall et al. [37] have proposed that the Under-
standability of a software component’s interface is a major
quality factor for determining reusability. To measure this,
they have defined a set of metrics, including values such as
Interface Size, Identifier Length or Argument Count. The
authors have selected 12 components from different software
systems in C and C++ to empirically validate their metrics
and developed simple tools to automatically calculate them.
The derived values have (merely) been compared against the
expert knowledge of the authors judging the reusability of
these components. Consequently, the authors have stated that
more empirical research is necessary.

Again one year later, Rotaru et al. [24] have identified
adaptability, composability and complexity of software
components as determinants for their measure of reusability.
The composability of a component is determined by the
complexity of its interface. Adaptability is the ability of a
component to handle environmental changes. Although a
preliminary metric specification is given for all three aspects,
the authors have stated that an empirical calibration is
necessary to better understand its effects.

Only recently (in 2009), Sharma et al. [38] have proposed
an Artificial Neural Network (ANN) approach to assess the
reusability of software components. The authors have
considered determining reusability by four factors:
Customizability, Interface Complexity, Portability and
Understandability. However, only customizability was quan-
titatively evaluated so far. The other three factors are only to
be assessed qualitatively, i.e. merely ranked on a relative
scale by experts.

C. Open Issues

For the metric suites reviewed and presented in this
section so far, the most evident shortcoming beyond their
quite limited scope is that almost all lack a sufficient
empirical validation of their prediction capabilities. Their
expressiveness originates mainly from expert opinions and
evidence mainly derived from small case studies so that it
seems that research on reusability is largely underrepresented
in empirical software engineering research so far. There may
be many reasons for this situation: one possible explanation
is that there is no agreement in the research community
which software characteristics provide a sufficient basis for
determining software reusability and which metrics for these

characteristics are sufficient. In other words, there is no
common understanding of what software reusability is and
how it can be best measured, yet.

Furthermore, as can be seen in the metric sets we
presented, they mainly focus on the technical characteristics
of software, which may be inconsistent with the expectations
of practitioners. Therefore, a more holistic approach to
defining and measuring reusability is needed. We intend to
address these issues in current research in the next section.
Following the Goal-Question-Metric (GQM) approach [39],
an initial proposal for a more structured and analytically
justified reusability model will be developed. Thereby, the
understanding of software reusability can be improved,
which on the one hand should encourage researchers to
invest more effort in empirically validating this (and similar)
models and on the other hand should give practitioners the
confidence they need for measuring reusability “in real life”.

IV. STRUCTURING REUSABILITY METRICS

In this section, the reusability requirements for software
components will be explained and structured in a reusability
requirements model. For this purpose the well-accepted
Goal-Question-Metric (GQM) paradigm [39], for deriving
appropriate measurements and metrics for software
reusability will be used. Following this approach, the first
step is to define the goal of this research work. It can be
expressed as follows:

Improve the reusability assessment of software
components in an ad-hoc software reuse scenario from the
developer’s point of view.

The purpose here is to improve, the issue is reusability
assessment, the objects are software components and the
viewpoint is that of the developer. Another element – that of
the context (ad-hoc reuse) is added to the goal definition. It
is not explicitly defined in the GQM approach, but it is
important for the research presented in this paper and will be
relevant for the further elaboration. The next step foreseen in
the GQM approach is to define the questions resulting from
the goal stated above. They can be expressed as follows:

• which are the requirements to the software
components that can determine their reusability in
an ad-hoc reuse scenario?

• which are the characteristics of the software
component that determine their reusability in an ad-
hoc reuse scenario?

Obviously, these questions are not trivial and it is not
possible to give an answer to them directly through
identifying the appropriate metrics and hence a more
sophisticated elaboration is needed in this case. Therefore, it
is helpful to look at the following common ad-hoc reuse
scenario (sometimes also called opportunistic reuse [3]) to
better identify the needs of their users: usually, a developer
(e.g., a software developer) would start thinking about the
possibility to reuse a software component when he or she
receives a task to develop certain functionality in the
software system that she or he is working on. He or she
would have two possibilities – (1) to develop this
functionality from scratch or (2) to reuse already existing
code that provides as much of this functionality as possible.

424Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 442 / 729

It is also necessary to stress that (2) would be a valid option
only if there were no managerial, organizational or other
company-internal obstacles preventing people from reusing
code [29] that might come from a 3rd party and of course
must be accessible in some kind of repository [17]. Looking
into these two alternatives, the developer is likely to choose
alternative (2) – the reuse of a software component – if the
expected effort (or the corresponding costs) in case (2) is less
than the effort (or costs) in case (1) [11]. The costs in (1)
could be derived by monetizing the effort invested in the
short term and middle/long term activities performed by the
developer, and the costs in (2) could be derived by the effort
invested in the short term and middle/long term activities
(such as searching, integrating and testing a component) of
the developer plus possible royalties that need to be paid to
the creator or vendor of the component.a

To summarize, reusability requirements can be divided
into functional and non-functional requirements as presented
in the following. The functional requirement is that, in order
to be considered for reuse in a particular context, the
component(s) need to provide the functionality requested by
the developer. There are two possibilities to address this
requirement. The first possibility is to consider this a “hard” ,
i.e. a “yes or no” requirement. This means that a component
would be considered for reuse only if it fully satisfies all
needs specified by the developer. The second possibility is to
consider the functional requirement as “soft”. In this case,
also components that do not fully satisfy the requested and
specified functionality are included in the consideration set.
In this case, the developer has to change/adjust the
functionality of the component before reusing it, or to find a
workaround, which clearly also influences the perceived
degree of reusability.

The non-functional requirements, which determine the
reusability of a software component, can be derived from the
ad-hoc reuse scenario and the factors affecting the decision
on reuse just explained and can be structured as follows:

• Fast and easy to retrieve: in order to consider a
software component for reuse, it has first to be found
by the developer. The easier and faster a component
can be retrieved, the less effort it will take to reuse it.

• Licensed for reuse in the particular context: If the
component is readily approved for reuse in the
context of the developer, she or he can directly
implement it and thus save time. If there are any legal
concerns, they have to be clarified and settled first,
which will require additional effort.

• Usability: software components, which are more
usable from the viewpoint of the developer, will be
preferred. This can have several dimensions:
satisfying quality of the software component, easy to
understand how it is built and structured, guaranteed
maintenance of the component in the future etc.

• Inexpensive: if a component is too expensive, this
will increase the overall costs (or their equivalent
effort expressed in the developer’s overall effort) and
thus make the reuse alternative unattractive.

• Easy to adapt to a new usage context: The easier the
component can be adapted to the context of the
developer, the less effort it will take to implement it.

Overall it can be said that the better a software component
meets these requirements, the higher is the probability that
the developer will select it for reuse.

A. Core Elements of Reusability

Our reusability measurement model does not aim on
identifying new characteristics of software components
determining reusability while rejecting the existing ones, but
rather focuses on structuring them better and identifying a
common superset of these characteristics to determine the
reusability of software components. The match between
reusability requirements and characteristics is obviously an
n-to-m relationship. This means that one characteristic can
address many requirements, and in the same time one
requirement can be addressed through various
characteristics. Therefore, the core measurement model is
defined based on the following characteristics distilled from
the reusability models presented in the last section:

• Availability: the availability of a software component
can determine how easy and fast (or hard and slow) it
is to retrieve it, this is not to be confused with the
opertational availability often used in the context of
long-running (server) systems.

• Documentation: a good documentation can make the
software component more reliable since it makes it
easier to understand. Furthermore, it should contain
the legal terms and conditions and thus make clear if
it is licensed for reuse in the context of the developer
or if any legal issues may arise.

• Complexity: the complexity of a software component
determines how usable it is (i.e., if it possesses
satisfying quality, if it is easy to understand and to
maintain) and how easy it is to adapt the software
component in the new context of use. The rationale
behind this is that if there are two components which
provide the same functionality (which is the
prerequisite for assessing their reusability), then a
lower component complexity would mean that func-
tionality is implemented more efficiently. Thus, it is
likely that the implementation of this functionality in
the component is of higher quality, is easier to under-
stand by the developer and easier to maintain in the
future, and it will be easier to adapt in a new context.

• Quality: the quality of the component directly
determines how usable it is in a given context. The
quality of a component is regarded as a characteristic
which describes how good it fulfils its requirements
and also how error- and bug-free it is. This can
include a number of sub-characteristics, e.g . whether
it often crashes when it is used, whether it is
thoroughly tested and whether it provides suitable test
cases to be tested when integrated in a new context.

• Maintainability: The maintainability of a software
component directly determines how usable it is for
reuse. After the integration into the new system, the

425Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 443 / 729

component should be able to adjust to the changes in
the system along with its evolution (e.g., in future
versions of the system). This can be facilitated
through appropriate methods that the component
provides to the developer or simply through providing
changeable source code of the component (this is of
course only possible for white-box components).

• Adaptability: This characteristic directly determines
how easy it is to adapt a software component to the
context of the developer. Otherwise, the availability
of compatible adapters will increase the ease of
adapting, compared to components for which such
adapters have to be developed from scratch. Apart
from the programming language, the design of the
component and the availability of appropriate
methods and interfaces to modify, adapt and bind the
component to the software landscape of the developer
are of high importance.

• Reuse: The actual reuse of the component can also
be used to infer how usable and how easy it is to
adapt it. The amount and frequency of reuse,
especially in contexts similar to that of the
developer can serve as reference points and she or
he may select the component with the higher
amount and frequency of reuse.

• Price: the price of the software component
determines how expensive it is to reuse.

An illustrative overview of the elements influencing

reusability measurement as just discussed is presented in the
following figure, the concrete metrics contained there are
briefly discussed afterwards as well as potentially necessary
distinctions between white- and black-box reuse (i.e. for
source and binary components).

Figure 1. Factors influencing reusability measurement.

In order to calculate the reusability (R) of a software
component (c) in the context of the developer (c), the
individual parts of the measurement model have to be
quantified through metrics first, and then these metrics have
to be aggregated in a reusability calculation model. Based on
the characteristics introduced above, it can be defined as
follows:

(1)

w1 - w8 are weights and the rest are composite metrics for

the attributes from the reusability measurement model. To
facilitate the comparison of the reusability of different

components in the same context, these values should be
adjusted to a common scale, e.g., normalized to the range
[0..1] since this is common for software metrics, but not
always done for the metrics presented before. The values of
the weights determine the importance of each characteristic
of the component for its reusability and have to be
determined empirically or through expert opinion. Their sum
has to be equal to 1 (because of the normalization). As to the
other metrics, their absolute values should be calculated first
and then normalized such that a minimal and a maximal
value need to be found for each metric [38]. These values
can be absolute min/max values found by analytical methods
or empirical values derived from the components in a large
enough consideration set.

426Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 444 / 729

B. Concrete Metrics Proposals

Based on the insights gained from surveying numerous
reusability definitions, we have been able to distill the
following preliminary suggestions for concrete reusability
metrics within each characteristic as presented below:

• Availability : a generic, qualitative and subjective
metric can be used. The alternative values are:
instant, search with automatic aid (e.g., an online
library), search manually (e.g., via manually
screening software systems for suitable components),
upon request and not available. These values have to
be placed on an ordinal scale (by, e.g., an expert –
therefore the metric is subjective) and normalized (as
all other metrics) to fit in the overall calculation of
reusability.

• Documentation: to be determined by four different
attributes: amount, quality, completeness of
documentation and availability of appropriate legal
terms and conditions. The amount is a generic,
objective and quantitative metric that can be
measured through its size, e.g. in kilobytes (kB). The
quality is a generic, subjective and qualitative metric
that can be measured on an ordinal scale (from, e.g.,
poor to very good) set by an expert. The same
applies to the completeness. The existence of legal
terms and conditions is a boolean metric: either this
information is provided, or it is not.

• Complexity: The complexity of software is a widely
researched topic and numerous metrics have been
suggested in the literature. Therefore, it makes sense
to use some of them for assessing the complexity of
software components. The complexity intended here
is a composite metric of the size of the component
(e.g., in Lines of Code (LOC), excluding the LOC
containing only documentation, i.e. comments) and
complexity metrics for the classes, methods and
parameters of the component, as well as their
coupling and cohesion. It should be noted that the
application of these metrics will be different for
white-box and black-box components.

• Quality : generally, it is difficult to assess the quality
of code in software engineering. This may often be
subjective and inaccurate. In the narrow under-
standing of quality in this first version, it can be
assessed via four attributes: the number of bugs, the
number of tests performed (and their coverage and
outcome), availability of test cases, provided along
with the component, and an independent rating and
certification. The first two attributes can only be
collected through the lifetime of the component and
may not be available. They are generic, objective and
quantitatively measurable values. The availability of
test cases is a context-based, subjective and quali-
tative metric. The best option would be to provide
ready-to-use test cases which fit to the testing

environment of the developer. An ordinal scale set
by an expert seems reasonable here. A rating can be
provided by experts or by other developers who have
already reused the component (“wisdom of the
crowd”). Such a rating can be an ordinal value,
which is subjective, context-based and qualitative.

• Maintainability : The difference between maintain-
ability and adaptability of a component is basically
the perspective, the former is more concerned with
the source code of the component while the latter is
focused on its interface. Otherwise, the idea of both
is how easy it is to adjust the component to a new
context and hence, metrics related to the
maintainability of the component are also included in
the adaptability metric below. Therefore, the
preliminary maintainability metric presented here
will include only one additional aspect: the
availability of the source code (as available for
white-box components). A boolean metric is thus
sufficient for this calculation. In the long run it
makes sense to incorporate more detailed
characteristics such as changeability etc. from the
maintainability research community. However, the
effect of the metrics used there (such as LOC,
Cyclomatic Complexity, Volume etc.) are not yet
well understood so that their impact on reusability is
also not clear.

• Price: A generic, objective and quantitative metric,
expressed through a predefined currency (con-
versions between currencies are possible).

• Adaptability : one important aspect of the
adaptability is the programming language, and
another is the availability of appropriate methods and
interfaces for adapting the component [40]. The first
aspect is context-dependent, subjective and
qualitative. The possible values are: same
programming language of the component and the
context of the developer, different language with
available and suitable component adapters, different
programming language with no available suitable
adapters. Again, these values have to be placed on an
ordinal scale by an expert, while considering the
similarity of the programming languages (e.g., it may
be easier to adapt a C component to C++ then to
Java). The second aspect should be addressed by
some of the metrics in chapter 3 – the adaptability
metric Rate of Component Customizability (RCC)
from the metric suite of Washizaki et al. [16] seems
useful in this case. The different applicability of
adaptability metrics to white-box and black-box
components has to be considered here, since the
latter lack the possibility to change their code.

• Reuse: can be determined by the amount and
frequency of reuse. Both are generic, objective and
quantitative metrics. The amount is the overall

427Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 445 / 729

number of reuses of the component, and the
frequency is the number of reuses for a certain period
of time (e.g., the last week, month, year etc., or since
it is available).

As stated before, these metrics are currently only

suggestions for quantifying the reusability measurement and
could be used as a starting point for quantitative empirical
research. Their completeness and accuracy in measuring the
reusability characteristics have to be empirically validated
and synchronized with insights from other communities
(such as those investigating software quality, complexity or
maintainability).

C. Discussion

This chapter presented a holistic analytical approach for
assessing the reusability of software components in an ad-
hoc reuse scenario. The literature survey, which was carried
out in the beginning of this research, did not identify any
other publication that has conducted such extensive analysis
of this topic. The GQM approach was used as a
formalization technique for the analysis in order to increase
its expressiveness. It was argued that, in order to identify
appropriate and reasonable metrics, a reusability require-
ments model and a reusability measurement model have to
be defined first. This also corresponds to the guidelines of
the GQM approach.

Clearly, the major drawback of this analysis is the
missing empirical validation of the proposed measurements
and metrics, since the usefulness and practicability of the
suggested models can only be proven by conducting
empirical case studies and statistically significant tests using
real-life data from existing libraries for reusable components.
Therefore, the next logical step would be to implement a
reusability model based on these metrics by following the
guidelines provided in the previous subsections, and to adjust
the calculation model until it satisfies the needs of
practitioners. It is also possible that the calculation model has
to be adjusted for different implementation scenarios – e.g.,
for implementation in a company-internal reuse library and a
freely available online library. The metric suites described in
chapter III should be the first source to look into when
searching for alternatives or extensions.

Additionally, empirical investigations need to establish
thresholds that the reusability values of the components have
to beat. These thresholds should reflect the effort that a
developer is willing to invest in the case of developing the
functionality in-house (similar to the idea of Halstead’s
Effort metric [16]). However, this is a non-trivial task, since
the abstract and technical characteristics of the software
component (included in the reusability measurement model)
need to be translated into time, cost or effort values (e.g.,
“How much effort will be needed to reuse a component in a
particular context, if its complexity has the value X?”).
Obviously, a lot of further research is needed in this area, but
since this clearly creates a considerable amount of effort
(that has not even been spent for most other software metrics
so far), we are forced to limit ourselves on merely sketching
the idea of this model for the time being.

Another issue arises from the white-box and black-box
nature of the components. If there is a mix of such
components in the consideration set, it might become
difficult to compare their reusability. This is an issue of the
granularity of measurement – the object of measurement for
some of the component’s characteristics (e.g., the complexity
or adaptability) is different. In the white-box case, these
metrics can be calculated on the basis of the whole
component, and in the black-box case, they can be calculated
based only on the parts of the components made available to
the developer – usually the interfaces with their methods and
attributes. Further research is needed to define guidelines for
comparing the reusability of white-box and black-box
components.

In general, we believe that the reusability models defined
here will bring more clarity and better structure to reusability
research and have the potential to become a new starting
point when it comes to assessing reusability. Once this field
has made further progress, it becomes more likely that
practicing reuse of software components will increase and be
more efficient.

V. CONCLUSION & FUTURE WORK

In this paper we have surveyed the current state of
research on software reusability: available metrics for the
reusability assessment of code in the object-oriented and
component-based software development were presented and
evaluated. Moreover, a revised comprehensive definition for
the reusability of software components was proposed by
following a structured analytical approach.

We have identified that the reusability of a software
component is a context-specific characteristic that can vary
in different application scenarios. This is an important
aspect, which affects the definition of reusability and the
implementation of its measurement. The reusability of a
software component depends on various non-functional
characteristics while fulfilling functional requirements (i.e.
providing the desired functionality) is a prerequisite for
assessing the reusability at all. It has become evident that
reusability is a highly complex characteristic and its quanti-
tative assessment is a non-trivial problem (as is the case for
most other software quality characteristics). It may not be
possible to fully automate the calculation in the near future
so that human intervention may always be necessary.

The proposed software reusability measurement models
and metrics in this paper still lack empirical validation so
that is a logical next step in reusability research that should
be addressed in the future. Moreover, the specific issues of
setting practical threshold values when assessing reusability
and comparing reusability of different components have to
be addressed by researchers. Otherwise, it will be difficult to
implement the model in practice. If future research succeeds
to overcome these open issues in determining software
reusability, it is likely that it will be a major step towards a
wider adoption of the component reuse paradigm by both
academia and business, which in turn can be seen a
cornerstone for the further improvement of recently
spreading software search engines and component
marketplaces.

428Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 446 / 729

REFERENCES
[1] C.W. Krueger, Software reuse, ACM Computing Surveys,

vol.24, June 1992, pp.131-183.
[2] M.D. McIlroy, Mass produced software components,

Software Engineering: Report on a conference by the NATO
Science Committee, Garmisch, Germany, 7th to 11th October
1968, Naur, P., Randell, B., Eds., NATO Scientific Affairs
Division, Brussels, Belgium, 1969, pp.138–150.

[3] R. Prieto-Diaz, Status report: software reusability, IEEE
Software, vol.10, May 1993, pp.61-66.

[4] M. Griss, Software reuse: From library to factory., IBM
Systems Journal, vol. 32, 1993, pp. 548--566.

[5] O. Hummel and C. Atkinson, Using the Web as a Reuse
Repository, Reuse of Off-the-Shelf Components, Lecture
Notes in Computer Science, vol. 4039, Springer, 2006,
pp.298-311.

[6] A. Ampatzoglou, K. Apostolos, G. Kakaronzzos, and I.
Stamelos, An Empirical Evaluation on the Reusability of
Design Patters and Software Packages, Journal of Systems
and Software, vol. 86, Dec. 2011, pp. 2265-2283.

[7] O. Hummel, W. Janjic, and C. Atkinson, Code Conjurer:
Pulling Reusable Software out of Thin Air, IEEE Software,
vol.25, Sep./Oct. 2008, pp. 45-52.

[8] G. Kakarontzas and I. Stamelos, Component Recycling for
Agile Methods, Sev-enth International Conference on the
Quality of Information and Communications Technology
(QUATIC), 29 Sept. 2010 – 2 Oct. 2010, pp.397-402.

[9] W.B. Frakes and K. Kang, Software reuse research: status and
future, IEEE Transactions on Software Engineering, vol.31,
July 2005, pp.529-536.

[10] T.C. Jones, Reusability in Programming: A Survey of the
State of the Art, IEEE Transactions on Software Engineering,
vol.SE-10, Sept. 1984, pp.488-494.

[11] W.B. Frakes and C. Terry, Software reuse: metrics and
models, ACM Computing Surveys, vol. 28, June 1996,
pp.415-435.

[12] A. Sharma, R. Kumar, and P.S. Grover, A Critical Survey of
Reusability Aspects for Component-Based Systems, World
Academy of Science, Engineering and Technology, vol. 33,
2007, pp.35-39.

[13] A. Khoshkbarforoushha, P. Jamshidi, and F. Shams, A metric
for composite service reusability analysis, Proceedings of the
2010 ICSE Workshop on Emerging Trends in Software
Metrics (WETSoM '10), ACM, New York, USA, 2010,
pp.67-74.

[14] T. Elr, Service-Oriented Architecture: Concepts, Technology,
and Design, Prentice-Hall, 2005.

[15] H. Washizaki, H. Yamamoto, and Y. Fukazawa, A Metrics
Suite for Measuring Reusability of Software Components,
Proceedings of the 9th International Symposium on Software
Metrics (METRICS '03), IEEE Computer Society,
Washington, DC, USA, 2003, pp.211-223.

[16] P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns, Addison-Wesley, 2002.

[17] W.B. Frakes and S. Isoda, Success Factors of Systematic
Reuse, IEEE Software, vol. 11, Sep./Oct. 1994, pp.14-19.

[18] Y. Kim and E.A. Stohr., Software reuse: survey and research
directions, Journal of Management Information Systems -
vol.14, March 1998, pp.113-147.

[19] D. Merkl, Self-Organizing Maps And Software Reuse (book
chapter), Compu-tational intelligence in software engineering,

Pedrycz, W., Peters, J.F. (eds.), Singapore, World Scientific,
1998, pp.65-95.

[20] O.P. Rotaru and M. Dobre, Reusability Metrics for Software
Componenents, ACS/IEEE International Conference on
Computer Systems and Applications (AICCSA’05),
Washington DC, USA, 2005, pp.24-31.

[21] J. Poulin, Measuring software reusability, Proceedings of the
International Conference on Software Reuse: Advances in
Software Reusability, 1-4 Nov. 1994, pp.126-138.

[22] G. Caldiera and V.R. Basili, Identifying and qualifying
reusable software components, IEEE Computer, vol.24, Feb.
1991.

[23] M. Halstead, Elements of Software Science, Amsterdam:
Elsvier North-Holland, Inc., 1977.

[24] T.J. McCabe, A Complexity Measure, IEEE Transactions on
Software Engineering, vol. 2, Sept. 1976, pp. 308-320.

[25] J. Barnard, A new reusability metric for object-oriented
software, Software Quality Journal, vol. 7, Jan. 1998, pp.35-
50.

[26] Y. Mao, H. Sahraoui, and H. Lounis, Reusability Hypothesis
Verification using Machine Learning Techniques: A Case
Study, Proceedings of the International Conference on
Automated software engineering, IEEE, 1998, pp.84-93.

[27] Y. Lee and K.H. Chang, Reusability and maintainability
metrics for object-oriented software, Proceedings of the 38th
annual on Southeast regional con-ference (ACM-SE 38),
ACM, New York, NY, USA, 2000, pp.88-94.

[28] E.S. Cho, M.S. Kim, and S.D. Kim, Component Metrics to
Measure Component Quality, Proceedings of the Eighth Asia-
Pacific on Software Engineering Con-ference (APSEC '01),
IEEE Computer Society, Washington, DC, USA, 2001,
pp.419-426.

[29] L.H. Etzkorn, W.E. Hughes Jr., and C.G. Davis, Automated
reusability quality analysis of OO legacy software,
Information and Software Techn., vol.43, 2001, pp. 295-308.

[30] S. Bhattacharya and D.E. Perry, Contextual reusability
metrics for event-based architectures, Intern. Symp. on
Empirical Software Engineering, 17-18 Nov. 2005, pp.459-
468.

[31] G. Gui and P.D. Scott, New Coupling and Cohesion Metrics
for Evaluation of Software Component Reusability, Proc. of
the Intern. Conf. for Young Computer Scientists, 2008,
pp.1181-1186.

[32] N. Gill and S. Sikka, Inheritance Hierarchy Based Reuse &
Reusability Metrics in OOSD, International Journal on
Computer Science and Engineering (IJCSE), vol.3, June
2011, pp.2300-2309.

[33] M.A.S. Boxall and S. Araban, Interface Metrics for
Reusability Analysis of Components, Australian Software
Engineering Conference (ACWEC’04), Melbourne, Australia,
2004, pp.40-50.

[34] A. Sharma, P.S. Grover, and R. Kumar, Reusability
assessment for software components, SIGSOFT Software
Engineering Notes, vol.34, No.2, February 2009, pp.1-6.

[35] V.R. Basili, G. Caldiera, and H.D. Rombach, The Goal
Question Metric Ap-proach, Encyclopedia of Software
Engineering, vol.1, New York, John Wiley & Sons, Inc., Sept.
1994, pp.528-532.

[36] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky,
and M. Tivoli, Towards an engineering approach to
component adaption. In Architecting Systems with
Trustworthy Components, Springer, 2006, pp. 193–215.

429Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 447 / 729

Deriving DO-178C Requirements Within the Appropriate Level of Hierarchy

Jamie P. White

Department of Computer Science

University of North Dakota

Grand Forks, USA

Jamie.white@gmail.com

Hassan Reza

Department of Computer Science

University of North Dakota

Grand Forks, USA

reza@aero.und.edu

Abstract— In this paper, a set of criterion is proposed that

assists an engineer in placing a derived requirement as defined

by DO-178C in the proper document within the requirement

document hierarchy. The proper documentation of derived

requirements has historically posed some issues when it comes

to requirements-based testing. For one thing, if the derived

requirements are inappropriately documented, then it will be

very difficult to establish traceability between individual

requirements to the elements of design, implementation, and

verification. Consequently, the lack of correlation between

elements of requirements, design, code, and verification can

jeopardize the safety of systems because it will be impossible to

establish forward and backward traceability. To this end, the

proposed criteria discussed in this work attempts to improve

the visibility of derived requirements to prevent the unwanted

consequences of masking required information from

developers.

Keywords-requirement traceability; requirements analysis;

safety critical systems; RTCA/DO-178C; software testing;

software design

I. INTRODUCTION

An aircraft system is a complex system that is composed
of a hierarchy of subsystems, which are further decomposed
into software and hardware elements. A set of requirement
documents describe each level of this requirement hierarchy.
The highest layer, the system requirements, specifies the
observable requirements at the system level (e.g., The
System shall display total fuel quantity on the FMS
Departure page). These very high level requirements are
allocated to specific subsystems such as a Flight
Management System (FMS) (e.g., FMS shall display total
fuel quantity in either pounds or kilograms). Subsystem
requirements are then further allocated to software and
hardware high-level requirements (HLRs) (e.g., FMS shall
display total fuel quantity in kilograms when metric units are
selected). These HLRs can then be decomposed into low-
level requirements (LLRs) at which point they should be
specific enough to implement in hardware or software.
Figure 1 illustrates a hierarchy of requirements starting at the
system level that is decomposed into subsystem requirements
and then further decomposed into hardware and software
requirements.

Figure 1. Example of a system requirement document hierarchy

High-level requirements do not always contain sufficient

details to describe the underlying requirement documents. As
such it is necessary to create derived requirements (DR). A
DR as defined by DO-178C [10] is a requirement that is not
directly traceable to a higher-level source; it is inferred or
deduced from a specific source/user. As an example of a
derived requirement for ABC system can be read as “The
ABC DataFusion subsystem shall write position, velocity,
and maneuverability data received from Radar data signal
processing site 1 to external storage”. Such low-level details
may be outside the scope of the SW-HLR document.

Low-level requirements are implementation of high-level
requirements; they can be generated differently by different
engineers but having the same functionalities. Low level
requirements may then be implemented by different
programmers in totally different ways, but yet representing
the same functionalities [18].

An example of corresponding low-level requirements for
ABC system can be read “The ABC DataFusion subsystem
shall read the position, velocity, and maneuverability data
received from the Radar Subsystem every 60 seconds”.

As DO-178C requires the existence of source code is
directly traceable to a requirement, it will then become
necessary to derive such requirements in a low-level
software requirements (SW-LLR) document. Figure 2 shows
an example of a software derived requirement (SW-DR) that
is derived within a SW-LLR document.

430Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 448 / 729

High-level
Requirement 1

Low-level

Requirement 1 Requirement 2 Requirement 3

(Derived)

Figure 2. Example of a derived requirement

Deciding at what level a requirement should be derived at
is generally done on a case by case basis (e.g., is it more
appropriate to derive the requirement at the SW-HLR
requirement document versus the SW-LLR document?).
Such a decision could have unintended consequences and
cost by hiding information applicable to other stakeholders.

As an example, let us assume that a SW-HLR document
exists for a multi-threaded FMS application. From the
SW_HLR document, multiple SW_LLR documents are
created and categorized by independent functions worked on
by multiple software engineering teams. In one of the
SW_LLR documents a DR is intoduced that impacts a shared
resource among the other software functions. Once
implemented the other software functions could exhibit
unpredicatable behaviors or defects, which may lead to
additional time spent debugging the issue. If the defect is
identified late in the software development process, then the
cost for fixing the defect will become increasing expensive
[13].

The paper is organized as follows. Section 2 provides an
overview of the certification agencies and DO-178C. Section
3 contains related work. Section 4 defines criteria to serve as
a guideline for the appropriate placement of a derived
requirement regardless if it impacts safety aspect of a system.
Such criteria are based on nonfunctional requirements such
as operability, safety, reliability, observability, etc. Criteria
for functional requirements are also defined, which include
interfaces and configurationable elements. Section 5 shows
a simple example of requiremnents for the display of fuel
quantity in an aircaft cockpit. Finally Section 6 discusses a
conclusion and future work.

II. BACKGROUND

Certification agencies such as the Federal Aviation

Administration (FAA), Transport Canada, and the European

Aviation Safety Agency (EASA) rely on industry standards

to serve as guidelines on how to create aircraft systems that

are certifiable, or trusted for use in airborne applications.

ARP-4754 [7] serves as the guideline for system and

subsystem processes, DO-254 [8] for hardware processes,

and DO-178C [10] for software processes.
Avionics systems have contained software since the

1970s. As the certification of avionic systems increased in
complexity, additional methods were necessary to achieve
the same level of assurance as hardware based systems [11].

Radio Technical Commission for Aeronautics (RTCA)

and European Organization for Civil Aviation Equipment

(EUROCAE) formed committees to create common

certification criteria for software development [11]. The

works from these committees were merged, which led to

RTCA publishing DO-178 [17] and EUROCAE publishing

ED-12 with both documents containing identical content

[11]. DO-178 categorized systems as critical, essential and

non-essential and defined the rigor needed to develop

software to each level [16].
DO-178C, published in December 2011, is the recent

standard, which describes the processes in the creation of
flight critical software. These processes outline the stages
which include the creation of multiple levels of
requirements, design, implementation and verification. From
the previous version of DO-178B, published in 1992, little
has changed from this core document. The changes mostly
consist of fixing errors and inconsistencies, word
improvements, and adding several clarifications and
objectives [11]. The bulk of the work was the creation of
supplement documents, referred to by DO-178C, that
provide guidance on model-based development, tool
qualification, object-oriented technology, and formal
methods.

DO-178C describes that system level requirements are
decomposed into SW-HLRs. SW-HLRs are defined by DO-
178C as being developed from the analysis of system
requirements, safety-related requirements and system
architecture [10]. SW-LLRs are then created, which further
decompose the SW-HLRs. SW-LLRs are software
requirements that were developed from SW-HLRs or are
derived, which describe in sufficient detail to allow source
code to be implemented without additional information [10].
The role of SW-HLRs is to describe the ‘what’ and for the
SW-LLRs to describe the ‘how’ [5][6]. SW-DRs can be SW-
HLRs or SW-LLRs and are not directly traceable to higher-
level requirements. SW-DRs are used to specify additional
behavior beyond what is defined in the higher level
requirements [10].

Software is implemented from the SW-LLRs and is
verified from requirements based testing that verify the
correctness of SW-HLRs and SW-LLRs. Finally, traceability
is required to be maintained at each stage (i.e., SW-LLRs are
traceable to SW-HLRs, code is traceable to SW-LLRs and
verification is traceable to both SW-LLRs and SW-HLRs).

The certification standards specify that traceability, both
forward and backward, is needed for the allocated
requirements at each requirement document level.
Requirements traceability describes the ability to describe
and follow a requirement in both a forward and backward
direction [1]. A requirement management tool such as IBM
Rational DOORs supports linking between levels of
requirements through the use of requirement attributes [2].

In DOORs, a requirement document is called a module.
One way to organize a project would be to create a separate
DOORs module for each level of the requirement hierarchy
(e.g., system requirements, subsystem requirements, SW-
HLRs, SW-LLRs). A DOORs link can then be used to

431Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 449 / 729

connect multiple requirements. A requirement can be linked
with another requirement that exists in the same module or a
different module. DOORs links are directional and are
categorized as ‘in-links’ or ‘out-links’. In the context of DO-
178C, the practice of linking is done to show decomposition
of requirements. As an example, a SW-HLR could contain
in-links from one or more SW-LLRs and an out-link to a
subsystem requirement. Using links in DOORs, forward and
backward traceability is maintained (e.g., for a specific SW-
HLR, traceability information exists for the source of the
SW-HLR as well as the SW-LLRs that decompose it).

Finally, DO-178C requires additional processes for SW-
DRs. Rationale must be documented to support the existance
of a SW_DR When using DOORs, this documentation can
be captured as an attribute attached to the SW-DR.
Additional processes must be created to provide DRs to the
system process. Typically, this is done by having a safety
engineer review all SW-DRs and its rationale to determine if
there is an impact to safety (i.e., could the SW-DR cause loss
of function resulting in additional pilot workload or provide
misleading information to the pilots). SW-DRs that are
determined to impact safety are captured by the system
safety assessment process. Most DRs typically do not impact
safety so these requirements are larged ignored at the system
level. Even if a SW-DR requirement that impacts safety is
tracked at the system level, these requirements are not easily
traced to other functional requirements of the system. Hence,
it is still important that SW-DRs that impact safety are
derived at the appropiate level.

III. RELATED WORK

Since the 1970s, product organizations have used
requirements traceability in order to have complete and
consistent information about the product being built [2].
Since this time, much work has been done studying
requirements traceability and traceability tool support [3].
Others have proposed frameworks for the organization of
traceability information [4]. Studies have been conducted to
understand the benefits and costs of traceability [1][2].

In 2011, RTCA (Radio Technical Commission for
Aeronautics), Inc. published DO-178C “Software
Considerations in Airborne Systems and Equipment
Certification”, which serves as a guide for the creation of
airborne software using traditional methods [5], and which
typically utilize the C and ADA programming languages.
DO-331[ref] was also published in 2012 which describes
how to implement software using model-based development
(MBD) [6]. Many companies selling aviation products
follow DO-178C or the previous release of DO-178B to
prove airworthiness of their software elements. Regulatory
agencies such as the Federal Aviation Administration (FAA),
Transport Canada, and the European Aviation Safety Agency
(EASA) audit these software elements seeking compliance to
DO-178C.

Nonfunctional requirements (NFRs) play an important
role in the creation of software architecture and are blamed
for system re-engineering when not considered when
designing the architecture [14]. In an avionics environment,
certain NFRs play important role, which include security,

maintainability, safety, availability, integrity, and
schedulability [15]. These NFRs should be considered when
creating the software architecture.

IV. METHOD

In this section, 6 points of criterion have been suggested
for the proper placement of derived requirements within a
requirement document hierarchy. The criteria are intended to
cover certain special cases such as requirements that specify
external interfaces, externally observable behavior,
configurable elements, etc. Engineers should consider each
criterion to determine the most appropriate placement for a
derived requirement to ensure information is not hidden from
the stakeholders.

As an example, system or subsystem engineers will have
little visibility of requirements defined in a SW-HLR or SW-
LLR document. If a requirement is derived in a SW-HLR or
SW-LLR document, there would be no link for the system or
subsystem engineer to follow from their requirements
documents. This could result in important information being
hidden. On the other hand, putting large amounts of
irrelevant details in a high level requirements document
could result in the document becoming unmanageable.

The end goal is to place requirements in the requirements
document that provides the most visibility to the stakeholders
while preserving the scope of the document. Hence, there is a
fine line between putting too much information in a high-
level requirements document and providing an appropriate
amount of visibility to stakeholders. In addition, the CAST-
15 position paper provides guidance that for software
requirements a high-level requirements document should
describe the “what” and a low-level requirements document
should describe the “how” [5]. Placing the derived-
requirements in the correct requirements document will
improve traceability by making the requirements more
visible to the stakeholders. Some of the consequences of
poor traceability include lower changeability and higher
maintenance costs [3].

A. Requirements that specify an external interface

Software and hardware elements contain external

interfaces. Software elements provide APIs allowing

communication with other software elements. Hardware can

contain external interfaces for data buses (e.g., ARINC 429

connectors) power adapters or other form factors.

The introduction of the derived requirement for such

features would depend on the scope or visibility of these

interfaces (i.e., the software functions or software

applications that have access to these interfaces). For

instance, if a software element provides a service to

software elements in other subsystems, it would be

appropriate to create a high-level parent requirement in the

systems requirement document (e.g., “The system shall

provide an interface to collect fault information”) Such a

requirement would be further decomposed in the subsystem

and software requirements document until it is specific

enough to be implemented. If the software element provides

an API that is only visible to software elements in the same

432Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 450 / 729

subsystem, the parent requirement should be derived in the

subsystem requirement document (e.g., FMS shall provide

an interface to store FMS faults to the FMS maintenance

log).

B. Requirements that describe externally observable

behavior

Externally observable behavior includes any set of

inputs that yields an output that can be noticeable to the

user. The set of requirements in the systems or subsystems

documents should provide high-level detail for the

capabilities and functional requirements that are observable

to the user. The user (i.e., pilot) must have a complete

understanding for the controls of the aircraft and in turn the

aircraft must respond in a deterministic fashion.

Requirements must exist to capture all behavior.

Requirements should also be added to cover any corner or

fault conditions. For instance, if a FMS software element is

placed in a fault state, which produces an error message

visible to the user, there should be a basis for that

requirement at the system level (e.g., FMS shall display

“FMS Unavailable” within the target window when

unavailable). Such a requirement at the system level would

be more appropriate than at the subsystem level since it is

observable to the user. Information should not be ‘hidden’

from the user. In addition, test procedures should be written

based on system or subsystem requirements for anything

observable at the system level.

C. Requirements that describe configurable elements

 Many components of an aircraft are configurable to

support reuse on different aircraft types or for selectable

options for a specific aircraft type.

This criterion depends on which level the element needs to

be configurable. For example, an aircraft manufacture may

sell a common avionics package to its customers, which are

allowed to purchase additional features. Features may be

enabled through the use of licenses. The basis of license

management should be defined at the system level with

requirements on how to configure the system. Alternatively,

software elements may be reused on many aircraft systems,

which contain a single configuration per aircraft type.

Describing the configurable elements at a higher level

would add no value. As an example, the owner of an aircraft

may subscribe to services such as Graphical Weather Radar

that would require a key to enable. Maintenance personnel

could enable the feature by entering the license key in one

of the avionics application maintenance pages. System

requirements should capture this capability. Another

example is a Radio Interface Unit (RIU), which may be

configurable to support multiple aircraft types to support

reuse. At the system level, there would be no need to

capture such requirements since it was a design decision to

make the RIU configurable to support reuse. The

implementation details should in turn be hidden from the

user.

D. Requirements that describe performance, schedulability,

and design margin

 For software, especially within an Integrated Modular

Avionics (IMA) environment, system requirements

describing performance, schedulability, and design margin

(e.g., maximum allowed latency, CPU utilization, memory

usage, etc) should be defined. This is required so that

when the aircraft is integrated each application has

sufficient resources. Additional capacity should be left for

future growth. In addition, subsystems requirements, SW-

HLRs, and SW-LLRs could have derived requirements to

account for future growth, reuse, task scheduling, etc. For

example, derived SW_HLRs describing how often specific

threads should run could be defined. SW_LLRs could

contain derived requirements specifying size of buffers.

 E. Requirements that describe security features

 Like external interfaces, requirements describing

security features depend on scope. For example, many

aircrafts now provide support for ETHERNET for its

passengers [15]. The mechanism that isolates ETHERNET

traffic from other aircraft communications should be done

at the system level or subsystem level. An example of a

derived SW_HLR, databases used by an FMS could be

encrypted to preserve propriety information. As it is not

applicable to the system that such security features are

implemented, it would not be appropriate to define such

security features in a higher-level document.

 F. Requirements that describe system safety availability

constraints

Safety requirements concerning the development process
include efforts to ensure correctness of the design and
correctness of requirements in terms of safety where
availability describes the continuity of a function [15].
System safety/availability constraints are expressed in DO-
178C through a Design Assurance Level (DAL). DAL A is
the most stringent and is designated to functions that could
contribute to a catastrophic failure condition (e.g., failure
could cause a crash). DAL E is at the other end of the
spectrum in which a failure has no impact on the safety of
the aircraft. Safety assessments for the aircraft should be
conducted and defined at the system level as specified by
ARP4754 [7]. Hence, requirements expressing DAL levels
should be contained in system documents and not derived in
software documents. Derived requirements at any level need
to be reviewed by a safety engineer to ensure there is no
negative effect on safety or availability of the aircraft (e.g., a
failure could cause a loss of the primary flight display).

V. EXAMPLE

Figure 3 illustrates an example of FMS requirements
responsible for displaying total fuel quantity beginning at the
system level. This example demonstrates some of the
difficulty in determining the correct place to capture DRs.
SYS_FMS1, a system requirement, is decomposed into one
subsystem requirement, SUB_FMS1. This decomposition is

433Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 451 / 729

represented by an ‘in-link’ into SYS_FMS1. The ‘in-link’ is
represtented by a directional arrow from SUB_FMS1 to

SYS_FMS1.

Req ID Req Text Derived? Rationale

SYS_FMS1
The System shal l display total fuel

quantity on the FMS Departure page
N/A

System Requirements

Req ID Req Text Derived? Rationale

SUB_FMS1
FMS shal l display total fuel quantity in

ei ther pounds or ki lograms.
FALSE

Subsystem Requirements

Req ID Req Text Derived? Rationale

SW-HLR_FMS1
FMS shal l display tota l fuel quanti ty in

ki lograms when metric units are selected.
FALSE

SW-HLR_FMS2
FMS shal l display tota l fuel quanti ty in

ki lograms when metric units are selected.
FALSE

SW-HLR_FMS3

FMS shal l display '-----' when the tota l

fuel quanti ty i s inval id. TRUE

Speci fies what is displayed

when fuel quanti ty i s out of

range

High-Level Software Requirements

Req ID Req Text Derived? Rationale

SW-LLR_FMS1

The total fuel shal l be the addition of the

left wing fuel tank plus the right wing

fuel tank plus the center fuel tank.

FALSE

SW-LLR_FMS2

The total fuel shal l be the addition of the

left wing fuel tank plus the right wing

fuel tank plus the center fuel tank and

then multipl ied by 0.45359237.

FALSE

SW-LLR_FMS3

Total Fuel Quantity shal l be inval id when

the SSM of any of the fol lowing label 's i s

Fa i l , NCD, or miss ing: 246, 247, 241.

FALSE

SW-LLR_FMS4
FMS shal l pol l the fuel sensors every

200ms.
TRUE

Rate at which FMS software

pol ls fuel sensors to

determine fuel quanti ty

Low-Level Software Requirements

Figure 3. Example of FMS

SUB-FMS1 is decomposed into two SW-HLRs, SW-
HLR-FMS1 and SW-HLR_FMS2. SW-HLR_FMS3 is a
SW-HLR DR since it is not traceable to SYS-FMS1.
Philisophically, SW-HLR_FMS3 is a DR since it does not
decompose SUB-FMS1 but instead describes the behaviour
when fuel quantity cannot be displayed. In Figure 3, it is
apparent that SW-HLR_FMS3 is a DR since it contains no
‘out-link’ to a higher-level source. In addition, it is a
common practice to create a requirement attribute specifying
if the requirement is derived or not. This derived attribute is
shown in the “Derived?” column for each requirement. Since
HLR-FMS3 is a DR, it is also required by DO-178C to
include rationale, which is included in the “Rationale”
column.

SW-HLR_FMS1, SW-HLR_FMS2, and SW-
HLR_FMS3 are further decomposed into SW-LLR_FMS1,
SW-LLR_FMS2, and SW-LR_FMS3. Finally SW-

LLR_FMS4 and SW-LLR_FMS5 are derived requirements
since they are not traceabile to a higher source.

Let us now review each of the derived requirements. SW-
HLR_FMS3 is an interesting example of a requirement that
contains externally observable behaviour’ as described in
Section 4. The caveat is, this externally observable behaviour
is not based on an explicit input by the user, but instead a
minor fault condition.

Many would argue that it would not be appropriate to
describe a requirement such as SW-HLR_FMS3 in the
systems requirement document, as it would be too detailed.
SW-HLR_FMS3 merely captures the behaviour for a corner
fault conditon that should not occur in normal operation.

Using the same argument, SW-HLR_FMS3 may also not
be appropriated in the subsystem requirement document.
There would be value in including a requirement such as
SW-HLR_FMS3 in the subsystem requirements document
for other reasons. Through subsystem testing, it is quite

434Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 452 / 729

common to introduce faults into the system that would reach
such fault conditions. By not having the information from
SW-HLR_FMS3 stored or otherwise traced to the subsystem
document, a subsystem engineer may have diffiuclty to
understand why the fault occurred. The engineer may need to
consult the domain experts or search for this information in
software requirement documents.

SW-LLR_FMS4 is another interesting example of a DR,
which relates to a requirement that describes performance,
schedulability, and design margin (see Section 4). SW-
LLR_FMS4 describes how often the FMS task should read
fuel quantity information from the fuel sensors. As long as
the value chosen does not impact system performance (e.g.,
sending data requests every millisecond which could
overload a data bus), a detail such as this will be insignificant
at the system or subsystem level. Since SW-LLR_FMS4 is a
DR, a safety engineer is required to review this requirement
to determine if it can impact the safety of the aircraft.

For this DR, it is assumed that the fuel sensor
information is published throughout the system at some
constant rate. Therefore, there should be no real stakeholders
of this information. Hence, this requirement could be
considered an implementation detail and placed in a SW-
LLR document.

On the other hand, if the fuel sensors were a shared
resource among multiple FMS threads, there could be
contention. In this case, it will be appropriate to put
LLR_FMS4 in the SW-HLR document. For a more
complicated example, consider if there are primary and
secondary fuel sensors. Would it be considered an
implementation detail to fail-over to the secondary fuel
sensor data when the data from the primary fuel sensor is
invalid or missing?

In summary, this work shows that it is not always a
trivial problem to determine the proper placement for a DR.
In terms of DO-178C, there is no explicit answer beyond
putting the “what” in the SW-HLR and the “how” in the SW-
LLR. Therefore, other aspects must also be considered such
as ensureing traceability and visibility of information.

VI. CONCLUSION AND FUTURE WORK

This study proposes a set of guidance to for the optimal
placement of derived requirements as defined by DO-178C.
By deriving a requirement in a document that is too low-
level may have the unwanted consequences of hiding
information from stakeholders (e.g., engineers). This, in
turn, may result in forward and backward traceability
problem, which can compromise dependability of safety
critical systems.

In future work, apart from creating additional detail in the
criteria contained in this paper, validation of these criteria
will be carried on. Another related topic for future work
would be to create criteria to determine if a LLR correctly
decomposes a HHR or if it should be considered a DR. There
is more effort involved with the creation of DRs (e.g.,
creation of rationale, review with safety engineer, additional
scrutiny, etc.). Because of this, engineers may be more prone
to create a trace to a HLR (indicating decomposition) versus
specifying as a DR when there is a gray area. Of course, this

is especially dangerous (left uncorrected) as this would
bypass a review by a safety engineer.

REFERENCES

[1] Gotel, O. C .Z. and Finkelstein, C. W., "An analysis of the
requirements traceability problem," Requirements
Engineering, 1994., Proceedings of the First International
Conference on Software Engineering , pp. 94-101, April
1994.

[2] Kirova, V., Kirby, N., Kothari, D., and Childress, G.,
”Effective requirements traceability: Models, tools, and
practices,” Bell Labs Technical Journal, vol. 12, no. 4, pp.
143-157, 2008.

[3] Winkler, S. and Pilgrim, J., “'A survey of traceability in
requirements engineering and model-driven development,”
Software & Systems Modeling, vol. 9, no. 4, pp. 529-565,
2010

[4] Ramesh, B. and Jarke, M., “Toward Reference Models for
Requirements Traceability,” IEEE Transactions on Software
Engineering, vol. 27, no.1, pp. 58-93, 2001.

[5] RTCA. DO-178B/ED-12B. Software Considerations in
Airborne Systems and Equipment Certification. RTCA, 1992.

[6] Certification Authorities Software Team (CAST) Position
Paper.; “CAST-15: Merging High-Level and Low-Level
Requirements”, February 2003.

[7] Marques, J. C., Yelisetty, S. M. H., Dias, L. A. V., and da
Cunha, A. M., "Using Model-Based Development as Software
Low-Level Requirements to Achieve Airborne Software
Certification," Information Technology: New Generations
(ITNG), pp. 431-436, April 2012.

[8] “Guidelines for Development of Civil Aircraft and Systems”,
EUROCAE ED-79A and SAE Aerospace Recommended
Practice ARP 4754A, 2010.

[9] RTCA, 2000, DO-254: Design Assurance Guidance for
Airborne Electronic Hardware, RTCA, Inc., Washington, DC.

[10] RTCA DO-178C—Software Considerations in Airborne
Systems and Equipment Certification, December 2011.

[11] Qualtech Consulting Inc, “Summary of Difference Between
DO-178B and DO-178C",
http://www.faaconsultants.com/html/do-178c.html.

[12] Taylor, C., Alves-Foss J., and Rinker, B., “Merging Safety
and Assurance: The Process of Dual Certification for
Software.” Proceeding of Software Technolgy Conference
(STC), Salt Lake City, UT, 2002.

[13] Chaar, J. K., Halliday, M. J., Bhandari, I. S., and Chillarege,
R., “In-Process Evaluation for Software Inspection and Test,”
IEEE Trans. Software Eng., vol. 19, no. 11, pp. 1055-1070,
November 1993.

[14] Reza, H., Jurgens, D., White, J., Anderson, J., and Peterson,
J., "An architectural design selection tool based on design
tactics, scenarios and nonfunctional requirements," Electro
Information Technology, 2005.

[15] Paulitsch, M., Ruess, H., and Sorea, M., “Non-functional
Avionics Requirements,” Communications in Computer and
Information Science, vol. 17, pp. 369–384, 2009.

[16] Johnson, L. A., "DO-178B, Software considerations in
airborne systems and equipment certification",
http://www.dcs.gla.ac.uk/~johnson/teaching/safety/reports/sch
ad.html.

[17] Radio Technical Commission for Aeronautics, “DO-178 -
Software Considerations in Airborne Systems and Equipment
Certification”, Washington, United States, 1982.

[18] Hayhurst, K.,Veerhusen, D., Chilenski, J., and Rierson, L. A.
Practical Tutorial on Modified Condition/Decsion Coverage.
NASA/TM-2001-210876, 2001.

435Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 453 / 729

Abstract State Machines Mutation Operators

Jameleddine Hassine
Department of Information and Computer Science

King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
jhassine@kfupm.edu.sa

Abstract—Mutation testing is a well established fault-based
technique for assessing and improving the quality of test
suites. Mutation testing can be applied at different levels of
abstraction, e.g., the unit level, the integration level, and the
specification level. Designing mutation operators represents
the cornerstone towards conducting effective mutation testing
and analysis. While mutation operators are well defined for
a number of programming and specification languages, to
the best of our knowledge, mutation operators have not been
defined for the Abstract State Machines (ASM) formalism. In
this paper, we define and classify mutation operators for the
Abstract State Machines (ASM) formalism. The proposed ASM
mutation operators are illustrated using examples written in the
CoreASM language. Furthermore, we have developed a tool for
automatic generation of mutants from CoreASM specifications.

Keywords-Mutation testing; specification; mutation operator;
Abstract State Machines (ASM); CoreASM.

I. INTRODUCTION

Mutation testing [1] is a well established fault-based
testing technique for assessing and improving the quality
of test suites. Mutation testing uses mutation operators to
introduce small changes, or mutations, into the software
artifact (i.e., source code or specification) under test. A
mutant is produced by applying a single mutation operator,
and for each mutant a test is derived that distinguishes the
behaviors of the mutated and original artifact.

In a recent survey on the development of mutation testing,
Jia and Harman [2] have stated that more than 50% of
the mutation related publications have been applied to Java
[3], Fortran [4] and C [5]. Although mutation testing has
mostly been applied at the source code level, it has also been
applied at the specification and design level [6][2]. Formal
specification languages to which mutation testing has been
applied include Finite State Machines [7][8][9], Statecharts
[10], Petri Nets [11] and Estelle [12].

Fabbri et al. [7] have applied specification mutation to val-
idate specifications based on Finite State Machines (FSM).
They have proposed 9 mutation operators, representing faults
related to the states (e.g., wrong-starting-state, state-extra,
etc.), transitions (e.g., event-missing, event-exchanged, etc.)
and outputs (e.g., output-missing, output-exchanged, etc.)
of an FSM. In a related work, Fabbri et al. [10] have
defined mutation operators for Statecharts, an extension
of FSM formalism, while Batth et al. [13] have applied

mutation testing to Extended Finite State Machines (EFSM)
formalism.

Hierons and Merayo [9] have investigated the application
of mutation testing to Probabilistic (PFSMs) or stochastic
time (PSFSMs) Finite State Machines. The authors [9] have
defined new mutation operators representing FSM faults
related to altering probabilities (PFSMs) or changing its
associated random variables (PSFSMs) (i.e., the time con-
sumed between the input being applied and the output being
received).

The widespread interest in model-based testing techniques
provides the major motivation of this research. We, in
particular, focus on investigating the applicability of fault-
based testing (vs. scenario-based testing) to Abstract State
Machines (ASM) [14] specifications. We aim at assessing
and further enhancing the fault-finding effectiveness of test
suites targeting ASM-based models.

While mutation operators are well defined for a number
of FSM related paradigms such as EFSM, PFSM and Stat-
echarts, to the best of our knowledge mutation operators
have not been defined for the Abstract State Machines [14]
paradigm.

This paper serves the following purposes:
• Provide a set of mutation operators for Abstract State

Machines [14] formalism.
• Present a classification of the proposed mutation op-

erators into three categories: ASM domain operators,
ASM function update operators, and ASM transition
rules operators.

• Present a tool for generating and validating ASM
mutants.

The remainder of this paper is organized as follows. The
next section provides an overview of the Abstract State
Machines (ASM) [14] formalism. In Section III, we define
and classify a collection of mutation operators for ASM
paradigm. Section IV describes the ASM Mutation tool.
Finally, conclusions are drawn in Section V.

II. ABSTRACT STATE MACHINES

Abstract State Machines (ASM) [14] define a state-based
computational model, where computations (runs) are finite
or infinite sequences of states {Si} obtained from a given
initial state S0 by repeatedly executing transitions δi:

436Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 454 / 729

S0
δ1 // S1

δ2 // S2
. . . δn // Sn

An ASM A is defined over a fixed vocabulary V , a
finite collection of function names and relation names. Each
function name f has an arity (number of arguments that
the function takes). Function names can be static (i.e., fixed
interpretation in each computation state of A) or dynamic
(i.e., can be altered by transitions fired in a computation
step). Dynamic functions can be further classified into:

• Input functions that A can only read, which means
that these functions are determined entirely by the
environment of A. They are also called monitored.

• Controlled functions of A are those which are updated
by some of the rules of A and are never changed by
the environment.

• Output functions of A are functions which A can only
update but not read, whereas the environment can read
them (without updating them).

• Shared functions are functions which can be read and
updated by both A and the environment.

Static nullary (i.e., 0-ary) function names are called con-
stants while Dynamic nullary functions are called variables.
ASM n-ary functions have the following form: f : T1 x T2

x Tn → T.
Given a vocabulary V , an ASM A is defined by its

program P and a set of distinguished initial states S0. The
program P consists of transition rules and specifies possible
state transitions of A in terms of finite sets of local function
updates on a given global state. Such transitions are atomic
actions. A transition rule that describes the modification of
the functions from one state to the next has the following
form:

if Condition then <Updates> endif

where Updates is a set of function updates (containing only
variable free terms) of form: f(t1,t2,. . .,tn):= t which are
simultaneously executed when Condition (called also guard)
is true. In a given state, first, all parameters ti, t are evaluated
to their values, vi, v, then the value of f(v1,. . .,vn) is updated
to v. Such pairs of a function name f, which is fixed by the
signature, and an optional argument (v1,. . .,vn), which is
formed by a list of dynamic parameters value vi, are called
locations.

Example1: The following rule yields the update-set {(x,
2), (y(0), 1)}, if the current state of the ASM is {(x, 1),
(y(0), 2)}:

if (x = 1) then x := y(0)

y(0) := x

In every state, all the rules which are applicable are
simultaneously applied. A set of ASM updates is called
consistent if it contains no pair of updates with the same

locations, i.e., no two elements (loc,v) and (loc,v’) with
v̸=v’. In the case of inconsistency, the computation does
not yield a next state.

Example2: The following update set {(x, 1), (y, 3), (x,
2)}, is inconsistent due to the conflicting updates for x:

x := 1

y := 3

x := 2

For a detailed description of Abstract State Machines, the
reader is invited to consult [15].

In what follows, we describe mutation operators for
Abstract State Machines. Although, we illustrate the appli-
cability of our approach using features and examples from
CoreASM [16], our proposed mutation operators can be
applied to any ASM-based language, thus maintaining the
discussion generic.

III. ABSTRACT STATE MACHINES MUTATION
OPERATORS

We use the following guiding principles, introduced in
[17], to formulate our mutation operators:

• Mutation categories should model potential faults.
• Only simple, first order mutants should be generated.
• Only syntactically correct mutants should be generated.
There exist several aspects of an ASM specification that

can be subject to faults. These aspects can be classified into
three categories of mutation operators:

1) ASM domain mutation operators.
2) ASM function update mutation operators.
3) ASM transition rules mutation operators.

Each category contains many mutation operators, one per a
fault class.

A. ASM Domain Mutation Operators

A domain (called also universe) consists of a set of
declarations that establish the ASM vocabulary. Each
declaration establishes the meaning of an identifier within
its scope. For example, the following CoreASM [16] code
defines a new enumeration background PRODUCT having
three elements (i.e., Soda, Candy, and Chips) and three
functions selectedProduct, price, and packaging:
enum PRODUCT = {Soda, Candy, Chips}
function selectedProduct: → PRODUCT
function price: PRODUCT → NUMBER
function packaging: PRODUCT*PRODUCT → NUMBER

ASM domains/universes can be mutated by adding or
removing elements. Table I shows examples of the following
domain mutation operators:

• Extend Domain Operator (EDO): the domain is ex-
tended with a new element.

437Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 455 / 729

• Reduce Domain Operator (RDO): the domain is re-
duced by removing one element.

• Empty Domain Operator (EYDO): the domain is emp-
tied.

Table I
EXAMPLES OF ASM DOMAIN MUTATION OPERATORS FOR CoreASM

[16]

Mutation Operator CoreASM Mutant S’

Extend Domain Operator
(EDO)

enum PRODUCT = {Soda, Candy,
Chips, Sandwich}.

Reduce Domain Operator
(RDO)

enum PRODUCT = {Soda,
Candy}.

Empty Domain Operator
(EYDO)

enum PRODUCT = {}.

B. ASM Function Update Mutation Operators

A function update has the following form:

f(t1, t2, . . ., tn):= value

Depending on the type of operands, the traditional operators
[4] such as Absolute Value Insertion (ABS), Arithmetic
Operator Replacement (AOR), Logical Operator Replace-
ment (LOR), Statement Deletion (SDL), Scalar Variable
Replacement (SVR) etc., can be applied. In addition to these
traditional mutation operators, we define:

• Function Parameter Replacement (FPR): parameters
of a function are replaced by other parameters of a
compatible type.

• Function Parameter Permutation (FPP): parameters of
a function are exchanged.

Table II
EXAMPLES OF FUNCTION UPDATE MUTATION OPERATORS FOR

CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant
S’

AOR x := a + b x := a - b
ABS x := a + b x := a + abs(b)
LOR y := m and n y := m or n
SDL x := a + b skip
SVR selectedProduct:=

Soda
selectedProduct:=
Candy

FPR price(Soda):=70 price(Candy):=70
FPP packaging(Soda,

Candy):= 1
packaging(Candy,
Soda):= 1

Table II describes the proposed function update mutation
operators.

C. ASM Transition Rules Mutation Operators

The transition relation is specified by guarded function
updates, called rules, describing the modification of the
functions from one state to the next. An ASM state transition
is performed by firing a set of rules in one step.

1) Conditional Rule Mutation Operators:: The general
schema of an ASM transition system appears as a set of
guarded rules:

if Cond then Rulethen else Ruleelse endif

where Cond, the guard, is a term representing a boolean
condition. Rulethen and Ruleelse are transition rules.

Many types of faults may occur on the guards of con-
ditional rules [18]. Some of these faults include Literal
Negation fault (LNF), Expression Negation fault (ENF),
Missing Literal fault (MLF), Associative Shift fault (ASF),
Operator Reference fault (ORF), Relational Operator fault
(ROF), Stuck at 0(true)/1(false) fault (STF). Table III il-
lustrates the mutation operators addressing the above fault
classes. Furthermore, we define three additional conditional
rule mutation operators:

• Then Rule Replacement Operator (TRRO): replaces the
rule Rulethen by another rule.

• Else Rule Replacement Operator (ERRO): replaces the
rule Ruleelse by another rule.

• Then Else Rule Permutation Operator (TERPEO): per-
mutes the Rulethen and the Ruleelse rules.

Table III
EXAMPLES OF CONDITIONAL RULE MUTATION OPERATORS FOR

CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

LNO if (a and b) if (not a and b)
ENO if (a and b) if not (a and b)
MLO if (a and b) if (b)
ASO if (a and (b or a)) if ((a and b) or a)
ORO if (a and b) if (a or b)
ROO if (x >= c) if (x <= c)
STO if (a and b) if (true)
TRRO if a then R1 else R2 if a then R3 else R2
ERRO if a then R1 else R2 if a then R1 else R3
TERPEO if a then R1 else R2 if a then R2 else R1

2) Parallel and Sequence Rule Mutation Operators::
Parallel Constructor: If a set of ASM transition rules have
to be executed simultaneously, a parallel rule is used:

par Rule1 . . . Rulen endpar

The update generated by this rule is the union of all the
updates generated by Rule1 to Rulen.

Sequence Constructor: The sequence rule aims at exe-
cuting rules/function updates in sequence:

seq Rule1, . . ., Rulen

The resulting update set is a sequential composition of the
updates generated by Rule1 . . . Rulen.

We define the following mutation operators for both
Parallel and Sequence constructors:

• Add Rule Operator (ARO): adds a new rule to the
parallel/sequence of rules.

438Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 456 / 729

• Delete Rule Operator (DRO): deletes a rule from the
parallel/sequence of rules.

• Replace Rule Operator (RRO): replaces one of the rules
in the parallel/sequence by another rule.

• Permute Rule Operator (PRO): changes the order of the
parallel/sequence rules by permuting two rules.

Table IV
EXAMPLES OF THE PARALLEL/SEQUENCE RULE MUTATION

OPERATORS FOR CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

ARO seqblock R1 R2 endse-
qblock

seqblock R1 R2 R3
endseqblock

ARO par R1 R2 endpar par R1 R2 R3 endpar
DRO seqblock R1 R2 R3

endseqblock
seqblock R1 R3 endse-
qblock

DRO par R1 R2 R3 endpar par R1 R3 endpar
RRO seqblock R1 R2 endse-

qblock
seqblock R1 R3 endse-
qblock

RRO par R1 R2 endpar par R1 R3 endpar
PRO seqblock R1 R2 endse-

qblock
seqblock R2 R1 endse-
qblock

PRO par R1 R2 endpar par R2 R1 endpar
SPEO seqblock R1 R2 endse-

qblock
par R1 R2 endpar

SPEO par R1 R2 endpar seqblock R1 R2 endse-
qblock

In addition to these rules, we define the Sequence-Parallel
Exchange Operator (SPEO) to exchange a sequence rule
with a parallel rule and vice versa. Table IV illustrates the
Parallel/Sequence rule mutation operators.

It is worth noting that:
• Applying SPEO operator may result into mutants that

are syntactically correct but containing inconsistent
updates. Table V shows a simple coreASM sequence
rule and its corresponding mutant after applying SPEO
operator. The execution of the produced mutant leads
to an inconsistent update of variable a (i.e., the com-
putation of the rule does not yield a next state).

Table V
APPLYING SPEO OPERATOR THAT LEADS TO AN INCONSISTENT

UPDATE

Original Spec S Mutant Spec S’

rule Main = rule Main =
seqblock par

a := a + 1 a := a + 1
a := b a := b

endseqblock endpar

• Applying SPEO operator may produce a mutant that
is equivalent to the original specification. Indeed, such
a case may take place when the rules enclosed within
the parallel/sequence blocks do not interfere. Table VI
shows a specifications S and its mutant S’. Both specifi-
cations are equivalents from an input/output perspective
since variables a and b are updated independently.

However, the original specification S produces 2 states
(i.e., one a:= a + 1 and one for b := b +1) whereas
its mutant S’ produces only one single state (i.e., a:=
a +1 and b := b + 1 are executed in one single step).

Table VI
APPLYING SPEO OPERATOR PRODUCES A MUTANT THAT IS

EQUIVALENT TO THE ORIGINAL SPEC

Original Spec S Mutant Spec S’

rule Main = rule Main =
seqblock par

a := a + 1 a := a + 1
b := b + 1 b := b + 1

endseqblock endpar

3) Choose Rule Mutation Operators:: The choose rule
consists on selecting elements (non deterministically) from
specified domains which satisfy guards φ, then evaluates
Rule1. If no such elements exist, then evaluates Rule2.

choose x1 in D1, . . ., xn in Dn with φ (x1, . . ., xn) do
Ruledo ifnone Ruleifnone

The with and ifnone blocks are optional. The guard
φ may be a simple boolean expression of predicate logic
expressions.

To cover the choose rule, we define the following mutation
operators:

• Choose Domain Replacement Operator (CDRO): re-
places a variable domain with another compatible do-
main.

• Choose Guard Modification Operator (CGMO): alters
the guard φ. In this paper, we consider simple boolean
expressions as guards. Predicate logic expressions such
as exists are left for future work.

• Choose DoRule Replacement Operator (CDoRO): re-
places the rule Ruledo by another rule.

• Choose IfNoneRule Replacement Operator (CIRO): re-
places the rule Ruleifnone by another rule.

• Choose Rule Exchange Operator (CREO): replaces the
rule Ruleifnone by another rule.

Table VII
EXAMPLE OF THE CHOOSE RULE MUTATION OPERATORS FOR

CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

CDRO choose x in Set1 with
(x >= 0)

choose x in Set2 with
(x >= 0)

CGMO choose x in Set1 with
(x >= 0)

choose x in Set1 with
(x <= 0)

CDoRO choose x in Set1 do
Rule1

choose x in Set1 do
Rule2

CIRO choose x in Set1 do
Rule1 ifnone Rule2

choose x in Set1 do
Rule1 ifnone Rule3

CREO choose x in Set1 do
Rule1 ifnone Rule2

choose x in Set1 do
Rule2 ifnone Rule1

439Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 457 / 729

4) Forall Rule Mutation Operators:: The synchronous
parallelism is expressed by a forall rule which has the
following form:

forall x1 in D1, . . ., xn in Dn with φ do Ruledo

where x1, . . ., xn are variables, D1, . . ., Dn are the domains
where xi take their value, φ is a boolean condition, Ruledo
is a transition rule containing occurrences of the variables
xi bound by the quantifier.

We define the following mutation operators for the forall
rule that are quite similar to the ones of the choose rule :

• Forall Domain Replacement Operator (FDRO): re-
places a variable domain with another compatible do-
main.

• Forall Guard Modification Operator (FGMO): alters
the guard φ using the set of operators introduced in
Table III.

• Forall DoRule Replacement Operator (FDoRO): re-
places the rule Ruledo by any other rule.

Table VIII
EXAMPLES OF THE FORALL RULE MUTATION OPERATORS FOR

CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

FDRO forall x in Set1 with
(x = 0) do R1

forall x in Set2 with
(x >= 0) do R1

FGMO forall x in Set1 with
(x = 0) do R1

forall x in Set1 with
(x <= 0) do R1

FDoRO forall x in Set1 do R1 forall x in Set1 do R2

In addition to the proposed forall rule mutation operators
illustrated in Table VIII, we define the Choose-Forall Ex-
change Operator (CFEO) to exchange a choose rule with a
forall rule and vice versa (See Table IX).

Table IX
EXAMPLES OF THE CHOOSE-FORALL EXCHANGE OPERATOR FOR

CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

CFEO forall x in Set1 do R1 choose x in Set1 do R1
CFEO choose x in Set1 do R1 forall x in Set1 do R1

5) Let Rule:: The let rule assigns a value of a term t to
the variable x and then execute the rule Rule which contains
occurrences of the variable x. The syntax of a Let rule is:

let (x = t) in Rule endlet

We define the following mutation operators (see Table X):
• Let Variable Assignment Operator (LVAO): assigns a

different value to x, other than t, of a compatible type.
• Let Rule Replacement Operator (LRRO): replaces the

rule Rule by another rule that has occurrences of x.
• Let Rule Variable Replacement (LRVR): replaces the

variable x by another variable.

Table X
EXAMPLES OF THE LET RULE OPERATORS FOR CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

LVAO let x = 1 in R1 let x = 2 in R1
LRRO let x = 1 in R1 let x = 1 in R2
LRVR let x = 1 in R1 let y = 1 in R1

Other ASM rules such as Case rule, iterate rule, etc. are
not covered in this work due to the lack of space.

IV. ASM MUTANTS GENERATION

Figure 1 illustrates the ASM Mutation Tool user interface.
The user may select one or multiple operators from the three
operator categories. The produced mutants are then stored
in separate files and run using carma, a comprehensive
command-line to run CoreASM specification, to check their
validity. Figure 2 shows an example of the output produced
from the execution of carma, from the command line, on a
syntactically incorrect specification (i.e., the output shows
’Engine Error’ and the error location). Note that only 1
execution step is needed to detect syntax errors (i.e., carma
–steps 1 MySpec.casm).

Figure 2. Checking the Validity of the Generated Mutant

It is worth noting that the mutation operator EDO (Extend
Domain Operator) requires manual definition of the added
element.

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced mutation operators for
Abstract State Machines (ASM) formalism. The proposed
set of mutation operators are classified into three main
categories: ASM domain operators, ASM function update
operators, and ASM transition rules operators. Mutants are
generated automatically and their syntax are checked for
correctness. As a future work, we are planning to conduct an
empirical evaluation of the designed operators and to assess
their effectiveness and the number of mutants they produce.

REFERENCES

[1] A. P. Mathur, Mutation Testing. John Wiley & Sons, Inc.,
2002.

[2] Y. Jia and M. Harman, “An analysis and survey of the de-
velopment of mutation testing,” Software Engineering, IEEE
Transactions on, vol. 37, no. 5, pp. 649 –678, Sept.-Oct. 2011.

[3] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated
class mutation system: Research articles,” Softw. Test. Verif.
Reliab., vol. 15, pp. 97–133, June 2005.

440Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 458 / 729

Figure 1. ASM Mutation Toolkit

[4] A. J. Offutt, VI and K. N. King, “A fortran 77 interpreter
for mutation analysis,” SIGPLAN Not., vol. 22, pp. 177–188,
July 1987.

[5] H. Agrawal, “Design of mutant operators for the C program-
ming language,” Software Engineering Research Center/Pur-
due University, Tech. Rep., 1989.

[6] P. E. Black, V. Okun, and Y. Yesha, “Mutation operators for
specifications,” in Proceedings of the 15th IEEE international
conference on Automated software engineering, ser. ASE ’00.
Washington, DC, USA: IEEE Computer Society, 2000, pp.
81–88.

[7] S. Pinto Ferraz Fabbri, M. Delamaro, J. Maldonado, and
P. Masiero, “Mutation analysis testing for finite state ma-
chines,” in Proceedings of the 5th International Symposium
on Software Reliability Engineering, November 1994, pp. 220
–229.

[8] J.-h. Li, G.-x. Dai, and H.-h. Li, “Mutation analysis for
testing finite state machines,” in Proceedings of the 2009
Second International Symposium on Electronic Commerce
and Security - Volume 01, ser. ISECS ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 620–624.

[9] R. M. Hierons and M. G. Merayo, “Mutation testing from
probabilistic and stochastic finite state machines,” J. Syst.
Softw., vol. 82, pp. 1804–1818, November 2009.

[10] S. C. P. F. Fabbri, J. C. Maldonado, T. Sugeta, and P. C.
Masiero, “Mutation testing applied to validate specifications
based on statecharts,” in Proceedings of the 10th International
Symposium on Software Reliability Engineering, ser. ISSRE
’99. Washington, DC, USA: IEEE Computer Society, 1999,
pp. 210–219.

[11] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E.
Delamaro, and E. Wong, “Mutation testing applied to validate
specifications based on petri nets,” in Proceedings of the IFIP
TC6 Eighth International Conference on Formal Description
Techniques VIII. London, UK, UK: Chapman & Hall, Ltd.,
1996, pp. 329–337.

[12] S. D. R. S. De Souza, J. C. Maldonado, S. C. P. F. Fabbri,
and W. L. De Souza, “Mutation testing applied to estelle
specifications,” Software Quality Control, vol. 8, pp. 285–301,
December 1999.

[13] S. S. Batth, E. R. Vieira, A. Cavalli, and M. U. Uyar,
“Specification of timed efsm fault models in sdl,” in Proceed-
ings of the 27th IFIP WG 6.1 international conference on
Formal Techniques for Networked and Distributed Systems,
ser. FORTE ’07. Berlin, Heidelberg: Springer-Verlag, 2007,
pp. 50–65.

[14] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide,” in
Specification and Validation Methods, E. Börger, Ed. Oxford
University Press, 1995, pp. 9–36.

[15] E. Börger and R. F. Stark, Abstract State Machines: A Method
for High-Level System Design and Analysis. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2003.

[16] R. Farahbod, V. Gervasi, and U. Glässer, “CoreASM: An Ex-
tensible ASM Execution Engine,” Fundamenta Informaticae,
vol. 77, pp. 71–103, January 2007.

[17] M. Woodward, “Errors in algebraic specifications and an
experimental mutation testing tool,” Software Engineering
Journal, vol. 8, no. 4, pp. 211–224, Jul 1993.

[18] M. F. Lau and Y. T. Yu, “An extended fault class hierar-
chy for specification-based testing,” ACM Trans. Softw. Eng.
Methodol., vol. 14, pp. 247–276, July 2005.

441Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 459 / 729

Towards a Knowledge-Based Representation of Non-Functional Requirements

Mohamad Kassab

The Pennsylvania State University

Malvern, Pennsylvania, U.S.A

muk36@psu.edu

 Ghizlane El-Boussaidi

École de Technologie Supérieure

Montreal, Canada

ghizlane.elboussaidi@etsmtl.ca

Abstract— Knowledge-based representation is necessary to

support the description of Non-Functional Requirements

within a system and to provide practitioners and researchers

with a valuable alternative to current requirements

engineering techniques. The aim of our research reported in

this paper is to systematically develop an ontology which

provides the definition of the general concepts relevant to

NFRs without reference to any particular application domain.

The general concepts can then act as a common foundation for

describing particular non-functional attributes as well as

providing a conceptual model for NFRs (including, e.g., entity

definitions, relations, etc.). The ontology also contains rules

which define the semantics of the defined concepts.

Keywords- non-functional requirements; ontology; software

architecture; quality.

I. INTRODUCTION

The IEEE-830: “Guide to Software Requirements

Specifications” [1] defines a proper requirements

specification as being: unambiguous, complete, verifiable,

consistent, modifiable, traceable, and usable during

operations and maintenance. To help achieving this, the

requirements elicitation process should consider: (1) the

functional requirements which are associated with specific

functions, tasks, or behavior that the system must support

and (2) the non-functional requirements (NFR).

Existing NFRs elicitation methods adopt memo of

interview transcripts to collect initial NFRs and then

construct systems with the NFRs integrated according to the

experience and intuition of the designers [2]. However,

empirical reports [3, 4, 5] indicated a number of drawbacks

when using these methods. For example, a significant

portion of NFRs may be neglected as it is difficult to ask

users to provide their NFRs explicitly because they are

always related to specific domains and affected by context.

Furthermore, NFRs can often interact, in the sense that

attempts to achieve one NFR can help or hinder the

achievement of other NFRs at certain functionality. Such an

interaction creates an extensive network of

interdependencies and trade-offs between NFRs which is

not easy to describe [6]. In addition, the current methods

don’t provide sufficient answers on how the NFRs should

be accommodated at later stages of the development (e.g.,

software architecture).

The growing awareness of these issues among the

requirements engineering (RE) community in the last few

years led to a heightened interest in NFRs description and

modeling and, in turn, to the emergence of several models

intended to capture and structure the more relevant concepts

defining the NFRs and their relations. Such models are

generic ones and must be instantiated to be usable for

specific domains or applications. Yet, the instantiation

process is not easy to perform since the generic models

usually do not contain sufficient information about NFRs

interdependencies [7]. Some standards have been proposed

in order to unify the definition of subsets of NFRs; e.g.,

software quality concepts [8]. However, till now there is no

clear and coherent generic representation of the NFRs

concepts.

On the other hand, the growing interest in ontology-

based applications as opposed to systems based on

information models have resulted in an increasing interest in

the definition of conceptual models for any kind of domain.

Software Engineering is one of those domains that have

received high attention in that respect [9, 10, 11]. Current

research studies by knowledge engineering scholars on

requirement acquisition, for example, use domain ontology

to support software requirements description [12, 13, 14].

These studies leverage the existing knowledge of the

relationship between the software requirements and the

information in the related domain. According to this

relationship, the domain knowledge influences the result of

requirements acquiring [2]. International Software

Engineering standards such as IEEE [15] provide a

foundation for the development of ontology for software

engineering in terms of common vocabulary and concepts.

Nonetheless, the process of analysis of the standards to

come up with a logical coherent ontology is by no means a

simple process [10]. Moreover, NFRs have received little or

no attention from the ontology research groups due to

inherent challenges imposed by the semantic imprecision of

NFRs conceptual schemas [10].

Building on the above discussion, a knowledge-based

representation is necessary to support the description of

NFRs within a system and to provide practitioners and

researchers with a valuable alternative to current

442Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 460 / 729

requirements engineering techniques. In [16], a

systematically developed ontology which provides the

definitions of the general concepts relevant to NFRs was

presented. The aim of our research reported in this paper is

to present an updated version of the NFRs ontology with: 1)

updated and more comprehensive rules which define the

semantics of the defined concepts; and 2) an extension to

the NFRs’ refinements relating to software architecture

concepts without reference to any particular application

domain. The general concepts can then act as a common

foundation for describing particular non-functional

attributes as well as providing a conceptual model for NFRs

(including e.g., entity definitions, relations, etc.).

The paper is organized as follows. Section II provides

the background on ontologies and the Web Ontology

Language. We describe in details the NFRs ontology in

Section III. Section IV evaluates the NFRs ontology.

Section V discusses related work and finally, Section VI

concludes the paper.

II. ONTOLOGIES IN SOFTWARE ENGINEERING

The software engineering community has recognized

ontologies as a promising way to address current software

engineering problems. Researchers have so far proposed

many different synergies between software engineering and

Ontologies. For example, ontologies are proposed to be used

in requirements engineering, software modeling, model

transformations, software maintenance, software

comprehension, software methodologies, and software

community of practice.

Ontology can be defined as “a specification of a

conceptualization” [17]. More precisely, ontology is an

explicit formal specification of how to represent the objects,

concepts, and other entities that exist in some area of

interest and the relationships that hold among them. In

general, for ontology to be useful, it must represent a shared,

agreed upon conceptualization. The use of ontologies in

computing has gained popularity in recent years for two

main reasons: i) they facilitate interoperability and ii) they

facilitate machine reasoning. In its simplest form, ontology

is taxonomy of domain terms. However, taxonomies by

themselves are of little use in machine reasoning. The term

ontology also implies the modeling of domain rules. It is

these rules, which provide an extra level of machine

“understanding”.

Holsapple [18] describes a number of approaches to

ontology design: inspiration, induction, deduction, synthesis

and collaboration. We chose to follow the deductive

approach. Deductive approach to ontology design is

concerned with adopting some general principles and

adaptively applying them to construct an ontology geared

toward a specific case. This involves filtering and distilling

the general notions so they are customized to a particular

domain subset. It can also involve filling in details,

effectively yielding an ontology that is an instantiation of

the general notions.

The constructs used to create ontologies vary between

ontology languages. One class of ontology languages is

those which are based upon description logics [19]. OWL is

one such language. OWL [20] is the Web Ontology

Language, an XML-based language for publishing and

sharing ontologies via the web. OWL originated from

DAML+OIL both of which are based on RDF (Resource

Description Framework) triples. There are three ‘species’ of

OWL – but the most useful for reasoning - OWL-DL -

corresponds to a description logic. Editing OWL manually

can be equally difficult for the very same reason. We used

Protégé and its OWL plug-in for NFRs ontology

development.
OWL ontology consists of Classes; also referred to by

concepts, and their Properties; also referred to by relations.
The Class definition specifies the conditions for individuals
to be members of a Class. A Class can therefore be viewed
as a set. The set membership conditions are usually
expressed as restrictions on the Properties of a Class. For
instance the allValuesFrom and someValuesFrom property
restrictions commonly occur in Class definitions. These

correspond to the universal quantifier () and existential

qualifier () of predicate logic. More precisely, in OWL such
restrictions form anonymous Classes of all individuals
matching the corresponding predicate. A key feature of
OWL and other description logics is that classification (and
subsumption relationships) can be automatically computed
by a reasoner which is a piece of software able to infer
logical consequences from a set of asserted facts or axioms.
For the purpose of the NFR ontology, we will use a semantic
web reasoning system and information repository Renamed
Abox and Concept Expression Reasoner (RACER) [21].

III. NFRS ONTOLOGY

Most of the terms and concepts in use for describing

NFRs have been loosely defined, and often there is no

commonly accepted term for a general concept [22]. As

indicated in the Introduction, common foundation is

required to enable effective communication and to enable

integration of activities within the RE community. This

common foundation is realized by developing an ontology,

i.e. the shared meaning of terms and concepts in the domain

of NFRs.

There are many resources for setting up a glossary for

NFRs. In addition, there are many different perspectives

from where NFR terms are defined, (e.g., NFRs in product-

oriented perspective vs. process-oriented perspective [6]). In

this paper, the NFRs glossary is developed based on

commonality analysis and generalization from the previous

publications in requirements engineering and software

engineering communities.

The NFRs ontology has an important core about NFRs

model, but also addresses areas such as software

architectures. It contains many concepts. In order to cope

with the complexity of the model we use views of the

443Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 461 / 729

model. A view is a model which is completely derived from

another model (the base model). A view cannot be modified

separately from the model from which it is derived. Changes

to the base model cause corresponding changes to the view

[23]. Three views of the NFRs ontology are identified: The

first view concerns the NFRs relation with the other entities

of the software system being developed (intermodel

dependency view). The second contains the classes and

properties intended to structure NFRs in terms of

interdependent entities (intramodel dependency). The third

view represents the measurement process and contains the

concepts used to produce measures to measurable NFRs.

The measurement view will not be discussed in this paper as

it maintains the same structure from the earlier version of

the NFRs ontology [16].

A. Intermodel Dependency View

Figure 1 illustrates the structure of the NFRs intermodel
dependency view by means of a simplified UML class
diagram. The core of this structure relies on the fact that
NFRs are not stand-alone goals, as their existence is always
dependent on other concepts in the project context. If a
requirement is a member of the class
NonFunctionalRequirement, it is necessary for it to be a
member of the class Requirement and it is necessary for it to
be a member of the anonymous class of things that are linked
to at least one member of the class AssociationPoint through
the hasAssociationPoint property. On the other hand,
isAssociatingNfrTo links the AssociationPoint to a range of:
FunctionalRequirement union Element union Process union
Product union Resource. The AssociationPoint can be
thought of as an interface from the perspective of the
association to the individuals from the above range. Thus, if
an individual is a member of the AssociationPoint Class, it is
necessary for it to be linked to one and only one individual
from: the (FunctionalRequirement class through the
isAssociatingNfrTo property) OR (Element through
isAssociatingNfrTo property) OR (Process through
isAssociatingNfrTo property) OR (Product through
isAssociatingNfrTo property) OR (Resource though the
isAssociatingNfrTo property).

An individual from AssociationPoint class can be linked
to many individuals from the NonFunctionalRequirement
class through hasAssociationPoint property.

1) Association to FR (or derived elements)

Functionality-related NFRs refer to individuals
instantiated from the NonFunctionalRequirement class and
that participate in hasAssociationPoint relation with an
individual from the AssociationPoint class which in its turn
participates in isAssociatingNfrTo relation with an individual
from the FunctionalRequirement class (see Figure 1). In fact,
a subset of NFRs, namely functionality quality requirements,
is defined with an existential restriction to have at least one
association point with FR as it represents a set of attributes
that bear on the existence of a set of functions and their
properties specified according to the ISO 9126 definition to

the functionality quality [8]. Valid example of functionality-
related NFRs is: “the interaction between the user and the
software system while reading email messages must be
secured”.

The FunctionalRequirement class is further specialized
into PrimaryFunctionalRequirement and
SecondaryFunctionalRequirement . A NFR can be associated
to either type of FRs.

Functional Requirement is further realized through the
various phases of development by many functional models
(e.g., in the object-oriented field, a use-case model is used in
the requirements analysis and specification phase, a design
class model is used in the software design phase, etc.). Each
model is an aggregation of one or more artifacts (e.g., a use-
case diagram and a use-case for the use-case model, a
domain model diagram and a system sequence diagram for
the analysis model, a class diagram and a communication
diagram for the design model). The artifact by itself is an
aggregation of elements (e.g., a class, an association, an
inheritance, etc. for the class diagram). Modeling artifacts
and their elements in this way gives us the option of
decoupling the task of tracing NFRs from a specific
development practice or paradigm.

If an NFR is associated with functionality, then some or
all the offspring elements that refine this functionality will
inherit this association. More specifically:

((NFRi hasAssociationPoint AssociationPointj)
(AssociationPointj isAssociatingNfrTo

FunctionalRequirementk)) ==>  Elementn ((NFRi

hasAssociationPoint AssociationPointm)

(AssociationPointm isAssociatingNfrTo Elementn)
(FunctionalRequirementk FrIsMappedInto Elementn))

When hasAssociationPoint property links an individual
NFR to an individual AssociationPoint which is further
linked to an individual FunctionalRequirement or Element
through isAsscoatingNfrTo property, then the
AssociationPoint can be further specified through one of
three subclasses. These subclasses specify the type of
association between an individual from the
NonFunctionalRequirement class and an individual from the
FunctionalRequirement and Element classes. We adopt the
concepts of overlapping, overriding and wrapping,
commonly used in various separations of concerns
approaches [24] to define these three subclasses:

• Overlapping: the NFR requirement modifies the FRs it
transverses. In this case, the NFR may be required before the
functional ones, or it may be required after them. For
example, the implementation of security requirement (e.g.,
user’s authorization) needs to be executed before the user
can access “read email messages” functionality.

• Overriding: the NFR superposes the FRs it transverses.
In this case, the behavior described by the NFR substitutes
the FRs behavior.

• Wrapping: NFR “encapsulates” the FRs it transverses.
In this case, the behavior described by the FR is wrapped by
the behavior described by the NFRs.

444Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 462 / 729

FuntionalRequirement

PrimaryFunctionalRequirement

SecondaryFunctionalRequirement

AssociationPoint

-isAssociatingNfrTo

Resource-isAssociatingNfrToModel

Phase

-elementIsRefinedInto

1

-belongsToDevelopmentPhase

-isAssociatingNfrTo

OverlappingOverridingWrapping

Requirement

-hasAssociationPoint

Element

Artifact

1

*

-FrIsMappedInto

Process Product

-isAssociatingNfrTo

-isAssociatingNfrTo

NonFunctionalRequirement

-isRealizedThrough

Figure 1. NFRs Intermodel Dependency View.

2) Association to Process

A software development process is a structure imposed
on the development of a software product. Synonyms include
software life cycle and software process. There are several
models for such processes, each describing approaches to a
variety of tasks or activities that take place during the
process.

From the above definition to the software process,
process-related NFRs specify concerns relative to the scope
of the development process. Examples of such NFRs are
“The project will follow the Rational Unified Process
(RUP)” and “Activities X, Y, Z will be skipped for this
project”.

3) Association to Product

Product-related NFRs refer to those NFRs which have a
global impact on the system as whole. Example of such
NFRs are: “The system should be easy to maintain”.

4) Association to Resource

Resources serve as input to the processes used on a
project. They include people, tools, materials, methods, time,
money, and skills [25]. An example of an NFR associated
with a resource is illustrated through a requirement like “The
software maintainers should have at least 2 years of
experience in Oracle database.” This is an operating
constraint that is associated with candidates for the
maintenance position for the system (another type of
resources).

 It is to be noted that the inter-relationships among the
above five concepts (e.g., the relation between the product
and the process) is out of the scope of this paper.

B. Intramodel Dependency View

The intramodel dependency view is concerned with the
refinement of NFRs into one or more offspring; through
either decomposition or operationalization, and the
correlation among the concepts of the NFRs model. The

view is depicted in the UML class diagram in Figure 2 and it
is discussed through the concepts and properties referring to:
NFRs type, NFRs decomposition, NFRs operationalization
and NFRs interactivity.

1) NFRs Type
Specifying NFR through types is a particular kind of

refinement for NFRs [6]. This allows for the refinement of a
parent on its type on terms of offspring, each with a subtype
of the parent type. Each subtype can be viewed as
representing special cases for the NFR. Five subclasses are
identified as a candidate for the root node for an NFR type
refinement hierarchy; namely, QualityRequirement,
DevelopmentConstraint (e.g., implementation language
constraint, constraints on system architecture),
EconomicConstraint (e.g., allocated budget),
OperatingConstraint and PoliticalCulturalConstraint (e.g.,
law imposing to support bilingual system user interface).
These in fact are not mutual exclusive classes.

 A special type of Development constraints is the
architectural concern which presents an architectural
requirement on the system under development. A concern is
an area of interest or focus in a system. Concerns are the
primary criteria for decomposing software into smaller,
more manageable and comprehensible parts that have

445Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 463 / 729

NonFunctionalRequirement

-nfrIsDecomposedTo

Operationalization

-hasOperationalization

EconmicConstraint

OperatingConstraint

PoliticalCulturalConstraint

QualityRequirement

FunctionOp

-OpDecomposedTo

DevelopmentConstraint

ArchitecturalConcern

SystemArchitecture
ArchitecturalPattern

-implements
PatternParticipant

1 *

Component

Connector

TacticDesignConcern -categorizes

-Incorporatedin

InfluencerNFR

LogicalErrorMinorConflict

InfluencedNFR

-isInteractingWith

ConstructiveInteraction
NegativeInteraction

Figure 2. NFRs Intramodel Dependency View.

meaning to a software engineer. From this, architectural
concerns are defined as those concerns that significantly
influence the architecture [26]. An example of an
architectural concern could be the need for coordination
between distributed entities within the system.

On other hand; a special type of architectural concern is
QualityRequirement [27] (e.g., security guarantees for the
system). This implies that quality requirements are in fact
development constraints themselves; as the development
process should bear in mind the required qualities while
taking architectural; design or implementation decisions.

2) Decomposition
This refers to the NfrIsDecomposedTo property that

decomposes a high-level NFR into more specific sub-NFRs.
In each decomposition, the offspring NFRs can contribute
partially or fully towards satisfying the parent.
NfrIsDecomposedTo is a transitive property. The
decomposition can be carried either across the type
dimension or the association point dimension. For example,
let us consider the requirement “read an email message with
high security”. The security requirement constitutes quite a
broad topic [6]. To deal effectively with such a requirement,
the NFR may need to be broken down into smaller
component using the knowledge of the NFR type; discussed
in the previous subsection, so that an effective solution can
be found. Thus, the requirement states as “read an email

with a high security” can be decomposed into “read an
email with high integrity”, “read an email with high
confidentiality”, and “read an email with high availability”.
An example of decomposition across the association point
is: “read inbox folder messages with high security”, “read
system-created folder messages with high security”. The
decomposition can be “ANDed” (all NFR offspring are
required to achieve the parent NFR goal) or “ORed” (it is
sufficient that one of the offspring be achieved instead, the
choice of offspring being guided by the stakeholders).

3) Operationalization
This refers to the hasOperationalization property that refines
the NFR into solutions in the target system that will satisfy
the NFR [6]. One type of operationalizations is
“FunctionOp” which corresponds to functionalities to be
implemented. For example, “Authorization” and
“Authentication” are potential instances of FunctionOp class
to implement Security quality. Similar to decomposition,
operationalization can be ANDed or ORed.

In the inferred taxonomy; the taxonomy after the
reasoner impact, the reasoner classifies FunctionOp based
on the imposed assertions as a subclass for
FunctionalRequirement. This classification is consistent
with many arguments in the requirements engineering
community on the tight link between the FRs and NFRs
[28]. The ontology brings formalism and a concrete
understanding to this link.

446Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 464 / 729

The second type of operationalizations is “Tactic” which
represents design decisions aiming at satisfying some
quality requirements. Indeed, when designing software, an
architect relies on a set of idiomatic patterns commonly
named architectural styles or patterns. A software
architectural pattern defines a family of systems in terms of
a pattern of structural organization and behavior [29]. More
specifically, an architectural pattern determines the
vocabulary of components and connectors that can be used
in instances of that style, together with a set of constraints
on how they can be combined [30]. Common architectural
patterns include Layers, Pipes and Filters and Model View
Controller (MVC). As shown in Figure 2, an instance of
SystemArchitecture class is an implementation of one or
more instances of ArchitecturalPattern class. While
architectural patterns embody high level design decisions,
an architectural tactic [31] is a design strategy that addresses
a particular quality attribute. Tactics are a special type of
operationalization that serves as the meeting point between
the quality attributes and the software architecture. Tactics
are the building blocks of patterns [31] and implementing a
tactic within a pattern may affect the pattern by modifying
some of its components, adding some components and
connectors, or replicating components and connectors [32].
An instance of class Tactic is linked to an instance of classes
Component / Connector through one of the following
properties which define the semantics of impact of
incorporating the tactic into the pattern (adopted from [27]):

 Implemented in: The tactic is implemented within a
component of the pattern. Actions are added within the
sequence of the component.

 Replicates: A component is duplicated. The
component’s sequence of actions is copied intact, most
likely to different hardware.

 Add, in the pattern: A new instance of a component is
added to the architecture while maintaining the integrity
of the architecture pattern. The new component comes
with its own behavior while following the constraints of
the pattern.

 Add, out of the pattern: A new component is added to
the architecture which does not follow the structure of
the pattern. The added actions do not follow the pattern.

 Modify: A component’s structure changes. This implies
changes or additions within the action sequence of the
component that are more significant than those found in
“Implemented in”.

 Delete: A component is removed.

Tactics which have relatively a similar impact can be
grouped together into categories which are instances of
DesignConcern class. For example, a design concern towards
the architectural concern “high performance for the system”
is how to “manage resources demands”. This design concern
is a group of four tactics that aim to improve the
performance quality: increase computation efficiency, reduce
computational overhead, manage event rate and control

frequency of sampling. It’s worth to point out that
FunctionOp and Tactic are not mutual exclusive classes.

4) Interactivity
An individual NFR may participate in isInteractingWith

property which links it to another NFR. This refers to the fact
that the achievement of one NFR; InfluencerNfr, at a certain
association point can hinder (through
isNegativelyInteractingWith property) or help (through
isPositivelyInteractingWith property) the achievement of
other NFR; InfluencedNfr, at the same association point, e.g.,
security and performance at “read an email message”
functionality. isInteractingWith is not a symmetric property.

The negative interaction is further specialized through the
two sub-properties, which help classifying the negative
interaction into: hasLogicalErrorWith and
hasMinorContradictionWith.

Logical Error: This is a fundamental conflict which must
be resolved immediately. It occurs when the achievement of
NFR1 will prevent the achievement of NFR2. This is
expressed by means of the proposition LogicalError (NFR1,
NFR2)  NFR1  NOT NFR2. Logical Error demonstrates
a direct contradiction between two requirements. For
example, NFR1 is stated as “Security has to be high at read
email functionality”; while NFR2 is stated as “There should
be no security constraints at read email functionality”!

Minor Contradiction: This is one of the best-known cases
of conflict [6]. Associating a win condition with an NFR (say
NFR1) triggers a search of the operationalization that has
positive and/or negative effects on NFR1. For example, the
Portability NFR, the win condition of which is “portable to
Windows”, has positive effects (i) on the portability layers
and separation of data generation and (ii) on the presentation,
but has negative effects on the use of fast platform-
dependent user interface functionalities that would be
affected with the layering strategy. The operationalizations,
that are found to have negative effects on other NFRs sharing
the same association points with their parents NFRs, are used
to identify potential conflicts.

IV. EVALUATION

We evaluated our ontology according to three criteria: 1)
is it generally acceptable? 2) is it consistent? and 3) is it
accurate?. ‘Generally accepted’ means that the knowledge
and practices described are applicable to most projects most
of the time, and that there is widespread consensus about
their value and usefulness. ‘Generally accepted’ does not
mean that the knowledge and practices described are or
should be applied uniformly on all projects [33].

Clearly, the evaluation of the acceptance and the
accuracy of the ontology as such ultimately rely upon its
application by the research community. For the purpose of
this evaluation, we have used our ontology within three
different projects. These projects helped refining the initial
NFRs ontology. Indeed we have instantiated the ontology
against the set of requirements from the settings of the
NOKIA Mobile Email Application System and the IEEE
Montreal Website. Further, we worked closely with experts

447Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 465 / 729

from SAP-Montreal to use the NFRs Ontology as a
repository for the requirements of some of the projects which
are under development. From the experiences and the
participants’ feedback developed from instantiating the
NFRs Ontology against the three real-life projects (the Nokia
project, the IEEE Montreal website project and the SAP
project), the ontology has proven to be easy to instantiate and
links the concepts efficiently. Each individual captured NFR
was instantiated from its corresponding concept in the
Ontology. We make the note here that we did not meet the
case in which an individual NFR was not instantiated from a
corresponding concept. Finally the consistency of this
ontology has been demonstrated through the usage of a
semantic web reasoning system and information repository
RACER [21].

V. RELATED WORK

Even though there is no formal definition of the term
‘NFR’, there has been considerable work on characterizing
and classifying NFRs. In a report published by the Rome
Air Development Center (RADC) [34], NFRs (“software
quality attributes” in their terminology) are classified into
consumer-oriented (or software quality factors) and
technically-oriented (or software quality criteria). The former
class of software attributes refers to software qualities
observable by the consumer, such as efficiency, correctness
and interoperability. The latter class addresses system-
oriented requirements such as anomaly management,
completeness and functional scope.

Earlier work by Boehm et al. [35] structured quality
characteristics of software within a quality characteristics
tree of 25 nodes, noting that merely increasing designer
awareness would improve the quality of the final product. A
well-known and more recent approach to representing NFRs
using a graphical method is the NFRs framework by Chung
et al [6]. A cornerstone of the framework is the “softgoal”
concept for representing the NFR. A softgoal is a goal that
has no clear-cut definition or criteria to determine whether or
not it has been satisfied. The operation of the framework can
be visualized in terms of the incremental and interactive
construction, elaboration, analysis and revision of a softgoal
interdependency graph (SIG). High-level softgoals are
refined into more specific subgoals or operationalizations. In
each refinement, the offspring can contribute fully or
partially, and positively or negatively, towards satisfying the
parent. However, the particular graphical notations make it
difficult to coordinate with mature UML tools and be
integrated with existing models of FRs. This integration has
been tackled in [24, 36, 37] by extending UML models to
integrate NFRs to the functional behavior. Although the
integration process must be considered at the meta-level,
these approaches only model certain NFRs (e.g., response
time, security) in a way that is not necessarily applicable for
other requirements.

On a different track, Hauser et al. [38] provide a
methodology for reflecting customer attributes in different
phases of design. Dobson et al [23] describe an approach to
specifying the Quality of Service (QoS) requirements of
service-centric systems using an ontology for Quality of

Service. The above approaches address only a subset of
NFRs; namely quality requirements, and sometimes within a
specific context; (e.g., service computing in [24] and
automotive industry in [38]). On contrast, our work aims at
providing a more generic solution to all types of NFRs with
independence from any context.

Al Balushi and Dabhi [39] used an ontology-based
approach to build NFR quality models with the objective to
gather reusable requirements during NFR specification. We
agree with these authors on the usefulness of ontology,
however, the research objectives of their research efforts and
ours differ, which in turn, leads to essential difference in the
research outcomes. While the conceptual model in [1] is
geared towards solving requirements reuse problems, our
ontology covers a broader spectrum of NFR issues. This is
achieved by using multiple views, which explicate
requirements phenomena by complementing the strengths of
multiple conceptualizations of NFRs.

VI. CONCLUSION AND FUTURE WORK

Although non-functional requirements are receiving more
and more attention in the requirement and software
engineering communities, little progress has been made in
using ontologies for NFRs. This is mainly because NFRs are
too abstract and affected by a large number of subjective
factors, which makes it difficult for users to describe their
own NFRs accurately and precisely. In this paper, we
proposed a NFRs ontology that we developed by analyzing
and generalizing concepts from the literature. We used a
disciplined approach to ontology development, with explicit
requirements, ontology design, and implementation. This
ontology describes glossaries and taxonomies for NFRs. We
used these glossaries for generalization to the common NFRs
concepts. To evaluate the ontology, we have used it within
the context of three projects. This initial evaluation proved
that the ontology is consistent and easy to use.

Clearly, the evaluation of the acceptance and the
accuracy of the NFRs ontology, as such, ultimately rely upon
its application by the research community. The authors of
this are hoping to soon benefit from interaction with a
number of interested parties in this topic. In particular, we
plan to explore the way in which NFRs ontology could be
further leveraged in more complex requirements
specification scenarios in real-life settings. In order to
ground the concept further, we plan to develop tools to
leverage the benefits of ontology for NFRs and evaluate our
results against scenarios designed to test the capabilities of
the ontology. One potential tool of our interest will aim at
facilitating the investigation of studying the impact of
incorporating the quality tactics into the software
architectural patterns. In addition, we will investigate further
to which degree having the NFRs ontology adopted in the
requirements engineering activities guarantees the
compliance of the final product with the captured NFRs.

448Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 466 / 729

REFERENCES

[1] IEEE Std. 830-1998. (1998), “IEEE recommended practice for
software requirements specifications”, IEEE Transactions on
Software Engineering.

[2] T. Jingbai, H. Keqing, W. Chong, and L. Wei, “A Context Awareness
Non-functional Requirements Metamodel Based on Domain
Ontology”, IEEE International Workshop on Semantic Computing
and Systems, 2008, Huangshan, China, pp.1-7.

[3] K. K. Breitman, J. C. S. P. Leite, and A. Finkelstein, “The World's
Stage: A Survey on Requirements Engineering Using a Real-Life
Case Study”, Journal of the Brazilian Computer Society, 1(6), 1999,
pp. 13-37.

[4] A. Finkelstein and J. Dowell, “A Comedy of Errors: The London
Ambulance Service Case Study”, proceedings of the 8th International
Workshop Software Specifications and Design, 1996, pp. 2-5.

[5] L. Leveson and C. S. Turner, “An Investigation of the Therac-25
Accidents”, IEEE Computer, 26(7), 1993, pp. 18-41.

[6] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, “Non-functional
Requirements in Software Engineering”, Kluwer Academic
Publishing, 2000.

[7] P. M. O. O. Sack, M . Bouneffa, Y. Maweed, and H. Basson, “On
Building an Integrated and Generic Platform for Software Quality
Evaluation”, 2nd IEEE International Conference on Information and
Communication technologies: From Theory to Applications. April 24
- 28, 2006, Umayyad Palace, Damascus, Syria.

[8] International Standard ISO/IEC 9126-1. Software engineering –
Product quality – Part 1: Quality model. ISO/IEC 9126-1:2001, 200.

[9] O. Mendes and A. Abran, “Software Engineering Ontology: A
Development Methodology”, Metrics News, 9, 2004, pp. 68-76.

[10] M. A. Sicilia and J. J. Chadrado-Gallego, “Linking Software
Engineering concepts to upper ontologies”, Proceedings of the First
Workshop on Ontology, Conceptualizations and Epistemology for
Software and Systems Engineering, 2005, Alcalá de Henares, Spain.

[11] C. Wille, A. Abran, J. M. Desharnais, and R. R. Dumke, “The quality
concepts and subconcepts in SWEBOK: An ontology challenge”, In
Proceedings of the 17th International Conference on Software
Engineering and Knowledge Engineering, 2003, Taipei, Taiwan.

[12] K. Haruhiko and S. Motoshi, “Using domain ontology as domain
knowledge for requirements elicitation”, proceedings of the 14th
IEEE International Requirements Engineering Conference, 2006,
Minneapolis, USA, pp. 186 – 195.

[13] Z. Jin, “Ontology-based requirements elicitation automatically”,
Chinese J. Computers, Vol.23, No.5, 2000, pp. 486 – 492.

[14] H. Kaiya and M. Saeki M, “Ontology based requirements analysis:
lightweight semantic processing approach”, proceedings of the 5th
International Conference on Quality Software (QSIC), 2005,
Melbourne, Australia, pp. 223 – 230.

[15] IEEE (1990). Standard Glossary of Software Engineering
Terminology. IEEE Standard 610.12-1990.

[16] M. Kassab, O. Ormandjieva, and M. Daneva, “An Ontology Based
Approach to Non-Functional Requirements Conceptualization”,
Proceedings of the 4th International Conference on Software
Engineering Advances, ICSEA 2009, September 20-25, 2009 - Porto,
Portugal.

[17] T. R. Gruber, “A Translation Approach to Portable Ontology
Specifications”, Knowledge Acquisition, 1993, pp. 199 – 220.

[18] C. W. Holsapple and K. D. Joshi, “A Collaborative Approach to
Ontology Design”, Communication of the ACM, February 2002, Vol
45, No 2, pp. 42 - 47.

[19] F. Baader, I. Horrocks, and U. Sattler, “Description logics as ontology
languages for the semantic web”, in Lecture Notes in Artificial
Intelligence. Springer, 2003,

http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/Ba
HS03.pdf. [retrieved: 11,2012].

[20] W3C, "Web Ontology Language (OWL)",
http://www.w3.org/2004/OWL.

[21] Racer: Renamed Abox and Concept Expression Reasoner.
http://www.sts.tu-harburg.de/~r.f.moeller/racer/

[22] M. Glinz, "On Non-Functional Requirements", 15th IEEE
International Requirements Engineering Conference (RE 2007), 2007,
Delhi, India, pp.21-26.

[23] R. Lock, G. Dobson, and I. Sommerville, “Quality of Service
Requirement Specification using an Ontology”, Conference
Proceedings 1st International Workshop on Service-Oriented
Computing: Consequences for Engineering Requirements
(SOCCER'05), Paris, France, 30th August 2005.

[24] J. Araujo, A. Moreira, I. Brito, and A. Rashid, “Aspect-Oriented
Requirements With UML”, Workshop on Aspect-Oriented Modeling
with UML (held with UML 2002).

[25] S. Whitmire, “Object Oriented Design Measurement”, John Wiley &
Sons, 1997.

[26] N. Bouck´e and T. Holvoet, “Dealing with concerns ask for an
architecture-centric approach”, In European Interactive Workshop,
2005.

[27] N. B. Harrison and P. Avgeriou, “How do architecture patterns and
tactics interact? A model and annotation”, Journal of Systems and
Software, vol. 83, Issue 10, pp. 1735-1758, 2010.

[28] B. Paech, A. Dutoit, D. Kerkow, and A. von Knethen, “Functional
requirements, non-functional requirements and architecture
specification cannot be separated – A position paper”, 8th
International Workshop on Requirements Engineering: Foundation
for Software Quality, 2002, Essen, Germany.

[29] D. Garlan and M. Shaw, “An Introduction to Software Architecture”,
Technical Report, CMU, Pittsburgh, PA, USA, 1994.

[30] Microsoft Application Architecture Guide: Patterns & Practices, 2nd
Edition, http://msdn.microsoft.com/en-us/library/ff650706.aspx.

[31] L. Bass, P. Clements, and R. Kazman, “Software architecture in
practice”, Addison-Wesley, 2003.

[32] N. B. Harrison, P. Avgeriou, and U. Zdun, “On the Impact of Fault
Tolerance Tactics on Architecture Patterns”, In proceedings of 2nd
International Workshop on Software Engineering for Resilient
Systems (SERENE 2010), London, UK, 2010.

[33] PMBOK (2000). Project Management Body of Knowledge Guide
2000. See http://www.cs.bilkent.edu.tr/~cagatay/cs413/PMBOK.pdf.
[retrieved: 11, 2012].

[34] T. P. Bowen, G. B. Wigle, and J. T. Tsai, “Specification of Software
Quality Attributes”, Volume 2, Software Quality Specification
Guidebook, 1985.

[35] B. W. Boehm, J. R. Brown, M. Lipow, “Quantitative Evaluation of
Software Quality”. In proceeding of the 2nd Int. Conference on
Software Engineering, San Francisco, CA, Oct. 1976. Long Branch,
CA: IEEE Computer Society, 1976, pp. 592-605.

[36] A. Moreira, J. Araujo, and I. Brito, “Crosscutting Quality Attributes
for Requirements Engineering”, In 14th Int. Conf. on Soft. Eng. and
Knowledge Engineering, Ischia, Italy, 2002, pp. 167-174.

[37] D. Park, S. Kang, and J. Lee, “Design Phase Analysis of Software
Performance Using Aspect-Oriented Programming”, In 5th Aspect-
Oriented Modeling Workshop in Conjunction with UML 2004,
Lisbon, Portugal, 2004.

[38] J. R. Hauser and D. Clausing, “The House of Quality”, Harvard
Business Review, May – June 1988, (pp. 63- 73).

[39] T. H. Al Balushi, P. R. Sampaio, D. Dabhi, and P. Loulopoulos,
“ElicitO: A Quality Ontology-Guided NFR Elicitation Tool”, Proc.
Of REFSQ 2007, Requirements Engineering: Foundations for
Software Quality, Trondheim, Norway, June 11-12 2007, pp. 306-
319.

449Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 467 / 729

Towards Better Comparability of Software Retrieval Approaches
Through a Standard Collection of Reusable Artifacts

Oliver Hummel, Werner Janjic
Software Engineering Group

University of Mannheim
Mannheim, Germany

{oliver, werner}@informatik.uni-mannheim.de

Abstract — The idea of component-based software reuse as a
cornerstone of a more engineering-like approach to software
development has been around for more than four decades.
Since software and its building blocks represent an important
and valuable intellectual asset for most companies, researchers
have been struggling for nearly the same time to get their
hands on a substantial amount of reusable material to experi-
ment with. Only the advent of the open source movement miti-
gated this problem considerably and hence inspired interesting
new research in this area within the last decade. However,
basically all novel software retrieval solutions of that period
have been developed and evaluated independently from each
other and are thus by no means comparable with one another.
To address this flaw, an initiative was started to foster the
creation of a reference reuse collection for software search and
retrieval, which is intended as a common baseline for future
comparison of software retrieval systems. In this paper we
explain the motivation for this initiative, identif y and discuss
important foundations as well as open issues and present an
initial sketch of architecture, content and practical prere-
quisites of such a collection.

Keywords-component-based software development; software
reuse; software search; software retrieval; reference collection.

I. INTRODUCTION

Despite the immense benefits that are attributed to the
reuse of software [1] and a large number of seminal
approaches (such as by Zaremski and Wing [2], [3]; see e.g.
Mili et al. [4] for a comprehensive overview) developed in
recent decades, Douglas McIlroy’s initial idea of setting up
market places with reusable components [5], [6] still has not
lived up to its full potential [7]. Nevertheless, given today’s
exploding amount of potentially reusable (open source)
software, freely available on the Internet, the need for
effective software search and retrieval solutions – not only as
an enabling factor for reuse – is more apparent than ever:
open source repositories such as Sourceforge are hosting tens
of thousands of software projects with millions of artifacts
and even the version control systems of larger companies
contain more files than a human can ever overlook.

Consequently, the so-called reuse repository problem [8]
of not having enough material to fill repositories and market
places with reusable components is no longer an issue since
the Internet and the World Wide Web can be used as a
source for harvesting reusable material [9]. However, in
order to use this “megastore” of information for systematic

software reuse, sufficiently sophisticated software retrieval
approaches and tools are necessary. Especially when existing
material was not initially intended for reuse (as is the case
with most open source software today), this will only
become accepted if developers are able to find and access
useful components quick and easy. Consequently, this
change of prerequisites has not only triggered a new wave of
interesting academic research to better deal with search and
retrieval of software artifacts (e.g. [10], [11], [12]), but has
also created a new interest of commercial search engines
(such as Koders, Krugle or formerly Google Codesearch) in
searching for source code and software. Although all
approaches available today are certainly important and have
brought a new momentum to the community, they share one
significant problem: to date, their evaluations, if existing at
all, are largely based on different and/or proprietary datasets
and thus it is impossible to objectively compare their
performance on a common basis. Since even researchers are
not able to assess the existing solutions and to understand
their strengths and limitations, it is no surprise that software
search and component reuse are still not widely adopted in
industrial practice.

Interestingly, this evaluation challenge is not limited to
component reuse alone; it is rather a problem that has been
plaguing computer science (and especially software engi-
neering) for a while. As observed by Tichy [13], computer
scientists perform relatively little evaluations of their
approaches so that the experimental paradigm is not as well
established in our world as, for example in medicine or
physics. In other words, computer scientists often focus too
much on the development of new approaches and too little
on their systematic evaluation, which makes it hard if not
impossible to judge whether a new approach is really better
than the previous ones. Certainly, the development of new
approaches is important, but nevertheless, repeatable evalu-
ations of new developments are at least as important for good
research, as e.g. stressed by Basili [14] about twenty years
ago: “Proposing a model or building a tool is not enough.
There must be some way of validating that the model or tool
is an advance over current models or tools”. In order to
overcome this unsatisfying situation in the area of software
search and retrieval, the creation of a reference collection of
reusable artifacts was proposed recently [15]. The main
motivation for this effort is to simplify the comparison of
software retrieval systems. Furthermore, as already
experienced in the text retrieval community such a collection

450Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 468 / 729

will offer a good starting point for the development of new
and innovative tools as it freely provides the data necessary
for initial experiments [16].

The remainder of this paper, discussing motivation and
early experience from setting up such a collection, is
organized as follows: First, we introduce the foundations of
retrieval techniques and their evaluation, which is required to
better understand the contribution of this paper and the usage
scenarios in which the proposed reference collection can be
used (Section 2). Subsequently, we briefly survey existing
tool evaluations and identify their common weakness, before
we shed some light on reference collections from related
areas and how their ideas can be transferred to a standard
collection of reusable components (Section 3). Section 4
introduces our approach for tackling this challenge and gives
an example supposed to illustrate the usability of the
approach before we conclude our paper in Section 5.

II. FOUNDATIONS

The origins of software search and retrieval can clearly
be seen in “classic” text information retrieval [4] and
therefore most early approaches for the former simply
applied techniques from document retrieval to software
artifacts (cf. [17]). Software retrieval, however, is potentially
a far more complex undertaking than pure text retrieval since
software does not only contain linguistic semantic
information, but syntax and functional semantics as well.
Zaremski and Wing were amongst the first researchers that
elaborated on signature [2] and semantics specification [3]
matching as a way of identifying reuse candidates. About ten
years ago, Mili et al. [4] have presented a well-known survey
that identifies five general groups of techniques applicable
for the retrieval of software artifacts, namely –

1. Information retrieval methods
2. Descriptive methods
3. Operational semantics methods
4. Denotational semantics methods
5. Structural methods

The original listing contains a sixth group, called topological
approaches, which from today’s point of view is rather an
approach for the ranking of search results than a retrieval
approach itself so that we have left it out in the enumeration.
It obviously makes sense to reuse methods from information
retrieval to perform simple textual analyses on software
assets. Descriptive methods go one step further and require
additional textual descriptions of the asset like a set of
keyword or facet [18] definitions. Operational semantic
methods rely on the execution or so-called sampling [19] of
the assets. Denotational semantics methods use signatures
(see e.g., [2]) or specifications [3] of artifacts for matching,
while structural methods do not deal with the code of the
assets directly, but with program patterns or designs. Overlap
between these classifications can occur at various places,
e.g., between (3), (4) and (5) as “behaviour sampling” [19] of
components typically needs a specific signature to work on.

Based on the numerous results that had been presented in
the late 1990s some researchers were even convinced that the

most important software retrieval challenges have already
been solved [20]. Existing prototypes were able to deal with
the artifact collections available at that time easily
(containing, however, often merely a few dozen elements).
On the contrary, other researchers were convinced that the
existing techniques would not be precise and usable enough
when the amount of reusable material grows larger [4],
which has been commonly seen as a required condition for
successful marketplaces with reusable artifacts [7]. The latter
assumption has at least preliminary been proven right almost
ten years later when initial experiments [9] with “internet-
scale” software collections have shown that the usage of
merely one of the above mentioned retrieval techniques is
usually not precise enough to deliver practically usable
results. These experiments showed, e.g., that the precision of
signature matching quickly drops to under one percent in
collections with millions of artifacts. Consequently, in recent
years, there has been an increasing interest in improving
software retrieval approaches that led to a number of
interesting approaches (as well as a number of high-profile
publications [10], [11], [21]). Although their documentations
include reasonable evaluations that demonstrate the
prototypical applicability of the underlying approaches, it is
impossible to compare them with each other as they were
developed independently and evaluated with totally different
methods and test collections. Even worse, the examples used
to experiment with the prototypes are usually not publicly
available and hence it is extremely difficult to judge the
actual effectiveness of the evaluations and basically
impossible to replicate the experiments performed.

Due to the conceptual proximity to information retrieval
it is no surprise that common evaluation techniques from
classic information retrieval are widely applied in the context
of software retrieval. The two most prominent measures to
assess the quality of retrieval systems are Precision P (mea-
suring the fraction of relevant results Dr amongst all
delivered results D) and Recall Re (the fraction of delivered
relevant results Dr amongst all relevant results R):

Further well-known but not so commonly used measures
include Fallout (the fraction of non-relevant documents that
is retrieved from all non-relevant documents) and the F1
measure (the weighted harmonic mean calculated from
Precision and Recall) [16].

Recall is typically more important on small collections or
on large collections with very specialized queries (where one
assumes to have only few useful results per query), while
Precision becomes more important on large collections with
potentially numerous results. In this context, a tool should
clearly minimize the amount of false positives since
delivering only few relevant results amongst thousands of
irrelevant candidates will not only result in a poor precision,
but also in a low user satisfaction. It is obvious that such a

451Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 469 / 729

behavior is not tolerable in the area of software reuse where
a careful assessment, selection and integration of potential
reuse candidates may demand significant effort from the
developer. Hence, a thorough assessment of a retrieval
system typically requires the combination of at least two
measures, since otherwise a system can be optimized for one
and may fail in practice. The common approach to combine
e.g., Recall and Precision in such evaluations is through so-
called Recall/Precision curves [16] in which a large area
under the curve indicates a well performing retrieval system.
If other practical aspects are of interest other measures can
be derived as well, including the search execution time of a
query, for example.

A. Assessing Software Retrieval Tools

Although this general approach for the evaluation of
software retrieval tools is undisputed, one aspect that
complicates the evaluation is the challenge of defining the
actual relevance of a reusable artifact. While determining the
relevance of natural language documents is pretty straight-
forward for a human (e.g., does a document tell you how
high Mount Everest is or not?), this task is much more chal-
lenging for software artifacts. As discussed before, the latter
typically have three facets that can be used for retrieving
them, namely linguistic information, the syntax of their
interfaces and their semantics, i.e. their concrete func-
tionality. As already observed by Mili et al. [4], the evalu-
ation of software retrieval tools and algorithms is faced with
a serious problem when it needs to find a good criterion that
determines the practical relevance of a delivered result.
Usually none of the three facets mentioned before is
sufficient to achieve this on its own, as, e.g., text extracted
from a component not necessarily describes its functionality
in a precise and unambiguous manner; and even if a
component with matching functionality has been found, a
wrong interface might make its integration into a given
environment hard or even impossible. In other words, a
reusable component delivered by a state of the art software
search engine might still require a significant amount of

effort from a developer in order to finally determine whether
it provides the desired functionality and is usable in the
environment at hand. We believe, the ultimate relevance
criterion for determining the reusability of a component and
solving the make or buy dilemma [25] in favor of buy (reuse)
is clearly the question whether a reusable artifact can be
integrated into a system under development “as is”, i.e., with
virtually “zero effort” and deliver the required functionality.

To our knowledge, however, this relevance criterion has
rarely been consequently defined in the literature so far and
thus, most previous evaluations have been relying on a kind
of surrogate, namely the so-called matching condition that
simply determines whether a search engine considers a
document as relevant or not. Obviously, this does not reveal
much useful information about the reusability of a
component in a given context.

B. Usage Scenarios

Software development is a continuous and complex pro-
cess that can benefit from software search at various
occasions, which makes it important to identify and to bear
in mind which usage scenarios exist for software retrieval
tools within the software development lifecycle. Obviously,
the process of “reusing” an artifact as an inspiration during
the design or implementation phase of a software system is
totally different to the actual reuse of a concrete component
that needs to adhere to a given specification. While a stake-
holder may be satisfied with relatively “blurry” results for
the former, the latter requires a perfect match in order to
make reuse more worthwhile than building the component
from scratch, as explained before. Figure 1, taken from our
earlier work [22], summarizes various archetypal usage
scenarios for software retrieval systems and identifies the
development activities where they are likely to be most use-
ful. We used different shapes of lines, to illustrate distinction
between more speculative (dashed) and definitive (solid)
searches. The most important usages scenarios in the context
of this paper are additionally highlighted in bold typeface.

Figure 1. Overview of software retrieval usage scenarios and their possible times of application in the software development life cycle.

452Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 470 / 729

The motivation for definitive searches is always the
concrete need for a specific artifact; let it be a reusable
component described by a specification or a missing library
that is required to overcome Java’s infamous ClassNot-
FoundException. Both require a search engine to deliver as
exact matches as possible and even near misses are usually
not perceived helpful by the user, since they can often only
be integrated with a substantial amount of modification, if
they can be integrated at all. On the other hand where specu-
lative searches are driven more by general information need,
it is usually of interest whether any component or service is
available for a given task at all. The exact shape of the
desired artifact is typically not important in the context of
such a speculative search, since the design of the application
it should be integrated into is still moldable [23]. Due to a
lack of space, we have to refer the interested reader to the
original publication for more details on this topic; the focus

of this paper and our initial work for a reference collection is
on definitive searches used for the retrieval of well-defined
reusable components.

III. SOFTWARE RETRIEVAL EVALUATIONS SO FAR

As indicated in the introduction, most software reuse
approaches that have been published so far contain a
reasonable evaluation that demonstrates their feasibility and
leaves the interested reader at least with an idea of their
potential and of potential problems. However, as can be seen
in Table 1, that summarizes some of the best known reuse
tools of the last 20 years, most of these evaluations (i.e.,
those that were performed on a component collection with
more than just a few hundred elements) were incomplete
from the perspective of classic information retrieval as they
usually only calculated some kind of “top n Precision”.

TABLE I. OVERVIEW OF EVALUATIONS OF PREVIOUS COMPONENT REUSE SYSTEMS.

Tool No. of
Art efacts

Content Input Relevance
Criterion

Measures

Proteus [17] ~ 100 Unix commands Keyword-based Expert judgement Precision, Recall,
search time

CodeBroker [28] ~700 Java Classes Signature and
keywords

Expert opinions Precision, Recall

SparsJ [10] ~180,000 Java Source Classes Keywords Expert opinions Top n Precision
Maracatu [[29]] ~4,000 Java Source Classes Keywords,

facets
Expert’s opinion (based
on text matching)

Precision, Recall
(only for subset of
200 artefacts)

Merobase [11] ~ 4 M Java Source Classes Test Cases Passing of test cases Top n Precision
Sourcerer [12] ~ 250,000 Java Source Classes Keywords Expert judgement Hits per result

page

This kind of “crippled” precision measure is typically

used for search engines that operate on very large collections
where it is not feasible to determine the relevance of all
(potentially thousands of) results that may be returned for a
query. Instead, human experts revise only the, e.g., 20
highest ranked results (n = 20) for their relevance. Further
results and the Recall (for which knowledge of all relevant
elements in a collection is required) are simply ignored. This
procedure is usually justified by the habit of human users of
internet-scale (commercial) search engines that typically do
not consider more than roughly the first 20 results. However,
for a scientific comparison of search engines this is
obviously neither sufficient nor satisfying, especially in the
area of software retrieval where both, high precision and
high recall are essential as explained before.

A. Reference Collections so far

Tool evaluations in computing are often challenging, as
they typically require expensive empirical investigations to
demonstrate that a tool is better than other tools available
before [14]. However, software engineering is certainly not
the only discipline in computer science that has to deal with
somewhat fuzzy requirements to its tools. Therefore, the idea
of creating reference collections that allow benchmarking of
tools is certainly not new. Take, for example, the “Siemens

Testing Suite” [30], a popular collection of programs con-
taining known errors, which was widely used during the
1990s to evaluate the effectiveness of test cases and test case
creation strategies. More specifically, the challenge of
evaluating retrieval approaches is clearly known in related
disciplines as well. First and foremost, it is certainly the
information retrieval (IR) community [16] that found itself in
trouble how to evaluate their emerging text retrieval
algorithms some twenty years ago. At that time there were a
lot of new and exiting ideas as well as prototypes around in
this community, but the proprietary (and often very
expensive) evaluations performed on them individually were
usually not very helpful and especially not comparable with
each other. Fortunately, the IR community was able to
overcome this challenge by defining so-called reference
collections comprising a large set of documents, a substantial
number of tasks for retrieval systems and the expected
solutions for them. The most prominent one is probably the
Text REtrieval Collection (TREC) [16] that has been
considered as a major success fostering IR research since its
creation tremendously. Although TREC as a text-based
collection is not of direct use for the retrieval of software
artifacts, it can still be used to learn about some basic
principles how to define and built such a reference col-
lection. Furthermore, in the long term, the results gained with

453Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 471 / 729

it might also be helpful by giving some insights on heuristics
that can help to improve text-based retrieval algorithms for
software retrieval tools with techniques such as stemming or
the use of thesauri [16].

A second group that has been struggling with the
comparability of its tools is the rather young community
trying to match and orchestrate (semantic) web services. As
it is dealing with executable artifacts as well, it is obviously
more closely related to the retrieval of software components
than pure text retrieval. Given the enormous amount of
money that for instance was recently spent by the European
union (Küster and König [24] talk about 70 million Euros) to
support the research on semantic web services, it is not a
surprise that especially European researchers came up with
the idea of setting up a reference collection of semantic
services to evaluate matching tools and have been driving
this idea ever since. The so-called S3 (for Semantic Service
Selection) collection is the initial result of these endeavors.
The current version of S3 contains 1.083 semantically (with
38 ontologies) annotated web services and a set of 42 queries
for them. Various participants of the S3 contests and related
workshops have manually identified services in the
collection they considered relevant for each query in order to
create a set of relevant answers. To our knowledge together
with the OPPOSUM portal [24] (that subsumes S3 and a few
significantly smaller collections) it forms the only baseline
that allows systematic comparison of (ontology-based)
software retrieval algorithms so far. To our knowledge, there
exists no similar undertaking for a specific reference
collection in the reuse area for the time being.

Limitations of Web Service Reference Collections

However, although this can also be seen as a first step
towards a better evaluation of software retrieval algorithms,
its applicability in the context of software reuse is
questionable for a number of reasons. First and foremost, the
introduction of a graded relevance scheme and the revision
of the relevant results in the 2010 version of the S3 col-
lection changed the perception of relevance considerably and
it seems that there is still a large degree of subjective
judgment that influences the understanding of relevance
here. Thus, the risk that even this sophisticated collection
does not contain a clear notion of relevance, as we demanded
it for the evaluation of software reuse tools, is high. Second,
most of the existing software retrieval and reuse approaches
operate on source code, which is by definition not available
from web services, while vice versa, source code available in
open source repositories is usually not annotated with any
kind of ontological information. Moreover, the size of the
existing S3 collection is still rather limited (compared with
current software reuse collections as introduced in Table 1)
and the chance of substantially increasing it seems low, as
the definition of relevant results and the annotation of the
indexed services with ontological information is effort
manual activity. Given the size of state of the art reuse
collections that already goes into the millions, it is not clear
whether the results obtained from such a small collection can
be scaled up to internet-scale search engines. Finally, the
current S3 collection is focused on speculative searches that

are supposed to deliver all services that can be (remotely)
helpful for a query; the actual syntax of a service is currently
not taken into account. In other words, a definitive match
between query and result is highly unlikely in this collection
and a composition of various results may be required to
create a service that is finally able to satisfy a concrete
request.

B. Requirements for a Reuse Reference Collection

Küster and König [24] identified a number of desirable
characteristics for a semantic web service collection in their
publication and obviously it makes sense to revisit their work
as a starting point for a reference collection for software
reuse. In total they list the following five major points:

1. Expressivity & Usability: contained elements need to

be described as precisely as possible in order to avoid
room for interpretation of the results.

2. Scope: the collection should comprise elements from
as many different domains as possible in order to
maintain a high diversity and to allow making
statements, which approaches work under which
circumstances.

3. Scalability & Size: since large testbeds are required to
properly evaluate retrieval approaches, the collection
must be kept scalable.

4. Automation: obviously, the use of the collection
should be automated as much as possible.

5. Decoupling: as many people as possible should
contribute to the endeavor in order to avoid
unintended bias in the collection.

In general we can accept this list of requirements as

helpful for a reuse reference collection as well, although
requirements 1) and 3) are clearly contradicting each other in
the context of a very large collection. This fact makes a
precise relevance criterion even more important because it is
not possible to manually investigate millions of artifacts for
their relevance. But nevertheless, it is important to preserve
as much information as possible when content for the
collection is harvested, as different usage scenarios for
software search engines may require slightly different
information to evaluate the retrieval algorithms.

Special Requirements in the context of Component Reuse.
As discussed before, the main motivation for the use of a
component collection from a reuse point of view is to find a
concrete artifact that definitively fills an existing gap.
Besides other factors, it has been mentioned numerous times
in the literature [25] that a reusable component must be large
enough so that reusing it is cheaper and easier than self-
implementing it (often called the “make or buy decision”).
Otherwise the incentive for a developer to reuse is obviously
low. While a component was initially seen as function by
McIllroy [5] in his seminal reuse paper, the granularity of
components has continuously been growing since then and
today a component is typically seen as an independently
deployable part of a system [6], comprising numerous
classes (if developed in an object-oriented language) behind

454Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 472 / 729

a well-defined interface. At the same time, research has
started to investigate automated adaptation [26] of
components and automated orchestration [24] of (usually
semantically annotated) services or in other words: auto-
mated “glue coding”. As the use of clever glue coding is
likely to increase the haul of matching components from a
collection (and thus to influence the number of relevant
components) in the future, we believe it makes sense to
consider the following three categories of automated glue
coding when competing search engines are to be evaluated in
the context of a reuse reference collection:

1. No glue coding at all: only direct matches are

allowed, no changes beyond simple path and package
configurations can be made to reuse candidates.

2. Adaptational glue coding: adapters [27] that wrap a
single component in a 1:1 fashion (or change them
internally) are allowed.

3. Compositional glue coding: the 1:n orchestration of
multiple sub-components behind a newly created
interface in the sense of the facade pattern [27] is
allowed.

IV. PROPOSED APPROACH

The two most important “ingredients” for a reuse
reference collection are certainly a large collection of
reusable material and a large enough collection of (at least
some) non-trivial queries that can be used to challenge
search engines and is not under the suspicion of being biased
for a particular engine. Moreover, a good way of determining
the relevance of retrieved candidates needs to be found.
Since we have already faced this challenge during the
evaluation of our Merobase search engine [11], we believe a
good starting point for this is the collection of test cases (e.g.,
written in JUnit) that can be used to doubtlessly judge
whether a delivered result is relevant or not. Ideally, a search
engine would directly support the use of such test cases for
automating this assessment, as Merobase does, for example.
The technique behind such a feature is known in the
literature as test-driven reuse [11] [21]. The following two
subsections go into more detail on this before we present the
results of an exemplary query that demonstrates the practical
usability of our approach and conclude this section with a
brief discussion of our preliminary findings.

A. Data Sets

In the context of the ICSE workshop on Search-driven
development: Users, Infrastructure, Tools and Evaluation
(SUITE) in 2010 a working group was formed with the goal
to evaluate the feasibility of creating a reuse reference
collection. As a result, the groups of Christina Lopez at the
University of California in Irvine and our group at the
University Mannheim have agreed to make the collections
forming the backbone of the software search engines
Sourcerer ([12], http://sourcerer.ics.uci.edu) respectively
Merobase ([11], http://merobase.com) available on the Web
so that they can be downloaded via http://resuite.org.
Currently, several hundred gigabytes of data are available
there and hence processing and indexing these collections is

certainly a matter of weeks if not months: Irvine’s collection
comprises about 500,000 java source files from roughly
13,000 open source projects, while our collection consists of
about 3 million java files harvested from nearly 50,000 open
source projects. To our knowledge these two packages form
the largest body of open source software freely available
today. Given its large size, it is likely that it will not only be
facilitating experiments for software reuse, but in related
areas (such as the community organizing the Mining
Software Repositories conference) as well.

B. Queries

As briefly mentioned before, we plan to start the creation
of queries for the reference collection based upon the test
cases we created as input for evaluating our earlier work [8]
to which we have to refer the reader for further details due to
the limited space of this paper. To our knowledge, test cases
are currently the best available technique that allows
formulating a semantically precise and automatically
checkable specification for reusable software components. A
further advantage of test cases is that they can easily be
“translated” into input for other retrieval approaches as well.
Consider the following simple JUnit test case that is
supposed to test an equally simple Stack data structure:

public class StackTest extends TestCase {

 public void testStack() {
 Stack s = new Stack();
 assertTrue(s.isEmpty());
 s.push((Object)"Object1");
 s.push((Object)"Object2");
 s.push((Object)"Object3");
 assertFalse(s.isEmpty());
 assertEquals(s.pop(), (Object)"Object3");
 assertEquals(s.pop(), (Object)"Object2");
 assertEquals(s.pop(), (Object)"Object1");
 assertTrue(s.isEmpty());
 }
}

From this piece of code it is, for example, possible to

extract keywords (such as stack, push, pop, isEmpty) or the
complete interface of a stack required to satisfy this test case
without much ado. Moreover, even the extraction of a
simplified description of the Stack’s behavior is contained in
this test case. In addition to the above mentioned set of test
cases we are aware of two other recent publications that used
test cases (or at least test data) for a similar purpose and
contain further evaluation challenges (cf. [21] & [12]). We
have recently made all test cases that have been used for test-
driven reuse available as JUnit test cases via resuite.org as
another pillar for the reference reuse collection described in
this paper. Since all three approaches are currently in a
prototypical stage, there is no precision recall analysis
available. Nevertheless, a sufficient quality of the test cases
guarantees that retrieved candidates are able to deliver the
desired functionality. Reusable components that have
actually been retrieved beyond simple data structures such as
stacks or binary trees, include a validator for credit card
numbers, spreadsheet calculation and Blackjack logic, a
comprehensive overview can be found in the mentioned
publications ([11], [12], [21]).

455Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 473 / 729

C. Examplary Results

Based on the test case we just introduced, we carried out
an exemplary analysis of various retrieval techniques in
order to show the expressivity improvement that we were
able to achieve in comparison to the simple top 20 precision
determination used in earlier evaluations [11]. In particular,

we analyzed interface-based (only classes with identical
interfaces, i.e. all names, parameter and return types had to
match), name-based (only names of classes and methods had
to match) and signature-based (only the parameter and return
types had to match, names were ignored [2]) searches for
their Recall and Precision as shown in the following figure:

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0,00% 10,00% 20,00% 30,00% 40,00%

Recall

P
re

ci
si

o
n

Name-Based Keyw ord-Based Interface-Based

Figure 2: Recall/Precision curve of different retrieval algorithms for the Stack test case from above.

In total, the signature required by the above test case
yielded a pool of 454,541 classes from the Merobase
collection that at least contained the three method signatures
defined and thus theoretically had the potential for being
usable as stacks. In practice, only a small fraction of them –
namely 163 – have been successfully tested and delivered
this functionality with the current version of our testing tool
(supporting adaptation and rudimentary dependency
resolution, but no composition). Thus, 163 was used to
calculate Recall and Precision. As visible in Figure 2, the
relatively simple retrieval algorithms used for this
experiment suffer from either a low recall or a low precision
as summarized in the subsequent table.

TABLE II. COMPARISON OF RETRIEVAL ALGORITHMS.

 Name Interface Signature Keyword

Max. Recall 8.0 % 5.5 % 100 % 28.2 %

Precision at
max. Recall

50.0
%

47.4 % < 0.1 % 5.8 %

No.
Relevant /
Candidates

13 / 36 9 / 19 163 /
454,541

46 / 3,000

D. Discussion and Forthcoming Steps

The approach we have just described already forms a
useful core for a reference collection of reusable artifacts.
Our preliminary results indicate that an evaluation based on
such a collection with results known as relevant is feasible
for internet-scale software repositories as well and delivers
significantly better results than the top n precisions usually
calculated for such repositories. However, as long as only
one tool with potentially imperfect adaptation has been used
to identify the relevant results for a query, it is not sure that
all relevant results have actually been discovered. Only a
combination of various tools and approaches can guarantee a
(nearly) perfect coverage of relevant results and thus create a
valid baseline for the calculation of Recall and Precision.

Therefore, one central prerequisite for the creation of a
viable reference collection is to have a large body of
researchers and working groups contributing their ideas and
tools. We would like to invite the community to challenge,
discuss and extend the requirements and the contents of the
collection in its current state. Although contact requests via
email are always welcome, we believe it makes sense to
discuss the further proceeding personally with as many

456Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 474 / 729

people as possible and hence plan to organize a workshop on
this topic soon. Another important future step is the creation
of a web portal (similar to the one described by Küster and
König [24] for semantic web services) that offers easy access
to data sets and queries.

E. Open Questions

Compared with a simple text reference collection or even
a web service collection, a generic reuse collection is faced
with a number of additional questions we briefly need to
mention at this occasion.

Although web service descriptions are by definition
programming language independent, the elements of a
collection of reusable components, however, can be created
in any arbitrary programming language. In other words, their
evaluation would require support for test-driven reuse in
each of these languages. For the time being only three
different prototypes of a test-driven reuse system in the Java
programming language exist. Clearly, it makes sense to set
up similar collections for other languages in order to study
whether a different language will affect the performance of
retrieval algorithms in any way.

Another issue closely related with the programming
language is the question whether an artifact is compilable
and executable at all. Often source files have dependencies
on other source files and will not be testable without either
complex dependency resolution algorithms as available in
the Eclipse framework and used by e.g., Code Genie [12] or
without the complete metadata (build path, etc.) of the
original project. Since most software search engines today
still focus on individual classes (cf. table 1) we rely on the
simple dependency resolution mechanisms contained in our
tool right now and bear in mind that they are not perfect.
Hence, it is likely that other tools might discover additional
relevant results in the future through the use of better
dependency resolution. However, a similar progression of
relevant results has been observed during the creation of the
TREC collection, so that this is perfectly acceptable.

The TREC collection has another advantage over a
software reference collection, namely the one that texts that
are once written (such as newspaper or research articles)
typically are not changed later. However, in the context of
software retrieval it is very likely that the projects forming
the collection will be updated over time and hence the
question arises whether and how updates can be performed.
Updating the collection itself is essentially noncritical as it
just calls for replacing, adding or removing files; the actual
challenge is to identify all results that may have become
relevant or irrelevant after such an update.

A final issue to deal with is the question how to decide
what makes a component or project elevated enough to
become part of a reference collection? We are well aware
that one may allege a certain bias for elements included e.g.,
in our Merobase collection so far. However, we believe that
the sheer size of about 3 million Java source files is already
large enough to mitigate such allegations. Furthermore, it
only contains open source projects harvested from popular
open source hosters (such as SourceForge) and no
specifically tailored projects that would harden this

suspicion. Moreover, the idea is that a future collection is
extensible so that everyone interested is able to contribute his
own material to it.

V. CONCLUSION AND FUTURE WORK

Component-based software reuse is by no means a new
concept and as widely demonstrated in the literature a
sophisticated software retrieval tool is an essential building
block to make reuse work. However, despite decades of
intensive research and the significant progress made in
software retrieval in recent years, it is still hard to compare
existing reuse approaches, as there exists no common testbed
for this purpose. As we have discussed in this paper, recent
efforts to set up a semantic web service reference collection
are certainly a step in the right direction, however, since the
prerequisites and goals of this community are different to
those of the component reuse community, it is unlikely that
results gained with this collection can be transferred to
software component retrieval.

Thus, we have proposed to create a reference collection
with reusable components based upon two recently published
collections of files from more than 50,000 open source
projects. Our proposal includes creating definitive queries for
concrete reusable artifacts in the form of test cases that can
be used to determine free of doubt whether a delivered
candidate will be usable in a given context specified by the
test case. Such test cases may be seen as a rather harsh
relevance criterion for reusable software components, but
ultimately they are the only way to establish the fitness for
purpose of a component and in our understanding this is the
only way to lower the threshold currently still hindering
systematic reuse in practice. Moreover, we defined three
classes of adaptation approaches that may be used to classify
the contestants that should be compared with a reuse
reference collection.

Such a collection will not only be applicable for
comparing existing tools with full Recall / Precision curves,
it is also likely that it will simplify the creation of and initial
experimentation with other innovative tools in the future.
Furthermore, there is a high chance that the data sets will be
useful for other communities (such as the one that is mining
software repositories, for example) as well and hence we
invite researchers from all related areas to contribute to the
efforts in setting up this collection as well.

REFERENCES
[1] Krueger, C.W.: Software Reuse, ACM Computing Surveys,

Vol. 24, Iss. 2, 1992.
[2] Zaremski, A.M. and Wing, J.M.: Signature Matching: A Tool

for Using Software Libraries. ACM Transactions on Software
Engineering and Methodology, Vol. 4, Iss. 2, 1995.

[3] Zaremski, A.M and Wing, J.M.: Specification Matching of
Software Components, ACM Transactions on Software
Engineering and Methodology, Vol. 6, No. 4, 1997.

[4] Mili, A., Mili, R., and Mittermeir, R.: A Survey of Software
Reuse Libraries. Annals of Software Engineering 5, 1998.

[5] McIlroy, D.: Mass-Produced Software Components. Software
Engineering: Report of a Conference sponsored by the NATO
Science Committee, Garmisch, Germany, 1969.

457Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 475 / 729

[6] Szyperski, C.: Component Software, 2nd Edition, Addison-
Wesley, Amsterdam, 2002.

[7] Ravichandran, T. and Rothenberger, A.: Software reuse
strategies and component markets. In Communications of the
ACM, 46, 8, 2003.

[8] Hummel, O.: Semantic Component Retrieval in Software
Engineering, PhD Dissertation, University of Mannheim,
Germany, 2008.

[9] Hummel, O. and Atkinson, C.: Using the Web as a Reuse
Repository. In: Morisio, M. (ed.) Proceedings of the
International Conference on Software Reuse, LNCS 4039,
Springer, Heidelberg, 2006.

[10] Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T.,
Matsushita, M., and Kusumoto, S.: Ranking Significance of
Software Components Based on Use Relations. IEEE
Transactions on Software Eng., Vol. 31, Iss. 3, 2005.

[11] Hummel, O., Janjic, W., and Atkinson, C.: Code Conjurer:
Pulling Reusable Software out of Thin Air. IEEE Software,
Vol. 25, Iss. 5, 2008.

[12] Bajracharya, S., Ossher, J. and Lopes, C.: Sourcerer: An
internet-scale software repository. Int. Workshop on Search-
Driven Development, SUITE 2009.

[13] Tichy, W.: Should computer scientists experiment more?
IEEE Computer, Iss. 5, 2002.

[14] Basili, V.: The Experimental Paradigm in Software
Engineering. Experimental Software Engineering Issues:
Critical Assessment and Future Directions, Springer, 1993.

[15] Hummel, O.: Facilitating the Comparison of Software
Retrieval Systems through a Reference Reuse Collection. Int.
Workshop on Search-Driven Development, SUITE 2010.

[16] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information
Retrieval, Addison-Wesley, 1999.

[17] Frakes, W.B. and Pole, T.P.: An Empirical Study of
Representation Methods for Reusable Software Components.
IEEE Transactions on Software Engineering Vol. 20, Iss. 8,
1994.

[18] Prieto-Díaz, R.: Implementing faceted classification for
software reuse. Communications of the ACM, Volume 34,
Issue 5, 1991.

[19] Podgurski, A. and Pierce, L.: Retrieving Reusable Software
by Sampling Behavior, ACM Transactions on Software
Engineering and Methodology, Vol. 2, Iss. 3, 1993.

[20] Poulin, J.: Reuse: Been There, Done That. Commun. of the
ACM, Vol. 42, Iss. 5, 1999.

[21] Reiss, S.P.: Semantics-based Code Search. Int. Conf. on
Software Engineering, 2009.

[22] Janjic, W., Hummel, O., and Atkinson, C.: More Archetypal
Usage Scenarios for Software Search Engines. Int. Workshop
on Search-Driven Development, SUITE 2010.

[23] Crnkovic, I., Chaudron, M., and Larsson, S.: Component-
based Development Process and Component Lifecycle, Proc.
of the Intern. Conf. on Software Engineering Advances, 2006.

[24] Küster, U. and König-Ries, B.: Towards standard test
collections for the empirical evaluation of semantic web
service approaches. Int. Journal Semantic Computing, Vol. 2,
Iss. 3, 2008.

[25] Clements, P.: From Subroutines to Subsystems: Component-
Based Software Development. in Heineman, G., Councill, W.
(eds..: Component-based Software. Eng. Ad.-Wesley, 2001.

[26] Hummel, O. and Atkinson, C.: Automated Creation and
Assessment of Component Adapters with Test Cases. Intern.
Symposium on Component-Based Software Engineering,
2010.

[27] Gamma, E.; Helm, R.; Johnson, R., and Vlissides, J.: Design
Patterns. Elements of Reusable Object-Oriented Software,
Addison-Wesley, Amsterdam, 1995.

[28] Ye, Y. and Fischer, G.: Reuse-Conducive Development
Environments. Journal of Automated Software Engineering,
Vol. 12, No. 2, Kluwer, 2005.

[29] Garcia, V., Lucrédio, D., Durão, F., Santos, E., Almeida, E.,
Fortes, R., and Meira, S.: From Specification to
Experimentation: A Software Component Search Engine
Architecture, International Symposium on Component-Based
Software Engineering, CBSE 2006.

[30] Hutchins, M., Foster, H., Goradia, T., and Ostrand, T.:
Experiments on the effectiveness of dataflow- and control
flow-based test adequacy criteria. International Conference on
Software Engineering, 1994.

458Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 476 / 729

Improving IT Infrastructures Representation: A UML Profile

Luís Ferreira da Silva
1

luis.alexandre@campus.fct.unl.pt

Fernando Brito e Abreu
2,1

fba@iscte-iul.pt

Victor Moreira
2

vitor_hugo_moreira@iscte.pt

1
QUASAR Group, CITI, FCT/UNL

Universidade Nova de Lisboa

2829-516 Caparica, Portugal

2
DCTI, ISTA, ISCTE-IUL

Instituto Universitário de Lisboa

1649-026 Lisboa, Portugal

Abstract— IT infrastructures are most times informally

modeled. The resulting models are ambiguous to stakeholders,

cannot be checked for validity, and therefore are unable to

play their important role in design, deployment and

maintenance activities. The main reason for such a poor state-

of-the-art lies mainly in the absence of a modeling language

capable of representing IT infrastructures at the required level

of abstraction. Indeed, existing candidate languages are too

abstract, as shown in this paper by reviewing their

metamodels. The present paper mitigates this problem by

proposing a UML profile to describe the semantics of an IT

infrastructure.

Keywords – Information Technology; IT Infrastructures;

UML Profile; Modeling; Design Patterns

I. INTRODUCTION

An Information Technology Infrastructure (ITI), also

known as Technology Architecture in most Enterprise

Architecture frameworks, is the foundation on which

business processes that drive the success of an organization

are based [1] and has been defined as “all hardware,

software, networks and facilities, etc. that are needed to

develop, test, deliver, monitor, control or support IT

services” [2]. Some of the unique characteristics of the ITI

layer are:

 Is the foundation for all the other architecture layers,

meaning that a problem at this layer can influence all

the layers above;

 Provides services that are used by multiple applications,

processes, and users;

 Is usually not perceived as a layer that offers financial

benefits, but rather as an utility that enables business

processes to be performed.

The ability to streamline the conception, deployment and

maintenance of ITIs depends largely on our ability to model

them, as in most engineering endeavors, to produce complex

artifacts. The use of models was introduced in Computer

Science in the seventies to simplify complexity in Software

Engineering. Models convey a simplified representation of

part of the real world, which can be useful for analytical

purposes. The use of models provides a way to view specific

aspects of a system with multiple levels of abstraction

within different contexts.

To produce models, we require a modeling language

providing a set of composable constructs. The use of

informal modeling notations creates communicational

problems among stakeholders and ultimately makes ITIs

suffer the same problems of legacy software: undocumented

decisions, redundancy, inconsistencies and increased cost of

ownership. To mitigate these issues, we should adopt a

well-formed graphical notation, based on a formal grammar,

usually called a metamodel. The latter includes precise

definitions of constructs and their relationships, along with

composition rules that must be fulfilled for creating valid

models. Models are said to be metamodel instances since

they conform to it. Metamodels allow the development of

syntax checking editors and validation tools. With such a

support, models are then prone to provide a less ambiguous

and shared meaning to all relevant stakeholders, and

therefore play their expected role in ITI engineering.

Despite the aforementioned benefits on using a precise

modeling language, our experience in the field has shown

that most organizations depict their ITIs informally, either

using some ad-hoc templates or informal notation not

supported by a standard or framework, resulting in

ambiguous models without any kind of traceability features

like the one represented in Figure 1. Such ad-hoc models

frequently lead to discussions as each stakeholder has its

own interpretation.

Figure 1. Model of an IT infrastructure (source: [3])

In this paper, we propose an extension to the UML2

metamodel, provided as a profile, to describe the semantics

of ITI modeling constructs.

459Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 477 / 729

This paper is organized as follows: in the next Section

we review related work; in Section III we present the UML

profile itself, by overviewing its structure and stereotypes;

then, in Section IV, we briefly describe how we have

deployed the proposed profile in a professional modeling

tool; finally, in Section V, we present some conclusions and

future work.

This paper extends (by presenting related work and a

modeling example using the profile) and improves (by

providing more detail on the profile and on the future work)

a previous short paper of ours [4].

II. RELATED WORK

Several modeling languages provide constructs for

modeling ITIs with some precision. In this section, we will

overview those constructs, as defined in the metamodels of

three of the most well-known languages that can be used in

the context of IT infrastructures: UML, TOGAF and

ArchiMate.

A. UML Metamodel

UML is a general-purpose modeling language

embodying a collection of best engineering practices that

have proven successful in the modeling of large and

complex systems of a wide range of domains. Under the

stewardship of the Object Management Group (OMG),

UML has emerged as the software industry’s dominant

modeling language. IT infrastructures are modeled in UML

with Deployment Diagrams. The latter allows representing

the hardware for a system, the software that is installed on

that hardware, and the middleware used to connect

machines.

Since UML version 2 (UML2) has thirteen different

types of diagrams, our first endeavor was assessing their

relative usage at a global scale, based upon the hits provided

by several web search engines, either general purpose, or

academic / research oriented. Plotted values in Figure 2 are

represented in percentage of total hits. When available, we

split textual search hits from image search hits, but the

ranking in both cases does not differ significantly.

Figure 2. Ranking the use of the thirteen UML2 diagrams

As it can be observed in Figure 2, Deployment Diagrams

are among the less used UML2 diagrams. A possible

interpretation for this phenomenon is that UML2 offers

limited modeling constructs (e.g., nodes, components and

associations), that do not cope “as is” with the required

diversity for modeling ITIs.
There are four modeling elements in UML deployment

diagrams, represented as metaclasses in the corresponding
UML metamodel extract, as shown in Figure 3 and Figure 4.
Those constructs are: Nodes to represent a hardware
component, Components to represent software,
Dependencies to show that one component relies upon
another component and Links to connect nodes.

Figure 3. UML metamodel extract corresponding to deployment

diagrams.

As can be seen in Figure 3, Node is a central modeling

element. It can have other elements of type Node and

represents the environment in which a component or a set of

components execute. A Node is a generic concept and can

represent several things such as a physical hardware device,

an operating system or infrastructure software (e.g.,

database server, web server, application server) and is

connected through communication paths.

Figure 4. Metaclasses used to define the deployment component.

UML2 has a comprehensive coverage of the whole

lifecycle in software development. As a result, its large

specification, spanning more than 900 pages [5, 6] is in

some aspects too abstract. This is well the case of

Deployment Diagrams, and as a result they are not widely

used as other UML2 diagrams, as corroborated by our

survey. In short, “plain vanilla” UML provides no

specialized stereotypes for the many concepts and

association types used in any IT infrastructure, what makes

it a weak candidate for modeling ITIs.

B. TOGAF Content Metamodel

The Open Group Architecture Framework (TOGAF) is a

framework for enterprise architecture developed by the

Open Group Architecture Forum in the United States,

460Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 478 / 729

which provides a comprehensive approach for designing,

planning, implementation, and governance of an enterprise

information architecture. TOGAF is a high level and holistic

approach to design, which is typically modeled at four

levels: Business, Application, Data, and Technology. It tries

to give a well-tested overall starting model to information

architects, which can then be built upon. It relies heavily on

modularization, standardization and already existing, proven

technologies and products. Its latest release, at the time of

writing, also includes a metamodel called Content

Metamodel, that defines all types of building blocks that

exist within architecture and how they are related to each

other to allow architectural concepts to be captured, stored,

filtered and queried in a structured and consistent manner.

The IT infrastructure (called technology architecture in

TOGAF terminology) is part of the Content Metamodel and

its direct relationships are shown in Figure 5.

Figure 5. TOGAF 9.1 metamodel extract

From an IT infrastructure perspective, there are few

concepts in the content metamodel: the Platform Service

that represents the support for delivering applications, the

Logical Technology Component used to represent a class of

technology products and Physical Technology Component

to represent specific technology products. As with UML,

these general concepts from TOGAF’s Content Metamodel

allow, in theory, to model IT infrastructures. The lack of

specialized stereotypes and relationships appears to be a

serious hindrance for its effective adoption. Furthermore,

some authors argue that TOGAF’s Content Metamodel

lacks a formal ontology to mitigate its ambiguities and

inconsistencies [7].

C. Archimate Metamodel

ArchiMate is an open architecture modeling standard

with focus on the visualization of viewpoints and notations

on models. The metamodel encompasses several enterprise

architecture domains (Business, Application, Information,

Technology).

The ArchiMate metamodel was inspired in the UML 2.0

standard [5, 6]. As seen in Figure 6, Node is also the main

structural concept and is specialized in Device (e.g., servers)

and System Software (e.g., operating system called

“execution environment” in UML).

In fra s tru c tu re

In te r fa c e

N o d e
C o m m u n ic a tio n

P a th

D e v ic e

In fra s tru c tu re

S e rv ic e

S y s te m S o ftw a re

a s s o c ia te d w ith

u s e d b yc o m p o s e s

a s s ig n e d to

Is re a liz e d b y

N e tw o rk

a s s ig n e d fro m

c o m p o s e d o f u s e s

a s s o c ia te d w ith

u s e s

u s e d b y

re a liz e s

re a liz e d b y

a s s o c ia te d w ith

a s s o c ia te d w ith

re a liz e s

re a liz e d b y

a s s ig n e d to

a s s ig n e d fro m

A rtifa c t
a s s ig n e d to

a s s ig n e d fro m

a c c e s s e d b y

a c c e s s e s

Figure 6. ArchiMate metamodel extract corresponding to IT

Infrastructure modeling

The Infrastructure Interface is the “logical” location

where the Infrastructural Services offered by a Node can be

accessed by other Nodes. The Communication Path and

Network are used to connect interrelated components in the

technology layer. The Artifact (also taken from UML 2.0)

represents a physical piece of information and can be

deployed to a Node.

ArchiMate’s technology architecture metamodel extract

is more detailed than the corresponding TOGAF extract,

namely by allowing to model the hardware platforms and

communication infrastructure. However, it is still too

generic and with more focus on describing the relationships

between layers than providing clear guidelines and rules on

how to model the various components of the technology

architecture. It is argued in the ArchiMate [8]specification

that modeling infrastructure components such as routers or

database servers would add a level of detail that is not useful

at the enterprise level of abstraction .

III. UML PROFILE FOR IT INFRASTRUCTURES

UML makes provisions for its own extension, by

allowing “customization” to a specific area or domain, with

a so-called UML Profile. The latter is a coherent collection

of UML extensions (stereotypes, tagged values, and

constraints) that allows refining the standard semantics in

strictly additive manner (i.e. without contradicting it). For

instance, a profile may use a stereotype to refine the concept

of Node.

Several UML profiles have been proposed in the

literature and some of them have been endorsed by the

OMG itself. Examples include a profile for aspect-oriented

software development [9], a profile for requirements

management of software and embedded systems [10], a

profile for business process modeling [11] and a profile for

modeling real-time embedded systems [12].

According to Frank Ulrich, the existing tools and

methods for IT management are not suitable because they

focus on issues such as hardware and operational metrics.

This author claims further that there is a gap between the

technical level and IT management. He points out that a

mitigating strategy to cope with the complexity of this task

461Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 479 / 729

would be providing adequate support for the analysis and

communication among the various stakeholders. He

corroborates our observation that existing approaches are

too generic, therefore not providing the required level of

detail and stresses that the lack of formality not only leads to

communication problems among stakeholders, but also

limits the use of automatic problem detection or validation

techniques in existing infrastructures [13].

Due to the aforementioned limitations of existing

modeling languages, we have developed an UML profile for

IT infrastructures. The decision for extending UML, instead

of developing a domain specific language (DSL) from

scratch, was based on the following rationale:

 There is a large community, both in industry and

academia, that understands and actually uses the UML

language;

 Extending UML allows reusing existing UML modeling

elements, with well-defined syntax and semantics;

 There are tools that support the development of UML

profiles.

A. ITI Profile Structure

Figure 7 presents a conceptual view of the ITI profile,

where the software and hardware layers are represented with

different colors.

Figure 7. Layered structure of the ITI profile

The ITI Software Layer (Yellow) has three packages: ITI

Hypervisor, ITI Operating System and ITI Software, while

the ITI Hardware layer (Blue) has four packages: ITI

Facilities, ITI Network, ITI Nodes and ITI Storage.

ITI Nodes

ITI Software

ITI Networks ITI Facilities ITI Storage

*

ITI Operating

Systems

ITI hypervisorss

Figure 8. ITI packages and their relationships

Figure 8 provides an overview of the ITI packages and

their relationships in the ITI profile. In the software layer

the package ITI Software models software platforms such as

antivirus, application servers, backup, collaboration servers,

database servers, directory, and email servers, among others.

These ITI platforms execute upon an ITI Operating System

such as Windows, Linux, AIX. The operating system may

be deployed directly on hardware or it can be deployed on

top of an ITI Hypervisor such as XEN, Hyper-v or

VmWare, that executes directly on the ITI Nodes hardware.

The package ITI Nodes is a very important one since it

contains the constructs used to model systems such as

servers and their components. The metaclass Host inherits

the properties of an UML2 Node and was created with a set

of stereotypes to allow the representation of physical and

virtual servers, mainframes or supercomputers. The

metaclass Device is similar to Host but is used to represent

other equipment such as phones, tablets, slates, laptops, or

PDAs. The Peripheral metaclass represents the components

that may be connected to a Host or Device and includes

monitors, keyboards, mice, printers or smartcard readers,

among others. A Port is a built-in component in a Host or

Device such as a host-based adapters or a network card.

ITI Nodes

«metaclass»

Host

«metaclass»
Peripheral

«metaclass»
Port

«metaclass»
Device

ITIisPartOf

ITIisPartOf

ITIContains

ITIContains

ITIConnects

ITI Storage

«metaclass»
Storage Component

«metaclass»
Storage Network

Device

«metaclass»
Storage Protocol

«metaclass»
Storage Model

ITIuses

ITIuses

ITIContains

ITIConnects

ITIConnects

Figure 9. ITI Nodes and ITI Storage

The package ITI Storage represents the multiple Storage

Components such as storage LUNs, storage arrays and

pools, storage controllers and they may be configured in

different Storage Models such as Storage Area Network

(SAN) or Network Access Storage (NAS). These storage

components are connected to Hosts and Devices trough

Storage Networks using fiber channel or Ethernet routers or

switches that use specific Storage Protocols such as ISCSI,

Fiber Channel or Fiber Channel over Ethernet (FCoE)

among other protocols. Both ITI Nodes and ITI Storage

packages and their relationships are represented in Figure 9.

462Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 480 / 729

Hosts and Devices from the ITI Nodes package can be

interconnected by Network Devices available in the ITI

Network Package. Network Devices includes, among others,

devices such as access points, firewalls, hubs, routers and

switches. Those devices are used to create different Network

Zones such perimeter networks, intranets or extranets and

they communicate using a specific Network Protocol such

as frame relay or Ethernet. The Network Devices may be

configured in multiple Network Types such as LANs,

WANs or Wi-Fi. All aforementioned components reside in

the ITI Facilities package. Both packages are shown in

Figure 10.

ITI Networks

«metaclass»
Network Type

«metaclass»
Network Device

«metaclass»
Network Zone

«metaclass»
Network Protocol

ITIUses

ITIConnects

ITICreates
ITIUses

ITIUses

ITI Facilities

«metaclass»
Location

«metaclass»
OtherPhysicalComp

onent

ITIResidesOn

Figure 10. ITI Network and ITI Facilities

B. ITI Profile Metaclasses and Stereotypes

To connect multiple ITI components, we require ITI

connectors that extend the metaclass Association or the

metaclass Composition, as represented in Figure 11.

ITI Connectors

Figure 11. IT Infrastructure Connectors Package.

Besides these two connector metaclasses, we also

extended UML2 metaclasses elements such as Class,

Location, Boundary, Device and Node. An example is the

package ITI Facilities, composed by the metaclass Location

and the metaclass OtherPhysicalComponents. A location

can be the Headquarters, a Datacenter, a Branch Office, or

a Regional Office. OtherPhysicalComponents includes

Cables to connect hosts, Racks to attach servers, Power

supplies and Cooling systems. Both metaclasses and their

extending stereotypes can be seen in Figure 12.

ITI Facilities

«metaclass»

Location

«stereotype»

DataCenter

«stereotype»

BranchOffice

«stereotype»

Headquarter

«stereotype»

RegionalOffice

«metaclass»

OtherPhysicalComponent

«stereotype»

Cable

«stereotype»

Cooling

«stereotype»

Power

«stereotype»

Rack

Figure 12. Package Facilities

To allow expressing as much information as desired in

the ITI domain, we enriched each stereotype with additional

attributes (called "tagged values" in earlier UML versions).

The attributes chosen for each stereotype were based on our

field experience and inspired on the standard Common

Information Model (CIM) [14] created by the Distributed

Management Task Force (DMTF). The latter is a worldwide

initiative spearheaded by industry-leading technology

companies such as AMD, Broadcom Corporation, CA,

Cisco, Citrix Systems, EMC, Fujitsu, HP, Huawei, IBM,

Intel, Microsoft, NetApp, Oracle, RedHat, SunGard and

VMware.

CIM was created to provide a common approach to the

management of systems, networks, applications and services

and enable multiple vendors to exchange semantically rich

management information between systems throughout the

network. This paper only includes a subset of the

stereotypes. The complete set of stereotypes, tagged values

and constraints will be available as a technical report on the

QUASAR group website [15].

IV. DEPLOYING THE PROFILE

We have deployed the proposed ITI profile in a widely

used modeling tool: Sparx Systems’ Enterprise Architect

[16] that supports the definition of profiles.

Figure 13 represents an ITI model produced with our

deployed profile. This example provides a first evidence that

our proposal reduces the ambiguity in modeling ITIs, while

providing the recurrent ITI concepts used by ITI architects,

such as data centers, servers, network types such as

perimeter, intranet, extranet, firewalls, routers or switches.

The increased preciseness facilitated by the use of a formal

metamodel is rendered possible by specifying well-

formedness rules upon it using OCL clauses.

463Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 481 / 729

Figure 13. Simple ITI model using the proposed profile

V. CONCLUSION AND FUTURE WORK

This paper introduces a UML profile for modeling IT

infrastructures, covering constructs at all required

abstraction levels (hardware, middleware, network and

software). Since the full profile has many stereotypes and

each stereotype is described by means of several attributes,

only a subset of the profile could be presented here.

Nevertheless, we present some evidence that this profile

mitigates the problems identified while reviewing existing

approaches for modeling IT infrastructures:

i) The widely used ad-hoc approaches produce

ambiguous models, do not facilitate knowledge reuse and

cannot support validation approaches;

ii) The existing formal approaches for modeling ITIs,

such as UML Deployment Diagrams, TOGAF or ArchiMate,

do not provide the required abstractions and, probably due

to that, are not used in practice.

Several future research threads relate to the availability

of this profile:

ITI models capture – Organizations often have IT

service management tools (e.g., CMDB – Configuration

Management Data Base) that store information on the ITI

elements. Being able to import that information and

generate preliminary layouts is a major research concern.

ITI models scalability - Models of real-world

infrastructures, even in medium-sized companies, can easily

reach hundreds or even thousands of modeling elements,

especially when software components are considered. In

such a case, a model can easily be rendered useless due to

excessive detail. We plan to mitigate this problem by using

zooming facilities like those available in GIS.

Reuse ITI modeling best practices: We have proposed

elsewhere the concept of ITI patterns [17, 18]. The

availability of this profile will allow granting more

preciseness to the formalization of those patterns.

ACKNOWLEDGMENT

This work is partly supported by grant PEst-OE/EEI/UI0527/2011 of

Centro de Informática e Tecnologias da Informação (CITI/FCT/UNL).

REFERENCES

[1] A. Gunasekaran, H. J. Williams, and R. E. McGaughey, "Performance
measurement and costing system in new enterprise," Technovation,

vol. 25, pp. 523-533, 5// 2005.

[2] OGC, IT Infrastructure Library (ITIL) - Service Design (Version 3).
London: The Stationery Office, 2007.

[3] http://www.oracle11grelease2.com/services/infrastructure-velolux/.

[4] L. Ferreira da Silva, F. Brito e Abreu, and V. Moreira, "A UML Profile
for Modeling IT infrastructures," presented at the INFORUM’2012,

Caparica, Portugal, 2012.
[5] OMG, "Unified Modeling Language (UML) Specification:

Superstructure (version 2.3)," ed, 2010.

[6] OMG, "Unified Modeling Language (UML) Specification :
Infrastructure, version 2.3," 2010.

[7] A. Gerber, A. Van der Merwe, and P. Kotze, "Towards the

Formalisation of the TOGAF Content Metamodel using Ontologies,"
presented at the Proceedings of the 12th International Conference on

Enterprise Information Systems, Funchal, Madeira, Portugal, 2010.

[8] The Open Group, "Archimate 2.0 Specification," ed. Zaltbommel: Van
Haren Publishing, 2012.

[9] T. Aldawud, A. Bader, and T. Elra, "UML profile for aspect-oriented

software development," presented at the The Third International
Workshop on Aspect-Oriented Modeling, 2003.

[10] T. Arpinen, T. Hamalainen, and M. Hannikainen, "Meta-Model and

UML Profile for Requirements Management of Software and
Embedded Systems," EURASIP Journal on Embedded Systems, 2011.

[11] B. List and B. Korherr, "A UML 2 Profile for Business Process

Modelling," presented at the Perspectives in Conceptual Modeling (ER
2005 Workshop), Klagenfurt, Austria, 2005.

[12] OMG, "A UML Profile for MARTE: Modeling and Analysis of Real-

Time Embedded Systems," vol. ptc/2008-06-09, ed: Object
Management Group, 2008.

[13] U. Frank, D. Heise, H. Kattenstroth, D. Ferguson, E. Hadar, and M.

Waschke, "ITML: A Domain-Specific Modeling Language for
Supporting Business Driven IT Management," presented at the 9th

OOPSLA workshop on domain-specific modeling (DSM), Helsinki,

Finland, 2009.
[14] DMTF, "Common Information Model (CIM) Infrastructure,"

November 2007.

[15] http://ctp.di.fct.unl.pt/QUASAR (accessed in 5/9/2012).
[16] http://www.sparxsystems.com (accessed in 5/9/2012).

[17] L. Ferreira da Silva and F. Brito e Abreu, "Software distribution to

remote locations," presented at the Proceedings of the 15th European

Conference on Pattern Languages of Programs, Irsee, Germany, 2010.

[18] L. Ferreira da Silva and F. Brito e Abreu, "An IT Infrastructure

Patterns Approach to Improve IT Service Management Quality,"
presented at the 7th International Conference on the Quality of

Information and Communications Technology (QUATIC'2010), Porto,

Portugal, 2010.

464Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 482 / 729

An Investigation into Reference Architectures for Mobile Robotic Systems

Daniel Feitosa and Elisa Yumi Nakagawa
Dept. of Computer Systems, University of São Paulo - USP

PO Box 668, 13560-970, São Carlos, São Paulo, Brazil
{feitosa, elisa}@icmc.usp.br

Abstract—Currently, robotic systems have been more and
more required for a diversity of new products, such as in
domestic robots and in robots for dangerous environments.
As a consequence, an increase in the complexity of these
systems is observed, requiring also considerable attention to
their quality and productivity. In another perspective, reference
architectures have emerged as a special type of software
architecture that achieves well-recognized understanding of
specific domains, facilitating the development, standardization,
and evolution of software systems. In this perspective, reference
architectures have also been proposed for the robotic domain
and they have been considered an important element to the de-
velopment of systems for that domain. However, there is a lack
of work that present an panorama about these architectures;
furthermore, there exists no support to choose a reference
architecture when developing or evolving robotic systems.
Thus, the main contribution of this paper is to present a
panorama about reference architectures of the robotic domain,
in particular, for mobile robots. It is worth highlighting that we
used the systematic review technique to identify and investigate
these architectures. We have found that these architectures have
in general become consolidated and have already contributed to
the industry during the development of robotic systems. Besides
that, results of our investigation could support the decision
about which architecture to adopt aiming to develop a new
software. Also, our analysis could help to create new reference
architectures. However, there are still important perspectives
of research that need to be investigated.

Keywords-robotic system; robot; reference architecture; sys-
tematic review.

I. INTRODUCTION

The field of Robotics has presented an increasing growth
in the last years, impacting various sector of the society
and opening new, important application areas [1]. A number
of different types of robots has been developed and used
and, in particular, mobile robots have currently detached by
their relevance and range of applications. Good examples of
mobile robots are vacuum cleaners, vigilant robots, and map-
pers, including robots developed to be operated in dangerous
environments, sometimes, not accessible by human beings.
Furthermore, according to Graaf et al. [2], in the next years,
the market for these robots is forecasted to exponentially
grow and they will have more and more important roles. In
this perspective, the complexity of these mobile robots has
been increasing, creating a considerable challenge for their
development. Thus, both academic and industrial research
have focused on their development, aiming at achieving

quality in such systems and timely delivery [2]. It is also
worth highlighting that robots are basically composed by
mechanical devices (such as sensors and actuators) and
software systems (i.e., robotic systems) and the development
of these systems have been perhaps the major challenge.

In another perspective, software architectures have been
increasingly investigated as the main artifact that plays
a pivotal role in determining system quality, forming the
backbone of any successful software-intensive system [3].
More specifically, a reference architecture has achieved the
status of a special type of software architecture that captures
the essence of the system architectures of a given domain,
i.e., it encompasses the knowledge about how to design,
standardize, and evolve the system architectures of a specific
domain. Considering the relevance of reference architec-
tures, various application domains have proposed, used, and
reused the knowledge contained in such architectures. It
is worth highlighting that these architectures have been
sometimes developed by consortia that involve academy and
major industrial players (such as manufacturers and suppli-
ers). Thus, reference architectures have been considered as a
quite important element to improve productivity and quality
of the software systems.

Regarding robotic domain, several reference architectures
have been also proposed for the development and evolution
of mobile robots [4], [5], [6]. Each reference architecture
has its particular characteristics; besides that, they have
been successfully used in specific projects. However, in
the most cases, robotic systems for mobile robots have
been almost always developed and evolved without using
reference architectures, i.e., these systems are not taking
advantage of the knowledge contained in such architec-
tures in order to be more easily developed and evolved.
This fact can be the result of the difficulty to select an
more adequate architecture. Thus, a detailed, comprehensive
panorama about these architectures will be in fact important.
However, there is a lack of such panorama about reference
architectures for the robotic domain.

In this scenario, the main contribution of this paper is to
present a broad panorama of the reference architectures for
robotic systems, as well as an more detailed investigation
among these architectures. In the context of this work, we
have focused in reference architectures for mobile robots. It
is important to say that in order to find these architectures,

465Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 483 / 729

we adopted and conducted a systematic review [7], i.e.,
an efficient and effective technique to summarize, assess,
and interpret all evidence related to a specific question,
topic area, or phenomenon of interest. Besides that, we
complemented our investigation using additional documents
related to each reference architecture found. As main results,
we have observed, in the last years, an increase in the
number of reference architectures for robotic systems. These
facts have evidenced a real interest by both academy and
industry. Moreover, our investigation could be considered as
a valuable element during the selection of a more adequate
architecture for the design and evolution of robotic systems
for mobile robots. Moreover, our results could be used as
a start point to the proposal of new reference architectures
for mobile robots domain. Finally, this work could make it
possible to identify interesting and important research topics
for further investigations.

This paper is organized as follows. In Section II, we
present an overview on mobile robots and reference archi-
tecture, since these topics are important to understand our
analysis. In Section III, we present the methodology used
to systematically identify reference architectures. In Section
IV, we describe each reference architecture found. In Section
V, we present a comparison among these architectures. In
Section VI, we discuss about the achieved results. Finally,
in Section VII, we summarize our contributions and discuss
perspectives for further work.

II. BACKGROUND

The field of Robotics encompasses several types of robotic
applications, such as robotic arms for assembly lines, house-
hold robots, and military robots. In this context, an important
type is mobile robots, which also are basically composed by
software and hardware projects. The software implements
the robotic control system (i.e., robotic system), which is
responsible for analyzing the sensor signals, planning and
decision-making, and control of actuators. In parallel, the
hardware is responsible for the physical implementation of
sensors, actuators (responsible for robot’s movement and
actions), and data processing (the basic components for
partial or total autonomy of the robots) through the use
of an embedded processor. In particular, sensors are the
hardware components responsible to give the robot the
“vision” of the world, representing different senses, such
as vision and hearing, and allowing the robot to interpret
the environment. Otherwise, actuators enable the robot to
interact with the environment, allowing the robot to move
and perform actions, such as picking or pushing objects.

Regarding robotic system, it enables the robot to develop
essential, complex, and intelligent activities. For instance,
it also determines the robot autonomy level, from tele-
operation to autonomous behavior. Thus, the main activities
performed by a robot are: navigation, localization, and
mapping. Navigation is the act of controlling the movement

of the robot from an initial position to a target position.
The task of navigation is usually implemented through the
use of a control architecture which represents how the robot
behaves. Localization consists of estimating the position of
the robot in the environment. This activity is essential and
basic for the robot navigation. If a robot determines exactly
its position, it will be capable of planning a path to its desti-
nation and will fulfill adequately the tasks allocated to it [8].
Mapping, i.e., the act of getting data on the environment and
the construction of maps, is an estimation problem which
is a major task for the development of autonomous mobile
robots. A correct map of the environment is fundamental
to find the most efficient path. Through the map, the robot
checks the possible paths that lead to the desired position
and the obstacles that must be avoided [9].

In another perspective, considering the relevance of ref-
erence architectures, a diversity of them for various do-
mains can be found, such as for automotive (e.g., the
AUTOSAR [10]), and commerce (e.g., Microsoft Reference
Architecture for Commerce [11]). They have served as an
important basis for the software systems development, since
these architectures have proved their efficiency regarding
improvement in productivity during software development.
Reference architectures have also been built for different
purposes [12]: (i) improvement of interoperability among
different components of software systems; (ii) standardiza-
tion of software systems of a given domain or of a company;
and (iii) reuse of knowledge from domain experts regarding
development of systems for that domain.

In this context, the robotic community has also noticed
that the establishment of reference architectures for robotic
systems of mobile robots is also quite interesting. Thus,
several architectures can be also found. However, selecting
a more adequate architecture aiming at using this one as
basis of the development of new robotic systems, as well
as evolution of existing systems, is still a hard task. There
is not a complete panorama of these architectures and also
information or guidelines that support selection of such
architectures. This scenario has therefore motivated this
work.

III. FINDING THE REFERENCE ARCHITECTURES

In order to specifically find reference architectures which
could be applied to the development of robotic systems
for mobile robots, we performed an exhaustive search con-
ducting a systematic review. Our systematic review was
conducted from December/2011 to January/2012, following
the process proposed by Kitchenham [7]. In short, this
process presents three main phases: (i) Phase 1 - Planning:
In this phase, the research objectives and the review protocol
are defined. The protocol constitutes a pre-determined plan
that describes the research questions and how the systematic
review will be conducted; (ii) Phase 2 - Conduction: During
this phase, the primary studies are identified, selected and

466Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 484 / 729

evaluated according to the inclusion and exclusion criteria
established previously. For each selected study, data are
extracted and synthesized; and (iii) Phase 3 - Reporting: In
this phase, a final report is formatted and presented.

In short, we established one research question: “Which
existing reference architectures could be applied to develop
robotic systems to mobile robots?” We then identified
the main keywords — “reference architecture”, “robot”,
and “unmanned ground vehicle” — and we established
a search string considering these keywords and their
possible synonymous: ((‘‘reference architecture’’

OR ‘‘reference model’’) AND (‘‘robot’’ OR

‘‘robotic’’ OR ‘‘unmanned ground vehicle’’ OR

‘‘UGV’’ OR ‘‘intelligent vehicle’’)). We added
“reference model” in the search string, since it is sometimes
used to refer to reference architecture. We also added
“intelligent vehicle” to refer to mobile robots. Finally, to
find the works (also primary studies in the systematic review
context), we used main publication databases: ACM Digital
Library [13], IEEEXplore [14], ISI Web of Knowledge
[15], and Scopus [16]. As a result of our search in these
databases using the search string, a total of 409 primary
studies were discovered. Removing the repeated studies,
we had 371 unique studies. The title and abstract sections
of each study were read and a total of 14 studies were
selected for further reading. Next, these studies were read
in full and, finally, seven reference architectures that are
applicable to mobile robots were identified: 4D/RCS [17],
ACROSET [18], AIS [6], JAUS [5], Robot Teleoperation
[4], Servicebots [19], and SMAS [20]. For the selection of
these architectures, we considered reference architectures
that filled three main requirements: (i) the architecture
presents a set of pre-defined functionalities that could be
contained in robotic systems; (ii) the architecture explains
the interaction among these functionalities; and (iii) the
architecture permits the derivation of software architectures
and their respective systems. It is important to say that
these requirements are essential to reference architectures,
if it is intended in fact to use them to the robotic system
development.

It is important to say that the objective of the systematic
review was then to identify all reference architectures ap-
plicable to mobile robots. Furthermore, a second search for
specific information of these architectures was conducted
considering additional documents, such as the web sites,
books, papers in conferences and journals, and any other
documents that could support to conduct our analysis.

IV. DESCRIPTION OF THE REFERENCE ARCHITECTURES

Based on the seven reference architectures that are ap-
plicable to the mobile robots, we conducted a detailed in-
vestigation on each one and developed a comparison among
them. In Table I, each reference architecture is presented

together with name and type of the mobile robots. Below,
we present an overview of each reference architecture.

The 4D/RCS reference architecture provides a theoreti-
cal foundation for designing, engineering, integrating, and
testing intelligent software systems for unmanned vehicle
systems [17]. It consists of a multi-layered multi-resolutional
hierarchy of computational nodes, each containing elements
of sensory processing (SP), world modeling (WM), value
judgment (VJ), and behavior generation (BG). From high
levels to low levels, the reference architecture contains func-
tionalities that permit goal definition, going to perception,
cognition, and reasoning, involving sensors and actuators.
According to its author, this architecture enables precise and
fast responses in lower levels while it formulates plans and
abstracts concepts in higher levels.

The JAUS [21] reference architecture uses a message
passing protocol to provide interoperability among sub-
systems and components that compose systems resulting
from this architecture [5]. JAUS presents a service-oriented
approach to enable distributed command and control of these
systems. The reference architecture provides information
about how to enable online interoperability of unmanned
systems and their components. For that, JAUS defines a set
of basic services which are required by most higher level
components, and they are defined in JAUS Core Service Set
(JSS Core).

The ACROSET is a component-oriented reference ar-
chitecture for teleoperated service robots [18]. Its main
characteristic is the reuse of components from different
systems. The reference architecture is composed by sub-
systems: Coordination, Control and Abstraction Subsystem
(CCAS); Intelligence Subsystem (IS); User Interaction Sub-
system (UIS); and Safety, Management and Configuration
Subsystem (SMCS). The CCAS abstracts and encapsulates
the functionality of the physical devices of the robots. This
subsystem is composed by virtual components that can
be implemented in either software or hardware. Besides
that, in order to deal with operator-driven, semi-autonomous
systems, the IS was inserted in this architecture. This
subsystem permits to have different types of user (and
even an autonomous subsystem). The UIS is responsible
for interpreting, combining, and arbitrating among orders
that may come simultaneously from different users. Finally,
the SMCS presents two main functionalities: (i) the mon-
itoring of functionalities from other subsystems; and (ii)
management and configuration of the initialization of the
application.

The Servicebots reference architecture was designed to
service robots operating in indoor environments [19]. In
this context, service robots are those supposed to perform
tasks (like mail delivery, tourist guide, etc) in buildings
of a whole variety of characteristics [19]. The reference
architecture is composed by three subsystems that use the
IT (Information Technology) backbone (i.e., the local area

467Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 485 / 729

Table I
REFERENCE ARCHITECTURES FOR MOBILE ROBOTS

Name Type
4D/RCS [17] Unmanned ground vehicles

JAUS [5] Unmanned systems

ACROSET [18] Teleoperated service robots

Servicebots [19] Indoor service robots

SMAS [20] Situated multi-agent systems

Robot Teleoperation [4] Robots with many controllers

AIS [6] Adaptive intelligent systems

network) to communicate and complete the task; these three
subsystems or types of robots are: servicebots, fixbots, and
softbots. The type servicebots is a robot capable of driving
autonomously only with sensorial information in an average
complex environment (e.g., corridors). The fixbots present
sensor and actuators distributed all over the environment,
having their own intelligence and communication channel.
The softbots refer to the software agents executing various
tasks for the requesting user, fixbot or servicebot. Thus,
the reference architecture is concerned with performance,
configuration, problem, human-interface, and security man-
agement.

The SMAS reference architecture provides a blueprint
for architectural design of multi-agent system applications
[20]. It is composed by two subsystems: the agent and
the application environment. The first one comprises three
modules: (i) perception through getting information from
the environment; (ii) decision making, selecting the agent
action; and (iii) communication, responsible for interactions
with other agents. The second subsystem comprises seven
modules: (i) representation generator, perceiving the envi-
ronment; (ii) interaction, dealing with agents’ influences
in the environment; (iii) communication service, collect-
ing messages and delivering messages to the appropriate
agents; (iv) observation, observing the deployment con-
text; (v) synchronization, monitoring domain-specific parts
of the deployment context and keeping the corresponding
representation in the state of the application environment
up to date; (vi) dynamics, maintaining processes in the
application environment that happen independent of agents
or the deployment context; and (vii) translation of influences
and messages into low-level interaction primitives with the
deployment context, and low-level formatted messages into
messages for agents.

The Robot Teleoperation reference architecture is con-
cerned with robots having different controllers [4]. To
achieve the objective, the reference architecture was pro-
posed according the definition of Bass [22]. Thus, a domain
analysis was made to identify the set of components, fol-
lowed by the domain design to make the generic design,

where patterns and common models could be used. The
main identified components were: graphical representation,
collisions detection, user interface, communications and, the
most important, controller. To specify how the different
components are going to interact, two architectural styles
were selected: (i) client-server, used in the interactions be-
tween graphical representation (client) and collisions detec-
tion (client) with controller (server); and (ii) communicating
processes, used in the interactions between user interface
and communications with controller, because all of them
can take the initiative to send data.

Finally, the AIS reference architecture is a heterogeneous
mixture of common architectural styles [6], permitting the
creation of various adaptive intelligent systems. It is divided
hierarchically into layers for different sets of computational
tasks. Properties of pipe and filter style architectures are
provided by the layers and relations among them. Thus, the
reference architecture has two layers (or levels): the physical
level, responsible for action and perception in external be-
haviors; and the cognitive level, responsible for more abstract
reasoning activities (e.g., planning, problem solving, etc).
The components comprising each layer are organized in a
blackboard style, allowing a range of potentially complex
behaviors, since basic functionalities provided in each level
can work together to perform more complex functionalities.

After investigating each reference architecture, a com-
parison among them was developed, aiming at providing
information in order to better support selection of one or
more architectures when developing new robotic systems
or evolving existing ones. Also, we expect this analysis
supports the proposal of new reference architectures, since
we present a set of main features present in the analyzed
architectures. Moreover, the comparison will not point out
which reference architecture is better, because each one has
its specific requirements and application environment.

V. ANALYSIS OF THE REFERENCE ARCHITECTURES

Regarding analysis of the reference architectures, we also
adopted the systematic guidelines proposed by systematic
review. For this, we defined three perspectives and compared
these architectures: context of application, maturity, and
functionalities. To the first perspectives, we analyzed each
reference architecture determining if they were developed in
an academic context or in a industrial context. The result of
this analysis is presented in Table II. We observed that both
industry and academy are interested in proposing reference
architectures.

Considering other domain where the success of a refer-
ence architecture depends on involvement of the industry,
we can observe that reference architectures for mobile robots
present good perspective of success, since more than half of
the architectures present efforts from industry. Besides that,
if selection of an architecture is necessary, it is more inter-
esting to select architectures that have efforts from industry.

468Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 486 / 729

Table II
CONTEXT OF DEVELOPMENT OF THE REFERENCE ARCHITECTURES

Reference Architecture Development Context
4D/RCS Industrial

JAUS Industrial

ACROSET Industrial

Servicebots Academic

SMAS Academic

Robot Teleoperation Industrial

AIS Academic

Thus, 4D/RCS, JAUS, ACROSEFT, and Robot Teleoperation
could be first considered. However, each architecture has its
characteristics and knowledge aggregated; hence depending
on the purpose of the robotic system to be develop a specific
architecture could be more adequate than another one.

Aiming at determining the maturity level of the architec-
tures (i.e., how much they are evaluated), we established
three levels: (i) Architectural instantiation: the reference
architecture was only instantiated, i.e., the design of robotic
systems was developed, but no implementation is presented;
(ii) Implementation: at least a robotic system was imple-
mented based on the reference architecture, through, for
instance, a case study; and (iii) Use in real situation:
the reference architecture is in fact already used in real
situations, in particular, in the industry. This fact shows a
higher level of maturity of the architecture. Table III shows
the result of our investigation. As result, we have observed
that reference architectures for mobile robots are in general
mature, since three architectures present implementation of
robotic systems based on the architecture; besides that, the
most of them (i.e., four architectures) have been already
used in the industry. Therefore, 4D/RCS, JAUS, ACROSET,
and Robot Teleoperation seem to be the best choices to
be considered in the adoption of a reference architectures,
considering their maturity.

Table III
MATURITY LEVEL OF THE REFERENCE ARCHITECTURES

Reference Architecture Maturity Level
4D/RCS Use in real situation

JAUS Use in real situation

ACROSET Use in real situation

Servicebots Implementation

SMAS Implementation

Robot Teleoperation Use in real situation

AIS Implementation

The analysis of the last perspective was the most diffi-

cult to be conducted, since we needed to determine a set
of functionalities that comprise all reference architectures
and, frequently, we found sub-functionalities inside other
one. Thus, we defined 10 functionalities and indicated, for
each reference architecture, if each functionality is present
partially, completely, or not explicitly present. The result of
this investigation is presented in Table IV, where an “X” in-
dicates a functionality completely present, an “X*” refers to
a functionality partially present, and a blank space indicates
functionality not present. Therefore, these architectures have
presented a range of functionalities, partially or completely,
and, in general, ACROSET seems to be the most complete
architecture. Furthermore, our investigation could provide
important information to guide the selection of a more
adequate reference architecture. For instance, if functionality
“Decision judgement” is required in the robotic system to
be developed, it is interesting select ACROSET than other
architectures. Besides that, this table provides important
information about which functionalities could be inserted in
the architectures in order to become them more complete.
Considering the set of functionalities identified in this work,
“owners” of these architectures could have a direction about
how to evolve their architectures, if desired. This set can
also support the proposal of new reference architectures,
since they can be considered as a basic set of functionalities
because they are present in a significant number of reference
architectures. Moreover, each functionality can be explored
in depth, if necessary. In order to use these architectures,
a detailed study could be necessary to understand specific
points of them.

It is important to highlight that these results do not
indicate if a reference architecture is better than another
one. Besides that, there exists also functionalities or aspects
of reference architectures which were not discussed in this
work, because they are not important for mobile robots.

VI. DISCUSSION

The investigation presented in this work intends to support
selection of reference architectures for new projects, to
the evolution of existing ones or to the proposal of new
reference architectures; thus, productivity and quality of
the mobile robotic systems could be possibly improved. In
general, robotic domain presents good perspectives regard-
ing reference architectures, mainly because industry have
been involved in the establishment of such architectures.
Regarding their documentation, in general, these architec-
tures are well-documented; however, several of them, for
instance, that presented in [18] and [4], could present a more
comprehensive representation, if it is intended an adequate
dissemination of their architectures. In this perspective, these
architectures will have more chances to provide an effective
contribution to the robotic area.

Besides that, it was clear the potential of these archi-
tectures, since they permit to derive as many components.

469Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 487 / 729

Table IV
FUNCTIONALITIES CONTAINED IN THE REFERENCE ARCHITECTURES

Functionality Reference Architecture
4D/RCS JAUS ACROSET Servicebots SMAS Robot Teleoperation AIS

Sensorial processing X X X X X* X* X

Controlling X X X X X X X

Collision detection X X* X* X* X X*

World mapping X* X* X

Action planning X X* X* X* X X

User interfacing X X X X* X

Communication X X X X X X*

Security X X X

Decision judgement X X* X*

Multi-robotic interaction X* X* X X X*

However, we noticed that some reference architectures, in
particular [19], could have their components and function-
alities presented in more detailed way.

Based on our investigation, new topics of research can
be identified. Thus, the most important ones that we have
observed are:

• Establishment of a general, unique, and complete refer-
ence architecture for mobile robotic systems, containing
possibly all functionalities, constraints, other important
information related to robotic system development. This
architecture could facilitate therefore the development
of any robotic systems;

• Proposal of mechanisms (such as frameworks and
components already implemented, as well as support
tools) to easily use the reference architectures, since
architectures found in this work do not provide in
general an adequate automated support; and

• Proposal of complete guidelines to use the reference
architectures for mobile domain, since most studies
make it more succinctly. However, there are other
studies presenting well-specified, detailed guidelines,
including the entire architecture. Thus, it is possible to
identify this topic as a trend in reference architectures
for robotic systems.

Regarding the limitation of this work, other sources
of information could be used, possibly resulting in more
reference architectures to be studied and, as consequence,
achievement of a more comprehensive investigation. In an-
other perspective, we considered only reference architectures
applicable to mobile robots; however, this experience could
be extended to other types of robots, such as production
line robots. Furthermore, the conduction of a systematic
review involving a new research area — in our case, mobile
robotic systems — is not easy, since there is not a consensus
in concepts/terms used by different reference architectures;

thus, sometimes, it was necessary to infer a conclusion to
make some decisions.

VII. CONCLUSION AND FUTURE WORK

The main contribution of this work is to present an
panorama of the reference architectures which could be ap-
plied in the development of mobile robotic systems. In gen-
eral, good initiatives can be found, including architectures
that have been used in the industry context. Furthermore,
besides our suggestion of future research topic in this area,
we believe that this investigation could contribute to the
robotic community to open other research fields in mobile
robots and related areas.

Motivated by the achieved results, we intend to conducted
a detailed, comprehensive investigation involving other types
of robotic systems, for instance, production lines robots,
intending to contribute to a more effective development of
robotic systems.

In a parallel work, we are proposing a new reference
architecture aiming at the development of multi-robotic
systems for indoor service robots. Thus, we hope that the
emerging field of robotics can be supported by our reference
architecture.

ACKNOWLEDGMENT

This work is supported by Brazilian funding agencies
FAPESP and CNPq, and Capes. Also, the authors would
like to thank to the National Institute of Science and Tech-
nology on Critical Embedded Systems (INCT-SEC) (Grant
N.: 573963/2008-8 and 2008/57870-9).

REFERENCES

[1] E. Ruffaldi, E. Sani, and M. Bergamasco, “Visualizing per-
spectives and trends in robotics based on patent mining,” in
ICRA’10, Anchorage, Alaska, 2010, pp. 4340–4347.

470Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 488 / 729

[2] B. Graaf, M. Lormans, and H. Toetenel, “Embedded software
engineering: The state of the practice,” IEEE Software Engi-
neering, vol. 20, no. 6, pp. 61–69, 2003.

[3] P. Kruchten, H. Obbink, and J. Stafford, “The past, present,
and future for software architecture,” IEEE Software, vol. 23,
no. 2, pp. 22–30, 2006.

[4] B. Álvarez, A. Iborra, A. Alonzo, and J. A. De la Puente,
“Reference architecture for robot teleoperation: Development
details and practical use,” Control Engineering Practice,
vol. 9, no. 4, pp. 395–402, 2001.

[5] M. N. Clark, “JAUS compliant systems offers interoperability
across multiple and diverse robot platforms,” in AUVSI’2005,
Baltimore, USA, 2005, pp. 249–255.

[6] B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, and
M. Balabanovic, “A domain-specific software architecture for
adaptive intelligent systems,” IEEE Transactions on Software
Engineering, vol. 21, no. 4, pp. 288–301, 1995.

[7] B. Kitchenham, “Procedures for performing systematic re-
views,” Keele University, Tech. Rep. TR/SE-0401, Jul. 2004.

[8] D. Fox, W. Burgard, and S. Thrun, “Markov localization for
reliable robot navigation and people detection,” in Interna-
tional Workshop on Sensor Based Intelligent Robots, LNCS:
1724, Dagstuhl Castle, Germany, 1999, pp. 1–20.

[9] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics,
ser. Intelligent robotics and autonomous agents. The MIT
Press, Aug. 2005.

[10] AUTOSAR, “AUTOSAR (AUTomotive Open System AR-
chitecture),” [On-line], World Wide Web, 2011, available in:
http://www.autosar.org/ (accessed 02/25/2012).

[11] Microsoft, Microsoft Reference Architecture for Commerce
Version 2.0, ser. Patterns & practices. Microsoft Press, 2002.

[12] E. Y. Nakagawa, F. Oquendo, and M. Becker, “Ramodel:
A reference model of reference architectures,” in
WICSA/ECSA’2012, Helsinki, Finland, 2012, pp. 1–5.

[13] ACM, “ACM Digital Library,” [On-line], World Wide Web,
available in: http://portal.acm.org (accessed 01/28/2012).

[14] IEEE, “IEEE Xplore,” [On-line], World Wide Web, available
in: http://ieeexplore.ieee.org (accessed 01/26/2012).

[15] ISI, “ISI Web of Knowledge,” [On-line], World Wide
Web, available in: http://apps.isiknowledge.com (accessed
01/24/2012).

[16] Elsevier, “SciVerse Scopus,” [On-line], World Wide Web,
available in: http://www.scopus.com (accessed 01/28/2012).

[17] J. S. Albus, “4D/RCS - a reference model architecture for
intelligent unmanned ground vehicles,” Unmanned Ground
Vehicle Technology, vol. 4715, pp. 303–310, 2002.

[18] F. Ortiz, D. Alonso, B. Alvarez, and J. Pastor, “A reference
control architecture for service robots implemented on a
climbing vehicle,” in Ada-Europe’10, LNCS: 3555, York, UK,
2005, pp. 13–24.

[19] L. Peters, M. Pauly, and A. Arghir, “Servicebots - a scal-
able architecture for autonomous service robots,” in FUZZ-
IEEE’00, vol. 2, San Antonio, USA, 2000, pp. 1013–1016.

[20] D. Weyns and T. Holvoet, “A reference architecture for
situated multiagent systems,” in E4MAS’06, LNCS: 4389,
Hakodate, Japan, 2006, pp. 1–40.

[21] JAUS, “JAUS (Joint Architecture for Unmanned Systems),”
[On-line], World Wide Web, 2012, available in: http://www.
openjaus.com/ (accessed 01/17/2012).

[22] L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice, 2nd ed. Addison-Wesley, 2003.

471Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 489 / 729

Human Computer Interaction Teaching Method to Encourage Creativity

Deller James Ferreira
Informatics Institute

Federal University of Goiás
Goiânia, Brazil

deller@inf.ufg.br

Abstract—Scarce attention has been given to Human
Computer Interaction teaching methods to promote creativity
and innovation. Standard approaches to teaching interface
design include the use of design aids such as usability
guidelines, interaction design patterns and anti-patterns. These
approaches do not, however, encourage creativity properly.
Interaction design space is usually limitedly and
unsystematically explored during student designs. In this
paper, we propose a pedagogical framework for design
exercises for use in the teaching of Human Computer
Interaction and present some examples of its usage. The use of
the pedagogical framework makes it possible to teachers
create significant Human Computer Interaction experiences to
students, fostering them to activate mental processes
underlying creativity.

Keywords-creativity; human computer interaction;
collaborative learning

I. INTRODUCTION
New information technologies have revolutionized the

way people work, study, socialize, access and transmit
information, have fun, communicate and access services.
This fact calls attention to the problems caused by software
with poor user interfaces, making computer science
researches and software developers very aware of Human
Computer Interaction (HCI) as a driving force within
software development practice and usability as an essential
aspect of HCI.

A bad user interface for a Website or desktop application
has a huge social cost. A badly designed user interface can
detrimentally influence millions of people and consequently
cause users to make expensive errors [1]. Although today
there are lots of good solutions that can be reused by
developers, many user interfaces are bad designed. That
leads us to believe that one possible reason of the problems
of HCI is an absence of appropriate and efficacious
education. Undeniably, an effective way to improve HCI is
by improving HCI education. Questions about education
and understanding HCI must be addressed in the academic
or research literature about this subject.

Indeed, computer science research has wide interest in
effective teaching methods for the discipline. The field of
HCI recognizes a more or less standard process of how to

teach and practice interaction design, that is summarized the
following phases: problem definition, user study, iterative
prototyping, and evaluation [2]. This point of view is
adopted in HCI as an engineering discipline. In reflecting on
key objectives of engineering, primary concerns are with
efficiency and reliability.

 In an engineering approach of HCI, practitioners must
be able to build interfaces quickly and consistently.
Engineering as a discipline that seeks procedures to
systematize and operationalize best practices, allowing
others to create usable interfaces and lending analytical
structures to guide analysis within diverse contexts [1].
Teaching engineering practices involve the engagement of
HCI students in problem-solving by using procedures and
analytical methods. Software engineering, computer
science, and information systems students are taught
structured methods to analyse, decompose, and to develop
systems. Such structures can hinder creativity, which is
generally a much less structured activity.

User-centered design approaches do not necessarily lead
to good designs either [3]. User-centered design helps the
designer focus on the user and the context of their work.
Creative and innovative solutions require an extra effort,
which the designer must then build upon to deliberately and
consciously to devise them.

As a result from engineering emphasis, most HCI
courses have a significant focus on teaching the students to
evaluate interfaces usability. This sparked the advent of a
new industry in usability evaluation services [3]. Despite
much more research is still needed for methods that improve
usability, we believe that another very important problem is
a lack of methods for inventing better solutions and designs
in IHC. If there are better solutions in the first place, there
will be a lesser need to make tests and redesigns to software
that has been delivered.

Creativity needs to be more valued in HCI. Researchers
in HCI education must investigate more what is involved in
inventing creative solutions, and therefore, how we might be
able to teach this to the students. They should adapt and
repurpose existing tools and methods, and orchestrate them
in a way that would boost creativity, in order to scaffold
students to gain the insights that can lead to creative
solutions.

472Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 490 / 729

The challenge for educators then is to move from these
highly organized structures, to organized, but yet creative,
structures that can facilitate creative invention [4]. To
achieve this aim, teachers needs to understand the nature of
creativity and inventiveness and therefore how it can be
fostered in the light of HCI context, without disregarding
the systemic HCI methods available for the search of well-
crafted designs.

In this paper we propose a framework for design
exercises for use in the teaching of HCI aiming at
positioning teachers and students with regards to both
adaptive and innovative creativity. The use of the
pedagogical framework elaborated in this research makes
possible to teachers create significant HCI experiences to
students, allowing them to activate mental processes
underlying to both innovative and adaptive creativity.
Innovative creativity is related to the original,
transformational, and expressive, while adaptive creativity
linked to logical, adequate, and well-crafted solutions.

First, in section II, we present a framework for design
exercises in HCI. In section III, we discuss the application
of the framework in HCI teaching. In section IV, we
describe a preliminary case study that was conducted during
one semester of an HCI course. In section V, we present and
discuss some preliminary results. Finally, in section VI we
describe further investigations concerning the framework
presented.

II. FRAMEWORK FOR DESIGN EXERCISES IN HCI
Collaborative learning is the pedagogical method that

provides the fundamentals for the proposed framework.
Collaborative learning has been proved efficacious when the
teacher helps the students to develop the collective ability to
use dialogs for learning, fostering productive interactions
during argumentation in instructional settings. Discourse
must be facilitated aiming creative and innovative processes
and products.
This work introduces a framework to nourish creative

discussions during collaborative problem solving in HCI. We
consider here that invention occurs at different levels of
innovation. The framework contains seven collaborative and
creative dimensions. The dimensions are: immersing,
unpacking opportunities, exploring complementary paths,
overcoming boundaries, expanding, discovering
unpredictable places and developing. Each dimension
contains dialogic processes. Dialogic processes are dialogs
aligned with mental creative processes associated to both
adaptive and innovative creativity. Dialogic processes afford
ideas build upon other ideas while people collaborate. Here
we say that the students widen the design space when a new
idea emerges and that they deepen the design space when an
idea is evolved. Following, we present the dialogic
framework dimensions.

A. Dimension 1. Immersing in the Design Space
Students can widen the design space while discuss

having in mind search information having an objective in
mind and search information for inspiration, detect relevant

and irrelevant information, recognize familiar information
and cope with new information, reapply techniques and
adapt techniques, experience having an open mind and
experience having an objective, state goals and brainstorm,
adapt hypothesis and make conjectures, are aware of
generalities and specificities, and explore similarities and
differences of problems.

According to Jonassen [5], when students scrutinize
similar problems for their structures, they gain more robust
conceptual knowledge about the problems, constructing
stronger problem schema. This dimension concerns with the
enhancement of the analogical thinking. Analogical
reasoning involves the transfer of solutions from previously
known problems to novel ones and the ability to abstract
similarities and apply previous productive experiences to
new situations. This dimension is also concerned with the
search for information. To be successful at discovery and
innovation students should be aware of previous and related
work and should be aware of principles and techniques to be
applied in the development of their work. The more diverse
your knowledge, the more interesting the interconnections.

B. Dimension 2. Unpacking Opportunities of the Design
Space
Students can deepen the design space when discuss

while collaboratively look for attributes and relationships
among concepts and new ideas, and try to organize the
information, recognize dependence and independence
relations, necessary and sufficient conditions, causes and
effects, similarities and differences, correspondences and
oppositions, class inclusion and exclusion, associations and
dissociations, hierarchy ascendant and descendant relations,
order and disorder, abstract and concrete features, potential
and non-potential uses/functions, examples and counter-
examples, and make an interplay between concrete and
abstract features.

Guilford advocates that elaboration and fluency are two
fundamental components of the creative process [6]. This
dimension embraces the divergent thinking abilities
elaboration and fluency. The teacher can boost the students´
improvement of these abilities to explicit what is already
there but hidden and also to deal with the who, what, why,
and how elements of solution ideas.

C. Dimension 3. Exploring Complementary Paths in the
Design Space

This dimension involves complementarities. Here,
we elaborate dialogic processes based on Ponty´s [7] notion
of “chiasm”. In Ponty´s notion of “chiasm,” two concepts
emerge as complementary ways of referring to an idea. For
example, both sides, figure and ground, depend upon each
other and can reverse around each other. This divergence is
considered to be a necessary and constitutive factor in
allowing subjectivity to be possible at all. However, he
suggests that rather than involving a simple dualism, the
divergence between touching and being touched, or between
the sentient and the sensible, mind and body, subject and
object, self and other also allows for the possibility of

473Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 491 / 729

overlapping and encroachment between these two terms.
For all dialogic process we address its complementary to
address more possibilities of exploration of an idea and to
achieve better awareness of students. The teacher is also
called to elaborate the students´ tasks based on
complementary concepts.

D. Dimension 4. Overcoming Boundaries of the Design
Space
Students can widen the design space while discuss and

jointly situate ideas in a bigger, smaller or different context,
performing contextual shifting, search for relationships with
“neighbour” ideas outside a given context, deals with scope
and limitations, and deals with constraints relaxation or
imposition.

Generating alternative designs is an essential aspect of
the interaction design process [2]. Considering alternatives
and thinking about different perspectives can provide the
designer with considerable insight into the problem space.
Considering alternatives is important to “think out of the
box”. Students as future designers and software developers
must be trained to consider alternatives.

E. Dimension 5. Expanding the Design Space
The students can widen the design space making

together recombination and combination of similar or
distinct concepts and ideas, building on other´s ideas,
decomposing and composing ideas, re-thinking their
previous ideas, and rebutting ideas. The students also try to
make combinations of possible disparate or unconnected
ideas. They derive new knowledge on the basis of a lack of
similarity between two or more past constructs or elements
from domains which are far apart.

This dimension entangles constructive interactions
among students related to innovative construction of a
complex system of ideas. The main premise in this
dimension is that unexpected and new arrangements and
other´s interpretation trigger new interpretations and ideas.
Previous opinions and concepts are co-constructed and
students´ understandings expanded. Students integrate
answers from many places in diverse ways, in a process of
transcending and exchanging different perspectives and
constructing new ideas.

Here, it is evoked Dewey´s notion of transactional
inquiry to elaborate the creativity concept in a dialogic way.
Dewey defined inquiry as a set of operations by which an
indeterminate situation is rendered determinate [8]. When
participants engage in inquiry together, new meanings are
created as a co-production. For Dewey, the term transaction
emphasizes the transformational aspects of interaction [9].
A mutual exchange is a transaction whenever a response to
another’s act involves contemporaneous response to a thing
as entering into other’s behaviour, and this upon both sides.

F. Dimension 6. Discovering Unpredictable Places in the
Design Space
Students can widen the design space, when they have the

opportunity to explore a bad idea. They do not only reflect
about positive impacts, relevant implications or good
features, but also reflect upon why a failure occurred, about
negative impacts, features and implications, why an idea did
not have impact, and problems created. They do not just
eliminate the wrong paths, but reflect and take advantage of
it. Students turn ideas and concepts in new interpretations,
also thinking about misconceptions.

This dimension capitalizes on often way in which bad
ideas become beneficial detours to good ideas. The
exploration of good ideas allows a local exploration of the
design space, which leaves unexplored large areas of this
space [10]. The exploration of bad ideas pulls the students to
new unpredictable places, facilitating a movement to far
away places, which thus allows students to overcome the
limitation of exploration that good ideas entail.

G. Dimension 7. Developing the Design Space
Students can deepen and widen the design space

evaluating, comparing, selecting concepts and ideas,
considering different alternatives, pointing positive and
negative outcomes based in criteria application, starting a
search for a more adequate cognitive perspective, reasoning
process aiming to resolve conflict and uncertainty,
identifying best solutions, and removing inconsistencies.

This dimension encompasses the evaluation, critics, and
bringing together of ideas. By means of evaluations of
ideas students are able to carry out decision-making
processes based on criteria application and improve ideas
considering its bad features. One important aspect of this
dimension is that when students evaluate and critique
different perspectives and ideas they must be confronted
with uncertainty and conceptual conflict. Both are states of
disequilibrium that activate a process of conflict resolution
and a quest for certainty [8]. Besides, interaction criticism is
a design practice that enables design practitioners to engage
with the aesthetics of interaction, helping practitioners
cultivate more sensitive and insightful critical reactions to
designs and exemplars [11].

III. APPLYING THE FRAMEWORK IN HCI TEACHING

According to Preece et al. [2] interaction design is about
designing interactive products to support people in their
everyday working lives and interactive experiences that
enhance and extend the way people communicate, interact
and work. Interface design comprises determining how
content is organized and presented, choosing appropriate
design metaphors and affordances, and providing effective
interaction and techniques.

However, teaching students how to develop interactive
experiences is not an easy task. There are a myriad of
aspects involved that should be considered. It is not an easy
task to create a meaningful experience for others. The

474Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 492 / 729

students must first understand your audience, their needs,
abilities, interests, and expectations, and then have the
ability to conceptualize and refine effective solutions. The
same apply to teaching students to be creative and allowing
them to experience such skills.

Teaching attention is mainly focussed on usability
principles and guidelines, but although principles and
guidelines are extremely important, they are not the only
aspect to be considered. Principles and guidelines do not
suggest solutions, although they can be used to guide
design. Principles and guidelines of usability provide clues
to the designer about what to do but not about how to do.

Patterns are increasingly being used in software
engineering education. Many pattern libraries have been
published [12][13] and more are appearing every year.
Alexander introduced the notion of patterns [14]. A pattern
focuses on the relationship between problem, solution and
context. The solution can be realized in different ways but
has an invariant core, which captures all the possible
solutions to the problem given. Solutions described in
patterns are proved to work in practice, they are a proven
solution for a common user interface or usability problem
that occurs in a specific context of work. Patterns
communicate insights into design problems capturing the
essence of problems and designs in a compact form. They
describe the problem in depth, the rationale for the solution,
how to apply the solution and some of the trade-offs in
applying the solution [15].

Some research shows that the use of interaction patterns
is successful [16]. It was shown that designers who made
more use of the available interaction patterns were able to
produce better results than those not using the patterns.
Anti-patterns are also used to convey the knowledge in HCI.
An anti-pattern is a solution that seems like a good idea, but
backfires badly when applied, and can cause an interface to
fail. Anti-patterns are literature written in pattern form to
encode practices that do not work or that are destructive.

Guidelines, patterns, and anti-patterns exist to capture
experts’ expertise and to communicate knowledge. Design
guidelines and patterns can be used to help the interface
design, being used to aid the production of usable design
solutions. These design aids however, encourage and foster
creativity or the generation of new metaphors or alternative
designs in a limited way.

A trade-off exists between enforcing the use of standard
design guidelines or patterns and encouraging the
development of creative design solutions. This paper
explores the possibilities for developing a combined
approach to teaching creative interface design. This
approach proposes the combined use of guidelines, patterns,
and anti-patterns and the proposed framework with the aim
to produce usable and creative design solutions. Following
we provide some possible instructional uses of this
integrated approach.

A. Examples of Tasks in View of the Framework
Example 1. This task is based on Dimension 1. In this

task, the teacher establishes an HCI subject and patterns

related to the chosen subject. Afterwards, the teacher uses
the dialogic processes from the Dimension 1 to scaffold
students’ collaborative activities and dialogues to promote
knowledge creation. This task focuses on Websites
navigation and the discussion is centered on the fat menu
pattern [12].

Considering the dialogic process “Search information
having an objective in mind” and “Specification”, the
teacher asks students to search Websites to discuss different
adaptations of the Fat menu pattern. Also, the teacher ask
the students to discuss if the Websites found are strongly
related to the problem described in the pattern. The problem
is: the designer deals with many categories, possibly a
hierarchy with three or more levels.

Having in mind the dialogic processes “Recognize
familiar information” and “Generalization”, the teacher asks
the students to discuss trying to figure out what kind of
Websites is best designed by fat menus based on the
examples provided in the pattern description and the
Websites found.

Paying attention to the dialogic process “Adapt
techniques”, the teacher asks the students to jointly choose a
Website to adapt the Fat menu pattern, regarding that users
must focus their attention on the available navigation
options with no distractions. The teacher asks the students to
discuss ways to use headers, dividers, white space, and how
to take advantage of horizontal space. Also, the teacher asks
the students to discuss the uniformity and regularity of the
pattern adaptation, designing to fit well into colour scheme
and other aspects on the page.

Regarding the dialogic processes “Make conjectures”
and “Search information for inspiration”, the teacher asks
students to discuss the viability to include graphics elements
in the fat menu pattern adaptation. The student can look at
similar systems or look at very different systems.

Example 2. The teacher asks the students to make
connections between the Fat menu pattern and other
patterns, between Fat menu pattern and guidelines, and
among elements and other patterns inside the pattern.
Questions formulated by the teacher are used to lead the
discussions. The questions are based on the dialogic
processes from Dimension 2 “Recognizing associations”,
“Being aware of concrete and abstract features”,
“Recognizing order”, “Recognizing class inclusion and
exclusion”, “Recognizing dissociations”, “Exploring
differences and similarities”, and “Recognizing
associations”.

1. The Fat menu pattern can include others to
complete him?

2. There must be order inside the Fat menu pattern?
3. How can be organized the categorizations inside

Fat menu pattern?
4. How can be managed the vertical separation of

categories in the Fat menu pattern?
5. How are the differences and similarities between

Fat menu pattern and Menu page pattern [12]?

475Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 493 / 729

6. Using the Fat menu pattern the user enters directly
in the content. This feature can be associated to a
guideline?

7. Using the Fat menu pattern the information is
hidden until the user looks for it. This feature can
be associated to a guideline?

Example 3. In this task, the teacher takes into account
Dimensions 3 and 7. In view of Dimension 3, students are
supposed to explore complementary paths and in light of
Dimension 7 students are supposed to criticize and build on
other’s ideas.

The dialogic processes from Dimension 7 considered in
this task were: “Point negative and positive outcomes”,
“Compare ideas”, and “Select concepts and ideas”.

The teacher chooses three Websites and asks the
students to point in each Website positive and negative
outcomes of the following Website complementary features
and to justify their answers. The complementary features to
be considered by the students are:

1. Visibility and constraint;
2. Delimiters and white spaces;
3. Figure and background;
4. Good and bad usage of a metaphor;
5. Simplicity and complexity of the information;
6. Breadth and depth in navigation.
Afterwards, the teacher asks the students to compare and

select the best Website designs.

 Example 4. This task pays attention to Dimensions 1, 2,
4 and 5. In this example, the teacher follows the steps:

1. Choose a Web or desktop interface;
2. Ask the students to discuss while collaboratively

decompose the interface, detecting the patterns used in its
design;

3. Change the application context;
4. Ask the students to discuss while collaboratively

integrate, adapt, and elaborate the patterns to create a new
design in the new application context.

5. The dialogic processes took into account were
“Decompose ideas”, “Combine ideas”, and “Recombine
ideas” from Dimension 5; “Perform contextual shifting”
from Dimension 4; “Elaborate an idea” from Dimension 2,
and “Adapt techniques” from Dimension 1.
 Example 5: In this task is regarded Dimension 6. Here,
the teacher utilizes anti-patterns to provide opportunities for
students to explore a bad design in order to better
understand good designs. Anti-patterns capture poor or sub-
optimal software development practices. So, the students
have the opportunity to analyse why an apparently good
idea did not have a positive impact and also to investigate
how they can provide an alternative for a poor design. First,
the teacher presents a set of anti-patterns, each one
possessing a bad characteristic, such as: external
inconsistency, internal inconsistency, dialog box without
cancel button, go overboard in selection during data entry,
badly designed affordances, badly designed metaphors, and
complex or extremely deep navigation. Second, the teacher
asks the students to discuss about what is bad concerning

the anti-pattern, why this feature is illogical, inadequate, and
ill-crafted, if there is a good design possessing this feature,
if so what is the difference, and if there is a situation where
it could be considered well-crafted.

IV. PRELIMINARY CASE STUDY DESCRIPTION

A preliminary case study was conducted during one
semester of an HCI course. One class containing forty-eight
under graduate students from software engineering course
was subdivided in 8 (eight) groups, each group containing 6
(six) students. The students were analyzed considering
interaction and participation patterns in online discussion
forums in Moodle Platform. There were assigned 7 (seven)
collaborative tasks to the students. The tasks are described
following.

Task 1. The students were asked to analyze 16 (sixteen)
Websites, considering good and bad usages of affordances
and metaphors. The students were also invited to evaluate
and critique other students’ ideas.

Task 2. The students were asked to analyze 7 (seven)
Websites, considering usability guidelines. The students
were also invited to evaluate and critique other students’
ideas.

Task 3. First, each group must choose a good and bad
Website. Second, the groups must justify your choices,
taking into account good and bad usages of affordances,
good and bad usages metaphors, and usability guidelines.

Task 4. The teacher presented usability guidelines and
interaction patterns for mobile applications. The students
were asked to create a mobile version for a given Website,
obeying the usability guidelines and performing patterns
adaptations and combinations.

Task 5. Make a collaborative paper interrelating the
usability guidelines presented. Discuss in your group
forum.

Task 6. Criticize the Website of the Institute of
Informatics. Discuss in your group forum.

Task 7. Make a re-design of the Institute of Informatics’
Website. Consider the interaction patterns presented and
discuted in class.

Interaction and participation patterns were analyzed
based on Newman, Webb and Cochrane’s adapted model
[17] described in 10 categories. This model was chosen
because it covers key aspects of the proposed framework.
The framework application aims profitable students’
interactions that result in a deeper and wider design space.
Following we describe Newman, Webb and Cochrane’s
adapted model.

Category 1. Relevance: Relevant states or diversions.
Category 2. Importance: Important points and issues or

unimportant points and trivial issues.
Category 3. Novelty, new info, ideas, and solutions:

New problem related information or repeating what has
been said.

Category 4. Bringing outside knowledge or experience
to bear on problem: Drawing on personal experience or
sticking to prejudice or assumptions.

476Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 494 / 729

Category 5. Ambiguities; clarified or confused: Clear
statements or confused statements.

Category 6. Linking ideas, interpretation: Linking facts,
ideas and notions or repeating information without making
inferences or offering an interpretation.

Category 7. Justification: Providing proof or examples
or irrelevant or obscuring questions or examples.

Category 8. Critical assessment: Critical assessment or
evaluation of own or others’ contribution or uncritical ac­
ceptance or unreasoned rejection.

Category 9. Practical utility (grounding): Relate possible
solutions to familiar situation or discuss in a vacuum.

Category 10. Width of understanding (complete picture):
Widen discussion or narrow discussion.

V. PRELIMINARY RESULTS

Successful interactions require broad and active stu­
dents’ participation. The total number of students’ posts was
773. So, there was a substantial participation of the students.

Considering Category 8, the results indicated that online
interactions were cohesive. The students engaged critically
or constructively in other students’ ideas in 50% of the
posts. They asked and clarified doubts in 40% of the posts
and acted solo in 10% of the posts.

Regarding Category 9, the students used the guidelines
as criteria to judge what is good and bad. In Task 1 the stu­
dents did not know how to judge what was a good or bad
usage. In tasks 2, 3, and 6, the students justified their ideas
by means of the guidelines.

Considering Category 5, 6 and task 5, each group
provided a distinct integration scheme for the guidelines.
Each group had a different interpretation. However, they
provided designs as examples for their connections. It
proofs that IHC is a complex and ill-structured subject. The
teacher should had confronted the different schemes and
promoted discussions involving the whole class in order to
converge to a solution.

Taking into account Categories 1, 2, and 7, there was
70% of relevant posts and 30% of diversions. Also, in the
relevant posts, were discussed important points and issues.

Regarding Category 4, task 4 was successfully and eas­
ily performed by the students. Due to the fact that the great
majority of students possessed i-phones or android interface
mobile phones, the students could draw on personal experi­
ence to design the mobile interface.

Considering Category 3 and Task 7 the students success­
fully adapted and combined interaction patterns, being able
to apply previous information to solve a problem during the
Website re-design.

Taking into account Category 10, there were widen dis­
cussions, containing many different points and aspects being
analyzed.

VI. CONCLUSION AND FUTURE WORK

The main contribution of this paper is a novel
framework to boost creativity in interaction design. The
framework provides a structure for the elaboration of design

exercises. Teaching interaction design is approached under a
dialogic point of view taking advantage of dialogic
processes. Dialogic processes are mapped in creative ways
of thinking, so they serve to scaffold students to productive
discussions. Dialogic processes are underneath creative
dimensions that reveal forms of interaction design space
exploration. The proposed framework provides broad and
systematic interaction design space exploration and is
theoretically supported by collaborative learning, many
researches that address idea generation and researches
involving interaction design space exploration.

The preliminary results indicated that the proposed
framework has a great potential to help teachers to mediate
students’ creativity, through facilitating students’
involvement in productive discussions, which in turn
increases the quality of the design process. Students benefits
from activating creative mental process during interaction
design discussions and performing a better exploration of
design space both in breadth and in depth, while teachers
benefits from many strategies to elaborate design exercises
involving usability guidelines, interaction design patterns
and anti-patterns in order to boost discussions.

 To ensure that the framework combined to usability
guidelines, interaction design patterns and anti-patterns can
indeed provide an effective connected approach to teaching
HCI, we intend to further investigate its application as
future work.

For at least four semesters of an HCI undergraduate
course, there will be one class taught considering
collaborative learning, but not the dialogic framework
(control group) and another one taught by the proposed
method (treatment group). Students performance will be
investigated by discourse analysis in order to check if there
is knowledge co-construction and advancement as well as
the achievement of a deeper and wider knowledge in the
collaborative settings. The discourse analysis will focus on
analysis of interaction and participation Patterns [18]. We
will also analyze and compare the students´ designs by
means of an instrument to measure Website creativity [19]
and indicators of creativity in solutions [20].

ACKNOWLEDGMENT

This work is supported by FAPEG - Fundação de
Amparo à Pesquisa - Goiás - Brazil.

REFERENCES

[1] H. Thimbleby, “Teaching and Learning HCI”, Proceedings
HCI International, Part I, Universal Access, HCII 2009,
Lecture Notes in Computer Science, edited by C. Stephanidis,
San Diego, Springer Verlag, 2009, pp. 625–635.

[2] J. Preece, Y. Rogers, and H. Sharp, Interaction Design:
Beyond Human- Computer Interaction. 2nd Edition. New
York, NY: John Wiley & Sons, 2007.

[3] W. Wong, P. Kotzé, J. Read, L. Bannon, and E. Hvannberg,
From inventivity in Limerick to creativity in Aveiro: Lessons
learnt, in: Creativity and HCI: From Experience to Design in
Education - Selected Contributions from HCIEd 2007 (this
book), edited by P. Kotzé, W. Wong, J. Jorge, A. Dix, and
P.A. Silva, IFIP Series, Springer, 2008, pp. 19-29.

477Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 495 / 729

[4] P. Kotzé and P. Purgathofer, “Designing Design Exercises –
from Theory to Creativity and Real-world Use”, HCIEd 2009.
Aveiro, Portugal, 2009, pp. 29 – 30.

[5] D. H. Jonassen, “Research Issues in problem Solving”, The
11th International Conference on Education Research New
Educational Paradigm for Learning and Instruction, 2010.

[6] J. P. Guilford, The nature of human intelligence. New York:
McGraw-Hill, 1967.

[7] M. Ponty, The Visible and the Invisible. Evanston:
Northwestern U Press, 1968, pp. 267.

[8] J. Dewey, The Quest for Certainty: A Study of the Relation of
Knowledge and Action. London: George Allen e Unwin,
1929.

[9] J. Dewey, Logic: The theory of inquiry, in J. A. Boydston
(Ed.) John Dewey: The Later Works, 1925-1953, Volume 12,
Southern Illinois University Press, Carbondale, IL, 1938, pp.
1-5.

[10] A. Dix, T. Ormerod, B. Twidale, B. Michael, C. Sas, A. P. G.
Silva, L. McKnight, “Why Bad Ideas are a Good Idea”,
Proceedings of the HCI Educators' Workshop HCIEd.2006-1
Inventivity: Teaching theory, design and innovation in HCI,
2006, pp. 24-28.

[11] J. Bardzell, “Interaction Criticism: An Introduction to the
Practice”, Interacting with Computers, 2011, pp. 604-621.

[12] J. Tidwell, Designing Interfaces. 2nd Edition. O’Reilly, 2010.

[13] V. Welie, Patterns of Interaction Design.
http://www.welie.com/. [retrieved: January, 2012].

[14] C. Alexander, A Pattern Language: Towns, Buildings,
Construction. Oxford: Oxford University Press, 1977, pp.
1216.

[15] W. J. Brown and R. C. Malveau, Architectures. Anti-patterns:
Refactoring Software and Projects in Crisis. John Wiley and
Sons, 1998.

[16] S. R. Schach, Object-oriented and Classical Software
Engineering. New York: McGraw Hill Higher Education,
2005.

[17] C. C. Sing and M. S. Khine, An Analysis of Interaction and
Participation Patterns in Online Community. Educational
Technology & Society, 2006, pp. 250-261.

[18] C. C. Sing and M. S. Khine, “An Analysis of Interaction and
Participation Patterns in Online Community”, Educational
Technology & Society, 2006, pp. 250-261.

[19] D. Cropley and A. Cropley, “Recognizing and Fostering
Creativity in Technological Design Education”, International
Journal of Design and Education, 2010, pp. 345-358.

[20] L. Zeng, G. Salvendy, and M. Zhang, “Factor Structure of
Website Creativity”, Computers in Human Behavior, 2009,
pp. 568-577.

478Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 496 / 729

Future Chances of Software Customization:
An Empirical Evaluation

Michaela Weiss, Norbert Heidenbluth
Inst. for Applied Information Processing,

University of Ulm,
89069 Ulm, Germany,

Email: {michaela.weiss, norbert.heidenbluth}@uni-ulm.de

Abstract—Customization is an important market trend be-
cause companies can only survive when they focus on their
customers’ needs. In order to offer demand-driven customiza-
tion options, it is necessary to empirically analyze the benefit
of the various adaptations from a customer’s point of view. In
the software sector, only a few surveys have been conducted
that exceed technical aspects. Moreover, existing studies are
limited to the overall acceptance and benefits of customization,
but draw no conclusions on different adaptation options. Thus,
we present a large study that analyzes the starting points of
software customization and deals with general questions of
customization. The results indicate that software customization
increases the willingness to pay (WTP) by about 15%. The
survey points out that especially customization options, which
adapt the functionality, increase the usability, and enable
parental controls are of great importance for future soft-
ware implementation. Hence, our results enable competitive
advantages by implementing customization options that meet
customer needs.

Keywords-customization; adaptability; tailoring; user study;
human-computer interaction.

I. INTRODUCTION

Today, competitive pressure and customer empowerment
change selling conditions. Customers are no longer willing
to accept the customer sacrifice [1], [2], the gap between
products offered and customer needs. That is why the long
tail phenomenon [3], [4] starts to rule the market and a multi-
tude of tiny niche markets replaces traditional mass markets.
Hence, producers turn from selling off-the-shelf products to
offering customization. Åhlström and Westbrook [5] have
shown that the demand for non-standard products is even
growing and producers plan to increase customization.

This trend can also be seen in the software sector. Software
product lines (SPL) help to build software that satisfies a
specific market segment on the basis of a common set of
core assets [6]. However, accessibility movements and the
regulation by law demand an even stronger focus on the
individual (cf. Section 508 of the Rehabilitation Act [7]
and the German Equality Law For Disabled People [8]).
However, accessibility is not the only reason for software
customization. The International Standard on Ergonomics
of Human System Interaction (ISO 9241/110) indicates that
customization is an important principle to design a dialog.

The Technical Report on Software Engineering (ISO/IEC
TR 9126-2) even says that customization is a requirement
of software quality that helps to meet the user’s needs.
Software customization could also enhance the customer
experience [9]. Thus, customization is a crucial part in
current software engineering.

There are various ways to customize software. The DUFS
customization classification [10] organizes this richness and
helps us to outline software customization. This categoriza-
tion subdivides design customization, usability customiza-
tion, functionality customization, and customization of ser-
vice and communication. In this context, design customiza-
tion means an adaptation of the appearance of the Graphical
User Interface (GUI). As companies can only prosper if they
focus on their customers, software developers need to know
which customization features are in demand. A previous
empirical study [5] cites this lack of knowledge of customer
needs as the major difficulty in customization.

Nevertheless, existing studies often only focus on non-
software vendors and software customization surveys are
limited to technical aspects. Thus, we conduct a compre-
hensive survey. This paper elaborates on the small excerpt
presented in a previous paper [10]. The detailed results
on customization enable an in-depth analysis of customer
evaluation. Hence, customer opinions of customization in
the non-software sector as well as in the software sector
are considered and future chances are identified. To our
knowledge this survey is the largest one in terms of software
customization and the only one that considers customization
starting points. Thus, our study helps software developers
to decide on customization implementation and provide
adaptations that are valuable for their customers.

In the following, Section II summarizes previous surveys
on customization and explains why analyses of non-software
customization provide valuable insights that could be used
for software customization. Section III introduces our study
and illustrates the methods used. Afterwards, Section IV
presents the non-software analysis and spotlights customiza-
tion usage. The results of the software customization in-
vestigation are presented in Section V. Before concluding,
Section VI critically examines the survey.

479Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 497 / 729

II. BACKGROUND AND RELATED WORK

The beginnings of customization go back to 1987, when
Stanley Davis introduced a business strategy to implement
customization called Mass Customization (MC) [11]. In
1993, Joseph Pine made this strategy popular [12]. From
then on, the trend of customization spread. The following
lists the most important studies on customization in the
non-software sector as well as in the software sector. Ad-
ditionally, the section shows why findings of non-software
products could be valuable for software products.

A. Non-Software Products vs. Software Products

Kotler and Armstrong described a product as ”anything that
can be offered to a market for attention, acquisition, use,
or consumption that might satisfy a want or need” [13].
Additionally, Peter Dracker stated that a company can only
prosper if it focuses on its customers and their needs [14].
Consequently, the customer’s perception of the product and
its value determines the company’s success.

According to Kittlaus and Clough [15], the value that
comes out of the intangible product software can only be
realized in its functionality. However, the emergence of
appearance customization in software, e.g., the tailoring
of forum appearances, shows that software is more than
something to get things done. Thus, there are similarities
in customer perception between non-software and software
products, even though they differ greatly in characteristics.

Due to the importance of customer perception, we be-
lieve that findings from the non-software area in terms of
perceived customization could be valuable for the software
sector. This practice is useful since the non-software sector
has a much longer history and many people see software as
incomprehensible ”black magic” [16]. Thus, non-software
products are well-known to a wider audience whereas soft-
ware knowledge could still be limited.

In contrast to non-software products, many software
characteristics support its customizability. Software has no
physical form and belongs to the economic factor of knowl-
edge [15], [16]. This makes later adaptations easier and
enables repeated customization. As Frederick Brooks said,
this easy adaptability obliges software vendors to offer
adaptation options [17]. Besides, the delivery of software
is simple, fast and could be made on an individual basis.
These facts facilitate software customization.

B. Previous Studies on Non-Software Customization

To address customer needs it is important to know which
product features create value from a customer’s point of
view. As only customers can answer this question properly,
many surveys have been conducted. Unfortunately, many of
them only consider non-software products [18], [19], [20].
Piller et al. [21] listed existing studies of MC and highlighted
especially the additional contribution that could be achieved
with the help of customization. By offering shoes that are

adapted in terms of fit, function and design, the sporting
goods producer Adidas, e.g., achieved 30 to 50% higher
prices [21], [22]. However, in 1998 Huffman and Kahn [23]
empirically documented problems in information retrieval.

C. Previous Studies on Software Customization

Despite the fitness of software for customization few studies
analyze general aspects of software customization. The most
important one was made in 1991 by Mackay [24]. She
observed the triggers and barriers of software customization.
According to her, the main triggers are the reusing of
repeated patterns, the retrofitting after a system change, and
the avoidance of annoying behavior. In contrast, barriers are
a lack of time and knowledge. In 1996, these results were
proven by Page et al. [25].

Most existing studies on software customization only
consider technical aspects. Many authors compared the three
methods of software customization. Adaptable initiatives are
based on the self-customization of the user. Moreover, in
the non-software area it is also quite common for manu-
facturers to adapt the product to the customer’s needs. In
the software sector this can be done by the software itself.
This method is known as adaptive initiative. Additionally,
software could use a mixed initiative which combines both
aspects. Thus, several studies tried to identify the best
practices for designing menus [26], [27] or GUIs [28], [29],
[30]. Furthermore, research is done to analyze accessibility
aspects [31], [32]. These studies verified the benefits of
software customization. With regard to quantitative aspects,
an increase in performance and decrease in error rates could
be measured. Moreover, improvements in qualitative aspects,
such as usability, stress in usage, and individual prefer-
ences, became visible. The increase in user satisfaction,
a software quality requirement (cf. ISO/IEC 25051:2006),
was empirically verified in a study on Apache Security
Software [33]. However, its validity was limited by only
interviewing skilled users.

The financial effects of software customization have been
studied by Oliver et al. [34]. They found that 5 to 10% higher
profit margins and doubled revenues could be realized.

All existing surveys on the subjective advantages of
software customization focused on overall feelings but no
conclusions on the acceptance and benefit of particular
customization features could be drawn. Thus, we conducted
a large study that used the DUFS customization classifica-
tion [10] to analyze customer perception on different cus-
tomization options. DUFS sub-divides software customiza-
tion into four categories. Design customization sums up all
options that help adapt the interface’s appearance according
to the customer’s preferences. Usability customization refers
to adaptations which make the software more effective,
efficient and task satisfying (cf. DIN EN ISO 9241 Part 11).
All customization options that help close the gap between
offered and needed functionalities belong to the category of

480Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 498 / 729

TABLE I. PROFESSIONAL DISTRIBUTION
Profession Participants
Job Applicant 8 2.92%
Scholar 26 9.49%
Trainee 12 4.38%
Student 59 21.53%
Employee 94 34.31%
Operative 12 4.38%
Executive 36 13.14%
Self-employed 20 7.30%
Senior Citizen 7 2.55%
Sum 274 100%

functionality customization. Customized auxiliary services
and customized software messages and greetings are part
of service and communication customization. By using this
categorization and involving heterogeneous user groups our
survey gives detailed insights into the appraisal of software
customization. Additionally, it deals with general questions
on customization to form a basis for in-depth research.

III. METHODS

Our empirical study analyzes customization from a cus-
tomer’s point of view. All values in the text are rounded
off to two digits after the decimal point.

A. Data Collection and Sample

As previously outlined [10], the study was conducted in
2010 in South Germany. The answers of ten interviewees
could not be used because of missing data. Thus, the study
includes the answers of 274 participants. 43.43% of them
are female. The sample includes heterogeneous participants
(cf. Fig. 1 and Table I). The survey could be completed
either electronically (20.44%) or in paper form (79.65%).

0 10 20 403010203040

11-14

25-29

15-18
19-24

30-39
40-49
50-59

> 69
60-69

11-14

25-29

15-18
19-24

30-39
40-49
50-59

> 69
60-69

Male Female

2
15

29
36

23
22

19
8

1

1
4

26
37

13
18
17

2
1

A
g

e

A
g

e

Gender

Number of Participants
Figure 1. Age Distribution.

The sample is slightly different to the whole German
population because of the proximity to the University of
Ulm. It includes comparatively many young, well-educated
participants and male opinions are somewhat overrated.
However, the large and heterogeneous sample allows con-
clusions to be drawn on perceived customization.

B. Participant Grouping

Two participants had never used a computer before, so
the sample size for the computer-related questions is 272.
For analysis purposes these participants were divided into

frequent users that use their computer daily and perform at
least five different tasks and non-frequent users. The study
contains data of 175 frequent and 97 non-frequent users.

IV. CUSTOMIZATION USAGE AND REASONS

The survey started with non-software customization to fa-
cilitate access and ensure the quality of the given answers.
Additionally, it helps to get elementary insights into cus-
tomization. These results are pointed out in the following.

A. Customization Usage

In order to analyze customization usage we subdivided non-
software products into the categories clothing and shoes,
vehicles and bikes, grocery and beverages, stationery, sou-
venirs, jewelry, health care, as well as electronic articles.
The survey gave examples of customization in the different
categories. This helped to ensure that all participants could
properly answer if they had ever used customization in these
categories. Fig. 2 illustrates the results.

50 60 700 10 20 30 40

Electronic Articles

Grocery/Beverage

Souvenirs

Clothing/Shoes

Jewelry

Stationery

Health Care

Vehicles/Bikes

Percentage of Usage

17.15%

Product Category

70.44%

38.32%

54.38%

55.11%

55.84%

59.12%

59.12%

Figure 2. Customization Usage.

The overall usage rate of 51.19% supports customization
research. Besides of adaptations of electronic articles, gro-
cery and beverage, customization usage is quite common.

Analyses of the adaptation starting points with the help
of the DEFS customization categories design, ergonomics
and fitting, functionality, as well as services [10] show that
in most of the product categories adaptations are generally
minor variations in design. These adaptations are used with
clothing and shoes, vehicles and bikes, grocery and bever-
age, stationery, souvenirs, jewelry, and electronics. Neverthe-
less, products with adaptations to increase the ergonomics
and fitting are also available. In the health sector these
adaptations are necessary to cope with the customer-specific
body. However, even clothes or shoes are adaptable in
terms of ergonomics. Thus, e.g., the sporting goods producer
Adidas offers ergonomically adaptable shoes. Above all, the
categories vehicles and bikes as well as electronic articles
offer ways of adapting the functionalities by adding adequate
modules. In contrast, service customization is only rarely
available in the Business-to-Consumer (B2C) sector.

481Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 499 / 729

B. Reasons for Customization Usage

The survey tried to get an insight into the reasons for the
named customization usage. The participants had to state if
they use customization to adapt the functionality, adapt the
design, highlight individuality aspects, or participate in a
future trend. They also got the chance to say they see no
benefit in customization. This question was semi-open and
multiple answers were allowed. Fig. 3 lists the results.

50 600 10 20 30 40

No Benefit

Future Trend

Individuality

Design

Functionality

Percentage

13.14%

Reason

18.08%

33.94%

48.18%

60.95%

Figure 3. Reasons for Customization Usage.

According to the participants, the main reason for cus-
tomization is to adapt the functionality. Another frequently
named reason is design adaptation. The enhancement of
one’s individuality which rests on a human basic need was
also seen as a major factor. Moreover, only 13.14% of the
participants see no benefit in customization. In contrast,
18.08% judge customization as an important future trend.
This justifies the importance of this paper’s topic.

The free-text answers showed that customization is used
to possess something unique, increase the imaginary value,
differ from the mass, and give presents. The participants also
revealed the importance of value for money aspects.

Since the female and male answers differ, we did a Chi-
Square Test (α = 0.05) to analyze this. Table II shows that
only the fact that the women use customization more often
to highlight their individuality (41.18% vs. 28.39%) could
be traced back to gender.

TABLE II. CHI-SQUARE TEST
H0: The occurrence of a customization reason is independent of gender.
Topic Pearson’s

Chi-
Square

Degrees
of
Freedom

Asymptotic
Significance
(2-sided)

Fisher’s
Significance
(2-sided)

Functionality 3.538 1 0.060 0.063
Design 0.254 1 0.615 0.628
Individuality 4.911 1 0.027 0.029
Future Trend 0.526 1 0.468 0.526
No Benefit 0.017 1 0.895 1.000

V. SOFTWARE CUSTOMIZATION

The second part of the survey examined the usage of
existing software customization options, financial benefits
for software vendors, and future chances.

A. Usage of Software Customization

In order to get meaningful results on the perception of
existing software customization options, we chose features
that are well-known to participants of all age categories.
The participants rated 15 adaptation options in the areas

operating systems, Office products and world wide web. All
but one are adaptable options because users take more notice
of self-made changes than of automatic ones. This increases
the reliability of the findings. With regard to usability,
we listed the creation of links, creation of bookmarks,
the quick launch bar of the operating system, and the
tool bars of Office programs which all help to get quick
access. Usability aspects can also be customized by tailoring
the update handling and choosing one’s native language.
Existing software offers many features to adapt the design,
i.e. the GUI appearance. We chose the adaptation of fonts,
colors and contrasts, icon size, desktop background, mouse
pointer, and the screen saver. Furthermore, the participants
judged the functional customization offered by iGoogle
and Windows gadgets. Since service customization is only
rarely available in the B2C sector, we limited our survey to
adaptive purchase proposals in online shops.

The survey explained each feature to ensure that all partic-
ipants understood the questions. Afterwards, the participants
stated if they knew the customization option and if they had
ever used this adaptation. Additionally, they rated the benefit
of each option. According to Schwarz et al. scales with zero-
to-positive-values should be used to measure the intensity of
a single attribute [35]. Thus, we used a scale from 0 to 5 to
evaluate the feature’s benefit. A value of 5 indicates that it is
very useful. In contrast, a benefit of 0 shows that this feature
has no benefit at all. Fig. 4 illustrates the results and maps
them to the DUFS software customization categorization.
It also shows the usage of the customization options. Even
though most of the options are well known, some partic-
ipants did not know several features. We excluded these
participants to calculate a meaningful percentage of usage.
The strong correlation (Pearson’s r = 0.87) between benefit
values and usage highlights that the customer’s view is of
crucial importance in terms of customization research.

1

2

3

4

5

Usability Design Serv.Func.

Lin
ks

Upd
at

es

Boo
km

ar
ks

Too
l B

ar

Quic
k L

au
nc

h
Bar

Fon
t

La
ng

ua
ge

Ico
n

Size

Colo
rs

/C
on

tra
sts

Des
kto

p
Bac

kg
ro

un
d

Scr
ee

n
Sav

er

M
ou

se
 P

oin
te

r

W
ind

ow
s G

ad
ge

ts

Pur
ch

as
e

Pro
po

sa
ls

iG
oo

gle

Average Benefit Values and Usage
of Software Customization Options

B
en

ef
it

V
al

ue

10

20

30

40

50

60

70

80

90

100

P
ercentage of U

sage

Figure 4. Benefit and Usage of Software Customization.

The mapping of the named customization options to the
DUFS categories shows that usability adaptations in par-

482Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 500 / 729

ticular achieved high benefit values. Design customization
options are rated with high benefit values, too. In contrast,
functionality adaptations as well as adaptations of service
and communication are rated particularly low. This might
be based on some external factors. In contrast to the long-
established examples in the categories usability and design,
the specified functionality adaptations are quite new. This
negatively influences the knowledge, acceptance and also the
perceived benefit. The results of customization usage in the
non-software sector verify this argumentation. Functionality
adaptations are the main reason named for customization.
Furthermore, it has to be pointed out that service adaptations
have only been rarely available to date in the B2C sector.

Additionally, our findings show that all evaluated design
customization options achieved lower benefit values than
usability adaptations. All functionality customization options
achieved lower benefit values than design adaptations and
service and communication customization options are left far
behind. This proves that the DUFS classification categories
reflect customer perception adequately.

B. Willingness To Pay

We differ between non-software and software products to
examine the Willingness To Pay (WTP) and evaluated the
additional contribution in comparison to an off-the-shelf
product. As our goal was to analyze the general WTP
rather than the WTP for a specific product, we chose an
hypothetical approach. The analyses of Miller et al. [36]
showed that hypothetical approaches could generate mean
WTP estimations that do not significantly differ from the
actual WTP and could be used to make meaningful manage-
ment decisions. Our participants had to state if they would
pay not more, 10%, 25%, 50% more, double the price, or
more than double the price to get a customized product. The
latter was quantified by a contribution of 150%. Table III
summarizes the results – specified by age and user-group.
The WTP of the participants younger than 15 years and
older than 69 years are not representative but are listed for
completeness.

TABLE III. ADDITIONAL CONTRIBUTION
Age Non-Software Software
(in frequent non- overall frequent non- overall
Years) users frequent users frequent

users users
11-14 Years - 10.00% 10.00% - 11.67% 11.67%
15-19 Years 09.55% 26.88% 14.21% 13.18% 18.13% 15.26%
20-24 Years 15.76% 24.29% 17.40% 12.80% 13.93% 13.01%
25-29 Years 20.24% 13.08% 17.64% 21.79% 16.15% 19.55%
30-39 Years 13.64% 12.31% 13.06% 14.32% 11.92% 14.14%
40-49 Years 11.00% 11.75% 11.38% 09.25% 08.75% 09.00%
50-59 Years 13.53% 17.22% 15.28% 17.35% 18.61% 18.00%
60-69 Years 27.50% 07.50% 15.50% 33.75% 11.67% 20.50%
> 69 Years - 00.00% 00.00% - 00.00% 00.00%
Average 15.69% 15.52% 15.22% 15.69% 13.87% 14.97%

The overall average willingness for an additional contri-
bution in the non-software sector is 15.22% and indicates

that there is a broad-mindedness for customization. Other
surveys in the mass customization area document an even
higher WTP of about 30% and partly 100% [21], [37].

The average contribution of 14.97% in the software sector
is lower. The reason for this could be that software is not
a daily product for everybody and could seem to be less
important. This argumentation is verified by the fact that
the average contribution of non-frequent users is 14.90%
in terms of non-software products but 13.79% with regard
to software. In contrast, the average contribution of the
participants with frequent computer usage is in both product
categories exactly the same (15.46%). These findings could
encourage the assumption that in a world where computer
usage becomes increasingly common the WTP for software
customization will become more similar to non-software
products. Thus, the analysis of non-software products could
be valuable for software vendors.

C. Future Chances
In order to evaluate the potential of software customiza-
tion, the survey contained an appraisal of the perceived
future chances. We used the DUFS classification to make
a distinction. By adding the subcategory parental controls
we extended the DUFS category functionality. The category
usability was also further divided by using the subcategories
intuitiveness and language. This enables detailed analyses.

In every category the participants rated the future chances
of software customization by evaluating their need for future
implementation. The survey highlighted that participants
should incorporate adaptable and adaptive adaptations. Once
again we used a 0-to-5 scale to achieve consistency and
support the reliability of the results. A value of 0 marks
no future requirements whereas a value of 5 characterizes
great future requirements. Fig. 5 illustrates the mean future
requirements and their variances in a simplified Software
Customization Chart (SCC) [10]. In contrast to a full SCC,
we make no distinction between adaptable, adaptive or
mixed initiatives.

2

50 1 2 3 4

Design: 3.51

Usability: 3.88
Language: 3.60
Intuitiveness: 3.40

Functionality: 3.92
Parental Control: 3.81

Service/Communication: 2.31

Future Requirement

1.72D

1.41
1.65
1.40

1.22
2.10

2.11

U

F

S
: 3.49

Figure 5. Future Requirement of Software Customization.

The results show that functionality customization in par-
ticular achieves high rates and should be increasingly imple-
mented in future software. The participants also highlighted

483Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 501 / 729

TABLE IV. T-TESTS ON DIFFERENCES IN FUTURE CHANCES
DUFS Gender Differences User Group Differences
Categories Leverne-Test T-Test for a Mean Leverne-Test T-Test for a Mean

H0: The average values in the male and H0: The average values of the frequent and
female group are the same. non-frequent users are the same.

F Siffgnifi-
cance

Uniform
Variances
α = 0.05

T Degrees
of Free-
dom

Signifi-
cance
(2-sided)

F Signifi-
cance

Uniform
Variances
α = 0.05

T Degrees
of Free-
dom

Signifi-
cance
(2-sided)

Design 5.491 0.020 false -4.355 266.393 0.000 2.213 0.138 true 2.367 270 0.019
Usability 1.333 0.249 true -1.518 272 0.130 0.953 0.330 true 0.249 270 0.803
Language 2.528 0.113 true -1.170 272 0.243 1.166 0.281 true -2.312 270 0.022
Intuitiveness 0.003 0.958 true -0.573 272 0.567 12.726 0.000 false 3.266 169.419 0.001
Functionality 2.411 0.122 true -0.613 272 0.540 8.671 0.004 false 1.305 175.428 0.194
Parental Ctrl. 8.780 0.003 false -3.067 270.760 0.002 0.039 0.844 true 0.125 270 0.900
Service/Com. 0.862 0.354 true -2.951 272 0.003 0.133 0.716 true -0.061 270 0.952

great future chances in usability customization. Customiza-
tion options which enable parental control by limiting the
available functionality achieved high support, too. Moreover,
the results support the importance of adapting the language
of the GUI. The participants also called for an improvement
in design adaptations and the intuitive software handling.
In terms of service and communication customization the
estimations were only moderate. This might be based on the
fact that the participants could not evaluate the benefits of
service customization because of the low availability in the
B2C sector. In summary, an overall value of 3.49 emphasizes
the future chances of software customization and highlights
the need for further research. Furthermore, the differences in
the starting-point evaluation support the DUFS classification.

We performed t-tests to verify the differences in evalua-
tions of female and male participants. The results (cf. Ta-
ble IV) indicate that the differences in the categories design,
communication, and parental controls depend on gender.
With regard to parental controls the female rated the future
requirement very high (4.10) in comparison to a moderate
rate in the male group (3.58). The women also rated the
future chances of design adaptations (3.89) as well as
adaptations in services and communication (2.61) higher
than the men did (3.23 resp. 1.90). In all other categories
the differences could not be tracked back to gender.

Further t-tests analyzed the higher valuation of the fre-
quent computer users. Table IV illustrates that the differ-
ences in the rating of intuitiveness, design, and language
depend on the frequency of computer usage. Fig. 6 shows
these differences.

50 1 2 3 4
Future Requirement

C
us

to
m

iz
at

io
n

C
at

eg
or

y

frequent
users

non-
frequent
users

227
231

201

247

250
246

In
tu

iti
ve

ne
ss

D
es

ig
n

La
ng

ua
ge

Figure 6. Future Requirement divided by user group.

VI. DISCUSSION

In the following, some threats to validity are considered and
the importance of this paper’s topic is proved.

A. Threats to Validity

The chosen questions could have an impact on the results
and be a threat to internal validity. However, we controlled
this by carefully designing the questionnaire, avoiding am-
biguous questions, keeping consistency, and using well
known examples within the survey. Moreover, we checked
the survey in a pretest with five persons.

A potential threat to external validity might be the rep-
resentativeness. However, the age, the profession, and the
expertise of the participants differ significantly and the data
set is sufficiently large. To our knowledge, this is actually the
largest study of customer acceptance and benefits of software
customization. Moreover, it is the only one that evaluates
software customization starting-points. Hence, we judge the
reported results to be meaningful.

The large sample size also supports the validity of the
Chi-Square Test in Section IV. Although, there is only one
degree of freedom, the minimal expected frequencies (15.64
to 59.07) are far away from the critical border of ten.

B. Validation of the Need for Customization

The results show that some answers are related to being part
of a specific user group, e.g., men or women or frequent
or non-frequent users. Yet, many evaluations are based on
the user’s experience, characteristics, and preferences. This
diversity can be seen in the listed variances (cf. Fig. 5). Only
customization could cope with these individual aspects.

VII. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the acceptance and benefits of
customization in the non-software as well as in the software
sector. For this reason, we conducted a comprehensive study
with 284 participants. Our results showed that customers
want customization and are willing to pay a contribution of
about 15% for adaptable or adaptive software. The results
revealed an overwhelming approval of software customiza-
tion but indicated unused capabilities in existing systems.
The participants use the existing software customization

484Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 502 / 729

options. However, they highlighted that the importance of the
adaptation depends on the starting point of the customiza-
tion. The participants especially emphasized the benefits
of adaptations to increase the usability. With regard to
future software engineering, the participants called for the
improvement of functionality and usability customization
options. Moreover, they requested further adaptations in
parental controls. Additionally, the findings supported the
DUFS customization classification. In summary, the study
gave insight into the perception of software customization
from a customer’s point of view. This could help software
developers to detect valuable software customization and
provide software that exactly meets customer-specific needs.

For future work, the enlargement of the study could
identify cultural impacts on customization perception.

REFERENCES

[1] C. W. Hart, “Mass customization: conceptual underpinnings,
opportunities and limits,” Int. J. of Service Industry Manage-
ment., vol. 6, no. 2, pp. 36–45, 1995.

[2] A. Bardakci and J. W. AND, “How “ready” are customers for
mass customisation? an exploratory investigation,” European
J. of Marketing, vol. 38, no. 11/12, pp. 1396 – 1416, 2004.

[3] C. Anderson, “The long tail,” Wired Magazine, vol. 12, no. 10,
pp. 170–177, 2004.

[4] C. Anderson, The Long Tail: How Endless Choice is Creating
Unlimited Demand. Random House, 2010.

[5] P. Åhlström and R. Westbrook, “Implications of mass cus-
tomization for operations management,” Int. J. of Operations
and Production Management, vol. 19, no. 3, 1999.

[6] P. Clemens and L. M. Northrop, Software Product Lines:
Practices and Patterns. Addison Wesley, 2002.

[7] Rehabilitation Act. United States of America, 1973.
[8] Gesetz zur Gleichstellung behinderter Menschen (BGG).

Bundesrepublik Deutschland, 2002.
[9] S. Marathe and S. Sundar, “What drives customization? con-

trol or identity?” in Proc. of the 2011 annual conf. on Human
factors in computing systems, CHI’11, 2011, pp. 781–790.

[10] M. Weiss and N. Heidenbluth, “A two-dimensional overall
software customization classification and visualization,” in
Proc. of the 2012 Int. Conf. on Software Engineering Re-
search & Practice, SERP’12, 2012, pp. 293–299.

[11] S. M. Davis, Future Perfect. Addison-Wesley, 1987.
[12] B. I. Pine, “Mass customization: The new frontier in business

competition,” 1993, Harvard University Press.
[13] P. Kotler and G. Armstrong, Principles of Marketing. Pear-

son Education, 2009.
[14] P. F. Drucker, The Practice of Management. HarperBusiness,

2006.
[15] H.-B. Kittlaus and P. N. Clough, Software Product Manage-

ment and Pricing. Springer Verlag, 2009.
[16] M. Dorfman and R. H. Thayer, Eds., Software Engineering.

IEEE Computer Society Press, 1997.
[17] F. P. Brooks, “No silver bullet,” Computer, vol. 20, no. 4, pp.

10–19, 1987.
[18] E. Consortium, The Market for Customized Footwear in

Europe, F. T. Piller, Ed., 2002.
[19] C. Kieserling, “Mass customization in the shoe industry,”

1999, survey conducted by Selve AG, Munich.
[20] Outsize, Problems and Needs of Customers when buying

Clothes and Shoes, R. Duwe, Ed., 1998.

[21] F. T. Piller, K. Moeslein, and C. M. Stotko, “Does mass
customization pay?” Production Planning & Control, vol. 15,
no. 4, pp. 435–444, 2004.

[22] C. Berger and F. Piller, “Customers as co-designers,” IEE
Manufacturing Engineer, pp. 42–45, August/September 2003.

[23] C. Huffman and B. Kahn, “Variety for sale: mass customiza-
tion or mass confusion?” J. of Retailing, vol. 74, pp. 491–513,
1998.

[24] W. E. Mackay, “Triggers and barriers to customizing soft-
ware,” in Proceedings of the SIGCHI Conf. on Human Factors
in Computing Systems, CHI’91, 1991, pp. 153–160.

[25] S. R. Page, T. J. Johnsgard, U. Albert, and C. D. Allen, “User
customization of a word processor,” in Proc. of the SIGCHI
conf. on Human factors in computing systems, SIGCHI’96,
1996, pp. 340–346.

[26] L. Findlater and K. Z. Gajos, “Design space and evaluation
challenges of adaptive graphical user interfaces,” AI Maga-
zine, vol. 30, no. 3, pp. 68–73, 2009.

[27] L. Findlater and J. McGrenere, “A comparison of static,
adaptive, and adaptable menus,” in Proc. of the SIGCHI conf.
on Human factors in computing systems, SIGCHI’04, 2004,
pp. 89–96.

[28] A. Bunt, C. Conati, and J. McGrenere, “What role can
adaptive support play in an adaptable system?” in Proc. of the
9th int. conf. on Intelligent user interfaces, IUI-CADUI’04,
2004, pp. 117–124.

[29] A.Bunt, C. Conate, and J. McGrenere, “Supporting interface
customization using a mixed-initiative approach,” in Proc. of
the 12th int. conf. on Intelligent user interfaces, IUI’07, 2007,
pp. 92–101.

[30] J. McGrenere, R. M. Baecker, and K. S. Booth, “An eval-
uation of a multiple interface design solution for bloated
software,” in Proc. of the SIGCHI conf. on Human factors
in computing systems, SIGCHI’02, 2002, pp. 164–170.

[31] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld, “Automatically
generating user interfaces adapted to users’ motor and vision
capabilities,” in Proc. of the 20th annual ACM symposium on
User interface software and technology, UIST’07, 2007, pp.
231–240.

[32] G. Z. Krzysztof, J. Wobbrock, and D. S. Weld, “Improving
the performance of motor-impaired users with automatically-
generated, ability-based interfaces,” in Proc. of the twenty-
sixth annual SIGCHI conf. on Human factors in computing
systems, SIGCHI’08, 2008, pp. 1257–1266.

[33] N. Franke and E. von Hippel, “Satisfying heterogeneous user
needs via innovation toolkits: The case of apache security
software,” Research Policy, vol. 32, no. 7, pp. 1199–1215,
2003.

[34] K. Oliver, L. Moeller, and B. Lakenan, “Smart customization:
Profitable growth through tailored business streams,” strat-
egy+business, vol. 34, pp. 34–45, 2004.

[35] N. Schwarz, B. Knuper, J.-J. Hippler, E. Noelle-Neumann,
and L. Clark, “Rating scales: Numeric values may chance the
meaning of scale labels,” Public Opinion Quarterly, vol. 55,
pp. 570–582, 1991.

[36] K. M. Miller, R. Hofstetter, H. Kromer, and Z. J. Zhang,
“How should consumers’ willingness to pay be measured?
an empirical comparison of state-of-the-art approaches,” J. of
Marketing Research, vol. 48, no. 1, pp. 172–184, Feb. 2011.

[37] F. T. Piller and M. Müller, “A new approach to mass cus-
tomization,” Int. J. of Computer Integrated Manufacturing,
vol. 17, no. 7, pp. 583–593, 2004.

485Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 503 / 729

Experimentation Package for Evaluation of Problems Applied to the
Software Project Subject Using PBL

Jacson Rodrigues Barbosa∗, Fabrizzio Alphonsus Alves de Melo Nunes Soares∗, Auri Marcelo Rizzo Vincenzi∗
∗Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

E-mail: {jacsonbarbosa, fabrizzio, auri}@inf.ufg.br

Abstract—This paper presents an experimentation
package that compares the traditional and problem-
based learning (PBL) approaches in the Software
Project academic subject. The package was applied in
a controlled experiment in a Computer Science class
of a higher education institution, having message-
oriented middleware as a case study. The case study
enabled us to validate the experimentation package
and to collect initial data to investigate the advan-
tages and disadvantages of PBL against traditional
learning. Even though the statistical analysis failed
to show differences between the two approaches in
view of the data collected, students’ answers to a
questionnaire enable us to verify how PBL may be
used to increase their motivation and interest in the
subject.

Keywords-Message-oriented middleware; software
project teaching; problem-based learning.

I. Introduction

In the teaching process of almost all fields of knowl-
edge, a constant and crucial feature is problem solving
or the preparation for problem solving. If the teacher
provides facts and procedures to his/her students with-
out giving them the chance to carry out investigations
on their own and to formulate questions, they may
memorize the subject but be unable to understand it
in depth or to apply it [1].

Problem-based learning (PBL) offers a structure that
helps students understand a given subject in more detail.
According to this method, problems must challenge the
students to reach higher levels of knowledge [2]. A
possible way to verify the cognition levels that a certain
problem must reach in PBL consists in applying Bloom’s
revised [3] taxonomy, which classifies the cognitive abil-
ities of individuals according to six levels, as is shown
in [4], and summarized below:

• Remember: to produce correct information from
memory;

• Understand: to provide a meaning to educational
material or experiences;

• Apply: to use a procedure;
• Analyze: to break down a concept into parts and

report on their relation with the whole;

• Evaluate: to carry out inferences based on criteria
and patterns;

• Create: to link pieces of data in order to create
something new.

Therefore, this paper proposes an experimentation
package which assesses the cognitive levels reached by
students enrolled in the Software Project subject when
instructed by PBL, as well as to identify the quality
of the software they developed, based on standard OO
metrics [5].

This paper is structured as follows: Section II presents
the problems that were investigated in Software Project.
Sections III and IV describe the experimentation pack-
age applied and the questionnaire given to the students,
respectively. Section V displays the results obtained
from applying the package. Finally, Section VI offers
conclusions and suggestions for future research.

II. Problems applied to the Software Project
subject

Message-oriented middleware (MOM) and software
coupling were selected for the case study.

Message-oriented middleware is a communication
method between software components used in dis-
tributed systems. A client may send and receive asyn-
chronous messages to and from any other client, con-
nected to a special agent that provides facilities to create,
send, receive and read messages. Software coupling is a
measure of the interconnection between theses classes
or subsystems. Strong coupling means that the related
classes need to know internal details from each other,
that changes spread throughout the system and that the
system is potentially more difficult to understand. Thus,
loose coupling is linked to the considerable need for flex-
ibility required by great distributed systems, in addition
to failure tolerance. This means that the dependencies
must be kept to a minimum as much as possible so that,
in case of failure or unavailability of a system and/or
service, the others remain available and working. MOM
allows for loose coupling. Sender and receiver do not
need to be synchronized or previously known. It is an

486Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 504 / 729

alternative to synchronized distributed methods which
may resort to blocking during communication.

In the PBL approach used in this research, the notions
of MOM and coupling are presented in three interdepen-
dent problems.

The first problem discusses the main concepts re-
garding MOM and coupling, as well as presents two
message exchange models. The first model is based on
producer/consumer problems and is also known as point-
to-point. It follows the concept of queues that are fed
with messages, which in turn are then removed by a
single consumer. The producer sends messages to a
queue and the consumer reads them. In this case, the
producer knows the message’s destination and sends it
directly to the consumer’s queue. This model comprises
the following features:

• Only one consumer reads the message;
• The producer does not have to be executed while the

consumer reads the message, just as the consumer
does not need to be executed while the producer
sends the message;

• Once a message is successfully read, the consumer
acknowledges the message to the producer.

The second model selected is the publisher/subscriber
model. It is based on the concept of topic, according to
which messages are listed in topics that are received by
one or more subscribers [6]. It supports publishing mes-
sages to a given topic of messages. The subscriber(s) may
register interest in receiving (“subscribing”) messages on
a particular topic. According to this model, neither the
publisher nor the subscriber knows about each other. Its
features are:

• Several consumers may read the message;
• There is a timing dependency between publishers

and subscribers of a given topic. A publisher must
create a subscription for subscribers to receive mes-
sages. The topic subscriber must be continuously
active in order to receive messages.

Once the problems were discussed with the students,
the latter were asked to research two real-life problems
that may be solved by using each of the models presented
in class. They were given two days to solve this first
problem.

As regards the second problem, two brief descriptions
of systems were presented. The first is used for selling
cinema tickets (Software 1), whereas the second records
students’ enrolments in the subjects of a given university
(Software 2). Students were asked to define the most
suitable architecture (publisher/subscriber or point-to-
point) for both software, as well as create a class diagram
and a prototype of graphical user interface. They were
given two weeks to complete this task.

Finally, the third problem involved asking students to

build Software 1. In view of the fact that they already
had knowledge of JavaTM, they were asked to implement
the software via Java 6, Java Message Service (JMS) -
Version 1.1 and OracleTMGlassFish Server Open Source
Edition 3.1.

The tasks were given in this order to promote more
effective learning, taking into consideration the cognitive
levels explored in each problem proposed. Further details
regarding these levels are provided in the following sec-
tion.

A. Problem analysis according to Bloom’s taxonomy

Tables I, II and III show the cognitive levels for
Problems 1, 2 and 3, respectively, in accordance with
Bloom’s taxonomy.

The first problem aims to assess the students’ ab-
straction abilities, i.e. to verify their ability to choose
real-life applications of the recently learnt tools. For in-
stance, this problem verified their ability to choose real-
life examples that are linked with each of the recently
discussed MOM architectural models. Therefore, this
problem intended to explore the most superficial levels
of Bloom’s taxonomy, having provided the students with
an initial contact with MOM-related concepts. Hence,
the concepts under study were those of remembering,
understanding and applying.

Table I
Analysis of Problem 1

Cognitive level Characterization

Remember
MOM software architectural concepts.

Understand Understanding of MOM concepts.

Apply Identification of real-life examples linked
with both kinds of architecture.

Analyze Not explored.

Evaluate Not explored.

Create Not explored.

The results of this stage are shown as a table of con-
fusion, also known as a confusion matrix. It consists of
a table with two rows and two columns that reports the
number of false positives, false negatives, true positives
and true negatives.

The second problem also aimed to assess the students’
abstraction abilities, but unlike the previous problem,
now they had to choose the tool i.e. the model most
suited to solve the problem in question. Table II shows
the cognitive levels explored in this problem.

The third problem aimed to assess the students’ tech-
nical abilities. During this stage they had to show the
extent of their ability to encode software by using the
MOM models learnt. The cognitive levels explored are
shown in Table III.

487Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 505 / 729

Table II
Analysis of Problem 2

Cognitive level Characterization

Remember Use of MOM concepts acquired in prob-
lem 1 and use of representational form of
classes and associations in UML.

Understand
Understanding the representational form
of classes and associations in UML in order
to meet the corresponding functional re-
quirements and architectural restrictions.

Apply Use principles and techniques of software
project modelling.

Analyze
Identification of parts of the problem that
are modellable based on informal textual
specification.

Evaluate
Design the software to meet the quality
attribute of usability.

Create Creation of conceptual model (UML class
diagram) and graphical user interface
project.

Table III
Analysis of Problem 3

Cognitive level Characterization

Remember Use of software project concepts acquired
in problem 2.

Understand Understanding of MOM to solve the prob-
lem.

Apply Use of Java for error treatment, database
access and message exchange.

Analyze Identification of parts which must be im-
plemented in the program based on the
models.

Evaluate
Choose specific data structures to provide
an effective solution.

Create Development of software for
selling/booking cinema tickets.

III. Experimentation package for assessing
PBL in the Software Project subject

This section presents the experimentation package
which was adopted during the experimental tasks and
result analysis. Its detailed description makes it possible
for this study to be replicated in future research. The
experimentation package set for the analysis of PBL in
the Software Project subject was organized following [7],
Its stages were:

A. Definition of experiment

To analyze PBL in the teaching of Software Project.

With the purpose of assessing PBL in the teaching
of Software Project.

As regards factors that contribute to the quality of
teaching, such as the ability to remember, to understand,
to apply, to analyze, to evaluate and to create.

In the context of undergraduate students of Com-
puter Science enrolled in Software Project.

B. Selection of context

The context chosen for the experiment is the teaching
and application of MOM-related concepts. The experi-
ment involved the use of academic software developers
whose time and tools were controlled for teaching and
the designing of a software for cinema ticket selling via
JMS.

C. Formulation of hypotheses

A two-way analysis of variance (ANOVA) was per-
formed to verify statistical differences between PBL and
traditional approaches in Software Project.

ANOVA defines the null hypothesis (H0), according
to which there are no statistical differences between the
methods under analysis. When the probability (p) found
is lower than 0.05, the null hypothesis may be rejected,
otherwise it will not be possible to state that there are
statistical differences between the methods.

D. Selection of variables

The variables analyzed in the experiment are divided
into two types: dependent and independent. The former
were the cognitive levels reached in the problems, and
the latter were the problems’ cyclomatic complexity and
size.

E. Selection of participants

All students enrolled in the Software Project subject
were selected (N = 14). Observe that, even though N is
small, an experimentation package allows us to replicate
this same experiment several times, and new collected
data can be added to this one, thus increasing confidence
on the obtained results. This first replication aimed at
validating the proposed package.

F. Experimental project

Firstly, the teacher presented the major theoretical
concepts regarding MOM and the two message ex-
change models: point-to-point (queue model) and pub-
lish/subscribe. No examples were given regarding the
models.

G. Quality assessment

A control sample was also used to validate the ex-
periment internally. This sample consisted of a task
set to the students regarding the traditional learning
approach (first part of the subject); according to the
task, students had to define a class diagram based on a
context previously specified by the teacher. The external
validation, as the students’ profiles in Table VII confirm,
was based on academic professionals who were then
enrolled in the third semester of the course and whose
average work experience in the field amounted to 7.5
months.

488Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 506 / 729

H. Preparation

Students were not aware of the reasons behind the
research being carried out, but were informed of the steps
to be taken to solve each of the three problems proposed.

I. Application

The experimentation package was applied during one
semester (five months) in the Software Project subject,
part of the Computer Science course. The first part
of the subject involved the application of traditional
methodological strategies (first two months), and the
second part involved PBL (last three months).

J. Descriptive statistics

Ordinal and interval scales were used for the statistical
analysis of the experiment to verify students’ perfor-
mance under both traditional and PBL approaches.
Once the data had been collected, the sample was as-
sessed to establish whether it showed normal or non-
normal distribution. In case of the former, paramet-
ric statistics was required; in case of the latter, non-
parametric statistics was required [8].

K. Data reduction

The criteria for data reduction were only required in
case of dropouts, i.e. students who did not carry out any
of the tasks set. About 21.4% of data (three students
dropped out of the university) was left out so as not to
jeopardize the experiment results.

IV. Students’ views on PBL

After having solved Problem 3, the students were
given a questionnaire on the experience of problem-
based learning. The following questions in Table VII
were adapted from those found in [9].

V. Results and discussion

A. Characteristics of Problem 1

In Table IV each column represents the student’s
option, whereas each row yields the correct option. For
instance, line 2 and column 2 show that 100% of the
students managed to correctly identify real-life problems
that may be solved through the point-to-point model.

As Table of Confusion shows, solving this problem
proved quite easy for the students. Of the solutions
provided for the Topic model, only 18.18% did not
comply with its definitions.

Table IV
Table of confusion of Problem 1

Topic Point-to-point

Topic 81.82% 0%

Point-to-point 18.18% 100%

B. Characteristics of Problem 2

As Table V shows, all the students successfully se-
lected the architecture model most suited to each of the
software descriptions presented.

Table V
Selection of architecture model

Software Coherent Incoherent Total

Software 1 100% 0% 100%

Software 2 100% 0% 100%

C. Characteristics of Problem 3

The estimate for the necessary effort to develop the
software for this problem was calculated by the function
point analysis (FPA) described in [10]: 1,949 lines of
Java.

Table VI shows some metrics collected from the solu-
tions given by the students with the aid of JaBUTi (Java
Bytecode Understanding and Testing) [11]. The first
metric regards the size of the programs in terms of non-
comment source lines of code (NCLOC). Following are
two metrics related to maximum and average cyclomatic
complexity [12] of the methods from each program, CC-
MAX and CC-AVG, respectively. The remaining metrics
are part of C&K metrics [5], such as: weighted method
count via cyclomatic complexity (WMC-CC), depth of
inheritance tree (DIT), lack of cohesion in methods
(LCOM), response for class (RFC) and coupling between
objects (CBO).

Regarding the LOC metric, the mean size of imple-
mentations was 1,700 LOC. Half of them showed values
above average and closer to the estimate given by FPA.

The analysis of metrics related to McCabe’s cyclo-
matic complexity revealed that, even though CC-MAX
shows methods with maximum cyclomatic complexity
of about 30 (the recommended yield would not be
greater than 10 [13]), this only occurs in some isolated
methods which, despite showing several conditions, are
simple from the standpoint of programming logic. Thus,
in general, as the remaining complexity-related metrics
(CC-AVG and WMC-CC) attest, class methods are
described as simple and devoid of considerable risk [14],
this is confirmed by AMZ-LOCM, which shows that
the average size of the methods of each implementation
ranged from 6.55 LOC in Implementation 1 to 2.59
in Implementation 5, which results in an overall size
average of 3.95 LOC.

DIT shows that inheritance was little explored in all
projects. The DIT limit was restricted to one, without
considering the calculations of Java’s API classes.

LCOM is important to estimate the degree of cohesion
in a given software. For instance, in an object-oriented
software, it may be used to measure the cohesion of each

489Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 507 / 729

software class. A high LCOM value may suggest that
the class project is poor, as was proved in a class of
Implementation 5 whose LCOM value was 366.

CBO is useful in showing the potential reuse of classes,
given the fact that loosely-coupled classes are “more
independent”. However, strongly-coupled classes are also
very complex and more sensitive to changes in a project,
which makes maintenance difficult and requires more
rigorous tests. But as Table VI shows, the solutions
provided by the students generally showed low coupling.

D. Students’ views

Table VII gathers information collected from the
students after the academic subject had come to an
end. All the students who answered Question 7 (62.5%)
declared positive experiences with PBL. Some of the
comments were “The method promoted opportunities to
increase knowledge”, “It makes the students responsible
in the teaching-learning process” and “Motivation for
students”.

As regards Question 8, 71.43% of the students consider
the use of PBL in Software Project a “good” opportunity
to solve real-life problems. However, they also consider
both methods (traditional and PBL) as important in
the subject in question (refer to answers to Questions 9
and 10).

E. Statistical analysis

Table VIII and Figure 1 show statistical data that
refer to students’ performance in the tasks they were
assigned, in accordance to the teaching methodology
adopted. It is important to point out that, for both
methodologies, the same group of students was used in
all the problems.

The Lilliefors and Cochran test revealed the normality
and homogeneity of the variances (p < 0.05); as the
problems taken into account in the experiment are also
independent, then ANOVA may be used to carry out
data analysis.

ANOVA obtained p = 0.75 for the set of collected
data. The result was higher than 0.05, therefore the null
hypothesis (H0) cannot be rejected i.e. from a statis-
tical perspective and in view of the range of problems
explored, there are no statistical differences between the
traditional methodology and PBL.

Table VIII
Descriptive statistics

Teaching
method

Mean Median Standard Devi-
ation

Traditional 7.16 7 0.75

PBL 7.29 7.33 0.98

Figure 1. Boxplot of Students’ Performance

VI. Conclusion

This paper presented the experimental package and re-
sults of a controlled experiment which aimed to compare
students’ performance in view of the application of two
teaching methodologies (traditional and PBL) within the
Software Project subject. However, this paper’s main
objective was to validate the experimentation package
based on its first application in the Software Project
subject.

The statistical analysis revealed that there are no
differences between the teaching methods adopted. Nev-
ertheless, the assessment of the mean differences showed
that PBL’s was 0.13 higher than the traditional method-
ology’s; furthermore, the analysis of students’ answers
to the questionnaires revealed that they had positive
experiences when using PBL.

In future research, we intend to apply this experimen-
tal package to other university classes in order to com-
pare the differences. Furthermore, we intend to repeat
the experiment with students enrolled in the following
year. Further detailed information on this topic can be
found in [15]. We also intend to carry out a statistical
analysis (logistic regression) of the metrics collected by
JaBUTi to identify patterns associated with cognitive
levels.

Acknowledgments

The authors would like to thank the Brazilian Funding
Agencies - CNPq and Capes - for their partial support
to this work.

References

[1] R. Delisle, How to use problem-based learning in the
classroom. Alexandria, Virgina, USA: ASCD, 1997.

490Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 508 / 729

Table VI
Direct metrics of solutions presented

Implementation LOC CC-MAX CC-AVG WMC-CC AMZ-LOC DIT LCOM RFC CBO

1 2,007 33 1.44 5.63 6.55 1 3.16 18.77 6.16

2 804 27 1.13 7.31 3.32 1 5.25 19.22 6.34

3 1,838 33 1.12 5.16 3.56 1 2.52 15.19 4.52

4 3,579 37 1.24 5.84 4.7 1.06 3.35 20.81 6.97

5 1,238 46 1.06 5.55 2.59 1 6.51 16.88 4.85

6 805 7 1,08 4.23 2.98 1 3.13 14.7 5.49

Average 1,711.83 30.50 1.18 5,62 3.95 1.01 3.99 17.60 5.72

Standard deviation 1,045.02 13.11 0.14 1.01 1.46 0.02 1.55 2.41 0.94

Table VII
Information obtained after questionnaire application

Question Answer %
How old are you? Average=20.26 years -

Do you work with software development (internship, contract etc.)?
Yes 57.14
No 42.86

If you answered “yes” to the previous question, how long have you
worked in the field (specify the period in months or years, e.g.
six months)?

Average=7.5 months -

Why have you chosen this university to study Computer Science?

Quality of teaching at the university 12.5
Visibility of the university 12.5
Duration of the course 12.5
No particular reason 12.5

When you made your decision, were you aware that the university’s
Computer Science Department had adopted a new teaching method?

Yes 0
No 100

If you answered “yes” to the previous question, do you think this
influenced your decision?

Yes 0
No 0

The university decided to apply active teaching-learning
methodologies in the Computer Science curriculum. How would
you describe your experience as an active participant of
such methodologies in this department?

Offered conditions to increase knowledge 37.5
Makes student responsible in the teaching-learning process 12.5
Students’ motivation 12.5
Question not answered 37.5

Based on your learning process, how do you rate the use of
problem-based learning (PBL) in designing software projects to
solve real-life problems?

Excellent 14.29
Good 71.43
Fair 14.29
Poor 0

Do you prefer a traditional teaching method, in which the
teacher presents the contents to be
learnt and you study them?

Yes 0
No 28.57
Both 71.43

You have designed/implemented a software for cinema ticket
selling as part of a PBL-based case study. Do you prefer this
teaching-learning strategy to the traditional method?

Yes 42.86
No 0
Both 57.14

[2] J. A. M. Santos and M. F. Angelo, “Análise de proble-
mas aplicados em um estudo integrado de programação
utilizando pbl,” WEI - Workshop sobre Educação em
Computação, Anais do XXIX Congresso da SBC, pp.
519–522, 2009.

[3] B. J. Duch, S. E. Groh, and D. E. Allen, The Power of
Problem-Based Learning: a practical how to for reaching
undergraduate courses in any discipline. Virginia: Stylus
Publishing, LLC, 2001.

[4] L. W. Anderson, D. R. Krathwohl, P. W. Airasian, K. A.
Cruikshank, R. E. Mayer, P. R. Pintrich, J. Raths, and
M. C. Wittrock, A Taxonomy for Learning, Teaching,
and Assessing: A Revision of Bloom’s Taxonomy of
Educational Objectives, Complete Edition. Allyn &
Bacon, 2001.

[5] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476–493, June 1994.

[6] I. Gorton, Essential Software Architecture. Berlin,
Germany: Springer, 2006.

[7] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Reg-
nell, and A. Wesslén, Experimentation in Software En-
gineering: An Introduction. Springer, 2000.

[8] D. C. Montgomery, Design and Analysis of Experiments,
5th ed. John Wiley & Sons, 2001.

[9] J. R. B. Costa, V. F. Romano, R. R. Costa, A. P.
Gomes, and R. S. Batista, “Active teaching-learning
methodologies: Medical students views of problem-based
learning,” Revista Brasileira de Educação Médica, pp.
13–19, 2011.

[10] E. J. Braude and M. E. Bernstein, Software Engineering
Modern Approaches, 2nd ed. John Wiley Sons, 2011.

[11] A. M. R. Vincenzi, W. E. Wong, M. E. Delamaro,
and J. C. Maldonado, “JaBUTi: A coverage analysis
tool for java programs,” in XVII Simpósio Brasileiro

491Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 509 / 729

de Engenharia de Software (SBES 2003), Manaus, AM,
October 2003.

[12] T. J. McCabe,“A complexity measure,” in Proceedings of
the 2nd international conference on Software engineering
(ICSE ’76), October 1976.

[13] R. S. Pressman, Software Engineering – A Practitioner’s
Approach, 7th ed. McGraw-Hill, 2009.

[14] E. Vandoren and K. Sciences, “Cyclomatic complexity,”
june 2000, available at: http://www.sei.cmu.edu/str/.
Accessed on: 03/06/2012].

[15] J. R. Barbosa, F. A. A. de Melo Nunes Soares, and
A. M. R. Vincenzi, “Problems applied to the software
project subject using pbl,” Web page, july 2012.
[Online]. Available: http://www.inf.ufg.br/˜auri/pbl-
en/. Accessed on: [07/18/2012].

492Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 510 / 729

Impr oving Undergraduate Students’ Programming Skills

Sukhamay Kundu
Computer Science Department, Louisiana State University

Baton Rouge, LA 70803, USA
e-mail: kundu@csc.lsu.edu

Abstract − Tw o key factors for the failure of under-
graduate students in creating high quality programs
are their inability to: (1) identify the basic steps in
building a high-level solution algorithm, and (2) con-
vert these steps into an elegant and efficient program
implementation. Both these tasks require creative
thinking and a systematic approach with emphasis on
the programming process. We believe that with pr oper
training the students can improve their programming
skills and create high-quality programs. We describe a
new approach to programming, which can be viewed
as a refinement of the well-known "stepwise refine-
ment" method. We use the notion of work-breakdown
structur e to address factor (1) and suggest a few coding
techniques to address factor (2). Our initial experience
in using the new approach has been very positive in
terms of improved quality of student programs.

Keywords: work-breakdown structure; stepwise refine-
ment; programming process.

I. INTRODUCTION

The low success rate in the first and second year under-
graduate computer programming courses continues to be a
serious problem even today after the decades of many
advances in Programming Language designs (including
object-oriented languages) and Software Engineering
methods. Adrop-out rate of 30% in the first year pro-
gramming courses is not uncommon.We often see
another 20-30% of the remaining students having difficul-
ties with programming.This means 45-50% of the incom-
ing computer science undergraduates either change their
major or struggle with their computer science degree pro-
gram. Advances in the programming methods from struc-
tured programming and stepwise refinement to object-ori-
ented (OO) programming has not led to significant
improvements in the undergraduate students’ program-
ming ability [2]. For some students, the problem persists
beyond their undergraduate years.

The key element of our new approach to programming
is the use of work-breakdown structure (WBS) in building
the high-level pseudocode or algorithm.The notion of
WBS is routinely used by business analysts as a tool in

planning and scheduling. The connection of WBS to the
stepwise refinement method (SRM) of program develop-
ment is that both use a top-down approach, where a task is
successively decomposed into disjoint subtasks until we
arrive at subtasks that can be readily solved. Because
WBS is not concerned with the control-logic (if-then-else
and loops), it is simpler than SRM where one develops
subtask decomposition in parallel with the refinement of
control-logic in the form pseudocode.This makes WBS a
good intermediate step and one can add the control-logic
later in a bottom-up or top-down fashion at each subtask-
decomposition step.We can say that WBS helps to opera-
tionalize SRM in the same way that SCRUM software
development method helps to operationalize agile pro-
gramming. BothSRM and WBS can accommodate refine-
ments of data, operation, and control-logic.There have
been many advances in SRM-based formal techniques for
program development [5-7], but these techniques are not
suitable for teaching undergraduate-level programming.

We limit ourselves here to non-OO programming.
Indeed, one cannot create a high quality OO-program,
which involves the added complexity of class-subclass
considerations, if one cannot create a small high-quality
non-OO program.For the present discussion, a high qual-
ity program means simple and clear logic in the basic
algorithm, clean implementations for good computational
efficiency and memory usage, and simple and clear
input/output interfaces.

A. Work-Breakdown Structure

We build a WBS in a top-down fashion and represent it
as a tree, where the children of a node shows the decom-
position of the node into two or more subtasks. The termi-
nal nodes, called thework-units, represent the actual tasks
performed in solving the original problem given by the
root of WBS-tree. The intermediate nodes represent a
hierarchical grouping of work-units into larger conceptual
"chunks" and they help us in arriving at the work-units.
Creating a WBS-tree is often a non-trivial task and
requires much thought and insight into the problem at
hand. Although,in principle, a node withn ≥ 3 children
can be replaced by a chain ofn − 1 nodes each with 2 chil-
dren, this is not always easily done and nor it is advisable

493Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 511 / 729

to force this because it can lead to artificial subtasks.A
WBS represents a solution approach in a more abstract
form than a pseudocode because it does not show the con-
trol-logic. Thesimultaneous development of control-logic
and the bodies of loops and the then/else parts of if-state-
ments makes SRM harder to apply than our two-step
method: build a WBS first and then add the control-logic.

B. Two Demonstration Problems

We consider two problems to show the usefulness of
WBS in developing complex pseudocodes and their effi-
cient implementations.The solution of the first problem,
the triangle classification (TRC), involves a complex
nested if-then-else and the solution of the second problem,
the constrained binary string generation (CBSG), involves
several interacting pairs of loops and if-statements.In
both cases, we want simplest logic and the maximum effi-
ciency. The use of WBS helps to create a proper high-
level design for the solution algorithm, and then a proper
choice of data-structures leads to an efficient implementa-
tion. Theimportance of the CBSG problem is that many
other problems can be either formulated in this form or
can be solved by generalizing or modifying the method
used for solving CBSG.For example, we can associate
the subsets of sizem of a set of sizen with the binary
strings of lengthn with m ones and thus we can generate
those subsets using the solution of the CBSG problem.As
another example, we can generate all permutations ofn ≥
2 items by modifying the method for solving CBSG.

Sections II and III present the solutions of the TRC-
problem and the CBSG-problem. Some important coding
techniques are described in Section IV. Section V gives
the conclusion and the future work.

II. TRC-PROBLEM

Here, we want to classify a triangleT as one of equi-
lateral, isosceles, and scalar given the lengthsa, b, and c
of its sides which are assumed to satisfy the triangle
inequalities:a + b > c, a + c > b, and b + c > a. Table 1
shows the conditions for classifyingT. Note that we don’t
need the condition "a = c" in C1 and likewise the condi-
tion "b ≠ c" in the first and-combination ofC2, etc.

Table 1. Conditions for triangle classification.

Type Condition

Equilateral C1: (a = b) ∧ (b = c)
Isosceles C2: [(a = b) ∧ (a ≠ c)] ∨ [(a = c) ∧ (a ≠ b)] ∨

[(b = c) ∧ (a ≠ b)]
Scalar C3: (a ≠ b) ∧ (a ≠ c) ∧ (b ≠ c)

Figures 1(i)-(ii) show two WBSs for the TRC-problem,
each with three work-unitsw1 to w3. There are two more
WBSs similar to Figure 1(ii) based on decomposing the

root with respect to isosceles triangle and scalar triangle.
Clearly, the WBSs for any classification problem can be
mapped in an one-to-one fashion to the classification trees
for that problem if we do not include additional computa-
tion details in the WBSs for the classification problem.

Classify a triangleT as
equilateral, isosceles, or scalar

Determine ifT
is equilateral

w1
Determine ifT

is isosceles

w2
Determine ifT

is scalar

w3

(i) A simple WBS.

Classify a triangleT as
equil., isosceles, or scalar

Determine ifT
is equilateral

w1
Determine ifT

is not-equilateral

Determine ifT
is isosceles

w2
Determine ifT

is scalar

w3

(ii) A multi-level WBS with more structure.

Figure 1. Tw o alternate WBS for the TRC-problem.

Figure 2 shows several alternate pseudocodes for the
TRC-problem. Theone in Figure 2(i) comes directly from
the WBS in Figure 1(i) and is the least efficient; it does not
take advantage of the disjointness of conditionsC1-C3.
The pseudocode in Figure 2(ii) is from [3]; it is little better
than the one in Figure 2(i) but it fails to fully exploit the
relationships among the equalities and inequalities in
C1-C3. Figure 2(iii) is obtained from Figure 2(ii) by
replacingC3 by its negation (thereby avoiding negations
like "≠") and interchanging the associated then-else parts;
this is better than usingC2 in terms of the number of eval-
uations of various "=" and "≠". Figure2(iv) gives the most
efficient and elegant solution. In terms ofE = the average
number of evaluations of "=" or "≠", it has the minimumE
= 12/5. If we are given the additional information thata ≤
b ≤ c, then Figure 2(v) is the most efficient solution.

Table 2 shows the number of boolean conditions like
"a = b" or "a ≠ b" evaluated for different triangle types for
the pseudocode in Figure 2(iv). Here,the notation T(5) in
column "b = c" means the condition "b = c" evaluates to T
(true) in line 5 of Figure 2(iv). This gives E =
(2+2+2+3+3)/5 = 12/5.A similar analysis of the pseu-
docodes in Figures 2(ii)-(iii) gives E = 16/5, which is 30%
higher than 12/5. The pseudocode in Figure 2(i) hasE =
35/5. Thepseudocode in Figure 2(v) is a slight simplifica-
tion of that in Figure (iv) and hasE = 9/4; the only two
cases of isosceles triangles are now: "(a < c)∧ (a = b)" and

494Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 512 / 729

"(a < c)∧ (b = c)". Since sorting a, b, c takes at least 2
comparisons, Figure 2(iv) is still the best and many stu-
dents fail to obtain this solution.

Table 2. Computation ofE = 12/5 for Figure 2(iv).

Triangle Conditions Number of
Type a = b a = c b = c evaluations

Equilateral T(1) T(2) 2

Isosceles: case (a = b) T(1) F(2) 2
case (a = c) F(1) T(5) 2
case (b = c) F(1) F(5) T(5) 3

Scalar F(1) F(5) F(5) 3

1. if C1 then output("equilateral")
2. if C2 then output("scalar")
3. if C3 then output("isosceles")

(i) A very inefficient pseudocode.

1. if C1
2. then output("equilateral")
3. else if C3
4. then output("scalar")
5. else output("isosceles")

(ii) A better but not-so-good pseudocode.

1. if (a=b) AND (a=c)
2. then output("equilateral")
3. else if (a=b) OR (a=c) OR (b=c)
4. then output("isosceles")
5. else output("scalar")

(iii) An slightly better variant of (ii), with
the nested then/else parts interchanged.

1. if (a=b)
2. if (a=c)
3. then output("equilateral")
4. else output("isosceles")
5. else if (a=c) OR (b=c)
6. then output("isosceles")
7. else output("scalar")

(iv) A more efficient variation of (iii).

1. if (a=c) //assuming a <= b <= c
2. then output("equilateral")
3. else if (a=b) OR (b=c)
4. then output("isosceles")
5. else output("scalar")

(v) Anothervariation, assuminga ≤ b ≤ c.

Figure 2. Several alternate pseudocodes for the
TRC-problem having different efficiency in terms ofE.

III. CBSG-PROBLEM

Let B(n, m) = the set of binary strings of lengthn ≥ 1
and having m ones, 0≤ m ≤ n. We want to generate the
strings inB(n, m) one by one in lexicographic order, say,

to avoid generating a string more than once and missing
some strings altogether. The lexicographic orders < s′
between two strings s, s′ ∈ B(n, m) meanss represents a
smaller integer thans′. For B(4, 2), the lexicographic
ordering is: 0011 < 0101 < 0110 < 1001 < 1010 < 1100
and thus we want to generate these strings in that order.

A. WBSfor CBSG problem

Figure 3 shows a WBS for the CBSG problem, with
work-units w1 to w4. The use of "leftmost" inw2 is criti-
cal in two ways: (1) we sometimes cannot determine the
"rightmost" position of change ins without determining
the leftmost position of change, and (2) the corresponding
new w3 and w4 do not give us any computational advan-
tage. Theleftmost position of change ins is the position
of ’0’ in the rightmost "01" ins. If there is no "01" ins,
then there is no strings′ > s ands = 1m0n−m, the last string
in B(n, m). In this case,w3 and w4 will not be done.
(This illustrates an important point about WBS: the child-
nodes of a node do not always form an and-decomposi-
tion; they hav eto be, however, disjoint and one or more of
them must always suffice to complete the parent-task.A
program that implements a WBS must thus contain code
for each child-subtask of a node because for some input
situations the work for that child-subtask has to be done.)

Generate first string or the next string
s′ in B(n, m) from current strings

Generate first string
0n−m1m in B(n, m)

w1

Generate next strings′ ∈ B(n, m),
if exists, from any current strings

Find the left-
most positioni
of change ins

w2

Change 0 at
positioni in

s to 1
w3

Make other changes
to the right ofi in s

to obtains′
w4

Figure 3. A WBS for CBSG problem.

B. From WBS to Pseudocode

To transform a WBS into a pseudocode with "stubs"
for the work-units, one may need to add a good amount of
control logic. We may also need to choose parameters of
the functions for the main-task (root node of WBS) and
some other tasks, and add some variables for use in the
control-logic. Building a WBS first makes building a
pseudocode easier. Figure 4 shows the pseudocode for the
WBS in Figure ; "stubs" for the work-units are shown in
bold. We usen andm instead of "length" and "numOnes"
because of the small column-width of the printed text.
The nextBinString-function returns NULL if there is no
next binary string; otherwise, it returns a pointer to the
binary string generated. The static-variable binString
holds the most recent string (a beginning programmer may
make binString a global variable instead).

495Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 513 / 729

char *nextBinString(int n, int m)
{ static char *binString = NULL;
if (!binString) {

allocate storage for binString;
generateFirstBinString; }

else {
find leftmost position i of change in binString;
if (i not found) binString = NULL;
else { change 0 at positioni to 1;

make other changes in binString;
}

}
return(binString); //NULL, if no next string

}

Figure 4. A pseudocode for WBS in Figure 3.

Figure 5 shows a pseudocode for generating all strings
in B(n, m). We can start a new cycle for strings in
B(n, m), perhaps with one or both ofn and m changed,
and call nextBinString(n, m) repeatedly once the previous
cycle ends, indicated by the return-value NULL.

void genAllBinStrings()
{ char *binStr;
int maxLength = 100;
prompt("Enter string length n >= 1

and <= maxLength");
read(n);
prompt("Enter number of 1’s m >= 0

and <= length");
read(m);
do { binStr = nextBinString(n, m);

if (binStr) write(binStr);
} while (binStr);

}

Figure 5. A pseudocode to generate all strings inB(n, m).

We now present three ways of improving the efficiency
of computing the next binary strings′ from s.

C. Implementation/optimizationissue: IS.1

A close look at the successive strings inB(n, m) shows
to get the next string s′ from an s most of the time the
changes tos are made to few of its rightmost bits.This
means the search for the rightmost "01" ins should be
done from the right to left.A naive code to find the posi-
tion of ’0’ in rightmost "01" ins is shown below.

for (i=n-2; i>=0; i--)
if ((’0’ == s[i])&&(’1’ == s[i+1]))

break;

The problem with this code is that it looks at some of the
trailing 0’s in s more than once.For example, each of the
three underlined zeros ins = 001110111100000, where the
desired ’0’ ins is shown in bold, are looked at twice by

the above code. Abetter way to find the rightmost "01" in
s is shown below; it looks at the same positions ins as
before but they are now looked at only once. In both
cases, ifi ≥ 0 on termination of the for-loop(s), then it
gives the position of ’0’ of the rightmost "01" ins.

for (i=n-1; i>0; i--) //find rightmost ’1’

if (’1’ == s[i]) break;

for (i=i-1; i>=0; i--) //skip preceding 1’s

if (’0’ == s[i]) break

This code is an example of a general principle "Do A
Little and Take Advantage of it" (in short, DALTA, to be
read as "delta"). Another applications of this principle
was in Figure 2(iv) in the construction of nested if-then-
else. To force the better implementation ofw2 shown
above, we decomposew2 in Figure 3 as shown below.

Find the leftmost
positioni of change ins w2

Find rightmost
’1’ in s (if any)w2.1

Skip the preceding
group of 1’s (to the left) w2.2

Figure 6. A decomposition ofw2 in Figure 3.

D. Implementation/optimizationissue: IS.2

A further analysis of the relationship between a string
s ∈ B(n, m) and its next strings′ shows that we can avoid
the for-loop for skipping the ending group of 0’s in s (if
any) and, moreover, we need the for-loop to skip the pre-
ceding group of 1’s only in one case.For this, we keep
track of z(s) = size of the ending group of 0’s in s, k(s) =
size of the preceding group of 1’s in s (which is the same
as the rightmost group of 1’s), and update them as follows:

Casek(s) = 1: z(s′) = z(s) + 1, k(s′) ≥ 1.
Casek(s) > 1: z(s′) = 0, k(s′) = k(s) − 1.

E. Implementation/optimizationissue: IS.3

Now, consider the work-unit w4 in Figure 3. First, we
change ’1’ of the rightmost "01" (at positioni + 1) in s to
’0’. Next, we move the remaining (k(s) − 1) many 1’s of
the rightmost group of 1’s to the extreme right ins and
bring the ending groups of 0’s in s (if any) to the left of
these 1’s. A naive approach for this would be to inter-
change left half of the lastn − i − 2 = k(s) + z(s) − 1 posi-
tions in s with its right half. But a slightly more efficient
method is to simply interchangep = min { k(s) − 1, z(s)}
rightmost items ins with p leftmost items among the last
n − i − 2 positions. Thus,for s = ⋅⋅⋅011110000000, with
k(s) = 4, z(s) = 7, and s′ = ⋅⋅⋅100000000111, we need to
interchange onlyp = 3 positions (shown underlined ins)
among the last 10 = 4+ 7 − 1 positions, instead of inter-
changing 10/2 = 5 positions. Since the rightsidep items

496Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 514 / 729

will be made ’1’ and leftsidep items will be made ’0’, we
don’t need to read these 2p items for the exchange.

F. Final code and its performance

Figure 7 shows a completeC-code for nextBinString-
function based on Figure 4 and the optimizations in
(IS.1)-(IS.3). Thiscorresponds to version V.1 in Table 3;
Table 3 also briefly describes three other versions. Table 4
shows some performance data from the actual measure-
ments of average (over 5 runs) execution time for generat-
ing the strings inB(n, m), without printing. Note that
|B(n, m)| = C(n, m) is largest whenm = n/2. The version
V.1 has the best performance.The left-to-right search for
rightmost "01" in V.4 contributes most to its inefficiency.
The recursive version V.3 has no search for "01" and the
issues (IS.1)-(IS.3) are not relevant; it is less efficient than
V.2 due to the cost of recursive calls. In V.3, we succes-
sively fill the positionsi = 0, 1, ⋅⋅⋅, (n − 1) in the binary
string in that order as follows using two recursive calls: fill
position i by ’0’ (if m < n) and call nextBinString(n − 1,
m) to fill the remaining positions on right, and fill position
i by ’1’ (if m > 0) and call nextBinString(n − 1, m − 1) to
fill the remaining positions on right.

Table 3. Brief description of versions V1 to V4.

V.1: Searches the rightmost "01" from right to left and
adopts optimizations for (IS.1)-(IS.3); see Figure 7.

V.2: Searches the rightmost "01" from right to left but
does not adopt optimization for (IS.1)-(IS.3).

V.3: Uses recursion to generate strings inB(n, m).
V.4: Searches the rightmost "01" from left to right and

does not adopt optimization for (IS.1)-(IS.3).

Table 4. Av er. #(ticks over 5 runs in generating all
strings inB(n, m); a tick = 1/128 sec. The numbers in
parentheses give aver. #(accesses to items of a string
in B(n, m)) in search of the rightmost "01", if any.

Ver- n = 20 n = 30 n = 30 n = 30
sion m = 10 m = 10 m = 15 m = 20

V1 0.6 83.6 419.6 93.6
(1.0) (1.0) (1.0) (1.0)

V2 0.8 156.0 739.8 164.0
(4.2) (5.4) (4.3) (4.4)

V3 0.8 168.2 783.6 172.2
(3.8) (4.3) (3.9) (4.3)

V4 3.8 895.4 4578.2 823.4
(28.5) (48.3) (43.5) (38.7)

IV. SOME ELEGANT CODING TECHNIQUES

We hav e seen in Sections II-III that going from an
algorithm to an efficient implementation is a non-trivial
task. We now briefly describe a few techniques to go a

#include<stdio.h>

char *nextBinString(int length, int numOnes)
{ static char *binString;

static int i, //posn of ’0’ in rightmost "01"
//= -1 if there is no "01"

k, //size(rightmost group of 1’s)
z, //size(group of 0’s at length-1)
firstCall=1;

int j, min;
if (1 == firstCall) {

firstCall = 0;
binString = (char *)malloc((length+1)*

sizeof(char));
for (j=length-1-numOnes; j>=0; j--)

binString[j] = ’0’;
for (j=numOnes; j>0; j--)

binString[length-j] = ’1’;
i = length - 1 - numOnes; //= -1 if numOnes

//= length
k = numOnes; z = 0;

} else if ((-1 == i) || (0 == k)) {
free(binString); binString = NULL;
firstCall = 1;

} else { //this part may set i = -1 or k = 0
binString[i] = ’1’;
binString[i+1] = ’0’;
k--;
if (k > 0) { //move 1’s to right; set

//i, z for new binString
if (z < k) min = z;
else min = k;
for (j=0; j<min; j++) {

binString[length-1-j] = ’1’;
binString[i+2+j] = ’0’;

}
i = length - 1 - k; z = 0;

} else //no move of 1’s needed; set
//i, k, z for new binString
{ z = length - 1 - i;

for (i=i-1; i>=0; i--)
if (’0’ == binString[i])

break;
k = length - 1 - i - z;

}
}

return(binString);
}

Figure 7. Final code for nextBinString-function.

step further in creating a high quality elegant code, with-
out sacrificing the efficiency, simplicity, and clarity. This
involves some post-processing (cleaning) of the code, a
step often ignored by students.One such technique is
code-folding; we describe below two types of code-fold-
ing. See[1][4] for other techniques of good programming.
In Section III.C, we have seen an example of the opposite
process "code-unfolding", where we replaced a loop by
two loops to reduce computation.

A. Folding nested if-then-else

We often see student-codes that do not make proper
use of else-statements.For example, the two if-statements
"if (x > y) x = y; if (x <= y) y = x" can be simplified to "if
(x > y) x = y; else y = x" to avoid the unnecessary test "x
<= y". An extreme case of code-folding is replacing an if-
then-else statement by a simple statement as in replacing
"if (0 == x) y = x; else y = 2*x" by "y = 2*x". Figures
8(i)-(ii) show two slightly more complex cases of code-

497Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 515 / 729

folding, where the code on the right gives the simplified
form. The best solution to the TRC-problem in Figure
2(iv) uses both folding and unfolding of if-conditions.

(i) if (x) if (x && y)
if (y) s = t; s = t;
else u = v; else u = v;

else u = v;

(ii) if (x) if (x && !y)
if (y) u = v; s = t;
else s = t; else u = v;

else u = v;

Figure 8. Nested if-then-else simplified by code-folding.

B. Folding else-part

Given an array of non-zero numbers, suppose we want
to compute posCount = #(positive items) and negCount =
#(negative items). Figures9(i)-(ii) show two inelegant
student-codes for this problem.The first one ignores that
the array-items are non-zero, and both of them ignore the
property "posCount + negCount = #(items)".

(i) for (posCount=i=0; i<n; i++)
if (nums[i] > 0) posCount++;

for (negCount=i=0; i<n; i++)
if (nums[i] < 0) negCount++;

(ii) for (posCount=i=0; i<n; i++)
if (nums[i] > 0) posCount++;
else negCount++;

Figure 9. Tw o inelegant solutions to a simple counting
problem, where each nums[i]≠ 0.

The second solution is more efficient than the first, but
the best solution shown below is obtained by the DALTA-
principle. It is missed even by some graduate students.

for (posCount=i=0; i<n; i++)
if (nums[i] > 0) posCount++;

negCount = n - posCount;

C. Folding or merging of loops

Consider computing the varianceV of nums[i], 0 ≤ i <
n. To use the formulasV = [Σn−1

i=0 (nums[i] − a)2]/n, where
a = (Σn−1

i=0 nums[i])/n, we need two separate loops. If we
use the formulaV = (Σn−1

i=0 nums[i]2) − a2, then a novice
programmer may also use the two loops shown below to
computeΣn−1

i=0 nums[i]2 anda.

for (sum=i=0; i<n; i++)
sum += nums[i];

for (sumOfSquares=i=0; i<n; i++)
sumOfSquares += nums[i]*nums[i];

A better solution is to merge the two loops. Thiscode is

shorter and runs a little faster; it performs half as many
tests "i < n" and half as many increments "i++".

for (sum=sumOfSquares=i=0; i<n; i++) {
sum += nums[i];
sumOfSquares += nums[i]*nums[i];

}

V. CONCLUSION AND FUTURE WORK

We hav e presented here a new approach to teaching
undergraduate-level programming by using the notion of
work-breakdown structure (WBS) as an intermediate step
in applying the well-known stepwise-refinement method
(SRM). Ourfour-step approach consists of: (1) creating a
WBS of tasks in solving the problem, (2) adding control
logic at various levels of the WBS to build a high-level
pseudocode, (3) creating an efficient implementation of
each work-unit (lowest level tasks in the WBS) based on a
detailed analysis and its alternative implementation
choices, and finally (4) applying certain code-transforma-
tions to obtain a more elegant program without loss of effi-
ciency and logical clarity. Our initial experience in using
this approach has been very positive. The students
designed more efficient and elegant code using less time
and with fewer errors. Our future work will involve a
more extensive study of this new approach on a larger stu-
dent population and extending the new approach to OO-
programming.

REFERENCES

[1] J.L. Bentley, Programming Pearls (2nd ed.), Addi-
son-Wesley, 2008.

[2] D. Gries, What have we not learned about teaching
programming.IEEE Computer,Oct. 2006, pp. 81-82.

[3] P.C. Jorgensen, Software Testing: a craftsman’s
approach(3rd ed.), Auerbach Publ., 2008, pp. 22.

[4] A. Hunt and D. Thomas,The Pragmatic Programmer,
Addison-Wesley, 2000.

[5] V. Preoteasa and R.-J. Back, Invariant diagrams with
data refinement,Formal Aspects of Computing,
24(2012), pp. 67-95.

[6] R.-J.Back and J. von Wright,Refinement Calculus: a
systematic introduction,Springer Verlag, 1998.

[7] C. Morgan, Programming from specifications (2nd
ed.),Prentice-Hall, 1994.

498Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 516 / 729

Requirements Engineering: A Process Model and Case Study

to Promote Standardization and Quality Increase

Jose Andre Dorigan

Computer Science Department

State University of Londrina

Londrina, PR, Brazil

jadorigan@gmail.com

Rodolfo Miranda de Barros

Computer Science Department

State University of Londrina

Londrina, PR, Brazil

rodolfo@uel.br

Abstract—In Requirements Engineering, it is very common for

requirements to be poorly specified, inconsistent with the client

needs or badly written. Based on these problems, this paper

presents a model of Requirements Engineering Process for

description standardization, through the reuse of words,

seeking to improve the specification quality. We present a Case

Study to evaluate and identify benefits of its use in an academic

software development. Also, a comparative study between

processes that deal with requirements quality assurance was

developed showing the works difference.

Keywords-Requirements Reuse; Quality on Requirements

Description; Requirements Standardization.

I. INTRODUCTION

Requirements are linked to the main problems of
software development; correct requirements gathering is one
of the most important tasks in software development. In most
cases, they do not reflect the real needs of users, because
they are incomplete or inconsistent [14][17].

A major difficulty is to ensure that the requirements
specification is in accordance with the client ideas [15][18].
Often, there are misinterpretations by the Requirements
Engineer (we will use the abbreviation REng in this work) or
the clients cannot clearly express their real needs [15]. These
specification problems create non-standardized and
inconsistent requirements.

IEEE standards 830 [4] and 1233a [5] indicate several
properties for software and system requirements
specification to obtain a good quality level. Some examples
of these properties are: how to avoid ambiguity, use of
natural language to describe requirements and the possibility
of requirements compliance verification.

The process model proposed in this paper is justified on
the ideas of requirements description standardization
presented in [8]. Utilizing these, we expected a decrease in
development time, during the Requirements Specification, an
increase in quality description and confirmation of the client
needs by validating the requirements created.

Within this scenario, the objective is to propose a model
of Requirements Engineering Process to help with
description standardization and reuse of words used in
requirements description, in order to increase the
requirements specification quality and to be compliant with
the client needs.

The structure of this paper is as follows: Section II
exposes the proposed model of Requirements Engineering
Process, in Section III, we present a Case Study to evaluate
and validate the process identifying benefits and
considerations about its use. Section IV presents the related
work regarding processes that deal with requirements quality
assurance and a Comparative Evaluation of the proposed
process. Finally, in Section V, we present our Conclusion
and Future Work.

II. THE PROPOSED PROCESS

In this section, we present the proposed process model to
provide assistance to the REng in requirements analysis,
specification and validation. The process seeks to increase
the description standardization and minimizes the
inconsistencies occurrence in requirements.

The process model is divided into three phases: Analysis,
Specification and Validation. We also present a description
for each phase, showing what is covered in that phase, the
goals and its input and output artifacts.

A. Analysis

Input Artifacts: Description of client needs.
Description: 1

st.
 Step: The process begins when the

client and the REng interact in iterative and incremental
meetings, debating the system requirements. These meetings
may be held where the client deems necessary; in most cases
they happen at the client’s company. Every new meeting
resumes the issues discussed and the needs already identified
in an incremental manner, until a final consensus is
established.

2
nd.

 Step: Next, the REng transcribes the needs, passed
by the client, and identified as possible system requirements.

Goals: Previous works show that this is the moment with
a strong probability that the information being passed by the
client is inaccurate or it does not truly represent the client
needs [10][15][18]. So, in this phase, it is extremely
important that the REng gets as much information as
possible about the client needs for the system, so that he can
translate these needs into requirements.

Output Artifacts: Description of needs transcribed by
the REng.

B. Specification

Input Artifacts: Description of needs transcribed by the
REng.

499Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 517 / 729

Description: 1
st.

 Step: Having knowledge about client
needs, the REng can identify, or create, what we call General
Context. These are words that will identify where the
specified requirement will be contained. It is used, for
example, for a project developed in various modules, as the
requirements of each module will be separated from the
General Context identifying them, facilitating future search.

The Specific Context has the same function as the
General Context, but makes the area where the requirement
will be included more specific. Using the same idea from the
example above, in a project with several modules, the
Specific Context will point within each module, where the
requirements being specified will be contained.

2
nd.

 Step: After the contexts creation, the REng describes
into requirement, using words in natural language, the need
already identified by the client.

The process model does not use a treatment for
synonymous words. Each new word typed, if it has not
previously been validated, is classified as new word and not
reused, even if it is a synonymous of a word already
validated and stored in RHBD.

In Figure 1, we show an example of the beginning of a
requirement description. We are also presenting some
examples of suggested words.

Figure 1: Requirement description example

3

rd.
 Step: Following the description, our process has a

requirement classification by functionality. According to
[17], they are treated as Functional Requirements and Non-
Functional Requirements.

The differential of the proposed process occurs during
the 1

st.
 and 2

nd.
 steps of this phase. As the words are

described, both in General and Specific Context and in the
requirement description, we propose an aid to the REng
when the requirement is being described. Words suggestions,
previously used in another specification, will be offered to
the REng, which he can use or not to continue describing the
requirement.

It is important to point out that, even the reuse of words
proposed by the model being optional to the REng, if the
words are not reused this will reflect in the requirement
validation. The expected quality will not be achieved,
resulting in a negative validation.

For the proposed model, a requirement will be complete
only when connected to a General and Specific Context, its
description is complete and classified as Functional or Non-
Functional Requirement.

Goals: In this phase, the process has four goals:

 Facilitate the requirements separation, using
General and Specific Contexts, based in the
[2][3][10] works;

 Clarify ambiguities that may occur in a larger
project, when some requirements become much like
others;

 Description Standardization, since the REng has
available words suggestions;

 Reuse of words, differently of the proposed reuse in
[11], our process proposes the reuse of already used
words, and points the possibility of partial or total
requirement reuse.

Output Artifacts: Requirement Specification.

C. Validation

Input Artifacts: Requirement Specification.
Description: 1

st.
 Step: According to the rigorousness

levels pre-defined by the REng, the description of General
and Specific Contexts and the requirement description are
evaluated and validated.

The validation occurs together with the client, based on
what we call Requirements History Database (RHBD). It
contains all the words utilized in any requirements
specification in any project within the organization.

When we deal with requirements validation based on
RHBD, some care is needed to ensure the new specified
requirement, which uses words from others validated
requirements, has the desired quality [13]. For this reason,
the process model proposes a complete requirement
validation (General and Specific Context, Description and
Classification), with the client, checking the consistency of
all these items.

2
nd.

 Step: If REng and client understand the validation as
negative, we encourage the change of items (general and
specific context and requirement description) that contains
inconsistencies. After these changes are made, a new
validation may occur. A negative validation means that the
client need was not correctly translated in the form of
requirement. This may occur because he has passed incorrect
information or the REng cannot correctly identify the
requirement.

3rd. Step: If REng and client understand the validation
as positive, we propose that all items are stored. They will be
in a list we call Requirements List, containing all the
requirements identified, and then stored in the RHBD. A
positive validation represent that the client was able to read,
understand and validate the requirement specified by the
REng.

Goals: Validate if the described requirement reflects the
needs described by the client, and if it contains the proposed
description standardization and expected quality. At this
moment, the client may realize the translation of his need,
previously expressed, to a requirement for the system. Thus,
his analysis, along with the REng, can confirm that it is
actually the desired requirement.

Output Artifacts: Requirements List containing all the
specified requirements.

We exemplified, in Figure 2, the process model proposed
by this paper, with its phases and input and output artifacts.

500Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 518 / 729

Figure 2: Proposed Process Model

At the end of all meetings, after all requirements are

defined and validated, it would be possible to create a
Software Requirements Document using the Requirements
List the proposed process. Our process does not specify a
model or a default template, because it is not the intention of
this work. We only seek to offer all requirements previously
validated and stored, assigned to a software project under
development.

III. CASE STUDY

For this case study, we selected two modules of an
academic project of the Software Factory – GAIA. It is
located in the Computer Science Department at the State
University of Londrina. The modules have been developed in
partnership with the University Dental Clinic (UDC), an
agency owned by the University. The project was to deploy
an electronic health record supporting the activities
developed in the Odontology Department.

The objective of this case study is evaluate the quality
increase in the requirements description, using the process
model proposed, and minimizes the occurrence of non-
standardized requirements.

We use the concepts presented in [6][16] to report,
quantify and evaluate the results obtained during this study.

The development team was composed of four graduate
students in the role of the implementation team, and two
master students in the role of the REng. In this study, the role
of the Client was played by teachers responsible for the
clinical (disciplines) of Pediatric Dentistry and Geriatric
Dentistry attended by UDC.

In this case study, the master students playing the role of
REng have only academic experience, so the proposed
process was applied without the experience of an expert in
the software development industry. However, the analysis
and results of the case study were consistent and within the
expected ranges.

Both modules were located in the same project, but they
have been developed separately, such that the results of the
requirements specification could be compared. The Pediatric
module used the proposed process and the Geriatric module
was developed without the use of the proposed process.

A. Data Analysis

For the data analysis, five items were chosen, reflecting

the metrics that describe the data for the two modules. Thus,

we could evaluate the effectiveness of the proposed process.

In Figure 3 we present these metrics.

Figure 3: Quantitative Data Analysis

We present in Figure 4, four examples of requirements

for the Pediatric module obtained using the proposed

501Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 519 / 729

process model, and for the Geriatric module without the use

of the model.

Figure 4: Requirements obtained in the Case Study

These examples were chosen to demonstrate the results
qualitatively. In addition, they have been specified in the first
iteration of each module, i.e., some of them have
inconsistencies which will be discussed below.

1) Requirements Approved by the Client
This metric consisted in the analysis of the entire

description of the client needs, specification of these needs in
the requirement form, and finally, the validation of the
requirements created by the REng and client. In this case
study, 2 meetings were necessary until all requirements were
validated. The 1

st.
 meeting consisted in one iteration and the

2
nd.

 meeting in two iterations, with total of three iterations as
indicated in Figure 3.

Analyzing the data presented, in the first iteration the
process achieve 80% of requirements approval against 58%
without the process. In the second iteration, the proposed
process model has reached 100% of requirements approved
against 70%, requiring a third iteration, to achieve 100% of
requirements approved.

This metric analysis allows us to identify that using the
proposed process model has increased by 22% the number of
requirements approved in the first iteration and by 29% the
number of requirements approved in the second iteration.

Another important fact is the reduction in the number of
iterations in the meetings with the client. This reduction was
achieved through the reuse of words based on RHBD, and
also the experience of the REng. These make it possible to
translate the client needs more quickly, increasing the
specification quality.

2) Description Problems
Here, we present the number of requirements that have

experienced problems in their description. They could be
writing errors or requirements that do not consistently
represented the need described by the client.

In the requirement of Example 4, Geriatric module, there
is an inconsistency which generated a negative validation by
the client. The description:

“The system will allow the dentist to evaluate the
patient's attention through a test.”

presents an error that was corrected in the 2

nd
 iteration, since

the client need was:

“The module must allow the dentist to evaluate and
record, through a field, the degree of the patient attention,

when asked to recall the name of a shown object.”

In the same Example 4, now in Pediatric module, the

requirement was positive validated in the first iteration. The
description:

“The module shall include, as the 4

th
 item on the page,

the Alimentation History, with options to indicate how many
times a day the patient feeds on each item.”

correctly denoted the client need, and have the expected
standardization the model proposes.

From the 35 requirements specified in the Pediatric
module, 5 requirements were identified with some of the
problems cited, while in the Geriatric module, the number of
problematic requirements was 12 out of 34 requirements.
This data indicates a decrease in the amount of requirements
description problems by 21% when using the proposed
process model.

3) Context Ambiguity
This metric was used to evaluate the effectiveness of the

process model 2
nd

 Phase. With the identification and
allocation of General and Specific contexts for the specified
requirement, this became distinguishable from other similar
requirements, making it clear where in the project the
requirement specified is contained.

To demonstrate the results of this metric we used the
requirement from Example 2, which shows how General and
Specific contexts helped to minimizes the ambiguity
occurrence in the requirements.

In Figure 5, we exemplify how the requirement was
treated using the ideas proposed by the process model.

Figure 5: Use of Requirement Contexts

In comparison, the same Example 2, but now the
specified requirement for Geriatric module presents a context
ambiguity inconsistency. In the description:

“There should be a location on the page to store the

history of points obtained by the patient.”

it is not clear where this requirement is inserted into the
project, much less what’s the module it belongs to or what
would this "location on the page'' the client expects. We
could easily transport this requirement to another project

502Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 520 / 729

module with high consistency possibility within this module
as well.

There was no context ambiguity in the requirements
specified using the proposed process model. However, there
were 6 inconsistencies with context ambiguity in the
requirements specified in the Geriatric module. This data
allows us to identify an improvement by 17% concerning
problems of context ambiguity of the specified requirements.

4) Number of reused words
The number of reused words in the requirements

description was also chosen as a metric, for evaluating the
effectiveness of the proposed process model.

All words that were reused at least once in the
requirements specification were identified in this analysis.
There were also words initially contained in RHBD, so if
these words were used they also are identified as reused.

Another important item is the initial word amount
contained in RHBD. For both modules, there were 187
available words in RHBD. As the requirements of Pediatric
module were specified using the proposed process model
these words were used in 2

nd.
 Phase of the process. In the

Geriatric module, which did not use the process, we verified
if these words were used.

In the Pediatric module 853 words total were used to
specify 35 requirements; 777 words were reused, generating
a reuse percentage of 91%. In the Geriatric module, 633
words were used to specify 34 requirements; out of these,
530 words were reused, generating a percentage of 83%
reuse. Through these data, we can confirm an increase of
7%, by using the proposed process model.

5) Number of Non-Reused Words
We also use a metric to evaluate the number of non-

reused words identified. Thus, we could confirm how the
reuse of words affects the requirements description.

To calculate this metric, all words used in the
requirements specification have been checked, and if the
word was used only once it was identified as not reused.

In the Pediatric module, 76 words were used only once,
making 8.9% of the total words. In the Geriatric module, 103
were used only once, making 16% of the total. These data
shows a reduction of 7% in non-reused words.

The results of the last metrics are shown in Figure 6.

Figure 6: Analysis of Reused and Non-Reused Words

They demonstrate that the relationship is equal to an
inverse proportionality, with 7.4% increase in the reuse and
7.3% decrease in non-reuse.

Finally, we emphasize that, this case study objective was
to evaluate the quality increase in the requirements
description by using the proposed process model, reducing
the occurrence of non-standardized requirements.

The requirements specified using the proposed model
had a better description, because they were based on words
already used and validated by the client, allowing its
standardization. The requirements specified without the help
of the model were dependent on the REng knowledge and
experience, confirming what had already been cited in
[14][15][18].

IV. RELATED WORK

In the literature, there are several scientific papers and
books dealing with the requirements quality assurance. They
point out benefits and provide experiences that help us better
understand how to create and maintain a requirements
specification with quality.

Thus, through a literature review, three processes dealing
with requirements quality assurance were selected. Others
could be chosen, which directly address the phases of
requirements engineering process, but the purpose of this
section is to present processes using divisions in phases,
contexts and perspectives in order to improve the
requirements treatment receive during their specification.

In their work, Chen et al. [2] described a technique that
uses a pre-processing of natural language in software
requirements creation. This pre-processing makes use of
general and specific fields to separate the requirements. After
this, the technique does a search for words, called
"objective" by the author, which are described as the central
part of the requirement.

According to Cabral et al. [1], the application of
systematic reading techniques such as Perspective-Based
Reading (PBR) and nonsystematic as Checklist during the
requirements analysis has brought good results. In these
techniques, several inspectors inspect a software context
document looking for errors or inconsistencies before
transcribing the requirements document. These errors are
then evaluated to compare the two techniques.

A model of Requirements Engineering Process has been
proposed in the work of Pandey et al. [12]. The authors cover
the entire area of requirements engineering, proposing the
division into four phases: Requirements Elicitation and
Development, Requirements Documentation, Requirements
Verification and Validation and lastly Requirements
Planning and Management. The requirements are stored in a
Software Requirement Specification (SRS) and the authors
point out that the differential of their work is, besides
covering all areas, enabling the Changing Management in
requirements already agreed.

A. Comparative Evaluation

This subsection presents a comparative evaluation of the
proposed process model and the works discussed. Figure 7
shows this comparison between processes.

503Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 521 / 729

It is also important to note that the comparison made
sought papers that deal with quality assurance requirements
through processes and techniques to achieve a better quality
specification.

With this comparison, we want to reinforce the ideas
already identified in [8][9], and served as base for creating
the process model presented in this paper. These ideas

concentrate on the use of specific areas to treat and group
requirements, using explicit contexts to prevent
inconsistencies and reduce redundancies in the reuse of
conflicting requirements. They also present a writing
standardization through the reuse of words that will form the
requirements.

Figure 7: Comparison between Processes

This analysis helps us realize that the requirements

description standardization, as well as their total or partial
reuse are significant issues in the search for quality increase.

Even when studies address requirements quality
assurance in a software specification, these items have a very
favorable area for research and development.

The proposed process model differs from the works
presented by the following:

 In the requirements specification, when it is
proposed the suggestion of validated words for the
requirements description;

 In the requirements validation, with client and the
REng validating the requirements, using levels
rigorousness, so the words used and also the
requirements created can be reused;

 In the grouping requirements, offering the division
into general and specific contexts and also
functionality;

 In the description standardization, through the reuse
of words, always seeking to achieve a requirements
quality increase.

V. CONCLUSION AND FUTURE WORK

The description, documentation, and requirements reuse
were the main focus of the paper presented. Also, problems
encountered in the requirements description, non-
standardization and inconsistencies with client needs, were
some of the issues that we tried to expose and propose a way
to improve.

The proposed process model improves the requirements
written standardization and minimizes the chance of
description inconsistencies.

The case study showed that it is possible to
obtain quantitative and qualitative improvements at the time
of specification, corresponding to 22%; in the reduction of
requirements description and ambiguity problems, with gains
of 21% and 17% respectively; and finally allowing an
increase of 7% in the reuse of words that compose the
requirements.

As future work, we seek to improve the requirements
documentation proposed by the process model, provide an
alignment between the proposed process and the
Requirements Management, so that, in addition to being
treated, requirements can also be managed.

504Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 522 / 729

The case study presented allowed the evaluation of the
process model using two different modules, which is
comparable with a software development. Our next step is to
apply the process model in a same module or software, and
evaluate the results, obtaining even more data to support the
process model effectiveness.

We also seek to develop and use a CASE tool that
implements all concepts presented in the process, so we can
use computer assistance and further increase the benefits
obtained. In addition, we can evaluate the performance of the
RHBD when operating with a very large number of words.

REFERENCES

[1] M. S. Cabral, F. Alencar, J. Castro, O. Pastor, J. Sánches,
“Aplicação de técnicas de leitura durante a análise de
requisitos”, WER08 - Workshop em Engenharia de
Requisitos, pp. 193-204, Barcelona, Catalonia, Spain, 12-13
September 2008.

[2] H. Chen, H. Keqing, P. Liang, R. Li, “Text-based
requirements pre-processing using nature language processing
techniques”. International Conference on Computer Design
and Applications (ICCDA), pp. 14-18, Qinhuangdao, Hebei,
China, 25-27 June 2010.

[3] J. Cybulsky, and K. Reed, “Requirements classification and
reuse: crossing domains boundaries”. 6th International
Conference on Software Reuse, pp. 190-210, Viena, Italy,
2000.

[4] IEEE 830: Recommended Practice for Software
Requirements Specification, http://ieeexplore.ieee.org/xpls/
abs_all.jsp?isnumbber=15571&arnumber=720574&count=1
&index=0, retrieved: July, 2012, 1998 (R2009).

[5] IEEE 1233a: IEEE Guide for Developing System
Requirements Specifications, http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=741940&contentType=Standards
, retrieved: July, 2012, 1998.

[6] B. Kitchenham, et al.: Evaluating guidelines for reporting
empirical software engineering studies. Empirical Software
Engineering 13 (1), October 2007, pp. 97-121,
doi:10.1007/s10664-007-9053-5.

[7] A. V. Knethen, B. Paech, F. Kiedaisch, F. Houdek,
“Systematic requirements recycling through abstraction and
traceability”. RE - Requirements Engineering, pp. 273-281,
Essen, Germany, 2002.

[8] G. Kotonya, and I. Sommerville, Requirements Engineering:
Processes and Techniques. 1 ed. Wiley, 1998.

[9] W. Lam, T. A. McDermid, A. J. Vickers, “Ten steps towards
systematic requirements reuse”. Third IEEE International
Symposium on Requirements Engineering, pp. 6-15, 1997.

[10] A. van Lamsweerde, Requirements Engineering: From
System Goals to UML Models to Software Specifications. 1
ed. Wiley, 2009.

[11] B. Moros, C. Vicente-Chicote, A. Toval, “Metamodeling
variability to enable requirements reuse”. EMMSAD -
Exploring Modeling Methods for Systems Analysis and
Design, pp. 140-154, Montpellier, France, 16-17 June 2008.

[12] D. Pandey, A. K. Ramani, U. Suman, “An effective
requirement engineering process model for software
development and requirements management”. International
Conference on Advances in Recent Technologies in
Communication and Computing, IEEE Press, pp. 287-291,
2010.

[13] K. Pohl, Requirements Engineering: Fundamentals,
Principles, and Techniques. 1 ed. Springer, 2010.

[14] R. S. Pressman, Software Engineering - A Practitioner's
Approach, 7 ed. McGraw-Hill, 2011.

[15] S. Robertson, and J. Robertson, Mastering the Requirements
Process. 2 ed. Addison Wesley, 2006.

[16] P. Runeson, and M. Höst, Guidelines for conducting and
reporting case study research in software engineering.
Empirical Software Engineering 14 (2), April 2009, pp. 131-
164. doi=10.1007/s10664-008-9102-8.

[17] I. Sommerville, Software Engineering, 8 ed. Addison Wesley,
2007.

[18] I. Sommerville, and P. Sawyer, Requirements Engineering: A
Good Practice Guide. 1 ed. Wiley, 1997.

505Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 523 / 729

Annotated Component-Based Description for Application Composition

Christian Brel, Philippe Renevier-Gonin, Anne-Marie Pinna-Déry, Michel Riveill

Laboratoire I3S - UMR7271 - UNS CNRS

2000, route des Lucioles - Les Algorithmes

BP 121 - 06903 Sophia Antipolis Cedex – France

{christian.brel, philippe.renevier, anne-marie.pinna, michel.riveill}@unice.fr

Abstract – One possible way of developing applications faster is

by composing existing applications. In order to support

developers this way, we propose a composition approach

manipulating both Functionalities and User Interfaces. We

present a model of annotation for describing Component-

Based applications. By tagging the components with their “ui”

and functional concerns, we take into account the UI part of

application at a same level as business part. Thanks to such

annotations, we define a substitution between components in

order to merge controls, inputs or outputs.

Keywords–application composition; ontology; component-

based architecture

I. INTRODUCTION

Nowadays, the trend in software usage is to consume
specialized applications. End-users can use the same
functionality in several situations, i.e., with several
applications. For example, Google Maps is often integrated
for geo-localization. In an idealistic way, developers must be
able to reuse functionalities without (or with minor)
developments. To support developers in their task of
combining features from several component-based
applications, we contribute towards reducing developers’
efforts. We propose an application composition through its
User Interface (UI). Our composition preserves the
functional linking between components of the applications.
Considering a UI as an assembly of components, we explore
the composition via their ports. Using the fact that a port can
be provided by a component or required by it, we add some
annotations about the role the port plays for its attached unit.
The added information lets the different components to be
combined to obtain a running application.

Section II presents a description of related work. Section
III describes the model that an application has to respect in
order to be composed. A case study to illustrate our proposed
model is shown in Section IV. After the presentation of the
composition by substitution in Section V, Section VI details
the substitution between two elements. The paper finished
with a discussion about our work in Section VII and a
conclusion in Section VIII.

II. RELATED WORK

The described problem is naturally related to the state-of-
the-art in software composition and UI composition. For
software composition, “Composition can be defined as any
possible and meaningful interaction between the software

constructs involved” according to [5] where a taxonomy of
composition mechanisms (e.g., orchestration, aspect oriented
programming, etc.) is defined. When the application code is
available, solutions, such as aspect oriented programming,
are meaningful. On the contrary, when the application code
is not available, we can only access to published interfaces
and we have to use connectors [7] to perform the
composition.

For UI composition, we identify two different
approaches. In the first approach, the UI composition is
based on abstract description, like in UsiXML [6], in the
ServFace project [8], Alias [10] and in Transparent Interface
[4]. Those models are defined by XML languages. Final UI
are obtained thanks to transformations of those models. In
the second approach, the UI composition is based on “UI
Components”. These ones are reusable high-level widgets,
available in repositories. “UI components” are reused by
applying design pattern (code level) and detecting pattern of
use (UI level). Compose [3], COTS-UI [1], CRUISe [9],
WinCuts [12], UI façades [11] and on-the-fly mashup
composition [13] illustrate such kind of UI composition.

From the analysis of these works, we note that we can
compose the UI (respectively, the functional parts) of former
applications, but the other side (respectively, the UI) has to
be built again. Moreover, none of these works allows the
reusing of former applications with supporting replacement
of UI parts. Our goal is to compose applications and in
particular their UI, not only by juxtapositions, but also by
substitutions between former components of the UI. To
obtain a functional application, we also want to preserve
former functional links between components of application,
in particular between the UI and the business part.

Our proposition is based on applications made of black-
box components. We propose a composition model based on
roles and ports of those components. The roles are expressed
as annotations. The UI are also represented as component
assemblies. The composition will be performed by
transforming the manipulation on an abstract representation
to manipulation on components.

III. APPLICATION MODEL BASED ON PORTS AND ROLES

In order to be compliant with our composition method, the
existing applications must follow a clear separation between
the functionalities (business part) and the UI (separation of
concerns). A Component may belong to the two parts. Each
Component is described with its ports that we can tag with
one of the application concerns, e.g., a port used for a UI

506Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 524 / 729

concern will be tagged as “UI”. Each Component may have
required ports (ports required to obtain desirable behavior of
another Component) and may have provided ports (ports that
Component can provide to other Components). Moreover,
each port of a Component must be annotated with a “role”
representing the involved behavior of the Component. This
role can be Trigger, Input or Output. Trigger describes the
fact that through its attached port, the Component can call
another Component. It can be the button to trigger a
particular action or it can be an observable “Component”
notifying its observers. Input is used to describe a port to
get some data. The Component with an Input port can
provide data to other Components (like an “input text” in UI
or any “Getter” facet of a Component). Output is used to
describe a port to set some data. The Component can receive
data to store or to display (like a “list” or a “label” in UI or
any “Setter” facet of a Component). An application to
compose must be provided with the annotations of ports of
its Components. Those annotations are about roles (trigger,
input, output / provided or required) or kind (“UI” or not,
i.e., Business). In the remainder of the paper, we use the
following acronyms: rt - “required-trigger”, pt - ”provided-
trigger”, ri - “required-input”, pi - ”provided-input”, ro -
“required-output” and po - ”provided-output”.

IV. ILLUSTRATION WITH A CASE STUDY

We consider two applications:
1. “Movie Theaters”, shown in Figure 1, an

application displaying movies played in a cinema.
There are a text field to entering the name of the
cinema (E1), a “get played movies” button (E2)
and a display area to list the played movies (E5).
The list can also be obtained by validation with
“Enter” key in text field (E1).

2. “Cinema Localization”, shown in Figure 2, an
application displaying the location of a cinema on
a map (e.g. using Google Maps). Its UI is also
simple: a text field to entering the name of the
cinema (E6), a “show cinema place” button (E7)
and a map to show the localization of the cinema
(E10).

These two applications could be composed in a different
way, in order to obtain new applications. A possibility is to
have at the same time both the list of the displayed movies
and the localization of the cinema. A result of the
composition’s UI is shown in Figure 3.

V. COMPOSITION BY SUBSTITUTION

An application appi is a set of Components {En}. We
define “Ports”, the set of ports of a component, and
“UsedPorts”, the set of used ports:

Ej  appi, Ports(Ej) ={ Pn } is the set of the n ports of Ej
UsedPorts(Ej, appi) = { Pk } is the set of used ports of Ej in appi

First, we define the role of the ports and their
connectivity as the Linkable property, independently of the
application in which components are used:

Ej  appi1, Pm  Ports(Ej), Role(Pm)  {pi, po, pt, ri, ro, rt}
isProvided(Pm)⟺ Role(Pm){pi,po,pt}
isRequired(Pm)⟺ Role(Pm){ri,ro,rt}

Ek  appi2,Pm  Ports(Ej), Pn  Ports(Ek)
We denote rm = Role(Pm) and rn = Role(Pn)

Linkable(Pm, Pn)⟺(rm = ro and rn = po) or (rn = ro and
rm = po) or (rm = ri and rn = pi) or (rn = ri and rm = pi) or

(rm = rt and rn = pt) or (rn = rt and rm = pt)

We define a link between two components through two
connected ports in an application as a property Link:

Link((Ej, Pm), (Ek, Pn), appi) is true if Ej and Ek are linked in a
appi through the ports Pm and Pn.

Such link is possible only if Ej belongs to appi , Ek belongs to
appi, Pm belongs to UsedPorts(Ej, appi), Pn belongs to
UsedPorts(Ek, appi) and Linkable(Pm, Pn). For each
Component Ej, we define the set Links(Ej, Pm, appi):

Links(Ej, Pm, appi) = { (Ek, Pn), Ek  appi,
Pn  UsedPorts(Ek, appi) / Link((Ej,Pm),(Ek,Pn),appi) }

For all ports, we define a property “isUIPort” indicating
if the port has a “UI” concern and a function
“isUIPortInApp” for contextual “UI” concern:

Ej,Pm  Ports(Ej):
 isUIPort(Pm)⟺isProvided(Pm) and Pm is tagged “UI”
 isUIPortInApp(Pm, appi) ⟺ (Pm  UsedPorts(Ej, appi)

and isUIPort(Pm)) or (isRequired(Pm) and (Ek,Pn) /
isUIPort(Pn) and Link((Ej, Pm),(Ek, Pn), appi))

Our composition is made through the construction of a
new application, appr, initially defined as the union of all
former applications:

appr = 1nb appi where nb is the number of
applications being composed. Ej  appi:

 Ej  appr
 UsedPorts(Ej, appr)= UsedPorts(Ej, appi)

 Ek  appi, PmPorts(Ej), Pn Ports(Ek), Link((Ej,
Pm), (Ek, Pn), appr) = Link((Ej,Pm),(Ek,Pn), appi)

 Pm  Ports(Ej), isUIPortInApp(Pm, appr) =
isUIPortInApp(Pm, appi)

The new application appr will change with the successive
substitutions. A substitution is made between a selection of
pairs {(Ej, Pm)i} and a conserved pair (Ek, Pk). We define a
“subst” function to operate substitution. In a few words, the
substitution creates several connectors [7] in order to replace
previous links involving substituted pairs by the kept one.

We denote PreLinksk the value of Links(Ek,Pk,appr) before the
substitution. We denote card(PreLinksk) the number of Components
in PreLinksk , i.e., the number of Components linked with Ek
through Pk.

For each pair (Ej, Pm)i, we denote PreLinksi the value of
Links(Ej, Pm, appr) before the substitution. We denote
card(PreLinksi) the number of Components in PreLinksi i.e., the

507Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 525 / 729

number of Components linked with Ej through Pm. We denote sel
the set of the substituted pairs:

sel = {(Ej, Pm)i, i∈{1…z}}.
(Ej, Pm)i ∈ sel, Pm  UsedPorts(Ej, appr) ;

isProvided(Pm)= isProvided(Pk)

We denote nk(i) :

 nk(i) = 0 if the substitution doesn’t impact previous

link with (Ek, Pk) , i.e., the new link and previous

links are independent.

 nk(i) = card(PreLinksk) if the substitution impacts

previous link with (Ek, Pk), i.e., the new link and

previous links are dependent (merged).

Figure 1. Movie Theater, UI and Components of application.

Figure 2. Cinema Localization, UI and Components of application.

If (nk(i) > 0 (Ej, Pm)i) then PreLinksk  Links(Ek, Pk,

appr) = , i.e., all connectors also replace the previous links
involving the conserved pair (Ek, Pk) like in Figure 4. For
each Component in sel, UsedPorts, Link and isUIPortInApp
are impacted by substitution.

subst : 𝒫(PAIRS) × PAIRS → 𝒫(PAIRS)
subst(sel,(Ek, Pk))= { (Ecj,a, Pmj,a)i x (Ecj,a,Pnj,a)i x  (Ecj,a,Pky)i,

i∈{1...z}, y∈{1...nk(i)}, a∈{1...card(PreLinksi)} }
(Ej, Pm)i∈ sel, Pm  UsedPorts(Ej, appr)
(Ej, Pm)i∈ sel, Links(Ej, Pm, appr) = 

(Ej, Pm)i∈ sel,a∈{1...card(PreLinksi)}, Ecj,a is a new
Component of appr / {Pmj,a,Pnj,a }  Ports(Ecj,a) and

{Pmj,a,Pnj,a}  UsedPorts(Ecj,a,appr) and Linkable(Pm,Pmj,a) and
Linkable(Pnj,a, Pk)

Ecj,a, (Ecj,a , Pnj,a) ∈ Links(Ek, Pk, appr)
(Ej, Pm)i, (Ecj,a,Pmj,a) / Links(Ecj,a ,Pmj,a , appr) = PreLinksi

(Ecj,a,Pmj,a), (Ej, Pm)i / Links(Ecj,a ,Pmj,a , appr) = PreLinksi

(Ej, Pm)i, nk(i)>0 => y ∈{1..Card(PreLinksk)}, Ecj,a is a new
Component of appr / {Pky}  Ports(Ecj,a) and

{Pky}  UsedPorts(Ecj,a,appr) and (E,P)∈ PreLinksk /
(Ecj,a, Pky) ∈ Links(E,P,appr)

As a result, Components no longer involved in links left
are removed. The substitution of any pair (Ej, Pm) by a pair
(Ek, Pk) is based on the annotations. The role of a port is used
to define possible substitutions and the way connectors are
used. This is explained in the Section VI. The use of the kind
of ports (“UI” or not) is used as following. If before the
substitution isUIPortInApp(Pm,appr) is different from
isUIPortInApp(Pk,appr), then the substitution changes the

508Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 526 / 729

concern implied in the link, i.e., an input field may be
replaced by a data coming from a “Business” Component.
That is possible but in such case we could emit a notification.

VI. SUBSTITUTING TWO PAIRS

We now consider substitution between two pairs: a
replaced pair and a conserved pair. The function “subst” can
replace n pairs, but it is just n substitutions performed in
parallel. We present the compatibility between the two pairs
according to the role of the conserved pair.

In order to perform a substitution between two pairs
(Component, Port with a role), we need to add a connector
between the substituted pair and the conserved one [7].
Connectors may have several uses: (i) adapting formats of
the data or (ii) defining a policy of substitution or (iii) adding
a role when the new role makes the Component the “caller”.
Thanks to the identification of the Connector and its roles,
we can know define the “subst” function for two pairs.
Indeed, in Sections VI.A, VI.B, VI.C and VI.D, we describe
both the definition domain for two pairs and the results.

Figure 3. A Result for composition of “Movie Theater” with “Cinema Localization”.

A. Keeping a Provided Output

When keeping an output, there is no constraining on the
role of substituted ports. By placing a connector before the
Component having port playing the Output role, the
substitution can be performed. This is a case in the “subst”

function where nk(i) > 0 (Ej, Pm)i.
First, the connector may be used to adapt the format of

data to display if the substituted role is also Output (a
Conversion Connector in [7]) or to define a policy of
displaying data if the substituted role is also Output (a mix
between a Conversion Connector and a Data Access
Connector in [7]). Such policy may be displaying all data,
the last received data, etc. Secondly, the connector may also
be used to store displayed data and can restitute them when
asked if the substituted role is an Input (see Figure 4) (a Data
Access Connector in [7]). Thirdly, the connector may also be
used to generate an event when the output is updated if the
substituted role is a Trigger (an Event Connector in [7]).

In Figure 4, the connector C1 can store displayed data
from (E3,ro1) and can restitute them to (E8,ri1) when asked.
With that solution, E5 doesn’t need to have a port playing a
role of Input, but the Connector has both provided port with
Output role for (E3,ro1), required port with Output role for
(E5,po1) and required port with Input role for (E8,ri1).

B. Keeping a Provided Trigger

As “Trigger” is the only one port’s role that makes the
associated Component a “caller”, the role of the port in
substituted pair must be also a “Trigger”. We place a
connector after the kept “Trigger” for two reasons: (i)
adapting the format of the “event” and (ii) defining the
policy of the substitution (a mix between an Event Connector
and a Procedure Call Connector in [7]). The connector can
proceed a sequence between the two triggered actions or put
them in parallel etc. This is a case in the “subst” function

where nk(i) > 0 (Ej, Pm)i.

509Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 527 / 729

C. Keeping a Provided Input

An “Input” cannot replace an “Output” because of the
direction of the data. Conversely, an “Input” may replace a
“Trigger” (see Figure 5). The connector placed before the
kept port can provide on demand (a Data Access Connector
in [7]). At the same time, when called, the connector can
generate an event and so it can “call” the requiring port (an
Event Connector in [7]). The “Trigger” is “on access” (i.e.,
when the value is got). Of course, an “Input” can replace
another “Input”. In that case, the connector is used to adapt
the provided data to what is expected (a Conversion
Connector in [7]). Keeping an “Input” is a case where nk(i)
could either be 0 (pi replacing pi) or be greater than 0 (pi
replacing a pt).

Figure 4 : (E5, po1) replacing (E6, pi1), connector C1 before (E5, po1.)

D. Keeping a Required port

In the “subst” function, if Pk is a required port, all
substituted pairs must be made of ports with the same role as
Pk. Even through a connector, the requirements could not be
changed: a setter requirement (required output) could not
become a getter requirement (required input). So, even if a
connector could have two ports, one “po” and “ri” to be
connected to a “pi”, inside that connector, the setter used by
Ek could not be functionally translated in a getter. The
connector could not appropriately exploit the value coming

from Ek. Such substitutions are cases where nk(i) > 0 (Ej,
Pm)i. All connectors are not only conversion one [7] but they
may: (i) merge all input or trigger if Role(Pk) is ri or rt or (ii)
call of setter on output if Role(Pk) is ro.

E. Towards Automatic Substitution

From this substitution operator, we can define an operator

at a higher level. The objective is to compose two

Components from the new application appr. Based on

substitutions between ports of Components, we can define

the substitution of two Components. Let E1 be the removed

Component and Ek be the kept Component. For each P

belonging to UsedPorts(E1, appr), we define:

CompatiblePorts(P, Ek), the set of all possible port P’ of Ek for a
substitution subst({(E1, P)}, (Ek, P’))

If isRequired(P) or P = po, CompatiblePorts(P, Ek) = { P’ 
Ports(Ek) / Role(P’) = Role(P) }

If Role(P) = pi, CompatiblePorts(P, Ek) =
{P’  Ports(Ek) / Role(P’){po, pi} }

If Role(P) = pt, CompatiblePorts(P, Ek) =
{ P’  Ports(Ek) / isProvided(P’) }

We denote card(CompatiblePorts(P, Ek)) the number of

ports in CompatiblePorts(P, Ek). We apply the algorithm

PairSelection(P, KeptElements):

Let KeptElements the set of Components used in the
substitution. Initially KeptElements = {Ek}.

Let nb_potential_pairs = card(CompatiblePorts(P, E)),
E KeptElements

If (nb_potential_pairs = 1), (E, P) could be substituted

by only one pair is possible. Let E’  KeptElements / P’

CompatiblePorts(P, E’). The following substitution is

computed: subst({(E, P)}, (E’, P’)}.

If (nb_potential_pairs > 1), one of the ports in

CompatiblePorts(P) must be selected. That selection may be

by the developer operating the composition or by an

external algorithm.

If (nb_potential_pairs = 0), (E, P) could not be

substituted by a pair involving a Components from

KeptElements.

If KeptElements = appr, the algorithm finishes without

substituting (E, P). Else, we extend the substitution by

searching possible ports in Components linked with

Components from KeptElements:

ExtendedSelection = { Ej  appr / E’ KeptElements /
 Pm UsedPorts(Ej, appr) and  Pn UsedPorts(E’, appr) /

Link((Ej, Pm), (E’, Pn), appr) }.
Then we apply PairSelection(P, ExtendedSelection)

At the end of the process, if UsedPorts(E1, appr) is empty,
E1 is removed from appr.

F. Enforcement Of Substitutions On Case Study

The corresponding operations to obtain the case study
composition shown in Figure 3 are the substitution of
(E7,pt1) - the button of “Cinema Localization” app - by
(E1,pt1) - the text field of “Movie Theater” app - then the
substitution of (E6,pi1) - the text field of “Cinema
Localization” app - by (E1,pi1). There will be only one text
entry left E1 and only one button left E2. As the composition
finalizes, we can delete button E2 cause of its misspelled
action label (see “Discussion” part). So, there is only E1 left
to lunch the research because no port is used in E6 and E7.
When typing the name of the movie theater, the research
could be launched (at each key stroke or only after an
“enter”).

VII. DISCUSSION

The composition by substitution introduced in this paper
needs to be integrated in a larger process as in [1]. This
process can include another step to finalize the composition.
This finalization can add several classic operators as a delete
operator to suppress some links in the final components
assembly, as we need to complete our case study described

510Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 528 / 729

in Section VI. We also add a step to let developer rearrange
the various pieces of UI in the new composed UI. We
illustrate this in Figure 3 when we position component E10
on the right of component E5. The scalability of our
approach and its enforcement on large-scale application rely
on the scalability on the ontology engine we use to annotate
components. Our composition approach is described with

small applications. However, we expect our approach to be
appreciated in large-scale applications. The selection of the
different pieces to compose of applications [1] is improved
thanks to the same annotations presented in this paper. With
such help during the whole composition process (selection
and substitution), the developer may be more efficient during
the composition. We plan to test this idea in our future work.

Figure 5 : (E1, pt1) replacing (E7, pt1), connector C1 between (E1, pt1) and (E8,rt1).

VIII. CONCLUSION

In this paper we presented a new application composition
approach. The challenge is to integrally compose
applications, considering both business part and UI part. Our
approach is based on description of components constituting
the applications. Our model enables substitution of
Components coming from former applications, according to
their known ports roles. Thus, we can merge controls, inputs
or outputs and keeping operational functional links.

Out next challenge is to propose rules for the
representation of elements to compose. Indeed an application
may have several representations such as its component
assembly, its UI or its task model. Our intuition is that to
quickly specify a composition, working on the UI is the most
adapted. But to ensure consistency of the usability, we will
explore the use of task models. And for making complex
merge of application, we probably need to manually
manipulate links between components. So we want to verify
our intuitions and we will study the limits of each approach.

REFERENCES

[1] Brel C., Pinna-Déry A.-M., Renevier P., and Riveill M.
OntoCompo: A Tool To Enhance Application Composition.
In Proceedings of the 13th IFIP TC13 Conference in Human-
Computer Interaction, Lisboa, Portugal, 2011, pp. 588-591.

[2] Criado, J., Padilla, N., Iribarne, and L., and Asensio, J. User
Interface Composition with COTS-UI and Trading
Approaches: Application for Web-Based Environmental
Information Systems. Communications in Computer and
Information Science vol. 111, 2010, pp. 259-266.

[3] Gabillon, Y., Petit, M., Calvary, G., and Fiorino, H.
Automated planning for userinterface composition. In
Proceedings of the 2nd International Workshop. on Semantic
Models for Adaptive Interactive Systems, Palo Alto, CA,
USA, 2011, [retrieved: October, 2012].

[4] Ginzburg, J., Rossi, G., Urbieta, and M., Distante, D.
Transparent Interface Composition in Web Applications. In

Proceedings of the 7th International Conference on Web
Engineering, Como, Italy, 2007, pp. 152-166.

[5] Lau K.-K. and Rana T. A Taxonomy of Software
Composition Mechanisms. In Proceedings of 36th
EUROMICRO Software Engineering and Advanced
Application, Lille, France, 2010, pp. 102–110.

[6] Lepreux S., Vanderdonckt J., and Kolski C. User Interface
Composition with UsiXML. In Proceedings of 1st Int.
Workshop on User Interface Extensible Markup Language,
Berlin, Germany, 2010, pp. 141-151.

[7] Mehta N. R., Medvidovic N., and Phadke S. Towards a
taxonomy of software connectors. In Proceedings of
International Conference on Software Engineering, Limerick,
Ireland, 2000, pp. 178-187.

[8] Nestler T., Feldmann M., Preußner A., and Schill A. Service
Composition at the Presentation Layer using Web Service
Annotations. In Proceedings of the 1st Intl. Workshop on
Lightweight Integration on the Web, San Sebastian, Spain,
2009, pp. 63-68.

[9] Pietschmann S., Voigt M., Rümpel A., and Meissner K.
CRUISe: Composition of Rich User Interface Services. In
Proceedings of International Conference on Web Engineering,
San Sebastian, Spain, 2009, pp. 473-476.

[10] Pinna-Déry A.-M., Joffroy C., Renevier P., Riveill M., and
Vergoni C. ALIAS: A Set of Abstract Languages for User
Interface Assembly. In Proceedings of Software Engineering
and Applications, Orlando, FL, USA, 2008, pp. 77-82.

[11] Stuerzlinger W., Chapuis O., Phillips D., and Roussel N. User
Interface Façades: Towards Fully Adaptable User Interfaces.
In Proceedings of the ACM Symposium on User Interface
Software and Technology, Montreux, Switzerland, 2006, pp.
309-318.

[12] Tan D.S., Meyers B., and Czerwinski M. WinCuts:
Manipulating Arbitrary Window Regions for more Effective
Use of Screen Space. In Proceedings. of ACM Conference on
Human Aspects in Computing Systems, Vienna, Austria,
2004, pp. 1525-1528.

[13] Zhao Q., Huang G., Huang J., Liu X., Mei H., Li Y., and
Chen Y. A Web-Based Mashup Environment for On-the-Fly
Service Composition. In Proceedings. of Symposium on
Service-Oriented System Engineering, Jhongli, Taiwan, 2008,
pp. 32-37.

511Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 529 / 729

Cognitive Engineering meets Requirements Engineering

Bridging the Traceability Gap

Alexandra Mazak
Junior Research Studio Cognitive Engineering (CoE)

Research Studios Austria Forschungsgesellschaft
Vienna, Austria

alexandra.mazak@researchstudios.at

Horst Kargl

SparxSystems Software GmbH
Vienna, Austria

horst.kargl@sparxsystems.eu

Abstract—Support for various stakeholders (customer, project
manager, system architect, requirements engineer) involved in
the design and management of large software systems is
needed since frequently, misinterpretations occur already
when specifying customer requirements into system
requirements. This problem is mainly caused by the various
perspectives and intentions of the involved parties that may
lead to diverging interpretations during said process.
Therefore, the focus of our work in progress is on the
requirements engineers when transforming customer
requirements into system requirements. There is still a gap to
trace design decisions especially at this early stage of the
system development life cycle. We introduce a heuristic-based
approach in order to make a contribution to bridge this gap.
We propose to consider the requirements engineer’s “cognitive
perspective” on traceability links by a heuristic-based
weighting procedure that can be performed during the design
process. We enhance the established relationship or
traceability matrix to make it possible for requirements
engineers to annotate their informal knowledge to the linkage
(i.e., visualized realizations) in that matrix.

Keywords-Requirements management; requirements
traceability; cognitive engineering; traceability matrix; design
decisions.

I. INTRODUCTION

There is a variety of stakeholders involved in large
software projects, each having a different set of goals and
priorities [9]. Generally, requirements are prioritized by
stakeholders (e.g., based on the software projects’ purpose,
certain functionalities which should be targeted by the
system). Various methods and supporting tools exist for
guiding this process of requirements’ prioritization. What we
are missing is another prioritization when linking customer
requirements to system requirements and system
requirements to design artifacts (i.e., model components) in
the specification task. Misinterpretations at this stage of a
software project are resulting from misconceived or
misvalued linking. Validation continues to be a “big pain”
due to the lack of trusted documentation of traceability
drives validation teams to leave no doubt (aka double or
triple effort). There is a multitude of tools (e.g., Rational
DOORS [12]) by which requirement lifecycle management
is supported. Often, tools produce non- or less compelling

documentation [13]. However, experience has shown that a
“distributed traceability of requirements” guided by external
tools or methods, which means that it is not integrated in the
system’s architecture design process itself, is often error-
prone [13].

We propose focusing on the requirements engineers’
informal knowledge when design decisions are made during
the specification task of customer requirements. According
to the used modeling language a certain traceability link can
be used (realization in UML [2], satisfy in SysML [3]).
Generally, a trace chain is constructed through linking by
which an impact analysis can be made. Mainly, such
information is presented in form of a matrix called
relationship matrix. In Fig. 1, which represents an excerpt of
a relationship matrix from the tool Enterprise Architect (EA)
[13], the linkage is visualized in form of arrows in the cells.
This type of linking merely express for instance that Receive
Orders is realized by two system artifacts REQ019 and
REQ032 (e.g., Fig. 1). It cannot be derived to what extent the
realization is proceeded, or the system requirements’ level of
utility to fulfill this customer requirement. Generally, a
certain customer requirement is covered by more than a
single system component and not each component has the
same relevance to realize that requirement within the
system’s architecture; just as customer requirements do not
have equal prioritizations. Thus, each system component has
a different level of utility (relevance).

Figure 1. Relationship matrix in EA.

512Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 530 / 729

In the early past, methods have emerged by which
informal knowledge of the original engineers can be
annotated to the model itself, as for example presented in
the field of Ontology Alignment in [7][8]. There the
modelers’ intention involved during the design process, that
is modeler’s cognition or cognitive perspective, is made
visible to users.

Currently, there is no tool support to requirements
engineers in order to aid them to make their informal
knowledge visible. This open issue motivated us to work on
an heuristic-based approach to bridge the traceability gap at
the early stage of system design that is of commercial
interest, too.

II. BACKGROUND

A. Requirements Traceability

Requirements traceability in all stages of the system
development life cycle is an important field of requirements
management. Gotel and Finkelstein [4] define requirements
traceability as “the ability to describe and follow the life of a
requirement, in both a forward and backward direction, i.e.,
from its origins, through its development and specification,
to its subsequent deployment and use, and through periods of
ongoing refinement and iteration in any of these phases”.
The authors differentiate between pre-requirements
specification (pre-RS) traceability and post-requirements
(post-RS) specification traceability. The first refers to those
aspects of a requirement’s life prior to inclusion in the
specification task (e.g., when stakeholders prioritize
requirements depending on their expectations they place on
the system); whereas the latter refers to those aspects that
result from inclusion in the requirement’s specification [4].

In our work in progress, we focus on post-RS traceability
by which system components and their relations to certain
customer requirements are considered. Today, requirements
traceability is a key factor in the project management of
large-scale systems and it plays an important role in the
quality control of software engineering processes [9]. It acts
as an indicator to define the system’s maturity of
development [8]. The aim is to support reliable, up to date,
and high-quality traceability—right from the start.

B. Requirements Traceability Matrix

Validation pain can be reduced when using the
traceability matrix [6]. This is a kind of “completeness
indicator” by which the relationships among requirements
and artifacts can be traced. It is an aid to determine the
complexity of dependencies. There are tools by which a
graphical as well as a textual traceability is supported to
engineers. For example, in the tool Enterprise Architect the
relationship matrix is a spreadsheet display of relationships
between different sets of model elements (e.g., Fig. 1). A
source package and a target package, the relationship type,
and the direction can be defined. All relationships among
source and target elements can be identified by highlighting
a grid square and displaying an arrow indicating the
relationship’s direction. The matrix is a convenient method
of visualizing relationships quickly and definitively. It also

enables users to create, modify and delete relationships
between elements with a single mouse click - another quick
way to create complex sets of element relationships with a
minimum of effort.

Nevertheless, the literature-based research has shown
that the traceability matrix is a useful template to trace if a
certain requirement is covered by a single or more
components. We argue that a simple representation of
linkage alone is not enough. For instance, it cannot be
derived from the matrix how important a system component
is for implementation (i.e., when transforming system
components to design artifacts, or when coding) an aspect
which is also relevant in agile software development. For
instance, in Scrum [5] in order to provide a reference value
for the product owner when prioritizing stories for the
product backlog.

III. THEORETICAL APPROACH

Requirements engineers decide about how to transform
customer requirements into system requirements, i.e., they
decide on the realization of customer requirements in the
system architecture. Generally, this design step is visualized
in the traceability matrix, where the realizations can be
traced (e.g., Fig. 1, the customer requirements form the
source and the system requirements or components the target
nodes). The better this task is guided and monitored, the
fewer problems (e.g., over-engineering) will occur during
implementation which leads to time and cost savings.

Therefore, we propose to use the engineers’ informal
knowledge of system design specification by introducing a
cognitive heuristic in form of a relevance weighting
procedure. This procedure is based on an intuitive mental
judgement made by the engineers during the design process.
We adapt the approach from concepts, which we have
introduced in [8]. In our current approach, the requirements
engineer determines the importance of a linkage (source 
target) by annotating the linkage with a weighting in the
range of [1, 9]. The weighting is mainly based on his/her
intuition (or cognitive perspective [8]) of the system
component's relevance in order to cover a certain customer
requirement.

Figure 2. Design Decision Traceability Grid (DDT-Grid).

513Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 531 / 729

In the tool-guided procedure (i.e., the engineer is
prompted by the system), he/she affixes a relevance
weighting on each realization in the matrix. This quantified
mental judgement is made visible in an enhanced form of the
traceability matrix, which we denote as design decision
traceability grid (DDT-grid) (e.g., Fig. 2). We introduce this
DDT-grid as a controlling instrument for engineers in the
form of a weighted decision matrix, where the engineer can
reflect on the made decisions and its alternatives at any time
during the design process. The requirements engineer can
distinguish among three weighting classes (i) high relevance
in the range of [7, 9], (ii) middle relevance in the range of [4,
6], and (iii) low relevance in the range of [1, 3] (e.g., Fig. 2).

The cognitive heuristic can be classified as post-
requirements specification traceability method. The system
components level of utility or (functional) degree of
fulfillment is automatically computed by an algorithm by
which additionally the customer requirements'
prioritizations, made by the stakeholders, are taken into
account. The computation is based on (i) the number of
covered customer requirements, (ii) their prioritization, and
(iii) the relevance weightings of linkage. For each system
component a relative utility value is expressed as a
percentage, which constitutes the component's importance in
the entire system architecture and thereby, a pairwise
comparison between components is facilitated. On the one
hand, also alternative modeling solutions of equal value can
be identified, and on the other hand system components with
a low level of importance can be easily detected in order to
minimize a possible over-engineering risk even before the
next step in the system’s development process will be started
(i.e. when transforming system requirements to design
artifacts, or when coding).

The introduced cognitive-based approach to formalize
the requirements engineers’ informal knowledge by an
importance weighting metric and turning this knowledge into
operating figures provides a new dimension of requirements
traceability controlling at the early stage of requirements
management.

IV. EXPECTED RESULTS

Making informal design knowledge explicit (i.e., visible
to users by the DDT-grid) would favorably impact the
interpretation of the system’s architecture. This means that
the DDT-grid forms an innovative communication base for
system architects and customers. For example, by identifying
what are the critical, highly relevant system components in
the model in order to assess the developers’ efforts when
implementing them. Additionally, stakeholders can track, at
any time, how the scoring of system artifacts is affected
when customers vary the prioritization, delete, or add
requirements. Thus, the cognitive-based approach makes a
contribution to the fulfillment of an efficient requirements
negotiation as proposed in [1]. The DDT-grid and the
calculated metrics provide a kind of cognitive map for
engineers to rethink about their design decisions (e.g., to
check if they are on the “right way”). Each map represents a
personal view of prioritized solutions of the system. By
comparing these maps a hint to a different system

understanding can be provided. Additionally, a quick
overview can be given through the highlighted visualization
in the DDT-grid by which different weightings of
realizations are made visible. By describing and discussing
its own view, a common understanding between stakeholders
can be established.

ACKNOWLEDGMENT

The introduced approach will be realized in the course of
the TraCo project. TraCo (Traceability Controlling) is
supported and promoted by the Austrian Research Promotion
Agency (FFG) by the funding program BRIDGE. Launch of
the 18-month project is October 01 2012. The cooperation
partner in this FFG - project is SparxSystems Software
GmbH based in Vienna. SparxSystems specializes in high-
performance and scalable visual modeling tools for planning,
design and construction of software intensive systems.
TraCo is to be conceptualized as plug-in for the core product
of the company, the Enterprise Architect, and it is to be
implemented as a component of the business logic of
EnArWEB (Enterprise Architect in the WEB), where the
Enterprise Architect is used as repository.

REFERENCES
[1] L. Cao and B. Ramesh, “Agile Requirements Engineering

Practices: An Empirical Study,” IEEE Software, vol. 25,
IEEE Computer Society, January/February 2008, pp. 60–67,
doi: 10.1109/MS.2008.1.

[2] M. Flower, UML Distilled: A Brief Guide to the Standard
Object Modeling Language, 3th edition, Addison-Wesley
Object Technology, 2003.

[3] S. Friedenthal, A. C. Moore, and R. Steiner, A Practical
Guide to SysML: The Systems Modeling Language, The
Morgan Kaufmann Omp Press, Elsevier Inc., 2012.

[4] O. Gotel and A. Finkelstein, “An Analysis of the
Requirements Traceability Problem,” In Proceedings of the
1th International Conference on Requirements Engineering,
Colorado Springs (CO US), April 1994, pp. 94–101, doi:
10.1.1.137.5052.

[5] H. Kniberg, Scrum and XP from the Trenches, How we do
Scrum, Enterprise Software Development Series, C4Media
Inc, 2007.

[6] J. Macmillan and J. R. Vosburgh, “Software Quality
Indicators,” Final Report, Scientific Systems Inc Cambridge
(MA US), September 1986, Accession Number: ADA181505.

[7] A. Mazak, M. Lanzenberger, and B. Schandl, “iweightings:
Enhancing Structure-based Ontology Alignment by Enriching
Models with Importance Weightings,” In Proceedings of the
2010 International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS 10), Krakow (PL),
February 2010, IEEE Press, pp. 992–997,
doi=10.1109/CISIS.2010.164.

[8] A. Mazak, “CoMetO: A Cognitive Design Methodology for
Enhancing the Alignment Potential of Ontologies,” doctoral
thesis, Information & Software Engineering Group (ifs),
Department of Software Technology and Interactive Systems,
Vienna University of Technologie, Vienna, April 2012.

[9] K. Pohl, Requirements Engineering: Grundlagen, Prinzipien,
Techniken, 2. Auflage, dpunkt.verlag, 2008.

[10] B. Ramesh, C. Stubbs, T. Powers, and M. Edwards,
“Requirements traceability: Theory and practice,” in Journal

514Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 532 / 729

Annals of Software Engineering, vol. 3, J. C. Baltzer AG,
Science Publishers, January 1997, pp. 397–415.

[11] B. Ramesh and M. Jarke, “Toward Reference Models for
Requirements Traceability,” in IEEE Transactions of
Software Engineering, vol. 27, January 2001, pp. 58–93.

[12] IBM, Rational DOORS version 9.2, available at
http://publib.boulder.ibm.com/infocenter/rsdp/vlr0m0/index.js
p?topic=/com.ibm.help.download.doors.doc/topics/doors_vers
ion9_2.html.

[13] D. Steinpichler and H. Kargl, “Enterprise Architect, project
management with UML and EA,” Manual revised edition for
Version 9.3, SparxSystems Software GmbH, Vienna, January
2011, available at
http://www.sparxsystems.de/?gclid=CNap8rfwr7MCFYq7zA
odxR4AXg.

515Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 533 / 729

Knowledge Management Practices in GSD: A

Systematic Literature Review

Smeea Arshad Muhammad Usman

Department of CS and IT Department of CS and S E

Mirpur Univesity of Science & Technology International Islamic University Islamabad

Mirpur, Pakistan Islamabad, Pakistan

smeeaarshad@gmail.com m.usman@iiu.edu.pk

Naveed Ikram

Department of Computer Science and Software Engineering

Ripah International University Islamabad

Islamabad, Pakistan

 naveed.ikram

@riu.edu.pk

Abstract—Global software Development (GSD) is a popular

software development setting that aims at developing software at

low cost with geographically distributed teams. Knowledge

Management (KM) is an important issue in GSD. Plethora of

research is available to solve GSD issues with Knowledge

management practices (KMPs). Evidence about the effectiveness

of these practices is scattered among different studies. The need

exists to collect, synthesize and review this research at one place.

This study explores GSD issues due to lack of knowledge

management (KM) and knowledge management practices

(KMPs) used to solve these issues. Systematic literature review

(SLR) is performed for the identification of KMPs used in GSD

projects to handle GSD issues. The study has identified GSD

issues due to lack of KM and KMPs used to address these issues.

Effectiveness of knowledge management practices is seen by

associating a frequency count with each practice. Knowledge

transfer, shared understanding and communication are mostly

reported problems. Collaborative technologies are widely used

practice to solve GSD issues due to lack of KM.

Keywords-Knowledge Management; Knowledge Management

Practices; Global software Development; Systematic Literature

Review

I. INTRODUCTION

Knowledge management (KM) is an asset for

software development organizations. It addresses different

issues in software development and at the same time also

contributes to software process improvement [1][2].

 Global software development (GSD) is a

methodology to develop software with teams at multiple

locations to get the edge of round the clock development and

nearness to the market. However, geographical separation

introduces many issues such as communication, coordination,

control and knowledge management. Knowledge, in offshore

development teams is scattered across continents and GSD

barriers make its coordination and synthesis difficult [2]. At

the same time, effective KM plays a paramount role in solving

the issues innate in offshore software development.

Knowledge management facilitates the organization operating

globally to successfully integrate and coordinate knowledge

resources [2]. Knowledge acquisition and sharing is helpful in

achieving shared understanding in GRE [6].

The area of KM is explored to see its influence in

global software engineering. Number of studies have

highlighted the issues that arise in GSD due to lack of KM.

Desouza et al. [2] empirically investigated different

organizations and highlighted the importance of KM in their

study. They identified access to skilled knowledge group as

one force among the other compelling forces for global

software development. They found seeking relevant

knowledge, knowledge sharing, synthesis and transfer are

some of the KM problems faced in GSD [1].

Damian et al. [14] focused on the impact of remote

communication, knowledge management, time and culture

differences on requirements engineering activities and found

that ineffective knowledge management influences

requirements negotiation, prioritization, specification and

validation. Avram [7] focused on socio-cultural impact on

knowledge exchange. During the empirical investigation they

found maintaing awareness and knowledge transfer are the

problems that mainly arise due to lack of informal

communication.

Realizing the importance of KM, many practices are

suggested to manage knowledge in GSD. Avram [3] identified

the knowledge work practices that are used in the actual work

setting. The focus of the study is on people, “their values and

connections” to deal with issues in distributed development.

The identified practices deal with the issues of knowledge

transfer, mutual knowledge and knowledge sharing. Desouza

[2] empirically found the strategies and models used to

manage knowledge in software industry. Clerc [4] reviewed

the architectural knowledge management approaches. He

categorized the approaches in personalization and codification

strategies and suggested to focus on hybrid approaches. Paiva

516Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 534 / 729

[8] narrates the experience of implementing community of

practice (CoP) by Brazil Global Development Center. CoP

helped in project management, information reuse, reducing

time in trouble shooting, requirements specification and

reverse engineering.

Despite the acceptance of knowledge management

practices (KMPs) to solve GSD issues little evidence based

research exists to GSD practionars to select appropriate

knowledge management practice to deal with a particular

issues. This paper intends to fill the gap by conducting the

systematic literature review (SLR) about the state of practice

of knowledge management in GSD. We followed the

guidelines proposed by Barbara Kitchenham [5].The questions

investigated are:

RQ1: What GSD issues occur due to lack of knowledge

management (KM)?

RQ2: What KMPs are used in GSD projects?

RQ3: What GSD issues are addressed by existing knowledge

management practices (KMPs)?

 We have identified GSD issues due to lack of KM

and KMPs to sort out these issues. We have classified the

practices into predefined categories of codification and

personalization. The paper is organized as follows: Section 2

describes the background. Section 3 reports the research

methodology. Section 4 presents findings from the systematic

literature review and analysis with some discussion. Section 5

describes the conclusion.

II. RESEARCH MEHODOLOGY

The research is conducted using systematic literature review

(SLR). SLR is a well defined, thorough and fair “means of

identifying, evaluating and interpreting all available research

relevant to a particular research question, or topic area, or

phenomenon of interest” [7]. Barabra Kitchenham’s guidelines

[5] were followed to define the protocol and conduct SLR.

The steps to perform review are Identification of research,

primary studies selection, Study quality assessment, Data

extraction & analysis.

A. Search Strategy

Search strategy consists of deriving major terms from

questions, developing search strings from major terms and

their synonyms using AND/OR operators. Major search terms

were ‘knowledge management’ and ‘GSD’. These terms and

their synonyms are shown in table 1 below. These two terms

(or their synonyms) were ANDed to form the generic search

string. Initial pilot study helped in selecting the synonyms and

major search terms.

TABLE I :MAJOR SEARCH TERMS AND THEIR SYNOYMS

GSD:“Global Software development” OR “distributed

software development” OR “multi-site software development”

OR “global software engineering” OR “global requirements

engineering” OR “distributed software engineering” OR

“distributed requirements engineering” OR “multisite software

development” OR GSD OR GSE OR “offshore software

development” OR GRE

KM: (“knowledge management” OR “knowledge sharing”

OR “knowledge acquisition” OR “knowledge transfer” OR

“knowledge creation” OR “knowledge capture” OR “tacit

knowledge” OR “explicit knowledge” OR “knowledge

retention” OR “knowledge valuation” OR “knowledge use”

OR “knowledge application” OR “knowledge discovery” OR

“knowledge integration” OR “knowledge theory” OR

“organization knowledge” OR “knowledge engineering” OR

“information management” OR “information sharing” OR

“information transfer” OR “information reuse” OR “common

understanding” OR “shared understanding”

A total of 525 papers were obtained from a range of

databases. Databases searched and no. papers retrieved from

each database were: Inspec, IET, IEEE Explore (38), ACM

Digital Library(85), Science Direct (149) , Springerlink (215),

EICompendex (107). Customized search strings were

developed from generic string for each database. The selected

databases encompass the major database in software

engineering and most of the research work is published in

these databases. Google Scholar was also searched for the

publications at first, but later, during pilot study was excluded

as it gave multiple results of the same query at different time.

B. Publication Selection

Inclusion and exclusion criteria applied to the studies are

given below:

1) Inclusion Criteria: It is used to include the studies for

data extraction. We included studies that

 Are about KM in GSD AND

 Are supported by some evidence in the form of case study

or industrial/Experience report or experiment AND

 Are published in peer reviewed journal or conference.

2) Exclusion Criteria: It is used to screen out studies that

are not included for data extraction. We excluded studies that

 Are not directly related to KM or KMPs in GSD context

OR

 Lack evidence support OR

 Studies that describe GSD problems not relevant to KM

3) Selecting Primary and Secondary Resources: Primary

studies selection was carried out at two levels. Level 1

screening was based on title, abstract and keywords. This

excluded the papers that were not relevant to our research

question. After level 1 screening of 525 papers, 51 studies

were selected as candidate primary studies. In Level 2

screening, incusion/exclusion criteria was applied on full text

of 51 candidate primary studies. After this step, a total of 27

517Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 535 / 729

studies were selected as primary studies. Data extraction and

quality assessment was performed for these 27 primary

studies.

Single study in multiple papers was considered only

once. Most recent and comprehensive study was selected

when focus of the study was same.

Secondary studies selection was based on references

of primary studies; 6 secondary studies were selected for data

extraction.

C. Publication Quality Assessment

Quality assessment was applied on the final selection

of papers in parallel with data extraction. We consulted

protocols” Agile software development” and “EPIC Case

Study 2 – Extension of a Tertiary Study” and Kitchenham

guidelines [5],[10],[11] to develop quality assessment criteria

that consists of questions. Every quality question has three

options; yes means 2 points, no means 0 point and partial

means 1 point. Quality Assessment Criteria for Industrial/

Experience report are:

 Does the study clearly describe the context?

 Does the links between data, interpretation and

conclusion are illustrated well?

 Does study adds value to research?

And for evidence based studies are:

 Does study clearly narrate objectives?

 Does study clearly describe context?

 Does the sampling method and its rational given?

 Does the data collection method and rational given?

D. Data Extraction

 Single researcher (1
st
 author) was responsible for the

data extraction. Secondary reviewers (other authors) were

consulted in case of problem or confusion.

E. Data Synthesis

 We identified list of GSD issues and KMPs used to

address these issues at the end of data extraction phase. The

KMPs were reviewed to make their categories along the

codification and personalization lines.

III. RESULTS

Results of RQ1, RQ2 and RQ3 are shown in the section

below:

1) GSD issues identified through SLR (RQ1): Table II

shows the list of GSD issues due to lack of knowledge

management identified through SLR. Complete citation of

SLR references is given in appendix A. The identified issues

vary from frequently reported in different studies to the ones

that are reported only once. The table shows only the most

occurring issues. Issues that fall in frequency range of 3, 2 and

1 are not shown in table due to the shortage of space.

TABLE II GSD ISSUES DUE TO LACK OF KM

GSD Issues due to lac of KM

1 Shared understanding

2 Knowledge sharing

3 Communication

4 Knowledge transfer

5 Relationship building or team cohesion

6 Trust

7 Finding the right people

 Issues that are reported rarely (frequency less than 5)

are coordination, requirements engineering, awareness,

culture, cost, quality, alignment of process and

tools/objectives and faster ramp-up time, knowledge reuse,

mutual knowledge, knowledge creation, Knowledge

externalization, knowledge exchange, information gathering,

ineffective decision making meetings, cycle time, time to

market, fill knowledge gap, gap in knowledge flow, face-to-

face meetings difficult, codified knowledge compatibility and

exchangeability, knowledge retrieval, time zone difference,

outsourcing success.

2) KMPs used in GSD projects identified through SLR

(RQ2): Table III shows list of Knowledge Management

Practices (KMPs) applied to address GSD issues. There are

many practices to solve a GSD issue which indicates that an

organization must follow some guidelines to select the

appropriate practice prior conducting the project. Frequently

reported practices are shown in table.

Practices that are reported rarely are: Division of

work, Informal communication, Guidelines or training

programs, Clear project/organization structure with clear roles

and responsibilities, Cross continental mini teams, Adapt

scrum, Learn by watching, Direct request, Information update,

Knowledge centric product life cycle management, Reverse

Presentation Method, Shared team and task knowledge,

Surviving the Babel tower, Mutual adjustment, Process

Knowledge Tracer, Shared infrastructure, Clear project

structure with clear communication responsibilities,

Discussion board, Knowledge reuse.

TABLE III KMPS USED IN GSD PROJECTS

KMPs used in SD Projects

1 Collaborative technology

2 Meetings or visits

3 Documentation

4 Asking the developers/boundary

spanners/colleague

5 Transactive memory

6 Knowledge sharing

7 Standard tools and methods

518Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 536 / 729

3) KMPs used to address GSD issue (RQ3): Table IV

shows the GSD issues due to lack of KM and KMPs used to

address these issues along with the number of times the pair

(of GSD issue and KMP used to address it) is reported

together. This is different from table III, wherein we only

showed the reported practices.

TABLE IV KMPS AND GSD ISSUES

GSD Issues due

to lack of KM

KMPs used to address GSD issues

due to lack of KM

f

Shared

understanding

1) Collaborative technology

2) Meetings

3) Documentation

4) Standardized tools and

methods

5) Transactive memory

6) Asking the colleague

7) Guidelines/training

program
8) Reverse Presentation

method (RPM)

3

3

3

2

2

1

1

1

Knowledge

sharing

1) Collaborative technology

2) Meetings

3) Surviving the Babel tower

4) Process Knowledge Tracer

5) Cross continental mini

teams

6) Direct communication

7) Division of work

8) Shared infrastructure

9) Discussion board
10) Transactive memory

4

2

1

1

1

1

1

1

1

1

1

Communication

1) Meetings/Visits

2) Asking the colleague

3) Collaborative technology

4) Clear project/organization

structure with clear roles

and responsibilities

5) Transactive memory

6) Information update

7) Adapt scrum process

8) Reverse Presentation

method (RPM)

9) Knowledge centric product

life cycle management

10) Documentation

3

3

2

2

1

1

1

1

1

1

Knowledge

transfer

1) Collaborative technology

2) Meetings

3) Asking the colleague

4) Documentation

5) Division of work

6) Transactive memory

7) Standard tools and

methods
8) Surviving the Babel tower

2

2

2

2

1

1

1

1

Team cohesion 1) Visits/meetings

2) Mutual adjustment

4

1

Trust

1) Meetings/Visits

2) Collaborative technology
3) Adapt scrum

3

2

1

Finding the right

people

1) Transactive memory

2) Collaborative technology

3) Meetings or Visits

4) Asking the colleague
5) Standard tools and

methods

3

2

1

1

1

IV. DISCUSSION

Discussion section is divided in two parts i.e., discussion on

GSD problems due to lack of KM and discussion on KM

practices used to address the issues.

1) Global Software Development Problems due to lack of

Knowledge Management:

Lack of common understanding is the most occurring

problem identified during this study. 13 papers reported lack

of shared understanding as a problem in GSD. Difference in

organizational culture has great impact on shared

understanding and creates problems in gaining common

understanding of different aspects of project because of the

difference in terminologies used by organizations for the same

concept, difference in standard of documentation. Research

shows that successful projects implemented standard tools and

methods to achieve shared understanding ([3][9]).

Communication gap in GSD teams gives rise to

misunderstandings and takes more time to correct

misunderstandings [14]. Language difference is another reason

of the lack of common understanding in distributed software

development teams. Difference in time zones of teams

introduces communication gap; thereby giving rise to

misunderstandings among time members and also providing

them less time to clear these misunderstandings ([15][16]).

Cultural diversity, communication gap, difference in technical

background, gap in knowledge flow also create difficulty in

achieving shared understanding ([11][17][20][21][22][23]

[24]). Misunderstanding of requirements can introduce delay

[18].

Knowledge sharing is another important problem

identified. 40% of the studies (11 papers) reported knowledge

sharing as a problem. This confirms our results with the

previous studies that mentioned knowledge sharing as the

critical success factor for outsourcing relationships success

[25]. Only one paper reported that information was not

appropriately shared among team members, whereas other

studies mentioned that they found sharing knowledge to be

problematic. Research suggests that tacit nature of knowledge

and lack of trust among team members are the reasons behind

the problem of knowledge sharing(Two papers suggested that

factor that contributes to problem of knowledge sharing is tacit

nature of knowledge, while one paper mentioned trust among

cross site team members as a reason for lack of knowledge

519Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 537 / 729

sharing). Tacit nature of knowledge creates problem only in

sharing implicit knowledge whereas trust is the factor that is

necessary for sharing both kinds of knowledge either implicit

or explicit [12][14][26]. Building trust and sharing tacit

knowledge both require face to face interaction that is difficult

to achieve in GSD.

This SLR identifies lack of Communication; either formal

or informal as another problem that arises mostly during

global software development projects. 37% of the studies (10

papers) reported the problem of lack of communication. The

identified studies narrate the inability of team to have

appropriate communication but failed to describe the specific

problem they faced. The main reasons of lack of

communication are geographical, socio-cultural and temporal

distance. Due to lack of communication several problems arise

i.e. lack of trust, relationship building etc. which ultimately

cause lack of knowledge sharing. Informal communication is

also badly impacted and almost become impossible due to

geographical distance.

Knowledge transfer, relationship building, and finding the

right people are some other important problems that require

social aspect to be considered. Various other problems are also

identified but these are less important with low frequency.

2) Discussion on Knowledge Management Practices:

Collaborative technology is an important practice reported

in 51% of studies, supports hybrid strategy (codification &

personalization) and solves 14 problems. Use of collaborative

technology reduces social distance, makes people aware of

other’s presence, produces the sense of being a team,

synchronizes communication and reduces delay by providing

in time feedback. Collaborative technology includes email,

video conferencing, IM, online data bases, etc. Email, Instant

Messaging (IM) and video conferencing are more frequently

used among identified practices of collaborative technology.

IM was mostly used when to get information about a certain

problem or for interaction with experts whereas video

conferencing became an interaction medium for a group most

of the time, yet maintained open communication between two

managers as well. Email is more frequently used for sharing

artifacts, circulating logs and exchanging documents. The Pros

and cons of using collaborative technology are:

 It has the ability to deal with the problem of

communication; a major challenge in GSD projects.

Geographical distance hinders face to face

communication in GSD. The only way to

communicate among team members across different

locations is through the use of collaborative

technology. Collaborative technology is rich media

for communication. It supports formal, informal and

synchronous and asynchronous communication [14].

Lack of Informal communication is found to be the

reason behind many problems identified in this study

such as knowledge sharing/transfer, building trust,

finding the right people etc.;[11][28]. We argue IM

and video conferencing can enable informal

communication. Collaborative technology also

facilitates formal communication; thereby impacting

knowledge sharing/transfer and shared

understanding. Exchanging documents via email i.e.;

asynchronous communication tends to cope with time

zone difference. Synchronous communication via

collaborative technology impacts communication and

shared understanding.

 Another advantage of using collaborative technology

is it supports both personalization and codification

strategy [14]. Other practices supporting hybrid

strategies contrary to collaborative technology are

either specific to one or two organizations or some

specific problems.

 However, use of collaborative technology is not

without problems. Temporal distance can’t be

overcome by collaborative technology. Another

limitation of collaborative technology is when a time

slot is dedicated for informal communication but till

the end of meeting formal conversation goes on

leaving no room for informal communication [14].

Meetings/visits are considered more useful to cope with

problems created by geographical, temporal and socio-cultural

distance. Their ability to develop trust and build sense of being

a team is an important factor for the wide spread adoption of

this practice. Arranging visits can be costly as compared to

technical meetings but these have more benefits. Research has

shown that GSD projects that lack visits were unsuccessful

and those supported travelling were successful [27].

Documentation is third most frequently used practice

and solves seven issues among the issues identified.

Documentation is beneficial in keeping the group aware of

what’s happening in the project and is also necessary to keep

aware if new person joins the team or some expert or relevant

person leaves.

Asking the colleague and transactive memory also

highlight the importance of social aspect in dealing with the

GSD issues. Transactive memory supports both codification

and personalization strategy and indicates that both type of

practices must be used to be successful in GSD projects.

Knowledge management practices are broadly

categorized in codification and personalization strategy in

literature. We attempted to categorize Knowledge

management practices used to address GSD problems due to

lack of KM identified in this SLR along these two dimensions.

Codification: This category includes practices of

Documentation, Standardize tools and methods, Shared

infrastructure, Information update and Knowledge reuse.

Personalization: This category includes practices of Meetings

or visits, Asking the colleague, Informal communication,

Cross continental mini teams, Surviving the Babel tower,

Direct request, Learn by watching, Mutual adjustment, Shared

team and task knowledge, Adapt Scrum processes,

Information update, Clear project/organization structure with

clear roles and responsibilities and Discussion board.

520Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 538 / 729

Hybrid: Practices in this category are Collaborative

technology, Reverse Presentation Method, Transactive

memory, Division of work, Process Knowledge Tracer,

Knowledge centric product life cycle management,

Guidelines/training programs and Knowledge sharing.

This categorization can be helpful in appropriately selecting

and devising a knowledge management strategy at the start of

GSD project. Managers should include practices from all

categories in overall KM strategy so that the complementary

nature of practices helps in tackling different types of issues in

GSD projects. Following guidelines can be helpful in dealing

with issues due to lack of KM in GSD:

 Encourage informal communication among team

members. It will produce a sense of being a team and

develop trust.
 Standardize tools /methods and procedures as it will

keep all the team members at the same level of

understanding
 Focus on building social interaction that is badly

impacted by geographic distance. It is identified as

main reason behind many problems identified.
 Arrange travelling across sites. This may be costly

but has long range benefits. Research has shown that

successful projects have adopted this practice.

 Use both personalization and codification strategies

in the project. Regularly plan for meetings and use

collaborative technology and documentation in these

meetings. Use collaborative technology for

communication mainly informal communication

between two meetings.

 Collaborative technology is one of the most used

practices and its use can be beneficial for the project.

However, it is effective when accompanied by other

practices such as meetings and documentation

 Be proactive in dealing with the problems that arise

in GSD projects due to lack of KM. Frequency of

GSD problems identified and KMPs used to

addressed these problems can help you in doing so.

We are currently working on purposing a model for the

selection of the appropriate practice to deal with identified

problems. A brief description of the model is provided in this

paper. The proposed model deals with the most frequently

occurring issues and most widely used practices to handle

these issues. Collaborative technology, documentation and

visits are at the core of the model indicating that these

practices must be used to solve different kind of problems.

Figure 1. Model for selecting KMPs.

Knowledge transfer

1) Asking the

colleague

Collaborative technology

Meetings/Visits

Relationship building or

team cohesion

Finding the right people

Communication Shared understanding

1) Asking the colleague

2) Clear project/organization

structure with clear roles

and responsibilities

1) Standardized tools and

methods

2) Transactive memory

3) Documentation

Knowledge sharing

Trust

Transactive memory

521Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 539 / 729

 Team cohesion, lack of trust and relationship

building are the problems that arise because of lack of social

interaction or informal communication. Collaborative

technology provides the supports social interaction among

team members either in meetings or through direct contact.

Meetings and visits also help in building sense of being a team

that produces trust.

 Problems at on the top require use of both

codification and personalization practices. Knowledge sharing

and transfer require social interaction to share tacit

knowledge.. Collaborative technology and meetings/visits are

the appropriate practices for this purpose. However,

documentation is also required to share knowledge.

V. CONCLUSION AND FUTURE WORK

 We have identified through SLR, GSD issues due to lack

of KM and KMPs to solve these issues. We have identified

that knowledge sharing, shared understanding and

communication as most prevailing issues and use of

collaborative technology and meetings or visits are mainly

used practices to handle these issues. We have also found that

most of the issues in GSD due to lack of knowledge

management are due to lack of social interaction.

Our work facilitates the practioners in comparing which

practice is better to adopt to deal with a certain issue.

Frequency of each problem and practice narrates the severity

of the problem in terms of its occurrence and effectiveness of

a practice. This helps in identifying which problem will be

confronted most and which practice is used widely to handle

it. Making an aware choice by considering all the alternatives

and consequences leads to better result. This piece of research

helps in making an aware choice and thus leads to better

results by applying this choice in offshore software

development.

The following directions can be taken into account

for future research:

 Relatively little empirical work has been done in

software engineering. Similar situation is prevailing

in the area of KM. Studies have been identified that

provide only the theoretical base and lack the

empirical evidence. This area requires consideration

for future research.

 An important area in KM that lacks empirical

evidence is KM tools. There are a lot of KM tools,

but they lack the empirical ground. This area also has

the potential for considering it for future research.

 This work can be extended by providing industrial

perspective from Pakistan. Studies included in this

SLR did not account any organization from Pakistan.

A survey can be launched to identify GSD problems

due to lack of KM and KMPs used to handle these

issues. The results can be compared with the above

mentioned results and a model can be proposed and

validated to select the best practice to solve GSD

issues due to lack of KM.

VI. LIMITATIONS

The SLR incorporates the data of last ten years.

APPENDIX A: RESEARCH PAPERS INCLUDED IN THE SLR AS

PRIMARY STUDIES

s1 G. Avram, “”Of Deadlocks and Peopleware - Collaborative Work

Practices in Global Software Development,” Global Software
Engineering, 2007. ICGSE 2007.

s2 J. Bosch and P. Bosch-Sijtsema, “From integration to composition: On

the impact of software product lines, global development and

ecosystems,” Journal of Systems and Software, vol. 83, pp. 67-76, July

2009.

s3 J. Kotlarsky, P.C. Van Fenema, and L.P. Willcocks, “Developing a
knowledge-based perspective on coordination: The case of global

software projects,” Information & Management, vol. 45, pp. 96-108,

Feburary 2008.

s4 G. Avram, “Knowledge Work Practices in Global Software
Development,” The Electronic Journal of Knowledge Management, vol.

5.

s5 S. Komi-Sirvio, and M. Tihinen, “Lessons learned by participants of
distributed software development, ”Knowledge and Process

Management, vol. 12, pp. 108-122, 2005.

s6 M. Biro, and P. Feher, “ Forces affecting offshore software

development,” 12th European Conference on Software Process

Improvement, EuroSPI 2005, November 9, 2005 .

s7 J. Kotlarsky, and I. OSHRI, “Social ties, knowledge sharing and
successful collaboration in globally distributed system development

projects,” European Journal of Information Systems, vol. 14, pp. 37-48,
2005.

s8 S. LEE, and H.-S. Yong, “Distributed agile: project management in a

global environment,” Empirical Software Engineering, vol. 15, pp. 204-
217.

s9 K. Mohan, and B. Ramesh, “Traceability-based knowledge integration
in group decision and negotiation activities,” Decision Support Systems,

vol. 43, pp. 968-989, 2007.

s10 A. Mathrani, D. Parsons, and R. Stockdale, “Workgroup structures in
offshore software development projects: A vendor case study,” 2009

13th Enterprise Distributed Object Computing Conference Workshops,
EDOCW - IEEE EDOC 2009 Workshops and Short Papers, September

1, 2009 - September 4, 2009.

s11 A. Boden, and G. Avram, “Bridging knowledge distribution - The role
of knowledge brokers in distributed software development teams,”

Cooperative and Human Aspects on Software Engineering, 2009.
CHASE '09. ICSE Workshop on software engineering.

s12 E. D. DAMIAN, and D. ZOWGHI, “ RE challenges in multi-site

software development organisations.” Requirements Engineering, vol. 8,
pp. 149-160, 2003.

s13 C. Ebert, and & J.D MAN, “Effectively utilizing project, product and
process knowledge,” Information and Software Technology, vol. 50, pp.

579-594, 2008.

s14 A. Taweel, B. Delaney, T.N. Arvanitis, and L. Zhao, “Communication,
knowledge and co-ordination management in globally distributed

software development: Informed by a scientific software engineering
case study,” 2009 4th IEEE International Conference on Global

Software Engineering, ICGSE 2009.

522Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 540 / 729

s15 M. Wiener, and R, Stephan, “Reverse Presentations,” Business &
Information Systems Engineering.

s16 B.E. Munkvold, and I. Zigurs, “Process and technology challenges in

swift-starting virtual teams,” Information & Management, vol. 44, pp.
287-299, 2007.

s17 V. Clerc, P. Lago, and H. Van Vliet, “The usefulness of architectural
knowledge management practices in GSD,” 2009 4th IEEE International

Conference on Global Software Engineering, ICGSE 2009.

s18 M.Jensen, S. Menon, L.E. Mangset, and V. Dalberg, “Managing
offshore outsourcing of knowledge-intensive projects a people centric

approach,” International Conference on Global Software Engineering,
ICGSE 2007.

s19 L. Taxen, “An integration centric approach for the coordination of
distributed software development projects,” Information and Software

Technology, vol. 48, pp. 767-780,2006.

s20 G. Avram, “Developing Outsourcing Relationships: A Romanian
Service Provider Perspective,” First Information Systems Workshop on

Global Sourcing: Services, Knowledge and Innovation Val d'IsèreFrance

13-15 March 2007.

s21 .Oshri, P. V. Fenema, and J. Kotlarsky, “Knowledge transfer in globally

distributed teams: the role of transactive memory,” Information Systems
Journal, vol. 18, pp. 593-616,2008.

s22 J.Z. Gao, F. Itaru, et al., (2002) “Managing Problems for Global
Software Production – Experience and Lessons,” Information

Technology and Management vol. 3, pp. 85-112.

s23 A. Taweel, B. Delaney and Z. Lei, “”Knowledge Management in
Distributed Scientific Software Development,” Global Software

Engineering, 2009. ICGSE 2009.

s24 L. Pilatti, J. Audy and R. Prikladnicki, “Software configuration
management over a global software development environment: lessons

learned from a case study,” 2006.

s25 K. Desouza, T. Dingsoyr, and & Y. Awazu, “Experiences with

conducting project postmortems: reports versus stories,” Software
Process: Improvement and Practice, vol. 10, pp. 203-215, 2005

s26 J.A. Espinosa, S.A.Slaughter, R.E. Kraut, and J.D. Herbsleb, (2007)
“Team knowledge and coordination in geographically distributed

software development”, Journal of Management Information Systems,

24, 135-169, 2007.

s27 A. Gupta, E. Mattarelli, S. Seshasai, and J. Broschak, “Use of

collaborative technologies and knowledge sharing in co-located and

distributed teams: Towards the 24-h knowledge factory,” The Journal of
Strategic Information Systems, vol.18, pp. 147-161, 2009.

REFERENCES:

[1]. J. Herbsleb, and D. Moitra, Global software development.
Software, IEEE, vol. 18, pp. 16-20, Mar/April 2001.

[2]. K. Desouza, Y. Awazu, and P. Baloh, “Managing knowledge in
global software development efforts: Issues and practices. IEEE

software, vol. 23, pp. 30-37, October 2006.

[3]. G. Avram “Of Deadlocks and Peopleware - Collaborative Work
Practices in Global Software Development,” Global Software

Engineering, ICGSE 2007.

[4]. V. Clerc, “Towards architectural knowledge management practices

for global software development. ACM, 2008.

[5]. B. Kitchenham, and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering. Engineering,

Vol. 2,2007.

[6]. D. Damian, L. Izquierdo, J. Singer, and I. Kwan, “Awareness in
the wild: Why communication breakdowns occur,” IEEE, 2007.

[7]. A.Boden, G. Avram, L. Bannon and V. Wulf, “Knowledge
Management in Distributed Software Development Teams - Does

Culture Matter?,” Proceedings of the 2009 Fourth IEEE
International Conference on Global Software Engineering. IEEE

Computer Society, 2009.

[8]. E.A. Paiva, “The test community of practice experience in Brazil.,”
IEEE International Conference on Global Software Engineering,

ICGSE , October 2006.

[9]. J. Kotlarsky, P.C. Van Fenema, and L. P. Willcocks, “Developing
a knowledge-based perspective on coordination: The case of global

software projects.” Information and Management, vol. 45, pp. 96-

108, Feburary 2008.

[10]. T. Byba, Review Protocol–Agile Software Development.

[11]. B. Kitchenham, O. Brereton, and M. Turner, “EPIC Case Study 2–
Extension of a Tertiary Study,” EPIC Technical Report, EPIC-

2009-007.

[12]. J. Bosch, and P. Bosch-Sijtsema, “From integration to
composition: On the impact of software product lines global

development and ecosystems,” Journal of Systems and Software,
Vol. 83, pp. 67-76, July 2009 .

[13]. J.-N. LEE, M. Huynh, and R. Hirschheim, “An integrative model
of trust on IT outsourcing: Examining a bilateral perspective,”

Information Systems Frontiers, Vol. 10, pp. 145-163, 2008.

[14]. D. Damian, and D. Zowghi, “Requirements Engineering
challenges in multi-site software development organizations,”

Requirements Engineering, Vol. 8, pp. 149-160, 2003.

[15]. G. Avram, “”Of Deadlocks and Peopleware - Collaborative Work
Practices in Global Software Development,” Global Software

Engineering, 2007. ICGSE 2007.

[16]. S. Komi-Sirvio, and M. Tihinen, “Lessons learned by participants
of distributed software development, ”Knowledge and Process

Management, vol. 12, pp. 108-122, 2005.

[17]. M. Wiener, and R, Stephan, “Reverse Presentations,” Business &
Information Systems Engineering.

[18]. L. Pilatti, J. Audy and R. Prikladnicki, “Software configuration
management over a global software development environment:

lessons learned from a case study,” 2006.

[19]. A. Boden, and G. Avram, “Bridging knowledge distribution - The
role of knowledge brokers in distributed software development

teams,” Cooperative and Human Aspects on Software Engineering,
2009. CHASE '09. ICSE Workshop on software engineering.

[20]. V. Clerc, P. Lago, and H. Van Vliet, “The usefulness of
architectural knowledge management practices in GSD,” 2009 4th

IEEE International Conference on Global Software Engineering,

ICGSE 2009

[21]. G. Avram, “Developing Outsourcing Relationships: A Romanian

Service Provider Perspective,” First Information Systems

Workshop on Global Sourcing: Services, Knowledge and
Innovation Val d'Isère, France 13-15 March 2007.

[22]. I.Oshri, P. V. Fenema, and J. Kotlarsky, “Knowledge transfer in
globally distributed teams: the role of transactive memory,”

Information Systems Journal, vol. 18, pp. 593-616,2008.

[23]. L. Taxen, “An integration centric approach for the coordination of
distributed software development projects,” Information and

Software Technology, vol. 48, pp. 767-780,2006.

[24]. A. Mathrani, D. Parsons, and R. Stockdale, “Workgroup structures

in offshore software development projects: A vendor case study,”
2009 13th Enterprise Distributed Object Computing Conference

Workshops, EDOCW - IEEE EDOC 2009 Workshops and Short

Papers, September 1, 2009 - September 4, 2009.

[25]. J.A. Espinosa, S.A.Slaughter, R.E. Kraut, and J.D. Herbsleb,

(2007) “Team knowledge and coordination in geographically

distributed software development”, Journal of Management
Information Systems, 24, 135-169, 2007.

[26]. C. Ebert, and & J.D MAN, “Effectively utilizing project, product
and process knowledge,” Information and Software Technology,

vol. 50, pp. 579-594, 2008.

[27]. K. Mohan, and B. Ramesh, “Traceability-based knowledge
integration in group decision and negotiation activities,” Decision

Support Systems, vol. 43, pp. 968-989, 2007.

[28]. G. Avram, “Knowledge Work Practices in Global Software

Development,” The Electronic Journal of Knowledge

Management, vol. 5.

523Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 541 / 729

Modelling the Strategic Alignment of Software Requirements using Goal Graphs

Richard Ellis-Braithwaite1 Russell Lock1 Ray Dawson1 Badr Haque2

1Loughborough University 2Rolls-Royce Plc.

Leicestershire, United Kingdom Derby, United Kingdom

{r.d.j.ellis-braithwaite@lboro.ac.uk, r.lock@lboro.ac.uk, r.j.dawson@lboro.ac.uk, badr.haque@rolls-royce.com}

Abstract—This paper builds on existing Goal Oriented
Requirements Engineering (GORE) research by presenting a
methodology with a supporting tool for analysing and
demonstrating the alignment between software requirements
and business objectives. Current GORE methodologies can be
used to relate business goals to software goals through goal
abstraction in goal graphs. However, we argue that unless the
extent of goal-goal contribution is quantified with verifiable
metrics and confidence levels, goal graphs are not sufficient for
demonstrating the strategic alignment of software
requirements. We introduce our methodology using an
example software project from Rolls-Royce. We conclude that
our methodology can improve requirements by making the
relationships to business problems explicit, thereby
disambiguating a requirement’s underlying purpose and value.

Keywords—Requirements Engineering; Strategic Alignment;
Quantified Goal Graphs; Requirements Traceability

I. INTRODUCTION

The stakeholders of a software project should share an
understanding of the potential business benefit that a
software requirement offers. If such an understanding can be
achieved, the likelihood that a solution will satisfy a real
business problem will be improved. Although such
statements may sound obvious, it has been reported that 45%
of software requirements are never deemed to be useful after
implementation [1]. These unnecessary requirements cause
costs and delays that perhaps could have been avoided by
benefit analysis. The existence of a requirement should be
questioned if it does not demonstrate potential to offer value
to the business. Conversely, valuable requirements are at
risk of being de-prioritised if they fail to demonstrate their
potential benefit. In an organisational setting, business
benefit can be gained from an alignment to business strategy.

Technically worded requirements or solution oriented
requirements (i.e., specified for the machine rather than for
the world [2]) hide the business problem to be solved and
leave stakeholders with little understanding of the potential
value. It is therefore important that the strategic alignment of
such a requirement is explored in order to avoid wastage.

This paper explores the suitability of goal graphs for
demonstrating a software requirement’s strategic alignment.
Current Goal Oriented Requirements Engineering (GORE)
standards, such as GRL [3], do not quantify the contribution
one goal makes to another using metrics from the application
domain, opting instead to use scales such as high, medium
and low, or numerical scales such as 0-9. As a result, any
strategic alignment proposed by the use of goal graphs is not

specific, measurable or testable. Proposed extensions by Van
Lamsweerde [4] do not consider that a chain of linked goals
may contain a variety of metrics that need to be translated in
order to demonstrate strategic alignment. Additionally, the
current methods do not consider how the contribution score
is calculated and how that affects the credibility and
accuracy of the proposed benefits. This paper attempts to
demonstrate how the above problems can be addressed,
thereby allowing goal graphs to be used to analyse the
strategic alignment of software requirements. Our
methodology complements frameworks that require business
value analysis, such as value-based software engineering [5],
by making assumptions about business value explicit.

We have developed and implemented our methodology
in partnership with an industrial partner (Rolls-Royce) to
ensure its utility in real world settings. We use examples in
the context of a software project to be implemented in the
Transmissions Structures & Drives (TS&D) Supply Chain
Unit (SCU). The software will automate geometry design
and analysis for aero engine components, as well as for their
manufacturing tools such as casting molds. Simply put,
engineers will input the desired design parameters and the
software will output the component’s geometry.

In Section II, we introduce the problem that this paper
addresses, while in Section III, we present and evaluate the
extent to which existing solutions address it. Section IV
presents our methodology and tool as an extension of an
existing GORE methodology in order to address the gaps
outlined in Section III. We conclude in Section V with
remarks on the paper’s contributions and future work.

II. THE PROBLEM

Ross and Schoman stated that software requirements
“must say why a system is needed, based on current or
foreseen conditions” as well as “what system features will
serve and satisfy this context” [6]. Popular Requirements
Engineering meta models [7], [8] and templates [9], [10]
tend not to focus on “why”, typically addressing it by
stipulating that rationale be attached to a requirement.
However, rationale is not always an adequate description of
why the requirement is valuable to the business. If only one
“why” question is asked about the requirement then the
rationale can still be distant from the true problem to be
solved (i.e., the essence of the requirement), and it may be
defined without consideration of its wider implications.

As an example of the problem that this paper examines,
we introduce the following high-level requirement taken
from our example software project: “While operating in an

524Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 542 / 729

a
s
s
s
th
r
s
b
s
r
s
s
w
i
in
b
b
o
c
m
it
d
m
o

a

s
O
A

A

to
q
th
te
(
h
th
th
d
th
a
s
th
T
s
o
o
e

analysis solutio
shall run anal
software requi
solved is not im
he need for t

rationale: “So t
solved as part
benefit to the b
still not clear
requirement. A
solved is not e
solving structur
wider implicati
s costing the b
naccuracy of t

business impac
broader implic
obvious - it m
constrained by
more to the rati
t would be sen

due to the dupl
may achieve th
of contribution

In summar
alignment of a r

1. The ro
that th

2. The e
prove

3. The va
better

The follow
strategic alignm
Oriented Req
Alignment and

 Goal OrientA.

Goal Orient
o provide an

question of “
hrough the use
erm goal in th

(i.e., desired fu
hopes to achie
herefore more
he goals of the

does not differe
he goals of the

an integrated
strategy. The O
hese terms in t

The BMM defi
satisfied on a c
of the business”
of an attainable
enterprise seek

on domain and
lysis models”.
rement and th
mmediately ob
this requireme
that structural i
of an automate
business and i

after one le
Additionally, th
explained, i.e.,
ral integrity an
ions of doing s
business in ter
the analysis d

ct and how far
cations may ex
might be the c

the slower m
ionale than is w
nsible to expre
ication this wo

he same busine
and with poten
ry, this pape
requirement sh
oot of the requ

he software can
extent of the p
the requiremen
alue of the req
inform prioriti

III. BA

wing areas of
ment of softw
quirements E
(C) Software M

ted Requiremen

ted Requireme
nswers to the,
“why” softwar
e of goal graph
he context of G
uture state) abo
eve [11]. “Goa

concerned wit
e business. Furt
entiate it from
e system to the
definition of

Object Manag
the Business M
ines a goal as
ontinuing basis
”. An objective
e, time-targeted
ks to meet in

d when deman
 The busines
he underlying
bvious, so to b
ent, we exami
integrity analys
ed process”. T
its alignment w

evel of abstra
he extent of th
, the problems
alysis models m
so. Perhaps the
rms of human
ue to error. If

r can it be redu
xist that are
case that desig

manual process.
written, and arg
ess within a req
ould incur; seve
ess benefit but
ntially complex
er argues tha
hould be examin
uirement can b

n solve the right
problem can b
nt’s value and v
quirement can
sation and proj

ACKGROUND

f research are
ware requirem
Engineering,
Metrics.

nts Engineering

ents Engineerin
, so far, larg
re functionali

hs. Van Lamsw
GORE as an op
out an objective
l” in the cont
th the goals of
thermore, this d
an objective.

e goals of the b
the terms u

gement Group
Motivation Mo
an indication o
s to effectively
e is then define
d, and measurab
n order to ach

nded, the syste
ss value of th
g problem to
better understa
ine the attach
sis models can

The requiremen
with strategy a
ction above t

he problem to
s associated w
manually and t
e manual proce
resource time

f so, what is t
uced? Addition
not immediate
gn innovation
 Clearly there
guably more th
quirement, par
eral requiremen
at varying lev

x dynamics.
at the strateg
ned so that:
be understood
t problem.
be understood
validity.
be understood
ject funding.

e related to t
ments: (A) Go

(B) Strateg

g

ng (GORE) see
gely unanswer
ty should ex

weerde defines t
ptative stateme
e that the syste
text of GORE
f the system th
definition of go
In order to rela

business, we ne
used in busine

(OMG) defin
del (BMM) [1
of “what must
y attain the visi
ed as a “stateme
ble target that t
hieve its goal

em
his
be

and
hed
be

nt’s
are
the
be

with
the
ess
or

the
nal
ely

is
e is
han
rtly
nts
els

gic

so

to

to

the
oal
gic

eks
red
xist
the
ent
em

is
han
oal
ate
eed
ess
nes
2].
be

ion
ent
the
s”.

Objecti
allowed
to prov
“maxim
possible
requirem
goals fo
are usu
[14], w
specifie

Sinc
objectiv
whethe
method
GORE
[17]. S
goals a
achieve
end. Th
as mea
elemen
typicall
order t
downw

Thr
contribu
Lamsw
the con

1.
2.
3.

Afte
conclud
objectiv
due to i
paper c
goals (g
goal’s s
variable
goals. T
cannot
problem
number
exampl
we intr
perform
contribu
its pare
because
cost) an
abstract

Goa
an inter
part of
integrat
contribu
contribu
Lamsw

ives therefore
d to be unrealis
ve strategic ali
mise profit” wo
e to prove the
ments should
or strategic alig

ually decompos
which allows c
ed, e.g., “objec
ce the only
ve and a goal

er its satisfa
dologies can s

methodologies
Such methodo
at a high level
ed and lower l
he relationship
ans-ends links
nts such as ag
ly included. A
to understand

wards to underst
ree methods
ution links in

weerde [4] with
ncepts could be

Subjective qu
Subjective qu
Objective ga
by a leaf soft

er evaluating
des that the sp
ve gauge varia
its verifiability
calculates the g
goals that hav
satisfaction lev
es that feed int
The methodolo
be sensibly a

m for proving
r of translation
le, take the fol
roduced in Se

m a structural
ute through ad

ent goal: “reduc
e the metrics
nd to convert t
tion, causing a
al Requiremen
rnational stand
f the User Req
tes the core
utions in GRL
ution scores,

weerde’s paper

contrast with
stic and unachi
ignment to no
ould be difficu
e extent of its
be abstracted
gnment. Fortun
sed into object
contribution b
ctive x will sati

significant
is in its hardn

action can b
still be applied
s include KAO

ologies produc
represent the

level goals rep
s between goa
with AND/OR

gents, obstacle
A goal graph

why a goal
tand how that g
for applying
goals graphs

h the intention
e applied to any
qualitative score
quantified score
auge variables (
ft goal to be inc

the above op
pecification of
ables is the m
y. However, the
gauge variables
ve no further d
vel is calculate
to it, which are
ogy instructs th
added, it shoul
g strategic alig
ns between met
llowing goal re
ection II: “re
l integrity ch
dditive gauge
ce the fabricate
differ, (one is
them both to co
ambiguity in ho
nts Language (G
dard through IT
quirements No
concepts of i
are specified w
much the sam
[4]. For exam

goals in that
ievable” [13]. A
on-specific goa
ult since it wo
s satisfaction.
to objectives r

nately, busines
tives that follow
between object
isfy half of obj
difference be
ness and speci

be determined
d. The most w
OS [15], i* [16
ce goal graph

end state that
present the me
ls are typically
R refinement.
es and depend
is traversed u
should be sat

goal could be s
 weights to
were propose

of extending K
y GORE metho
es e.g., --, -, +,
es e.g., 0 to 100
(i.e., a quantity
creased, reduce
ptions, Van La
f link weight s

most appropriate
e method prese
s additively fro
decomposition)
ed by summing
e only defined
hat when a gau
ld be ignored.
gnment becau
trics have to be
elated to the re
duce the time
eck”. This go
variable accum
ed structure de
s time while th
ost would omi

ow the costs are
GRL) was rece
TU specificatio
otation (URN)
i* and NFR
with subjective
me as outline
mple, the time

“goals are
Attempting
als such as
ould not be

Therefore,
rather than
s strategies
w SMART
tives to be
ective y”.

etween an
ificity (i.e.,
d), GORE
well-known
] and GRL
s whereby
t should be
eans to that
y expressed
Additional

dencies are
upwards in
tisfied and
satisfied.

goal-goal
ed by Van
KAOS, but
od:

++.
0.
y prescribed
ed, etc.).
amsweerde
scores with
e approach
ented in the
om the leaf
); that is, a
g the gauge
by the leaf
ge variable
. This is a
se often a

e made. For
equirement
e taken to
oal cannot
mulation to
esign costs”
he other is
t a level of
e reduced.
ently made

on Z.151 as
) [3]. GRL
[17]. Link

e quantified
ed in Van
e reduction

525Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 543 / 729

g
c
i
w
i
it
g
s
(
m
b
w
u
in
jU
I
b
a
c
g

q
(
th
c
A
o
r
s
g
d
s
th
a
s
e
e
h

B

s
d
M
s
v
o
th
s
d
f
to
to
p
s
m
r
d
th

goal might co
contribution we
s untestable an

which, accordin
s not described
t. The only wa

goals were spe
saved) and if
(which they do
might imply th
be achieved. H
whose satisfact
upper bound is
ncreases, whic
UCMNav tool

Indicators (KP
business targets
activity. Howev
contribution is m
goals makes to

One of the
qualities with c
(HoQ) diagram
hat the score

contribution ar
Additionally, si
only two dimen
requirements c
software goals
goals, then add
dimension. If th
software projec
hen the goals t

against may be
solve the wro
evaluate alterna
e.g., [20], also
higher level goa

 Strategic AlB.

One of the
software requir
due to its tig
Motivation Mo
strategy toward
various levels
objective, etc.)
hat a requirem

strengths are a
depends on the
for the goal “re
o be reduced
owards anothe

proportion of
satisfy the s
methodology
requirements, w
dependent on th
here is no o

ontribute to t
eight of 67 out
nd meaningles
ng to Jackson
d precisely enou
ay such scales
ecified with fi

the scales im
o not). In whic
hat 50% of a £
However, this
tion upper bou
100; which is

ch may specify
 allowed for th

PIs) to goals
s that measure
ver, since KPIs
measured (i.e.,
a KPI), subjec
e most popul

customer requir
m [19]. The fun

values used t
re subjective, m
ince the HoQ
nsions can be c
an be related

are to be re
ditional grids w
hese dimension
ct goals are no
that the alterna
 incorrect (e.g
ng problem).
ative solutions
depend on th

als for the resu

lignment

e most suitab
rements to bus
ght integration
odel (BMM).
ds organisation

of the BMM
). However, B

ment satisfies a
assigned to lin
 extent to whic
educe costs”, th
d), the extent
er needs to b

software requ
strategic obje
refines busi

which means th
he completene

opportunity to

the cost savin
of 100. This c
s; moreover it
[2], means tha
ugh because no

s could be mea
it criterions (e
mplied percen
ch case, a 50/

£20,000 annual
is only appl

und is 100%,
not the case fo
more than 100

he relation of K
in GRL [18

 the performan
s do not affect t
, the contributio
tivity and ambi
lar tools to c
rements is the H
ndamental failin
o measure the
much like thos
is constructed
compared in th
to software go
lated to custo
will be require
ns are not exp

ot abstracted to
ative solutions w
., solution spec
GORE metho

s against their
he alignment o
lting decision t

le methodolog
siness strategy
n with the O

B-SCP decom
nal IT requirem
M (e.g., the

B-SCP cannot
a strategy since
nks. Since str
ch the strategy
he extent is th
to which a

be considered.
uirements wil
ectives. More
iness strategy

hat completenes
ss of the busin
refine softwa

ng goal with
contribution sco
t is not refutab
at the relationsh
o one can dispu
aningful is if t
.g., a cost to

ntage satisfacti
/100 contributi
l cost saving w
licable for go
since the scale

or goals involvi
0%. Recently, t
Key Performan
8]. KPIs spec
nce of a busine
the way in whi
on that a chain
iguity still exis
compare produ
House of Qual
ng of the HoQ
e strength of t
se used in GR
using a 2D gr

he same grid, i.
oals, but if tho
omer or busine
ed for each ex
lored (e.g., if t

o business goal
will be evaluat
cific or aiming
odologies whi
effect on goa

of those goals
to be correct.

gies for relati
y is B-SCP [2
OMG’s Busine
mposes busine

ments through t
vision, missio
accurately sho

e no contributi
ategic alignme
is satisfied (e.

e amount of co
goal contribu
Indeed, a lar

ll only partia
eover, B-SCP
y towards
ss of the model
ness strategy, i.
are functional

a
ore
ble,
hip
ute
the
be

ion
ion

will
als
e’s
ing
the
nce
ify
ess
ich

n of
sts.
uct
lity

Q is
the

RL.
rid,
.e.,
ose
ess

xtra
the
ls),
ted
 to
ich
als,

to

ing
1],
ess
ess
the
on,
ow
ion
ent
.g.,
ost

utes
rge
ally
P’s
IT
l is
.e.,
lity

upward
SCP do
obstacle

The
approac
busines
financia
The ap
such a
requirem
place, i

 MetC.

Fit
[23] ca
measur
the ben
criterio
Additio
represe
between
visualis
the Go
explicit
measur
program
Howev
other m
goals a
fixed n
there ar
GORE
actors,

We
demons
tasks (w
busines
about s
the req
requirem
link to
because
because

Soft
Busines
goal g
alignme
their s
nonsen
partially
since ob
in orde
weighte
their re

For
Volere
requirem

ds to propose n
oes not conside
es, as in the GR

e Balanced S
ch offers gui
ss goals to e
al, customer, in

pproach does n
an approach c
ment to busin
in order to ensu

trics

criterions as s
an be attached
rably satisfiabl
nefits that may

on are not
onally, Voler
entation of req
n requirements
se. GQM+Stra
oal Question
t support for
rement effort
mming has on
ver, the approa
methodologies
are not quantif
number of goa
re no additiona
methodologie

conflicts, AND

propose that
strate strategic
where the task
ss objectives as
some business
quirement is th
ments should b
business obje

e it is part of t
e its notation is
ft goal elemen
ss Motivation

graph for the
ent since their
satisfaction is
sical to cons
y or completel
bjectives exist
er to amplify
ed traceability
lated vision) sh

r our referenc
requirements

ment, primarily

new business s
er goal conflicts
RL and KAOS
Scorecard and
idance on fo
each other u
nternal process

not concern so
could be perf
ness strategy a
ure business str

specified by V
to requirement

le. However, a
y be reaped a
addressed in

re and Plang
quirements; an
s are hard to m

ategies™ [24] w
Metrics met

r the relation
(e.g., measuri

n quality) to h
ach falls short

reviewed; con
fied (i.e., assu
al abstraction
al concepts that
es to place the
D/OR refineme

IV. METHODO

t GRL goal
c alignment by
k is to implem
s hard goals (w
benefit) with c

he means to th
be abstracted (a
ectives. We ha
the Z.151 inter
s well known (i
nts (e.g., goal

Model) shoul
purpose of

r satisfaction i
s possible at
sider that a r
ly satisfy a go
to quantify go
the vision of
between an ob

hould be maint
e implementat
template to d

y because it sp

strategy. Addit
s, dependencie
 methodologie
d Strategy M
ormulating an
under four pe
ses, learning a

oftware require
formed before
alignment ana
rategy complet

Volere [9] and
ts in order to m
assumptions m
after satisfactio
n either me
guage propos

nd as such, re
maintain, under
was developed
thodology by
n of softwar
ng the impac

high-level busin
t in areas sim
ntribution link

umed benefit),
levels per dia

t are typically i
goals into co

ent).

OLOGY

graphs can b
y linking requi

ment the require
where the hard g
contribution lin
he objective’s
asking “why?”
ave used GRL
rnational standa
it originates fro
ls and visions
ld not be defi

demonstrating
s often immea
t all); therefo
requirement m

oal or a vision.
oals, and since

the business
bjective and its
tained for poste
tion, we have

define the attri
pecifies a fit cri

tionally, B-
es, actors or
s.

Maps [22]
nd relating
erspectives:
and growth.
ements; but
e software

alysis takes
eness.

Planguage
make them

made about
on of a fit
ethodology.
se textual
elationships
rstand, and
d to extend

providing
re metrics
t that pair
ness goals.

milar to the
ks between

there is a
agram and
included in
ntext (e.g.,

be used to
irements as
ement) and
goal brings
nks (where
end). The

”) until they
’s notation
ard [3] and
om i*).
s from the
ined in the
g strategic
asurable (if
fore, it is
may either
. However,
goals exist
[12], non-
goals (and

erity.
e used the
ibutes of a
terion field

526Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 544 / 729

u
e
te
S
C

G
F
im

a
li
w
c
o
o

th
u

G
g
F
ta
th
w
“

used for testing
effort” field (sp
emplate so th

Software imple
COCOMO [25]

We defin
GQM+Strategie
Figure 1. Our m
mprove integra

1. The ad
which
An obj
in term

2. The sp
in the
desired

3. The re
since t

4. The a
propos

Activity

Object

Focus

Magnitude

Scale

Timeframe

Scope

Author

Figure

An objectiv

achieved within
inks going tow

will be achieve
child objective
objective’s spe
objective can be

Figure 2 sho
he requiremen

used on the co

In order to

GQM+Strategie
goal elements
Focus](magnitu
asks (i.e., the
he naming syn

where “F/NF”
“Requirement”

contribution (or)

hard goal (

g the requireme
pecified in pers
hat cost-benefi
ementation effo
] could be usef
ne objective
es formalisatio

modifications to
ation with visua
ddition of the

specifies the
bjective’s contr
ms of the secon
pecification of
e past tense,
d outcome rath
emoval of the
these can be ex
addition of th
sed objectives c

Reduced

TS&D Fabricated

Lead Time

3 months

Time in mon
manufactured fro

1 year after syste

Transmissions S

John Smith (Com

e 1:Example GQM

ve is satisfied w
n the specifie

ward an objecti
ed (or exceede
es additively a
cified magnitu
e considered m
ows the GRL n
nts and objecti
ondition that th

Figure 2: GR

o visualise the
es template in
with the nam

ude)”. We repr
task of implem
ntax: “{F/NF}
” is either F

is a short head

)

contributi

objective)

ent’s satisfactio
on-hours) coul
it analysis can
ort estimation
ful in refining e
es using
on template [2
o the textual tem
al GRL diagram
scale concept
metric used f

ribution to anot
nd (parent) obje
the objective’s
since objecti

her than an activ
constraints an

xpressed diagra
he author field
can be identifie

d Structure Manu

nths required
om the inception

em deployment

Structures & Drive

mponent Enginee

M+Strategies Forma

when the specif
d timeframe.
ive specify how
ed). If the con
amount to mee
ude, then the sa
more likely than
notation that is
ives. Other no
hey support the

L Diagram Notatio

objectives sp
a goal graph, w
ming syntax:
resent software
menting the re
}[Requirement

Functional or
dline version o

ion (and) de

task (req

on. An “estimat
ld be added to t
n be performe
methods such

estimated value
our modifi

26], as shown
mplate attempt
ms through:
from Planguag

for measureme
ther is then giv
ective’s scale.
s activity attribu
ives represent
vity.
d relations fiel

ammatically.
d so that new
ed and traced.

ufacturing

to have part
of a new engine

es (TS&D) SCU

er, TS&D)

alisation

fied magnitude
The contributi
w that magnitu
ntributions of t
et or exceed t
atisfaction of t

n if not.
used to represe

otations could
e same concep

on

pecified with t
we use GRL ha
“Activity[Obje

e requirements
quirement) usi
t](Fit Criterion

Non-Function
f the requireme

composition (and

quirement)

ted
the
ed.
as

es.
ied
in

t to

ge,
ent.
ven

ute
a

lds

wly

ts

e is
ion
ude
the
the
the

ent
be

pts.

the
ard
ect
as

ing
n)”,
nal,
ent

descrip
the met

A
objectiv
(tested
the obj
by the c
objectiv
objectiv
criterio
multipl
should
“AND”
decomp
specific
stereoty
by the
elemen
alignme

The

decomp
2) to re
refinem
the low
decomp
& 5) w
requirem

d)

ption, and “Fit
tric used to test
contribution l
ve specifies th
by its fit crite
ective, where t
contribution sp
ves is similar,
ve is measured

on. An “OR” c
le “OR” links,
be satisfied. A

” links are requ
position link d
c requirement,
ype [8]. Figure
methodology,

nts in Figure 2
ent of three hig

Figure 3: E

e high-level so
posed to two l
epresent the hie
ments through d
west level of
posed requirem

with contributio
ments hope to

Criterion” is t
t the requireme
link between
hat the satisfac
erion) will achi
the extent of t

pecified by the
 except for th
d by its magni
contribution sp
a decision has

An “AND” cont
uired for the ob
decomposes a

much like Sy
e 3 shows an ex
, which demon
2 to explore an
gh-level softwa

Example Strategic

oftware require
ower level sof

erarchy of requ
decomposition
f requirement

ments (1 & 2) t
on links in orde

achieve. The c

the short-hand
ent’s satisfactio

a requiremen
ction of the re
ieve some sati
the satisfaction
link. A link be

hat the satisfac
itude rather th
pecifies that if
s to be made ab
tribution specif
bjective to be s
requirement in

ysML’s “derive
xample diagram
nstrates the us
nd visualise th
are requirement

Alignment Diagra

ement (3) in F
ftware requirem
uirement abstrac
n links will con
s are represe
then link to ob
er to represent
contribution lin

version of
on.
nt and an
equirement
isfaction of
n is defined
etween two
ction of an
an by a fit
f there are
bout which
fies that all
satisfied. A
nto a more
eReqt” link
m produced
sage of the
he strategic
ts.

am

Figure 3 is
ments (1 &
ction. Such
ntinue until
ented. The
bjectives (4
what those

nks (E & F)

527Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 545 / 729

are of the “AND” type, since both objectives (4 & 5) are
required if objective (6) is to be satisfied.

Table 1 shows a sample of the quantifications that
complement the diagram. They have been separated out of
the goal graph due to space constraints, but ordinarily would
be annotated on the edges (connecting links) of the graph.

TABLE 1: QUANTIFIED CONTRIBUTIONS

Link [Contribution] [Activity] [Scale] Confidence
C

(1→4)
[80%] [Reduction] in

[Geometry Creation Time] 1

D
(2→5)

[50%] [Reduction] in
[Integrity Check Time] 0.75

E
(4→6)

[20%] [Reduction] in
[Time Required to Design] 1

F
(5→6)

[13%] [Reduction] in
[Time Required to Design] 0.75

G
(6→7)

[3 months] [Reduction] in
[Manufacturing Lead Time] 0.75

The quantified contributions in Table 1 tell us that

objective (4) will be satisfied if requirement (1) is satisfied,
since objective (4)’s required magnitude of satisfaction
(80%) will be contributed by link (C) (80%). It is important
to note that where percentages are used as contribution
weights on links, this does not infer that a certain percentage
of the objective’s magnitude will be achieved (in this case,
80% of 80%). Instead, the focus of the objective (e.g.,
geometry creation time) will be affected by that percentage
in the context of the activity (e.g., a reduction by 80%).
Objective (4) is then abstracted until the benefits are
expressed in terms of high-level business objectives, which
disambiguates estimated business value by placing the
quantifications into context (i.e., a large saving from a small
cost may be less than a small saving from a large cost).

Confidence levels allow users to represent how sure they
are that achieving the first objective (or requirement) affects
the second objective by at least the specified contribution.

TABLE 2: CONFIDENCE LEVEL ENUMERATIONS

Confidence Description

0.25 Poor credibility, no supporting evidence or
calculations, high doubt about capability

0.5 Average credibility, no evidence but reliable
calculations, some doubt about capability

0.75 Great credibility, reliable secondary sources of
evidence, small doubt about capability

1 Perfect credibility, multiple primary sources of
evidence, no doubt about capability

The confidence level concept is similar to that used by

Gilb for impact estimation [23], so we base our confidence
levels on a similar scale in Table 2. Basic confidence
adjustment can be performed by multiplying contributions by
their associated confidence level so that users are reminded
of the impact confidence has on estimations. For example,
when confidence levels are taken into consideration in Table
1, the satisfaction of requirement (1) still leads to the full
satisfaction of objective (4). However, when confidence
levels are considered for links (E & F), the satisfaction of

objective (6) is in doubt, since (20*1) + (13*0.75) is less
than the 33% required by the objective’s magnitude attribute.
Additional confidence levels can be applied to the user’s
estimations to represent how qualified that user is at
providing estimations. For example, someone who has
implemented similar systems should be able to provide more
accurate estimations than someone who has not. The
accuracy of previous estimates made by that person could
also be considered in order to improve the reliability of the
estimations (i.e., calibration of the confidence levels).

By traversing the quantified GRL goal graphs, the
business value of a requirement can be calculated by the
contribution it makes to business objectives. This calculation
can be automated by using a graph traversal algorithm (e.g.,
depth-first search) to calculate how much a given
requirement contributes to a business objective. This
calculation could then be used to improve the outcome of
requirements prioritisation methods such as the Analytics
Hierarchy Process [27], since such pairwise methods depend
on the practitioners understanding of a requirement’s value.

It is important to note that software engineers and
business analysts may not know the objectives (or the goals
and visions, for that matter) at different levels of the business
(i.e., the project, the business unit, the department, the
overall business, etc.). Therefore, managers should work
with stakeholders to define the business objectives before the
requirements can be abstracted toward them. Indeed, it is
likely that some software requirements will be abstracted
toward business objectives that were not previously elicited.

Where typical goal abstraction (asking “why?”) would
allow a non-specific goal such as “improve the engine”, this
method requires the user to be specific in how the engine is
to be improved by asking for the metric that will be affected,
e.g., “component lifespan” from objective (12) in Figure 3.
Users may resist quantifying benefits of requirements,
especially for non-functional requirements where the subject
may be intangible, however, Gilb has found that it has
always been possible to do so in his experience (e.g., by
polling customers to quantify customer satisfaction) and has
provided guidance on doing so in [23]. Even if the
magnitude cannot be elicited at first, providing a scale by
which the objective’s success will be measured improves the
definition of the objective by reducing ambiguity.

We suggest that this methodology should be performed
after the high-level requirements have been elicited, so that
resources are not wasted eliciting lower level requirements
that do not align well to business strategy.

Tool support (GoalViz) has been developed (free to
download at [28]) to support the methodology through:

 Input support for the requirement and objective
templates with prompt question generation.

 Automatic diagram drawing to focus the user on the
methodology and data rather than the graph layout.

 Automatic evaluation and summarisation of chains
of links to enable efficient understanding.

 Project libraries to facilitate learning about the
estimated contributions made in previous projects to
improve future quantification confidence levels.

528Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 546 / 729

 What-if analysis allowing comparison of outcomes
for different inputs where there is some uncertainty.

V. CONCLUSION AND FUTURE WORK

This paper’s unique contribution is twofold. First, we
have shown how quantified goal graphs can be used to
visualise the alignment of software requirements to business
objectives. We have shown that in order to demonstrate
strategic alignment, a chain of objectives may contain
different measurement scales, and, since strategic alignment
is based on estimated benefit, confidence in the estimations
should be made explicit. Secondly, we have shown how goal
link contribution scores can be made testable by specifying
them in terms of the estimated effect they will have on the
parent goal’s measurement scale. Our methodology not only
facilitates disambiguation of a requirement’s business value,
but more importantly, it requires that the needs of the
business (i.e., business objectives) are related to requirements
to ensure that the software can add value to the business.
Since the requirements are abstracted to several levels of
objectives, the problem to be solved will have been defined
even if the requirement was originally solution oriented.

Future work will evaluate this approach against the
related work detailed in Section III within different industrial
settings to examine its benefit in a range of domains. We also
intend to evaluate integration with SysML [8] to improve
traceability to the design that will realise the requirements.

REFERENCES

[1] “CHAOS Chronicles v3.0,” Standish Group International,
2003.

[2] M. Jackson, Software requirements & specifications: a
lexicon of practice, principles, and prejudices. ACM Press,
1995.

[3] International Telecommunication Union, “Z.151 : User
requirements notation (URN) - Language definition.”
[Online]. Available: http://www.itu.int/rec/T-REC-Z.151/en.
[Accessed: 02-Jul-2012].

[4] A. Van Lamsweerde, “Reasoning about alternative
requirements options,” Conceptual Modeling: Foundations
and Applications, pp. 380–397, 2009.

[5] B. Boehm, “Value-based software engineering,” ACM
SIGSOFT Software Engineering Notes, vol. 2, no. 28, pp. 3–
15, 2003.

[6] D. T. Ross and K. E. Schoman Jr, “Structured analysis for
requirements definition,” IEEE Transactions on Software
Engineering, no. 1, pp. 6–15, 1977.

[7] A. Goknil, I. Kurtev, and K. van den Berg, “A
metamodeling approach for reasoning about requirements,”
in Model Driven Architecture–Foundations and
Applications, 2008, pp. 310–325.

[8] M. S. Soares and J. Vrancken, “Model-driven user
requirements specification using SysML,” Journal of
Software, vol. 3, no. 6, pp. 57–68, 2008.

[9] S. Roberson and J. Robertson, “Volere: Requirements
Specifcation Template.” The Atlantic Systems Guild, 2012.

[10] The Institute of Electrical and Electronics Engineers, IEEE
Std 830-1998: IEEE Recommended Practice for Software
Requirements Specifications. New York: IEEE-SA
Standards Board, 1998.

[11] A. Van Lamsweerde, “Goal-oriented requirements
engineering: A guided tour,” Fifth IEEE International

Symposium on Requirements Engineering, 2001.
Proceedings., pp. 249–262, 2001.

[12] Object Management Group, “BMM 1.1.” [Online].
Available: http://www.omg.org/spec/BMM/1.1/. [Accessed:
16-Mar-2012].

[13] I. Alexander, “10 small steps to better requirements,”
Software, IEEE, vol. 23, no. 2, pp. 19 – 21, Apr. 2006.

[14] K. F. Cross and R. L. Lynch, “The ‘SMART’ way to define
and sustain success,” National Productivity Review, vol. 8,
no. 1, pp. 23–33, 1988.

[15] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-
directed requirements acquisition,” Sci. Comput. Program.,
vol. 20, no. 1–2, pp. 3–50, Apr. 1993.

[16] E. S. K. Yu, “Towards modelling and reasoning support for
early-phase requirements engineering,” in Proceedings of the
3rd IEEE International Symposium on Requirements
Engineering, 1997, pp. 226–235.

[17] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L.
Peyton, and E. Yu, “Evaluating goal models within the goal-
oriented requirement language,” International Journal of
Intelligent Systems, vol. 25, no. 8, pp. 841–877, 2010.

[18] A. Pourshahid, D. Amyot, L. Peyton, S. Ghanavati, P. Chen,
M. Weiss, and A. J. Forster, “Business process management
with the user requirements notation,” Electronic Commerce
Research, vol. 9, no. 4, pp. 269–316, Aug. 2009.

[19] J. R. Hauser and D. Clausing, “The house of quality,”
Harvard Business Review, pp. 63–73, 1988.

[20] W. Heaven and E. Letier, “Simulating and optimising
design decisions in quantitative goal models,” in
Requirements Engineering Conference (RE), 2011 19th
IEEE International, 2011, pp. 79–88.

[21] S. J. Bleistein, K. Cox, J. Verner, and K. T. Phalp, “B-SCP:
A requirements analysis framework for validating strategic
alignment of organizational IT based on strategy, context,
and process,” Information and Software Technology, vol. 48,
no. 9, pp. 846–868, Sep. 2006.

[22] R. S. Kaplan and D. P. Norton, “Linking the balanced
scorecard to strategy,” California management review, vol.
39, no. 1, 1996.

[23] T. Gilb, Competitive Engineering: A Handbook For Systems
Engineering, Requirements Engineering, and Software
Engineering Using Planguage. Butterworth-Heinemann Ltd,
2005.

[24] V. Basili, J. Heidrich, M. Lindvall, J. Münch, M. Regardie,
D. Rombach, C. Seaman, and A. Trendowicz, “Bridging the
gap between business strategy and software development,”
in Twenty Eighth International Conference on Information
Systems, Montreal, Canada, 2007, pp. 1–16.

[25] B. Boehm, B. Clark, E. Horowitz, C. Westland, R.
Madachy, and R. Selby, “Cost models for future software
life cycle processes: COCOMO 2.0,” Annals of Software
Engineering, vol. 1, no. 1, pp. 57–94, 1995.

[26] V. Mandić, V. Basili, L. Harjumaa, M. Oivo, and J.
Markkula, “Utilizing GQM+Strategies for business value
analysis: an approach for evaluating business goals,” in
Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement, New York, NY, USA, 2010, pp. 20:1–20:10.

[27] K. Joachim, W. Claes, and R. Bjorn, “An evaluation of
methods for prioritizing software requirements,” Information
and Software Technology, vol. 39, pp. 939–947, 1998.

[28] R. Ellis-Braithwaite, “GoalViz Tool,” GoalViz Tool.
[Online]. Available:
http://www.goalviz.info/ICSEA2012/index.html. [Accessed:
15-Mar-2012].

529Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 547 / 729

A Constraint-based Method to Compute Semantics of Channel-based Coordination
Models

Behnaz Changizi, Natallia Kokash
Leiden Institute of Advanced Computer Science (LIACS)

Leiden, The Netherlands
b.changizi@umail.leidenuniv.nl, nkokash@liacs.nl

Farhad Arbab
Centrum Wiskunde & Informatica (CWI)

Amsterdam, The Netherlands
farhad.arbab@cwi.nl

Abstract—Reo is an exogenous channel-based coordination
language that acts as glue code to tie together software
components and services. The building blocks of Reo models
are connectors that impose constraints on the data-flow in
component or service-based architectures in terms of data syn-
chronization, buffering, mutual exclusion, etc. Several semantic
models have been introduced to formalize the behavior of Reo.
These models differ in terms of expressiveness, computation
complexity and purposes that they serve. In this paper, we
present a method and a tool for building formal automata-
based semantics of Reo that unifies various aspects of existing
semantics. We express the behavior of a Reo network as a
mixed system of Boolean and numerical constraints constructed
compositionally by conjuncting the assertions for its constituent
parts. The solutions of this system are found with the help
of off-the-shelf constraint solvers and are used to construct
the constraint automaton with state memory that gives the
sound and complete semantics of Reo with respect to existing
models. Our approach is more efficient compared to the existing
methods for generating formal semantics of Reo connectors.

Keywords-formal semantics; Reo; constraint automata; col-
oring semantics; constraint solving.

I. INTRODUCTION

Service-oriented architecture [1] (SOA) is an indispens-
able solution for many of todays’ problems. The SOA
implementation depends on a mesh of functionality units,
called services. Services are loosely coupled and do not
invoke or communicate with each other directly. Instead,
they employ a pre-defined protocol, which specifies the
way they can exchange messages amongst themselves. As a
result, the correctness of a SOA implementation relies not
only on the correctness of its involved services but also on
the properness of its communication protocol.

Coordination languages and models provide dedicated
frameworks to study the communication protocols as sepa-
rate concerns. They define the “glue code” that ties together
the services to enable the message passing among the
involved services. Some recent coordination models include:
i) a Calculus for Orchestration of Web Services (COWS)
[2], which specifies the combination of service-oriented ap-
plications and models their dynamic behavior; ii) Orc [3], a
process calculus for distributed and concurrent programming
which provides uniform access to computational services,

including distributed communication and data manipulation;
and iii) Reo [4], an exogenous coordination language that
realizes the coordination patterns in terms of its complex
connectors, also called networks, that are built out of simple
primitives called channels. In the sequel, we focus on Reo.

Each channel in Reo defines a form of coordination in
terms of synchronizing, buffering, retaining data, etc., along
with constraining its input and output data items. Reo allows
hierarchical modeling where arbitrarily complex connectors
can be formed out of simpler networks. In our previous work
[5] [6], we have presented the suitability of Reo to model
behavioral patterns describable by business process models.
We have also developed tools for automatic transformation
of these models into Reo [6]. This enables the use of Reo
analysis methods and tools on the coordination protocols
that originally were not expressed in Reo.

To perform formal analysis on Reo networks, formal
semantics of these models are necessary. Several operational
semantics have been proposed for Reo [7] with various styles
of I/O streams [4], automata, coloring [8] and constraints [9].
The most basic automata-based semantics of Reo is Con-
straint Automata (CA) [10]. An advantage of CA and its
extensions is their support for data-constraints that are part
of the coordination primitives in Reo. This is in contrast with
the coloring semantics that abstracts data-flow and expresses
the behavior of a connector only in terms of existence or lack
of data-flow.

Constraint Automata with State Memory (CASM) [11] is
an extension of CA that due to its state abstraction and data-
awareness, is suitable as a more compact semantic model
for Reo in model checking. In this paper, we present a
constraint-based technique and a tool to generate CASMs
from Reo networks in a compositional manner.

A shortcoming of earlier work stems from its lack of
support for data-dependent behavior. We overcome this
shortcoming in the work we present in this paper. Our tool
is a necessary step for providing fully automated model
checking for data-aware and context-dependent composition
of services coordinated by Reo.

The rest of this paper is organized as follows. In Section
2, we explain the basics of Reo. In Section 3, we introduce

530Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 548 / 729

Table I: Graphical Representation of the Most Frequently
Used Reo Channels

A Sync channel accepts data from its source end iff it
can dispense it simultaneously through its sink end.
A LossySync reads a data item from its source end and
writes it simultaneously to its sink end. If the sink end
is not ready to accept the data item, the channel loses it.
A SyncDrain reads data to discard through its two source
ends iff both ends are ready to interact simultaneously.
An AsyncDrain accepts and discards a data item from
either of its source ends that offers one. If both ends offer
data items simultaneously, then the channel chooses one
non-deterministically.

P
A Filter accepts a data item that does not match its
predefined filter pattern P from its source and loses it.
For a data item that matches its filter pattern P , a filter
channel behaves as a Sync channel; it accepts the data
item iff it can dispense it simultaneously through its sink
end.

f
A Transformer acquires data at its source end, applies a
predefined transform function f on it and simultaneously
writes the result to its sink end, iff the data item is in the
domain of the function f. Otherwise, the channel loses
the data item.
If a FIFO1 is empty, it accepts incoming data from its
source end and buffers it. Being full, the channel is ready
to dispense data through its sink end and become empty.
Because this channel has a buffer capacity of one data
item, it is either full or empty at any given time, and thus
the ends of this channel cannot interact simultaneously.

constraint automata with state memory. In Section 4, we
formalize the mentioned semantic model of Reo in systems
of constraints along with techniques to solve them. In
Section 5, we show how we abstract from the internal ports
in a Reo network in a minimized representation. In Section
6, we briefly discuss some properties of our presented
constraint encoding of Reo networks. Finally, in Section 7,
we conclude the paper and outline our future work.

II. REO

Reo [4] is an exogenous channel-based coordination
language, which can act as “glue code” to tie together
software components and services. The building blocks of
Reo models, connectors, impose constraints on the data-flow
in terms of synchronization, buffering, mutual exclusion, etc.
Every connector contains some primitives. The set of Reo
primitives is open-ended, meaning that a user can define new
primitives and extend the expressiveness of Reo.

The simplest Reo connector is a channel that has two
ends, also called ports. Channel ends are either of type
source that reads data into the channel or sink that writes
the channel’s data out. Table I shows the most commonly
used channels in Reo.

Reo nodes connect channels to each other to form Reo
connectors, also called circuits or networks. Depending on
whether all channel ends that coincide on a node are source
ends, sink ends or a combination of both, nodes become
source, sink or mixed nodes. A source node behaves as a
synchronous Replicator that replicates the incoming data

Table II: Graphical Representation of Reo Nodes and Two
Frequently Used Components

A Replicator replicates the incoming data of its source
to its sink ends simultaneously.
A Merger non-deterministically chooses one of its source
ends that is ready to communicate, take its incoming data
item and writes it to its sink end.
A Router accepts data from its source end and simul-
taneously writes it on one of its non-deterministically
chosen sink ends that is ready to accept the data.
A Cross-product reads one incoming data item from each
of its incoming source ends, forms a tuple in which the
data elements are set in the counter-clock-wise order
with respect to its sink node, and simultaneously writes
the resulting tuple on its sink end.

of its source to its sink ends simultaneously, while a sink
node acts as a non-deterministic Merger that combines the
flows of its source ends to its sink end. A mixed node is an
atomic combination of a replicator and a non-deterministic
merger. Each read and write action needs all of its involved
source and sink ends to be able to interact synchronously;
otherwise, the action cannot take place. Reo also allows
hierarchical modeling and abstraction from inner structures
by means of components. A component can be written in
any programming language. Moreover, a connector can be
converted into a component, exhibiting (part of) its inner
logic as an observable behavioral interface. Table II shows
the graphical representation of the Reo nodes and two
frequently used components, Router and Cross-product.

A. Formal Semantics of Reo

Coordination patterns that a Reo network imposes on data-
flow define the network’s behavior. Formal analysis of a
Reo network requires formal modeling of its behavior. The
behavior of a Reo network consists of various dimensions
that involve:
• State: The states of elements forming a Reo network at

any point in time define the state, also called configu-
ration, of the network. The network state affects and is
affected by the data-flow at each step.

• Synchronization/Exclusion: The term synchronization
refers to atomic concurrent data-flow through ports
and nodes. Depending on its constituents and their
arrangement inside the network, in each configuration,
a Reo network allows, requires, or forbids a group of
ports to synchronize. We consider mutual exclusion as
a special case of synchronization.

• Data-dependent flow: The value of data items that the
ports of a Reo network exchange can affect the network
behavior, particularly if the network contains elements,
such as filter or transformer channels, that allow or
forbid exchange of special data values.

• Context dependency: The choices some Reo elements
can take change non-monotonically as the context
changes [12]. A context-dependent semantics of Reo

531Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 549 / 729

defines context in terms of presence or absence of
pending I/O requests on boundary primitive ends. As
an example of such behavior consider the original
description of a LossySync channel, which writes on
its sink end the data item it reads from its source end.
The channel can lose a data item only if its sink end
is not write-enabled [4].

• Timing: The behavior of a Reo network can be subject
to time constraints. For example, we can formalize a
deadline for availability of some data using a FIFO1

channel, which associates an expiration time with the
data that it buffers. If the channel’s sink end does not
dispense a buffered data item before its expiration, the
channel loses it [13].

• Priority: Presence of a prioritized element in a Reo
network can influence some non-deterministic synchro-
nization choices in the network by favoring data-flow
through ports related to that prioritized element.

B. Related work and motivation

Several formal semantic models have been proposed to
specify the behavior of Reo. An extensive overview and
comparison of these models is presented in [7].

Connector coloring (CC) [8] is a formal semantics for
Reo that describes the behavior of a connector by assigning
different colors to its ports to designate presence or absence
of data-flow. CC accounts for synchronization and context
dependency. This model captures context dependency by
propagating negative information about the absence of data-
flow inside the network.

The majority of Reo semantic models are based on
automata. These semantic models allow the semantics of a
large network to be constructed from the given automata
for its constituents using the product of automata. The
earliest automata-based Reo semantics is Constraint Au-
tomata (CA) [10] that accommodate synchronization, states,
and data-dependent flow. Transitions in CA contain the set
of synchronized ports and constraints over data that the
ports exchange. An extension of CA, Constraint Automata
with State Memory (CASM) [11] elaborates on states by
introducing state memory cells and extends data constraints
to accommodate them.

Extending CA with clock assignments and timing con-
straints, Timed Constraint Automata (TCA) [13] express the
time-aware aspect of Reo networks. A SAT-based approach
for bounded model checking of TCA is presented in [14].
Another extension of CA, Constraint Automata with Priority
(CAP) [15] supports the propagation of prioritized requests.

The most recent semantics of Reo [9] that is based on
constraint solving, deals with synchronization, data-, and
context-dependency. It uses different constraints for each of
these notions, which are added conjunctively to capture their
composition. This approach is the basis of the DREAMS [9]
execution engine for Reo. Although in theory, this semantics

accounts for data-dependency, the proposed implementation
ignores data. This leads to incorrect results when dealing
with data-sensitive elements such as Filter channel.

A translation of CA and CC to a process algebraic
specification language called mCRL2 [16] has been done
[17]. The mCRL2 toolset compiles the specifications into
Labeled Transition Systems (LTS)s, which can be verified
using the mCRL2 toolset. This approach represents certain
aspects of existing semantic models for Reo in an automata-
based form. For instance, it models the context dependency
in the behavior of Reo networks using LTSs with labels
corresponding to colors in CC.

Despite the abundance of the semantics that capture dif-
ferent aspects of Reo, there are expressiveness gaps among
them. For instance, a network with priority dependent and
time sensitive behavior cannot be readily expressed by any
of the mentioned formal semantics. In this paper, we present
a unified symbolic constraint-based framework, where these
different semantics coexist. This framework encodes the
behavior of Reo networks in terms of constraints whose
solutions form an existing automata-based semantic model
of Reo. Unlike [17], our framework treats data symbolically,
so that the state space does not blow up. Our framework ex-
tends DREAMS with time and priority. It also provides tool
support using existing constraint solving tools to incorporate
data and time constraints.

For a given configuration of a Reo network, DREAMS
uses constraint solving to compute only a single solution
for synchronous data-flow in this configuration, which leads
to the next configuration. In contrast, our approach considers
all solutions and configurations, which in turn enable us to
map the solutions to an automata-based semantics that is
well suited for model checking.

Generating the CA corresponding to a Reo network from
the CA of its constituents using the CA product operator
[10], is computationally expensive and memory inefficient.
The complexity of composing m CA each having n transi-
tions is O(nm). However, we can convert this problem to
the NP -complete problem of SAT-solving for which many
efficient solvers exist.

Contribution: Instead of generating the CA corresponding
to a Reo network directly by composing the CAs of its
constituents, we encode each constituent CA into constraints
whose conjunction forms the system of constraints that
captures the full behavior of the network. The solutions
of this system of constraints describe the behavior of the
network in terms of variables representing different aspects
of the behavior of Reo, such as synchronization, data-
dependent flow, etc. From these solutions, we generate
the CA corresponding to the network. We show that our
solution is more efficient compared to the previous attempts
in generating the formal semantics of a Reo network.

We have developed a tool to automate our approach that
is integrated in the Extensible Coordination Tools (ECT)

532Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 550 / 729

[18]. ECT is a framework to design, develop, model check,
test, and execute component-based software modeled by the
Reo coordination language. The tools in this framework
are integrated as Eclipse plug-ins and operate based on
the operational semantics of Reo, most notably, connector
coloring and constraint automata. Our tool is the only tool
that supports propagation of priorities in Reo networks.
Furthermore, it unifies various behavioral aspects of Reo
networks in a single encoding, which enables analysis of net-
works whose behavior spans over several existing semantic
models.

III. CONSTRAINT AUTOMATA WITH STATE MEMORY

Constraint Automata with State Memory (CASM) [11]
extends CA with variables that represent local memory cells
of the states of the automata. Due to its elaboration on state
information, we choose CASM as the main semantic model
of Reo that our framework generates.

Definition 3.1 (Constraint Automaton with State Memory):
A constraint automaton with state memory (CASM) is a
tuple A = (Q,N ,→, q0,M) where
• Q is a finite set of states.
• N is a finite set of names.
• → is a finite subset of Q× 2N ×DC(N ,M,D)×Q

is the transition relation of A, where DC(N ,M,D) is
the set of data constraints, defined below.

• q0 ∈ Q is an initial state.
• M is a set of memory cell names, where N ∩M = ∅.
Every n ∈ N represents a node in a Reo connector.

The set N is partitioned into three mutually disjoint sets
of source nodes N src, mixed nodes Nmix, and sink nodes
N snk. Because we make the replication and merge inherent
in Reo nodes explicit as replicator and merger primitives
(in Table II), at most two primitive ends coincide on every
node n ∈ N . Thus, it follows that a source or a sink node
contains only a single (source or sink) primitive end, and
a mixed node contains exactly one source and one sink
primitive ends.

We write q
N,g−−→ p instead of (q,N, g, p) ∈→. For every

transition q
N,g−−→ p, we require that g ∈ DC(N,M,D),

where D is the global set of numerical data values and
DC(N,M,D) is the language defined by the following
grammar:

g ::= true | ¬ g | g ∧ g | u = u | u < u,

u ::= d(n) | m′ | m | v.

In this grammar, = is the symmetric equality relation, < is
a total order relation, n ∈ N ⊆ N denotes a node name,
d(n) represents the data item exchanged through the node
n, m ∈M correspond to a memory cell in the current state,
which is the source state of the transition, m′ stands for the
memory cell m ∈ M in the next state, which is the target
state of the transition, and v ∈ D. As usual, false stands for

¬true, x > y stands for y < x, and other logical operators,
such as ∨ and⇒ (the implication symbol) can be built from
the given operators.

Transitions with data constraints that can be reduced to
false using the Boolean laws are impossible and we omit
them. A data constraint g that is always true can be left
out. We use Mg to represent the set of all m ∈ M that
syntactically appear as m in a data constraint g; and M′g
to refer to the set of all m ∈M that syntactically appear as
m′ in g. The valuation function Vq : M → 2D designates
the set of values Vq(m) of a memory cell m ∈M in a state
q ∈ Q, where Vq0(m) = ∅ for all m ∈M.

A transition q
N,g−−→ p in a given constraint automaton with

state memory is possible only if there exists a substitution
for every syntactic element d(n), m, and m′ that appears in
g to satisfy g. A substitution simultaneously replaces in g:

- every occurrence of d(n) with the data value exchanged
through the node n ∈ N ;

- every occurrence of m′ of every m ∈M with a value
v ∈ D;

- every occurrence m ∈M with:
– the special symbol ′◦′ if Vq(m) = ∅
– a value v ∈ Vq(m), otherwise.

The guard g is satisfied if proper replacement values can be
found to make g true. Making this transition, the automaton
defines the valuation function Vp for the target state p, as
follows: for every m ∈ M′g , Vp(m) is the set of all v ∈ D
whose replacements for m′ satisfy g. For every other m ∈
M, Vp(m) = ∅.

A relational operator evaluates to true only if the values of
its operands are in its respective relation. Thus, any operator
with one or more ◦ as an operand always evaluates to false.
We call a CASM, normalized iff a) it does not have two
states with the same set of state memory variables, and b)
every two transitions differ at least in their start states, their
target states, or their sets of synchronizing ports. For any
arbitrary CASM that is not normalized, we can normalize it
by a) introducing auxiliary variables, to make the set of state
memory variables unique for each state, and b) by merging
the transitions that have the same start and target states and
synchronize the same ports. In the sequel, we consider only
normalized CASMs.

Following are the definitions for product and hiding
operations on CASM. Both definitions are adapted from
[10].

Definition 3.2 (Product-automaton): For the CASMs
A1 = (Q1, N1, →1, q0,1, M1) and A2 = (Q2,N2,→2,
q0,2,M2), their product is defined as:

A1 ./ A2 = (Q1×Q2,N1 ∪N2,→, q0,1× q0,2,M1 ∪M2)

where the following rules define the transition relation →:

q1
N1,g1−−−−→1p1, q2

N2,g2−−−−→2p2, N1 ∩N2 = N2 ∩N1

〈q1, q2〉
N1∪N2,g1∧g2−−−−−−−−−→ 〈p1, p2〉

533Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 551 / 729

q1
N1,g1−−−−→1p1, N1 ∩N2 = ∅

〈q1, q2〉
N,g−−→ 〈p1, q2〉

q2
N2,g2−−−−→2p2,N1 ∩N2 = ∅

〈q1, q2〉
N,g−−→ 〈q1, p2〉

We can abstract from the data-flow on certain Reo nodes
using the hiding operator defined as follows:

Definition 3.3 (Hiding): Let A = (Q,N , →, q0,M)
be a constraint automaton and C ∈ N . The constraint
automaton that results from hiding the node C in automaton
A is ∃C [A] = (Q,N\{C}, →C , q0,M) and the transition
relation −→C is defined as follows:

p
N,g−−→ q,N ′ = N\{C}, g′ = ∃C [g]

p
N ′,g′−−−→C q

, where

∃C [g] =
∨
d∈D

g [d (C) /d] .

IV. CONNECTOR COLORING

The connector coloring semantics [8] denotes the exis-
tence or absence of data-flow through the primitive ends by
marking them with different colors. Let Colors be the set
of colors. A set of two colors, Colors = {—, - -}, where —
denotes an occurrence and - - represents an absence of data-
flow is adequate to express the formal semantics of many
Reo networks. However, this two-color set cannot express
the semantics of some Reo networks.

A traditional example of such a network is when the
sink end of a LossySync channel connects to an empty
FIFO1 channel; in this case, the semantics of this network
according to the two-color set includes the case where the
LossySync loses its incoming data item, while the FIFO1

channel is empty. This is an unacceptable behavior for a so-
called context sensitive LossySync channel: it must lose its
incoming data only if its sink end cannot dispense it. In the
sequel, when we refer to a LossySync we mean its context
sensitive version.

The three coloring semantics, Colors = {–, /, .}, ad-
dresses this problem by propagating negative information
regarding the absence of data-flow: it replaces - - with /
and . meaning that the associated primitive end, respectively,
provides or requires a reason for no-flow. Considering that
no-flow can occur only when at least one of the involved
primitive ends provides a reason for it, and that an empty
FIFO1 cannot provide a reason for no-flow on its source
end, the invalid behavior described above does not arise in
the three coloring semantics.

Definition 4.1 (Coloring): A coloring l : P → Colors is
a total function from the primitive ends to a set of colors.
We refer to the global set of colorings as L.

Definition 4.2 (Coloring Composition): The composition
of colorings l1 and l2, denoted l1 • l2, is defined as:

l1 • l2 = {c1 ∪ c2|c1 ∈ l1, c2 ∈ l2, p1 ∈ dom(c1),
p2 ∈ dom(c2), p1 and p2 are the source and sink
ends of a node n,¬(c1(p1) = / ∧ c2(P2) = .)}

Definition 4.3 (Next function): The next function η :
L → 2L maps a coloring to a set of colorings, which can
succeed it.

Definition 4.4 (Coloring Semantics): A coloring seman-
tics of a Reo network is a tuple CC = 〈P, 2L, l0, η〉, where:
• P is the set of primitive ends,
• l0 ∈ L is the initial set of possible colorings,
• 2L is a set of colorings,
• η is a next function that maps a coloring to a set of

colorings.

V. REO CONSTRAINT SATISFACTION PROBLEM

In Section II-A, we presented an overview of the various
behavioral dimensions of a Reo network. We extend the
constraint-based framework in [9] to incorporate all behav-
ioral dimensions addressed by various semantic models for
Reo. In our framework, we denote each of these elements
by variables over their proper domains. We relate these
variables to each other and restrict possible values they can
assume using constraints whose solutions give the under-
lying formal semantics of the network. In the sequel, we
deal only with networks whose semantics can be expressed
in CASM or CC. However, we are currently extending our
framework to also support timing and priority.

Let N = N src ∪ Nmix ∪ N snk be the global set of
nodes, M the global set of state memory variables, and D
the global set of numerical data values. The set of primitive
ends P consists of all primitive ends p derived from N by
marking its elements with superscripts c and k, according
to the following grammar:

p ::= rc | sk

where r ∈ N src ∪ Nmix and s ∈ N snk ∪ Nmix. Observe
that the primitive ends nc and nk connect on the common
node n.

Let p ∈ P , n ∈ N and m ∈M be a primitive end, a node,
and a state memory variable, respectively. A free variable v
that occurs in the constraints encoding the behavior of a Reo
network has one of the following forms:
• ñ ranges over {>,⊥} to show presence or absence of

flow on the node n.
• n̂ ranges over D to represent the data value passing

through the node n.
• m̊, m̊′ range over {>,⊥} to denote whether or not the

state memory variable m is defined in, respectively, the
source and the target states of the transition to which
the encoded guard belongs.

• m̂, m̂′ range over D to represent the values of the state
memory variable m in, respectively, the source and
the target states of the transition to which the encoded
guard belongs.

• −→p ranges over {>,⊥} to state that the reason for
lack of data-flow through the primitive end p originates

534Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 552 / 729

from, respectively, the primitive to which p belongs or
the context (of this primitive).

Note that not all of the introduced variables are required
for encoding the behavior of every Reo network. In presence
of context dependent primitives like LossySync or in priority-
sensitive networks, constraints include variables of the form
−→p . For the stateful elements such as FIFO1, variables like
m̊, m̊′, m̂, and m̂′ appear in the constraints.

Observe that the interpretation of some of the mentioned
variables depends on the values of other variables. Referring
to the variable −→p makes sense only if ñ = ⊥, where p = nc

or p = nk (i.e., the primitive end p belongs to the node n);
and n̂, m̂ and m̂′ make sense only if ñ = >, m̊ = > and
m̊′ = >, respectively.

The grammar for a constraint Ψ encoding
the behavior of a Reo network is as follows:

t ::= n̂ | m̂ | m̂′ | d | t~ d (terms)
a ::= ñ | −→p | m̊ | m̊′ | t = t | t < t (atoms)
Ψ ::= a | ¬Ψ | Ψ ∧ Ψ (formulae)

where d ∈ D is a constant, ~ ∈ {+,−, ∗, /,%, ˆ}, and p is
either of the form nc or nk.

Definition 5.1 (Reo Constraint Satisfaction Problem):
A Reo Constraint Satisfaction Problem (RCSP) is a tuple
〈P,M,M0,V, C〉, where:
• P is a finite set of primitive ends.
• M is a finite set of state memory variables.
• M0 ⊆M is a set of state memory variables that define

the initial configuration of a Reo network.
• V is a set of variables v defined by the grammar

v ::= ñ | −→p | m̊ | m̊′ | n̂ | m̂ | m̂′

for n ∈ N , p ∈ P, and m ∈ M. The values that the
variables of the forms n̂, m̂, and m̂′ can assume are
subsets of D, and the other variables are Boolean, with
values in {>,⊥}.

• C = {C1, C2, ..., Cm} is a finite set of constraints,
where each Ci is a constraint given by the grammar
Ψ involving a subset of variables Vi ⊆ V .

Example 5.1: The RCSP of a Sync channel
with the source end a and the sink end b is
〈{a, b}, ∅, ∅, {ã, b̃, â, b̂}, ã ⇔ b̃ ∧ ã ⇒ (â = b̂)〉. The
solutions for this constraint problem give the behavior of
the Sync channel as the channel allows data-flow on its
source end iff its sink end can dispense it simultaneously
(which agrees with the semantics of this channel as defined
in other formal models of Reo). In case of data-flow, the
values of the data items passing through the ends of this
channel are equal.

We obtain the constraints corresponding to a Reo network
by composing the RCSPs of its constituents as defined
below.

Definition 5.2 (Composition): The composition of two
RCSPs ρ1 = 〈P1,M1,M0,1,V1, C1〉 and ρ2 =
〈P2,M2,M0,2,V2, C2〉 is defined as follows:

ρ1�ρ2 = 〈P1∪P2,M1∪M2,M0,1∪M0,2,V1∪V2, C1∧C1〉

However, connecting two Reo networks must not in-
troduce incorrect data-flow possibilities. This is done by
enforcing a restriction on the possible solutions through the
following axiom:

Axiom 1 (Mixed node axiom): When two Reo networks
connect on the common node x, where xc is a source end in
one network and xk is a sink end in the other, the following
constraint must hold:

¬x̃⇔ (
−→
xc ∨

−→
xk)

The mixed node axiom, which applies to all mixed nodes in
a network, states that a node x cannot produce the reason
for no-flow all by itself.

A. Encoding Reo Elements in RCSPs

Table III summarizes the constraint encodings associated
with commonly used Reo elements. If a Reo network does
not contain any context dependent channel, the variables
encoding the context dependency can be ignored in its RCSP.
Table IV shows the encoding of Reo elements from Table
III where the context variables are removed. Note that in
these tables, a and b denote the source and the sink ends of
a primitive, respectively, and that dom refers to the domain
of the given function or predicate. In the case of elements
with more than one source or sink ends, we use indices.

The intuition behind these constraints is that their solu-
tions reflect the semantic model of each element as given
by CASM and CC.

Example 5.2: Figure 1 shows a Reo network that consists
of a transformer channel with the function 3 ∗ â, whose
domain is the set of numbers Number and a filter channel
with the condition b̂%2 = 0 and domain Number.

a
3 ∗ â b

c
b̂%2 = 0

Figure 1: A Data-Aware Reo Network

Since none of the Reo primitives in Figure 1 is context
dependent, we use the constraints corresponding to the
primitives in this network as defined in Table IV.

Equation 1 states that flow occurs on the source end of the
transformer channel iff it occurs on its sink end. In addition,
flow can exist only if the data item that enters the source
end of the channel is a number. In this case, the data item
written on the sink end is three times the value of the source
data item.

Equation 2 expresses that flow on the source end of the
filter channel leads to flow on its sink end, iff the data
item belongs to the channel’s accepting pattern (which is

535Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 553 / 729

Table III: Context Dependent Encoding of Reo Primitives
(Extending [9])

Channel Constraints

ψSync(a, b) : ã⇔ b̃ ∧ ã⇒ (â = b̂) ∧ ¬(
−→
ac ∧

−→
bk)

ψSyncDrain(a1, a2) : ã1 ⇔ ã2 ∧ ¬(
−→
ac1 ∧

−→
ac2)

ψAsyncDrain(a1, a2) : ã1 ⇒ (¬ã2 ∧
−→
ac2) ∧ ã2 ⇒

(¬ã1 ∧
−→
ac1)

ψLossySync(a, b) : b̃ ⇒ ã ∧ b̃ ⇒ (â = b̂) ∧ ¬−→ac ∧
¬ã⇒

−→
bk

ψMerger(a0..i, b) : ãi ⇔ b̃ ∧ ãi ⇒ (âi = b̂) ∧ ¬b̃⇒
((¬
−→
bk

∧
i

−→
aci) ∨ (

−→
bk ∧ ¬−→aci

∧
j,j!=i

−→
akj))

ψReplicator(a, b0..i) : ã ⇔
∧

i b̃i ∧ (ã ⇒
∧

i(b̂i =

â)) ∧ ¬ã⇒ ((¬−→ac
∧

i

−→
bki) ∨ (¬

−→
bki

∧
j,j 6=i

−→
bkj ∧

−→
ac))

ψRouter(a, b0..i) : ã ⇔ (
∨

i b̃i)
∧

j,j 6=i ¬(b̃i ∧ b̃j) ∧

b̃i ⇒ (b̂i = â) ∧ ã⇔ (¬−→ac ∨ ¬(
∨

i

−→
bki))

ψFIFO1 (a, b,m) : ã⇒ (¬m̊∧m̊′∧(m̂′ = â))∧ b̃⇒
(m̊∧¬m̊′∧(m̂ = b̂))∧(¬ã∧¬b̃)⇒ (m̊⇔ m̊′∧m̊⇒
(m̂ = m̂′)) ∧ ¬m̊⇒

−→
bk ∧ m̊⇒ −→ac

P ψFilter(a, b, P) = b̃⇒ (ã ∧ â ∈ dom(P) ∧ P (â)) ∧
b̃⇒ (â = b̂)∧ (¬ã⇒ (¬−→ac ⇔

−→
bk))∧ (ã∧¬b̃⇒

−→
bk)

f
ψTransformer(a, b, f) = b̃ ⇒ (ã ∧ â ∈ dom(f)) ∧
b̃⇒ (b̂ = f(â)) ∧ ¬(

−→
ac ∧

−→
bk)

Table IV: Encoding Reo Primitives (Extending [9])

Channel Constraints
ψSync(a, b) : ã⇔ b̃ ∧ ã⇒ (â = b̂)
ψSyncDrain(a1, a2) : ã1 ⇔ ã2
ψAsyncDrain(a1, a2) : ¬(ã1 ∧ ã2)

ψLossySync : b̃⇒ ã ∧ b̃⇒ (â = b̂)
ψMerger(a0..i, b) : b̃⇔ (

∨
i ãi)

∧
j,j 6=i ¬(ãi ∧ ãj)∧

ãi ⇒ (âi = b̂)

ψReplicator(a, b0..i) : ã ⇔ (
∧

i b̃i) ∧ ã ⇒ (
∧

i(b̂i =
â))

ψRouter(a, b0..i) : ã ⇔ (
∨

i b̃i)
∧

j,j 6=i ¬(b̃i ∧ b̃j) ∧
b̃i ⇒ (b̂i = â)

ψFIFO1
(a, b,m) : ã⇒ (¬m̊∧m̊′∧(m̂′ = ã))∧ b̃⇒

(m̊∧¬m̊′∧(m̂ = b̃))∧(¬ã∧¬b̃)⇒ (m̊⇔ m̊′∧m̊⇒
(m̂ = m̂))

P
ψFilter(a, b, P) = b̃ ⇒ (ã ∧ b̂ ∈ dom(P) ∧ P (â) ∧
(â = b̂))

f
ψTransformer(a, b, f) = b̃ ⇒ (ã ∧ b̂ ∈ dom(f)) ∧
b̃⇒ (b̂ = f(â))

ψTransformer(a, b, 3∗â) = ã⇔ b̃∧ã⇒ (â ∈ Number∧ b̂ = 3∗â)) (1)

ψFilter(b, c, b̂%2 = 0) = c̃⇒ (b̃ ∧ b̂ ∈ Number ∧ (b̂%2 = 0)) (2)

b̂%2 = 0). In this case, the value of data items passing
through the ends are equal. No flow through the sink end
c is either due to no flow on b or that the incoming data
item does not satisfy the accepting pattern. As mentioned,
the conjunction of these constraints (subject to Axiom 1,
which trivially holds in this case) encodes the behavior of
the given Reo network.

B. Solving RCSPs

In this section, we formalize the solutions of RCSPs and
show how to obtain them.

Definition 5.3 (Solution): A solution S for a constraint C
is a function S : V → 2D ∪{>,⊥} such that for all distinct
vi ∈ V, 1 ≤ i ≤ n = |V|, we have zi ∈ S(vi) implies
C [v1, v2, . . . , vn \ z1, z2, . . . , zn] is true.
Since Reo Constraint Satisfaction Problems (RCSPs) have
predicates with free variables of types Boolean ({>,⊥}) and
data (D), a SAT-solver or a numeric constraint solver cannot
solve them alone. Satisfiability Modulo Theories (SMT) [19]
solvers find solutions for propositional satisfiability prob-
lems where propositions are either Boolean or constraints in
a specific theory. However, SMT-solvers are not applicable
in our case either, because unlike SAT-solvers they find only
an instance of a solution as opposed to the complete set of
answers. Another drawback of most SAT- and SMT-solvers
is that they work only on quantifier-free formulae, while we
use existential quantifies to implement the hiding operator
of Constraint Automata (see Section VI).

To generate the CASM corresponding to a given Reo
network, we need all solutions and thus resort to a hybrid
approach that uses both SAT-solvers and Computer Algebra
Systems (CASs), namely, REDUCE [20], which is a system
for general algebraic computations. First, we form a pure
Boolean constraint system by substituting data dependent
constraints with new Boolean variables. We find all solu-
tions for the new constraints using a SAT-solver. Then, by
substituting each such solution into the original constraints,
we obtain a data dependent constraint satisfaction problem
that a CAS can solve symbolically. From these solutions, we
extract a CASM corresponding to the Reo network encoded
by the original set of constraints. Our approach avoids state
explosion by treating data constraints symbolically. In the
following, we elaborate on our approach.

In an RCSP 〈P,M,M0,V, C〉, let VB and VD be the sets
of free Boolean and free data variables of C, respectively,
where V = VB ∪ VD, and let AD be the set of atomic
predicates of C containing data variables. The following is
our procedure for solving C.

1) We obtain CB from C by replacing every occurrence
of x ∈ AD with a unique new Boolean variable
y /∈ V . For example, for C = (c̃ ⇒ b̃) ∧ (c̃ ⇒ (b̂ ∈
Number ⇒ b̂%2 = 0)) in Example 5.2, we obtain
CB as (c̃ ⇒ b̃) ∧ (c̃ ⇒ (y1 ⇒ y2)) where y1 and y2

replace b̂ ∈ Number and b̂%2 = 0, respectively.
2) An off-the-shelf SAT-solver can find the set of solu-

tions SB for CB . We define the finite set of constraints
C [SB] = {C [v1, v2, . . . , vn \ z1, z2, . . . zn] | for all
distinct vi ∈ VB , 1 ≤ i ≤ n = |VB |, zi ∈ S (vi) , S ∈
SB}.

3) Every CD ∈ C [SB] is a numerical constraint satis-
faction problem, which we (symbolically) solve using

536Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 554 / 729

a Computer Algebra System. Every solution to each
CD along with the SAT solution S ∈ SB that produced
CD ∈ C [SB] in the previous step, constitute a solution
to the RCSP.

Using the presented technique, we obtain the solutions for
the RCSP corresponding to Examples 5.2 as follows:

1) 〈{ã = ⊥, b̃ = ⊥, c̃ = ⊥},>〉,
2) 〈{ã = >, b̃ = ⊥, c̃ = ⊥}, â 6∈ Number〉,
3) 〈{ã = >, b̃ = >, c̃ = ⊥}, â ∈ Number ∧ b̂ = 3 ∗ â ∧ b̂%2 6= 0〉,
4) 〈{ã = >, b̃ = >, c̃ = >}, â ∈ Number ∧ b̂ = 3 ∗ â ∧ b̂%2 =

0 ∧ b̂ = ĉ〉.

Example 5.3: Figure 2 depicts a Reo network that con-
sists of a LossySync channel and a FIFO1 channel connect-
ing on the node b.

a
b

c

Figure 2: A Context Sensitive Reo Network

Since the Reo network in Figure 2 contains a LossySync that
is a context dependent channel, we use the context-aware
RCSP encoding from Table III:

ψLossySync(a, b) = b̃⇒ (ã ∧ (â = b̂)) ∧ ¬
−→
a
c ∧ ¬ã⇒

−→
b
k
. (3)

ψFIFO1
(b, c,m) = b̃ ⇒ (¬m̊ ∧ m̊′ ∧ (m̂′ = b̂)) ∧ c̃ ⇒

(m̊ ∧ ¬m̊′ ∧ (m̂ = ĉ)) ∧ (¬b̃ ∧ ¬c̃)⇒ ((m̊⇔ m̊′) ∧ m̊⇒
(m̂ = m̂′)) ∧ ¬m̊⇒

−→
cc ∧ m̊⇒

−→
bk.

(4)

Equation 3 states that flow on the sink end of the LossySync
is due to flow on its source end. If there is flow on the
sink end of the LossySync, the data items exchanged at
the source and the sink ends are the same. However, it is
possible that the source end has flow, but the sink end does
not. In this case, the reason for no flow comes from the
environment with which the sink end communicates. The
third possible behavior of the channel is that there is no
flow on the source end due to the environment, in which
case the channel provides a reason for no flow on its sink
end.

Equation 4 expresses the behavior of the FIFO1 channel
as follows: The flow on the source end of the channel states
that the value of the variable representing the state memory
(of the current state) is undefined. The flow on the source
end defines the state memory variable for the next state to
contain the value of the incoming data item. On the other
hand, flow on the sink end means that the value of the state
memory variable is defined. The data item leaving the sink
end is equivalent to the buffer’s data item. In addition, the
value of the state memory variable becomes undefined in
the next state. If there is no flow on the ends, the variables
related to the states stay the same. Being empty, the FIFO1

channel provides a reason for no flow on its sink end, while
being full does so on the source end of the channel.

The solutions for the RCSP of Example 5.3, (where for
brevity, we omit the values of the variables representing the
context, such as

−→
bc) are as follows:

{}, true
{a, b, c},

â ∈
Number∧

b̂ = 3 ∗ â ∧
b̂ = ĉ ∧
b̂%2 = 0

{a, b},
â ∈
Number∧
b̂ = 3 ∗ â ∧
b̂%2 6= 2

{a}, â 6∈
Number

(a)

mstart
{}, true

{a, b, c}, â = b̂ ∧ b̂ = ĉ ∧ m̂′ = ĉ

{a}, true

{}, true

{a, d}, m̂ = d̂

{d}, m̂ = d̂

(b)

Figure 3: CASMs Generated for Examples 5.2 (a) and 5.3
(b)

1) 〈{ã = ⊥, b̃ = ⊥, c̃ = ⊥, m̊ = ⊥, m̊′ = ⊥},>〉,
2) 〈{ã = >, b̃ = >, c̃ = ⊥, m̊ = ⊥, m̊′ = >}, â = b̂ ∧ m̂′ = b̂〉,
3) 〈{ã = >, b̃ = ⊥, c̃ = ⊥, m̊ = >, m̊′ = >}, m̂ = m̂′〉,
4) 〈{ã = ⊥, b̃ = ⊥, c̃ = ⊥, m̊ = >, m̊′ = >}, m̂ = m̂′〉,
5) 〈{ã = >, b̃ = ⊥, c̃ = ⊥, m̊ = >, m̊′ = ⊥}, m̂ = ĉ〉,
6) 〈{ã = ⊥, b̃ = ⊥, c̃ = >, m̊ = >, m̊′ = ⊥}, m̂ = ĉ〉.

C. CASM Construction

In order to construct the CASM from the set of solutions
S for an RCSP 〈P,M,M0,V, C〉, we first define
• N = {n | nc ∈ P ∨ nk ∈ P}
and then map each solution 〈s, sd〉 ∈ S into a transition

t : q
N,g−−→ p as follows:

• q = 〈{m | m ∈M, s (m̊) = >}〉,
• p = 〈{m | m ∈M, s (m̊′) = >}〉,
• N = {n | n ∈ N , s (ñ) = >},
• The data constraint g is (a syntactic variant of) sd.

We obtain the CASM A = (Q,N ,→, q0,M) from the set
−→ of all transitions generated above, where:

• Q = {q | q N,g−−→ p ∨ p N,g−−→ q},
• q0 = 〈{m | m ∈M0, s(m̊) = >}〉,
• M is the same M as in the RCSP.
Applying the above procedure to the solutions of RCSPs

constraints generates their corresponding CASMs. For in-
stance, the first solution for the constraints in Example 5.2
generates the transition q

∅,true−−−−→ q, where q is the only state
of the CASM, which has no state memory variable. This is
so because the set of variables of the form m̊ is empty. Also,
the transition has no synchronizing port, because the value
of every one of variables ã, b̃ and c̃ is ⊥. Figures 3a and 3b
show the CASMs derived from the RCSPs in Examples 5.2
and 5.3.

Our approach deals with data in a symbolic fashion, where
we partition the global set of data values to equivalence
classes toward which a Reo network behaves differently.

537Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 555 / 729

This is in contrast with the traditional way of dealing with
data in the formal semantics of Reo (and other models),
where they consider a different state for each possible value
that can be stored in buffers and a distinct transition for each
data value passing through the ports. Our symbolic approach
allows working with an infinite data domain. In addition,
rather than implementing the highly time- and memory-
demanding custom-made algorithms to generate Reo formal
semantics, we use the efficient SAT-solvers and computer
algebra systems to solve constraints whose solutions are
equivalent to these models. An experimental study on the
efficiency of using SAT-solvers to generate Reo formal
semantics is reported in [9].

VI. HIDING

We use hiding to abstract from internal transitions. The
author in [9] proposes applying the existential quantifier to
the constraints encoding of the behavior of a network to
abstract from internal ports and their corresponding data
variables. Similarly, we use existential quantifiers such as
∃ẽ, ê,−→e : C, where C is the RCSP of a Reo network and
e is an internal node to hide.

Although several algorithms exist for the problem of
quantifier elimination in Boolean algebra and first order
logic [21], [22] and [23], we are not aware of any working
tool that does quantifier elimination on Boolean algebraic
formulae. Therefore, our tool implements the hiding operator
as defined for CASM.

Hiding the internal nodes on some transitions can make
the set of their synchronized nodes empty. Here, we refer to
such a transition as an empty transition, if the free variables
of its guard are merely state memory variables. Under some
circumstances, we can merge the source and the target states
of empty transitions. Let q and p be two states in a CASM
such that q

∅,g−−→ p. The following are the conditions under
which the state p can merge into the sate q:

1) The states q and p have the same number of state
memory variables.

2) The guard g consists of the conjunction of the predi-
cates of the form of x = y′, for x, y ∈M. This way,
g defines a correspondence relation between the state
memory variables of the state q and those of the state
p.

3) For each transition q
N,g′−−−→ r where r /∈ {p, q}, there

is a transition p
N,g′′−−−→ r such that g′ ⇔ g′′g , where

g′′g is obtained from g by replacing all occurrences of
the next state memory variable y′ with the next state
memory variable x′, if g contains x = y′ for state
memory variables x, y ∈M.

4) For each transition r
N,g′−−−→ p where r /∈ {p, q}, there

is a transition r
N,g′′−−−→ q such that g′′ ⇔ g′g , where g′g

is derived from g by substituting all occurrences of the

a
b

c

Figure 4: Two FIFO1s Forming FIFO2

start m

n
m,
n

{}, true
{}, true

{}, true {}, true

{a},
m′ = â

{b},
b̂ = m ∧
n′ = b̂
{a},

m′ = â∧
n′ = n

{c},
m′ = m
∧ ĉ = n

{c},
ĉ = n

{a, c},
m′ = â
∧ ĉ = n

(a) CASM of Example 6.1

start m

n
m,
n

{}, true
{}, true

{}, true
{}, true

{a},
m′ = â

{},
n′ = m

{a},
m′ = â∧
n′ = n

{c},
m′ = m
∧ ĉ = n

{c},
ĉ = n

{a, c},
m′ = â ∧
ĉ = n

(b) Hiding Internal Ports

start m
m,
n

{},
true

{},
true

{},
true

{a},
m′ = â

{a},
m′ = â ∧
n′ = m

{c},
m′ = m∧
ĉ = n

{c},
ĉ = m

{a, c},
m′ = â ∧
ĉ = m

(c) Merging the States

Figure 5: Hiding the Empty Transition and Merging Its
Source and Target States for the CASM of FIFO2 in Figure
4

state memory variable x in g with the state memory
variable x, if g contains x = y′ for state memory
variables x, y ∈M.

Provided that the above conditions hold, the state p merges
into the state q as follows:

1) We eliminate the transition q
∅,g−−→ p.

2) We remove the state p after substituting y, y′, and p
with x, x′, and q in all transitions. Observe that such
substitutions convert the non-eliminated transitions
between the states q and p into loops over the state q.

Example 6.1: Figure 4 shows a FIFO2 derived from
composing two FIFO1s. The CASM corresponding to the
FIFO2 is in Figure 5a. Figure 5b depicts the CASM resulting
from hiding the mixed node b. Figure 5c presents the result
of eliminating the empty transitions.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a constraint-based frame-
work that encodes the semantics of Reo networks as con-
straint satisfaction problems whose predicates are either
Boolean propositions or numerical constraints. We presented
a hybrid approach to find the solutions for these problems.
An advantage of our approach is that it treats data constraints
symbolically to mitigate the state explosion problem. From
this solution, we construct the semantic model corresponding

538Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 556 / 729

to a Reo network in the form of constraint automata with
state memory. Our framework supports product and hiding
operations on constraint automata. We have implemented
and integrated our approach as a tool in the ECT. As part of
our ongoing work, we are using this framework to encode
other aspects of the semantics of Reo, namely, priorities
and timed behavior. In this way, our work will be the most
expressive framework that exists to analyze Reo networks.
Furthermore, we will prove soundness and completeness
of the RCSP encoding of Reo networks along with its
compositionality.

REFERENCES

[1] M. Bell, “Introduction to Service-Oriented Modeling,”
Service-Oriented Modeling: Service Analysis, Design, and
Architecture, p. 3, 2008.

[2] R. Pugliese and F. Tiezzi, “A Calculus for Orchestration of
Web Services,” J. Applied Logic, vol. 10, no. 1, pp. 2–31,
2012.

[3] D. Kitchin, W. R. Cook, and J. Misra, “A Language for
Task Orchestration and Its Semantic Properties,” in CONCUR,
vol. 4137 of Lecture Notes in Computer Science, pp. 477–491,
Springer, 2006.

[4] F. Arbab, “Reo: a Channel-Based Coordination Model for
Component Composition,” Mathematical Structures in Com-
puter Science, vol. 14, pp. 329–366, 2004.

[5] F. Arbab, N. Kokash, and S. Meng, “Towards Using Reo for
Compliance-Aware Business Process Modeling,” in ISoLA,
pp. 108–123, 2008.

[6] B. Changizi, N. Kokash, and F. Arbab, “A Unified Toolset for
Business Process Model Formalization,” in 7th International
Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA 2010), pp. 147–156,
ENTCS, 2010.

[7] S.-S. T. Jongmans and F. Arbab, “Overview of Thirty Se-
mantic Formalisms for Reo,” Scientific Annals of Computer
Science, vol. 22, pp. 201–251, 2012.

[8] D. Clarke, D. Costa, and F. Arbab, “Connector Colouring
I: Synchronisation and Context Dependency,” Science of
Computer Programming, vol. 66, no. 3, pp. 205–225, 2007.

[9] J. Proença, Synchronous Coordination of Distributed Com-
ponents. PhD thesis, Institue for Prgramming research and
Algorithms, 2011.

[10] C. Baier, M. Sirjani, F. Arbab, and J. J. M. M. Rutten,
“Modeling Component Connectors in Reo by Constraint
Automata,” Science of Computer Programming, vol. 61, no. 2,
pp. 75–113, 2006.

[11] B. Pourvatan, M. Sirjani, H. Hojjat, and F. Arbab, “Symbolic
Execution of Reo Circuits using Constraint Automata,” Sci.
Comput. Program., vol. 77, no. 7-8, pp. 848–869, 2012.

[12] M. M. Bonsangue, D. Clarke, and A. Silva, “Automata
for Context-Dependent Connectors,” in COORDINATION
(J. Field and V. T. Vasconcelos, eds.), vol. 5521 of Lecture
Notes in Computer Science, pp. 184–203, Springer, 2009.

[13] F. Arbab, C. Baier, F. D. Boer, and J. Rutten, “Models
and Temporal Logics for Timed Component Connectors,” in
2nd International Conference on Software Engineering and
Formal Methods (SEFM 2004), pp. 198–207, IEEE Computer
Society, 2004.

[14] S. Kemper, “SAT-based Verification for Timed Component
Connectors,” Electr. Notes Theor. Comput. Sci., vol. 255,
pp. 103–118, 2009.

[15] F. Arbab and C. Baier, “Priority in Reo and Constraint Au-
tomata,” tech. rep., Centrum voor Wiskunde en Informatica.
In preparation.

[16] J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, and M. V.
Weerdenburg, “The Formal Specification Language mCRL2,”
in Methods for Modelling Software Systems (MMOSS 2006),
vol. 06351 of Dagstuhl Seminar Proceedings, IBFI, 2006.

[17] N. Kokash, C. Krause, and E. de Vink, “Reo + mCRL2: A
Framework for Model-checking Dataflow in Service Compo-
sitions,” Formal Aspects of Computing, 2011.

[18] F. Arbab, C. Koehler, Z. Maraikar, Y.-J. Moon, and J. Proenca,
“Modeling, Testing and Executing Reo Connectors with the
Eclipse Coordination Tools,” in 5th International Workshop
on Formal Aspects of Component Software (FACS 2008),
vol. 8, ENTCS, 2008.

[19] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli,
“Satisfiability Modulo Theories,” Handbook of Satisfiability,
vol. 4, 2009.

[20] G. Rayna, REDUCE: Software for Algebraic Computation.
New York, NY, USA: Springer-Verlag New York, Inc., 1987.

[21] L. Bordeaux and L. Zhang, “A Solver for Quantified Boolean
and Linear Constraints,” in Proceedings of the 2007 ACM
symposium on Applied computing, SAC ’07, (New York, NY,
USA), pp. 321–325, ACM, 2007.

[22] A. Ayari and D. Basin, “QUBOS: Deciding Quantified
Boolean Logic using Propositional Satisfiability Solvers,” in
Formal Methods in Computer-Aided Design, pp. 187–201,
Springer, 2002.

[23] J. H. Davenport, “Computer Algebra Applied to Itself,” J.
Symb. Comput., vol. 6, pp. 127–132, August 1988.

539Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 557 / 729

Predicting Quality Requirements Necessary for a Functional Requirement
Based on Machine Learning

Ken Tanaka
Department of Information Sciences

Kanagawa University
Kanagawa, 259-1293, Japan

Email: ktanaka@info.kanagawa-u.ac.jp

Haruhiko Kaiya
Department of Computer Science

Shinshu University
Nagano, 380-8553, Japan

Email: kaiya@shinshu-u.ac.jp

Atsushi Ohnishi
Department of Computer Science

Ritsumeikan University
Shiga, 525-8577, Japan

Email: ohnishi@cs.ritsumei.ac.jp

Abstract—In the early stage of the software development,
quality requirements should be explicitly specified as well as
functional requirements. Software architecture and/or design
decision should be largely reconsidered if some quality re-
quirement is overlooked in the early stage. We thus propose
a technique for predicting quality requirements necessary for
each functional requirement. A functional requirement is rep-
resented with a semi-formal language called eXtended Japanese
Requirements Description Language (X-JRDL), which is based
on the case grammar. In our previous work, the results of
the prediction largely depended on human such as domain
experts and requirements analysts because prediction rules
were manually written by them. We thus introduce machine
learning to avoid this problem. To predict quality requirements
necessary for any kinds of functional requirements, training
data should be appropriately chosen. We choose the training
data so that we can predict necessary quality requirements
for all types of functional requirements. Since semantically
impartial data are suitable for such training data and one
of the cases called concept is semantically dominant in an
X-JRDL sentence, we choose the training data set in which
any of the concepts evenly occurs. Through the experiments,
we confirm our technique works well for predicting necessary
quality requirements.

Keywords-requirements analysis; quality requirements; machine
learning; case grammar.

I. INTRODUCTION

In order to write a requirements specification of high qual-
ity, we must take the following characteristics into account;
correctness, consistency, unambiguity, completeness, rank of
importance, stability, verifiability and traceability [1]. For
functional requirements, these characteristics are taken into
account well, but taking them into account is still a research
challenge in non-functional or quality requirements. Quality
requirements specify how well functions are accomplished
[2], and they are very important. Some systems such as
the online computer aided instruction (CAI) systems or the
online shopping sites should be highly reliable, while others
such as web browsers and desktop publishing systems should
be usable. If quality requirements are not correctly specified
in a requirements specification, software system may not
be correctly developed. Because there are more problems

in quality requirements than in functional requirements, the
special issue was published in IEEE Software [2]. This
introductory article of the issue focuses on the following
three problems; implicit understanding of stakeholder, trade-
offs among quality requirements and difficulty to measure
and to track quality requirements.

To resolve these problems, detecting quality requirements
necessary for each functional requirement is crucial because
such detection is a basis of discussing stakeholders’ un-
derstanding, their trade-offs and tacking. We have already
proposed a technique for detecting such quality requirements
[3]. The technique uses a semi-formal notation for a func-
tional requirement called eXtended Japanese Requirements
Description Language (X-JRDL) [4] because the notation
explicitly represents the semantic structure of a functional
requirement and the structure directly gives influences on
quality requirements necessary for the functional require-
ment. The rules for the detection thus can be written in the
if-then rules. Although the results of applying the technique
were useful for defining quality requirements [3], it took a lot
of effort for preparing the rules for detection. In addition, the
quality of rules largely depended on the expertise of people
(normally domain experts and requirements analysts) who
wrote the rules.

The main contribution of the new technique proposed in
this paper is to avoid these problems. In our new technique,
a machine learning technology is used to detect the quality
requirements necessary for each functional requirement. By
using a machine learning technology, rules for detection
are automatically generated based on the existing results of
detection (we called such results training data). Necessary
quality requirements are thus automatically detected based
on the rules. The detection results become more accurate
than ever when the appropriate training data increase. We
still use the semi-formal notation for a functional require-
ment X-JRDL because the semantic information is explicitly
represented in an X-JRDL sentence, and such information
is convenient for machine learning. In addition, converting
a natural language sentence to a sentence in X-JRDL is
already studied [5]. If a sentence is characterized in more

540Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 558 / 729

than hundreds components, it is important to choose limited
number of components for the efficient machine learning.
Because an X-JRDL sentence (called a requirements frame)
consists of less than ten components (cases), we do not
have to do it. It is rather important to choose appropriate
training data because the appropriate choice of training data
enables us to detect the quality requirements necessary for
all types of functional requirements. In general, we choose
the training data so that the data is evenly chosen with
respect to the cases in a requirements frame. Because a
requirements frame is regarded as a vector of cases, we
can use the cosine similarity to choose such training data.
However, we have to focus on specific cases to choose such
training data if such cases are more dominant than others.
Through the experiments, we found one of the cases called
concept is more dominant than other cases. In addition,
the training data in which any of the concepts evenly
occurs enabled us to predict necessary quality requirements
successfully.

The rest of this paper is organized as follows. In the
next section, we briefly introduce our previous rule-based
technique for predicting quality requirements necessary for
each functional requirement. Because the technique requires
rules written by experts, it is not easy to use it in practice.
In Section III, we introduce our new technique for such
prediction using machine learning. In our technique, training
data are carefully chosen for better prediction. We made
an experiment to evaluate our proposed technique. The
experiment, the results and its discussion are also reported.
We then review existing researches about both the quality
requirements analysis and the application of machine learn-
ing to the software engineering field. We, finally, summarize
our current results and show future issues.

II. RULE-BASED TECHNIQUE FOR PREDICTING QUALITY

REQUIREMENTS

In this section, we explain our previous rule-based tech-
nique [6] [3] for predicting quality requirements necessary
for each functional requirement because the inputs and the
outputs of the technique are the same as those of our new
technique presented in the next section.

A. Overview of the rule-based technique

The goal of our rule-based technique is to predict quality
requirements types such as usability, reliability and accuracy
for each functional requirement. The steps of the technique
for predicting quality requirements are as follows.

1) We have to prepare the rules for each problem domain
such as web based information systems, drawing soft-
ware and so on. Each rule decides whether specific
quality requirements types are necessary for a func-
tional requirement. An example of a rule is shown in
Figure 2.

#1. The system shall send news articles to UNIX server.

#2. The system shall set the time to send.

Case Type

Concept DFLOW

Object Info

Source System

Goal Extsystem

Case Type

Concept DFLOW

Object Info

Source System

Goal Extsystem

Case Type

Concept SET

Agent System

Object number

Case Type

Concept SET

Agent System

Object number

Figure 1. Examples of converting a requirement sentence to a requirements
frame.

2) Requirements specifications are usually written in nat-
ural language such as English. We have to convert
each sentence in a specification into a requirements
frame, which is a sentence represented in a semi-
formal language called X-JRDL [4] based on the case
grammar [7].

3) For each requirements frame, all rules are applied and
candidates of necessary quality requirements types are
detected. Examples of quality requirements types are
“usability”, “accuracy”, “time behavior” and so on. We
can use the quality sub-characteristics in ISO9126 [8]
and/or NFR framework [9] as the catalog of quality
requirements types.

4) Based on the results of the detection, requirements an-
alysts adds quality requirements descriptions (usually
represented as adverbs) each functional requirement.
Examples of quality requirements descriptions are
“without specific training for its operation”, “more
than 80% correct results for its query”, “within 3
seconds for its response” and so on.

B. Requirements Frames for Functional Requirements

Semantics of a functional requirement largely gives influ-
ences on the decision which types of quality requirements
are necessary for the functional requirement. We thus con-
vert a functional requirements sentence (usually written in
natural language) into a requirements frame. A requirements
frame is based on the case grammar [7], and consists of
several cases and its types. We thus represent a requirements
frame as a tabular form. The examples of the requirements
frames represented in a tabular form are shown at the bottom
of the Figure 1.

The mandatory case is called “Concept” in a requirements
frame, and it corresponds to the verb in an original require-
ments sentence. We have prepared a list of typical types
of a concept as shown in Table I. For each concept type,
complementary cases may be specified for each functional

541Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 559 / 729

Table I
TYPICAL TYPES OF A CONCEPT

Concept Meaning

DFLOW Data flow

CFLOW Control flow

ANDSUB And-tree structure

ORSUB Or-tree structure

GEN Data creation

SET Set the value to data

RET Retrieve a record in a file

UPDATE Update a record in a file

DEL Delete a record in a file

INS Insert a record in a file

MANIP File manipulation

EQ, NE, LT, GT, LE, GE Logical operators

Table II
TYPICAL TYPES OF COMPLEMENTARY CASES

Noun Type Meaning

Human active and external object

Function active and internal object

File passive object of information set

Data passive object of a single information

Info information in the real world

Control passive object for control transition

Device passive object of an instrument

System the system to be defined

Extsystem external systems related to the system to be defined

Number numerical data or information

requirements sentence. Such complementary cases corre-
spond to a subject, objects and a complement in a sentence.
Each of such complementary cases also takes a type as
shown in Table II. How to convert each sentence into a
requirements frame is out of scope of this paper because we
have already studied the issue in our previous works [4] [5].

We show examples of requirements frames and their
corresponding original sentences in Figure 1. At the top of
the figure, two typical functional requirements sentences are
represented. Because the sentence #1 is about data flow from
the system to be developed to an external system (UNIX
server), DFLOW is chosen as a type of its concept. Accord-
ing to the definition of our requirements frames, DFLOW
requires complementary cases such as Object, Source and
Goal. Object corresponds to the data to flow. Source and
goal correspond to be the source and the destination of the
data flow. In the sentence #1, the information flows from the
system to the external system. We thus assign Info, System,
Extsystem types to each case as shown in the figure. A
requirement #2 is also converted in the same way.

C. Rules

Because a requirements frame explicitly represents the se-
mantic information about the original requirements sentence,
we may simply check the types of cases to detect necessary
quality requirements for each functional requirement. We
thus simply construct if-then rules for deciding whether a
specific quality requirement is necessary for a requirement
frame. At the top in Figure 2, we show an example of such
a rule (Rule A). The rule decides whether Interoperability is
necessary for a requirement frame. The if-then part of the
rule focuses on the types of cases about Concept, Source
and Goal. Because a requirement frame #1 in the figure
satisfies this condition, the rule decides Interoperability is
necessary for the requirement frame #1. On the other hand,
the rule does not decide Interoperability is necessary for a
requirements frame #2 because the condition is not satisfied
in it.

D. Discussion about the rule-based technique

We have written 14 rules for web-based information
system [3], and the rules are applied in a case study [10].
One of the big problems of this technique is the effort for
writing such rules. It takes about a few weeks for two
experts of requirements engineering for writing such 14
rules. Even if the rules can be reused in the same domain and
they can be improved during their usage, such expectations
largely depend on the expertise of requirements analysts.
Another problem is about their application. According to
the result of the case study, an expert simply referred the
results of rule application and he basically subjectively
updated the original requirements. One of the reasons was
that the expert considered the rules to be still immature
and the rules should be manually improved during more
applications. If such rules can be improved automatically
along the progress of their usage, the effort for the rule users
(normally, requirements analysts) largely decreases.

III. QUALITY REQUIREMENTS PREDICTION USING

MACHINE LEARNING

The problem of obtaining quality requirements from a
requirements frame can be formalized as a classification
problem of obtaining classification rules from a finite data
set. Let the set of input vectors be denoted by I = Bn and
the set of labels by L = {l1, l2, · · · , lm}, where B = {0, 1}.
Training data D denotes a finite set D ⊆ I × L.

Definition 3.1:

D = {(d(1), l(1)), (d(2), l(2)), · · · (d(n), l(n))}
Here, d(1), d(2), · · · , dn are called instances, and
l(1), l(2),··· ,l

|D|
are called classes to which the individual

instances belong. n = |D| denotes the number of
training data samples, and m denotes the number of
labels. Classification rules are represented by the function

542Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 560 / 729

#1. The system shall send news articles to UNIX server.

#2. The system shall set the time to send.

Case Type

Concept DFLOW

Object Info

Source System

Goal Extsystem

Case Type

Concept DFLOW

Object Info

Source System

Goal Extsystem

Case Type

Concept SET

Agent System

Object number

Case Type

Concept SET

Agent System

Object number

Quality Req.: Interoperability
If-Condition: Concept=DFLOW & (Source=Extsystem | Goal=Extsystem)

Rule A

#1 satisfies Rule A.

#2 does not satisfy Rule A.

Figure 2. Examples of applying a rule to requirements frames.

δ : I ⇒ L. A classification problem is the problem of
obtaining optimal δ for given D based on certain criteria.

Various learning algorithms are used in classification
problems, such as support vector machines, decision trees,
maximum entropy models, and naive Bayes classifiers. In
choosing the learning algorithm, it is necessary to choose an
algorithm that can suitably capture the structures included
in the data set of the target classification problem [11].

In the case where a support vector machine is used, it
is necessary to determine a kernel function that is suitable
for the problem. A kernel function is a function that gives
the similarity between instances. However, it is not easy to
obtain a function that appropriately represents the semantic
similarity between instances represented by requirements
frames. As for a decision tree, although it is advantageous in
that classification rules obtained can be readily understood,
in the case of the type of problem being considered in
this research, which requires manual preparation of training
data, since the number of instances is limited, excessive
segmentation might occur, resulting in degraded general-
ization ability. Furthermore, since the training data samples
investigated in this research are sparse binary vectors, and
it is assumed that the same instance might be classified into
different classes, deterministic learning algorithms are not
suitable. Therefore, in order to obtain appropriate results,
it will be a better approach here to acquire corresponding
relationships between inputs and outputs by directly using
word co-occurrences rather than capturing complex con-
textual structures. Accordingly, a naive Bayes classifier is
adopted here as a learning machine in view of the simplicity
of the model and the ease of computation.

Representations of requirements frames of the specifica-
tions prepared by experts are converted into binary vectors.
For example, the concepts of the case frame are associated
with a 17-dimensional vector since the number of types is
17. This vector changes in accordance with the number of

concepts defined in accordance with the relevant domain.
Structures included in the concepts, such as objects, sources,
and goals, are also represented as binary vectors of prede-
termined orders. Similarly, quality characteristics required
for individual requirements frames are also converted into
binary vectors.

A. Instance selection using cosine values

Binarized specifications and quality characteristics are
considered as instances and classes of the instances, and
the set of these will be denoted by R. A portion of the
set R is used as the training data D. Here, half of the
instances prepared are used as the training data D. The set of
instances correctly classified by the learned function δ will
be distinguished by attaching the subscript c. The correct
answer rate representing the ratio of correctly classified
instances among the other half instances D′ = R −D will
be referred to as the successful learning rate Esuc, and the
correct classification rate for all instances will be referred to
as the learning accuracy Eacc.

Esuc =
|D′

c|
|D′| (1)

Eacc =
|Dc ∪D′

c|
|R| (2)

In selecting instances, it is necessary to select training data
samples uniformly in some sense from the set of instances.
As a criterion of the similarity between instances, here, the
sum of cosine values between learning data samples will
first be used. The sum Si of cosine values of an instance i
will be defined as follows.

Definition 3.2:

Si =

n∑

j(�=i)

d(i)d(j)

|di||dj | (3)

543Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 561 / 729

By choosing instances with small values of Si, orthogonal
instances will be preferentially used for learning from the
data set, so that unbiased instance selection can be expected.

In this research, four requirements specifications were
picked up from the specifications of procurement examples
at the Information Systems and Welfare Division of the
Ministry of Economy, Trade and Industry of Japan and were
converted into requirements frames, which were used as
training data. The numbers of instances of the training data
used in the experiment are given in the table below. The
instances corresponding to the four requirements specifica-
tions were sorted in ascending order according to equation
(3), and � |R|

2 � instances were picked up as the training data
D.

Table III
NUMBERS OF INSTANCES OF REQUIREMENTS SPECIFICATIONS USED IN

LEARNING EXPERIMENT.

Spec. 1 Spec. 2 Spec. 3 Spec. 4

37 41 52 58

In the learning experiment, the naive Bayes classifier
scheme of WEKA [12], which is a machine learning plat-
form, was used. In order to confirm the effect of cosine-
based selection, a learning experiment in which instances
were chosen at random was also conducted. Learning was
performed for each quality characteristic of the individual
specifications, and Esuc and Eacc values for each quality
characteristic, as well as average Esuc and average Eacc

for all quality characteristics, were obtained. The average
Esuc values are shown in Figure 3, and the average Eacc

values are shown in Figure 4, in which the horizontal axis
represents the number of instances and the vertical axis
represents the average E.

The cosine-based instance selection was effective when
|D| was small; however, there was a tendency for both Esuc

and Eacc to decrease as |D| increased. One reason for this
tendency was that the cosine values of requirements frames
with the same representation were added up into the sum Si

of cosine values for each instance, used in equation (3), so
that frequently used requirements frames were excluded. In
instance selection, some measure is needed to avoid adding
up the cosine values of requirements frames with the same
representation. Therefore, the sum defined by equation (4)
below will be used hereafter.

Definition 3.3:

Si =
n∑

j(dj �=di)

d(i)d(j)

|di||dj | (4)

B. Requirements frames representations and features

In order to adapt to the learning scheme, here, it is
assumed that training data samples are represented by sim-
ple binary vectors. However, individual cases included in

1E

0 9

0.95
E

0.85

0.9

0.8

0.85

i
0.75

0.8
cosine
random

0.65

0.7
random

0.6

0.65

30 40 50 60 70
0.6

30 40 50 60 70

the number of casesthe number of cases

Figure 3. Relationship between the number of instances and Esuc.

0 95

1
E

0.9

0.95
E

0.85

0.9

0.8

0.85

cosine

0.75

cosine
random

0 65

0.7

0.6

0.65

0.6
30 40 50 60 70

the number of casesthe number of cases

Figure 4. Relationship between the number of instances and Eacc.

requirements frames representations include elements that
are necessary for quality characteristics identification and
those that are not necessary. Here, of the elements of the case
structure, such as concept, function, and reliability, elements
that are necessary for quality characteristics identification
were revealed experimentally. The necessary elements cor-
respond to features used in learning, which can be utilized
for appropriate selection of example problems. Note that,
in this paper, we place the term “feature” in the context of
machine learning; so, the meaning of it is different from that
in software engineering.

Features necessary for quality characteristics identification
were estimated for Specification 4, which was found to have
the lowest level of E in the results described in the preceding
section. Table IV shows the individual requirements frames
representations included in the instances of Specification 4.

544Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 562 / 729

Table V shows the results of learning in which half of the
instances were selected as training data based on cosine
values in view of five frames representations.

Table IV
REQUIREMENTS FRAMES REPRESENTATIONS OF SPECIFICATION 4.

Concept DFLOW, CFLOW, SET, RET,

UPDATE, DEL, INS, MANIP

Agent System, Human

Goal System, Human, Extsystem

Object Data, Info, Function

Source System, Human, Info

Table V
RESULTS OF LEARNING IN WHICH INSTANCES WERE SELECTED FOR

EACH REQUIREMENTS FRAME REPRESENTATION.

Concept Agent Goal Object Source

Eacc 0.90 0.83 0.70 0.86 0.70

Ettl 0.93 0.87 0.81 0.89 0.81

The highest Esuc and Eacc were obtained when instances
were selected based on concept among the requirements
frames representations. Concept has the highest order among
the requirements frames representations, effectively serving
for instance separation, so that it is suitable feature that can
be used for learning.

C. Instance selection based on concept

In order to confirm the estimation in Section III-B, a
learning experiment in which instances were selected based
on concept was conducted. Regarding the four requirements
specifications used in Section III-A, instances were selected
based on concept among the requirements frames represen-
tations of the individual specifications. When the number of
instances was less than half, orthogonality of the remaining
instances was evaluated based on equation (4), and instances
were selected accordingly until the number reached half.
Esuc and Eacc for each quality characteristic, as well as the
average Esuc and Eacc, were obtained. The Esuc average
values are shown in Figure 5, and the Eacc average is
shown in Figure 6. For the purpose of comparison, the
results of learning in the case where instances were chosen
at random and the results of learning in the case where
instances were chosen at random from concept and are
also plotted. The experimental results demonstrate that the
success rate in the case where instances were selected from
concept monotonically increased as the number of instances
increased, suggesting its effectiveness in learning. In the case
where instances were selected from concept, a maximum
success rate of about 0.91 was achieved for unknown data.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

30 35 40 45 50 55 60 65 70

cosine

random

concept

concept（random）

the number of cases

EE

Figure 5. Esucin the case where instances were selected from concept.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

30 35 40 45 50 55 60 65 70

cosine

random

concept

concept（random）

EE

the number of cases

Figure 6. Eacc in the case where instances were selected from concept.

In the case where instances were chosen at random, the
success rate varied considerably depending on the number
of instances. From what has been described above, it is
estimated that, when obtaining the quality characteristics
of a large-scale specification, it will be effective to select
instances in such a manner that overall quality characteristics
are determined based on concept in requirements frames
representations and that further classification is performed
based on cases as needed.

IV. RELATED WORK

There are several studies how to define each quality
requirement, but most of them requires the huge amount
of human effort. In ISO 25021 [13], concrete examples
how to measure quality requirements are shown, and these
examples help analysts to make quality requirements mea-
surable. Donald Firesmith gives some format to specify qual-
ity requirements rigorously [14]. In Architecture Tradeoff
Analysis Method (ATAM) [15] [16], a template for quality
requirements called “quality attribute scenario” is provided

545Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 563 / 729

to evaluate the validity of architectural decision. Such tem-
plate may be used to support stakeholders writing quality re-
quirements. In an article by Ozkayad et al. [17], an empirical
data of the most common quality attributes was shown based
on the ATAM. This kind of empirical data help requirements
analysts to specify quality requirements. For similar systems,
similar kinds of quality requirements are normally required.
For example, most functions in typical Web browsers require
security and usability, but do not so require accuracy and
fault tolerance. This kind of analysis helps analysts to val-
idate their quality requirements definition in a specification
by comparing to specifications of other similar systems [18].
However, such analysis does not directly point out missing
quality requirements in each functional requirement. The
analysis just suggests that the specification is unbalanced
with respect to quality requirements definition. UML is the
most popular semi-formal notation for software development
now, and there are some challenges to introduce quality
requirements into it [19] [20]. However, how to specify
such introduced information is normally out of scope in
each research. Using ontology, dictionary and/or thesaurus
[21] is one of the useful ways to improve the quality of
requirements with respect to semantic aspect. However, it
is a little bit weak because simple words/terms matching
cannot completely represent the semantic information in a
requirement.

There are a lot of software engineering researches using
machine-learning techniques, such as cost estimation [22],
defect prediction [23] and design pattern mining [24]. Most
researches focus on variable selection rather than training
data selection because plenty of variables exist in such
application area. For requirements engineering researches,
machine-learning techniques are rarely used. One of the
exceptions is a method for classifying non-functional re-
quirements (NFR) automatically using a machine learning
technique [25]. In this method, usual natural language
documents are used for the classification, but semi-formal
notation is used in our research. Training data sets are chosen
empirically so as to effectively classifying NFRs in this
research, but training data sets are systematically chosen
based on the theory of machine learning in our research.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed and evaluated a new tech-
nique for predicting quality requirements necessary for a
functional requirement based on the machine learning. The
main contribution of this research is to avoid human effort
for preparation of detection, i.e., writing and improving
detection rules manually. In our technique, each functional
requirement is represented in X-JRDL, which is a semi-
formal language based on case grammar. Because X-JRDL
explicitly represents the semantic structure of a functional
requirement, we can easily decide which kinds of quality
requirements are necessary for a functional requirement.

In our previous work [3] [6], we proposed a rule-based
technique for predicting necessary quality requirements. The
results of the previous work were not bad, but it took a
lot of effort to write rules for prediction. In addition, the
quality of prediction largely depended on the expertise of
the people who wrote the rules. Our new technique avoids
such problems because detection rules are automatically
generated by machine learning, and the rules can be also
automatically improved.

In this research, requirements frames representations that
were suitable as features were revealed experimentally
through selection of training data based on cosine values. In
the case of a large-scale requirements specification, uniform
selection of instances from concept among requirements
frames representations gave the most appropriate quality
characteristics. Although duplicates increased as the data
volume increased in the case of instance selection based
on simple similarity of cosine values, a high success rate
was achieved by selectively choosing instances from suitable
features.

The results shown here are average values of Esuc and
Eacc. In view of the individual quality characteristics, the
results for reliability were lower than those for the other
quality characteristics. Although independence of individual
attributes is assumed when classes are given by naive Bayes
classifiers, presumably, some dependencies exist in reality.

In future research, it is necessary to examine instance
representations and selection methods that are free of such
dependencies. We would like to also develop a supporting
tool (a CASE tool) to support a requirements analyst to
write a requirements specification based on our proposed
technique.

REFERENCES

[1] “IEEE Recommended Practice for Software Requirements
Specifications,” 1998, IEEE Std. 830-1998.

[2] J. D. Blaine and J. Cleland-Huang, “Software Quality Re-
quirements: How to Balance Competing Priorities,” IEEE
Software, vol. 25, no. 2, pp. 22–24, Mar./Apr. 2008.

[3] H. Kaiya and A. Ohnishi, “Finding incorrect and missing
quality requirements definitions using requirements frame,”
IEICE Transactions, vol. 95-D, no. 4, pp. 1031–1043, 2012.

[4] A. Ohnishi, “Software requirements specification database
based on requirements frame model,” in ICRE, 1996, pp. 221–
228.

[5] Y. Matsuo, K. Ogasawara, and A. Ohnishi, “Automatic trans-
formation of organization of software requirements specifica-
tions,” in RCIS, 2010, pp. 269–278.

[6] H. Kaiya and A. Ohnishi, “Quality requirements analysis
using requirements frames,” in QSIC, 2011, pp. 198–207.

[7] R. Shank, “Representation and Understanding of Text,” Ma-
chine Intelligence, vol. 8, pp. 575–607, 1977.

546Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 564 / 729

[8] International Standard ISO/IEC 9126-1, “Software engineer-
ing - Product quality - Part 1: Quality model,” 2001.

[9] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-
Functional Requirements in Software Engineering. Aca-
demic Publishers, 1999.

[10] H. Kaiya and A. Ohnishi, “Improving software quality
requirements specifications using spectrum analysis,” in
COMPSAC Workshops, 2012, pp. 379–384.

[11] C. M. Bishop, Pattern Recognition and Machine Learning,
new ed. Springer-Verlag, 2008.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an update,”
SIGKDD Explorations, vol. 11, no. 1, pp. 10–18, 2009.

[13] International Standard ISO/IEC 25021, “Software engineering
- Software product Quality Requirements and Evaluation
(SQuaRE) - Quality measure elements,” Oct. 2007.

[14] D. Firesmith, “Quality Requirements Checklist,” Journal of
Object Technology, vol. 4, no. 9, pp. 31–38, Nov.-Dec. 2005.

[15] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lip-
son, and J. Carriere, “The Architecture Tradeoff Analysis
Method,” in IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS), 1998, pp. 68–.

[16] L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice, 2nd ed. Addison-Wesley, 2003.

[17] I. Ozkayad, L. Bass, R. S. Sangwan, and R. L. Nord, “Making
Practical Use of Quality Attribute Information,” IEEE Soft-
ware, vol. 25, no. 2, pp. 25–33, Mar./Apr. 2008.

[18] H. Kaiya, M. Tanigawa, S. Suzuki, T. Sato, and K. Kaijiri,
“Spectrum analysis for quality requirements by using a term-
characteristics map,” in CAiSE, 2009, pp. 546–560.

[19] Y. Zhang, Y. Liu, L. Zhang, Z. Ma, and H. Mei, “Mod-
eling and Checking for Non-Functional Attributes in Ex-
tended UML Class Diagram,” in Annual IEEE International
Computer Software and Applications Conference (COMP-
SAC2008), 2008, pp. 100–107.

[20] Z. M. Yi Liu and W. Shao, “Integrating Non-Functional
Requirement Modeling into Model Driven Development
Method,” in 17th Asia-Pacific Software Engineering Confer-
ence (APSEC 2010), Dec. 2010, pp. 98–107.

[21] D. V. Dzung and A. Ohnishi, “Improvement of quality of
software requirements with requirements ontology,” in QSIC,
2009, pp. 284–289.

[22] D. G. e Silva, M. Jino, and B. T. de Abreu, “Machine learning
methods and asymmetric cost function to estimate execution
effort of software testing,” Software Testing, Verification, and
Validation, 2008 International Conference on, vol. 0, pp. 275–
284, 2010.

[23] E. Ceylan, F. O. Kutlubay, and A. B. Bener, “Software defect
identification using machine learning techniques,” EUROMI-
CRO Conference, vol. 0, pp. 240–247, 2006.

[24] R. Ferenc, Á. Beszédes, L. J. Fülöp, and J. Lele, “Design
pattern mining enhanced by machine learning,” in ICSM,
2005, pp. 295–304.

[25] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Auto-
mated classification of non-functional requirements,” Requir.
Eng., vol. 12, no. 2, pp. 103–120, 2007.

547Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 565 / 729

Abductive Logic Programming with Tabled Abduction

Luı́s Moniz Pereira∗, Ari Saptawijaya ∗†
∗Centro de Inteligência Artificial (CENTRIA)

DI/FCT Universidade Nova de Lisboa
2829-516 Caparica, Portugal

Email: lmp@fct.unl.pt, ar.saptawijaya@campus.fct.unl.pt
†Fakultas Ilmu Komputer Universitas Indonesia

Kampus UI Depok 16424, Indonesia

Abstract—In abductive logic programming, abductive solu-
tions are typically computed without attending to the abductive
context. These abductive solutions can actually be reused in
a different abductive context. In this paper, we employ a
tabling mechanism and propose a tabled abduction mechanism,
that consists of a transformation from abductive normal logic
programs into tabled dual programs, by tabling abductive
solution entries and without requiring any meta-interpreter.
Recomputation of abductive solutions for a different context,
but consistent with them, can then be avoided, by reusing the
tabled abductive solution entries. Though our implementation
is in XSB-Prolog, its concepts may be imported to other
systems, not necessarily Logic Programming ones.

Keywords-tabled abduction; abduction transformation; well-
founded semantics; XSB-Prolog.

I. INTRODUCTION

Abductive logic programming offers a formalism to
declaratively express and solve problems in a variety of
areas, e.g., decision-making, diagnosis, planning, belief re-
vision and hypothetical reasoning (cf. [1]–[4]). On the other
hand, the tabling mechanism, now supported by a variety of
Prolog systems, ensures termination and optimal complexity
for query evaluation to a large class of logic programs, viz.
under the Well-Founded Semantics [5].

We explore the idea of how to benefit from the tabling
mechanism in order to reuse priorly obtained abductive
solutions in a given new abductive context. For so doing,
we propose a tabled abduction system, dubbed TABDUAL,
which includes a transformation (itself a logic program) from
abductive normal logic programs into tabled dual programs,
that allows query evaluation without resorting to a meta-
interpreter. The transformation makes use of the formal dual
transformation defined in [6], and implements an innovative
and pragmatic re-uptake of prior abductive solution entries
in tabled predicates. More precisely, we contribute on the
following aspects:

• We cater for various critical issues in the program trans-
formation, illustrated in successive prototypical exam-
ples. They incrementally show how the transformation
evolves from the basic core idea into its current actual
state, by gradually dealing with the unavoidable issues

arising, viz. introducing tabled predicates, dealing with
direct positive loops as well as positive and negative
loops over negation, handling programs with variables
and also non-ground queries.

• We have developed a prototype for TABDUAL based
on its specification [7]. It has been tested with bench-
mark core examples pertaining to each of the above
mentioned issues, under the latest version of XSB
(version 3.3.6).

• We discuss some ideas on how to migrate core features
of TABDUAL into the underlying engine-level of Pro-
log systems wanting to encompass tabled abduction.

The paper is structured as follows. Section 2 reviews
basic logic programming and abductive logic programming
notions. The motivation and the key concept of tabled
abduction, along with its implementation, and related work
are then discussed, in Section 3. The ideas on how to migrate
key ingredients of TABDUAL into an engine-level of Prolog
systems are discussed in Section 4, and we conclude in
Section 5.

II. ABDUCTIVE LOGIC PROGRAMMING

We briefly review in this section the abductive logic
programming formalism, which has been well studied for
a few decades by now [8]–[13]. We start with basic logic
programming background. A logic rule has the form

H ← B1, . . . , Bm, not Bm+1, . . . , not Bn

where n ≥ m ≥ 0 and H,Bi with 1 ≤ i ≤ n are atoms.
H and B1, . . . , Bm, not Bm+1, . . . , not Bn are the head and
the body of the rule, respectively. Any variables occurring
in a rule are universally quantified. We use ‘not’ to denote
default negation. The atom Bi and its default negation
not Bi are named positive and negative literals, respectively.
When n = 0, we say the rule is a fact and write it simply as
H . The atoms true and false are, by definition, respectively
true and false in every interpretation. A rule in the form of
a denial with the empty head, or equivalently with false in
the head, is called an integrity constraint (IC) or denial. A
normal logic program is a set of such logic rules, where non-
ground rules (i.e., rules containing variables) stand for all

548Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 566 / 729

their ground instances. A program may represent an infinite
set of rules, when it contains at least one function symbol.
For example, consider the following program with two rules:

nat(0). nat(s(X))← nat(X).

The second rule stands for an infinite number of its ground
instances (as we have one function symbol s and a constant
0), namely:

nat(s(0)) ← nat(0).
nat(s(s(0))) ← nat(s(0)).
nat(s(s(s(0)))) ← nat(s(s(0))).
. . . etc.

Logic program theoretical semantics are usually defined
by reference to all the ground instances of a program’s
rules. This set of instances may be infinite even when
the set of rules (with variables) is finite, as exemplified
above. Rule bodies however must, by definition, be finite.
In programming practice, necessarily finite programs only,
albeit with variables, are employed. Consequently, note
that in the construction of the dual program, discussed in
Section III, we ensure that its rules’ bodies are still finite,
because our transformation applies to possibly non-ground
but nevertheless finite programs.

Abduction, or inference to the best explanation (a com-
mon designation in the philosophy of science), is a reasoning
method whereby one chooses those hypotheses that would,
if true, best explain observed evidence.

An abductive logic program is a normal logic program
that allows for abducibles (i.e., positive literals with no rules
in the program), or their default negations, to appear in
the body of rules. Abducibles stand for hypotheses, whose
truth value is not assumed initially. Queries to the program
represent the evidence we would like to explain, by resorting
to a given set of permitted abducibles. Abducibles in rules’
bodies may have arguments, but must be a ground instance
on the occasion of their abduction. Note that the negation
‘not A’ of an abducible A does not refer to its default
negation, but instead to the explicitly assumed negation of A.
The truth value of abucibles may be independently assumed
true or false, either in their positive or negated form, as the
case may be, in order to produce an abductive solution to a
query, by means of a consistent set of assumed hypotheses.

An abductive solution to a query is thus a consistent set of
abducible instances or their negations that, when substituted
by their assigned value true everywhere in the program P ,
affords us with a model of P (for the specific semantics
used on P), which satisfies both the query and the ICs
– a so-called abductive model. Because explicit negation
entails default negation, the substitution above is warranted.
Often, an abductive solution S for goal G in program P
is defined as a set of abducibles consistent with P such
that P ∪ S |= G in the semantics employed. The above
definition of abductive solutions is consistent with this one,

but avoids the complication of introducing the positive and
the negative abducibles of a solution as facts. Instead, they
are replace by true wherein the program. Note that though
the semantics may be other than two-valued, the abductive
solutions themselves are enforced two-valued by definition.

When performing abductive reasoning, we typically wish
to find, by need only, via top-down computation, the abduc-
tive solutions to a query. This top-down computation, dubbed
backward chaining, is possible only when the underlying
semantics is relevant, a property enjoyed by the Well-
Founded Semantics (WFS) [5]. That is, it guarantees that
it is enough to use only the rules relevant to the query
(those in its procedural call-graph) to find its truth value,
thus it avoids computing a whole model in order to find an
answer to a query. In order to satisfy the ICs too, we conjoin
each query with ‘not false’. Mark that when a semantics
enjoys relevancy, the values of abducibles not mentioned in
the abductive solution are indifferent to the solution. We
use WFS in the implementation of our prototype tabled
abduction system, TABDUAL, described in Section III-E.

III. TABLED ABDUCTION

We begin with issues that motivate the need for tabled
abduction, and subsequently propose a novel abduction
system, termed TABDUAL, that involves a transformation
of an abductive logic program into another program with
tabled abductive solutions.

A. Motivation and Related Work

An abductive solution to a problem is typically formed
from the abductive solutions of its subproblems. Consider
the following abductive logic program.

q ← a. r ← b, q. p← r, q.

where a and b are abducibles. Suppose three queries: q, r
and p, are launched, in that order. Query q simply gives [a]
as the abductive solution. The next query, r, is typically
solved by abducing b and followed by invoking q. But
since q has previously been invoked, query r can in fact
be solved by reusing the previously obtained abductive
solution [a] of q and extending it with the newly abduced
abducible b; yielding [b, a] as the abductive solution to
r. One may also view that solving query r amounts to
extending the ongoing current abductive context [b] when
q is invoked, with the priorly discovered and registered in a
table, abductive solution [a] of q, resulting in [b, a]. Using
similar reasoning, the final query p can be solved by reusing
the abductive solutions of r and q. More precisely, we can
view that the abductive solution [b, a] of r in the body of
p becomes the current abductive context of q and since it
subsumes the previously obtained abductive solution [a] of q
we can safely have [b, a] as the abductive solution to query
p.

549Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 567 / 729

The above example illustrates how abductive solutions
can actually be reused in a new abductive context, avoiding
unnecessary recomputation of abductive solutions to sub-
problems, and thereby gaining in efficiency (imagine if the
definition of the first rule q is scaled up by another huge
program). One may observe that the table size would be
proportional to the number of distinct (positive) goals in the
procedural call-graph, i.e., each first call of the goals in a
given query will table, as the solution entry, the abductive
solutions of the called goal.

Reusing solutions in logic programming, without abduc-
tion, is commonly performed using the tabling mechanism.
It therefore allows dealing with loops in the program,
ensuring termination of looping queries. Surprisingly, to
the best of our knowledge, no work has addressed how
reusing abductive solutions, as we hinted above, can be
realized using the tabling mechanism. Tabling has only been
employed limitedly, i.e., to table a meta-intepreter, which
in turn allows abduction to be performed in the presence
of loops in a program, but with no analysis of abductive
solution subsumption at all (cf. ABDUAL [6], [14]).

Our current work pushes the benefit of the tabling mech-
anism to abduction, by employing it to table abductive
solution entries (effectively achieved by tabling language-
level predicates carrying these entries) for their later reuse
in new abductive contexts, by abductive subsumption.

Our approach differs from that of [15]. Therein, ab-
ducibles are coded as odd loops, it is compatible with and
uses constructive negation, and involves manipulating the
residual program. It suffers from a number of problems,
which it identifies, in its Sections 5 and 6, and its approach
was not pursued further.

Like ABDUAL [6], we use the dual transformation and
rely on the same theoretic underpinnings, but the ABDUAL
code caters only for ground programs and queries. It also
requires a meta-interpreter which makes tabled abduction
awkward because it is enacted only at the level of tabled
meta-interpreter predicates, and does not cater for abductive
subsumption. In short, it affords no particular treatment for
the tabling of abduction. Moreover, by design of omission,
it does not address at all the issues raised by the desirable
reuse of tabled solutions. We employ no meta-interpreter, but
generate a self-sufficient program transform. Hence, it avoids
meta-interpretation and, moreover, explicitly addresses the
concerns of making better use of tabling for abduction,
so that known abductive solutions may be appropriated
by subsequent abductive goals. We do so not just in core
conception, but also adumbrating optimizations and quick-
kill trickery.

Our tabled abduction implementation, termed TABDUAL,
also allows dealing with programs containing loops, and
thus extending the usual tabling mechanisms. We have con-
ducted an experiment to compare TABDUAL with the meta-
interpreter ABDUAL [14] using our test suite of programs

abds([a/0,b/0,c/0]).

p0 <- q0. p3 <- q3. p4 <- q4.
p0 <- a. q3 <- not r3. q4 <- p4.
q0 <- p0. r3 <- p3. q4 <- not a,not b.
q0 <- b.

p8 <- not q8, a. p11 <- not q11, a.
q8 <- not p8. q11 <- p11,not a.
q8 <- b.

Figure 1. Some programs with loops from the test suite. Predicate abds
lists the abducibles with their corresponding arity.

Table I
COMPARISON OF RESULTS: TABDUAL VS. ABDUAL FOR FIGURE 1

Queries TABDUAL ABDUAL
not p0 [not a, not b] [not a, not b], [not a]

p3 [] undefined []
not p3 [] undefined []
not p4 [a], [b] [a], [b], [a,b]

q8 [] undefined, [not a], [b] [not a], [b]
not q11 [a], [not a] [], [a], [not a]

with various kinds of loops. Some distinguishing results,
with respect to the programs given in Figure 1, are shown
in Table I; the complete result is available in [7]. TABDUAL
provides more correct and complete results within the test
suite, given that our scope of programs and queries is more
general than ABDUAL’s:

• For query not p0, [not a, not b] should be the only
solution, because not p0 succeeds by abducing not a
and failing q0. To fail q0, not b has to be abduced and
p0 has to fail. Here, there is a positive loop on negation
between not p0 and not q0, so the query succeeds and
gives the solution [not a, not b] as the only solution.

• For queries p3 and not p3, unlike ABDUAL,
TABDUAL returns undefined (and abduces nothing) as
expected, due to the negative loops over negation.

• Query not p4 shows that TABDUAL does less abduc-
tion than ABDUAL, by abducing a or b only; not both.

• For query q8, TABDUAL has an additional answer: []
undefined (i.e., undefined by abducing nothing), due
to the negative loop over negation between q8 and p8.
Similar reasoning equally applies to query not p8. This
additional answer is missing by ABDUAL.

• For query not q11, the first solution is obtained by
abducing a to fail q11. Another way to fail q11 is
to fail p11, which gives another solution, by abducing
not a. These are the only two abductive solutions which
are returned by TABDUAL and follows correctly the
definition of abductive solutions. There is no direct
positive loop involving q11 in the program, hence
not q11 will never succeed with [] abductive solution,
as returned by ABDUAL.

We have not yet compared efficiency, but it seems apparent
that TABDUAL is an improvement over ABDUAL.

550Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 568 / 729

TABDUAL does not concern itself with constructive nega-
tion, like the NegABDUAL system [16] and its follow-up
[17]. NegABDUAL uses abduction to provide constructive
negation plus abduction, by making the disunification pred-
icate ‘\=/2’ an abducible. Again, it does not concern itself
with the issues of tabled solutions reuse, which is the main
purpose of TABDUAL.

NegABDUAL transforms programs and uses minimal
meta-interpretation. Its transformations are intricate, espe-
cially on account of its constructive negation design goal,
which is no concern of TABDUAL. In the past, we have
used it extensively; but, for now, we have not yet compared
it to TABDUAL. It will surely be heavier and not benefit
from our abductive solutions tabling. However, because of
its constructive negation ability, NegABDUAL can deal with
problems that TABDUAL does not, and intends not, pre-
cisely because it aims at being lighter and more adaptable.
Consider program P , with no abducibles, just to illustrate
the point of constructive negation induced by dualization:

p(X)← q(Y). q(1).

In NegABDUAL, the query not p(X) will return a qualified
‘yes’, because it is always possible to solve the constraint
Y \=1, as long as one assumes there are at least two
constants in the Herbrand Universe. Indeed, the local vari-
able Y in the dualizing transmutation of p(X) produces
a default negation. In TABDUAL implementation, there is
no floundering. However, distinct from NegABDUAL, our
TABDUAL answers ‘no’ to not p(X), which is correct, even
in the absence of a conditional answer afforded only by
having constructive negation in place.

To the best of our knowledge, no other work on using
tabling and dual programs for abduction exists, nor has the
problem of tabled abduction that we currently addressed
even been formulated by others.

We next introduce TABDUAL through a sequence of
prototypical examples, which illustrates how, for easier un-
derstanding, it incrementally evolves to cope with the major
issues of concern arising in tabled abduction. We begin with
the key transformation employing the very idea of tabling
and of reusing abductive solutions. We further successively
argue why and how more constructs should be added to the
transformation, to gradually deal with the issues involved, as
illustrated in ever more complex and demanding examples.

In TABDUAL, we introduce a so-called abductive context
(referred to “context” hereafter), as illustrated in the example
at the beginning of this section, for every predicate defined
by the transformation. The context indicates the ongoing ten-
tative abductive solution for any given tabled goal. It allows
to relay the abductive solution from the head to the body of a
rule and back, and from one subgoal to subsequent subgoals.
The context is effectively catered for and realized by adding
two extra arguments to every predicate, as defined by the
transformation: one for the input context and the other for

1. :- table p_ab/1, q_ab/1.
2. p_ab(E) :- q([a],E).
3. q_ab([b]). q_ab([c]).
4. p(I,O) :- p_ab(E),produce(O,I,E).
5. q(I,O) :- q_ab(E),produce(O,I,E).
6. p_st(I,O) :- p_st_1(I,O).
7. q_st(I,O) :- q_st_1(I,T),q_st_2(T,O).
8. p_st_1(I,O) :- not_a(I,O).
9. p_st_1(I,O) :- not_q(I,O).
10. q_st_1(I,O) :- not_b(I,O).
11. q_st_2(I,O) :- not_c(I,O).
12. not_p(I,O) :- tnot(p_ab([])),p_st(I,O).
13. not_q(I,O) :- tnot(q_ab([])),q_st(I,O).

Figure 2. Main rules obtained from the transformation of P1

the output context of any ongoing abductive solution for the
predicate. Abducibles are ‘parsed’ as terminals in an ongoing
derivation and tracked in these additional arguments.

We fix some notation. We use capital letters to denote
variables appearing in a program and write P/N to denote
that predicate P has arity N . In the examples, the set of
abducible atoms are declared in the predicate abds/1. In the
result of the transformation, we use :- to separate the head
and the body of a rule, instead of←. As the implementation
is done in XSB Prolog [18], [19], we borrow from it its
syntax, e.g., for the tabled negation tnot/1 and for the
compiler directive to declare tabled predicates.

B. Basic Idea

We start with the basic idea by means of the example
below. Consider ground program P1 below.

abds([a/0, b/0, c/0]). p← a, q. q ← b. q ← c.

The transformation produces, for every defined predicate in
P1 (p/0 and q/0), several sets of rules. The transformation
of P1 contains the main rules as shown in Figure 2.

The first set of rules defines the tabled predicates p ab/1
and q ab/1, declared in line 1. The tabled predicate essen-
tially tables the abductive solution entry, always assuming,
for facilitating reuse, empty input context. Since the input
context calls for tabled predicates are always empty, only one
extra argument (i.e., for solution entry context) is needed.
The p ab rule (line 2) is derived from the p rule of the
original program, where p is defined by the subgoals q and
by abducing a. The tabled entry E of p ab is passed from
the output context of q, i.e., the second argument of the
subgoal q. Since q rules in the original program are defined
solely by abducibles, they are transformed into facts q ab
with those abducibles as their abductive solution entries (line
3).

The second set of rules provides the definition of p/2
and q/2, now with the input and output contexts I and O
(lines 4-5). Predicate p/2, for example, reuses the abductive
solution entry E from tabled predicate p ab and then, using
it together with the input context I to produce its output con-
text O. Similar reasoning applies equally to predicate q/2.

551Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 569 / 729

The context updating is performed externally by predicate
produce/3. It concerns itself with: whether E is already
contained in I and whether there are any abducibles from
E, consistent with I , that can be added to produce O. If E
is inconsistent with I then the specific entry E cannot be
reused with I , produce fails and another entry E is sought.
In other words, produce/3 should guarantee that it produces
a consistent output context O from I and E, eliminating any
redundant abduction.

The third set of rules (lines 6-11) contains the dual
rules, p st/2 and q st/2, where p st is true iff p of the
original program is false [6]; similar reasoning also applies
to q st/2. Note that the st stands for ‘∗’, as in p∗, a notation
often used in abduction to denote the negation of p. The set
of dual rules is defined in two layers. The first layer (lines
6-7) captures the idea that, e.g., to make q st (line 7) true,
we need to (non-deterministically) fail each q rule: q st is
defined by q st 1 and q st 2 that correspond to both failing
the first and the second q rules, respectively. Note that the
abductive solution from subgoal q st 1 is relayed to the
subsequent subgoal q st 2 via the intermediate context T .
The second layer of q’s dual rules (lines 10-11) defines how
to fail each q rule, by alternatively and non-deterministically
failing one subgoal in q’s body at a time, i.e., by negating
just one literal in q’s body at a time, in order to avoid
excessive abduction. The negated literal is renamed into
its corresponding positive one, e.g., not a into not a, and
also equipped with the input and output contexts. The two-
layer dual definition for p (lines 6 and 8-9) follows similar
reasoning. The first layer p st (line 6) is simpler, because
in the original program p has only one rule.

The fourth set of rules consists of the negated rules
not p/2 and not q/2 (lines 12-13). These will be the
ones that generate abductive solutions for the such ‘pos-
itive’ literal, say not p. Indeed, every default literal is
replaced with its corresponding positive. In line 12, predicate
not p(I,O) is defined by two subgoals: tnot(p ab([])) and
p st(I,O). The first subgoal serves as an optimization, to
immediately fail not p without the need to launch the call to
the more elaborate p st rule that follows. The idea behind
the ‘quick-kill’ tnot(p ab([])) is to permit to see whether
goal ‘not p’ has no hitting set at all, pertaining to the set
of abductive solutions of p ab. This is done by inspecting
whether p ab has an empty abductive solution entry, i.e., p
can be satisfied without abducing anything, in which case
not p can immediately fail. Indeed, an abductive solution
of the negation of positive atom A is construable as a set
that negates the members of a hitting set for the abductive
solutions of A. If one of these latter sets is empty then no
hitting set exists. Our approach consists in generating such
hitting sets incrementally, by means of finding abductive
solutions to the dual rules of A, without thus having to wait
for the explicitly availability of all abductive solutions for
A. Nevertheless, a quick-kill option is readily available, just

in case there exists an empty abductive solution for A. An
optimization consists in simply detecting if such an entry is
already in the table for A, rather than generating solutions
for A trying to produce the empty one.

In addition to the rules shown in Fig 2, for each predicate
having no rule in the original program, a fact about its
negation is added. For example, since there is no IC defined
in P1, fact not false(I, I) is added. Note that the two
contexts are the same. Having no body, the output context
does not depend on the context of any other goals, but
depends only on its corresponding input context. When ICs
exist, they are transformed exactly like the dened predicates.

Finally, for each abducible, a pair of rules is
created: a rule for the positive abducible, e.g.,
a(I,O):-insert(a, I, O), and another rule for its negation,
e.g., not a(I,O):-insert(not a, I,O). Similar pairs of
rules are also added for abducibles b and c, and their
negations. Note that the rules are defined by the external
predicate insert/3, which inserts the corresponding
abducible with respect to the input context I and results
in the output context O. It maintains a consistent context
during the insertion, and avoids redundant abduction.

A query to a program, consequently, should be trans-
formed too, in order to conform to the transformation: pos-
itive goals are augmented with the two extra arguments for
the abductive context, whereas negative goals are made ‘pos-
itive’ in addition to the two extra context arguments. More-
over, a query should always be conjoined with not false/2
to ensure that all ICs are satisfied. For example, query not p
is transformed into not p(I,O). Its complete call, as a top
goal, becomes not p([], T), not false(T,O), where O is
an abductive solution to the query, given initially an empty
input context. Note, how the abductive solution for not p is
further constrained by passing it to the subsequent subgoal
not false for confirmation, via the intermediate context T .

Note that at this point we are not concerned with in-
cremental IC checking, as this is not a specific tabled
abduction problem, but a general tabling problem that others
are addressing and that tabled abduction does not preclude
any reuse of.

C. Dealing with Loops

The next examples concern programs involving loops
between predicates. Consider the ground program P2 below.

abds([a/0]). p← q, a. q ← p.

XSB with its tabling mechanism supports Well-Founded
Semantics [5], which would detect direct positive loops
and fail predicates involved in such loops. For P2, query
p fails, due to the direct positive loop between tabled
predicates p ab/1 and q ab/1. On the other hand, query
not p should succeed with two abductive solutions [] and
[not a]. The call to the latter query, after transformation,

552Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 570 / 729

becomes not p([], T), not false(T,O). Instead of succeed-
ing, the first subgoal not p([], T) will loop indefinitely!
This loop occurs because of the mutual dependency between
not p/2 and not q/2 through p st 1/2 and q st 1/2. The
dependency creates a positive loop on negative non-tabled
predicates, and such loops should succeed, precisely because
the corresponding source program’s loop is a direct one
on positive literals, which hence must fail. Indeed, since
any source program’s direct positive loops must fail, the
loops between their corresponding transformed negations
must succeed [6]. For example, whereas r ← r fails query
r, perforce not r ← not r succeeds query not r. The
problem can be remedied by detecting such loops in a
program. Since XSB’s tabling mechanism already supports
dealing with direct positive loops, we need only concern
ourselves with positive and negative loops on negation in
the transform.

1) Positive Loops on Negation (PLoN): We detect PLoN
by tracking the ancestors of negative subgoals, whenever
they are called from other negative subgoals. In the trans-
formation, a list of ancestors, dubbed the close-world-
assumption (CWA) list is maintained and serves as another
extra argument for the dual and negated rules. The new
transformation, with PLoN detection, of P2 is shown below
(without showing the usual transformation for not false
and the abducibles).

1. :- table p_ab/2, q_ab/2.
2. p_ab(E) :- q([a],E). q_ab(E) :- p([],E).
3. p(I,O) :- p_ab(E),produce(O,I,E).
4. q(I,O) :- q_ab(E),produce(O,I,E).
5. p_st(I,O,CWA) :- p_st_1(I,O,CWA).
6. p_st_1(I,O,CWA) :- not_q(I,O,[not p|CWA]).
7. p_st_1(I,O,_) :- not_a(I,O).
8. q_st(I,O,CWA) :- q_st_1(I,O,CWA).
9. q_st_1(I,O,CWA) :- not_p(I,O,[not q|CWA]).
10. not_p(I,I,CWA) :- member(not p,CWA), !.
11. not_p(I,O,CWA) :- tnot(p_ab([])),p_st(I,O,CWA).
12. not_q(I,I,CWA) :- member(not q,CWA), !.
13. not_q(I,O,CWA) :- tnot(q_ab([])),q_st(I,O,CWA).

The list is only updated in the second layer of dual rules,
which are essentially the rules for negative goals (cf. lines
6 and 9). The update is done by adding the negative goal
(without any context) into the CWA list of the negative
subgoal in the body. For example, in case of p st 1 (line 6),
not p is added into the CWA list of the subgoal not q. Note
that in line 10, another rule of not p is added (similarly in
line 12, for not q) to detect PLoN, by membership testing,
i.e., whether we are returning to the same call of not p. In
that case, the output context is equal to the input context.
By placing this additional rule before the other not p rule
(line 11), we anticipate the loop by immediately succeeding
it and, using cut, to prevent the call to the next not p (which
would lead to looping).

2) Negative Loops over Negation (NLoN): XSB with its
Well-Founded Semantics and tabling mechanism is aware of
negative loops over negation (NLoN) and makes predicates

involved in such loops undefined. Consider the ground
program P3 below:

p← q. q ← not p.

where p and q are tabled predicates and, written in XSB, the
tabled negation tnot/1 is used instead of not/1 to so indi-
cate. In this example, p and q (also their default negations)
are undefined. The CWA lists previously introduced are
able to detect PLoN, but not NLoN. Query p, for example,
with respect to the transformation (in the presence of CWA
lists) will fail, instead of being undefined. It fails, because
the tabled predicate p ab is involved in a direct positive
loop through the call of not p and not q. More precisely,
whereas in the source program q is defined by the negative
subgoal not p, in the resulting transformation q ab is defined
by the positive subgoal not p. Hence, one way to resolve the
problem is to wrap the positive subgoal not p in the body
of the rule q ab with the tabled negation predicate (tnot/1
in XSB) twice so as to keep its truth value; thereby creating
NLoN (instead of direct positive loops), but also preserving
the semantics of the rule. Apart from other usual predicates
produced by the transformation, the new definition of q ab
is as follows:

1. :- table q_ab/1, over/1, not_p/1, p_st/3.
2. q_ab(E) :- tnot p_ab([]),not_p_ab([],E).
3. not_p_ab(I,O) :- call_tv(tnot over(not_p(I)),V),

(V = undefined, O = I, undefined;
inspect(p_st(I,O,[]))).

4. not_p(I) :- p_st(I,O,[]).

Here, tnot over(not p(I)) is the double-wrapping of not p
with tnot. It is realized via the intermediate tabled pred-
icate over/1, defined as over(G) :- tnot(G). The
double-wrapping is called through an auxiliary predicate
not p ab/2. The XSB system predicate call tv/2 calls the
double-wrapping and unifies V with its truth value (true
or undefined). The value of the output context O then
depends on V ’s value: it is equal to the input context
I when NLoN exists (i.e., V is undefined) or O’s value
is inspected from the tabled predicate p st by means of
predicate inspect/1, in case NLoN does not exist (i.e.,
V is true). The predicate inspect/1 can be defined, in
XSB, using the combination of its table inspection predicates
get calls/3 and get returns/2.

It is tempting to use the existing not p(I,O,CWA) in the
double-wrapping. Unfortunately, it would cause the call to
over/1 to flounder, because the output context O is still
uninstantiated; hence not p/1 is introduced instead, free
from the output context. Note that in not p/1 we also
omit the CWA context, because the call is made from q ab,
which actually has an empty CWA context (recall that the
CWA context is only relevant for dual rules). Indeed, in the
definition of not p/1 (line 4), where it is defined by the dual
rule p st/3, the CWA context of p st is empty. Its definition
is similar to the not p/3 definition, except that the quick-

553Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 571 / 729

kill tnot p ab([]) is moved into the q ab definition (line
2). That is, it prevents the quick-kill to be wrapped in the
tnot. Moreover, p st is tabled, so that its output context
O, which is computed when not p/1 is evaluated in the
double-wrapping, can later be reused, via inspect/1.

D. Programs with Variables

The problem gets more interesting when we have vari-
ables in the program and we consider non-ground queries.
Consider program P4.

abds([a/1]). ← q(X), r(X). q(1). r(X)← a(X).

We shall discuss how to adapt the construction of dual rules
involving predicates with variables. Recall that the IC in P4

is transformed like any other rule. Instead of only placing
a negated literal in the body of a (second layer) dual rule,
we are also going to keep all positive non-abducible literals
of the original rule that appear before this negated literal.
For example, the second dual rule false st 1 of the IC in
P4 is now defined by the negated literal not r/4 and also
by all positive non-abducible literals that appear before this
negated literal in the original rule, in this case q/3, as shown
below.
false_st(I,O,CWA) :- false_st_1(I,O,CWA).
false_st_1(I,O,CWA) :- not_q(X,I,O,CWA).
false_st_1(I,O,CWA) :- q(X,I,T),

not_r(X,T,O,[not false|CWA])).

The idea to keep these literals before the negated literal
in the body of dual rules is to provide an opportunity for the
negated literal to be ground when it is called. For example,
not r/4 in the transformation of P4 can be made ground
because X is instantiated when q/3 is called, i.e., X = 1,
like the case in the original rule. This avoids floundering
when tnot(r ab(X, [])) is called through not r/4 due to
the uninstantiated X . Query q(1), for example, will now
correctly return the abductive solution [not a(1)].

There are some points to remark on regarding this re-
finement. First, the newly introduced positive literals should
be tabulated to avoid duplication of their derivations. Sec-
ond, one could also introduce all other positive literals
in the rule originating the ‘not’. This may help produce
additional grounding, though, in going against the left-to-
right pragmatics coded by the programmer it may create
inefficiencies of its own. Third, the semantics doesn’t change
because the conditions for failure of the positive rules are
that one literal must fail even if the others succeed. The
cases where the others do not succeed are handled in the
other dual cases. Finally, knowledge of argument types (+,
−, ?), and of shared variables in the body and whether they
are local or not, would help refine the transformation to
avoid introducing positive literals not contributing to further
grounding.

In yet another grounding refinement, TABDUAL also
allows us also to deal, in the quick-kill rules, with non-

ground positive goals. For example, query q(X) gives the
abductive solution [(not a(1)] for X = 1. But, non-ground
negative goals, like not q(X) flounders due to the unin-
stantiated X in the quick-kill tnot(q ab(X, [])). To resolve
the problem, we may restrict the applicability of the quick-
kill to ground negative goals only; non-ground negative
goals may immediately call the q st/4 rule without calling
the quick-kill. This leads to an improved transformation
that allows us to have non-ground negative goals without
a tnot/1 floundering error. The further refinement of the
transformation with respect to the negated rules not q/4 of
P4 is shown below (not r/4 is also treated similarly):

not_q(X,I,O,CWA) :-
(ground(not_q(X)),tnot(q_ab(X,[]));
\+ground(not_q(X))), q_st(X,I,O,CWA).

The following example will take us to the actual final
transformation. Consider program P5.

abds([a/1]). p(X)← q(X). p(1)← a(1).
q(X)← p(X). q(2)← a(2).

Query p(X) to program P5 succeeds under TABDUAL,
giving two abductive solutions: [a(1)] and [a(2)] for X = 1
and X = 2, respectively. But query not p(X) does not
deliver the expected solution: the only solution returned is
[not a(1)] for a particular X = 1, instead of the expected
[not a(1), not a(2)] for any instantiation of X . The culprit
is in the p st definition used to answer the query:

p_st(Y,I,O,CWA) :- [Y] = [X], [Y] = [1],
p_st_1(Y,I,T,CWA),
p_st_2(Y,T,O,CWA).

Note that the p st rule above is obtained by unifying the
argument Y (from the call) with the argument of each p rule,
i.e., X and 1 from the first and second p rule respectively,
and then failing both rules by the subgoals p st 1/4 and
p st 2/4. In general, four p st rules from P5 can be
obtained to fail both p rules, by considering the unification
of the call argument Y with the arguments X and 1 of the
two p rule heads. But in practice it can be minimized, by
removing unnecessary unifications, as explained in Section
III-E.

When the goal not p(X, [], O, []) is launched, the variable
Y in both p st 1 and p st 2 is instantiated with 1. But
recall that p st 1 and p st 2 are derived from two different
p rules, hence failing p should be achieved by calling p st 1
and p st 2 independently. In other words, different variants
of the calling argument Y should be used in the call of
p st 1 and p st 2, as shown below:

p_st(Y,I,O,CWA) :- variant([Y],[Y1]), [Y1] = [X],
variant([Y],[Y2]), [Y2] = [1],
p_st_1(Y1,I,T,CWA),
p_st_2(Y2,T,O,CWA).

Now the call of p st 1 and p st 2 are independent through
the use of different variants Y 1 and Y 2, respectively. Note

554Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 572 / 729

we are just looking for abductive solutions for failing a
calling goal, not for constraints on its free calling variables.

E. TABDUAL Implementation

We have made an implementation [20] on the basis of
the TABDUAL specification [7] and have tested it under
the current XSB Prolog version 3.3.6. Apart from the ‘tnot
quick-kill’ optimization and the relying of the loop detection
as much as possible on the tabling mechanism of XSB, we
pushed some optimizations further in the implementation:

• We reorder literals in the body of the rules by pri-
oritizing abducibles to come first in the body. This
gives an advantage that the second layer dual rules are
first defined by abducibles, if they exist. In this way,
abductive solutions for queries with negative goals can
be obtained faster, for it is easy to incorporate negated
abducibles.

• We simplify the second layer dual rules by removing
unnecessary unifications, i.e., those that succeed or fail
independently of the instantiation of arguments from
the calls. For example, in the refined definition of p st,
from the last paragraph of Section III-D, the unification
[Y 1] = [X] can be removed because unifying with vari-
ables always succeeds. Moreover, other p st alternative
rules with the body containing [Y] 6= [X] can also be
removed (these rules always fail).

• We split the list of abductive solutions into positive and
negative parts. Thus, checking consistency of abductive
solutions, in predicates insert/3 and produce/3, can
be done faster.

In the next section we discuss some ideas on how to
migrate key ingredients of tabled abduction into an engine-
level of logic programming systems, but they can also be
appropriated by other systems.

IV. DISCUSSION

Our high level specification design and its implementa-
tion, by means of a transformation in XSB-Prolog, produces
a transformed program that aims at being near the potential
uptake of certain operations by the underlying engine. We
sketch some ideas on how to migrate key constructs of
TABDUAL into an engine-level, say like XSB.

1) Hiding Data Structures: The CWA list (and attending
operations), which is being deployed at the object language
level, should migrate to the engine level, even disappearing
from the generated code. New operations are needed con-
cerning loop detection, in particular making positive loops
on negation succeed rather than fail, as it happens with direct
positive loops. Similarly, the abductive context can be hidden
from the object language and the operations on them moved
into the engine level, but with the proviso that these could
be inspected for debugging purposes. These signify that,
avoiding the data structures being kept, and the operations

on them carried out currently at object language level will
help improve efficiency.

2) Tabling Abduction Entries: This is the core feature of
our tabled abduction, which needs migration to the (tabling)
engine to be more fruitful. At the object language level,
we table only the output abductions entries and not the
input abductive context to allow for improved reuse, because
the input abduction table entries are not there. Reuse and
consistency are done at the language level, above the tabling
level one.

A new tabling mechanism could instead cater for the two
extra table entries, concerning the input and output abducible
sets, and provide the special lookup and update mechanisms
pertaining to these special sets-arguments. Moreover, the
sets would require an efficient data structure representation
consistent with the operations on them and the backtracking
mechanism.

V. CONCLUSION AND FUTURE WORK

We have addressed the issue of tabling abductive solu-
tions, in a way that they can be reused in abductive contexts
different from those in which they were produced. We do so
by resorting to a program transformation approach, resulting
in a tabled abduction implemented system, TABDUAL. It
makes use of the dual program technique, whereby ab-
ducibles are treated much like terminals in grammars, with
an extra argument for input and another for output abductive
context accumulation. A few other original innovative tech-
niques are employed to make the approach correct and more
efficient, and to bring it closer to the engine level. Thence,
the XSB System (and other Logic Programming systems
affording tabled negation) can migrate to their inwards what
is best done therein.

We hope this will lead, in particular, to an XSB System
that can provide its users with specifically tailored tabled
abduction. Indeed, abduction is by now a staple feature
of hypothetical reasoning and non-monotonic knowledge
representation. It is already mature enough in its deployment,
applications, and proof-of-principle, to warrant becoming a
run-of-the-mill ingredient in a Logic Programming environ-
ment.

Future work will consist in perfecting this implementation
approach to abduction, and liaising it seamlessly with the
underlying engine. That in turn will permit the continued
exploration of our applications of abduction and provide
feedback for system improvement. For more applications
of LP abduction consult our home pages, and references
therein.

And a future conceptual application area in the context
of abduction in logic, pertains to the issue that, whenever
discovering abductive solutions, i.e., explanations, for some
given primary observation, one may wish to check too
whether some other given additional secondary observations
are true, being a logical consequence of the abductive

555Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 573 / 729

explanations found for the primary observation. In other
words, whether the secondary observations are plausible in
the abductive context of the primary one, a quite common
scientific reasoning task.

ACKNOWLEDGMENT

Ari Saptawijaya acknowledges the support from FCT-
Portugal, grant SFRH/BD/72795/2010. We thank David
Warren for his comments on prior drafts and corresponding
implementation.

REFERENCES

[1] A. C. Kakas and A. Michael, “An abductive-based scheduler
for air-crew assignment,” J. of Applied Artificial Intelligence,
vol. 15, no. 1-3, pp. 333–360, 2001.

[2] J. F. Castro and L. M. Pereira, “Abductive validation of
a power-grid expert system diagnoser,” in Procs. 17th Intl.
Conf. on Industrial & Engineering Applications of Artificial
Intelligence & Expert Systems (IEA-AIE’04), 2004.

[3] J. Gartner, T. Swift, A. Tien, C. V. Damásio, and L. M.
Pereira, “Psychiatric diagnosis from the viewpoint of com-
putational logic,” in 7th Intl.Conf. on Principles of Knowl-
edge Representation and Reasoning, NMR ws on Abductive
Reasoning, 2000.

[4] R. Kowalski and F. Sadri, “Abductive logic programming
agents with destructive databases,” Annals of Mathematics
and Artificial Intelligence, vol. 62, no. 1, pp. 129–158, 2011.

[5] A. V. Gelder, K. A. Ross, and J. S. Schlipf, “The well-founded
semantics for general logic programs.” J. of ACM, vol. 38,
no. 3, pp. 620–650, 1991.

[6] J. J. Alferes, L. M. Pereira, and T. Swift, “Abduction in well-
founded semantics and generalized stable models via tabled
dual programs,” Theory and Practice of Logic Programming,
vol. 4, no. 4, pp. 383–428, 2004.

[7] L. M. Pereira and A. Saptawijaya, “Appendix: Abductive
logic programming with tabled abduction,” https://dl.dropbox.
com/u/47496395/appendix icsea12.pdf, retrieved: September,
2012.

[8] A. Kakas, R. Kowalski, and F. Toni, “The role of abduction
in logic programming,” in Handbook of Logic in Artificial
Intelligence and Logic Programming, D. Gabbay, C. Hogger,
and J. Robinson, Eds. Oxford U. P., 1998, vol. 5.

[9] M. Denecker and A. C. Kakas, “Abduction in logic pro-
gramming,” in Computational Logic: Logic Programming and
Beyond. Springer Verlag, 2002.

[10] M. Denecker and D. de Schreye, “SLDNFA: An abductive
procedure for normal abductive programs,” in Procs. of the
Joint Intl. Conf. and Symp. on Logic Programming. The
MIT Press, 1992.

[11] T. Eiter, G. Gottlob, and N. Leone, “Abduction from logic
programs: semantics and complexity,” Theoretical Computer
Science, vol. 189, no. 1-2, pp. 129–177, 1997.

[12] K. Inoue and C. Sakama, “A fixpoint characterization of
abductive logic programs,” J. of Logic Programming, vol. 27,
no. 2, pp. 107–136, 1996.

[13] R. Kowalski, Computational Logic and Human Thinking:
How to be Artificially Intelligent. Cambridge U. P., 2011.

[14] “ABDUAL System,” http://www.cs.sunysb.edu/∼tswift/
interpreters.html, retrieved: September, 2012.

[15] J. J. Alferes and L. M. Pereira, “Tabling abduc-
tion,” 1st Intl. Ws. Tabulation in Parsing and Deduc-
tion (TAPD’98), http://centria.di.fct.unl.pt/∼lmp/publications/
online-papers/tapd98abd.ps.gz, retrieved: September, 2012.

[16] “NegABDUAL System,” http://centria.di.fct.unl.pt/∼lmp/
software/contrNeg.rar, retrieved: September, 2012.

[17] V. P. Ceruelo, “Negative non-ground queries in well founded
semantics,” Master’s thesis, Universidade Nova de Lisboa,
2009.

[18] “XSB Prolog,” http://xsb.sourceforge.net/, retrieved: Septem-
ber, 2012.

[19] T. Swift and D. S. Warren, “XSB: Extending Prolog with
tabled logic programming,” Theory and Practice of Logic
Programming, vol. 12, no. 1-2, pp. 157–187, 2012.

[20] “TABDUAL System,” https://dl.dropbox.com/u/47496395/
tabdual icsea12.zip, retrieved: September, 2012.

556Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 574 / 729

Towards a Methodology for Hardware and Software Design Separation

in Embedded Systems

Gaetana Sapienza, Tiberiu Seceleanu

ABB Corporate Research

and Mälardalen University

School of Innovation, Design and Engineering

Västerås, Sweden

{gaetana.sapienza,tiberiu.seceleanu}@se.abb.com

Ivica Crnkovic
Mälardalen University

School of Innovation, Design and Engineering

Västerås, Sweden

ivica.crnkovic@mdh.se

Abstract—Development of embedded systems in automation

industry often includes development of both software and

hardware, which requires both software and hardware

expertise. In the current practice these expertise are not often

completely combined in synergic ways. Traditionally, design

gets separated into hardware design and software design at

very early stage which negatively impacts the overall

application development process due to design flow

interruption and redesign. In order to overcome to the

aforementioned problems, this paper presents a new design

methodology that provides platform independent design first,

and pushes hardware- and software-dependent design to a

later stage. This enables “software-independent” hardware

and “hardware-independent” software development after the

separation stage, which collectively improve the overall

development process.

Keywords: Development Process; Design Methodology;

Partitioning; Multi Criteria Decision Analisys (MCDA).

I. INTRODUCTION

The continuous increase in complexity of embedded
industrial applications constantly demands improvements of
the overall development process. Ideally, the development
process has to be able to simultaneously satisfy two main
driving requests imposed by the today's market trends: (i)
significantly decreasing time-to-market, and (ii) significantly
decreasing development and product costs, while preserving
quality and launching high-competitive products. In addition
to the above, the technology advancements in semiconductor
and electronics fields in a combination with the growing
demands of providing more sophisticated software
functionalities constantly challenge the design
methodologies in order to improve the overall development
process [1]. Due to the intrinsic nature of embedded systems
i.e., the tight coupling between hardware and software, the
development process is extremely affected by the efficiency
of the design phase which has to rely on methodologies that
are able to integrate key paradigms of hardware design and
software design in an effective manner.

Traditionally, the system design starts with a separation
of software and hardware design [2] at an early stage of the
development process. The common practice of the separation
into hardware and software is an iterative process,
approached in a manually controlled “trial and error” mode,
which is not supported by suitable and effective tools or
systematic decision process. The hardware-software

separation is typically done by invoking individual back-end
tools several times in order to later decide which
architectural solution appears to be the most suitable one.
This approach, unfortunately, is prone to negatively affect
the overall application development process due to e.g.,
issues such as flow interruptions and redesigns.

In this paper, we present a new systematic design
methodology which enables hardware and software design
separation as late as possible after the overall specification
and design activities and a well-structured decision process.
The approach is inspired by Model-Driven Architecture with
Platform-Independent Model (PIM) and Platform-Specific
Model (PSM) stages [3]. PIM identifies software functions
independent of the underlying technology, while PSM
defines technology-specific solutions. Our approach focuses
on the specification and design part of the system valid for
both software and hardware (the PIM part), and the design
specifically for software and hardware (the PSM part). By
doing this, when designing software and hardware specific
parts, it is possible to minimize the dependencies between
hardware and software after the design separation.
Specifically, the proposed methodology will be applied in
embedded applications targeting the automation domain. The
concepts highlighted in this paper, are supported by years of
experience in industry with design methodologies and
embedded systems development. The remainder of the paper
is organized as follows: the next section discusses the current
state of practice for embedded application design in the
automation industry domain. Section 3 describes the new
proposed design methodology. Section 4 describes a case
study. Section 5 concludes the paper and future work is
outlined.

II. THE CURRENT STATE OF PRACTICE

A typical software-hardware industrial development
process can be described as a number of sequential phases
[2][4]: requirements management and system specification,
design, implementation, verification and validation, as
shown by the diagram A in Figure 1. The development
process starts with the specification phase in which
requirements are supposed to be identified and analysed.
After the specification phase, the design phase usually
branches into two separated design flows, for hardware and
software, respectively. These flows evolve separately and get
into their own implementation. When both hardware
implementation and software implementation are completed,

557Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 575 / 729

the integration takes place. Subsequently the verification and
validation phase get in progress. The diagram A depicted by
Figure 1 represents a rather simplified development process
flow. In reality, it is more complex: phases get interleaved
and each of them might require be iterated and/or optimized
several times over the entire development process.
Consequently, this process meets several serious problems
and drawbacks. We describe them briefly for each phase.

A. Early start of the design phase

During the specification phase, and before starting with
the design phase, the requirements are expected to be fully
finalized in order to efficiently support the design phase.
However, in practice due to time and resources constrains the
design phase is enforced to start before the requirements
have reached a reasonable mature and stable stage. The
incompleteness of the specification negatively affects the
quality and fluidity of the design phase, and also contributes
to originate the issues subsequently described.

B. Early separation into hardware and software

Despite the fact that hardware and software for
embedded applications are tightly connected, typically the
design phase splits very early into the two design flows.
After the separation, hardware and software are considered
as two separated activities which are seldom integrated until
the integration and verification phases. In principle, (i)
hardware does not take into account the computational
power required by the software and the capability that the
software might offer for enabling hardware optimization and
(ii) software does not impact the hardware design
specifications, and does not fully exploit the available
hardware resources. The too early design start corresponding
to the too early flow (hardware and software) separation,
does not allow to properly focus on the most important and
core part of the design phase which is referred in this paper
as partitioning decision process. This process is supposed to
determine which parts of the application will be designed in
hardware and which parts of the application will be designed
in software. Problem statement on the partitioning problem
can be found in [5].

The impact of the initial decisions is critical since it will
condition the remaining development process and the entire
application’s lifecycle; as a consequence, any decision
change afterwards is arduous and costly. Starting a design
phase relying on an apparently appropriate set of partitioning
decisions potentially poses higher risks for the successful
accomplishment of the application development process.

Although the modern design tools (e.g., The MathWorks
Simulink®, IBM® Rational® Rhapsody® (UML (Unified
Modelling Language)-based tool)) support well the “trial-
and-error” approach, in practice the problems remain since a
systematic decision process with the appropriate support is
missing. Due to the aforementioned aspects related to the
early start of the design, it can be highlighted that the
development process (as represented by the diagram A in
Figure 1) is negatively impacted in terms of quality, costs

and time by the following emerging problems: (i) hardware
or software flow interruptions and (ii) hardware or software
redesigns.

C. Hardware or software design and implementation

interruptions

Hardware or software design flow interruptions are
observed as a break in the continuity of the design flow, due
to the (partial) lack of specifications that have impact on the
partitioning. The diagram A in Figure 1 shows a
representation of the flow interruptions for both hardware
and software. They are undesired since causing an increase
in the complexity in the design flow, while affecting the
overall quality. The first interruption occurs in the hardware
design flow the second interruption occurs during the
software implementation.

D. Hardware or software redesign

The need of performing redesign (either hardware or
software) is usually dictated by reasons of different nature,
e.g., new requirement/s, requirement/s changing, non-
feasibility of requirement/s, lack of application-specific
knowledge, etc. In literature, research work discussing
redesign issues for embedded systems can be found in [1][6].
The hardware and software redesign process is illustrated on
the diagram A in Figure 1. It may happen during the initial
design, or it can be required after the implementation. It
represents one of the most typical scenarios of redesigns
encountered in practice: “redesign after implementation”
caused by a very late integration of hardware and software.
In diagram A in Figure 1, the hardware redesign is caused by
the non-feasibility of the requirement A (Req_A) which
leads to the necessity of the software redesign due to the
non-fulfilment of the requirement (Req_B).

III. THE NEW APPROACH PROPOSAL

Given the current state of practices in automation
industry, we present a new systematic design methodology
able of minimizing or even overcoming the issues described
above. Our proposal is a process which is mainly
characterized by the following key features: (i) providing
support/feedback to the specification phase, and (ii) starting
with a model-based design common for both software and
hardware and continuing with its separation to software-
specific and hardware-specific design process when
collecting all artefacts that enable software-independent
hardware design and hardware-independent software design
separation, as depicted in Figure 1 by the diagram B. The
explanation of the key features is subsequently done through
the description of the proposed approach and the overall
overview presented in Figure 2.

The approach is divided into three essential stages:
Identification, Decomposition and Partitioning. The
Identification stage provides inputs to the Decomposition,
while the Decomposition provides inputs to the Partitioning
stage.

558Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 576 / 729

Re-design due to
non-feasibility
of Req_A

Implementation

Verification

Design

SW-DesignHW-Design

Validation

Specification

Re-design due to
non-fulfillment
of Req_B

Req_A
Req_B

Integration

interruption
HW- Implementation SW-Implementation

HW-specific Design SW-specific Design

SW-ImplementationHW-Implementation

1) Support for specification

2) Separation as late as possible

Integration

PHASES
TRADITIONAL DEVELOPMENT PROCESS NEW DEVELOPMENT PROCESS PROPOSAL

(diagram A) (diagram B)

Figure 1. Traditional application development process (A) and the development process proposal

Figure 2.

A. Identification of key design criteria

In our experience, a design methodology tailoring
industrial automation applications has to able of meeting and
efficiently trading-off a number of design boundary
conditions deriving from: stakeholder concerns, technology
and feasibility studies, functional and non-functional
requirements, human factors (e.g., expertise, knowledge,
etc.), constraints (e.g. legacy, reuse of existing platform, tool
chains, manufacturing platforms and cost, etc.), technology
advances in semiconductors and software, domain-specific
features. As a consequence, it is crucial that all of these
boundary-conditions are identified and carefully evaluated
before starting the separation into hardware or software. By
our approach they get identified and mapped into a set of key
design criteria. Later they serve as inputs for supporting the
subsequent stage of application decomposing and allowing
the application to go through a decision process, as shown in
Figure 2.

 In order to define the set of key criteria, an accurate
analysis of several design processes related to the application
domain from different perspectives (performance, timing,
overall quality, costs, etc.) will be performed. In details, it
will be performed by the following steps:
1) Extrapolation of the mentioned boundary-conditions

highlighting the relation with the design decisions in
order to identify patterns like:
a. the most high- impact decision choices,
b. the most frequently adopted decision choices.

2) Classification of the above extracted design boundary
conditions in relation to their hardware or software
features. It is important to highlight what the cause-
effect relations are in the entire design process.

3) Study to assess if and how well the design matches the
required specifications, referred as design-specification
matching for brevity. Interest will be also focus on
biased decisions, to get a systematic interpretation of
their impact on the overall design.

4) Identification of the criteria driving the strategic choices
in the design.

In addition to establishing the motivation for decisions in

the application development process, the key identified
criteria will further provide guidelines for the refinement of
the specifications. The analysis targets to gather a number of
information related to the entire application life-cycle
process (modelled by the extended V-Model in Figure 2)
which in combination with the key identified criteria serve to
complement and provide a systematic feedback to the
specification phase.

B. Application Decomposition

Assuming that from a high abstraction level the

application is modelled as a number of components, we

propose an application decomposition process that extracts

the elementary functionalities of the application and further

refine the selection to the point in which the hardware or

software implementation features of each component will be

fully defined.
The proposed approach is based on both the analysis of

the application specifications as well as the key design
criteria identified in the previous stage. We propose a 2-step
analysis:
1) Identification of the functionalities that directly matches

the application specifications;
2) A decomposition of the identified functionalities in

components strictly characterized by the key design
criteria, and ready for the partitioning phase.

The above discussed decomposition strategy is supported
by the diagram depicted in Figure 3. In practice, the two
identified steps will be implemented using the following
methodologies: (i) analysis of the application requirements
and generation of specific functional components
constituting different hypotheses of coarse-grained
components suitable to be represented through well-known
existing model-driven based tools like: The MathWorks

559Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 577 / 729

Design

Specification

End-of-Life
Replacement

Stakeholder Concerns
Tech & Feasibility Study
Constraints

Upgrades,

Changes,
Maintenance

Implementation

Human Factors

HW-Components SW-Components

Application

Application

Domain-specific Features

Technology Advances

PARTITIONING

D

E

C

O

M

P

O

S

I

T

I

O

N

KEY DESIGN CRITERIA inputs Requirements
inputs

(designed) (designed)

I

D

E

N

T

I

F

I

C

A

T

I

O

N

inputs

inputs

COMPONENTS

in
p

u
ts

Source of information
to be considered in a stage

Input to the stage

Produced output by the stage

Stage

Component

SW-Component (designed)

HW-Component (designed)

Figure 1. Relation between the proposed approach and V-Model and the Identification stage. Identification, Decomposition, Partitioning Flow

Simulink®, IBM® Rational® Rhapsody® (UML-based
tool) etc., and (ii) the initial selection of coarse-grained
components will be further decomposed through the key
design criteria characterization to bias the generated
components towards implementation issues, to create a
well-posed problem as inputs to the subsequent decision
process. Hence, all generated subcomponents will be
strongly characterized by the key design criteria involved.

C. Partitioning Decision Process

Despite classical partitioning schemes that have been
proposed in the past [7][8] which treat the problem as a
nondeterministic polynomial problem to be optimized, we
propose to face it as Multi-Criteria Decision Analysis
(MCDA) problem. Unlike the approach proposed by [9]
we do not intend to use MCDA for ranking the choice, but
for targeting the design partitioning decisions in an
efficient way. The choice of using such approach is driven
by the variety and quantity of design decision criteria that
require to be taken into account and their strong inter-
dependencies. In addition to the above it is also motivated
by the need of having a full traceability of the decision
process. An intuitive and transparent procedure for
generating the decisions is of crucial importance for
studying the sensitivity of the design criteria in the overall
decision process.

Additionally, in case of issues such as redesign or
interruptions, caused by incompleteness or misleading of
the specifications, it is possible to back-propagate the error
and identify the major source of the unexpected behaviour
in order to effective adapt the design strategy to further re-

iterations. Further, the design feedback provided to the
specification, enables of the hardware-specific and
software-specific design separation as late as possible
through the combined effects produced by the
Identification as well as the Decomposition stage. Using
the key design criteria for guiding the stepwise component
discretization, implicitly allows the possibility of
accumulating the required energy (i.e. in form of key
components information) to start, after separation, design
hardware and design flow where the dependencies are
minimized. Furthermore, by performing the partitioning,
after that the decomposition stage is completed, the set of
components have been fully analysed and characterized,
which consequently decreases the probability of assigning
components to hardware or software based on wrong poses
assumptions.

IV. TOWARDS TO AN INDUSTRIAL APPLICATION CASE

STUDY

The status of this case study is referred to the context
of the two first phases of the extended V-Model (i.e.,
Specification and Design) as well as the Decomposition
stage discussed in Section III.B.

In order to verify and validate the proposed
methodology, we started working on the specification and
design of a wind turbine application that is supposed to be
deployed in an industrial prototype within the integration
framework specified and developed by the Artemisia
iFEST (industrial Framework for Embedded Systems
Tools) project [10]. The main purpose of the application is
to convert the rotational mechanical energy of the rotor

560Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 578 / 729

blades caused by the wind into electrical energy to be
redistributed via a power network.

A core component of the application is represented by

the wind turbine controller, which has to be able of

providing the dynamic regulation of the rotor blades at

different wind profiles while maximizing the production of

electrical energy. In parallel it has to be able of supervising

the entire transformation process such as to guarantee the

proper overall functioning of the wind turbine and

minimizing any risk of damage to the physical wind

turbine system.

Implementation

Design

Specification

Application

Components

SW-Components
(implemented)

HW-Components
(implemented)

Components
(coarse-grained)

(fine-grained)

HW-Components
(designed)

SW-Components
(designed)

1 Step

2 Step

Partitioning

Application

Application

D

E

C

O

M

P

O

S

I

T

I

O

N

Stage

HW-Component

Component

SW-Component

Process Flow

Figure 2. The Application Decomposition Process, 2-step analysis.

We intend to implement the design on several

platforms, providing both for software (single and dual-

core processors) and hardware (FPGA - Field-

Programmable Gate Array) solutions. As tools used in the

process we have chosen:

 HP ALM (Hewlett-Packard Application Lifecycle
Management): for the specification and analysis
phase.

 The MathWorks Simulink®: mostly for the design
phase but also for Verification and Validation
(simulation), and for the implementation (translation
of design into C and VHDL).

 According to the development process flow as well as

the part of application decomposition process described

above, we started with the specification phase. In order to

go through the first step of the application decomposition

process described in Section III.B, we took into account

all of the info depicted in Figure 2, for instance the

domain-specific features, the constraints, the stakeholder

concerns, etc. Few examples follow:

 Domain-specific features: the application has to
provide control functions allowing pitch regulation;

the application has to be standard-compliant (i.e.,
IEC-61400); power network disturbances, etc.

 Constraints: the application has to be implemented
into hardware and software; the implementation has to
integrate legacy C-language code parts; the
application has to allow the firmware to be field-
upgradeable

 Requirements: time constraints for operations;
reaction time at system failure, ambient temperature
and relative humidity values; normal and extreme
electrical conditions; safety procedures, etc.

 Stakeholder concerns: the project has to be able of
delivering a high quality product with short time-to-
market to pay-back the development cost and have a
large margin profit.

After this first step, the identified key functionalities

were mapped into components: (i) the pitch regulation,

and (ii) the supervision.

In addition to this, we also identified the need for

diagnostic and filtering functionalities. The components

were modelled by using Simulink. The outcome of the

mapping of the specification into the design is presented

in Figure 4. It shows a two-level decomposition of the

wind turbine application into components, which is

achieved by the analysis of the application requirements.

Level A models the Wind Turbine Plant and the Wind

Turbine Controller. Level B shows a further

decomposition of the Wind Turbine Controller component

into four components: the Pitch Regulator, the

Supervision, the Filtering and the Diagnostic.

Wind

Load

thetaSetPoint

u

I

P

Sensors

Wind Turbine Model Plant

Sensor SignalsControl Signals

Wind Turbine Controller

Signal 1

Group 1

Wind Profile Input

Scope1

1

Resistive Load1

1

Control Signals

Filtered Turbine Speed

Filtered Wind Speed

Braking

Parking

Turbine Mode

Supervision

Filtered Turbine Speed

Filtered Wind Speed

Braking

Parking

Pitch Command

Pitch Regulator

Pitch Command

Turbine Mode

Wind Prof ile

Filtered Turbine Speed

Filtered Wind Speed

Model Verification

SWTomega

SWTwindspeed

Filtered Turbine Speed

Filtered Wind Speed

Filter

1

Sensor Signals
Filtering

control commands sensor inputs
Wind Turbine Plant

Wind Turbine Controller

Pitch
Regulator

Supervision

Diagnostic

Filtering sensor inputs
control commands

Level A

Level B

wind

Figure 1. Wind Turbine Model (Plant and Controller). Decomposition

of the Wind Turbine Controller (2-level).

What we have presented above is the first step of the

application decomposition process. The next step will be

to achieve a more detailed design decomposition of the

application, as described in Section III.B. After that, the

application will be applied for a multi-criteria decision

561Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 579 / 729

process in order to decide about which components will

be implemented in hardware and in software.

Subsequently the application will be deployed into several

platforms in order to evaluate the proposed new approach.

V. CONCLUSION

The paper presented a proposal of a new systematic
design methodology that is able to improve the overall
process from the design perspective as well as from the
application lifecycle perspective. It consists of three main
stages: Identification, Decomposition and Partitioning, that
collectively drive through the definition of the main
methodology characteristics such as the support towards
the specification phase and the enabling of software-
independent hardware design and hardware-independent
software design separation.

The next step of our research work is defining which
requirements the MCDA approach has to fulfil in order to
support the aforementioned partitioning process.
Subsequently, we will analyse if any already available
MCDA method (or a combination of more MCDA
methods) is able of meeting the identified requirements
and can be applied for the application partitioning. After
that, we will focus on the identification and formalization
of the key design criteria to use as the set of inputs (i) for
guiding the fine-grained application decomposition and (ii)
for supporting the partitioning process into designed
hardware and software components as described by Figure
2. As final step, the proposed methodology will be
evaluated on the above presented industrial application
case study.

ACKNOWLEDGMENT

This research is supported by the Knowledge
Foundation (KKS) through ITS-EASY, an industrial
research school in Embedded Software and Systems,
affiliated with the School of Innovation, Design and

Engineering (IDT) at Mälardalen University (MDH),
Sweden.

REFERENCES

[1] P. Koopman, “Embedded System Design Issues (the rest
of the story)”, Proceedings of IEEE International
Conference on VLSI in Computers and Processors, Oct.
1996.

[2] A.S. Berger, "Embedded Systems Design: An
Introduction to Processes, Tools and Techniques", CMP
Books; 1 edition, Dec. 15, 2001.

[3] A. G.Kleppe, Jos Warmer, Wim Bast, “MDA Explained:
The Model Driven Architecture: Practice and Promise”,
Addison-Wesley Professional, 1 edition , May 1 2003.

[4] H.Van Vliet,"Software Engineering: Principles and
Practice", Wiley, 3 edition, Jun 27, 2008.

[5] G.De Micheli, R.Gupta, “Hardware/Software Co-
Design,” Proc. of the IEEE, vol. 85, No.3, 1997, pp.349-
365.

[6] C.Coelho, C.Yang,V. Mooney, G.De Micheli,
“Redesigning hardware–software systems,” in Proc. 3rd
Int. Workshop on H/S Codesign, Grenoble, France, Sep.
1994.

[7] Y.Fan, T.Lee, "Grey Relational Hardware-Software
Partitioning for Embedded Multiprocessor FPGA
Systems", AISS: Advances in Information Sciences and
Service Sciences,vol. 3, No. 3, 2011, pp. 32 - 39.

[8] M.L.Vallejo, J.C.Lopez, ”On the hardware-software
partitioning problem: System Modeling and partitioning
techniques”, ACM Transactions on Design Automation
of Electronic Systems (TODAES) vol. 8, Issue 3, July
2003, pp. 269 – 297.

[9] P.Garg, A. Gupta, J.W.Rozenblit, "Performance analysis
of embedded systems in the virtual component co-design
environment", Proceeding of the 11th IEEE International
Conference and Workshop on the Engineering of
Computer-Based Systems, May 2004, pp. 61-68.

[10] iFEST. iFEST - industrial Framework for Embedded
Systems Tools. ARTEMIS JU project #100203.
Retrieved September 26, 2012, from http://www.artemis-
ifest.eu/

562Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 580 / 729

Automatic Synthesis of Hardware-Specific Code in Component-Based Embedded
Systems

Luka Lednicki, Ivica Crnković
Mälardalen Real-Time Research Centre

Mälardalen University
Västerås, Sweden

Email: {luka.lednicki,ivica.crnkovic}@mdh.se

Mario Žagar
Faculty of Electrical Engineering and Computing

University of Zagreb
Zagreb, Croatia

Email: mario.zagar@fer.hr

Abstract—In recent years, there has been a clear trend in
research and practice to bring benefits of component based
development into the embedded systems domain. However, one
often neglected aspect in component models is support for
integration of hardware devices like sensors and actuators. In
most component models, communication with such devices is
either left out completely or considered as an integral part of
the software component code. In the latter case, the software
components are highly device-specific, and can hardly be reused
on different platform configurations. This paper introduces
an approach for automatic synthesis of device-specific code
in component models for embedded systems. We divide a
system in reusable elements: device-specific code, platform-
specific code and device-dependant software component code.
Based on a software and hardware model of the system, we
then automatically generate glue-code that creates connections
between these reusable elements. The result of our synthesis is
a system-specific deployable code. The approach is illustrated
by a demonstrator and an implementation example using the
ProCom component model.

Keywords-Component-based; code synthesis; sensors; actua-
tors; embedded systems.

I. INTRODUCTION

Component-based development (CBD) is one of the ap-
proaches suggested to alleviate the constant rise in the
complexity of embedded systems (ES) [1], [2]. Component-
based systems are developed by composing preexisting
components – reusable units that contain not only code, but
also various models, and conform in syntax and semantics
to a component model. The functionality of a system is
defined by a system model, and implemented by the process
of code synthesis i.e. automatic generation of glue-code
that connects the reusable code defined by the components.
Because of restricted processing and memory resources in
(many) ES, most often an efficient code synthesis is very
important, and solutions with no or very small middleware
are preferable over large general-purpose frameworks.

One aspect that is crucial for use of CBD in ES is
communication with hardware devices such as sensors and
actuators. However, inclusion of hardware device-specific
elements in software components decreases the components’
reusability [3]; if a component includes device-specific code,

or code that is specific to a platform, the component cannot
be efficiently reused in case of changes in the underlying
hardware. Therefore, by making software functionality in-
dependent from a specific hardware configuration, and by
providing means to automatically generate the hardware-
specific code, we can make code reuse in embedded systems
more efficient.

In this paper, we present a novel way to provide code
synthesis for component software in the ES domain, which
allows a transparent use of hardware devices in software
models. We do this by first separating software component
code, device-specific code and platform-specific code, while
strictly defining their content and interfaces they can use
to communicate with each other. By this we get system-
independent, reusable units of code. We then use a model
that describes software components, hardware devices and
the deployment platform, to automatically generate glue-
code that connects the mentioned code parts into a de-
ployable system. As a result, we are able to synthesize
code using system models that completely separate high-
level software functionality from hardware specifics. Our
approach is based on the framework for handling interaction
of software components with hardware devices that we
proposed in [4], and implemented in the context of the
ProCom component model [5]. The approach described in
this paper is an extension of principles shown in [6].

The rest of the paper is organized as follows: Section II
gives a brief overview of some of the approaches to treat
hardware-specific code in component models for embedded
systems. In Section III we present the framework we use for
specification of hardware devices. Section IV describes our
approach to hardware-specific code synthesis and gives an
example of the synthesis implementation. A short descrip-
tion of how our work is implemented in the context of the
ProCom component model is given in Section V. Section VI
shows how our approach is used on a real hardware device
example. Finally, Section VII concludes the paper.

563Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 581 / 729

II. RELATED WORK: HARDWARE-SPECIFIC CODE IN
COMPONENT-BASED EMBEDDED SYSTEMS

Synthesis of hardware-specific code has been explored
in model-driven engineering [7], and in specific languages
and models such as AADL [8] or MARTE [9]. However,
automatic generation of glue code for connections to device-
specific code has not been established in component models
for ES.

While looking at component models used in research and
practice, we can see a difference in the level of support
for hardware devices and how they treat hardware-specific
code [10]. In most component models used in research,
hardware-specific code is externalized – not present in
software components and put outside the scope of the
component model. This is not surprising when we take into
account that most of these models are used just for research
purposes and do not have to provide working, deployable
systems as a result. On the other hand, component models
targeting industry must provide support for hardware devices
to be able to generate functioning systems. However, most of
these component models only provide implicit support for
hardware devices, which means that the hardware-specific
code is hard-coded in the software component code.

One example of externalized devices is SaveCCM [11],
where the component code is not allowed to communicate
with hardware. Instead, this communication is supposed to
take place outside the component model and by some means
the values provided as inputs or outputs of the component
framework. Although it enables the reuse of all components,
this approach does not provide support for the whole CBD
life cycle of systems and limits its use in practice.

Rubus [12] (developed by Articus Systems and used for
example by Volvo Construction Equipment) is an example of
a component model used in practice, where all interactions
with hardware devices are included (i.e. hard-coded) in
software components. This approach allows for full code
synthesis, but severely limits the ability to reuse components
with different devices.

The AUTOSAR [13] framework, an initiative of different
industrial partners, defines a component model that provides
a standardized interface for software components in ve-
hicular embedded systems. In AUTOSAR, interaction with
hardware devices is implemented by specialized sensor/ac-
tuator components. These components are still dependent on
specific hardware devices and are not fully appropriate for
reuse. Also, AUTOSAR relies on deployment of components
to an already existing hardware abstraction layer, and not on
full code synthesis.

ProCom [5] is a component model aimed for the em-
bedded systems domain. It relies on code synthesis for
generating efficient code, both regarding memory and pro-
cessor usage. Some of the principles used in code synthesis
for ProCom are described in [14], [15]. A basic support

for modeling of sensors and actuators in the component
model is given by the Framework for Supporting Hardware
Devices [4] (described in details in Section III). However,
current synthesis for ProCom does not take this framework
into account.

As opposed to all methods of treating hardware devices
shown above, we propose a method that will enable explicit
support for these devices and enable automatic synthesis of
system-specific code. Such a synthesis method is currently
not available in component models for ES. We aim to
increase the reusability of components in the ES domain
and provide more flexibility in system development. As a
demonstrator of our approach we have implemented our
hardware-specific code synthesis in the context of the Pro-
Com component model.

III. OVERVIEW OF THE HARDWARE DEVICE
SPECIFICATION FRAMEWORK

To enable an effective code synthesis and efficient code
reuse for hardware devices, we have developed a Hardware
Device Specification Framework. The purpose of the frame-
work is to allow explicit inclusion of hardware devices,
such as sensors and actuators, into component models for
embedded systems. In the framework, hardware devices are
presented as software components, while leaving the com-
ponents free of device- and platform-specific information. It
then enables specification of device- and platform-specific
information, and provides a way to associate it with software
components. The part of the framework metamodel relevant
for this work is shown in Figure 1. The framework includes
three layers: software layer, hardware layer and mapping
layer. The software layer includes device components, which
represent hardware devices as software components, ex-
cluding any device- or platform-specific information. The
lowest, hardware layer, contains information about hardware
devices, the platform and how the two are connected.
The mapping layer enables creating connections between
hardware specific and hardware-independent layers. In the
subsections below we provide a detailed description of each
layer.

A. Software layer

In the software layer, the interaction of software compo-
nents with hardware devices is represented by device compo-
nents and their instances (context-specific representatives).
Device components provide the same component interface
and abide the same execution semantics as all other software
components. Both types of components are treated the same
during design – they can be used equivalently. But opposed
to the ”pure” software components, which implement their
functionality by code, device components do not implement
any functionality, but serve as connection points to which we
can associate device-specific functionality. Their functional-
ity is defined once the component is mapped to a hardware

564Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 582 / 729

device (as described in Section III-C). However, they are in
no way dependent on a specific hardware device or how the
device is connected to the platform.

B. Hardware layer

The actual interaction with hardware devices is specified
in the hardware layer. It is encapsulated in entities called IOs
and hardware devices, and also defined by IO allocation.

Input and output elements (e.g. pins or ports) of the
platform are represented by IOs. An IO provides all infor-
mation needed to communicate through the input or output
it represents. IOs are reusable across different systems.

Each IO references an IO type. IO types are abstract
entities which define functionality that an IO of that type
must provide, along with the data types and structures used.

A hardware device model element represents a physical
sensor or actuator and includes all information that is
specific to that sensor or actuator. However, it does not
cover the information describing how the device is connected
to the underlying platform. Each hardware device entity
refers to one software component from the software layer,
indicating which functionality it can provide. It also defines
the type of IO it requires from the platform. As with IOs,
we can also reuse hardware device entities. Similar to device
components in the software layer, hardware devices also
have their context-specific instances.

Hardware devices contain one or more required IO ele-
ment. Required IOs represent platform IOs that the actual

Software layer

Mapping layer

Hardware layer

Device Component

Component
Mapping

Hardware Device

IO Allocation

IOIO Type

Hardware Device
Instance

Device Component
Instance

Instance of

Instance of

Instance of

Target HWD

Target HWD

Target Component

Target IO

1..1

1..1

1..1

1..1

1..1

1..1

Required IO

IO Type 1..1

Required IO 1..*

Target Req. IO

1..1

1..1

Figure 1. Metamodel of the Hardware Devices Specification Framework.

physical sensor or actuator needs for communication. The
types of these IOs are specified by referring to IO type
elements.

To create an actual system, we need to create IO alloca-
tions, i.e. to describe an IO allocation to reflect the current
system configuration.

C. Mapping layer

The mapping layer allows us to create connections (map-
pings) between elements of the software and hardware
layers. When we map a device component from the software
layer to a hardware device from the hardware layer, we de-
note that the hardware device will be used as the realization
for the device. Once such a mapping is defined we can utilize
any information defined for the hardware device entity (and
IO, if IO allocation is present) in the software layer.

IV. CODE SYNTHESIS

The code synthesis is based on two principles – (a)
separation of reusable code from the device- and platform-
specific code and (b) automatic generation of device- and
platform-specific code based on a system model that in-
cludes software and hardware components. We achieve this
by first defining a way to specify system-independent and
reusable code elements for device- and platform-specific
functionality. Besides just functionality, reusable code el-
ements also define interfaces for communication. Using a
system model we then generate code that utilizes these
interfaces to combine the software component code with
device- and platform specific functionality resulting in a
system-specific deployable solution. An overview of the
synthesis process is given in Figure 2.

Our approach consists of two categories of code: (a) input
code elements which will be used as input to the synthesis,
and (b) generated code that connects the input elements.
An overview of all the code elements used in synthesis and
the relations between them is given in Figure 3. These code
elements are described in detail below.

A. Synthesis Input Code Definition

In the implementation of the solution we used the C
programming language, as C is the language still mostly
used to develop embedded systems. However, the principles
used in this solution are not limited to C. They can easily
be implemented in other programming languages.

The input code is separated into elements that are as
independent as possible from each other, making them fit
for reuse. These four elements are:

• device component code – platform, device and system
independent code,

• IO type code – code that describes capabilities for
different IOs,

• IO code – platform-specific code that implements IO
functionality,

565Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 583 / 729

• hardware device code – device specific code that im-
plements device functionality.

Besides defining parts of functionality, these elements also
define structures and function signatures that will be used as
communication interfaces. Coupling between them is loose:
all function calls are performed using function pointers,
which are assigned during the mapping and allocation phase.
All these elements are system independent and can be reused
in different systems or platform configurations.

1) Device component code: As we want to place device-
and platform-specific code outside software components,
device component code does not provide any functionality.
Instead, it only provides a way to make calls to device-
specific functions once the system model is defined. Device
component code consists of a structure that includes: (a)
definitions of zero or more variables that will be used to
communicate data to and from a hardware device and (b)
pointers that will be used to map and allocate appropriate
device- and platform-specific functionality. Allocation data
(described in Section IV-A2 and Section IV-A4) will be
assigned to a void pointer. For mapping we use a function
pointer to an entry function that will implement device
functionality. This function receives the device component
structure, and with it means to assign or read data and use
appropriate platform IO functions. We describe how these
pointers are assigned in Section IV-B.

2) IO type code: In the IO type code we define an
IO interface structure that will be used to communicate

Reusable Models and Code

System Model

Generated code

Device Component Hardware Device IO

Mapping IO
Allocation

Platform-
Specific

Code

Device-
Specific

Code

Component
Interface

Code

Mapping
Code

IO
Allocation

Code

IO
Type

IO
Definition

Code

Synthesis result

Mapping
Code

IO
Allocation

Code

Platform-
Specific

Code

Device-
Specific

Code

Component
Interface

Code

IO
Definition

Code

Function calls

References

Code input or output
Legend:

<Name>

<Name>

Model element

Code Element

Figure 2. Overview of the synthesis process and results.

through an IO. This interface structure contains pointers
(signatures) for one or more functions that will be used for
the communication. The number of functions can differ for
different kinds of IOs. Some of the functions can also be
used for configuration of the communication channel, rather
than for the communication itself. The code can also contain
definitions of data structures that will be used as arguments
to functions in case the arguments are not basic C types. An
instance of the interface structure will be used to allocate
Hardware Devices to IOs (described in Section IV-B1).

3) IO code: Code defined for IOs provides the platform
specific implementation for functions defined in the interface
structure of the IO type code. The IO code of each physical
platform can be comprised of many C source files, all of
which implement communication just for one specific IO.
Separation of IO code into different files allows us to use
the minimum amount of platform-specific code once we
synthesize the code for the whole system. For an IO source
file to be valid it must implement all the functions defined
in the interface structure of the IO type. Also, each IO code
definition must define an IO interface assignment function
that receives an IO interface structure and assigns function
implementations to the function pointers of the structure.
How these functions are used for the actual allocation is
described in Section IV-B1).

4) Hardware device code: The main purpose of hardware
device code is to provide an implementation of communi-
cation for a specific sensor or actuator. This includes the
protocol used to communicate with the device, possible
adaptation of data and calls to IO functions. To provide
device-specific implementation for a device component, the
hardware device source code must implement a function
which has a signature matching the signature of the com-
ponent entry function. Code for each hardware device also
includes an IO allocation structure that contains instances
of IO interface structures for each IO type that the device
requires. An instance of this structure will be referenced by
a pointer in the device component structure, and can be used
for making platform-specific IO function calls.

B. Generated code

Using a system model, which is based on the previously
described framework, we are able to generate code that
implements the functionality of the system. The code we
generate creates connections between the various input code
elements we defined, using their interfaces.

Code generation is divided into two phases: generation of
IO allocation code and generation of device mapping code.
Listing 5 shows mapping and allocation code generated for
our example.

1) IO allocation code: The IO allocation code provides
connections between instances of device components and
platform IOs. It enables devices to make function calls to
platform IO functions, abstracting away platform specifics.

566Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 584 / 729

Allocation CodeMapping Code

IO Code

IO Type Code

Hardware Device Code

Device Component Code

Device Component Struct

 Data Variables [0..*]

 Device Allocation Pointer

 Entry-Function Pointer

IO Allocation Struct

 IO Interface Structure Instance [1..*]

Entry-Function Implementation

 Variable Definition [1..*]

IO Interface Struct

 IO Function Pointer Definition [1..*]

Device Component Struct Instance

Allocation Mapping Function

Entry-Function Mapping Function

IO Interface Assignment Function

 IO Function Assignment [1..*]

IO Function Implementation

Allocation Function

 IO Allocation Function Call [1..*]

IO Allocation Struct Instance

Legend:

Implementation or instantiation

Reference

Value assignment

Data Definition Struct [0..*]

Figure 3. Code elements in our synthesis approach and relations between them. For the elements that can occur multiple times, multiplicity is shown in
square brackets.

To generate IO allocation code we use hardware device
elements, IO elements and IO allocation elements from the
system model, and their respective input code elements.

First, we traverse the model and for each device refer-
enced by IO allocation elements we define an instance of
the IO allocation structure defined by the input code of
the hardware device, giving each instance of the structure
a unique name. Even if a device requires more than one IO
for its functionality, only one such structure is created, as
the structure contains variables for all required IOs.

After that we are able to generate an allocation function
that will assign appropriate IO functions to function pointers
defined in the IO allocation structures. In this function, for
every IO allocation element we create a function call to the
IO interface assignment function defined by the input code
of the referenced IO element. As an argument, we provide
the IO interface structure instance defined in the previous
step of IO allocation code generation. The function call then
assigns the correct platform function calls defined by the
referenced IO to the IO allocation structure generated for
the referenced hardware device. One IO interface assignment
function call is created for each required IO.

2) Mapping code: Device- and platform-specific func-
tionality is provided to software components by generation
of mapping code. For this we use the device component
elements, hardware device elements and device component
mapping elements of the system model.

As a first phase of mapping code generation we create
instances of device component data structures which will

hold mapping data. The instance name is based on the unique
ID of the component instance.

In the next phase we generate allocation mapping code.
This code binds IO allocations generated during IO allo-
cation code generation to device component instances. For
each device component mapping we create a line of code
that assigns an IO allocation structure which represents
the instance of device component referenced by mapping
(generated as part of IO allocation code) to the IO allocation
pointer of device component data structure.

The final part of the mapping code is the entry function
mapping. This code connects device software components
with device entry functions which implement device-specific
functionality. We achieve this by generating code that as-
signs an entry function of the device referenced by the
mapping to the entry function pointer of the data structure
of the device component the mapping is targeting.

V. IMPLEMENTATION

For the purpose of evaluation we have implemented our
approach in the context of the ProCom component model.
The implementation was done using Java. Our automated
synthesis is included in PRIDE [16] – an Eclipse based IDE
for ProCom. It leverages Eclipse Modeling Framework for
model traversal and Java for code generation.

Standard ProCom components are implemented by a
single C entry function that executes when the component is
triggered to perform its functionality. This function receives
a data structure that contains instance-specific component

567Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 585 / 729

data. We adapted these elements to align with our device
component code.

As a way to make function calls to the device-specific
entry function, we have defined a standard entry function that
all device components must implement. This entry function
has only one line of code, which diverts the function call
to the hardware specific entry function assigned to the entry
function pointer of the component instance data structure.

VI. EXAMPLE

We will demonstrate our approach on a real example
using the GDM2004 LCD display module. In code listings
shown for the example we have removed some parts of
the code (e.g. ”include” instructions and use of unique IDs
in naming) that are not relevant to show the principles
of our solution. The example consists of a device com-
ponent instance (DisplayComponent display) which maps
to GDM2004 instance of the GDM2004Device hardware
device. The GDM2004Device requires three IOs of type
OneBitIO (named registerSelect, RW and enable), and one
IO of type IO8BitPort (named data). These requirements are
allocated to platforms IOs PA0, PA1, PA2 and PE. A model
of the example is shown in Figure 4.

A. Device component code

In our example, code that defines the DisplayComponent
device component can be seen in Listing 1. The device
component structure begins at line 1. Lines 2 to 3 contain
data variables that will be used for communication. The
pointer that will reference allocation data is defined on line

<<Hardware Device>>
GDM2004Device

<<Required IO>>
registerSelect

<<IO>>
PA0

<<IO>>
PA1

<<IO>>
PA2

<<IO>>
PE

<<Required IO>>
RW

<<Required IO>>
enable

<<Required IO>>
data

<<IO Type>>
OneBitIO

<<IO Type>>
IO8BitPort

<<IO Allocation>>

<<Hardware Device Instance>>
GDM2004

<<IO Allocation>>

<<IO Allocation>>

<<IO Allocation>>

<<Device Component>>
DisplayComponent

<<Device Component Instance>>
display

<<IO Allocation>>

instanceOf

instanceOf

targetComponent

targetDevice

requiredIO

ioType

ioType

ioType

ioType

targetDevice

targetReq

targetReq

targetReq

targetReq

Figure 4. Model of the GDM2004 example.

6, and line 7 defines the pointer that will reference the device
entry function.

1 typedef struct DisplayComponent {
2 int row;
3 int column;
4 char* text;
5

6 void * ioAllocation; // Pointer to IO
allocation

7 void (*entryFunction) (struct
DisplayComponent*); // Pointer to
device specific entry function

8 } DisplayComponent;

Listing 1. Display component code.

B. IO type code

The IO type code for our example is shown in Listing 2.
On line 2 we can see a definition of the data structure that
will be used to communicate configuration data for the port.
The IO interface structure that defines function pointers for
function used for communication is located at lines 8 to 12.

1 // Data definition
2 typedef struct {
3 int isOutput;
4 int isOpenDrain;
5 } OneBitIO_configData;
6

7 // IO interface structure
8 typedef struct {
9 void (*writeData) (int);

10 void (*readData) (int*);
11 void (*configure) (OneBitIO_configData*);
12 } OneBitIO;

Listing 2. Example of IO type code.

C. IO code

Listing 3 shows the IO code for port PA0 of our example.
From lines 2 to 12 we can see functions that implement
port communication, which adhere to function signatures
defined in the IO type interface structure. The IO interface
assignment function, which assigns functions defined in lines
2 to 12 to an instance of IO type interface structure, is on
lines 16 to 20.

1 // START functions implementing IO
2 void PA0_writeData(int value) {
3 WrPortI(PADR, &PADRShadow, value, 0);
4 }
5

6 void PA0_readData(int* value) {
7 RdPortI(PADR, &PADRShadow, value, 0);
8 }
9

10 void PA0_configure(OneBitIO_configData*
data) {

11 WrPortI(PADDR, &PADDRShadow, data->
isOutput, 0);

12 }
13 // END functions implementing IO
14

15 // Assigning functions for allocation
16 void allocate_PA0(OneBitIO* allocation) {

568Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 586 / 729

17 allocation->writeData = &PA0_writeData;
18 allocation->readData = &PA0_readData;
19 allocation->configure = &PA0_configure;
20 }

Listing 3. Example of IO code.

1) Hardware device code: Hardware device code that
implements functionality for the GDM2004Device defined
in our example is given in Listing 4. The IO allocation
structure for GDM2004Device begins on line 2. It contains
one IO interface structure for each required IO, on lines 3
to 6. The device entry function definition can be seen on
lines 10 to 18. How the allocated IO interface structures are
used can be seen in the GDM2004PrintChar function which
starts on line 26.

1 // Structure for IO allocation
2 typedef struct GDM2004_allocation{
3 OneBitIO registerSelect;
4 OneBitIO rw;
5 OneBitIO enable;
6 IO8bitPort data;
7 } GDM2004_allocation;
8

9 // Implementation of the entry function
10 void entry_GDM2004(DisplayComponent*

instanceData) {
11 int i;
12 GDM2004_allocation* alloc = (

GDM2004_allocation*) instanceData->
ioAllocation;

13

14 GDM2004SetPosition(instanceData->column,
instanceData->row, alloc);

15 for (i=0; i < strlen(instanceData->text;
++i) {

16 GDM2004PrintChar(instanceData->text[i],
alloc);

17 }
18 }
19

20 void GDM2004SetPosition(int column, int row
, GDM2004_allocation* alloc) {

21 /*
22 Implementation skipped
23 */
24 }
25

26 void GDM2004PrintChar(char c,
GDM2004_allocation* alloc) {

27 alloc->registerSelect.writeData(1);
28 alloc->rw.writeData(0);
29 alloc->enable.writeData(1);
30 Delay_60usec();
31 alloc->data.writeData(c);
32 alloc->enable.writeData(0);
33 Delay_60usec();
34 }

Listing 4. GDM2004 HardwareDevice code.

D. IO allocation and mapping code

Listing 5 shows the IO allocation structure created for the
GDM2004 instance of GDM2004Device on line 2. The allo-
cation function shown on lines 3 to 8 contains function calls

to IO allocation functions defined by IO for registerSelect,
RW, enable and data required IOs of the GDM2004Device.

Line 12 of Listing 5 contains an instance of the device
component data structure for DisplayComponent. On line
14 we can find the allocation mapping function, in which
the IO allocation structure instance from line 2 is assigned
to the IO allocation pointer of the DisplayComponent data
structure. The entry function mapping is shown on lines
18 to 20, where we assign the entry function defined
by GDM2004Device to the entry function pointer of the
DisplayComponent data structure.

1 // ***** START ALLOCATION
2 GDM2004_allocation display;
3 void doIOAllocation() {
4 allocate_PA0(&(display.registerSelect));
5 allocate_PA1(&(display.rw));
6 allocate_PA2(&(display.enable));
7 allocate_PE(&(display.data));
8 }
9 // ***** END ALLOCATION

10

11 // ***** START MAPPING
12 DisplayComponent displayComponent;
13

14 void doAllocationMapping() {
15 displayComponent.ioAllocation = &display;
16 }
17

18 void doEntryMapping() {
19 displayComponent.entryFunction = &

entry_GDM2004;
20 }
21 // ***** END MAPPING

Listing 5. Example of generated mapping and allocation code.

VII. CONCLUSION

In this paper, we have presented an approach to code
synthesis for embedded systems which utilizes a system
model to generate hardware-specific code. The system model
we use describes software components, hardware devices
(i.e. sensors and actuators) and inputs and outputs of the
platform, and connections between all these elements. We
provide strict definitions of how to specify interface and
implementation code for the model elements in order to
get reusable units of code that we use as inputs for our
synthesis. During the synthesis process we generate glue-
code that connects these reusable code elements to provide
the functionality defined by the system model.

Compared to having hardware-specific code hard-coded
inside software components, in our approach software com-
ponents are not directly dependant on hardware devices or
how the devices are connected to the platform. The result
of this is more efficient code reuse.

The approach presented in this paper provides a level of
abstraction over hardware devices and the platform. It also
separates the concerns of hardware-independent software
development, hardware-specific software development and
system integration. On a higher level, software systems

569Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 587 / 729

can be developed without knowing the specifics of the
underlying platform. On the other hand, low level hardware-
specific functionality can be implemented independently of
the rest of the system. Both levels can in the end be used as
black-boxes and integrated into systems with no knowledge
of their internals.

ACKNOWLEDGMENT

This work was supported by the Swedish Foundation for
Strategic Research project RALF3 and the Swedish Research
Council project CONTESSE (2010-4276). We would like to
thank Jan Carlson for providing valuable comments on the
paper.

REFERENCES

[1] I. Crnkovic and M. Larsson, Building Reliable Component-
Based Software Systems. Norwood, MA, USA: Artech
House, Inc., 2002.

[2] C. Atkinson, C. Bunse, C. Peper, and H.-G. Gross,
“Component-based software development for embedded sys-
tems an introduction,” in Component-Based Software De-
velopment for Embedded Systems, ser. Lecture Notes in
Computer Science, C. Atkinson, C. Bunse, H.-G. Gross, and
C. Peper, Eds. Springer Berlin / Heidelberg, vol. 3778, pp.
1–7.

[3] L. Lednicki, “Support for hardware devices in component
models for embedded systems,” in International Doctoral
Symposium on Software Engineering and Advanced Appli-
cations, August 2011.

[4] L. Lednicki, J. Feljan, J. Carlson, and M. Žagar, “Adding sup-
port for hardware devices to component models for embedded
systems,” in ICSEA 2011, The Sixth International Conference
on Software Engineering Advances, 2011, pp. 149–154.

[5] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and
I. Crnković, “A component model for control-intensive
distributed embedded systems,” in Component-Based Soft-
ware Engineering, ser. Lecture Notes in Computer Science,
M. Chaudron, C. Szyperski, and R. Reussner, Eds. Springer
Berlin / Heidelberg, vol. 5282, pp. 310–317.

[6] L. Lednicki, I. Crnković, and M. Žagar, “Towards automatic
synthesis of hardware-specific code in component-based em-
bedded systems,” in SEAA 2012,38th Euromicro Confer-
ence on Software Engineering and Advanced Applications,
September 2012.

[7] S. Burmester, H. Giese, and W. Schaefer, “Model-driven
architecture for hard real-time systems - from platform in-
dependent models to code,” in Model Driven Architecture -
Foundations and Applications, ser. Lecture Notes in Com-
puter Science, A. Hartman and D. Kreische, Eds. Springer
Berlin, Heidelberg, vol. 3748, pp. 25–40.

[8] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the
prototype to the final embedded system using the ocarina aadl
tool suite,” ACM Trans. Embed. Comput. Syst., vol. 7, no. 4,
pp. 42:1–42:25, Aug. 2008.

[9] A. Rodrigues, G. Frédéric, and J. Dekeyser, “An mde ap-
proach for automatic code generation from marte to opencl,”
INRIA Lille-RR-7525 [Online]. Available: http://hal. inria.
fr/inria-00563411/PDF/RR-7525. pdf/, Tech. Rep.

[10] J. Feljan, L. Lednicki, J. Maras, A. Petričić, and I. Crnković,
“Classification and survey of component models,” Mälardalen
University, Technical Report ISSN 1404-3041 ISRN MDH-
MRTC-242/2009-1-SE, December 2009.

[11] “The SAVE approach to component-based development of
vehicular systems,” Journal of Systems and Software, vol. 80,
no. 5, pp. 655 – 667, 2007.

[12] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lund-
back, and K.-L. Lundback, “The Rubus component model for
resource constrained real-time systems,” in Industrial Embed-
ded Systems, 2008. SIES 2008. International Symposium on,
june 2008, pp. 177 –183.

[13] H. Heinecke, W. Damm, B. Josko, A. Metzner, H. Kopetz,
A. Sangiovanni-Vincentelli, and M. Di Natale, “Software
components for reliable automotive systems,” in Proceedings
of the conference on Design, automation and test in Europe,
ser. DATE ’08, 2008, pp. 549–554.

[14] E. Borde and J. Carlson, “Automatic Synthesis and Adaption
of Gray-Box Components for Embedded Systems – Reuse vs.
Optimization,” in Computer Software and Applications Con-
ference Workshops (COMPSACW), 2011 IEEE 35th Annual,
july 2011, pp. 224–229.

[15] ——, “Towards verified synthesis of ProCom, a component
model for real-time embedded systems,” in Proceedings of
the 14th international ACM Sigsoft symposium on Component
based software engineering, ser. CBSE ’11, 2011, pp. 129–
138.

[16] E. Borde, J. Carlson, J. Feljan, L. Lednicki, T. Lévêque,
J. Maras, A. Petricic, and S. Sentilles, “Pride - an environ-
ment for component-based development of distributed real-
time embedded systems,” in Proceedings of the 2011 Ninth
Working IEEE/IFIP Conference on Software Architecture, ser.
WICSA ’11, 2011, pp. 351–354.

570Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 588 / 729

Modeling Crosscutting Concerns with Roles

Fernando Sérgio Barbosa

Higher School of Technology

Polytechnic Institute of Castelo Branco

Castelo Branco, Portugal

fsergio@ipcb.pt

Ademar Aguiar

Department of Informatics Engineering

Faculty of Engineering of University of Porto

Porto, Portugal

ademar.aguiar@fe.up.pt

Abstract—Modularization allows the development of

independent modules and their reuse. However a single

decomposition strategy cannot neatly capture all the systems

concerns. Thus some concerns are spread over several modules

– the crosscutting concerns. To cope with this we need to have

other class composition techniques than those available in

traditional Object Oriented programming languages. One of

such compositions is roles. If roles are used to compose classes

and if a role models a crosscutting concern, then the concern is

limited to the role and not spread over several classes. To

validate this approach we conducted a case study. In the case

study crosscutting concerns were identified in a system using a

clone detection tool and roles were developed to model those

crosscutting concerns. Results show that this approach reduces

significantly the spreading of crosscutting concerns code.

Keywords-Roles; Crosscuting concerns; Code clones.

I. INTRODUCTION

Modularization [1] is one of the most important concepts
in software development. Decomposing a system into
modules allows the independent development of each
module. This shortens development time and allows the
modification of a module without changing other modules.

But a single decomposition strategy cannot capture all
possible views of a module.[2]. We could use multiple
inheritance, but it has so many practical problems that it has
been left out of recent programming languages. Even if we
could use multiple inheritance, there are always concerns
that cannot be adequately decomposed using a single
decomposition strategy [3], and end up scattered among the
various modules. These are called the crosscutting concerns.

A consequence of crosscutting concerns is replicated
code. When classes must implement a crosscutting concern
developers tend to copy-paste the code that deals with it [4].
Thus the presence of code clones in a system is an indicator
that there are crosscutting concerns in that system [5].

An obvious problem of code clones is the increased
system size. But code clone also impairs system’s
maintenance and evolution [6]. A particular problem is the
inconsistence in updating, where a bug in a code block is
propagated to all its clones, and is fixed in most but not all
occurrences. Code clones also have negative effects in
program comprehensibility, evolution, cost and may be an
indicator of design flaws [7].

To prevent such consequences we need to use other
decomposition techniques. Several proposals are available,

like inheritance, mixins [8], traits [9], features [10], aspects
[11] and roles [2][12]. We believe that if we explore the way
roles can be used to compose classes we will find that roles
are capable of modeling crosscutting concerns.

There are many definitions of the role concept in the
literature [2][12], but we are interested in using roles as
components of classes. For that purpose, we use the role
definition used by Riehle [12], where roles are an observable
behavioral aspect of an object. We can use roles to compose
classes, meaning that an object’s behavior is defined by the
composition of all roles it plays.

For modeling crosscutting concerns with roles, we place
each crosscutting concern in a role and classes that deal with
one concern just play the respective role. This way the role
encapsulates the concern code and prevents code clones.

To validate these ideas, we conducted a case study with
the JHotDraw framework. In this case study, we used a clone
detection tool to identify code clones in the framework. We
identified crosscutting concerns by aggregating clones that
deal with the same concern. Each crosscutting concern was
analyzed and, whenever possible, a role that deals with that
concern was developed using JavaStage [13], an extension to
the Java language that supports roles. The results of the case
study indicate that roles can in fact be used to model
crosscutting concerns and reduce code clones from a system.

This paper is organized as follows. The next Section
presents role modeling and how it can address crosscutting
concerns. Section III presents the JHotDraw case study and
its results. Related work is presented in Section IV, and
Section V concludes the paper.

II. MODELING WITH ROLES

Role modeling using static roles was used as an integral
part of the OORam method [14] and by Riehle in [12]. We
took these modeling approaches into the programming level
using roles as blocks for composing classes. To support
roles, we developed the JavaStage language. We will not
discuss JavaStage but refer the reader to [13]. JavaStage
extends java but our approach may apply to other single-
inheritance languages and to multiple inheritance languages.

In JavaStage, a role is a first class entity, so it can be
described using an appropriate type specification. A class
that plays a role type acts according to the role type
specification. Classes may act according to several different
role types. Thus, different clients may have different views
on a class instance.

571Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 589 / 729

A class represents a domain abstraction, its properties
and behavior. But, in JavaStage, a class also defines which
roles it plays and how they are composed. The union of the
operations defined in the class and the operations defined in
the roles constitutes the class interface, and the composition
of all role types constitutes the type of the class. This is to
say that the class interface is the union of the role interfaces
[15]. Because a class may be viewed as a class that plays
only one role then this model is a canonical extension of the
object model [16]. It means that existing software can be
integrated into the role model without changes.

We could achieve the same effect by using multiple
inheritance, defining each role in a separate class. The
composing class would inherit from all classes. The use of
multiple inheritance, however, has many problems. These
come mostly by name collisions when a class inherits from
two or more superclasses that have equally named methods
or fields and duplicated code when a class inherits twice
from the same superclass – the classic diamond problem.

In JavaStage, roles have features like a powerful
renaming mechanism that allows classes to tailor methods’
names for their specific situation; the possibility to play the
same role more than once and the possibility to define
multiple versions of a method [13]. Roles can inherit from
roles and can play other roles thus giving developers a big
range of modeling options.

To exemplify role modeling we present in Figure 1 the
class diagram of a simplified graphical user interface (GUI)
framework based on Java AWT/Swing frameworks.
Framework classes represent the widgets (or components)

that usually appear in a GUI, like windows, buttons, menus,
toolbars, etc. Some components may own other components:
a window may own several toolbars, and a toolbar may own
several buttons. Some clients may be interested on knowing
when the mouse is hovering a component so the Observer
pattern is used. Other instances of this pattern are used as
clients may be interested in other user’s actions or if a
component has lost focus, etc. A component has a collection
of properties that specifies the way it should de drawn.
Properties are represented by name-object pairs, where name
is the property and object represents the property’s value.

Clients that are interested in knowing if a component has
lost focus are not interested in drawing a component or if the
user clicked it with the mouse. For those clients, components
assume the role of FocusSubject and only those operations
related to that role are of interest. For the clients who want to
know about mouse handling actions, components play the
role of MouseSubject. Clients may set or read properties of
the component so, for these, the component plays the role of
PropertyProvider. The CompositeParent role is responsible
for managing a collection of children.

The mentioned roles are depicted on the upper right side
of Figure 1, where we also show the role associations and the
revised class diagram, now using the roles.

A. Role modeling advantages

Role modeling comes with several advantages in terms of
reuse, comprehension, development and documentation [12].
When a class is described as a set of roles it helps separating
the various ways in which a class is used. This means that

CompositeParent

<<role>>
children

addComponent()

removeComponent()

FocusSubject

<<role>>

addFocusObserver()

removeFocusObserver()

CompositeChild

PropertyProvider

<<role>>

putProperty()

getProperty()

hasProperty()

FocusObserver

<<interface>>
*

*

BasicComponent

<<role>>

draw()

setLocation()

getLocation()

setDimension()

getDimension()

focusGained()

focusLost()

DefaultComponent

setLocation()

getLocation()

setDimension()

getDimension()

addFocusObserver()

removeFocusObserver()

addMouseObserver()

removeMouseObserver()

CompositeComponent

children

draw()

move()

addComponent()

removeComponent()

TextField

draw()

Button

draw()

*

FocusObserver

<<interface>>

focusGained()

focusLost()

*

Component

<<interface>>
draw()

setLocation()

getLocation()

setDimension()

getDimension()

addFocusObserver()

removeFocusObserver()

addMouseObserver()

removeMouseObserver()

putProperty()

getProperty()

hasProperty()

MouseObserver

<<interface>>

mouseMoved()

mouseDragged()

*

DefaultComponent

CompositeComponent

draw()

TextField

draw()

Button

draw() CompositeParent

Component

<<interface>>

FocusSubject

CompositeChild

BasicComponent
PropertyProvider

MouseSubject

FocusSubject

BasicComponent

MouseSubject
CompositeChild

PropertyProvider

*

MouseSubject

<<role>>

addMouseObserver()

removeMouseObserver()

MouseObserver

<<interface>>
*

mouseMoved()

mouseDragged()

Figure 1. Example of modelling with roles. On the left: class diagram of the Component Framework. On the right: Roles and their relations in the

Component Framework, and the revised class diagram of the Component Framework, now with roles. Rounded rectangles identify roles played by the class.

Dashed round rectangles represent the interface provided by the role

572Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 590 / 729

the documentation can be done in these terms. That helps
clients to better understand and use the class and focus on
whichever aspect they are interested in. Designing the class
can also be done in role terms, thus developers are able to
focus only in one aspect of the class. This enables
independent development of a class with all its benefits in
terms of reduced development time and complexity.

Class relationships are reduced to role relationships.
Because roles focus in a particular view of a class, we need
not to understand the target class in its whole. This facilitates
the understanding and development of these relationships.
Whenever needed the broader perspective can also be used.
Role modeling allows for a transition between the role level
and the class level, without losing any information.

Role modeling also allows for better understanding using
previous experiences. When a developer knows how to use
roles that have a relationship in a system, then when he
encounters different roles with similar relationships the past
experience will allow a better understanding. One such
example is the use of the Observer pattern. When
experienced with a FocusSubject and how it works with a
FocusObserver to use the MouseSubject and a
MouseObserver is much simpler and straightforward.

B. Modeling Crosscutting Concerns

Crosscutting concerns are those concerns that appear
when several modules must deal with the same problem
because one cannot find a single module responsible for it in
the light of a decomposition strategy. This leads to scattered,
replicated code. Its consequences are the opposite of the
benefits of modularizations. Since a module deals with a part
of a problem that is spread over other modules, changes to
that code may affect those modules. This affects independent
development. Maintenance is impaired too because changes
in the code needs to be done in all modules transversely.

Because a role is smaller composition unit than a class
we can put the crosscutting concern in a role, or a set of
roles, and the classes that have the crosscutting concern play
those roles. Any changes to the crosscutting are limited to
the roles thus greatly improving maintenance and reducing
change propagation, or in other words, the crosscutting
concerns become more modular.

Even the simplified GUI framework shows several
examples. The component’s main concept is not to act like a
Focus Subject or a Mouse Subject but it has those roles
superimposed on it. With roles we were able to extract those
concerns from the class, thus reducing the scattering of code.
Furthermore those roles are reusable whenever we need a
class to address any of those concerns, even if it is not part of
the Component hierarchy. We can also argue that being a
PropertyProvider is not the component’s main concern. It
assumes that a property is identified by a name and that
name is a String. It would be more reusable if it used
generics for the property type. We can also use generics to
specify the value type instead of type Object. After a closer
look, the property provider is in fact a map that maps keys to
values. We could reuse a map implementation if we inherited
from a Map class, but that would be conceptually wrong.
Our class is not a map, it plays the role of a property map.

Figure 2 shows the code for that mapper role and the
code for a Component class playing the PropertyProvider
role and also of a Figure class that also plays the same role,
but for figure properties like line color, line width, etc. In
both cases the map uses string as keys and objects as values
and in both cases the methods are getProperty, putProperty
and hasProperty, as defined by the configuration, but they
could use different key/values types and methods’ names.

public role Mapper<KeyType, ValueType> {

 private Map<KeyType,ValueType> map;

 public ValueType get#Thing#(KeyType name){

 return map.get(name);

 }

 void put#Thing#(KeyType name, ValueType value){

 map.put(name, value);

 }

 public boolean has#Thing#(KeyType name){

 return map.containsKey(name);

 }

}

class DefaultComponent implements Component {

plays Mapper<String,Object>(

 Thing = Property) mapper;

}

class DefaultFigure implements Figure {

plays Mapper<String, Object>(

 Thing = Property) mapper;

}

Figure 2. Definition of the Mapper role with configurable methods and

two classes playing the role

III. CASE STUDY

A. Case Study Subject

To asses how roles are capable of modeling crosscutting
concerns we applied them to the JHotDraw framework.
JHotDraw is a Java GUI framework for technical and
structured Graphics. JHotDraw is structured around four
main inheritance hierarchies. These hierarchies reflect the
main classes used in the framework. These are the Figures,
Views, Tools and Handles.

JHotDraw has been used in works for the detection of
crosscutting concerns for aspect mining [17] so it is a
suitable candidate for this study, where we want to assess
how roles handle those crosscutting concerns.

B. Case Study Setup

We searched for replicated code using CCFinderX [18]
an established clone detection tool used in the aspect mining
works [17]. We used the standard options of CCFinder.

We are interested in crosscutting concerns, so we are
interested only in clones that are not solvable with traditional
refactorings [19]. One of such refactorings is the Extract
Method that usually deals with code inside a unique class. So
to filter out such clones we only considered clones that
appeared in, at least, two files. This also filter clones that do
not deal with crosscutting concerns as a concern must be
present in at least two classes to be considered a crosscutting

573Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 591 / 729

concern. For simplicity and space reasons we will refer
crosscutting concerns simply as concerns.

The first output included 271 clone sets. After filtering
we ended up with 146 clones. After a manual inspection 41
false clones were removed leaving a final 105 sets. Some
clones are not really identical, but as they focused on the
same concern so we did not remove them. This will account
for some of the unresolved concerns.

We grouped clones according to the concern they dealt
with. We identified a total of 43 concerns. From those 43
concerns we removed 5 because 2 could be resolved by
refactoring alone, 1 was deprecated code and 2 were classes
pending substitution.

After this selection we again analyzed the clones and, if
possible, we’ve built a role encapsulating the concern. We’ve
decided not to change any class interface so the overall
framework is unchanged. We’ve also set a rule not to change
the concern implementation to retain the author’s intent.
Only minor changes were allowed, as they wouldn’t
compromise it. We only developed roles that respect the role
concept. We detected some clones that could be removed
using a different inheritance hierarchy. We did not use roles
to reduce that replicated code, because changing the
inheritance hierarchy was a better solution

Roles were developed with JavaStage. The JavaStage
compiler and the developed JHotDraw framework, can be
found at http://www.est.ipcb.pt/pessoais/fsergio/javastage.

C. Case Study Results

Results are shown on Table 1. For each concern it shows
how many clones were associated and how many classes
were affected. It also shows the number of lines of code
(LOC) that the clone had, the lines of code that were used by
Roles and the ratio between them. For the concerns where
roles failed it states the reason why they failed.

We can see that from the 38 concerns only 8 (21%) were
not resolved with roles. This seems to indicate that roles are
suited to model crosscutting concerns. The final outcome is
better than these numbers indicate as we will discuss.

LOC are a good measure on the effort that each approach
requires but it is not a good measure on how the modularity
issues are handled. One can write more lines of code but if
the resulting system is more modular it is a better system.

We counted as LOC the requirements statements that
roles must declare. We also counted as LOC the roles’ plays
directive. Assume one concern that presents 8 lines of
replicated code in each class which could be resolved with a
simple role. We would expect this role to have the same 8
LOC. That is not so because we do not count the class
declaration as a clone LOC but count the role declaration as
a solution LOC. Roles may also require methods, so these
requirements are counted as LOC. Thus for the 8 LOC clone
the role would have 1 more fixed, 1 more for each player and
1 more for each requirement. If the role requires 3 methods
and the clone appears in two classes then the clone has 16
LOC and the role solution would count 14 LOC. That may
not seem a great improvement but LOC do not account for
the modularity and maintenance issues. Removing the clone
gives the system a great advantage in modularity terms.

TABLE I. IDENTIFIED CONCERNS WITH THE NUMBER OF ASSOCIATED

CLONES AND AFFECTED CLASSES. IT ALSO SHOWS THE LOC FOR EACH

APPROACH AND RESPECTIVE RATIOS.

clone class Original Roles Roles /

LOC LOC Original

Drawing Handles 8 15 64 40 63%

Setting up the undo activity before

executing a Command
2 8 56 44 79%

BringToFront/SendToBack Commands 1 2 20 12 60%

Handle creation 11 20 70 87 124%

Drawing polygons 1 2 12 11 92%

Palette Listener 1 2 20 17 85%

DisplayBox persistence 2 5 35 12 34%

DisplayBox handling 6 8 58 29 50%

DesktopListener Subject 2 3 63 45 71%

Changing connections 3 3 98 53 54%

Finding connectable figure 1 3 98 53 54%

Testing command executability 5 7 14 14 100%

Floating text holder 2 2 47 36 77%

DrawingViewListener Subject 2 4 63 26* 41%

Setting text in a text Figure 2 2 36 22 61%

Enumerator 1 3 33 11* 33%

Figure Listener that resends notifications 2 3 35 23* 66%

Menu enabling 1 2 20 14 70%

Version control 1 2 12 9 75%

Selected button manager 1 2 18 12 67%

Text attributes management 2 2 206 120 58%

Updating DrawingView Strategy 1 2 29 26 90%

Connection insets computing 1 3 10 7 70%

Undo/Redo Commands 1 2 32 31 97%

Changing connection handles 1 2 20 19 95%

Polygon and PolyLine Handles 3 2 32 28 88%

Tools and Commands Dispatchers 6 4 89 32* 36%

Figure/Handle and Enumerator 1 2 33 2* 6%

Polygon locator 1 2 13 20 154%

Drawing editor 1 3 54 28* 52%

Reason

Desktop initial configurations 1 2

Persistence (read/write) 3 6

UndoActivity 13 24

Creating UndoActivity 14 18

Handle manipulation starting action 3 5

Point is inside Figure 3 6 code too small

DrawingView Listener 1 2 perfomance issues

Mouse motion handling 1 2 code too small

After other roles was just a

line of code

Too much configuration

UndoActivity inner classes

declaration and constructor

Similar but not identical code

Too much configuration

Concern

* = reused from library

1) Modelled Concerns
Roles succeeded in 30 (79%) of the 38 concerns. This

indicates that roles are capable of reducing replicated code
and modeling crosscutting concerns. Comparing the LOC
ratio, one finds that, in average, roles only have 68% of the
original code, so the effort of developing the role system is
smaller. Taking the absolute LOC value, the original system
has 1390 LOC and roles have only 883 LOC. This means
that roles reduced the replicated code in 36,5%.

In 6 concerns we were able to reuse/place roles from a
role library [20] we developed to capture the basic behavior
of the Gang of Four design patterns [21]. This explains the
great difference in LOC in these concerns. From all the
concerns roles resolved, two exhibit a higher number of LOC
than the original implementation.

574Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 592 / 729

The “Handle creation” concern deals with the creation of
handles for each figure. We moved the handle creation to a
handle creator class and the role class methods on that class.
Since some clones only have similar code we had to
reproduce every method in this creator class. The class code,
plus the code original classes use to play the role and the
definition of the role leads to more lines of code than the
original implementation. But the role has one advantage: it
can dynamically change the handle creator.

The “Polygon Locator” is responsible for returning a
point inside a polygon given a point index. It is used in two
classes but one of them uses an anonymous class. Currently
JavaStage’s roles cannot be applied to anonymous classes so
we had to develop an inner class. This code and the role
configuration lead to a higher LOC, because the original
code size was not enough to compensate for this overhead.

2) Unresolved concerns
A surprising result is that the two concerns with the most

clone sets and class involved are unresolved with roles. This
is due to the nature of the clones. They are clones only in the
structure and not on the code itself. The ”Creating undo
activity” concern creates an undo activity object for each of
the various tools and commands supported by the
framework. Each tool class has an UndoActivity inner class
hence the undo activity creation is just a line of code
instantiating an object of the respective inner class. Because
each inner class constructor has different parameters in
number and types, roles could not resolve this concern.
UndoActivity concern clones are due to the inner classes,
because they all have the same name and constructors with
the same structure, even if not equal. Another example of
such a concern is the “Handle manipulation starting action”:
code is similar but not quite identical and most code would
disappear with refactoring.

 Another example is “Persistence”: because figures must
be streamed they have a write and read method with similar
structure, but not quite identical code. We reduced this
duplicated code with our DisplayBoxed role, though.

Another unresolved concern is the “DrawingView
listener”. An overriding method is redefining the original,
allegedly for performance issues we failed to understand.

One unresolved clone, “Desktop Initial configuration”,
dealt with a Desktop’s panel initialization, which initializes
panel titles and adjusts a scrollPane. Each possible
initialization is similar so we could configure a role for every
way a scroll pane is configured and then reuse them. But
knowing each possible role would require more effort than to
know how to configure the scroll pane.

The other unresolved concerns were a single line in the
form of return getSomeObject().doSomething().
Since the first method returns different objects that in turn
call different methods, role configuration would be harder
than writing the code itself.

Had we not considered some of these concerns as
crosscutting concerns, we would count only 4 as unresolved.

3) Threats to Validity
One threat to this study results is that we only considered

a single system. For results to be more decisive we might
need to do the same test with more systems. Nevertheless the

nature of roles allows us to say, with some confidence, that
results for other systems would not be that different.

The clone detecting settings can also affect the detected
clones that would lead to different concerns. That and the
removal of clones from the same file could have removed
important clones. However, we would need to reduce the
amount of clone sets to a manageable number. We even go
under the limit of the minimum 30 tokens recommended in
[18] for limiting false clones. So while different settings
would result in some different clones we believe that our
settings provided a good result in detecting meaningful
concerns.

IV. RELATED WORK

Feature Oriented Programming (FOP) decomposes the
system into features [10], which are the main abstractions in
FOP during design and implementation. Features reflect user
requirements and incrementally refine each other. FOP relies
on a step-wise refinement of applications by adding new
features or refining existing ones. FOP is mainly used in
Software Product Lines and program generators. In FOP,
Mixins are used to implement features [8]. Each mixin layer
contains the code each class needs for a given feature and are
composed into a static component. Roles can be used instead
of mixins, as they offer more ways of configurations and
don’t have mixins limitations like a linear composition order.

Aspect-Oriented Programming is another approach that
tries to modularize crosscutting concerns [11]. But AOP is
not close to OO and requires learning many new concepts.
And while the modularization of crosscutting concerns is the
flagship of AOP several authors disagree [22][23]. Concepts
like pointcuts and advices are not easy to understand. The
effects of these constructs are also more unpredictable than
any OO concept. A particular one is the fragile pointcut. This
problem arises when simple changes made to a method code
make a pointcut either miss or incorrectly capture a joint
point thus incorrectly introducing or failing to introduce the
necessary advice. Thus simple changes in the class code can
have unsought effects [24].

The obliviousness feature of AOP means that a class is
aspect unaware so aspects can be plugged or unplugged as
needed. But it also introduces problems in comprehensibility
[25]. To fully understand the system we must not only know
the classes but also have to know the aspects that affect each
class. This is a major drawback when maintaining a system,
since the dependencies aren’t explicit and there isn’t an
explicit interface between both parts. With our approach all
dependencies are explicit and the system comprehensibility
is increased when compared to the OO version [26]. We do
not have the obliviousness of AOP as the class knows and is
aware of the roles it plays. But any changes to the class code
are innocuous to the role, as long as their contract is fixed.

We do not believe our approach can replace AOP. They
are different and approach different problems. We believe
that for static concerns our approach is more suitable while
AOP is better suited for (un)pluggable concerns.

 Traits [6] offer a way of composing software that is
somewhat similar to Mixins [6]. A trait is the primitive unit
of code reuse, like our roles, which means that only traits can

575Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 593 / 729

be used to compose classes. Traits can also be used to
compose other traits. But traits only provide methods and not
state and access levels. A class composed with traits can be
seen either as a flat collection of methods or as being
composed by traits. This flat property means that the code
inside the trait can be seen as the code inside the class, for
example, a super reference inside the trait code refers to the
superclass of the class that uses the trait. In our approach we
can also see a class as simply a set of methods, forgetting
that it plays a role, but we have not this flat property, as a
super reference in a role refers to the superrole.

V. CONCLUSION AND FUTURE WORK

We have presented a new way of modeling crosscutting
concerns. Using roles we have a finer grain composition
technique that allows the crosscutting concerns to be
composed into the classes without its code being placed in
the class itself.

We modeled crosscutting concerns by developing a role
that addressed it. The crosscutting concern’s code is
therefore limited to the role. To better model those concepts
roles support state and visibility control. Classes play the role
and acquire the role behavior. Changes to the concern
implementation are limited to the role.

We validated our approach developing roles for the
JHotDraw framework and eliminated nearly all of the
existing crosscutting concerns that exhibited duplicated code.
We even reused some roles from our role library showing
that they are really reusable.

For future work we are developing a role version of the
Sun’s java compiler and the Spring framework, using
JavaStage. Results so far are promising as we already reused
some of our library roles, like an Observer and Visitor. The
use of these roles in those case studies can eliminate a great
amount of duplicated code.

REFERENCES

[1] Parnas, D. L., (1972): On the criteria to be used in
decomposing systems into modules. Commun. ACM 15, 12,
Dec. 1972, 1053-1058

[2] Kristensen, B. B., (1995): Object-oriented modeling with
roles, in Proceedings of the 2nd International Conference on
Object-Oriented Information Systems, Springer-Verlag.

[3] Tarr, P., Ossher, H., Harrison, W. and Sutton Jr., S. M.
(1999), N degrees of separation: multi-dimensional separation
of concerns, Proceedings of the 21st international conference
on Software engineering, New York, NY, USA

[4] Miryung Kim, Lawrence Bergman, Tessa Lau, and David
Notkin, An ethnographic study of copy and paste
programming practices in oopl, Proceedings of the 2004
International Symposium on Empirical Software Engineering
(Washington, DC, USA), ISESE ’04, 2004, pp. 83–92.

[5] Bruntink, M. van Deursen, A. van Engelen, R. Tourwé,
T., On the use of clone detection for identifying crosscutting
concern code, IEEE Transactions on Software Engineering,
Vol. 31, No. 10, (2005)

[6] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner.
Do Code Clones Matter? In Proc. Int. Conf. on Software
Engineering, pages 485–495. IEEE Computer Society, 2009.

[7] C. Roy and J. Cordy. A Survey on Software Clone Detection
Research. Technical Report 2007-451, School of Computing,
Queen’s University at Kingston, 2007.

[8] G. Bracha, and W. Cook. Mixin-Based Inheritance. In
Proceedings of the Conference on Object-Oriented
Programming: Systems, Languages, and Applications /
Proceedings of the European Conference on Object-Oriented
Program-ming, pages 303–311, 1990. Ottawa, Canada.

[9] S. Ducasse, N. Schaerli, O. Nierstrasz, R. Wuyts and A.
Black: Traits: A mechanism for fine-grained reuse. In
Transactions on Programming Languages and Systems. 2004.

[10] S. Apel and C. Kästner. An Overview of Feature-Oriented
Software Development, in Journal of Object Technology, vol.
8, no. 5, July–August 2009,pages 49–84

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
W.G. Griswold. An overview of AspectJ. In proceedings of
ECOOP 2001, Budapest, Hungary, (LNCS, vol. 2072),
Springer; 327–335, 2001

[12] D. Riehle Framework Design: A Role Modeling Approach,
Ph. D. Thesis, Swiss Federal Institute of technology, Zurich.
2000

[13] Barbosa, F. and Aguiar, A. (2012). Modeling and
Programming with Roles: Introducing JavaStage, In the 11th
International Conference on Intelligent Software
Methodologies, Tools and Techniques (SoMeT_12), Genoa,
Italy, to appear.

[14] T. Reenskaug, P. Wold, and O. A. Lehne. Working with
objects - the OOram software engineering method. Manning,
1996.

[15] Steimann, F., (2001): Role = interface: a merger of concepts,
Journal of Object-Oriented Programming 14(4): 23–32.

[16] Chernuchin, D., and Dittrich, G. (2005). Role Types and their
Dependencies as Components of Natural Types. In AAAI Fall
Symposium: Roles, an interdisciplinary perspective.

[17] Ceccato, M., Marin, M., Mens, K., Moonen, L, Tonella, P.
and Tourwe, T. A qualitative comparison of three aspect
mining techniques, Proceedings of the 13th
InternationalWorkshop on Program Comprehension
(Washington, DC, USA), IWPC ’05, 2005, pp. 13–22

[18] Kamiya, T., Kusumoto, S. and Inoue, K. (2002), Ccfinder: a
multilinguistic tokenbased code clone detection system for
large scale source code, IEEE Trans. Softw. Eng. 28, no. 7.

[19] Fowler, M., (1999), Refactoring: Improving the design of
existing code, Addison-Wesley, Boston, MA, USA.

[20] Barbosa, F. and Aguiar, A. (2011). Generic roles, a test with
patterns In 18th Conference on Pattern Languages of
Programs, PloP 2011 Oct 21-23, Portland, OR, USA

[21] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., (1995):
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley.

[22] Steimann, F., The paradoxical success of aspect-oriented
programming“, in OOPSLA '06, Proceedings of the 21st
Annual ACM SIGPLAN Conference on Object-Oriented
Programming Languages, Systems, and Applications (2006)

[23] Przybyłek, A.(2001). Systems Evolution and Software Reuse
in Object-Oriented Programming and Aspect-Oriented
Programming , J. Bishop and A. Vallecillo (Eds.): TOOLS
2011, LNCS 6705, pp. 163–178.

[24] Kästner, C., Apel, S., Batory, D., 2007: A Case Study
Implementing Features using AspectJ. In:11th International
Conference of Software Product Line Conference (SPLC
2007), Kyoto, Japan

[25] Griswold, W.G., Sullivan, K., Song, Y., Shonle, M., Tewari,
N., Cai, Y., Rajan, H., 2006: Modular Software Design with
Crosscutting Interfaces. IEEE Software 23(1), 51–60 (2006)

[26] Riehle, D. and Gross, T. 1998. Role Model Based Framework
Design and Integration.” In Proceedings of the 1998
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA ’98). ACM Press

576Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 594 / 729

Towards a Glue-Code Specification Framework for
Component-Based Systems

Sajjad Mahmood∗ and Mohammed A. Al-Qadhi†

Information and Computer Science Department
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
Email: smahmood@kfupm.edu.sa∗, moh6666 qadi@hotmail.com†

Abstract—Component integration is a key process ac-
tivity during the development of Component-Based Soft-
ware (CBS). CBS integrators use software components
developed by either in-house or purchased off-the-shelf
to develop an application. CBS integration process often
requires adaption of selected components to meet the CBS-
to-be requirements as individual components are usually
developed for general purposes. Latest industrial studies
for CBS development have indicated that system integrators
reply on individual experiences to write the glue-code of a
CBS. Hence, there is a need for an integration framework
to handle the potential mismatches between individual
components and identify the functionalities not provided
by the available components for a CBS. In this paper,
we present an initial glue-code framework to specify the
glue-code required in integrating potentially mismatched
components and the missing functionalities required to meet
the requirements of a CBS.

Index Terms—Component Based Systems; Component
Integration; Glue-Code Specification; UML; Use Case
Model.

I. INTRODUCTION

Software component is a fundamental building block
for an application. CBS development focuses on integrat-
ing pre-existing software components to build a software
application [1], [2], [3], [4]. A system integrator puts
together software components developed by different ven-
dors who are usually unaware of each other [5]. Hence,
the integration phase of a CBS development life cycle is a
challenging activity as individual components are usually
designed for general purposes and they might not com-
pletely satisfy requirements of a CBS-to-be. Furthermore,
detailed documentation is rarely available for the majority
of components [5], [6] and system integrators have to
rely on component interface documentation during the
integration phase of a CBS.

The glue-code written during the integration phase
plays an important role in the overall success of a CBS.

The glue-code provides a platform to integrate potentially
mismatching components and implement the missing
functionalities required to meet requirements of a CBS.
CBS research [2], [6] has shown that system integrators
rely on their experience to write the glue-code and there
is a lack of glue-code development framework to support
the important integration phase of the CBS development
life cycle.

In this paper, we present an initial glue-code specifi-
cation framework for writing the glue-code of a CBS.
The glue-code specification framework will help system
integrators in early identification of potential mismatches
between component interfaces and missing functionalities
required to satisfy stakeholder requirements of a CBS.
We introduce the notation of use case conceptual map-
ping and component-based sequence mapping to specify
interactions between components of a CBS. We also use
a hotel reservation system [7] as a running example to
explain the glue-code specification framework.

The rest of this paper is organized as follows: Section
II reviews the related literature. In Section III, we present
the glue-code specification framework. We conclude the
paper and discuss future work in Section IV.

II. RELATED WORK

Vigder and Dean [8] presented the concept of wrappers
to glue software components by considering the ele-
ments of architecture during the integration process. Rine
et al. [9] used adapters to integrate components. Each
component has an associated adapter and components
request services from each other through their associated
adapters.

Dietrich et al. [10] used active rules to design wrappers
to adapt components. The wrappers are automatically
generated as components and they act as proxy objects.
These proxy objects intercept method calls and provide

577Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 595 / 729

the functionality required by the overall component-
based system. Similarly, Canal et al. [11] presented a
model based approach for component adaptation using
synchronous vectors based notation to automatically gen-
erates adapter protocols during development of a CBS.

Kim et al. [12] proposed a process for CBS de-
velopment where component integration occurs at the
release phase. Zitouni et al [13] presented a contract-
based approach to analyze and model the properties of
components and their composition in order to detect and
correct composition errors. The approach allows to char-
acterize the structural, interface and behavioral aspects
of the components. Chi [14] defined the signature view
and behavior view of software components and used pi
calculus expressions to model behavior of components.

The current CBS development approaches lack a sys-
tematic process to bridge the gap between requirements
analysis and integration specification of a CBS. This
results in an integration phase that heavily relies on
system integrator’s skills which increase the challenges
associated with the glue-code specification of a CBS.

III. GLUE-CODE SPECIFICATION FRAMEWORK

The glue-code specification framework presents a sys-
tematic structure to identify the required interfaces and
specify interactions between components of a CBS. The
glue-code specification framework also helps reduce CBS
development risks by identifying the interface mismatches
between components and the missing functionalities re-
quired to implement a CBS.

The glue-code specification framework consists of two
phases, namely, use case conceptual mapping and compo-
nent based sequence mapping. The first phase - use case
conceptual mapping - starts with a process of modeling a
use case as a required interface and subsequently specifies
all the required and provided interfaces for a CBS. The
second phase - component based sequence diagram -
uses the extended UML sequence diagram to model
different scenarios associated with a use case to identify
mismatches between required and provided interfaces
of a CBS. Figure 1 shows the glue-code specification
framework.

A. Use Case Conceptual Mapping

The UCCM phase takes the Unified Modeling Lan-
guage (UML) use case diagram [15] and component in-
terface documentation as an input to develop a realization
mapping between software components and requirements
of a CBS. First, we adopt UML component specification

Use Case
Model

Component
Interface

Documentation

Use Case
Conceptual

Mapping

Component-
Based

Sequence
Mapping

Glue-Code Specification

Fig. 1. Glue-Code Specification Framework

Make a
Reservation

Make a
Reservation

Identify Room
System Provides price
Request a reservation

...............
askForReservation ()
selectReservation ()
providePrice ()
........

<<Interface Type>>
IMakeReservation

Fig. 2. ‘IMakeReservation’ System Interface

technique [7] to model each use case of a CBS as a ‘con-
ceptual interface’ which consists of a set of operations
corresponding to individual interactions of the use case.
Figure 2 shows ‘IMakeReservation’ system interface for
the hotel reservation system.

Second, each interface of a component is represented
as a ‘concrete interface’ which consists of a number of
concrete operations which are uniquely identified by a
‘concrete operation code’. A ‘concrete operation code’
consists of components’ name, interface number and
corresponding operation number. For example, the con-
crete operation code (B-I2-O2) will represent the second
operation of the second interface of component B.

Finally, a UCCM realization table is generated for each
‘conceptual interface’. A UCCM realization table shows
all conceptual and concrete interfaces that help realize a

578Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 596 / 729

TABLE I
‘IMAKERESERVATION’ REALIZATION TABLE

Conceptual Operations Realization

askForReservation() Missing

selectReservation() Missing

providePrice() Partially(D − I2−O6)

getCustomerInfo() Missing

reservation() (A− I1−O1)AND

(D − I2−O8)AND

(B − I2−O5)OR(E − I2−O4)

refineReserveDetails() Missing

provideAlternative() refineReservDetails()AND

(D − I2−O6)OR(E − I5−O3)

acceptOrReject() Missing

failure() Missing

notifyBillingSys() Missing

‘conceptual interface’. Table I shows UCCM realization
table for the ‘IMakeReservation’ interface.

B. Component Based Sequence Mapping

The CompBSM phase uses UML sequence diagram
to present scenarios associated with each ‘conceptual
interface’ of a CBS. The sequence diagram developed
during the CompBSM phase has a glue-code component
that helps a system integrator in identifying the execution
precedence, missing functionalities and potential mis-
matches between a set of participating interfaces. In this
paper, we extend UML by introducing new stereotypes
to help system integrators in specifying the glue-code
required to integrate candidate components. The message
interaction stereotypes are as follows:

1) <<Initiation>>: To specify first/initial messages.
2) <<Missing>>: To specify missing functionalities.
3) <<LibraryImporting>>: To specify importing

header files and built-in libraries from components.
4) <<Adapter>>: To specify messages that involve

mismatched data types involved in an interaction.
5) <<TemporaryStorage>>: To specify interactions

that provides temporary variables to store values to
be used through a scenario.

<<Component>>
Billing - (A)

<<Component>>
DataType - (C)

<<Component>>
ResSys - (E)

<<Component>>
Glue-CodeGuest

askForReservation () <<Initiation>>

importDataType ()

(E-5-3) getRoomInfo (): ArrayList

refineReservationDetails () <<Missing>>

<<LibraryImporting>>

selectReservation () <<Adaptor>>

Fig. 3. ’IMakeReservation’ Sequence Diagram

6) <<ExceptionHandling>>: To specify interactions
that provides exception handling functionality for
the system.

Figure 3 shows a partial sequence diagram for the
IMakeReservation use case. A guest actor starts the
scenario by invoking method ‘askForReservation ()’ from
the glue-code component of a CBS. The interaction is la-
beled with <<Initiation>> stereotype to indicate the first
interaction in the scenario. Next, glue-code component
makes a message call to ‘importDataTypes ()’ method of
the ‘datatype - (C)’ component. The interaction is labeled
with <<LibraryImporting>> stereotype to specify that
built-in datatype library is called form the ‘datatype
- (C)’ component. Next, ‘selectReservation ()’ method
is executed which is tagged with the <<Adaptor>>
stereotype. This indicates that some sort of adaptation
code needs to be written in the glue-code component to
collect the required information from the customer.

Furthermore, ‘refineReservationDetail’ () method is
tagged with <<Missing>> stereotype to indicate that
the required functionality is not provided by any available
component and it needs to be implemented in the glue-
code component of a CBS. Finally, ‘(E-5-3) getRoomInfo
()’method is invoked that shows that ‘getRoomInfo ()’
method associated with ‘ResSys’ component is called to
realize the desired functionality required for the IMak-

579Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 597 / 729

eReservation use case.

IV. CONCLUSION AND FUTURE WORK

We have presented an initial glue-code specification
framework to help system integrators in understanding
potential mismatches between component interfaces and
missing functionalities required to meet stakeholder re-
quirements of a CBS. The glue-code specification frame-
work consists of two parts; namely, use case conceptual
mapping and component-based sequence mapping phases.
The use case conceptual mapping is used to specify the
component interfaces involved in realizing individual use
cases a CBS. Furthermore, component-based sequence
mapping phases uses UML sequence diagram to specify
the component interface mismatches and missing func-
tionalities required to successfully developing a CBS.

In this paper, we have presented a preliminary work on
the glue-code specification framework. For future work,
we plan to complete the framework by considering both
integration and composition issues related to the glue-
code of a CBS. There is a need to apply the framework on
real world case studies to better understand its potential
benefits for the system integrators of a CBS. We plan
to develop an automated tool for supporting glue-code
specification framework. Furthermore, there is also a need
to investigate the potential benefits of the complete glue-
code framework on integration testing, maintenance and
evolution phases of a CBS.

ACKNOWLEDGEMENT

The authors would like to acknowledge the research
support provided at King Fahd University of Petroleum
and Minerals (KFUPM), Dhahran, Saudi Arabia.

REFERENCES

[1] S. Mahmood, R. Lai, and Y. S, Kim, “Survey of component based
software development,” IET Software, vol. 1, no. 2, pp. 57–66,
2007.

[2] J. Li, R. Conradi, O. P. N. Siyngstad, C. Bunse, M. Torchiano,
and M. Morisio, “Development with off-the-shelf components:
10 facts,” IEEE Software, vol. 26, no. 2, pp. 80 – 87, 2009.

[3] M. A. Khan and S. Mahmood, “Optimal component selection for
component-based systems,” in 2009 International Conference on
Systems, Computing Sciences and Software Engineering, pp. 467
– 472, 2009.

[4] M. A. Khan and S. Mahmood, “A graph based requirements
clustering approach for component selection,” Advances in En-
gineering Software, vol. 54, pp. 1–16, 2012.

[5] A. Cechich and M. Piattini, “Early detection of cots component
functional suitability,” Information and Software Technology,
vol. 49, no. 2, pp. 108 – 121, 2007.

[6] S. Mahmood and A. Khan, “An industrial study on the im-
portance of software component documentation: A system in-
tegrators perspective,” Information Processing Letters, vol. 12,
pp. 583–590, 2011.

[7] J. Cheesman and J. Daniels, UML Components A Simple Process
for Specifying Component Based Software. Addison-Wesley,
2001.

[8] M. R. Vigder and J. Dean, “An architectural approach to building
systems from cots software components,” in Proceedings of the
1997 conference of the Centre for Advanced Studies on Col-
laborative research, p. 22, IBM Press, 1997. Toronto, Ontario,
Canada.

[9] D. Rine, N. Nada, and K. Jaber, “Using adapters to reduce
interaction complexity in reusable component based software
development,” in Proceedings of the 1999 symposium on Soft-
ware reusability, pp. 37–43, ACM Press, 1999. Los Angeles,
California, United States.

[10] S. W. Dietrich, R. Patil, A. Sundermier, and S. D. Urban,
“Component adaptation for event-based application integration
using active rules,” Journal of Systems and Software, vol. 79,
no. 12, pp. 1725 – 1734, 2006.

[11] C. Canal, P. Poizat, and G. Salaun, “Model-based adaptation
of behavioral mismatching components,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 546 – 563, 2008.

[12] S. Kim, S. Park, J. Yun, and L. Y, “Automated continous inte-
gration of component-based software: An industrail experience,”
in Proceedings of 23rd IEEE/ACM International Conference on
Automated Software Engineering, pp. 423 – 426, 2008.

[13] A. Zitouni, L. Seinturier, and M. Boufaida, “Contract-based
approach to analyse software components,” in 13th IEEE In-
ternational Conference on Engineering of Complex Computer
Systems, pp. 237 – 242, 2008.

[14] Z. Chi, “Software components composition compatability check-
ing based on behaviour description,” in IEEE International
Conference on Granular Computing, pp. 757 – 760, 2009.

[15] K. Bittner and I. Spence, Use Case Modeling. Addison-Wesley,
2002.

580Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 598 / 729

AO-WAD: A Generalized Approach for Accessible Design within the Development
of Web-based Systems

Adriana Martín1,2

1Department of Exact Sciences, Caleta Olivia
University of Patagonia Austral (UNPA-UACO)

Santa Cruz, Argentina
2GIISCo, Computer Science Department,

University of Comahue (UNCo)
Neuquén, Argentina

e-mail: adrianaelba.martin@gmail.com

Viviana Saldaño1, Gabriela Miranda1,
Gabriela Gaetán1

1Department of Exact Sciences, Caleta Olivia
University of Patagonia Austral (UNPA-UACO)

Santa Cruz, Argentina
e-mails: {vivianas / gmiranda /
ggaetan}@uaco.unpa.edu.ar //

Abstract— Web Engineering (WE) methods have evolved to
support different concerns during the development process of
current Web-based systems, as context-awareness, Business-to-
Business (B2B) process modeling, Rich Internet Applications
(RIAs) and live-regions or quality factors to improve users’
experience. Therefore, developers have conceptual tools to
focus on these concerns in advance, but unfortunately, the
situation is not the same to early accessibility design. In this
paper we provide a briefly overview of our proposal, called
Aspect-Oriented Web Accessibility Design (AO-WAD), and
generalize its use within some of the best known WE
approaches to provide accessibility support through Aspect-
Orientation techniques. We embed AO-WAD into OOHDM,
UWE and OOWS methods and propitiate an ease
understanding through a motivating example.

Keywords- Web Accessibility; WE Approaches; UI Design;
Aspect-Orientation.

I. INTRODUCTION
Nowadays, the advance of the Internet and the emerging

technologies associated to the Web are universalizing
information systems, allowing access to any connected
potential user. The term “Web application” [1] refers to a
new family of software applications specially designed due
to the high growth of commercial activities on the Internet.
These systems are being implemented in very short periods
of time, without support of appropriate tools. For this reason,
Web applications have low quality and very difficult
maintenance. In most cases, development of Web application
has been “ad hoc”, lacking systematic approach, quality
control and assurance procedures. Therefore, there is now
great concern about how Web-based systems are developed
to promote integrity and quality.

Web Engineering (WE), which is still an emerging
discipline, encourages a process driven by systematic
approaches to develop high quality Web-based systems. In
the last decade, many WE methodological approaches, as
Object-Oriented Hypermedia Design Method (OOHDM)
[14], UML-based Web Engineering (UWE) [4], Object-
Oriented Web Solution (OOWS) [3] and Web Site Design
Method (WSDM) [16], have been proposed and evolved to
provide support by means of abstract mechanisms that make
easier the conceptualization and development of this kind of
Web applications.

In contrast, the state-of-the-art shows that there are not
many proposals for the early design with accessibility
principles in mind and besides, even fewer proposals,
provide conceptual tools to fully support accessibility nature
to migrate to other WE approaches.

In general, a proposal for including accessibility design
within systematic and unified Web development works only
in association with a host WE approach. Therefore, there is a
high dependence between host’s process and deliverables
and the proposed conceptual tools to support Web
accessibility. The consequences are clear, since failing the
design principle “low coupling” hinders embedding and easy
connection with other WE approach. For example, Plessers
et al. [13] is a well-known proposal that generates
annotations for visually impaired users automatically from
explicit conceptual knowledge existing during the WSDM
[16] design process. The proposal prioritizes accessibility
support using a rule-based mapping model to drive
accessibility annotations, but by means of WSDM’s
modeling concepts to which these annotations are tightly
bound. On the other hand, Moreno et al. [11] defines several
constructs in UML meta-model to support the abstraction of
Web accessibility concepts following the standard WCAG
[18][19]. Thus, the proposal can be easily implanted into
approaches following the MDA paradigm, but at expense of
not fully addressing the non-functional, generic and
“crosscutting” features of accessibility.

Our proposal for accessible design, called Aspect-
Oriented Web Accessibility Design (AO-WAD) [6][7][9],
recommends including accessibility concerns systematically
within methods for Web application development. AO-WAD
is born to join OOHDM [14] prioritizing accessibility at the
very beginning of the Web design process. While OOHDM
provides the main development framework, Aspect-
Orientation ensures handling naturally the non-functional,
generic and crosscutting characteristics of the accessibility
concern within the framework.

At this point, let us define what is (and what is not) Web
accessibility, and why it is a good idea to model its
requirements as softgoals to be “satisficed” [2]. In short,
Web accessibility is the ability to access the Web. However,
you will never be perfectly accessible to everybody. From
this point of view and since there is not a simple binary
opposition between accessible and inaccessible [15],

581Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 599 / 729

accessibility requires more loosely defined criteria, as the
one proposed in [2] for non-functional requirements.

In this paper, we introduce AO-WAD as an example of
having complete commitment to accessibility through
Aspect-Orientation techniques without losing generality
when developing within WE approaches. Supporting this
statement, we develop a motivating example within
OOHDM [14], UWE [4] and OOWS [3] as host methods,
which are some of the most widespread and mature WE
approaches.

This document is organized into eight sections as
follows: in Section II we briefly introduce AO-WAD, while
in Section III we explain the way our proposal provides
accessibility support to OOHDM, UWE and OOWS Web
development processes. Then, in Sections IV, V and VI we
apply AO-WAD to a motivating example using as hosts
these three WE approaches. In Section VII we achieve some
insights about including accessibility design within Web
development processes applying Aspect-Orientation
techniques. Finally, in Section VIII we present the
conclusions and future work.

II. AO-WAD IN A NUTSHELL
The model we envisage to deal with accessibility

concerns within a WE approach is illustrated in Figure 1 [6].
Step 1 (Figure 1 (1)) manages Web application requirements
looking for those that involve accessibility needs. This is
because it is at the user’s interface level where accessibility
barriers finally show, so we are particularly interested in
discovering accessibility requirements at the user interface
(UI) design. Then, Step 2 (Figure 1 (2)) proposes an early
capture of accessibility concrete concerns by developing
two kinds of diagrams: the User Interaction Diagram (UID)
with accessibility integration points [6] and the Softgoal
Interdependency Graph (SIG) template [6] for Web Content
Accessibility Guidelines (WCAG) 1.0. Step 3 (Figure 1 (3))
aids designers making decisions through the abstract UI
model (Figure 1 (3.1)), and then, at Step 4 (Figure 1 (4))
toward its implementation through the concrete UI model
(Figure 1 (4.1)). Thus, given a user’s task, the SIG diagram
provides the WCAG 1.0 accessibility checkpoints that
“crosscut” the UI widgets (both, abstract and concrete ones;
Figure 1 (3.1) and (4.1) respectively), to help to an
accessible user experience.

Figure 1 (3) shows that at Step 3, our approach provides
a supporting tool to assist developers in the implementation
of cases, and on the creation of their corresponding models
by using reusable components (for a detailed description of
AO-WAD and its contribution to the area of accessible
design see [6]).

In the following section, we show how AO-WAD can be
implanted to work not only with OOHDM [14], but also
with UML-based Web Engineering (UWE) [4] as one of the
most popular and recognized Object-Oriented WE
approaches.

Figure 1. An overview of AO-WAD

III. SYSTEMATIC WEB DEVELOPMENT AND
ACCESSIBILITY DESIGN

AO-WAD was developed in the spirit of model-driven
paradigm to provide accessibility support within WE
approaches. WE approaches are generally approaches as
model-driven, because they address the different concerns
involved in the development of a Web application using the
following primary artifacts: (i) separate models (such as
content, navigation and presentation), and (ii) model
compilers to produce (semi) automated generation of most
of the Web application’s implementation from the original
models [10]. AO-WAD focuses on preserving model-driven
principles to enrich these artifacts (UI models and model
transformations) with accessibility concerns. Thus, the
integration of AO-WAD at the design level is immersed in a
Web application development process.
In Section 2, we describe AO-WAD main process and
interaction with OOHDM deliverables to model
accessibility concerns in an Aspect-Oriented manner during
Web developments. Figure 2 summarizes the embedding of
AO-WAD within OOHDM Model-Driven Development
process. The UID [17] is the conceptual tool used by
OOHDM [14] to state transformations between Web
application requirements (Use Case model) and the
Conceptual, Navigation and UI models. AO-WAD
propitiates the same principle between Web applications
requirements and accessible UI models. The interaction
between OOHDM models links and reinforces accessibility
needs by applying two conceptual tools: the UID with
integration points and SIG template for accessibility. The
SIG diagram conveys the accessibility knowledge through
WCAG 1.0 operationalizing softgoals [6] required to be
applied at UI model. Due to accessibility nature, these
accessibility softgoals “crosscut” the UI model more than

582Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 600 / 729

once causing “crosscutting symptoms”. At this point, AO-
WAD proposes to address these symptoms by modularizing
softgoals into accessibility aspects. As Figure 2 shows, the
deliverable of the process is an accessible and clean design,
which means an OOHDM UI model enriched with
accessibility concerns but free of “crosscutting symptoms”. !

!
!
!
!

!
<< USER INTERFACE MODEL >>

<< ACCESSIBILITY ASPECTS >>

!

ABSTRACT CONCRETE

<< ACCESSIBILITY >>
 !

! SIG DIAGRAMS

UID
DIAGRAMS

extended with

INTEGRATION

POINTS

<< REQUIREMENTS MODEL >>

!

<< NAVIGATION MODEL >>

!
<< CONCEPTUAL MODEL >>

!

AO-WAD

Figure 2. AO-WAD embedded into OOHDM Model-Driven

Development process

As another good example of an established WE
approach, UWE is based on OMG (modeling and metadata
specifications) and uses UML for the analysis and design of
Web applications. Figure 3 summarizes the embedding of
AO-WAD within UWE Model-Driven Development
process. In UWE [4], the Requirements model consists of
two parts: (i) use cases of the Web application and their
relationships and, (ii) activities describing use cases in detail.
In particular, the Activity diagram is the conceptual tool used
by UWE to describe more accurately each use case.

!
!

<< REQUIREMENTS MODEL >>

<< ACCESSIBILITY >>

USE CASES

!
!

<< ACCESSIBILITY ASPECTS >>

!

<< PRESENTATION MODEL >>

!

<< NAVIGATION MODEL >>

!

<< CONTENT MODEL >>

!

<< PROCESS MODEL >>

!

SIG DIAGRAMS

ACTIVITY

DIAGRAMS

extended with

INTEGRATION

POINTS

AO-WAD

Figure 3. AO-WAD embedded into UWE Model-Driven Development

process

UWE uses the Activity diagram to state transformations
between Web application requirements and the Content,
Navigation and Presentation models. Thus, as Figure 3
shows, AO-WAD embeds into UWE extending the Activity
diagrams with integration points and through the SIG
diagrams convey accessibility concerns as WCAG 1.0
operationalizing softgoals, which “crosscut” the

Presentation model causing “crosscutting symptoms”. At
this point and as we explained before, AO-WAD proposes
to address these symptoms by modularizing softgoals into
accessibility aspects. Figure 3 shows the deliverable of the
process is an accessible and clean design, which means a
UWE Presentation model with accessibility concerns but
free of “crosscutting symptoms”.

OOWS extends an Object-Oriented software production
method (called OO-Method [12]), for providing
methodological support for Web application development.
Figure 4 summarizes the embedding of AO-WAD within
OOWS Model-Driven Development process. In OOWS [3],
the Requirement model extends the OO-Method Task model
to capture not only the structural and behavioral
requirements (as happens in non-Web applications) but also
navigational requirements using two extra diagrams: (i) a
Task taxonomy, which hierarchically specifies the tasks that
the users should achieve when interacting with the Web
application, and (ii) a Task definition, which describes the
interactions that users require from the Web application and
the information that is exchanged in each interaction, using
UML Activity diagrams and CRC cards [20], respectively.
In particular, the OOWS Task definition model identifies
and describes interaction points between the user and the
Web application, which are very useful for our purpose.

As Figure 4 shows, AO-WAD can focus on this
methodological support to embed into OOWS extending in
first place, the Task definition model (Activity diagrams and
CRC cards) with integration points and then, conveying
accessibility concerns through the SIG diagram as WCAG
1.0 operationalizing softgoals. Again, AO-WAD proposes
softgoals modularization into accessibility aspects to be
injected into the Navigational and Presentation model.
!

!
<< REQUIREMENTS MODEL >>

<< ACCESSIBILITY >>

OO-METHOD
TASKS !

!

<< ACCESSIBILITY ASPECTS >>

!

SIG DIAGRAMS

AO-WAD
OOWS

 TASKS
TAXONOMY

!
OOWS

 << USER MODEL >>

!
OO-METHOD

<< CLASS DIAGRAM >>

<< DINAMIC MODEL >>

<< FUNCTIONAL MODEL >>

TASK

DEFINITION
extended with

INTEGRATION

POINTS

 << NAVIGATIONAL MODEL >>
 << PRESENTATION MODEL >>

Figure 4. AO-WAD embedded into OOWS Model-Driven Development
process

In order to ease understanding of AO-WAD within
systematic Web development processes, we develop a
motivating example in the following section, working with
OOHDM, UWE and OOWS as host WE approaches.

IV. AN ACCESSIBLE UI FOR THE STUDENT’S LOGIN
We describe the embedding of AO-WAD within

OOHDM, UWE and OOWS approaches using the following
use case specification “Login a User given the User’s ID
and Password”:

Use Case: Login a User given the Users ID and Password
Brief Description: This use case describes the User login
Primary Actor: User

583Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 601 / 729

Description
Main Success Scenario:
Step Action

1. The system requests that the User enters his/her ID and
Password.

2. The User enters his/her ID and Password.

3. The system validates the ID and Password and logs the User

Extensions:
Step Branching Action

3.a The User enters an invalid ID and/or Password; the application
displays an error message; the use case ends.

This example is simple but extremely representative

mainly because of two reasons: (i) increasingly, business
and government agencies are adopting a Web presence for
sales and services to their customers, clients and citizens
and, (ii) it clearly explains all of the issues concerning to
accessible content that come into play when we think about
how people with different capabilities interact with a Web
page to input information [15]. The use case above
describes the Web application’s requirements for the user
login and functionality that comprises user-application
interaction; as we can see at the first step of the main
success scenario, the user is requested by the application to
enter his/her ID and Password. Since very often a
specification based only on use cases is not enough [17],
different kinds of refinement techniques are used to obtain a
more detailed specification of functional requirements.
OOHDM applies UID technique [17] to model user-system
interactions and to specify the information that requires
input from the user and choices that allow changes between
interactions. UWE follows the principle of using UML
whenever possible for specification and refines
requirements with Activity diagrams for the main stream of
the task to be performed. While OOWS, proposes the Task
Taxonomy and Definition models [3] to capture Web
application requirements, and in particular, the last one is
the key model for specifying the interaction between the
user and the Web application. Figure 5, illustrates the UID,
the Activity diagram and also the Task Definition model),
which provide a more detailed specification to the login use
case within OOHDM, UWE and OOWS approaches,
respectively. As we can see in Figure 5, an Activity diagram
and an Information template implemented with the data
technique CRC card, compound the OOWS Task Definition
model.

As we already see in Section 2, looking at Step 1, AO-
WAD proposes to examine the Web application
requirements for the use case above, to identify accessibility
concerns during the user-system interaction. It is clear in
this specification that the FORM element is the key UI
element to help achieve an accessible student’s login.
Following, in Sections V and VI we focus on modeling
issues at Steps 2 (Figure 1 (2)) and 3 (Figure 1 (3))
respectively, as the main steps when implanting AO-WAD
within WE approaches.

UWE ACTIVITY DIAGRAM

OOWS TASK DEFINITION DIAGRAM = ACTIVITY DIAGRAM + INFORMATION TEMPLATE

<<user Action>>

LOGINFORM
Enter User ID and Password

<<system Action>>

VALIDATINGDATA
Check User ID and Password

<<system Action>>

USER

YES

<<user Action>>

VALIDATINGERROR

NO

OOHDM UID DIAGRAM

 <<input>>
Enter User ID
and Password

<<validate>>
Check User ID
and Password

[INVALIDDATA]

ERROR !!!

[VALIDDATA]

USER

< 1 >

ID
 PASSWORD

SIU Guarani
 < 1.2 > LOGINFORM

<<output>>
USER YES

<<output>>
ERROR

NO 1

OOWS TASK DEFINITION
DIAGRAM = ACTIVITY

 Identifier: T1
Entity: USER
Specific
Data:

Name Description Nature IPs
Name Name of the USER String output (USER, 1)

: : : :
ID ID of the USER String input (USER, validate)
PASSWORD Password of the USER String Input (USER, validate)

Figure 5. Requirements Specification with UID (left), Activity Diagram
(right) and Task Definition Model (bottom)

V. SPECIFYING ACCESSIBILITY CONCRETE CONCERNS
When developing with OOHDM, AO-WAD proposes at

Step 2.1 extending the UID diagram with integration points
to support an early registration of accessibility concerns.
This conceptual tool attaches an accessibility integration
point to each one of those UI elements with impact on the
dialog required by the use case functionality and modeled
by the UID. Looking for the same modeling purpose, AO-
WAD Step 2.1 can be also satisfied when developing with
UWE, and OOWS extending the Requirements model of
these WE approaches. When developing with UWE, the
Activity diagram is enriched with accessibility integration
points. Likewise in OOWS, the Task Definition model
provides user-application interaction points (IPs) enabling
AO-WAD accessibility integration point to be easily
attached. Figure 6 illustrates the UID (left), the Activity
diagram (right) and the Task Definition model (bottom),
extended with an integration point that allows an early
record of accessibility concerns for the FORM UI element --
i.e. HTML related controls. Also, Figure 6 shows two
possible ways of attaching the accessibility integration
points to these diagrams and model: (i) including a UML
Note modeling construct or (ii) defining an Object
Constraint Language (OCL) expression. As Figure 6
(bottom) shows, OOWS aids the Activity diagram with an

584Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 602 / 729

Information template, whose CRC card can be also extended
to reinforce the specification of the accessibility integration
point for the FORM UI element. As we see, the integration
of Step 2.1 proposed by AO-WAD into the Requirement
model of WE approaches is straightforward.

<<input>>
Enter User ID
and Password

<<validate>>
Check User ID
and Password

OOWS

<<user Action>>

LOGINFORM
Enter User ID and Password

…

< 1 >

ID
PASSWORD

SIU Guarani

< 1.2 > LOGINFORM

…

Y

An Accessibility integration point
for an HTML related controls

?The LOGINFORM must satisfy WCAG 1.0 …?

context UserLogin
inv: self.LOGINFORM !

includes (“Accessibility integration point”)

UML NOTE

OCL CONSTRAIN

OOHDM UWE

 Identifier: T1

Entity: USER
Specific
Data:

Name … IPs

Accessibility
integration points

: : : :
ID … Input (USER, validate) LOGINFORM
PASSWORD … input (USER, validate)

Figure 6. UID (left), Activity Diagram (right) and Task Definition Model
(bottom) with Accessibility integration points

Then, AO-WAD proposes at Step 2.2, the specification
of accessibility softgoals through a SIG tree. When
developing with OOHDM, the SIG diagram is a
consequence of instantiating the SIG template taking the
UID with integration points as input --i.e the early
registration of accessibility concerns for the FORM UI
element, shown by Figure 6 (left), which is core to the
required functionality. The SIG diagram specifies
accessibility operationalizing softgoals to be satisficed for
reaching the required WCAG 1.0 level of compliance.
Applying the same modeling purpose, the Activity diagram
extended with integration points, shown by Figure 6 (right
and bottom, respectively), provides the required input for
developing the SIG diagram within UWE and OOWS.
Although the SIG template is not a UML specification tool,
it can be easily transformed into an XML tree structure and
work with other UML diagrams within the philosophy of
the model-driven paradigm. Therefore, there are no major
problems for including Step 2.2 proposed by AO-WAD
during the development process of WE approaches under
consideration.

VI. SOLVING ACCESSIBILITY CROSSCUTTING SYMPTOMS
AO-WAD proposes at Step 3, the specification of

accessibility aspects to avoid “crosscutting symptoms”
resulting from applying accessibility operationalizing
softgoals to elements comprising the UI model. At the UI
modeling stage, OOHDM delivers an Abstract UI model
[14] whose vocabulary is established by the Abstract
Widget Ontology extended by AO-WAD [6] to support new
elements required by current UI, which are dynamic and
with a high degree of complexity. Similarly, UWE delivers
a Presentation model [4] from a Meta-model for modeling

UI elements. Presentation requirements are specified in
OOWS using a Presentation model that is strongly based on
the Navigational model and uses the navigational contexts
as basic entities to define the presentation properties;
working together, these models capture the essential
requirements for the construction of Web UI [3].

!
!!

 IndefiniteVariable IndefiniteVariable

SimpleActivator

ElementExhibitor

LOGINFORM
ElementExhibitor CompositeUIElement

OOHDM ABSTRACT UI MODEL

!

LOGINFORM

UWE
PRESENTATION MODEL

!

OOWS
NAVIGATIONAL MODEL

<<view>>
USER

-Name
-ID
-PASSWORD

FILTER: { ID , PASSWORD }
ATTRIBUTE: ID, PASSWORD
FILTER TYPE: EXACT

[USER]

<<context>>
LOGIN

!

OOWS
PRESENTATION MODEL

<<context>>
LOGIN

<<view>>
USER

 PATTERN: REGISTER PATTERN: REGISTER

CARDINALITY: STATIC, 1

OOWS WEB UI

!
DATA ENTRY ZONE:
LOGINFORM!

Figure 7. Abstract Interface Model in OOHDM (left), Presentation

mModel in UWE (right) and Navigation-Presentation Models and Web UI
in OOWS

Figure 7 shows the Abstract UI model delivered by
OOHDM (left), the Presentation model provided by UWE
(right), and the Navigation-Presentation models and Web UI
provided by OOWS (bottom), for the screenshot (top)
corresponding to the login example. In first place, AO-
WAD recommends discovering “crosscutting symptoms”
that manifest when applying accessibility operationalizing
softgoals to the UI model --i.e. OOHDM Abstract Interface
model, UWE Presentation model and OOWS Navigational-
Presentation models and Web UI. These operationalizing
softgoals are spread out and intermixed through the
components of the login FORM UI element, causing
“scattering” and “tangling” symptoms. Then, AO-WAD
prescribes eliminating these symptoms through a
modularization process that applies aspects to provide
accessibility support at the user’s technology and layout.
Thus, aspects modularize operationalizing softgoals to be
satisficed for properly convey the accessibility concerns
required by UI elements. As Figure 8 depicts through a
pseudo code, Aspect-Orientation provides a mechanism
called “weaving”, which requires that each aspect must
specify “where or how” should be invoked and “what”
should be injected into the core --i.e. a concrete UI model.

VII. DISCUSSING WE APPROACHES FROM THE
ACCESSIBILITY PERSPECTIVE

We have been working for a while on accessibility [5]
and particularly on accessibility design at early stages of
Web applications development [6][7][8][9]. Particularly, we
have been applying concepts from Aspect-Orientation in

585Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 603 / 729

association with the WCAG 1.0 document to deal with
accessibility concerns within WE approaches.

!

ASPECT II. LSRELATEDCONTROLS
POINTCUT ALL INTERFACE WIDGETS WITH
CompositeUIElement.LoginFORM == HTML related controls
PROPERTY ADVICE ADD ACCESSIBILITY CONDITION
12.3 groupRelatedControls == HTML fieldset element AND
HTML legend element !
12.4 explicitAssociation == HTML for element.!

<< UI MODEL ASPECT II >>
ACCESSIBLE LOGINFORM

ASPECT I. TSRELATEDCONTROLS
POINTCUT ALL UI ELEMENTS WITH
CompositeUIElement.LoginFORM == HTML related controls
PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS
9.4 tabOrderControl == HTML tabindex element !
9.5 keyAccessControl == HTML accesskey element !
10.2 promptPosition == HTML for element !
10.4 defaultCharacters == HTML value element.

!

<< UI MODEL ASPECT I >>
ACCESSIBLE LOGINFORM

!
OOHDM

ASTRACT INTERFACE MODEL

UWE
PRESENTATION MODEL

OOWS

NAVIGATIONAL-PRESENTATION MODEL
AND WEB UI

Figure 8. Specification of Accessibility Aspects conveying Accessibility

Concerns

Since the model-driven paradigm provides a good
framework to develop for the Web 2.0, we believe that a
proposal to somehow improve the users experience should
be able to work within any WE approaches. Although AO-
WAD is conceived within OOHDM to fully address
accessibility features, its application can be generalized to
work with other approaches, such as UWE and OOWS
methods. The process proposed by AO-WAD (Figure 1) can
be normalized to handle accessibility concerns through two
conceptual tools: the accessibility integration points and
SIG template techniques. These tools are core to AO-WAD
generalization since they provide the required support to
manage accessibility concerns within any WE development
processes. The accessibility integration points technique
provides early registration of accessibility concerns, while
the SIG template technique allows instantiation for
specifying concrete WCAG operationalizing softgoals to be
applied [6]. These diagrams can be easily implanted into
WE Requirements models, such as UIDs in OOHDM,
Activity diagrams in UWE and Task Definition model in
OOWS (Figures 5 and 6). Then, crosscutting symptoms are
solved by the modularization of WCAG operationalizing
softgoals into accessibility aspects to enrich WE
Navigational and Presentation/UI models, such as Abstract
UI in OOHDM, Presentation model in UWE and,
Navigational-Presentation models and Web UI in OOWS
(Figures 7 and 8). So, a first step in the normalization of
AO-WAD for its generalization can be synthetized as
follow: (1) extending requirements with accessibility
integration points, (2) specifying the SIG diagram and, (3)
modularizing WCAG operationalizing softgoals into
accessibility aspects to be injected. Finally, since AO-WAD
is developed to work with the model-driven paradigm, we
would like to highlight advantages/disadvantages of this
paradigm and how benefits/affects AO-WAD. On one hand,
applying systematic and unified model-driven approaches
brings the benefit of having full documentation and
automatic application generation at the expense of
introducing some bureaucracy into the development process.
Since our proposal suggests the early treatment of the
accessibility concerns through models, we may still be

influenced by this reality and its disadvantages --i.e., time
and cost consuming, complexity, learning effort, etc. On the
other hand, using models and taking advantages of an
iterative and incremental development process to deal with
accessibility concerns, allows: (i) going back from UI
models to Navigation models to look for alternatives in the
navigation path, (ii) assessing the need and relevance of
these alternatives to the functionality under develop, and
(iii) going forward from Navigation models to UI models to
check the accessibility of the UI related to these alternatives.
Thus, the accessibility of all the alternative navigation paths
that may compromise the desired functionality can be
evaluated within AO-WAD.

AO-WAD supports accessible Web applications design
by embedding Aspect-Orientated techniques into WE
development approaches to proper address the non-
functional, generic and “crosscutting” features of the
accessibility nature.

VIII. CONCLUSIONS AND FUTURE WORK
The application of the model-driven paradigm to the

domain of Web development has resulted in well-known
WE approaches, which can be particularly useful because of
the continuous evolution of Web 2.0 applications,
technologies and platforms. The new generation of Web
applications must offer user interfaces that enhance the
experience and access to all Web users. In this context, we
believe that WE approaches provide suitable models to
carry with the improvements required by the application
under development. In this paper we briefly introduce AO-
WAD, which provides complete support to accessibility
concerns by enriching WE models. Following OOHDM,
UWE and OOWS processes, in this work we focus our
efforts on the generalization of AO-WAD. We show that
AO-WAD is flexible enough to be embedded within any
WE approach, and therefore this can be a starting point that
propitiates industry adoption.

As future work, we will continue working to complete
the normalization of AO-WAD and validate its generalized
use to systematic developing of accessible Web
applications. Since, UWE and OOWS approaches provide
tools for partial/full automating their design and/or
implementation stages, we will analyze also the interaction
of AO-WAD with these tools.

REFERENCES
[1] Baresi L., Garzotto F., and Paolini P. From Web Sites to Web

Applications: New Issues for Conceptual Modeling. ER’2000
Workshop on Conceptual Modeling and the Web, LNCS
1921.Springer-Verlag, 2000.

[2] Chung, L. and Supakkul, S.: Representing FRs and NFRs: A
Goal-Oriented and Use Case Driven Approach. SERA (2004)
doi:10.1007/11668855_3

[3] Fons, J., Pelechena, V., Pastor, O., Valderas, P., and Torres,
V. Applying the OOWS Model-Driven Approach for
Developing Web Applications. The Internet Movie Database
Case Study. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L.
(eds.) WE, pp. 65-108. Springer (2008)

586Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 604 / 729

[4] Koch, N., Knapp, A., Zhang, G., and Baumeister, H.: UML-
based Web Engineering: An Approach based on Standards.
In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) WE,
pp. 157–191. Springer (2008)

[5] Martín, A., Cechich, A., and Rossi, G.: Comparing
Approaches to Web Accessibility Assessment. In: Calero, C.,
Moraga, M.Á., Piattini, M. (eds.) Handbook of research on
Web information systems quality, pp. 181–205. Information
Science Reference, Hershey (2008)

[6] Martín, A., Rossi, G., Cechich, A., and Gordillo, S.
Engineering Accessible Web Applications. An Aspect-
Oriented Approach. World Wide Web Journal, 13(4), 2010,
419-440 doi:10.1007/s11280-010-0091-3

[7] Martín, A., Mazalú, R., and Cechich, A. Supporting an
Aspect-Oriented Approach to Web Accessibility Design.
ICSEA (2010), Francia, doi:10.1109/ICSEA.2010.10

[8] Martín A., Cechich, A., and Rossi, G. Accessibility at Early
Stages: Insights from the Designer Perspective. W4A (2011),
India, doi: 10.1145/1969289.1969302

[9] Mazalú, R., Huenuman, F., Martín, A., and Cechich, A. AO -
WAD: A Supporting Tool to Aspect-Oriented Web
Accessibility Design. ASSE (2011), Argentina.

[10] Moreno, N., Romero, J., and Vallecillo, A. An Overview of
Model-Driven Web Engineering and the MDA. In: Rossi, G.,
Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering:
Modelling and Implementing Web Applications. pp. 109-
155. Springer-Verlag, London (2008)

[11] Moreno, L., Martinez, P., and Ruiz, B. A MDD Approach for
Modeling Web Accessibility. WOST (2008), USA,
doi:10.1.1.163.9478

[12] Pastor, O., Gómez, Insfrán, E., and Pelechano, V.: The OO-
Method Approach for Information Systems Modeling: From
Object-Oriented Conceptual Modeling to Automated
Programming. Inf. Syst. 26(7): 507-534 (2001)

[13] Plessers, P., Casteleyn, S., Yesilada, Y., De Troyer, O.,
Stevens, R., Harper, S., and Goble C.: Accessibility: A Web
Engineering Approach. WWW (2005)
doi:10.1145/1060745.1060799

[14] Rossi, G. and Schwabe, D.: Modeling and Implementing Web
Applicactions with OOHDM. In: Rossi, G., Pastor, O.,
Schwabe, D., Olsina, L. (eds.) WE, pp. 109–155. Springer
(2008)

[15] Thatcher, J., Burks, M., Heilmann, Ch., Henry, S., Kirpatrick,
A., Lauke, P., Lawson, B., Regan, B., Rutter, R., Urban, M.,
and Waddell, C.: Web Accessibility - Web Standards and
Regulatory Compliance. Friendsof ED, USA (2006)

[16] De Troyer, O., Casteleyn, S., and Plessers, P.: WSDM: Web
Semantics Design Method. In: Rossi, G., Pastor, O., Schwabe,
D., Olsina, L. (eds.) WE, pp. 303–351. Springer (2008)

[17] Vilain, P., Schwabe, D., and Sieckenius de Souza, C.: A
Diagrammatic Tool for Representing User Interaction in
UML. UML (2000) doi:10.1007/3-540-40011-7_10

[18] W3C: Web Content Accessibility Guidelines 1.0. (WCAG
1.0). http://accessibility.w3.org/TR/WAI-WEBCONTENT/
(1999). Accessed 15 April 2009

[19] W3C: Web Content Accessibility Guidelines 2.0 (WCAG
2.0). http://accessibility.w3.org/TR/WCAG20/ (2008).
Accessed 25 January 2010.

[20] Wirfs-Brock, R., Wilkerson, B., and Wiener, L. Designing
Object–Oriented Software. Prentice–Hall, 1990.

587Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 605 / 729

An Evaluation Framework for Requirements Elicitation in Agile Methods

Waleed Helmy

Faculty of Computers & Information

Cairo University

Cairo, Egypt

Amr Kamel
Faculty of Computers & Information

Cairo University

Cairo, Egypt

 Osman Hegazy

Faculty of Computers & Information

Cairo University

Cairo, Egypt

w.helmy@fci-cu.edu.eg

a.kamel@fci-cu.edu.eg

o.hegazy@fci-cu.edu.eg

Abstract—Gathering, understanding and managing

requirements is a key factor to the success of a software

development effort. There are several requirement techniques

available for requirement gathering which can be used with

agile development methods. These techniques concentrate on a

continuous interaction with the customer to address the

evolution of requirements, changing requirements, prioritizing

requirements and delivering the most important functionalities

first. However, problems have been reported with the use of

the agile methods in the area of requirements elicitation

particularly with an over reliance on a customer and lack of

elicitation guidelines. This paper describe how requirements

elicitation is usually done in more conventional software

development processes and makes an evaluation framework

for the way requirements elicitation can be done in the agile

methods and this could result in improvements to agile

approaches.

Keywords-Agile Methods; Requirements Elicitation; Agile

Requirements Elicitation.

I. INTRODUCTION

Agile software development approaches have become

more popular during the last few years. Several methods

have been developed with the aim to be able to deliver

software faster and to ensure that the software meets

customer changing needs. All these approaches share some

common principles: Improved customer satisfaction,

adapting to changing requirements, frequently delivering

working software, and close collaboration of business

people and developers [4, 9, 13].

Requirements engineering (RE), on the other hand, is a

software engineering process with the goal to identify,

analyze, document and validate requirements for the system

to be developed [14]. Often, requirements engineering and

agile approaches are seen being incompatible: RE is often

heavily relying on documentation for knowledge sharing

while agile methods are focusing on face-to-face

collaboration between customers and developers to reach

similar goals [1].

This paper aims to discuss how requirements elicitation

techniques can be used within agile development context.

Several studies addressed the requirements elicitation in

agile methods. In [15], a new method for automatically

retrieving functional requirements from the stakeholders

using agile processes is presented. The presented method is

a machine learning system for the automation of some

aspects of the software requirements phase in the software

engineering process. This learning system encompasses

knowledge acquisition and belief revision in a knowledge

base. The aim of the algorithm is to collect information from

the various stakeholders and integrate a variety of learning

methods in the knowledge acquisition process, while

involving certain and plausible reasoning.

The goal oriented requirements engineering method

proposed in [11] identifies the requirements in terms of

goals which are well understood by the stakeholders and the

goals are generally extracted from the stakeholders. While

extracting the goals, the high level goals are

decomposed/refined/broken to get the lower level goals/sub-

goals involving active participation of stakeholders through

the process of goal decomposition/refinement/splitting

involving Agents.

Since micro-businesses have restrictions with their

budget, manpower, and technical exposure to software,

some trade-offs must be addressed. A novel approach in

[16] demonstrated how several models and techniques such

as goals, business process models, patterns, and non-

functional requirements, have helped in defining the

software requirements of the micro-business.

However, problems have been reported with the use of

the agile methods in the area of requirements elicitation

particularly with an over reliance on a customer and lack of

elicitation guidelines. This paper describe how requirements

elicitation is usually done in more conventional software

development processes and makes an evaluation framework

for the way requirements elicitation can be done in the agile

methods and this could result in improvements to agile

approaches.

The next section gives an overview on what the

requirements elicitation is and what its techniques are.

Section III states the agile manifesto. Section IV discusses

agile methods from the requirements elicitation perspective.

Section V summarizes the agile requirements engineering.

In Section VI, we provide an evaluation framework for

requirements elicitation in agile methods. Section VII

summarizes the requirements elicitation issues in agile

methods. The last section presents the conclusion.

II. REQUIREMENTS ELICITATION

Requirements engineering is concerned with identifying,

modeling, communicating and documenting the

requirements for a system, and the contexts in which the

system will be used. Requirements describe what is to be

588Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 606 / 729

done but not how they are implemented [6]. There are many

techniques available for use during the RE process to ensure

that the requirements are complete, consistent and relevant.

The fundamental principle underlying requirements

engineering is that a system should be clearly specified

before its design and implementation [11]. So, the aim of

RE is to help to know what to build before system

development starts in order to prevent costly rework. This

goal is based on two major assumptions:

- The later mistakes are discovered the more

expensive it will be to correct them [3].

- It is possible to determine a stable set of

requirements before system design and

implementation starts.

The RE process consists of five main activities [2]:

Elicitation, Analysis and Negotiation, Documentation,

Validation, and Management.

Requirements elicitation tries to discover requirements

and identify system boundaries by consulting stakeholders

(e.g., clients, developers, users). System boundaries define

the context of the system. Understanding the application

domain, business needs, system constraints, stakeholders

and the problem itself is essential to gain an understanding

of the system to be developed.

The most important techniques for requirements

elicitation are described in the remainder of this section.

Interviews: Interviewing is a method for discovering facts

and opinions held by potential users and other stakeholders

of the system under development. Mistakes and

misunderstandings can be identified and cleared up. There

are two different kinds of interviews:

- The closed interview, where the requirements

engineer has a pre-defined set of questions and is

looking for answers

- The open interview, without any pre-defined

questions the requirements engineer and

stakeholders discuss in an open-ended way what

they expect from a system.

In fact, there is no distinct boundary between both kinds of

interviews. You start with some questions which are

discussed and lead to new questions [8]. The advantage of

interviews is that they help the developer to get a rich

collection of information. Their disadvantage is that this

amount of qualitative data can be hard to analyze and

different stakeholders may provide conflicting information.

Observation and Social Analysis: Observational methods

involve an investigator viewing users as they work and

taking notes on the activity that takes place. Observation

may be either direct with the investigator being present

during the task, or indirect, where the task is viewed by

some other means (e.g. recorded video). It is useful for

studying currently executed tasks and processes.

Observation allows the observer to view what users actually

do in context. This overcomes issues with stakeholders

describing idealized or oversimplified work processes.

Focus Groups: Focus groups are an informal technique

where a small group of users from different backgrounds

and with different skills discuss in a free form issues and

concerns about features of a system prototype. Focus groups

help to identify user needs and perceptions, what things are

important to them and what they want from the system.

They often bring out spontaneous reactions and ideas. Since

there is often a major difference between what people says

and what they do, observations should complement focus

groups.

Focus groups can support the articulation of visions, design

proposals and a product concept. Additionally, they help

users in analyzing things that should be changed, and

support the development of a ’shared meaning’ of the

system [7].

Brainstorming: Brainstorming helps to develop creative

solutions for specific problems. Brainstorming contains two

phases - the generation phase, where ideas are collected, and

the evaluation phase, where the collected ideas are

discussed. In the generation phase, ideas should not be

criticized or evaluated. The ideas should be developed fast

and be broad. Brainstorming leads to a better problem

understanding and a feeling of common ownership of the

result.

Prototyping: A prototype of a system is an initial version of

the system which is available early in the development

process. Prototypes of software systems are often used to

help elicit and validate system requirements. There are two

different types of prototypes. Throw-away prototypes help

to understand difficult requirements. Evolutionary

prototypes deliver a workable system to the customer and

often become a part of the final system. Prototypes can be

paper based (where a mock-up of the system is developed

on paper), ”Wizard of Oz” prototypes (where a person

simulates the responses of the system in response to some

user inputs) or automated prototypes (where a rapid

development environment is used to develop an executable

prototype).

III. AGILE MANIFESTO

The Agile manifesto as the Agile Manifesto official site

states is as follows "We are uncovering better ways of

developing software by doing it and helping others do it.

Through this work we have come to value:

 Individuals and interactions over processes and

tools.

 Working software over comprehensive

documentation.

 Customer collaboration over contract negotiation.

 Responding to change over following a plan.

That is while there is value in the items on the right; we

value the items in the left more." [9].

IV. AGILE METHODS

A. Extreme Programming

XP uses story cards for elicitation [1]. A user story is a

description of a feature that provides business value to the

589Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 607 / 729

customer. Use cases, on the other hand, are a description of

interactions of the system and its users and do not

mandatory have to provide business value.

Before story cards can be written, customers have to

think about what they expect the system to do. This process

can be seen as brainstorming. Thinking about a specific

functionality leads to more ideas and to more user stories.

Every story is discussed in an open-ended way before

implementation. Initially, developers ask for enough details

to be able to estimate the effort for implementing the story.

Based on these estimates and the time available, customers

prioritize stories to be addressed in the next iteration. XP

emphasizes writing tests before coding. Acceptance tests are

defined by the customer and are used to validate the

completion of a story card. XP is based on frequent small

releases. This can be compared with requirements review

and with evolutionary prototyping.

B. Scrum

The main Scrum techniques are the product backlog,

sprints, and daily scrums [1]. With regard to Requirements

Engineering the product backlog plays a special role in

Scrum. All requirements regarded as necessary or useful for

the product are listed in the product backlog. It contains a

prioritized list of all features, functions, enhancements, and

bugs. The product backlog can be compared with an

incomplete and changing (a kind of “living”) requirements

document containing information needed for development.

For each sprint (= 30 day development iteration), the highest

priority tasks from the backlog are moved to the sprint

backlog. No changes are allowed to the sprint backlog

during the sprint. I.e. there is no flexibility in the

requirements to be fulfilled during a sprint but there is

absolute flexibility for the customer reprioritizing the

requirements for the next sprint. At the end of a Sprint a

sprint review meeting is held that demonstrates the new

functionality to the customer and solicits feedback.

C. Feature Driven Development

Feature Driven Development (FDD) is a short iteration

process for software development focusing on the design

and building phase instead of covering the entire software

development process [4]. In the first phase, the overall

domain model is developed by domain experts and

developers. The overall model consists of class diagrams

with classes, relationships, methods, and attributes. The

methods express functionality and are the base for building

a feature list. A feature in FDD is a client-valued function.

The items of the feature list are prioritized by the team. The

feature list is reviewed by domain members [5]. FDD

proposes a weekly 30-minute meeting in which the status of

the features is discussed and a report about the meeting is

written. Reporting can roughly be compared with

requirements tracking.

D. Agile Modeling

The basic idea of AM [2] is to give developers a

guideline of how to build models that help to resolve design

problems but not ’over-build’ these models. Like XP, AM

points out that changes are normal in software development.

AM does not explicitly refer to any RE techniques but some

of the practices support several RE techniques (e.g. tests and

brainstorming). AM highlights the difference between

informal models whose sole purpose is to support face-to-

face communication and models that are preserved and

maintained as part of the system documentation. The later

are what is often found in RE approaches.

V. AGILE REQUIREMENTS ENGINEERING

The agile principles applied to software engineering

include iterative and incremental development, frequent

releases of software, direct customer involvement, minimal

documentation and welcome changing requirements even

late in the development cycle [6].

Conventional RE processes focus on gathering all the

requirements and preparing the requirements specification

document up front before proceeding to the design phase.

These up front requirements gathering and specification

efforts leave no room to accommodate changing

requirements late in the development cycle. On the other

hand,

On the other hand, agile requirement engineering [12]

aims at applying agile thoughts to traditional requirement

engineering. It is the optimization and improvement of

traditional requirement engineering, getting it fit to the

continuous changes of requirements.

Agile RE welcomes changing requirements even late in the

development cycle [3]. This is achieved by using the agile

practice of Evolutionary Requirements which suggests that

requirements evolve over the course of many iterations

rather than being gathered and specified up front. Hence,

changes to requirements even late in the development cycle

can be accommodated easily.

Initially, the high level features for the system are

defined where features indicate the expected functionality.

All the features have to be identified upfront in order to

determine the scope of the system. These features describe

the expected functionality of business value to the

customers. The development period spans multiple release

cycles. Only one feature or a subset of the identified features

is considered for development during a release cycle. Then,

the requirements for each feature are gathered just-in-time

(JIT) from the customers before the development of that

feature. As only a subset of the identified features is

implemented during a release cycle, only details of this

subset of features are gathered from the customers.

Customer are actively involved in the Agile RE process.

Usually, a customer is available onsite to provide details of

the features to the development team. Direct customer

involvement facilitates the adoption of the JIT philosophy.

590Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 608 / 729

Agile RE accommodates rapidly changing requirements.

Changes to requirements identified are logged and are

implemented in the following iterations. As only a subset of

features is implemented during a release cycle, changes to

these features do not affect the other features that are yet to

be built.

Agile RE focuses on minimal documentation. No formal

Requirements Specification is produced. The features and

the requirements are recorded on story boards and index

cards. The artifacts produced depend on the project. Some

Agile RE artifacts are paper prototypes, use case diagrams

and data flow diagrams. However, if the client requires

formal documentation to be produced, the development

team strives to produce the same.

Verification and Validation (V&V) of requirements in

agile RE is more of a validation process. The agreed

standards used for verification are usually stated in the form

of user stories and hence, V&V is more of a validation

process. Validation is not explicit and is carried out just-in-

time. There is no specification of explicit validation

activities in agile RE. As the customer is usually available

onsite, the features/ requirements can be validated as and

when required. Some Agile RE practices are listed below:

Evolutionary Requirements – The requirements are

allowed to evolve over time. All the requirements are not

identified upfront. This practice is called No Big

Requirements Up Front (BRUF).

Incremental and iterative implementation of

requirements – Agile RE suggests incremental

development of software. The development period is

divided into release cycles and each release cycle spans

multiple iterations. Hence, the requirements are

implemented in an iterative and incremental fashion.

Accommodate change late in the development life cycle –

The main objective of Agile RE is to accommodate

changing requirements even late in the development cycle.

Usually changes identified to features are logged and

incorporated during the future iterations.

Minimal requirements documentation – Documentation

is usually in the form of features or stories recorded on

index cards. No formal requirements specification

documents are produced. However, when employing third

party organizations for performing maintenance activities,

minimal documentation is a disadvantage.

Gather details just-in-time– The development team defers

gathering details till the latest responsible moment. Only the

details of the features to be implemented during a release

cycle are gathered. Adopting JIT philosophy helps

accommodate changing requirements.

Implicit Verification and Validation (V&V) – As

mentioned earlier, V&V is more of a validation process.

Validation is not carried out explicitly.

Treat requirements like prioritized stack – Agile methods

specify that the requirements should be considered similar

to a prioritized stack. The features are prioritized by the

customers based on their business value. These prioritized

features are stored in a stack and ordered by their priorities.

Adopt user terminology – The features and requirements

are recorded in the domain language of the user. This is

done in order to help users understand the captured needs

and requirements.

Direct customer involvement – Agile RE mandates the

involvement of customers at every stage of the development

process. As customers are involved throughout, the

developers can gather details about the features just-in-time.

VI. AN EVALUATION FRAMEWORK

The table below is an evaluation framework for the

requirements elicitation techniques in agile methods. The

framework compares four agile methods with respect to

requirements elicitation.

In the previous sections, we gave an overview on

requirements elicitation techniques as well as on agile

methods. Here, we now analyze potential synergies between

these approaches.

TABLE 1: AN EVALUATION FRAMEWORK FOR REQUIREMENTS
ELICITATION IN AGILE METHODS

 Method

 RE

Practice

XP

Scrum

Agile

Modeling

FDD

Req.

Elicitation

User Stories

Interview,

Brainstorming

Product

Backlog

Interview

X

Brainstorming

Feature List

Interview

Customer involvement: The CHAOS report [7] showed the

critical importance of customer involvement. Customer

involvement was found to be the number one reason for

project success, while the lack of user involvement was the

main reason given for projects that ran into difficulties. A

key point in all agile approaches is to have the customer

’accessible’ or ’on-site’. Thus, traditional RE and agile

methods agree on the importance of stakeholder

involvement

Agile methods often assume an “ideal” customer

representative: the representative can answer all developer

questions correctly, she is empowered to make binding

decisions and able to make the right decisions. Even if the

requirements are elicited in group sessions (Scrum) it is not

guaranteed that users or customers with all necessary

backgrounds are present. On the other hand, RE has a less

idealized picture of stakeholder involvement. The different

elicitation techniques aim to get as much knowledge as

possible from all stakeholders and resolve inconsistencies.

In addition, RE uses externalization and reviews to ensure

that all requirements are known and conflicting

requirements are in the open

Another difference between traditional approaches and

agile methods is that in traditional approaches the customer

is mainly involved during the early phase of the project

while agile methods involve the customer throughout the

whole development process.

591Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 609 / 729

Feature: In agile development, a feature is a chunk of

functionality that delivers business value. Features can

include additions or changes to existing functionality. A

feature should adhere to the following criteria:

 It should provide business value

 It should be estimable - it must have enough

definition for the development team to provide an

estimate of the work involved in implementing it

 It should be small enough to fit within an iteration -

therefore, if it is too big, it should be broken down

further

 It should be testable - you should understand what

automated or manual test a feature should pass in

order to be acceptable to the customer

The different agile methods use different terminology to

refer to features. It is up to the team to decide which

methodology or terminology to use. Extreme Programming

uses the terms User Stories or Stories to represent features;

Scrum uses Product Backlog to describe a feature list;

Feature-Driven Development uses Feature. Ultimately, the

goal is the same - to deliver business value regularly in

small increments, and sooner rather than later.

Product Backlog, Features, User Stories: The product

backlog is an ordered list of "requirements" that is

maintained for a product. It contains product backlog Items

that are ordered based on considerations like risk, business

value, dependencies, date needed, etc. The features added to

the backlog are commonly written in story format. The

product backlog is the “What” that will be built, sorted in

the relative order it should be built in. The product backlog

contains rough estimates of business value and development

effort, these values are often stated in story points.

Interviews As customer involvement is a primary goal of

agile software development, the most common RE-related

technique are interviews. Interviews provide direct and

“unfiltered” access to the needed knowledge. It is known

that chains of knowledge transfer lead to misunderstandings.

All agile approaches emphasize that talking to the customer

is the best way to get information needed for development

and to avoid misunderstandings. If anything is not clear or

only vaguely defined, team members should talk to the

responsible person and avoid chains of knowledge transfer.

Direct interaction also helps establishing trust relationships

between customers and developers.

Brainstorming: This technique is not explicitly mentioned

in any agile software development method but can be used

with any approach.

VII. REQUIREMENTS ELICITATION ISSUES IN

AGILE METHODS

The agile requirements elicitation approach toward

requirements usually results in several architecture-related

issues that can potentially have negative impact on

architectural practices, artifacts or design decisions [10].

Following paragraphs describe the most commonly

observed requirements elicitation issues when using agile

approaches are:

Lack of focus on Non Functional Requirements: In agile

approaches handling of non-functional requirements is ill

defined [1]. Customers or users talking about what they

want the system to do normally do not think about

maintainability, portability, safety or performance. Some

requirements concerning user interface or safety can be

elicited during the development process and still be

integrated. But most non-functional requirements should be

known in development because they can affect the choice of

database, programming language or operating system. Agile

methods need to include more explicitly the handling of

non-functional requirements in a way they can be analyzed

before implementation.

Incomplete Requirements Elicitation: The “user stories”

or the like are just the beginning points of both the

requirements gathering and development processes in agile

methods. Early requirements are simply a place to start. It is

expected to add more requirements as more is known about

the product. This attitude toward requirements makes

software architecture development more difficult. The

architecture that chosen by the team during the early cycles

may become wrong, as later requirements becomes known

[8].

VIII. CONCLUSION

This paper presented an evaluation framework of how

the requirements are elicited in four common agile methods:

XP, scrum, agile modeling, and FDD.

XP uses story cards for requirements elicitation through

interviews and brainstorming techniques. In Scrum, all

requirements regarded as necessary or useful for the product

are listed in the product backlog. It contains a prioritized list

of all features, functions, enhancements, and bugs. The

requirements are elicited from users through interviews. In

FDD, the overall domain model is developed that consists of

class diagrams with classes, relationships, methods, and

attributes. The methods express functionality and are the

base for building a feature list. The feature list is elicited

through interviews. AM does not explicitly refer to any RE

techniques but some of the practices support several RE

techniques (e.g. tests and brainstorming).

The agile requirements elicitation approach toward

requirements usually results in several architecture-related

issues that can potentially have negative impact on

architectural practices, artifacts or design decisions [10].
The “user stories” or the like are just the beginning points of

both the requirements gathering and development processes

in agile methods. Early requirements are simply a place to

start. It is expected to add more requirements as more is

known about the product. Agile methods, however, have a

lack of focus on certain parts of what is considered as

important in requirements engineering. The customers don't

usually cover non-functional requirements when they define

requirements.

592Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 610 / 729

REFERENCES

[1] Eberlein, A., Maurer, F., and Paetsch, F., "Requirements
Engineering and Agile Software Development", Proceedings
of the Twelfth International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
IEEE CS Press, pp. 308-313, 2003.

[2] Scott, W., "Agile Modeling", John Wiley & Sons, 2001.

[3] Scott, W., "Agile Requirements Modeling",
http://www.agilemodeling.com/essays/agileRequirements.htm
, retrieved: October, 2012.

[4] Pekka, A., Outi, S., Jussi, R., and Juhani, W., "Agile software
development methods - Review and analysis", VTT
Publications, No. 478, 2002.

[5] Peter, C., Eric, L., and Jeff, L., "Java Modeling in Color with
UML", Prentice Hall PTR, Chapter 6, 1999.

[6] Soundararajan, S." Agile Requirements Generation Model: A
Soft-structured Approach to Agile Requirements
Engineering". Master Thesis. Faculty of the Virginia
Polytechnic Institute and State University, Blacksburg, VA.
2008.

[7] Standish Group: Chaos Report, http://
www.standishgroup.com, retrieved: October, 2012.

[8] Tomayko, J., "Engineering of Unstable Requirements Using
Agile Methods", International Conference on Time-
Constrained Requirements Engineering, Essen, Germany,
2002.

[9] Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham,
W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R.,
Kern, J., Marick, B., Martin R., Mellor, S., Schwaber, K., Sutherland,
J., Thomas, D., "Manifesto for Agile software Development",
http://www.agilemanifesto.org/, retrieved: October, 2012.

[10] Babar, M., "An exploratory study of architectural practices
and challenges in using agile software development
approaches", http://ulir.ul.ie/handle/10344/1127, retrieved:
October 2012.

[11] Sen, M. and Hemachandran, K., "Elicitation of Goals in
Requirements Engineering Using Agile Methods",
Proceedings of the 2010 IEEE 34th Annual Computer
Software and Applications Conference Workshops, pp. 263-
268, 2010.

[12] Jun, L., Qiuzhen, W., and Lin, G., "Application of Agile
Requirement Engineering in Modest-Sized Information
Systems Development", Proceedings of the 2010 Second
World Congress on Software Engineering - Volume 01 Pages
207-210, 2010.

[13] Poppendieck, T. and Poppendieck, M., "Lean software
development: An agile toolkit for software development
managers", Addison-Wesley, London UK, 2003.

[14] Kotonya, G. and Sommerville, I., "Requirements Engineering
Processes and Techniques", John Wiley & Sons, Chichester,
UK, 2002.

[15] Ankori, R., "Automatic Requirements Elicitation in Agile
Processes", the IEEE International Conference on Software -
Science, Technology & Engineering, pp. 101-109, 2005.

[16] Macaseat, R., Chung, L., Garrido, J., Noguera, M., and Luisa,
M., " An agile requirements elicitation approach based on
NFRs and business process models for micro-businesses, 12th
International Conference on Product Focused Software
Development and Process Improvement, pp. 50-56, 2011.

593Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 611 / 729

An Evaluation Framework for Requirements Envisioning in Agile Methods

Waleed Helmy

Faculty of Computers & Information.

Cairo University

Cairo, Egypt

Amr Kamel

Faculty of Computers & Information.

Cairo University

Cairo, Egypt

Osman Hegazy

Faculty of Computers & Information.

Cairo University

Cairo, Egypt

w.helmy@fci-cu.edu.eg

a.kamel@fci-cu.edu.eg

o.hegazy@fci-cu.edu.eg

Abstract—A common agile practice is to perform some high-

level requirements envisioning early in the project to gather

and document business requirements during the initial phase

of the project. The goals of requirements envisioning are to

develop a common vision, identify the business goals, and

identify the initial requirements for the system at a high-

level. This paper presents an evaluation framework for the way

the requirements envisioning can be done in the agile methods.

Keywords-Requirements Envisioning; Agile Requirements

Envisioning, Envisioning in Agile Methods.

I. INTRODUCTION

Information system development methodologies refer to

a standard process followed in an organization to conduct all

the steps necessary to analyze, design, implement, and

maintain information systems [2]. They are developed to

assure that software systems met established requirements.

There are a number of methodologies used to develop and

improve the systems such as the traditional waterfall,

incremental development, prototyping, and spiral [13].

These methodologies impose a disciplined process upon

software development with the aim of making software

development more predictable and more efficient. They do

this by developing a detailed process with a strong emphasis

on planning aspired by other engineering methodologies.

However, these traditional systems development

methodologies sometimes fall short in the new business

environment [14]. They are too "heavy" to keep up with the

pace of new business software development projects.

In response to the problems of the traditional

methodologies, the agile methodology has evolved in the

mid-1990s. Highsmith and Cockburn in [12] wrote that

"what are new about agile methods is not the practices they

use, but their recognition of people as the primary drivers of

project success, coupled with an intense focus on

effectiveness and maneuverability. This yields a new

combination of values and principles that define an agile

world view".

While Nerur and Balijepally in [3] defined agile

methodologies as people-centric, that recognize the value of

skilled people and their relationships bring to software

development. They also explained in their paper that Agile

methods focus on providing high customer satisfaction

through three principles: quick delivery of quality software;

active participation of concerned stakeholders; and creating

and acting effectively toward changes. They added that big

upfront designs, plans and extensive documentation are of

little value to practitioners of agile methods. In [4] agile is

defined as a software development method that is people-

focused, communication-oriented, flexible (ready to adapt to

expected change at any time), speedy (encourage rapid and

iterative development of the product in small releases), lean

(focuses on shortening timeframe and cost and on improved

quality), responsive (reacts appropriately to expected and

unexpected changes), and learning (focuses on improvement

during and after product development).

However, this paper focuses only on the agile methods

and the way the requirements envisioning can be done in the

agile methods. A common agile practice is to perform some

high-level requirements envisioning early in the project to

help come to a common understanding as to the scope of

what you're trying to accomplish. The goals at this point are

to identify the business goals for the effort, develop a

common vision, and quickly identify the initial requirements

for the system at a high-level. This initial requirements

envisioning effort is on the order of hours or days, not

weeks or months, as we see on traditional projects.

The next section presents the agile software

development life cycle. Section III gives an overview on

agile requirements envisioning. Section IV discusses four

agile methods namely XP, Scrum, Feature Driven

Development, and Agile modeling. Section V presents an

evaluation framework for requirements envisioning in four

agile methods. The last section presents the research

conclusion.

II. AGILE SDLC

 Agile software development life cycle is comprised of

six phases: Iteration -1/Pre-Planning, Iteration 0/Warm Up,

Construction, Release/End Game, Production, and

Retirement [11]. Here is a description of each phase.

A. Iteration -1: Pre-Project Planning

This phase includes the following activities:

- Define the business opportunities

- Identify a viable for the project

- Assess the visibility

594Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 612 / 729

B. Iteration 0/Warm Up: Project Initiation

The first week or so of an agile project is often referred

to as “Iteration 0” (or "Cycle 0"). The goal during this

period is to initiate the project by:

- Garnering initial support and funding for the

project.

- Starting to build the team.

- Setting up the environment.

C. Estimating the project: Construction Iterations

During construction iterations agilists incrementally

deliver high-quality working software which meets the

changing needs of our stakeholders. This can be achieved

by:

- Collaborating closely with both our stakeholders

and with other developers

- Implementing functionality in priority order

- Analyzing and designing

- Ensuring quality

- Regularly delivering working software

- Testing, testing, and yes, testing.

D. Release Iterations(s): The "End Game"

During the release iteration(s), also known as the "end

game", we move the system into production. There are

several important aspects to this effort:

- Final testing of the system.

- Rework. There is no value testing the system if

you don't plan to act on the defects that you

find. You may not address all defects, but you

should expect to fix some of them.

- Finalization of any system and user

documentation.

- Training. We train end users, operations staff, and

support staff to work effectively with our system

- Deploy the system

E. Production

The goal of the Production Phase is to keep systems

useful and productive after they have been deployed to the

user community. This process will differ from organization

to organization and perhaps even from system to system, but

the fundamental goal remains the same: keep the system

running and help users to use it.

F. Retirement

The goal of the Retirement Phase is the removal of a

system release from production, and occasionally even the

complete system itself, an activity also known as system

decommissioning. Retirement of systems is a serious issue

faced by many organizations today as legacy systems are

removed and replaced by new systems. You must strive to

complete this effort with minimal impact to business

operations. If you have tried this in the past, you know how

complex it can be to execute successfully.

III. AGILE REQUIREMENTS ENVISIONING

Agile requirements activities are evolutionary (iterative

and incremental) and highly collaborative in nature.

Initially, requirements are explored at a high level via

requirements envisioning at the beginning of the project and

the details are explored on a just-in-time (JIT) basis via

iteration modeling and model storming activities. The

strategy is to take advantage of modeling, which is to

communicate and think things through without taking on the

risks associated with detailed specifications written early in

the lifecycle, a traditional practice referred to as "Big

Requirements Up Front" [1]. For the first release of a

system you need to take several days, with a maximum of

two weeks for the vast majority of business systems, for

initial requirements and architecture envisioning. There are

several models to envision the requirements which are:

High-level use cases (or user stories) - The most detail that

we would capture would be point form notes for some of the

more complex use cases, but the majority just might have a

name. The details are best captured on a just-in-time (JIT)

basis during construction.

User interface flow diagram - This provides an overview

of screens and reports and how they're inter-related.

User interface sketches - Sketch out a few of the critical

screens and reports to give your stakeholders a good gut

feeling that you understand what they need.

Domain model - A high-level domain model shows major

business entities and the relationships between them. Listing

responsibilities, both data attributes and behaviors, can be

left until later iterations.

Process diagrams - A high-level process diagram that

shows some of the critical processes, are likely needed to

understand the business flow.

Use-case diagram - Instead of a high-level process diagram

you might want to do a high-level use case diagram instead.

IV. AGILE METHODS

Agile methods, generally, promote a disciplined project

management process that encourages frequent inspection

and adaptation, a leadership philosophy that encourages

teamwork, self-organization and accountability, a set of

engineering best practices that allow for rapid delivery of

high-quality software, and a business approach that aligns

development with customer needs and company goals [9].

A. Extreme Programming

XP uses story cards for elicitation [5]. A user story is a

description of a feature that provides business value to the

customer. Use cases, on the other hand, are a description of

interactions of the system and its users and do not

mandatory have to provide business value.

Before story cards can be written, customers have to

think about what they expect the system to do. This process

can be seen as brainstorming. Thinking about a specific

functionality leads to more ideas and to more user stories.

595Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 613 / 729

Every story is discussed in an open-ended way before

implementation. Initially, developers ask for enough details

to be able to estimate the effort for implementing the story.

Based on these estimates and the time available, customers

prioritize stories to be addressed in the next iteration. XP

emphasizes writing tests before coding. Acceptance tests are

defined by the customer and are used to validate the

completion of a story card. XP is based on frequent small

releases. This can be compared with requirements review

and with evolutionary prototyping.

B. Scrum

The main Scrum techniques are the product backlog,

sprints, and daily scrums [5]. With regard to Requirements

Engineering the product backlog plays a special role in

Scrum. All requirements regarded as necessary or useful for

the product are listed in the product backlog. It contains a

prioritized list of all features, functions, enhancements, and

bugs. The product backlog can be compared with an

incomplete and changing (a kind of “living”) requirements

document containing information needed for development.

For each sprint (= 30 day development iteration), the highest

priority tasks from the backlog are moved to the sprint

backlog. No changes are allowed to the sprint backlog

during the sprint. I.e. there is no flexibility in the

requirements to be fulfilled during a sprint but there is

absolute flexibility for the customer reprioritizing the

requirements for the next sprint. At the end of a sprint,

a potentially shippable product is delivered and a sprint review

meeting is held that demonstrates the new functionality to

the customer and solicits feedback [10]

C. Feature Driven Development

As the name implies, features are an important aspect of

Feature Driven Development (FDD). A feature is a small,

client-valued function. Features are to FDD as use cases are

to the Rational Unified Process (RUP) and user stories are

to XP – they’re a primary source of requirements and the

primary input into your planning efforts.

FDD is a short iteration process for software

development focusing on the design and building phase

instead of covering the entire software development process

[6]. In the first phase, the overall domain model is

developed by domain experts and developers. The overall

model consists of class diagrams with classes, relationships,

methods, and attributes. The methods express functionality

and are the base for building a feature list. A feature in FDD

is a client-valued function. The items of the feature list are

prioritized by the team. The feature list is reviewed by

domain members [7]. FDD proposes a weekly 30-minute

meeting in which the status of the features is discussed and a

report about the meeting is written. Reporting can roughly

be compared with requirements tracking.

D. Agile Modeling

The basic idea of Agile Modeling (AM) is to give

developers a guideline of how to build models that help to

resolve design problems but not ’over-build’ these models

[8]. Like XP, AM points out that changes are normal in

software development. AM does not explicitly refer to any

RE techniques but some of the practices support several RE

techniques (e.g., tests and brainstorming). AM highlights

the difference between informal models whose sole purpose

is to support face-to-face communication and models that

are preserved and maintained as part of the system

documentation. The later are what is often found in RE

approaches.

V. AN EVALUATION FRAMEWORK

Table 1 presents an evaluation framework for

requirements envisioning in agile methods. The framework

compares four agile methods: Scrum, extreme

Programming, Feature Driven Development, and Agile

Modeling Driven Development with respect to three

evaluation criteria: Activities, Participants, and Time Frame.

TABLE 1: AN EVALUATION FRAMEWORK FOR REQUIREMENTS
ENVISIONING IN AGILE METHODS

 Criteria

 Agile

Method

Activities

Participants

Time Frame

XP

Initial Requirements

Modeling, Initial

Architecture

Modeling

All Team

Members

Hours

or

days

Scrum

X

All Team

Members

Hours

 or

days

FDD

Build an Object

Model

All Team

Members

Hours

 Or

days

AMDD

Initial Requirements

Envisioning, Initial

Architecture

Envisioning

All Team

Members

Hours

 Or

 days

 XP encompasses the initial requirements modeling and

initial architectural modeling aspects of the agile software

development lifecycle. This phase includes development of

the architectural spike and the development of the initial

user stories. From a requirements point of view it suggests

that you require enough material in the user stories to make

a first good release and the developers should be sufficiently

confident that they can’t estimate any better without actually

596Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 614 / 729

implementing the system. Every project has a scope,

something that is typically based on a collection of initial

requirements for your system. Although the XP lifecycle

does not explicitly include a specific scope definition task it

implies one with user stories being an input into release

planning. User stories are a primary driver of the XP

methodology – they provide high-level requirements for

your system and are the critical input into your planning

process. The implication is that you need a collection of

user stories, anywhere from a handful to several dozen, to

get your XP project started. The second aspect of the

exploration phase focuses on your system architecture. The

architecture within an XP project is less formal than in

traditional methodologies, with a preference for keeping

your system flexible – XP recommends that you embrace

change, whereas architecture-driven approaches advise you

to build the skeleton the system first because some things

are difficult to change. The XP approach is to identify a

metaphor that describes how you intend to build your

system. The metaphor acts as a conceptual framework,

identifying key objects and providing insight into their

interfaces. The metaphor is defined during an architectural

spike early in the project, during the first iteration or during

a pre-iteration that is sometimes referred to as a zero-feature

release (ZFR).

In scrum project life cycle, there are no structured

activities for requirements envisioning. The requirements

are treated like a prioritized stack, pulling just enough work

off the stack for the current iteration. At the end of the

iteration, the system is demoed to the stakeholders to verify

that the work that the team promised to do at the beginning

of the iteration was in fact accomplished. But, where does

the product backlog come from? It is actually the result of

initial requirements envisioning early in the project.

An FDD project starts by building overall domain

model to envision the requirements. The goal of envisioning

is to identify the scope of the effort, the initial architecture,

and the initial high-level plan. As with other agile software

development processes, systems are delivered incrementally

by FDD teams.

The envisioning activity in agile modeling includes two

main sub-activities, initial requirements envisioning and

initial architecture envisioning [4]. These are done during

iteration 0, iteration being another term for cycle or

sprint. The envisioning effort is typically performed during

the first week of a project, the goal of which is to identify

the scope of your system and a likely architecture for

addressing it. To do this you will do both high-level

requirements modeling and high-level architecture

modeling. The goal isn't to write detailed specifications that

prove incredibly risky in practice, but instead to explore the

requirements and come to an overall strategy for your

project. Finally and as shown in table 1, we need to take

several days, with a maximum of two weeks for the vast

majority of business systems, for initial requirements and

architecture envisioning.

VI. CONCLUSION

Agile requirements envisioning aims to develop a high

level understanding of the project. This allows the initial

identifications of requirements for the system at the

beginning of the project. This paper presented an evaluation

framework for requirements envisioning in four agile

methods: XP, Scrum, Feature Driven Development, and

Agile Modeling. The results showed that clear specification

of activities in the agile requirements envisioning process is

missing and there is a lack of a set of activities and

techniques that practitioners can choose from. Hence, there

is a need to develop a structured approach that clearly

outlines the activities of the agile requirements envisioning

process and suggests techniques or practices that can be

used.

REFERENCES

[1] Ambler, S., "Examining the "Big Requirements Up Front

(BRUF) Approach",

http://www.agilemodeling.com/essays/examiningBRUF.htm,

retrieved: October, 2012.

[2] Hoffer, H., George, J., and Vlacich, J., "Modern Systems

Analysis and Design", Pearson Prentice Hall, 2006.

[3] Nerur, S. and Balijepally, V., "Theoretical reflections on agile

development methodologies", Communication of the ACM,

vol. 50, pp. 79-83, 2007.

[4] Qumer, A. and Sellers, B., "An evaluation of the degree of

agility in six agile methods and its implacability for method

engineering”, Information and Software Technology, 2007.

[5] Eberlein, A., Maurer, F., and Paetsch, F., "Requirements

Engineering and Agile Software Development", Proceedings

of the Twelfth International Workshop on Enabling

Technologies: Infrastructure for Collaborative Enterprises,

2003.

[6] Pekka, A., Outi, S., Jussi, R., and Juhani, W., "Agile software

development methods - Review and analysis", Publications,

No. 478, 2002.

[7] Peter, C., Eric, L., and Jeff, L., "Java Modeling in Color with

UML", Prentice Hall PTR, Chapter 6, 1999.

[8] Scott, W., "Agile Modeling", John Wiley & Sons, 2001.

[9] http://en.wikipedia.org/wiki/Agile_software_development,

retrieved: October, 2012.

[10] Meng, X.,Wang, Y., Shi, L., and Wang, F., "A process pattern

Language for Agile Methods", 14 th Asia-Pacific Software

Engineering Conference, 2007.

[11] Ambler, S., "The Agile System Development Life Cycle",

www.ambysoft.com/essays/agileLifecycle.html, retrieved:

October, 2012.

[12] Highsmith, J. and Cockburn, A., "Agile Software

Development: The Business of Innovation", IEEE Computer,

Vol. 34, No. 9, pp. 120 – 127, 2001.

[13] Sommerville, I., "Software Engineering", Addison

Wesley, 7th edition, 2004.

[14] Seyam, M. and Galal-Edeen, G., "Traditional versus Agile:

The Tragile Framework for Information Systems

development", the International Journal of Software

Engineering (IJSE), Vol. 4, No. 1, pp. 63-93, ISSN: 1687-

6954, 2011.

597Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 615 / 729

AgileKDD:
An Agile Business Intelligence Process Model

Givanildo Santana do Nascimento
Federal University of Sergipe

São Cristóvão, Brazil
gsnascimento@petrobras.com.br

Adicinéia Aparecida de Oliveira
Federal University of Sergipe

São Cristóvão, Brazil
adicineia@ufs.br

Abstract — In a knowledge-based society, transforming data
into information and knowledge to support the decision-
making process is a crucial success factor for all the
organizations. In this context, one mission of Software
Engineering is to produce systems able to process large
volumes of data, transform them into relevant knowledge and
deliver them to customers, so they can make right decisions at
the right time. However, companies still face failures in
determining the process model used in their Knowledge
Discovery in Databases and Business Intelligence projects. This
article introduces the AgileKDD, an agile and disciplined
process for developing systems capable of discovering the
knowledge hidden in databases, built on top of the Open
Unified Process. A case study shows that AgileKDD can guide
projects whose goal is to develop Knowledge Discovery in
Databases and Business Intelligence applications, increasing
success factor as well as customer satisfaction.

Keywords – Business Intelligence; Knowledge Discovery in
Databases; Agile Software Development; Software Process.

I. INTRODUCTION

In 1996, the Organization for Economic Cooperation and
Development (OECD) redefined knowledge-based
economies as: “economies which are directly based on the
production, distribution and use of knowledge and
information” [1]. In knowledge-based economies, the global
competition is increasingly based on the ability to transform
data into information and knowledge in an effective way.
Knowledge is equated with the traditional factors of
production - land, capital, raw materials, energy and
manpower - in the process of wealth creation. Thus, data,
information and knowledge constitute key assets for all
organizations working in this economic model.

Knowledge management, Data Mining, Knowledge
Discovery in Databases (KDD) and, more generally,
Business Intelligence (BI) are key concepts in a knowledge-
based economy. BI applications have vital importance for
many organizations and can help them manage, develop and
communicate their intangible assets such as information and
knowledge, improving their performance. For instance,
Continental Airlines’ investments in BI have a Return on
Investment (ROI) of 1000%, attributed to increased revenue
and reduced costs [2].

However, companies still face problems in determining
the process model used to develop KDD and BI applications.
As business requirements become more dynamic and

uncertain, the traditional static, bureaucratic and heavy
processes may not be able to deal with them. Recent
researches have demonstrated that waterfall lifecycles and
traditional software development processes are not
successful in BI because they are unable to follow dynamic
requirement changes in a rapidly evolving environment [3].
As software process is mandatory for KDD and BI
development, one possible solution is to use an agile process,
which is typically characterized by flexibility, adaptability,
face-to-face communication and knowledge sharing.

This article discusses the importance of using an agile
software process in KDD and BI applications development.
Thus, the main objective of this paper is to present
AgileKDD, an agile process able to guide the KDD and BI
applications development in a manner compatible with the
current ever-changing requirement environments. The next
sections of this article are organized as follows: Section 2
describes BI and Knowledge Discovery in Databases as
techniques for transforming raw data into information and
knowledge. The 3rd section presents the agile software
development processes. Section 4 presents the AgileKDD, an
agile KDD and BI process model built on top of the Open
Unified Process. Section 5 presents related work. Finally,
Section 6 presents the conclusions.

II. TRANSFORMING DATA INTO INFORMATION AND

KNOWLEDGE

The raw data evolve into information and knowledge as
they receive degrees of association and meaning [4]. The
knowledge gained from the interpretation of data and
information drives the knower to action, so knowledge is an
important asset for organizations that operate in knowledge-
based economies and markets. BI, as well as KDD, has the
goal of transforming raw data into information and
knowledge, in order to support the decision making process.

A. Knowledge Discovery in Databases

Knowledge Discovery in Databases is a nontrivial
process of identifying valid, novel, potentially useful, and
understandable patterns in data [5]. The discovered
knowledge must be correct, understandable by human users
and also interesting, useful or new. In addition, the
knowledge discovery method must be efficient, generic and
flexible (easily changeable).

Data Mining (DM) is the main activity of KDD and
consists of applying algorithms to extract models or patterns
from data [5]. Data Mining is the process of searching for

598Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 616 / 729

relationships and distinct patterns that exist in datasets but
are hidden among the large amount of data. Its aim is to
transform data apparently devoid of connection into relevant
information for decision making and results evaluation. DM
is used to find information without a prior formulation of
hypotheses and search for something non-intuitive,
transforming meaningless data into valuable strategic
knowledge. DM tasks and tools include data classification,
neural networks, clustering, regression analysis, correlation
and predictive analysis. DM applications are characterized
by the ability to deal with the explosion of business data and
accelerated market changes. These characteristics provide
powerful tools for decision makers. Such tools can be used
by business users to analyze huge amount of data for patterns
and discover trends [1].

The KDD systematization effort has resulted in a variety
of process models, including the KDD Process [5] and the
Cross-Industry Standard Process for Data Mining (CRISP-
DM) [6], which are the most widely used in KDD projects,
the most frequently cited and supported by tools. These two
processes are considered the de facto standards in the KDD
area. Several other process models were derived from KDD
Process and CRISP-DM. Figure 1 shows the evolution of 17
KDD/BI process models and methodologies. KDD Process
can be pointed out as the initial approach, and CRISP-DM as
the central approach of the evolution diagram [7]. Most of
the approaches are based on these process models.

Figure 1. Evolution of KDD/BI process models (Source: Adapted from [7])

The KDD process models created between 1993 and
2008 were discussed in detail in a survey by [8] and then
categorized by [7] into three groups:

• KDD related approaches – KDD Process (1993);
Human-Centered (1996); 5A’s (1996); 6-σ (1996);
Cabena et al. (1997); Two Crowns (1998); and
Anand & Buchner (1998).

• CRISP-DM related approaches – CRISP-DM
(2000); Cios et al. (2000); RAMSYS (2001); DIME
(2002); Marbán et al. (2007); and the CRISP-DM
2.0 initiative (not concluded).

• Other approaches – KDD Roadmap (2001).
Sometime later [9] continued the older surveys done by

[8] and [7], and proposed a different categorization to the
KDD process models:

• Traditional approach – Starting with KDD Process,
many other process models used the same sequential
steps: business understanding, data understanding,

data processing, data mining, model evaluation, and
deployment.

• Ontology-based approach – This approach is the
combination of ontology engineering and traditional
approach.

• Web-based approach – This approach is similar to
the traditional approach, but it has some steps to deal
with web log data analysis.

• Agile-based approach – Integrates agile processes
and methodologies with traditional approaches. The
process models in this category are Adaptive
Software Development – Data Mining (ASD-DM)
Process Model [10] and Adaptive Software
Development – Business Intelligence (ASD-BI)
Process Model [1].

Thus, the knowledge discovery process models are
evolving from traditional to agile processes, becoming more
adaptive, flexible and human-centered. However, these

599Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 617 / 729

processes still lack software engineering capabilities such as
requirements management, project management and changes
management.

B. Business Intelligence

Business Intelligence assists in extracting information
from the available data and using it as knowledge in
developing innovative business strategies. BI is an umbrella
term that combines architecture, tools, databases,
applications, practices, and processes to organize, integrate
and explore information, with the goal of developing
understanding and knowledge, which can produce a better
decision making process. Moreover, BI is an Information
Technology (IT) framework vital for many organizations,
especially those which have extremely large amounts of data,
which can help organizations manage, develop and
communicate their assets such as information and knowledge
[2]. According to Mariscal et al. [7], BI is a broad category
of applications and technologies for gathering, storing,
analyzing, and providing access to data to help enterprise
users make better business decisions, and DM is an
important component of BI.

The number of BI projects has grown rapidly worldwide
according to Gartner Group annual reports. BI has been on
the list of the top ten priorities in IT since 2005 and was at
the top of this list for four consecutive years, from 2006 to
2009. In a broader sense, companies understand that the
information and knowledge provided by BI applications are
essential to increase the efficiency and effectiveness, support
competitiveness and innovation. Thus, investments into data
mining BI applications grew by 4.8% from 2005 to 2006 and
by 11.2% from 2007 to 2008 [7], [11], [12]. Continental
Airlines’ success case is the most expressive example of BI
profitability. In 2006, the overall ROI of BI projects in that
company was 1000% [2], [13] and in 2008 that initiative also
reported very positive results [14].

However, not all KDD and BI results are positive.
Regardless of the priority and budgets growth, neither all the
projects results were delivered [7]. Further, the worsening of
international financial crisis has led to significant cuts in IT
budgets from 2008 on. In addition, many BI projects had
failed to achieve their goals or were canceled because they
were unable to follow the dynamic requirement changes in
rapidly evolving environments. Because of this, BI left the
top of the list of priorities in IT and, in 2010 and 2011,
dropped to the fifth position. Technologies with higher
productivity, lower risk and faster return on investment were
priorized instead [12], [15].

The BI environment consists of the transaction
processing applications, the Extraction, Transformation,
Loading (ETL) and data integration processes, the Data
Warehouse (DW) as well as the Data Marts, BI tools and
analytic applications. The raw data are loaded by ETL
processes into DW and data marts. During loading, the ETL
processes also perform cleaning, completion, correction and
integration of data. The DW and data marts are then explored
by the user utilizing On-line Analytical Processing (OLAP)
tools and data mining [2].

Many companies still develop KDD and BI applications
without the guidance of a software process, but, as any
software project, KDD and BI projects need a software
process to succeed [16]. Also, the dynamic business
requirements, the needs of quick ROI and fluid
communication between stakeholders and the team led to
agile process as one possible solution [3].

III. AGILE SOFTWARE ENGINEERING PROCESSES

A software process provides an ordered sequence of
activities related to the specification, design and
implementation as well as validation and deployment of
software products, transforming user expectations into
software solutions [17]. According to Pressman [18], the
software processes set the context in which technical
methods are applied, the work artifacts (models, documents,
data, reports, forms) are produced, the milestones are
established, quality is assured and changes are managed.

The traditional software development processes are
characterized by rigid mechanisms with a heavy
documentation process, which make it difficult to adapt to a
high-speed, ever-changing environment [19]. Researchers
have suggested that the complex, uncertain and unstable
environment is pushing developers to adopt agile processes
rather than traditional software processes. They claim that
agile approach is the answer to the software engineering
chaotic situation, in which projects are exceeding their time
and budget limits, requirements are not fulfilled and,
consequently, leading to unsatisfied customers [20].

The Manifesto for Agile Software Development [21]
defines the values introduced by the agile software
processes: individuals and interactions over processes and
tools; working software over comprehensive documentation;
customer collaboration over contract negotiation; and
responding to change over following a plan. Ultimately, by
following these values, software development becomes less
formal, more dynamic, and more customer-focused. Based
on these values, agile processes are people-oriented and have
the customer satisfaction as the highest priority through the
early and continuous delivery of functioning software [20].
Also, the response to all types of changes and fluid
communication between all projects participants become top
priorities. In agile development, the main work product is the
increment of functioning software, delivered to the customer
within the fixed timeframes. Agile approaches are best fit
when requirements are uncertain or volatile; this can happen
due to business dynamics and rapidly evolving markets. It is
too difficult to practice traditional plan-oriented software
development in such unstable environments [19].

A. Unified Process and Open Unified Process

The Unified Process (UP) [22] is based on the
Incremental Model [18], focuses on architecture and is use
cases driven. Based on the use cases model, the analysis,
design and implementation models are created to realize the
use cases. The UP is focused on architecture, so it starts by
the definition of an application skeleton (the architecture),
which evolves gradually over development. The UP is also
an iterative and incremental process because it offers an

600Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 618 / 729

approach of partitioning the work into smaller portions or
mini-projects. In UP, the architecture provides the
framework to guide the system development into iterations,
while the use cases define the targets and lead the work of
each iteration.

Open Unified Process (OpenUP) is a variation of the UP
that applies agile, iterative and incremental approaches
within a structured lifecycle. OpenUP embraces a pragmatic,
agile philosophy that focuses on the collaborative nature of
software development. It is a low-ceremony process that can
be extended to address a broad variety of project types [23].
OpenUP has compliance with the Manifesto for Agile
Software Development, is minimal, complete and extensible.
Moreover, it increases collaboration and continuous
communication between project participants, more than
formalities and comprehensive documentation [24].

The OpenUP process is divided into three layers, has four
phases and six disciplines. The process applies intensive
collaboration as the system is incrementally developed by a
committed, self-organized team. OpenUP layers are
illustrated by Figure 2. They are [23]:

• Project Lifecycle – structures the software project
into four phases: Inception, Elaboration,
Construction and Transition. A project plan defines
the lifecycle and results in a released application.

• Iteration Lifecycle – OpenUP divides the project into
iterations: planned, time-boxed intervals typically
measured in weeks. Iterations focus the team on
delivering incremental value to stakeholders in a
predictable manner. OpenUP applies an iteration
lifecycle that structures how micro-increments are
applied to deliver stable, cohesive builds of the
system that incrementally progresses towards the
iteration objectives.

• Micro-increment – personal effort on an OpenUP
project is organized in micro-increments. These
micro-increments provide an extremely short
feedback loop that drives adaptive decisions within
each iteration.

Figure 2. OpenUP layers and lifecycles (Source: [23])

The OpenUP phases are inception, elaboration,
construction and transition. In inception phase the product
vision is specified. The product architecture is defined in
elaboration phase. The result of construction is a
demonstrable or deliverable product version, deployed to the
customer at the end of the transition phase. The OpenUP
disciplines are requirements, architecture, development,
testing, project management, and configuration and change
management.

Again, the development of KDD and BI solutions must
be guided by a software process. Therefore, it is mandatory
to define processes that address aspects of KDD, BI, as well
as the software engineering process disciplines, whose
function is to order the software development. By the other
hand, waterfall lifecycles and traditional processes are not
successful in BI because they are unable to follow
requirements in ever-changing environments [3]. Hence, one
possible solution is to use an agile process, which is typically
characterized by flexibility, adaptability, communication and
knowledge sharing.

IV. AGILEKDD

AgileKDD is an agile and disciplined process for the
development of KDD and BI applications. CRISP-DM and
KDD Process provide the capabilities related to knowledge
discovering. OpenUP provides to AgileKDD the lifecycle,
phases and disciplines, which are requirements, architecture,
development, test, project management and changes
management. OpenUP also adds the agile software
development core values and principles, without giving up
the management disciplines. The personal effort on an
AgileKDD project is organized in micro-increments. They
represent small work units that produce measurable steps in
the project progress, usually measured in days. The process
applies intensive collaboration between the actors as the
system is built incrementally. These micro-increments
provide extremely short cycles of continuous feedback to
identify and resolve problems before they become threats to
the projects.

AgileKDD divides the projects in iterations with fixed
time boxes, usually measured in weeks. The iterations drive
the team to deliver incremental value to stakeholders in a
predictable manner. Iteration plan defines what must be
delivered during the iteration and the result is a demonstrable
or deliverable piece of the KDD or BI solution. The
AgileKDD lifecycle provides stakeholders and project team
visibility and decision points at various milestones, until a
working application is fully delivered to stakeholders. Figure
3 presents an overview of AgileKDD, highlighting its phases
and activities.

The Inception phase has the aim of developing an
understanding of the application domain and the relevant
prior knowledge and identifying the goal of the BI project
from the customer’s viewpoint. In this phase the project
vision and plans are defined and agreed by all project
participants. Also, in inception the target data set, or subset
of variables or data samples, is selected. The knowledge
discovery processes will be performed on the selected target
data set.

601Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 619 / 729

The Elaboration phase is responsible by the system’s
architecture, the data preprocessing and modeling. Data
cleaning removes noise, collects the necessary information to
model and decides on strategies for handling missing data
fields. Data quality is a critical success factor for any KDD
or BI project, so it is verified prior to the DW and data marts
modeling.

Once DW and data marts are modeled, ETL processes
are built to extract, integrate, transform and load the selected
target data into DW and data marts. Thus, the data mining
techniques that best fit to the data are selected and applied to
the information stored in data marts.

Figure 3. Initial AgileKDD lifecycle

Data mining tools search for meaningful patterns in data,
including association rules, decision trees and clusters. The
team can significantly aid the data mining method by
correctly performing the preceding steps. The OLAP reports
and charts as well as the dashboards are built to allow user
data exploration. The verification and validation activities
guarantee that the data was extracted, loaded and processed
correctly, according to business objectives.

In Transition phase the deployment of both software and
knowledge takes place, the discovered knowledge is
discussed and interpreted by human beings, actions are
created and the retrospective discusses lessons learnt during
the project to promote continuous process improvement.
Interpreting mined patterns involve visualization and storage
of the extracted knowledge into knowledge bases, or simply
documenting and reporting it to interested parties. This
activity also includes checking for and resolving potential
conflicts with previously believed knowledge. The
AgileKDD process can involve significant iteration,
interaction and can contain loops between any two phases.

A. Case study and process refinement

AgileKDD has been validated by a case study in oil and
gas field. The process was applied to a KDD and BI project
that dealt with Reservoir Evaluation data and afforded the

early and continuous delivery of results to the customers.
DM results in first iteration were delivered two months after
the project kickoff. The second iteration delivered the
performance indicators as a dashboard and the third iteration
deployed the OLAP reports, graphs, and ad hoc exploration
of the DW.

The case study showed that AgileKDD was able to guide
the KDD and BI application development and helped to
anticipate the project ROI. Moreover, the process was
refined after the project retrospective. The refined AgileKDD
lifecycle is represented by Figure 4.

Figure 4. Refined AgileKDD lifecycle after case study

As data quality is a critical success factor for any BI
project, the verify data quality activity was moved from
Elaboration to Inception phase because its result influences
the project management. Then, data quality is verified in
Inception phase to indicate the project feasibility and quality
constraints. Project management activity consists on high
level project planning, risks management and governance
concerns. Changes and configuration management activity is
related to the version control of all the project artifacts,
including documentation, sources and binaries.

Under the architectural point of view, the Data Mart Bus
Architecture [25] fits perfectly in agile approach. In this
architecture, the data marts are built incrementally in
response to iteration requirements. The Data cleaning and
preprocessing and Data reduction and projection activities
defined in Elaboration phase were performed as part of ETL
activity in Construction phase. Since they are activities
related to the transformation of the data, the best place to
them is ETL activity.

All the documentation artifacts needed to develop the
three iterations were composed by the vision document and
the data models of operational sources and DW. There was
no need to use cases and additional diagrams.

The data mining results verification against the
operational data sources was crucial for the knowledge

602Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 620 / 729

discovered acceptance by business experts. The rules proof
using operational data gave no room for questioning the
correctness of DM methods and tools used. The
documentation of the discovered knowledge in an electronic
presentation was sufficient to support communication with
knowledge users. No other form of knowledge representation
and storage of was required.

Requirements changes directly affected the project
planning, but did not harm the product objectives
achievement because they were discovered early, between
project iterations.

B. AgileKDD disciplines

The refined AgileKDD disciplines are the same of
OpenUP: requirements, architecture, development, test,
project management and configuration and changes
management. Table I shows the AgileKDD disciplines, their
purposes and suggested work products.

TABLE I. REFINED AGILEKDD DISCIPLINES

Discipline Purpose Work productsa

Requirements

Elicit, analyze, specify,
validate and manage the
requirements for the
system being developed.

Vision document.
Initial project
glossary.
Prototypes.

Architecture
Define an architecture for
the system components.

Software architecture
description.
DW and DM models.

Development

Design and implement a
technical solution adherent
to the architecture that
meets the requirements.

Software
components.
Integrated software
increment.

Test

Validate system maturity
through the design,
implementation, execution
and evaluation of tests.

Plan and test
procedure.
Test record.

Project
management

Instruct, assist and support
the team, helping them to
deal with risks and
obstacles faced when
building software.

Project plan.
Feasibility and risk
evaluation.

Configuration
and change
management

Controlling changes in
artifacts, ensuring a
synchronized evolution of
the set of artifacts that
make a software system.

Work items list.

a. All the work products are optional. Only the necessary artifacts must be produced.

During a full project cycle, most of the requirements
discipline effort is concentrated in the Inception phase. The
architecture is the main discipline during the Elaboration
phase. In the same phase, the development is intensified
from the definition of the system architecture and continues
as the main discipline of Construction phase. The tests occur
mainly in verification and validation activity of Construction
phase. The project management discipline is concentrated
predominantly in the Inception phase. The configuration and
change management has greater prevalence in Inception and
Transition phases. Each discipline can be related to a set of
work products created during the process phases, according
to the project needs.

V. RELATED WORK

There are not many works related to agile software
processes appropriate to the development of KDD and BI
applications. The main work that applies agile
methodologies to BI is [1]. Alnoukari [19] discusses
Business Intelligence and Agile Methodologies for
knowledge-based organizations in a cross-disciplinary
approach. Alnoukari [26] introduces Adaptive Software
Development – Business Intelligence (ASD-BI), a BI
process model based on Adaptive Software Development
agile methodology. Likewise, Alnoukari et al. [10] defined
Adaptive Software Development – Data Mining (ASD-DM)
Process Model. The main difference between this work and
these is the fact that AgileKDD is a process, not a
methodology. As a process, AgileKDD defines what to do
instead how to do KDD and BI development. Also, the
process proposed by this work defines lifecycle, roles,
activities, inputs and outputs regarding agile KDD and BI
application development. Moreover, AgileKDD contains
management disciplines like project, changes and
requirements management, which were inherited from
OpenUP. Even in an agile process like AgileKDD,
management is a crucial success factor for any software
projects.

Three surveys about data mining and knowledge
discovery process models and methodologies are discussed
and compared by [7], [8] and [9]. All the process models and
methodologies presented by these works focus on data
mining and knowledge discovery, and don’t consider
databases like DW and data marts nor BI and OLAP. As BI
is more comprehensive than data mining, this work focuses
on an agile process modeled to address both KDD and BI
software projects, in an adaptable, flexible and systematic
manner.

VI. CONCLUSION

A software process is mandatory for KDD and BI
developments; however traditional software development
processes are not successful in KDD and BI because they are
unable to fulfill dynamic requirement changes in an ever-
changing environment. Agile processes fit in KDD and BI
better than traditional processes because they are
characterized by flexibility, adaptability, communication and
knowledge sharing.

This work presented AgileKDD, a KDD and BI process
based on KDD Process, CRISP-DM and Open Unified
Process. AgileKDD has been validated by a case study and
results indicate that software development organizations may
apply AgileKDD in KDD and BI applications projects. The
process bring benefits as more customer satisfaction through
early and continuous delivery of functioning software, better
communication between team members and reducing
projects failures risks.

The main contribution of AgileKDD is its ability to guide
the BI solutions development according to the practices
present in agile software development processes. AgileKDD
can increase the projects success factor and customer
satisfaction through the early and continuous delivery of

603Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 621 / 729

functioning software and useful knowledge. The process can
be used to guide BI applications projects in scenarios of
continuous requirements evolving and early ROI need.

Future work can validate AgileKDD by case studies in
different areas and investigate the need of storing the
knowledge discovered into ontology or knowledge bases.

REFERENCES
[1] A. El Sheikh and M. Alnoukari, Business Intelligence and

Agile Methodologies for Knowledge-Based Organizations:
Cross-Disciplinary Applications. IGI Global, 2012. pp. 1-370.

[2] M. Alnoukari, H. Alhawasli, H. Alnafea, and Amjad
Zamreek, "Business Intelligence: Body of Knowledge" in
Business Intelligence and Agile Methodologies for
Knowledge-Based Organizations: Cross-Disciplinary
Applications. IGI Global, 2012. pp. 1-13.

[3] D. Larson, "Agile Methodologies for Business Intelligence"
in Business Intelligence and Agile Methodologies for
Knowledge-Based Organizations: Cross-Disciplinary
Applications. IGI Global, 2012. pp. 101-119.

[4] R. Elmasri and S. B. Navathe, Fundamentals of Database
Systems, Sixth Edition. Pearson, 2010.

[5] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From
datamining to knowledge discovery: an overview” in Proc.
Advances in Knowledge Discovery and Data Mining, 1996,
pp. 1–34.

[6] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz,
C. Shearer, and R. Wirth, CRISP-DM 1.0: Step-by-step data
mining guide, 2000.

[7] G. Mariscal, O. Marbán, and C. Fernández, “A survey of data
mining and knowledge discovery process models and
methodologies”. The Knowledge Engineering Review, vol. 25,
2010, pp. 137-166.

[8] L. Kurgan and P. Musilek, “A survey of Knowledge
Discovery and Data Mining process models”. The Knowledge
Engineering Review, vol. 21, 2006, pp. 1-24.

[9] M. Alnoukari and A. El Sheikh, “Knowledge Discovery
Process Models: From Traditional to Agile Modeling” in
Business Intelligence and Agile Methodologies for
Knowledge-Based Organizations: Cross-Disciplinary
Applications. IGI Global, 2012. pp. 72-100.

[10] M. Alnoukari, Z. Alzoabi, and S. Hanna, “Applying adaptive
software development (ASD) agile modeling on predictive
data mining applications: ASD-DM Methodology” in IEEE
Proceedings of International Symposium of Information
Technology, 2008, pp. 1083–1087.

[11] M. McDonald, M. Blosch, T. Jaffarian, L. Mok, and S.
Stevens, “Growing It’s Contribution: The 2006 Cio Agenda”.
Gartner Group, 2006.

[12] Gartner Group, “Gartner says more than 50 percent of data
warehouse projects will have limited acceptance or will be
failures through 2007”. 2005. Available:
http://www.gartner.com/it/page.jsp?id=492112 [retrieved:
Oct., 2012].

[13] H. J. Watson, B. H. Wixom, J. A. Hoffer, R. A. Lehman, and
A. M. Reynolds, “Real-Time Business Intelligence: Best
Practices at Continental Airlines”. Information Systems
Management, Bristol, vol. 23, n. 1, pp. 7-18, Dec. 2006.
Available:
http://dx.doi.org/10.1201/1078.10580530/45769.23.1.200612
01/91768.2 [retrieved: Jul., 2012].

[14] B. H. Wixom, H. J. Watson, A. M. Reynolds, and J. A.
Hoffer, “Continental Airlines Continues to Soar with Business
Intelligence”. Information Systems Management, Bristol, vol.
25, n. 2, pp. 102-112, Mar. 2008. Available:
http://dl.acm.org/citation.cfm?id=1451615 [retrieved: Jul.,
2012].

[15] Gartner Group, “Gartner Executive Programs Worldwide
Survey of More Than 2,000 CIOs Identifies Cloud Computing
as Top Technology Priority for CIOs in 2011”. 2011.
Available: http://www.gartner.com/it/page.jsp?id=1526414
[retrieved: Oct., 2012].

[16] O. Marbán et al. “Towards data mining engineering: a
software engineering approach”. Information Systems
Journal, vol. 34, n. 1, Mar. 2009. Available:
http://dl.acm.org/citation.cfm?id=1458745 [retrieved: Oct.,
2012].

[17] I. Sommerville, Software Engineering. Addison Wesley,
2006.

[18] R. Pressman, Software Engineering: A Practioner's Approach.
McGraw-Hill, 2005.

[19] M. Alnoukari, "Business Intelligence and Agile
Methodologies for Knowledge-Based Organizations: Cross-
Disciplinary Applications" in CEPIS UPGRADE: The
European Journal for the Informatics Professional, vol. 12,
pp. 56–59, 2011. Available:
http://www.cepis.org/upgrade/media/III_2011_alnoukari1.pdf
[retrieved: Oct., 2012].

[20] Z. Alzoabi, "Agile Software: Body of Knowledge" in
Business Intelligence and Agile Methodologies for
Knowledge-Based Organizations: Cross-Disciplinary
Applications. IGI Global, 2012. pp. 14-34.

[21] K. Beck et al Manifesto for Agile Software Development.
2001. Available: http://agilemanifesto.org [retrieved: Oct.,
2012].

[22] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide. Addison Wesley, 1999.

[23] H. Hristov, Introduction to OpenUP. 2011. Available:
http://epf.eclipse.org/wikis/openup/index.htm [retrieved: Oct.,
2012].

[24] S. Santos, OpenUP: Um processo ágil. 2009. Available:
http://www.ibm.com/developerworks/br/rational/local/open_u
p/index.html [retrieved: Oct., 2012].

[25] R. Kimball and M. Ross, Data warehouse toolkit: o guia
completo para modelagem dimensional. Rio de Janeiro:
Campus, 2002.

[26] M. Alnoukari, "ASD-BI: A Knowledge Discovery Process
Modeling Based on Adaptive Software Development Agile
Methodology" in Business Intelligence and Agile
Methodologies for Knowledge-Based Organizations: Cross-
Disciplinary Applications. IGI Global, 2012. pp. 183-207.

604Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 622 / 729

The Dilemma of Tool Selection for Agile Project Management

Gayane Azizyan
Ericsson AB

Stockholm, Sweden
gayane.azizyan@ericsson.com

Miganoush Magarian
SAP Innovation Center

Potsdam, Germany
miganoush.magarian@sap.com

Mira Kajko-Mattsson
KTH Royal Institute of Technology

Stockholm, Sweden
mekm2@kth.se

Abstract—Even if agile project management tools grow in
number and complexity, companies still face difficulties in
selecting tools that fit their needs. One such company is
Company A, a multinational company that has experienced a
great need for a tool supporting their multi-layered
management of requirements and projects. For this reason,
they commissioned us to perform a detailed analysis of their
tool usage needs, placing much stress on adherence to their
processes and all the roles involved. In this paper, we present
our journey towards selecting the right tool for Company A
and the problems encountered when trying to reach our goal.
The tool selection process was based on (1) a study of tool
features such as usability and extensibility, and (2) observation
of the company’s process and elicitation of the company’s tool
usage needs. Our results show that even if there are many tools
on the market, it was still difficult to find an appropriate tool.
The reasons were the following: (1) a study of general tool
features could not provide enough information to account for
the company’s needs, (2) even people possessing the same role
in the company prioritized different features differently;
hence, it was difficult to utilize their feedback for selecting a
tool, and, finally, (3) even after having observed the company’s
process, it was still difficult to find an adequate tool. The tools
simply could not support the company’s multi-level
requirements management process. Moreover, they suffered
from poor usability as well as imposed their own terminology
and process. Overall, the agile tools studied were not a good
match for supporting the company’s agile project management
needs.

Keywords-components; agile; tool; process; adoption

I. INTRODUCTION
 Agile methods sneaked into Company A’s overall
processes in an unofficial way about four years ago. No
official decision for introducing them was made. Neither
was there any process facilitating its introduction. Different
teams simply started using agile practices on their own,
mainly for implementation-level activities, such as tracking
the status of tasks. With time, however, even management
started using agile practices for managing and tracking
requirements. As tool support, they mainly used MS Excel,
Word, and PowerPoint for storing and managing
requirements and product backlogs and MS PowerPoint for
managing projects. The development teams, on the other
hand, used simple physical tools such as paper, sticky notes,
and whiteboards.

As the use of agile methods grew at Company A, the
company experienced that the simple tools were insufficient
for and unsupportive in managing large numbers of
requirements and projects. Hence, Company A expressed a
great need for a better tool. For this reason, they
commissioned us to help them with agile tool selection. Our
task was to perform a detailed analysis of their tool usage
needs where great stress would be placed on adherence to
their processes and all the roles involved.

In this paper, we present the results of our attempt to find
an appropriate agile project management tool to meet
Company A’s tool support needs. The company wishes to
stay anonymous in this paper, and therefore, we use a
fictitious name, Company A, when referring to it. The
remainder of this paper is organized as follows. Section 2
presents the research steps conducted during our study.
Section 3 gives a brief description of the company. Section
4 lists and describes the criteria used for evaluating
currently existing tools. Section 5 presents the tool
evaluation results. Sections 6 and 7 describe the company
needs based on our observations of its processes and current
state of practice. Finally, Section 8 concludes with final
remarks.

II. RESEARCH STEPS
Our research was conducted in six main steps: (1)

Literature study, (2) Company need identification, (3) Tool
selection, (4) Tool evaluation, (5) Company observation, and
(6) Analysis of results.

During the Literature study step, we went through the
existing literature dealing with tool evaluations and
adoptions in agile contexts. Although we looked through
many scientific and non-scientific sources, we did not find
any objective, detailed evaluations of agile project
management tools. The articles we found were limited to
high-level discussions of classes of agile tools to be used in
different team types [1], tool evaluations aimed at meeting
needs of some specific company [2], and tool evaluations
solely focused on open-source tools [3]. Other resources
included lists of agile tools, as well as some general
discussions of their usage [4]-[6]. The Literature study step
resulted in awareness that our study was unique. We could
neither relate it nor base it on somebody else’s results and
experience. Based on our findings in this step, we
understood that companies met their agile tool needs either

605Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 623 / 729

by developing a custom tool [7][8], or by selecting an
existing tool primarily based on factors such as the tool’s
popularity [9][10].

In the Company need identification step, we studied
Company A and its agile environment. Our goal was to get
acquainted with the company’s process and tool support. To
achieve this, we studied the company’s processes, projects,
and product documentation, as well as had a series of
meetings with three company representatives possessing the
roles of a Project Manager, a Scrum Master, and a Line
Manager. This step resulted in the identification of a
preliminary list of high-level tool support requirements and
provided a basis for defining tool properties. To ensure that
we had an exhaustive list of such properties, we made an
additional literature study during which we elicited
requirements that were imposed by Scrum practices [2].
Altogether, we collected 21 properties. We presented them
to the company representatives and got them accepted as
tool evaluation criteria to be used in the Tool evaluation
step. The criteria are presented in Section 4.

In the third step, Tool selection, we looked through
agile tools available on the market and selected six tools for
a detailed study. The selection was influenced by the
following criteria: (1) the company’s interest in particular
tools, (2) tool popularity [6][11][12], (3) support for the
agile methods used at the company, (4) deployment options,
(5) availability of integration options with other systems, (6)
licensing, and (7) supported platforms. The selected tools
were VersionOne [13], Scrumworks [14], Rally [15], Scrum
Desk [16], Silver Catalyst [17], and Agilo [18]. Table 1
briefly summarizes their properties.

The Tool evaluation step was conducted in two sub-
steps. First, the authors of this paper made their own
evaluation of the selected tools. The goal was to rate the
tools according to the selected criteria and gather an in-
depth understanding of how well the chosen tools supported
the criteria. The results of this sub-step would then be
matched to the company’s tool needs to be elicited in the
next sub-step, during which the company representatives
weighed the criteria by assigning a quantitative measure of
how important each criterion was for the company’s needs.

A range of 0-10 was used for rating both the tools and the
criteria. We chose this wide range of values in order to
achieve richer granularity in the tool evaluation results, and
to have more options for making our choice

In the first sub-step, when doing our own tool
evaluation, we used demo versions of the selected tools.
Here, we studied their documentation and executed sample
test projects. We then individually rated each evaluation
criterion for every tool. Finally, we discussed the ratings,
removed all types of inconsistencies and ensured that we
reached agreement on every rated value.

After reaching consensus on the rated values, we
calculated the total and total normalized ratings for every
tool. Here, as given by (1), we first summed up the rating
t
iu of each tool t over all criteria to yield a total rating tU

for each tool t. Further, as given by (2), we divided the total
ratings by the number of criteria (N), to yield a total
normalized rating .

 ∑= t
i

t uU (1)

 UN
t =

Ut

N
 (2)

The first sub-step resulted in a list of ratings for each
criterion, which was used as a base for the evaluation in the
second sub-step.

The second sub-step was conducted in form of
interviews, with seventeen company representatives
possessing the roles of Developer, Scrum Master, Designer,
Agile Project Manager, Program Manager, Product
Manager, Development Manager, and Line Manager.
During the interviews, we first presented and explained the
list of tool evaluation criteria. The representatives then
assigned their weights to each criterion.

After having collected all the data from the company
representatives, we summed up the assigned weights to

TABLE I. SUMMARY OF THE EVALUATED TOOLS

Tool name Methods Deployment Integration License Platforms

VersionOne
Scrum, XP,
DSDM

Hosted,
Local

Connectors for a wide range of development
tools. [19] Commercial

Windows, Linux,
Mac OS X

ScrumWorks Pro Scrum
Hosted,
Local

Bugzilla [20], JIRA [21], Eclipse IDE[22], MS
Excel [23] Commercial

Windows, Unix
Mac OS X

Rally Scrum
Hosted,
Local

Connectors for a wide range of development
tools. [24]

Commercial,
Free

Windows, Linux,
Mac OS X

ScrumDesk Scrum
Hosted,
Local

Microsoft Team Fuoundation Server[25], Mantis
[26]

Commercial,
Free Windows

SilverCatalyst
Scrum, XP, FDD,
Kanban.

Hosted,
Local SVN [27], Trac [28], Wikis

Commercial,
Free

Windows, Linux,
Mac OS X

Agilo Pro Scrum
Hosted,
Local Trac, SVN, Eclipse IDE Free

Windows, Linux,
Mac OS X

606Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 624 / 729

calculate average weights . The goal was to
calculate the final rating of each criterion of tool t
according to (3). Here t

iu is the rating assigned by us in the
first sub-step.

10

ic
t
it

i

wu
r

×
= (3)

After studying the results, we realized that the second

sub-step proved to be inadequate for appropriately
identifying the company’s needs. First, we observed that
different roles and personalities had great impact on the
assigned weights. Even interviewees with the same role
provided completely different ratings. Second, due to their
narrow view of the company’s process, and due to their
unawareness of the overall tool requirements, the
interviewees had trouble in quantifying their needs by
means of numbers.

All this made it meaningless to calculate averages. We
became aware that this step would not help us in identifying
the company’s needs to be fulfilled by the selected tool. A
deeper analysis was required. This had led us to the creation
of the next research step, the Company observation step.

During the Company observation step, we conducted a
detailed on-site observation of the company’s agile process.
The observation lasted for two months, during which we
observed the process, conducted interviews, and studied the
company’s product documentation. All these tasks were
performed in parallel. We followed the executed process
and attended several meetings, such as Scrum of Scrums
meetings, daily meetings, and management meetings. We
conducted interviews with the company representatives, the
same representatives that were involved in the Tool
evaluation step.

The interviews took the form of informal discussions
that were guided by a semi-formal and semi-structured
questionnaire. We chose this over a more formal, structured
approach because we felt that most of the interviewees did
not have a clear a priori picture of the setbacks and
hindrances in their daily work. Hence, informal discussions
served better for studying the daily work, identifying pain
areas, and eliciting wishes for improvements. The
questionnaire used in this step is presented in Table 2. Last
but not least, we studied the internal company documents,
such as the product backlog, documents describing new
requirements, process documentation, and the like. This had
helped us to improve the quality and effectiveness of our
observations and interviews.

Throughout the Company observation step, we
continuously analyzed the gathered information and drew
out a diagram of the existing process, its inputs, outputs, the
roles involved, the tools used, and the difficulties in the tool

TABLE II. COMPANY INTERVIEW QUESTIONNAIRE

1 How do you work with the existing system?
2 What do you like about the existing system? What works well for

you?
3 What pain areas do you see in your daily work? What is

inconvenient or annoying for you?
4 Is there anything you would like to have changed or improved?

How?
5 Is there anything you would like to have added to the tools you are

using? Any specific features or capabilities?

usage. As a result of this step, we identified six main tool
support needs. These six needs served as input to the final
step, Analysis. Here we tried to match these needs with the
features of the evaluated agile tools in an attempt to find
adequate tool support for the company. The results of the
Analysis step are presented in Section 7.

III. COMPANY DESCRIPTION
Our case study was conducted at Company A, which is a

large software development company with a complex
structure. The department we collaborated with is spread
over three locations: Stockholm in Sweden, Shanghai in
China, and Rijen in Holland. The different sites collaborate
on one large project. The company is hierarchically
structured into six different nodes working on different
product parts where each node is further divided into
different teams spread over several locations. In total, the
department has 85 people that are distributed over eight
teams, out of which four are situated in Stockholm. It is
these four teams that were involved in our case study.

Company A, just as any other company, has many
different roles that are involved in management and
development. By a “role” we mean a set of responsibilities
that are assigned to an individual or a group of individuals.
Below, we list and briefly describe the roles that are of
interest to this paper. We would like to point out, however,
that some of these roles lacked formal definitions at the
company. For this reason, we describe them just as we had
understood them. In our descriptions, we only list the
responsibilities that lie within the scope of this paper.
• Program Manager responsible for the operational steering

of activities within a program and accountable for
deliveries. This role is also responsible for promoting
agile ways of working, for release planning, keeping
progress visible, as well as planning, assigning and
following the program budget.

• Solution Product Manager (SPM) responsible for
strategic planning, pricing, commercial packaging,
marketing, and setting product and professional service
requirements. This role acts as a business builder and
maintains a competitive position for the product.

• Solution Architect responsible for ensuring that the
product is scalable and reusable.

• Agile Project Manager (APM) responsible for prioritizing
and managing the product backlog.

607Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 625 / 729

• Release APM role corresponding to an APM with the
added responsibility of having an overall understanding of
the product specifications, as well as presenting the
product to the business owners.

• User eXperience Designer (UXD) corresponding to any
person qualified in User eXperience Design [29].

• Developer corresponding to any development team
member.

• Scrum Master responsible for maintaining and steering
the Scrum process.

• Line Manager responsible for a particular product line.

IV. EVALUATION CRITERIA
The twenty-one criteria that were used for evaluating the

tools are the following:
• Extensibility referring to whether the tool can be
modified or extended. Here, we evaluated whether a tool
provided access to the source code, and whether it was
offered on a commercial or open source license.
• Usability concerning the general usability of the tool.
Here, we rated the tools solely for their ease of use, also
taking into account whether it was necessary to study tool
documentation and tutorials.
• Connectivity describing the connectors, or plug-ins,
provided by the tool vendors such as Integrated
Development Environments (IDEs), bug-tracking systems
or traditional project management tools. Here, we evaluated
the availability of such connectors; we also took into
account both their number and variety.
• Searching referring to the searching capabilities of the
tool. Here, we evaluated the availability of searching
options, taking into account the searching factors.
• Grouping standing for the capability to group items in a
product backlog. We evaluated whether the tool enabled
grouping of product backlog items.
• Simultaneous editing implying whether multiple users
could simultaneously edit the same artifact in the tool.
While this might seem a basic requirement for tools, we still
consider it mainly due to the absence of such options in
basic tools such as spreadsheets used for storing backlogs.
• Story status tracking referring to the opportunity to
track the status of a user story. Here, we evaluated whether
the tool allowed to record progress of the story. The status
could simply be represented as a string,
• Group status tracking enabling grouping of product
backlog items. We evaluated whether it was possible to
track the status of the group.
• Overall status tracking referring to the options of
viewing the overall project status. This could imply a high-
level summary view of the Sprint backlogs, or a chart
showing the number of completed product backlog items
over time. For this criterion, we evaluated whether the tool
provided feedback on project status and what kind of status
reports it generated.

• Sorting/Filtering standing for the sorting and filtering
options. Here, we evaluated whether the tool provided
sorting and filtering services and whether it could sort by
several criteria and filter by typing in keywords.
• Sprint backlog dealing with the ability to create and
manage a Sprint backlog. Here, we evaluated whether it was
possible to prioritize and order Sprint backlog items.
• Estimation concerning the estimation ability of user
stories and tasks. For this criterion, we evaluated whether it
was possible to enter estimations of user stories and tasks,
and how flexible the estimation measures were.
• Stories. Here, we evaluated the options offered for
creating and describing user stories. Specifically, we
evaluated whether it was possible to group stories into epics.
• Tasks referring to the tasks required for implementing a
user story. We evaluated whether it was possible to break
down user stories into smaller tasks in a Sprint backlog.
• Testing. Here, we evaluated the support for testing tasks.
This could be realized in form of connectors to testing tools
or by enabling the creation of special testing tasks.
• Teams referring to team management. For this criterion,
we evaluated whether it was possible to create teams within
the tool, assign team members, and make changes to the
team capacity over time.
• Planning covering the ability to support Sprint planning,
that is, selecting items from the product backlog and
entering them in a new Sprint. We evaluated whether this
was possible, and whether the capacity of the created Sprint
was automatically matched to the team assigned to that
Sprint.
• Progress referring to the status of the story or task on a
greater level of detail. Here, we evaluated whether the tool
enabled entering the amount of work performed on a story
or task, and whether it was also possible to see how much
work remained.
• Board covering the provision of a virtual task board for
storing user stories and tasks. Here, we evaluated the
availability of a task board, and, if so, whether it was
interactive and whether it was possible to drag and drop
tasks and user stories on the board.
• Burndown describing whether the tool included Sprint
burndown charts, whether they were updatable, and how
visually clear they were.
• Remote workplace relating to the opportunity to access a
tool remotely. Most often, this implies that a tool needs to
be deployed as a web application so that the user can access
the application even outside the office network. Here, we
evaluated whether such an opportunity was available.

V. TOOL EVALUATION
In this section, we present the tool evaluation results. We

first present the results of our evaluation according to the
twenty-one criteria described in the previous section. We
then describe the elicitation of the company’s tool needs and
motivate why it became unsuccessful.

608Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 626 / 729

V.1 Our Own Tool Evaluation
As a result of our evaluation, we discovered that all the

evaluated tools focused on team-level rather than
management-level aspects. The tools included features such
as advanced virtual task boards for facilitating development
within the teams, but provided only rudimentary
requirements and project management support. Moreover,
tools covering more features were complicated to use.

The results of our tool evaluation are summarized in
Figure 1 and Table 3. The evaluation had led us to a number
of conclusions. First, we noticed that the tools were targeted
towards Scrum Masters and development teams rather than
managers. Five out of the six tools studied provided virtual
task boards, as well as possibilities to break down user
stories into more detailed tasks and functions for storing and
managing the tasks.

The second, more important conclusion concerned the
usability of the tools studied. Tools with higher usability
offered less features, and tools which provided many
features had a notably lower usability. This can be seen in
the pivot chart shown in Figure 2 where the ratings of
VersionOne and Silver Catalyst are presented. On average,
VersionOne provides more features such as Connectivity,
Grouping, and Group status tracking, while Silver Catalyst
has a rating of 0 for several criteria. However, VersionOne
has a usability rating of 5, which is much lower compared to
the rating of Silver Catalyst, which is 10. It took us great
effort to get accustomed to working with VersionOne due to
its many features and customization options. Silver Catalyst,
on the other hand, had a very simple and intuitive interface
that was pleasant to use.

V.1 Elicitation of Company’s Tool Needs
During the elicitation of the company’s tool needs, the

company representatives assigned weights to each criterion.
After studying their feedback, however, we had to reject all
the results achieved in this step, for the following reasons.
First, it became clear that even interviewees with the same
role provided sometimes contradictory ratings. Second, due
to their limited view of the company’s process and
unawareness of the overall tool requirements, the
interviewees had trouble in quantifying their needs by
means of numbers.

Since the ratings provided by the company
representatives strongly varied, it is meaningless to show
them all in this paper. For illustrative purposes, however, we
show three sample responses in Table 4 and Figure 2. Table
4 shows the weights and average weights assigned to all the
criteria by three different Scrum Masters whereas Figure 2
shows a pivot chart comparing the two contradicting
weights assigned by two different Scrum Masters.

Looking at the presented values makes it obvious that
different people possessing the same role assigned weights
in radically different ways. For example, for the Progress

Figure 1. Summary chart of the total normalized rating t

NU for each tool

Figure 2. Comparison of the ratings of VersionOne and Silver Catalyst

TABLE III. RATINGS, TOTAL RATINGS, AND TOTAL NORMALIZED
RATINGS FOR ALL CRITERIA AND ALL TOOLS

609Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 627 / 729

criterion (see Table 4), Scrum Master A assigned a weight
of 0, while Scrum Master B assigned a weight of 10. The
average weight for the Progress criterion is 5.3. This does
not in any way reflect the company’s overall need; neither
does it reflect the individual needs. For instance, Scrum
Master A saw no tool support need for tracking the team’s
progress since his team members were good at reporting the
progress during stand up meetings every day, while Scrum
Master B’s team members were not good at reporting their
progress and, therefore, it was necessary to track it via a
tool. A similar conclusion can be made for the overall Status
Tracking criterion.

It is interesting to compare the Progress criterion with
the Sorting/Filtering criterion. The average ratings for these
criteria were nearly the same – 5,3 and 5,7, respectively.
However, unlike the greatly varying ratings assigned to the
Progress criterion, all three Scrum Masters assigned
weights of nearly the same value (5, 6, and 6) for
Sorting/Filtering. Therefore, in this case we may draw a
conclusion that the Sorting/Filtering criterion is of roughly
the same importance to all Scrum Masters, and this is
accurately reflected in the final average rating of 5,7. In
contrast, the actual importance of the Progress criterion was
lost after calculating its average value.

Calculating average weights for people of different
roles, such as APMs and Scrum Masters, resulted in even
less meaningful weights. Each role only saw the problems
and requirements in their own area and daily work, and
therefore, while rating they did not pay heed to the overall
process and needs. In some cases, they made incorrect
assumptions about the needs of others. For example,
managers gave high ratings to virtual task boards, deeming
it an important feature for the teams to have, while in reality
the teams preferred to work with physical tools such as
whiteboards. Thus, it became especially meaningless to
calculate average ratings for different roles.

TABLE IV. WEIGHTS ASSIGNED BY THREE SCRUM MASTERS

The conclusion drawn from these results was that a
similar evaluation method could not, and should not be used
for determining the company’s needs and for selecting tools.

VI. COMPANY OBSERVATION
In this section, we describe the results of our company

observation. We first describe the status of the agile process
at Company A. We then evaluate the process using the
results of our interviews and our own observations.

VI.1 Status of the Agile Development Process at Company A
The overall process at Company A consisted of four

main phases, (1) Requirements definition, (2) Requirements
management, (3) Project management, and (4)
Development. Figure 3 presents a simplified diagram of the
company’s process. We gathered an understanding of this
process from the replies to interview Question 1 presented
in Table 2, as well as our own direct observations.

In the Requirements definition phase, new requirements
were brought in from the customers in form of high-level
specifications. They were all described according to a
predetermined template and recorded in an MS PowerPoint
file. For the sake of following the course of events and their
related documents, we call this file the Requirements
Description File. No specific reason was provided to why
MS PowerPoint was being used. However, our impression
was that the Program Managers, SPMs, APMs and Release
APMs involved in the creation of requirements were
accustomed to using MS PowerPoint. Once requirements
had been created, they were then sent to the Release APM
for approval

In the Requirements management phase, the new
requirements were discussed, prioritized and decided upon.
First, roles such as SPMs, Business Owners, APMs, UXDs,
the Solution Architect, and the Release APM attended
meetings during which the requirements were discussed and
prioritized. To provide a basis for the meetings, the
requirements from the Requirements Description File were
put on a list that was stored in an MS Word document. We
call this list New Requirements List. It contained a table
with the requirement ID, a brief summary of some of the
information taken from the Requirements Description File,
and the requirement owner’s name.

Once prioritization had been made, the prioritized
requirements were manually added to a list of the existing
requirements, which was stored in an MS Excel spreadsheet.

Figure 3. Overview of the company process

610Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 628 / 729

We call this list Prioritized Requirements List. It contained
hundreds of requirements, along with a summary of
information, such as, for instance, which requirements were
defined for which customers. Still, the detailed descriptions
of the requirements were stored in the Requirement
Description Files in MS PowerPoint. Thus, at the end of this
phase information about the same requirements was
recorded in three different places: Requirement Description
Files, New Requirements List and Prioritized Requirements
List.

In the Project management phase, APMs and
development teams broke down the requirements from the
Prioritized Requirements List into lower-level, functional
tasks. These tasks were then added to a list stored in another
MS Excel spreadsheet, which we call Product Backlog. No
links were provided to relate the backlog items to the high-
level requirements, and vice versa. The backlog items were
continuously updated, edited, and prioritized by different
teams on different nodes. To make this possible, the
Product Backlog was stored on a shared network drive, so
that everyone on the internal company network could access
it. At this point, requirements were described in four
different places – the three files mentioned above and the
Product Backlog.

Although the Product Backlog was accessible to
everyone working on it, the company still encountered
problems prioritizing the backlog items. In an ideal
scenario, the prioritization should be made on a requirement
level. In the company’s scenario, however, this was not the
case. Dependencies between different backlog items
belonging to different requirements strongly affected the
order in which the individual backlog items needed to be
implemented. This complicated the process of prioritizing
the requirements and monitoring their fulfillment. To add
zest to it, some Product Backlog items belonged to two
different requirements, creating many-to-many
relationships.

In the Development phase, APMs together with the
teams of different nodes performed Sprint planning. Here,
they selected the highest prioritized items from the common
Product Backlog, agreed on which node would implement
them and included them in the team’s respective Sprint
Backlogs. The Sprint Backlog items were then recorded on a
piece of paper affixed on a wall. They were further broken
down into tasks and written on sticky notes. The
information about the actual work that was done by the
teams was not recorded anywhere else other than on the
walls. At the end of the Development phase, the information
about one requirement was stored in six different places,
namely the four files that had been created at the end of the
Requirements management phase, and two new places – the
Sprint Backlog and sticky notes.

VI.2 Our Observations

The above-described scenario entailed a number of
difficulties when managing and maintaining hundreds of

requirements stored in different places. Using the feedback
from Question 3 in Table 2 (the question dealing with the
pain areas of the company’s process), we conclude that
there were two main problems (1) lack of visibility and (2)
lack of traceability.

Lack of visibility implied that different roles, especially
the managerial ones, had no insight into the overall agile
process. Lack of traceability implied that there was no link
between the six artifacts storing information about the
requirements. Both problems made it impossible to track the
status of the requirements and to make sure that they had
been completed.

The usage of different files for storing requirements
created big difficulties. The files included hundreds of
items, and it was difficult to detect similar requirements,
group related requirements, as well as find their
relationships, conflicts and duplicates. It was difficult to
navigate among the files in order to get a complete overview
of the requirements. In many cases, the contents in the files
were not consistent. Changes made to one file were not
always reflected in other files.

Many issues arose while using the Product Backlog,
since it did not support simultaneous editing. Several nodes,
teams, and APMs used the same Product Backlog, and they
were thus unable to make any changes while somebody else
was editing it. This naturally led to progress hindrance and
frustration.

Using the answers to Question 2 in Table 2 (dealing with
the satisfaction with the current process), we discovered that
the teams saw no problems with the process and its
supporting tools. They were quite satisfied with it. They did
not wish to change the process and to replace the physical
walls with virtual task boards. This, however, was not the
case with the mangers. The interviewed managers were not
directly satisfied with the process and the tool supporting it.

Since the Sprint Backlog was only recorded on the walls,
managers had no overview of the work progress in the
teams. Moreover, they were usually too busy to attend the
Sprint demos, which further meant that they were not
always aware of what was completed and what was not
completed. They did not always have good insight into the
development process; they had no apprehension of team
velocities, focus factors and other data. All this created
difficulties in planning for future steps, managing resources,
and dealing with customers.

Another difficulty faced by the managers was lack of
access to release planning tools. Managers were forced to
manually create release time plans by making drawings in
MS PowerPoint and MS Word. To get an overview, they
had to print them out on several sheets of paper and affix
them on the walls. Due to the unavailability of a proper
reporting tool, as well as lack of supporting data, they were
also unable to create much needed reports providing various
statistics on, for instance, number of incoming requirements
and their rate of completion, task load on different nodes or
teams, or number of requirements per customer. Finally, due

611Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 629 / 729

to lack of support for tracking changes to requirements,
managers had to manually find out who made these
changes, when, and why.

In general, we conclude that except for the
implementation phase, all the process phases lacked
appropriate tool support for the reasons described above. All
this had led to a very cumbersome and clumsy management
process. Using this as feedback along with the answers to
Questions 4 and 5 in Table 2, (questions eliciting needs for
change), we extracted the company’s six primary tool
support needs. They are all displayed in Table 5 and
motivated and matched to the selected tools in the section to
come.

VII. COMPANY NEEDS AND TOOL FEATURES
In this section, we describe the company’s needs listed

during the Company observation phase and presented in
Table 5. We then match each need against the features
offered by the tools that had been evaluated during the Tool
evaluation phase of our research.

Need 1: Support for management levels
The first need experienced by the company was support

for management levels. The development teams were
satisfied with the used physical tools. The managers, on the
other hand, lacked tool support in the three management
phases – Requirements definition, Requirements
management, and Project management. They needed to store
all their requirements in one centralized location. They
needed a tool that would enable them to track the status of
the requirements throughout all the management phases as
well as to create various status reports. A similar need has
been observed in [30].

In order to adequately support the above-described need,
it would be necessary – though by no means sufficient – for
a tool to provide support for hierarchical, multi-level
requirements management. The tool should make it possible
to store and track all the information that is stored in the
Requirements Description, the New Requirements List, the
Prioritized Requirements List, and the Product Backlog.

Looking at our tool evaluation from the point of view of
this need, we saw that three out of the six tools studied
provided the option of grouping Product Backlog items. One
of the tools even included an artifact equivalent to the New
Requirements List. However, none of the tools supported the
hierarchical structure of the company’s process. In fact, none
of the evaluated tools supported high-level requirement

TABLE V. SUMMARY OF THE COMPANY'S NEEDS

Company needs for Agile Tool Support
1 Support for management levels
2 Simple and easy-to-use interface
3 Customized views for different roles
4 Support for the company’s agile process
5 Adherence to company-specific terminology
6 Flexibility to adapt to process changes

definition, decision-making and prioritization in an agile
process. Finally, none of the tools provided support for
creating status reports.

The tools studied provided extensive support for the
development level. All of them received a high rating in the
provided options for breaking down Product Backlog items
into tasks and for storing the tasks. They also provided
detailed options for estimating the tasks and entering
information regarding the work completed on the tasks.
Finally, as many as five of the six evaluated tools provided
virtual task boards. From the perspective of the company’s
need, however, these features were unnecessary and even
undesirable, since the company wished to continue using
physical walls for storing the Sprint Backlog and the team-
level tasks. The company management had, however, a need
to have an overview of the development phase in form of
team velocities and completion of the Product Backlog
items. This means that although there was no need to use
virtual task boards, at least some information from the teams
had to be channeled up for status tracking. Some of the
evaluated tools had good support for status tracking, but
none of them included artifacts for storing and handling the
company’s three levels of requirements. This made it
impossible to use the tools to get a progress overview at the
company.

Summing up, the tools studied focus on supporting team-
level aspects of the agile process, such as virtual boards and
support for Sprint planning. They do not provide enough
coverage for the agile project management process that was
desperately needed by the company.

 Need 2: Simple and easy-to-use interface
The second need experienced by the company was simple

and easy to use interface to be possessed by the tool. The
tools used by the company were PowerPoint files, Word
files, spreadsheets, slides, and sticky notes. All these are
considered to be simple tools, and yet their usage became
complicated because they did not adequately meet the
company’s needs. A similar need was reported in [31].

The company representatives expressed the need for “just
enough” tool support, with simple, easy to use interfaces.
This was valuable for the company since it had a complex
structure, with multiple teams, roles, and process steps, and it
was not desirable to introduce a tool that would further
complicate daily work.

A requirement of simplicity implied that the tool had to
be closely tailored to the company’s process and it had to
provide all the necessary features without providing the
unnecessary ones. Our tool evaluation, however, revealed
that the tools studied could not satisfy this need. They fell
into two categories: (1) they were either simple and had
pleasant interfaces, but did not offer advanced features, or
(2) they were very complex and offered a wide array of
options, but they were not easy to use. In general, we
discovered that the inclusion of more features and options
led to a decreased usability.

612Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 630 / 729

Need 3: Support for the company’s agile process
The third need that the company experienced was

support for company’s agile process. The company had a
complicated organizational structure and a multi-step
requirements management process, where numerous people
of different roles were involved.

The company wished to keep and have power over their
process. It is highly undesirable for a company to be forced
to introduce changes to their process in order to adopt a
particular tool. Instead, the tool should be adapted to the
company structure, the product it manages and the team
setup. A tool should enable a workflow similar to that of the
company, as well as store and display the information that is
relevant to the company.

None of the tools satisfied this need. The tools studied
were either simple and lightweight, or powerful and
complex. The powerful and complex tools, such as Rally,
imposed process adaptations. Even the simpler tools, such as
Silver Catalyst, imposed their own process.

Need 4: Customized views for different roles
All roles were using the same spreadsheets and slides

while working with requirements at the company. All the
useful information had to be displayed in the same place.
This created an overload of information for all the roles
involved. For example, a UX designer did not need to see the
same information as an APM performing a breakdown of
Product Backlog items, while SPMs were mostly interested
in looking at reports and charts.

The company needed to have different views for different
roles in order to make their daily work simpler and more
manageable. Hence, the fourth need identified concerned
customized views for different roles.

Our tool evaluation revealed that the more advanced
tools did account for a few different roles, but the views they
provided and the information they displayed were not
sufficient. The existing agile project management tools have
failed to predict the need for all the views and custom reports
that a company might need, especially in case of a large
company with a large number of different roles.

Need 5: Adherence to company-specific terminology
The terms, concepts and abbreviations used at the

company were quite complex and differed from the
terminology used outside the company. For example, the
company used the term “opportunity card” instead of “high-
level requirement.” The term was used by a large number of
people and in a large number of documents. Changing this
term to fit a particular tool was not an option. The company
needed a tool that made it possible to adhere to the
terminology already in place.

Not surprisingly, the tools we evaluated imposed their
own terminology. Hence, they did not fulfill this need. For
example, some tools used the concept of a “feature” to
describe groups of Product Backlog items. In the company,
however, features were certain groups of functionalities, and
the term did not coincide with the way it was used in agile
project management tools.

Need 6: Flexibility to adapt to process changes
Changes in the process models and the ways of working

were not an infrequent occurrence at the company. Adhering
to the agile vision of continuous improvement, there was a
drive to continuously learn from retrospectives and make
process improvements. The company needed a tool that
would not only support their current process, but would also
accommodate process changes and an evolving company
structure. Thus, the company’s sixth need was flexibility to
adapt to process changes.

Five out of six evaluated tools were of commercial
availability and could not be extended to add or remove
desired features. They simply did not support an evolving
company process. Hence, they did not fulfill this need.

VIII. CONCLUSION
Despite the growing availability and complexity of agile

tools, there is lack of tool selection guidelines and case
studies. In this paper, we have attempted to shed some light
on the matter by presenting the results of a case study of
agile tool selection conducted at Company A – a company
with a complex process and hierarchical requirements
structure. As part of our research, we performed an
evaluation of six agile tools available on the market using a
detailed list of evaluation criteria.

During our attempt to select an adequate tool for
Company A, we found out that the tool evaluation criteria,
though well defined, proved to be insufficient for specifying
the company’s needs. We, however, do not reject
evaluations of this type as an important aid in identifying
needs. They have to be complemented with extensive
observational studies and detailed interviews, similar to the
study reported in this paper.

Even after having extracted and identified the company’s
needs, we had difficulties in finding an adequate tool. The
tools focused more on team-level aspects of development
and did not cater to the multi-layer requirements
management process of the company. The tools available on
the market imposed their own process and were
cumbersome and difficult to use. They were not flexible
enough to accommodate changes in the company’s process,
and they lacked support for the creation of reports. Further,
the tools did not cater to the needs of all the roles present at
the company, and, in most cases, imposed their own
terminology. Overall, we conclude that the studied tools
have not met Company A’s agile project management
needs.

It might be expected that other large companies with
complex structures also face a similar dilemma. As future
work, we plan to look into custom tools, or a combination of
custom tools and tools from the market, in order to find out
whether they might successfully meet the needs of such
companies. We also plan to find out how current tools
support distributed, multi-cultural agile environments that
currently encounter many types of different problems [32].

613Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 631 / 729

REFERENCES
[1] M. Dubakov and P. Stevens, “Agile tools. The good, the bad

and the ugly,” TargetProcess Inc., 2008.
[2] G. Dowst. Reviewing agile process management tools. Part 1

and 2 [Online]. Available:
http://consultingblogs.emc.com/gavyndowst [retrieved:
October, 2012].

[3] B. Swanson (2009 Sep. 25). Comparing open source agile
project management tools. [Online]. Available:
http://olex.openlogic.com/wazi/2009/comparing-open-source-
agile-project-management-tools [retrieved: October, 2012].

[4] CMC Media Inc. (2007 Apr.). Agile Tooling: A Point,
Counter-Point Discussion [Online]. Available:
http://agile.techwell.com/articles/weekly/agile-tooling-point-
counter-point-discussion [retrieved: October, 2012].

[5] G. Goth, “agile tool market growing with the philosophy,”
IEEE Software, 2009, pp. 88-91.

[6] Mountain Goat Software. All products. [Online]. Available:
http://userstories.com/products [retrieved: October, 2012].

[7] S. H. Rayhan and N. Haque, “Incremental adoption of Scrum
for successful delivery of an IT project in a remote setup,” in
Proc. AGILE 2008 Conference, IEEE Computer Society,
Toronto, Canada, 4-8 August 2008, pp. 351-355.

[8] M. Cottmeyer, “The goods and bad of Agile offshore
development,” in Proc. AGILE 2008 Conference, IEEE
Computer Society, Toronto, Canada, 4-8 August 2008, pp.
362-367.

[9] E. Uy and R. Rosendahl , “Migrating from SharePoint to a
better Scrum tool” in Proc. AGILE 2008 Conference, IEEE
Computer Society, Toronto, Canada, 4-8 August 2008, pp.
506-512.

[10] F. Cannizzo, G. Marcionetti, and P. Moser, “Evolution of the
tools and practices of a large distributed Agile team” in Proc.
AGILE 2008 Conference, IEEE Computer Society, Toronto,
Canada, 4-8 August 2008, pp. 513-518.

[11] VersionOne Inc.. State of Agile Development Survey 2009
[Online]. Available:
http://pm.versionone.com/StateOfagileSurvey.html [retrieved:
October, 2012].

[12] P. Behrens, “agile Project Management (APM) tooling survey
results,” Trail Ridge consulting, December 2006.

[13] VersionOne Inc. [Online]. Available:
http://www.versionone.com [retrieved: October, 2012].

[14] CollabNet Inc. ScrumWorks. [Online]. Available:
http://www.open.collab.net/products/scrumworks/?q=scrumw
orks [retrieved: October, 2012].

[15] Rally Software Development Corp. AgileZen [Online].
Available: http://agilezen.com [retrieved: October, 2012].

[16] ScrumDesk Co. [Online]. Available:
http://www.scrumdesk.com [retrieved: October, 2012].

[17] Silver Stripe Software Pvt. , Ltd.. Silver Catalyst [Online].
Available: http://toolsforagile.com/silvercatalyst [retrieved:
October, 2012].

[18] Agile42 Gmbh. Agilo [Online]. Available:
http://www.agile42.com/cms/pages/agilo [retrieved: October,
2012].

[19] VersionOne Inc. Integrations [Online]. Available:
http://community.versionone.com/sdk/Documentation/Integra
tions.aspx [retrieved: October, 2012].

[20] Bugzilla org. [Online]. Available: http://www.bugzilla.org/
[retrieved: October, 2012].

[21] Atlassian Pty Ltd. JIRA issue and project tracking [Online].
Available: http://www.atlassian.com/software/jira [retrieved:
October, 2012].

[22] Eclipse org. [Online]. Available: http://www.eclipse.org
[retrieved: October, 2012].

[23] Microsoft Inc. MS Excel. [Online]. Available:
http://office.microsoft.com/en-us/excel [retrieved: October,
2012].

[24] Rally Software Development Corp. Rally Connectors
[Online]. Available:
http://www.rallydev.com/agile_products/integrations/connect
ors/ [retrieved: October, 2012].

[25] Microsoft Inc. Visual Studio Team Foundation Server
[Online]. Available: http://msdn.microsoft.com/en-
us/vstudio/ff637362.aspx [retrieved: October, 2012].

[26] Mantis Bug Tracker. [Online]. Available:
http://www.mantisbt.org [retrieved: October, 2012].

[27] Subversion SVN [Online]. Available:
http://subversion.apache.org [retrieved: October, 2012].

[28] Trac [Online]. Available: http://trac.edgewall.org [retrieved:
October, 2012].

[29] Wikipedia. User experience design [Online]. Available:
http://en.wikipedia.org/wiki/User_experience_design
[retrieved: October, 2012].

[30] M. Kajko-Mattsson. “Problems in agile trenches”. In Proc. of
the Second ACM-IEEE international symposium on
Empirical software engineering and measurement (ESEM
'08). ACM, New York, NY, USA, 2008, pp. 111-119.

[31] G. Azizyan, M. K. Magarian, and M. Kajko-Matsso “Survey
of Agile Tools Usage and Needs” in Proc. AGILE 2011
Conference, IEEE Computer Society, Salt Lake City, UT,
USA, 8-12 August 2011, pp. 29-38.

[32] M. Kajko-Mattson, G. Azizyan, and M. K. Magarian
"Classes of distributed Agile problems" AGILE 2010
Conference, IEEE Computer Society, Orlando FL, USA, 9-13
August 2010, pp. 51-58.

614Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 632 / 729

Framework for Better Efficiency of Automated Testing

Work-in-Progress Paper

Martin Filipsky, Miroslav Bures and Ivan Jelinek

Department of Computer Science and Engineering

Czech Technical University

Prague, Czech Republic

{filipma2, buresm3, jelinek}@fel.cvut.cz

Abstract—The paper introduces our design of a framework

for test automation, which utilizes both recording and scripting

approaches to help quality-assurance engineers with their test

automation efforts. Characteristic problems of test automation

are a low efficiency and/or high maintenance costs.

The framework cuts down those drawbacks using a technique

of abstraction, a clever structure of test cases, and reusable

common test case retrieval from recorded tests. Finally, the

approach is robust to a test script ageing and is technology-

independent as well as testing-tools independent.

Keywords-automated testing; functional tests; quality

assurance; test efficiency; test recording

I. INTRODUCTION

With the increasing importance and complexity of
information systems, software vendors and system
integrators are facing numerous challenges. Current
technologies are rapidly changing. New technologies and
ideas like Cloud computing [9], Virtualization [5], or
Software as a service [4] are coming; but, budgets intended
for software products and IT projects are cut down. On the
other hand, customers require more and more features, a
better performance, a higher reliability, and a first-rate
availability for less money. Who wants to compete and be a
market leader, has to be more efficient than his competitors.
Since testing costs represent a significant part of total costs
of development, we focused on areas where we see a
potential to improve a testing process using test automation.

The area of automated testing of software applications is
facing a number of issues and challenges like an insufficient
expertise to automate tests, technological issues, and/or
demand on a fast and effective test development and
execution. One of the most serious problems revolving
around test automation is that test scripts are getting
inaccurate and obsolete with changes in an application under
test. As the result, automated testing is limited mostly to
regression tests, smoke tests and performance testing. A
utilization of automated testing in a sense of a replacement of
manual testing is not quite often.

Even solutions of some issues (automated test
development/debugging, or maintenance [18], [13]) may
increase the efficiency of the process of test automation.
Moreover, a number of defects would decrease in final
applications released to production environments. Some
techniques used to speed up the process of test automation

and to increase the efficiency are already adopted by many
quality-assurance (QA) teams, like using Mockups [20] or
generating test cases from application models [23]. Mockups
may be very useful when QA teams have enough time to
prepare and develop tests against an application prototype.
Agile software development methodologies [17] bring
additional requirements on a development of automated
tests. Test recording approaches are very useful in such cases
because they do not require a time-consuming preparation.
Testers can start to develop automated tests immediately.
Furthermore, if those test recordings are transformed into
abstract tests organized in test suites, the resultant effort and
costs will decrease significantly.

The main goal of our research is a definition and a
validation of a meta-model among requirements on
automated tests, an application under test (AUT) and test
scripts to record test cases using the defined meta-model and
to create a structure of tests having common parts of the
recorded tests broken down into reusable pieces for an easier
and cheaper test maintenance.

This paper is structured as follows: We start by giving an
overview on related research in Section 2. In Section 3, we
describe the concept of the framework. In Section 4, we
conclude with a summary and an outlook.

II. RELATED WORK

Many research teams are interested in test automation of
various kinds like unit testing, functional, GUI or regression
testing, and performance testing. Unit test automation is
being successfully theoretically covered. Some approaches
focus on a generation of test data [8] or a generation of test
cases [23] from models of AUTs. For example, Xu [23]
introduced an approach based on high-level Petri nets as
finite state test models for an automated test generation and a
test execution. On top of that, he developed a model-based
Integration and System Test Automation tool. This premise
may be seen as a drawback in agile software methodologies
where specifications and models frequently do not exist at
the moment when the functional test automation is required.
For a generation of test cases, a detailed model of AUT
including use case diagrams and user scenarios is required
prior the testing process can start. Those generated test cases
might not be possible to execute without additional pre-
processing. Missing object IDs may prevent from that as the
objects cannot be identified in the AUT. For example, if a
development team uses dynamic objects with insufficient

615Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 633 / 729

unique object properties or with dynamically generated IDs.
Approaches were introduced for web application modelling
in [2], [16], and [22].

Koopman, Plasmeijer and Achten [15] introduce a
model-based testing system for on-the-fly testing of thin-
client web applications specified by Extended State
Machines. The approach is proposed for plain HTML (no
Flex, no JavaApplets). They do not discuss more general
solutions for rich clients and/or other platforms, like
mainframe panels (applications for terminal emulators),
which leads to technological limitations (e.g., different
objects, and application behavior) of the approach. Beek and
Mauw [1] present an approach for a conformance, black-box
testing of thin internet applications. Besson, Beder and
Chaim [3] introduced an approach of test automation for
acceptance testing. In general, approaches based on Finite
State Machines (FSM) are quite often as presented Jia and
Liu [14].

In comparison to test automation efforts based on model-
based approaches, where test scripts are generated from
models, Stepien, Peyton and Xiong [21] describe a testing of
web applications using TTCN-3 language [6] and [19] which
is a specification-based approach. An XML specification-
based approach of testing of web applications is presented by
Jia and Liu [14]. The specification-based approaches [6],
[10], [19], and [21] are close to our intentions, but they did
not utilize the test recording in their approaches.

The mentioned approaches are either limited by a
technology or they require a model, or another detailed
specification of AUT. In comparison to the mentioned
approaches, we are focusing on a feature to build a structure
of test cases on-the-fly while the user is recording tests.
Furthermore, the proposed framework recognizes input data
and uses them as test parameters. Both the features are a key
to a reusability of tests or parts of tests, which might
significantly decrease total costs of test maintenance.

García, Dueñas, and Parada introduced recently a couple
of approaches for automated functional testing based on the
navigation of web applications in [10], [11], and [12]. Their
concept is to automate functional tests using UML diagrams
[7] as an input for an automated test case generation driven
by the navigation in the AUT. Compared with our proposed
technique, a model or at least a part of the model of the AUT
has to be available before the testing actually starts. They
also presented an alternative to the test case generation for
agile strategies. They can record tests in order to skip a phase
of formal design. Unlike the presented approach, we lay
emphasis on the feature of a detection of reusable test parts.

III. PROPOSED SOLUTION

Standard approaches of functional test automation are

usually based on:

1. A plain test recording of test cases.

2. Test scripting using a programming language.

3. An automation framework.

A facility for test recording records a user activity while
testing AUT and the resultant test is captured in any

Figure 1. High-level architecture of the proposed solution.

programming language, e.g., in Java. If an advanced
technique is used like an object repository, the tests are
relatively fine but the maintenance is getting more difficult
in comparison to projects utilizing scripting and/or different
automation frameworks (code redundancy, no code
optimization, object duplicity, and usually no parameters
among tests).

Second approach is typically for experienced QA

engineers. It is time-consuming and requires being well

prepared. On the other hand, testers can fully utilize a power

of object oriented programming and can develop highly

reusable code (tests) with low maintenance costs.

The automation frameworks are driven by data (a flow is

controlled by input data), by keywords (the flow usually

does not depend on input data, test scripts completely

control a test run) and by a model (the test flow depends on

a model of AUT). The model-driven frameworks are worth

in cases where the system changes dramatically and new test

scripts can be easily regenerated from the model. Hybrid

approaches are common (e.g., Data-Keyword, but not

Recording-Scripting), and they combine the best features of

single approaches.
The challenges described above lead us to several areas

of our interest. We are working on a definition of a meta-
model of test cases which is a key premise of an efficient test
recording. The meta-model will be used in a process of
building a smart structure of tests from the recorded test
cases. Another field of our interest is a reusability of
recorded tests. We are working on algorithms that will
identify common test parts in the structure of tests and
reorganize them.

Our intention is to integrate solutions of single problems
in one test automation framework (Fig. 1) among test
requirements, testing tools and AUTs. The framework is
intended to be modular as well as platform-independent. We
are focusing on a utilization of benefits of both the recording
and scripting approaches (i.e., fast test automation and good
maintenance costs). There are two options how the
automation framework should support user efforts to
automate test cases (Fig. 2). Either the user does not have a
test case automated yet or the user has already automated a
test case. In the first case, the user records the test case,
which is converted on-the-fly into the meta-model, using the
recording facility. All relevant objects (buttons, links, data,
strings etc.) are currently captured into an object repository
without additional duplicities. In the second case, the
automation framework records a new sequence of

616Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 634 / 729

Figure 2. The concept of the framework based on test recording.

user activities while the user is executing altered parts of the
test case. The user selects a relevant part of the test case to be
updated and the new sequence of recorded steps is mapped
into the current test and all relevant parts of other recorded
tests, which use the updated part. If the user records more
than two test cases in the test suite, the framework detects
common parts, which are typically frequent and repeating
activities like a login to the AUT. Therefore, we let the user
record the complete test suite in order to run scanning
algorithms, which will detect common test sequences in the
recorded test cases. The detected common test sequences can
be excluded from the test suites afterwards and represented
as new subunits of test cases as it is presented on Fig. 3.

Figure 3. Test Cascades. Gray parts identified by scanning algorithms

represent the common parts in test cases.

For instance, if each test case contains a login to a
system, the procedure of logging in can be extracted and
called from all test cases automatically. One change in the
common test sequence (reusable part) takes effect in all
calling tests. An example is shown on Fig. 4. Since we need
to get an organized structure of test cases with reusable test
parts for a better test maintainability, we have to find longest
common subsequences of user activities in the test suite. In
other words, we have to find a mapping of steps among all
tests in the test suite. If such a mapping exists, those steps
can be excluded from tests and the new reusable part, which
is referenced from these tests, can be created. Obviously, a
problem might to find a suitable level of a step count in the
sequence. Remaining problems to be solved are questions

Figure 4. An example of mapping steps in common test sequences

between two test cases.

of handling data dependencies, a problem of a test
parameterization and a problem of recursive calls to reusable
units.

In addition to the recording, the user has still an option to
design test cascades manually (consider test cascades as an
automatically generated structure of test cases from test
recordings) and to design and script test cascades in a
domain-specific language (DSL). In DSL, we specify the test
cases from the end user’s point of view and it enables to
work with the meta-model of test cases. Syntax of DSL
comes out from simple English, but we are also planning a
graphical version of the DSL, which will be identical to the
standard text version represented by Tab. 1.

TABLE I. AN EXAMPLE OF THE DOMAIN-SPECIFIC LANGUAGE FOR A

TEST CASE REPRESENTATION

Object

Type

Object

Name
Action Parameters

Recovery

Scenario

Browser MyBrowser Open www.cvut.cz
CloseIfNot

Available

Button Submit Click StopTest

Table MyTable Validate StopTest

TextBox Search Set Test automation SkipStep

A requirement on simple English is beneficial for non-

experienced QA engineers who do not know standard
programming languages like Java. Thus, they can
immediately start to alter their recorded test cases. The
second benefit of the DSL is a fact that a complexity of the
solution will be hidden for end users. Objects are stored in an
object repository. For this object repository, storage available
in testing tools like, e.g., HP QuickTest Professional can be
used. An alternative is to use an internal object repository of
the framework.

The automation framework gives the QA engineers an

option of inspection that helps them to detect common

mistakes in the design of automated tests. For example, web

applications may have different responses depending on

system loads, which lead usually to synchronization issues.

617Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 635 / 729

The concept of test cases represented by the meta-model

with the test cascades provides a robust solution to changes

in the application. For example, if a new step is added into

a current business process or if an object is altered in the

AUT, a modular structure of test cascades supports an

update in one place, which will take effect in all places. The

higher level of abstraction of test cases together with a

support of generation of test scripts for different testing

tools helps to prevent tests from test script ageing.

IV. CONCLUSIONS AND FUTURE WORK

We carried out a research of the current state-of-the-art
and we have found out that the problem of building reusable
test cascades from test recordings is covered insufficiently.
There are either approaches for on-the-fly testing (usually
limited by a technology like plain HTML), e.g., [1], [3] or
[15] or approaches requiring to prepare a model of AUT like
in [6], [19] or [20]. A more general concept utilizing the test
recording is missing. Based on that, we have designed a
framework for automation of functional tests with no need to
have a model of the AUT. We have designed the structure of
the meta-model, used in the proposed solution.

Currently, we are working on a detailed design of the
meta-model. In parallel with that, we are conducting a
research of a problem of transformation test recordings i.e.,
the transformation of test scripts from standard programming
languages to the meta-model. Besides that, we are dealing
with a problem of seeking out the longest common test
sequences. The goal is to build test cascades from recordings
with no need of a post-processing. As a consequent task, we
are going to solve a problem of test parameterization i.e., to
detect input parameters and dependencies among them.

Finally, we are preparing to conduct experimental
observations on real industrial projects with comparisons of
costs and results of the manual testing, the conventional
automated testing using the test recording and/or the plain
test scripting, and the automated testing using the proposed
automation framework.

REFERENCES

[1] H. M. A. van Beek and S. Mauw, “Automatic Conformance

Testing of Internet Applications”. In Lecture Notes in
Computer Science, 2004, Volume 2931, Formal Approaches
to Software Testing, Page 1106.

[2] H. M. A. van Beek, “Specification and Analysis of Internet
Applications”. In PhD thesis, Technical University
Eindhoven, The Netherlands, 2005. ISBN 90-386-0564-1.

[3] F. M. Besson, D. M. Beder, and M. L. Chaim, “An
Automated Approach for Acceptance Web Test Case
Modeling and Executing”. Lecture Notes in Business
Information Processing, 1, Volume 48, Agile Processes in
Software Engineering and Extreme Programming, Part 2,
Pages 160-165.

[4] G. Blokdijk, "SaaS 100 Success Secrets - How Companies
Successfully Buy, Manage, Host and Deliver Software As a
Service (SaaS)", Emereo Pty Ltd. USA, 2008. ISBN 978-0-
9804-7164-9.

[5] M. Cafaro and G. Aloisio (Eds.), "Grids, Clouds and
Virtualization". 1st Edition., Springer, 2011. ISBN 978-0-
85729-049-6.

[6] ETSI ES 201 873-1: “The Testing and Test ControlNotation
version 3”, Part1: TTCN-3 Core notation, V3.2.1, February
2007.

[7] M. Fowler, "UML Distilled: A Brief Guide to the Standard
Object Modeling Language". Addison-Wesley Professional,
3rd Edition, 2003. IBSN-13: 978-0321193681.

[8] S. Fujiwara, K. Munukata, Y. Maeda, A. Katayama and T.
Uehara, "Test data generation for web application using a
UML class diagram with OCL constraints". In Innovations in
Systems and Software Engineering, 2011, volume 7, Number
4, Pages 275-282.

[9] B. Furht and A. Escalante (Eds.), "Handbook of Cloud
Computing". 1st Edition., Springer, 2010. ISBN 978-1-4419-
6524-0.

[10] B. García, “Contribution to the Automation of Software
Quality Control of Web Applications”. In PhD thesis,
Universidad Politécnica de Madrid, Spain, 2011. ID code
9017.

[11] B. García, J. C. Dueñas, “Automated Functional Testing
based on the Navigation of Web Applications”. WWV 2011,
Reykjavik, Iceland, June 2011.

[12] B. García, J. C. Dueñas, H. A. Parada, “Functional Testing
based on Web Navigation with Contracts”. IADIS
International Conference (WWW/INTERNET09). Rome,
Italy. Nov. 2009.

[13] D. Hoffman,"Cost Benefits Analysis of Test Automation".
STAR West, 1999.

[14] X. Jia and H. Liu, “Rigorous and Automatic Testing of Web
Applications”. In Proceedings of the 6th IASTED
International Conference on Software Engineering and
Applications (SEA 2002), pages 280–285, Cambridge, MA,
USA, Nov. 2002.

[15] P. Koopman, R. Plasmeijer, and P. Achten, “Model-Based
Testing of Thin-Client Web Applications”. Lecture Notes in
Computer Science, 2006, Volume 4262, Formal Approaches
to Software Testing and Runtime Verification, Pages 115-
132.

[16] F. Lanubile and T. Mallardo, “Inspecting Automated Test
Code: A Preliminary Study”. In Lecture Notes in Computer
Science, 2007, Volume 4536, Agile Processes in Software
Engineering and Extreme Programming, Pages 115-122.

[17] R. C. Martin, "Agile Software Development, Principles,
Patterns, and Practices". 1st Edition., Prentice Hall, 2002.
ISBN: 978-0135974445.

[18] B. Pettichord, "Seven Steps to Test Automation Success".
STAR West, 1999.

[19] R. L. Probert, B. Stepien, and P. Xiong, “Formal testing of
web content using TTCN-3”. In TTCN-3 User Conference
2005, June 2005.

[20] J. M. Rivero, G. Rossi, J. Grigera, J. Burella, E. R. Luna, and
S. Gordillo, “From mockups to user interface models: an
extensible model driven approach”. In Lecture Notes in
Computer Science, Volume 6385, Pages 13-24, 2010.

[21] B. Stepien, L. Peyton, and P. Xiong, “Framework testing of
web applications using TTCN-3”. In International Journal on
Software Tools for Technology Transfer (STTT), 2008,
Volume 10, Number 4, Pages 371-381.

[22] Y. Wu and J. Offutt, “Modeling and Testing Web-based
Applications”. GMU ISE Technical ISE-TR-02-08,
Information and Software Engineering Department, George
Mason University, Fairfax, USA, Nov. 2002.

[23] D. Xu, “A Tool for Automated Test Code Generation from
High-Level Petri Nets”. In Lecture Notes in Computer
Science, 2011, Volume 6709, Applications and Theory of
Petri Nets, Pages 308-317.

618Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 636 / 729

MobiTest:

 A Cross-Platform Tool for Testing Mobile Applications

Ian Bayley, Derek Flood, Rachel Harrison, Clare Martin
Oxford Brookes University,

[ibayley, derek.flood, rachel.harrison, cemartin]@brookes.ac.uk

Abstract— Testing is an essential part of the software
development lifecycle. However, it can cost a lot of time and
money to perform. For mobile applications, this problem is
further exacerbated by the need to develop apps in a short
time-span and for multiple platforms. This paper proposes
MobiTest, a cross-platform automated testing tool for mobile
applications, which uses a domain-specific language for mobile
interfaces. With it, developers can define a single suite of tests
that can then be run for the same application on multiple
platforms simultaneously, with considerable savings in time
and money.

Keywords – Mobile Application; Testing; MobiTest.

I. INTRODUCTION

The increasing prevalence of mobile applications
(hereafter, apps) continues as the use of mobile phones
becomes ubiquitous. By the end of 2010, there were an
estimated 5.3 billion mobile subscriptions worldwide. In
developed countries there are on average 116 subscriptions
for every 100 inhabitants [1].

The applications that facilitate this, known as apps, are
typically developed in a relatively short time span and on
low budgets, often because the unit price of the app is very
small or zero. This appears to greatly diminish the usability
of many of the apps that are sold to users. This is unfortunate
because a recent survey [2] has identified usability as being
one of the most important factors when selecting a mobile
app.

The annual cost of an inadequate infrastructure for
testing in the US is estimated to range from $22.2 billion to
$59.5 billion [3]. This cost is partly borne by users in the
form of strategies to avoid and mitigate the consequences of
errors. The remainder is absorbed by the software developers
themselves, who have to compensate for inadequate tools
and methods. The absorbed cost is even higher when one
takes into account the damage that low software quality can
bring to the reputation of the producer.

The problems noted above are further exacerbated by the
need to target multiple platforms at once. In particular, a test
suite for one platform must be rewritten for any other
platform for which it is required. This problem has been
addressed in the desktop domain through the use of the USer
Interface eXtensible Markup Language (USIXML) [12],
which allows developers to create a user interface using a
common language that can then be translated to any
platform.

This paper proposes a multi-platform testing tool that
takes a description of the tests to be performed on an app and
generates a test suite for every platform on which the app is
to be tested. Consequently, the tests will only need to be
specified once. They are described in a simple language,
specialised to the domain of mobile devices. Here, we
concentrate on GUI testing; but, the ideas expressed here
could be extended to other forms of testing at a later date.

The rest of this paper is structured as follows. Section II
details the related work of this research. Section III outlines
our research objectives. Section IV provides an overview of
the MobiTest tool. Section V highlights some of the
challenges for implementation. In Section VI, the plan for
progression is detailed and Section VII concludes this paper.

II. RELATED WORK

A. Software Testing

In The Mythical Man Month, Brooks [4] says that he
assigns half of his development time for testing. This
includes both component testing (of individual elements of
the system) and system testing (of the complete system). His
advice highlights the importance of testing; since, if it is not
done adequately, the results can be very serious or even (in
safety critical systems) fatal.

The waterfall model [5], one of the first software
development methodologies, proposed that the testing phase
should happen after the implementation phase has been
completed. In contrast, Beck [6] proposes that the two phases
be more tightly coupled, advocating the use of Test Driven
Development (TDD).

TDD involves the writing the tests before writing the
code, then executing the tests, and then fixing the code if the
test has failed. This enables the developer to know exactly
where the failing code is (as code is written in small
increments). It also forces the developer to think continually
about the design of the system. The collection of tests
thereby accumulated can be run automatically whenever
retesting is required.

George and Williams [7] found that TDD produced
software that passed 18% more black box tests than software
built using the waterfall model. However, this higher
percentage comes at the cost of development time, which is
longer by 16%.

Whichever approach is adopted, the use of automation
reduces the time taken for testing. The alternative of manual
testing is not only time-consuming, but also error prone.

619Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 637 / 729

B. Mobile applications

Mobile applications are different from traditional
applications in several ways. They are adversely affected by
the limitations of mobile devices, some of which have been
highlighted by Zhang and Adipat [8] as follows:

• Mobile Context: When considering mobile
applications the user is not tied to a single
environment. The environment will also include
interaction with nearby people, objects and other
elements which may distract a user’s attention.

• Connectivity: With mobile devices connectivity is
often slow and unreliable and therefore will impact
the performance of mobile applications which utilise
these features.

• Small Screen Size & Different Display
Resolution: In order to provide portability mobile
devices contain very limited screen size and so the
amount of information that can be displayed is
drastically reduced.

• Limited Processing Capability and Power: In
order to provide portability, mobile devices often
contain less processing capability and power. This
has the effect of limiting the functionality of
applications for mobile devices.

• Data Entry Methods: The input methods available
for mobile devices are restricted and require a certain
level of proficiency. This problem increases the
likelihood of erroneous input and decreases the rate
of data entry.

Thus, mobile applications typically contain less
functionality than traditional desktop applications. This is
mainly due to the limitations of the platform, but is also
affected by the context in which these applications are used.
Mobile applications are designed to be used while on the
move, and, as such, complex interactions are undesirable as
this negatively affects usability.

In addition to this, mobile applications tend to be
developed in a short period of time. This has been facilitated
by the availability of better source libraries and development
tools for creating mobile apps.

III. RESEARCH AIM

The aim of this research is to develop a mobile application
testing tool that can be applied to all mobile platforms. As
each mobile platform contains different components, it is
necessary to first understand the components on each
platform and how these relate to one another. In order to do
this, the following two research questions (RQ) have been
defined:

• RQ1: What components are available on each
mobile platform?

• RQ2: Which of these components are common
across the platforms?

To answer RQ1, a thorough examination of each of the
mobile platforms will be performed. During this examination
each of the components together with their associated events

and attributes will be identified. These will then be compiled
into a comprehensive profile of the platform.

Using the platform profile produced by RQ1, RQ2 will
be answered through a comparison of these profiles. This RQ
will aim to identify how the components on one platform
relate to those on the other platforms. For example, the
TextView component on Android [9] is equivalent to the
Label component on the iOS platform [11].

Additionally, a third research question has been defined
to investigate how these components can be combined into a
platform independent testing tool.

• RQ3: How should these components be modelled
in a platform independent testing tool?

By investigating the third research question, we will
bring together all components from all platforms into a
single platform independent representation. This is in
contrast to USIXML as RQ3 incorporates all components not
just a subset of them. The common components identified in
RQ2 will have a single representation with a mapping to the
concrete components used by the underlying platforms.
Using this representation it will then be possible to construct
the platform-independent testing tool, which we call
MobiTest.

IV. MOBITEST

The MobiTest tool is designed to address some of the
difficulties associated with the automated testing of mobile
applications, by using a single set of unit tests to test the
application on multiple platforms.

The initial version focuses on testing through the
interface as this should be similar (although not exactly the
same) on all platforms. In this way, the need for platform-
specific code can be minimised. In this section we present a
sample app on which MobiTest can be used, and then outline
the proposed system architecture.

A. Sample Application

The Log In screen illustrated in Figure 1, which could be
used on a number of applications, such as apps for logging
medical data, invites the user to enter a username and
password, which is checked against a database, and displays
a message indicating whether these credentials have been
accepted or not.

Assuming that (“ian”, “brookes”) is a valid (username,
password) pair, a possible test of this app is as follows:

1. click in the username text field
2. press the keys ‘i’, ‘a’, ‘n’
3. click in the password text field
4. press the keys ‘b’, ‘r’, ‘o’, ‘o’, ‘k’, ‘e’, ‘s’
5. click the OK button
6. assert the text component of the lower label is

“password accepted”

Figure 1. Sample Log In screen to be tested through MobiTest

620Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 638 / 729

When an assertion is false for any platform, this is
reported to the user of the tool so that they can take action to
correct the apparent error in the program. This is just one test
that may be run on this application. In practice many more
tests will be required. The benefit of MobiTest is that tests
only need to be specified once. The test suites will be
generated automatically for each platform, be it iOS,
Android or Blackberry.

B. System Architecture

To generate automated tests for concrete platforms, such
as Android or iOS, a virtual platform (called Mobi) will be
defined. For Mobi, a number of GUI components will be
defined through the answer to RQ3. For each such
component, a list of valid attributes and events will be
defined. Each concrete platform will have its components
defined in a similar way. The available GUI components
vary from platform to platform and even where the same
component is available, the name may be different. Let Pi for
i in 1..n denote the n different concrete platforms. To account
for the naming differences, a function Φi can be defined that
maps each Mobi component to its realisation in Pi. A similar
function Φi maps each component attribute and event to its
realisation in Pi. In the diagram below, n=2, P1 represents
Android and P2 represents iOS.

Similarly, let pi denote the set of actual components in
the app written for platform Pi. Each version has six such
components, as indicated in Figure 3.

Once a set of common components p is identified, a
mapping φ i from the components of p to those of pi can
thereby be deduced.

The tool MobiTest will operate as follows:
i. from the layout XML files of each version of the app,

MobiTest will deduce the mappings φ i and insert
them into an empty XML file tests.xml

ii. the user will then add test cases in the form event+

assert+ where event and assert are given as tags with
attributes and values in the normal manner and X+
signifies one or more occurrences of X. It is
anticipated that given the restricted nature of the
language, GUI support can make this process
exceptionally straightforward. This will be a major
advantage, as it focuses attention on the interface
which is unusual for conventional unit testing.

iii. MobiTest will produce a test class for each platform.
In it, for each test case, MobiTest will translate each
event into a piece of code that triggers that event and,
similarly, each assert into a piece of code that tests
that assert. This will be done using the definitions of
φi from the tests.xml file to identify the components
and using Φi to determine the events and attributes

iv. MobiTest will then run each test class on its
associated platform, and present the test report to the
user.

Figure 2. MobiTest System Architecture

Figure 3. MobiTest view of the Log In screen

621Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 639 / 729

V. CHALLENGES

The creation of this tool presents a number of challenges:
• Use of XML to specify components: although iOS

and Android can specify their layouts with XML, it
may be that some platforms do not. In that case, it
will be necessary to parse the code to obtain a list of
the components used.

• Incorrect assumptions about layout: for example,
suppose there are iOS and Android layout XML files
that both specify two buttons. Based on the order in
which components are specified in the file, it will be
assumed that the first button from one file
corresponds to the first button from the other. This
assumption may not be valid.

• Conflicting guidelines: both iOS and Android
provide a set of guidelines for user interfaces. These
guidelines are not always compatible. Furthermore,
adherence to such guidelines is often a requirement
for the app to be distributed through the app store.

• Platform-specific features: each mobile platform
has a number of components unique to that platform.
For example, the “back” button, to return users to the
previous screen, is physical for Android devices but
it is a GUI component on iOS. The MobiTest tool
will need to be able to identify these features and
allow users to access and test them.

• Inconsistent number of screens: a single screen on
one platform may correspond to multiple screens on
another. MobiTest will therefore need to allow
mappings between components on an application
level, rather than at screen level.

VI. PLAN FOR FUTURE WORK

1. Determine components, events and attributes for a
number of platforms by creating a compatibility matrix
which identifies which components are available on which
platform (RQ1) and how they correspond to components on
other platforms (RQ2). For example, a Picker in iOS has no
equivalent in Android but the ListView provides similar
functionality.

2. Define the virtual platform Mobi and the functions Φi
(RQ3). To help with this, an on-going study of existing
multi-platform applications will be used to provide insight
into how existing applications are created for cross-platform
use and to help identify common conventions that are used in
this context.

3. Write MobiTest for one platform, Android. To do this,
a comprehensive examination of existing unit testing tools
will be performed. This examination will focus mainly on
the Android testing API [9], a specialisation of JUnit [10],
and Logic Unit Tests for testing iOS applications [11]. Once
this has been done, MobiTest will be generalised to multiple
platforms.

VII. SUMMARY

This paper has proposed MobiTest, a testing tool for
cross-platform mobile application development, which uses a
domain-specific language for mobile interfaces. Short

development cycles and the wide range of platforms mean
that time available for testing is limited when developing
applications for mobile devices. MobiTest will address this
issue by allowing developers to specify a single set of tests
for applications that can then be used with each platform on
which the application is developed.

Conflicting guidelines and platform specific features are
just some of the challenges when developing such a
platform. If these challenges can be addressed, testing of
mobile applications can be simplified and performed more
easily leading to higher quality mobile applications and a
much more enjoyable, satisfying and effective user
experience.

Although this approach may not solve all of the issues
associated with automated testing of mobile applications, we
believe that it will help to address issues specifically relating
to application development across multiple platforms.

VIII. ACKNOWLEDGEMENTS

This research is supported by Oxford Brookes University
and the Science Foundation Ireland (SFI) Stokes Lectureship
Programme, grant number 07/SK/I1299, the SFI Principal
Investigator Programme, grant number 08/IN.1/I2030 (the
funding of this project was awarded by Science Foundation
Ireland under a co-funding initiative by the Irish Government
and European Regional Development Fund), and supported
in part by Lero - the Irish Software Engineering Research
Centre (http://www.lero.ie) grant 10/CE/I1855.

IX. REFERENCES

[1] ITU, "The world in 2010 ICT Facts and Figures," ITU, 2010.
[2] D. Flood, R. Harrison, D. Duce, and C. Iacob "Using Mobile
Apps: Investigating the usability of mobile apps from the users
perspective," International Journal of Mobile HCI (In Press) 2012.
[3] G. Tassey, "The Economic Impacts of Inadequate
Infrastructure for Software Testing," National Institute of
Standards and Technology 2002.
[4] F. P. Brooks, the mythical man-month: Addison-Wesley
Publishing Company, 1982.
[5] W. Royce, "Managing the Development of Large Software
Systems," in WESCO, 1970.
[6] K. Beck, Extreme Programming Explained: Embrace Change:
Addison-Wesley, Pearson Education, 2000.
[7] B. George and L. Williams, "An initial Investigation of Test
Driven Development in Industry," in ACM Symposium on Applied
Computing, Melbourne, FL, 2003.
[8] D. Zhang and B. Adipat, "Challenges, Methodologies, and
Issues in the Usability Testing of Mobile Applications,"
International Journal of Human-Computer Interaction, vol. 18, pp.
293 - 308, 2005.
[9] A. D. Guide, "http://developer.android.com/." vol. 2011, 2011.
(accessed 25/09/2012)
[10] JUnit, "http://www.junit.org/" 2011. (accessed 25/09/2012)
[11] i. D. Library, "http://developer.apple.com/." vol. 2011,
(accessed 25/09/2012)
[12] http://www.usixml.org (accessed 25/09/12)

622Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 640 / 729

Requirement-based software testing with the UML: A systematic mapping study

Nesa Asoudeh
Carleton University, Dept. SCE

Ottawa, Canada
nasoudeh@sce.carleton.ca

Yvan Labiche
Carleton University, Dept. SCE

Ottawa, Canada
labiche@sce.carleton.ca

Abstract- Our goal is to determine the current state of the
art in requirement based testing in a UML context. We
combined an automated search in digital libraries with a
manual search in related journal and conference venues.
The search resulted in about 1,300 papers. After applying
inclusion/exclusion criteria, we selected 100 papers as our
final set of primary studies. Classification results based on
several criteria lead us to interesting observations such as: A
small proportion of the primary studies evaluate techniques
through experiments and one-third of the techniques are
simply illustrated with an example; More advanced selection
criteria exist in literature than those used in primary studies.

Keywords- Requirement based testing; systematic mapping
study; model driven development; requirement engineering;
Unified Modeling Language.

I. INTRODUCTION

At least half of the effort to develop a working
program is devoted to testing [4]. Undetected errors in
software can cause substantial financial loss or even
catastrophic results in safety critical systems. Detecting
faults as early as possible during the software development
is an effective means of reducing testing cost since the cost
of fixing an error increases with the time between its
introduction and detection.

Requirement-based testing (RBT) aims at starting
testing-related activities as early as possible during
software development, specifically deriving test cases (or
test case specifications) from the requirements of the
software under test [1]. RBT addresses two major issues:
first, validating that the requirements are correct,
complete, unambiguous and logically consistent; and
second, designing a necessary and sufficient, from a black
box point of view, set of test cases from those
requirements to ensure that the design and code fully meet
those requirements. Some of the benefits of and reasons
for RBT are: (1) Creating tests early; (2) Allowing test
engineers to find inconsistencies and ambiguities in
requirements; (3) Leading to test data independent of any
particular implementation; (4) Allowing conformance
testing; (5) Reducing testing costs, since testing starts
early; (6) Reducing software time to market.

These suggest that RBT can be an efficient and
effective approach to software verification and validation.
Note also that RBT is mandatory in some software
development projects, e.g., airborne software developed
according to the DO-178B/C standard [23].
There are numerous methods for representing software
requirements (e.g., formal specification, plain text, the
Unified Modeling Language) and more than one of them is
typically used [7]. As a result, there are many approaches
to RBT and, in spite of a great deal of research, to the best

of our knowledge, there exists no systematic literature
review [8] on this topic. There have been some surveys
(e.g., [13, 14]) on model-based testing (MBT), a testing
activity that aims at (automatically) deriving test cases
from a model specifying the intended behaviour of a
software [18]. However, RBT and model based testing are
not interchangeable. Not any model used in MBT can be
used for RBT. On the other hand, a model-based approach
is one possible way to elicit requirements, and therefore
RBT often uses models.

This paper reports on a systematic mapping study [8]
on RBT, thereby identifying and classifying the available
research (papers) in this area. A systematic mapping study
is an important piece of work since it provides a wide
overview of a research topic and establishes if research
evidence exists in the area. It also provides an indication of
the quantity of the evidence, prior to conducting a
systematic literature review. During a systematic mapping
study a classification scheme is defined and then used in
an analysis phase to determine the coverage of the
categories of the scheme. Petersen et al. discuss the
differences between these two analyses [16].

More specifically, we are interested in RBT in the
context of a UML-based software development [15]. The
reason for reducing the scope of the research is threefold:
(1) the UML is now the de-facto standard for analysis and
design of object-oriented software [15], (2) not reducing
the scope this way would lead to more research papers
than what can likely be possibly managed, and (3) not
reducing the scope would lead to testing techniques of
widely different nature, which would complicate the
review and the comparison (e.g., RBT from a Petri net
model would have different capabilities than a technique
based on UML sequence diagrams simply because of the
more formal basis of that modeling notation).

Section II discusses the protocol we followed in our
systematic mapping study. Section III presents descriptive
statistics about the search of RBT techniques. Section IV
discusses the comparison criteria we used to compare the
identified testing techniques and the results of the
comparison. Section V discusses threats to validity.
Section VI concludes the paper.

We dedicate a fair amount of the paper to the search
protocol and the comparison criteria. Our intent is to
disclose enough details to readers’ scrutiny and allow
adequate conclusions to be drawn from the identified RBT
techniques, to limit threats to the validity of the results, to
allow replications, extensions and comparisons in future
works (by us or others) [8].

II. REVIEW METHOD

We followed standard procedures [8, 16] whereby the
first step is a planning activity. The most important

623Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 641 / 729

planning activity is formulating the research questions.
Our research questions are: RQ1—What are the current
approaches to RBT? RQ2—What are the main
characteristics of these approaches? Following planning,
we identify relevant research works using an identification
procedure (section II.A) and a selection/rejection
procedure (section II.B).

A. Search Strategy
Most literature reviews, including mapping studies,

involve automatically searching digital libraries with a set
of keywords. Unfortunately, search engines embedded in
digital libraries relevant to software engineering are not
designed to support such reviews [5]. Therefore, one may
miss relevant papers when only relying on such search
engines. We complemented the automated search with a
manual search, which is also recommended by others [5].

Manual Search. The focus was collecting recent papers
on RBT, published between January 2006 and June 2011;
We started in 2006 since UML 2.0 was officially released
in July 2005 and we felt OMG's improvements to the
UML specification would lead to increased opportunities
for automated UML-based testing. This assumption is
somewhat confirmed by our analysis (Section IV). We
selected conference and journal venues (available in our
online technical report [3]) that, from our past experience
as researchers in the domain, we knew would likely
publish work on RBT and UML based testing. Since the
automatic search was conducted in parallel with the
manual search, venues that had multiple relevant papers
appearing in the automatic search were added to the list of
relevant venues for the manual search [3].

Automatic Search. We searched five digital libraries
that were highly relevant to software engineering and have
been recommended by others [5, 8]: IEEE Xplore, ACM
Digital Library, SpringerLink, Scopus and Inspec, during
the period 1990-2011. Based on our research questions, we
formulated the initial query string (Q0):

Q0 “Requirement based testing” OR
“Requirement Driven Testing” OR “Specification
based testing” OR “Specification Driven
Testing”

Given our focus on RBT, we also performed a survey
(though not as systematic as a mapping study) of
requirement modeling techniques [10] and the definition of
the word requirement itself (see [3] for details). We
identified techniques as varied as natural language
specifications to diagrammatic notations that specify

system behavior (e.g., state machine) or interaction
scenarios (e.g., sequence diagram). Considering that we
are interested in testing techniques to be used in a UML
context, we selected the following requirement
modeling/specification techniques: use case, sequence
diagram, activity diagram, state machine diagram, natural
language. We selected this subset of UML diagrams, and
not other diagrams like timing diagrams though they could
be used to specify requirements, since these diagrams have
been shown to be the most used by practitioners [6, 12].
We thus formulated the following additional queries:
Q1 “use case” AND test*
Q2 “sequence diagram” AND test*
Q3 “activity diagram” AND test*
Q4 (“statechart” OR “state machine” OR “state

diagram”) AND test*
Q5 “natural language” AND requirement AND

test*
We kept word “requirement” in Q5 since otherwise

query “natural language” AND test* was returning
too many false positives, e.g., RBT techniques in other
engineering disciplines than software engineering. We
added this query because use case descriptions are usually
written in natural language.

Because we had an interest in safety critical and
embedded real-time systems we added the following two
queries as well (in these two queries we also kept word
“requirement” for the same reasons as previously):
Q6 “safety critical” AND requirement AND

test*
Q7 “embedded” AND “real time” AND requirement

AND test*
As illustrated above, we followed Kithenham's

recommendations [8] and identified terms as well as
synonyms and alternative spellings that were specific to
our research questions, and then used ANDs and ORs to
construct sophisticated queries.

We searched the selected five digital libraries with
those queries, accounting for the slightly different formats
the search engines required. The search with Q0 was
performed in October 2010 and the one with Q1-Q7 was
performed in June 2011. The search was performed within
the title, abstract and keywords of papers.

B. Article Selection: Inclusion/Rejection Criteria
Our article selection entailed several steps (Figure 1).

During the initial, manual plus automated search, any
paper discussing an approach related to some testing
activities from software requirements was added to the set
of relevant papers.

Throughout the manual search, after scanning the list
of papers in a conference proceeding or a journal issue, we
considered all the papers that had a title relevant to
software verification and validation. We then selected the
ones that discussed any kind of RBT technique by reading

Figure 1.Paper selection process

624Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 642 / 729

the abstracts, introduction and conclusion sections. In a
few cases we had to use the full text of the paper to make
the final decision. For each selected paper, we also
examined the list of references to find potential additional
relevant papers.

We followed a similar procedure during the automatic
search. However, we had to strengthen the exclusion
criteria. Whenever possible, we used the filters provided in
digital libraries to limit the scope of search to computer
engineering or related areas. But, we still obtained many
papers from other disciplines like mechanical engineering
or civil engineering. We also excluded those papers.

After removing duplicates (obtained from different
databases, from both the manual and automated searches)
we defined a more precise set of inclusion/exclusion
criteria to select the final set of primary studies:

1. We excluded papers on testing based on design
artifacts, such as testing from design patterns
specified in a class diagram;

2. We excluded papers that discussed testing model
transformations;

3. We excluded papers discussing concepts like test
case prioritization, test case optimization, test effort
estimation, test planning and coverage analysis;

4. When we had several papers describing one single
approach by the same author(s), we only considered
the most recent one and if available the most recent
journal paper, assuming that we would then obtain
the most complete description of the approach;

5. We only included papers that discussed testing
based on the UML diagrams mentioned previously.

III. RESULTS

The manual search resulted in a total of 147 papers, 51
of which are journal papers. Merging results of the manual
and the automatic searches led to a set of 1,275 papers.
After removing duplicates, we obtained a set of 702
papers. Applying our set of inclusion/exclusion criteria
resulted in 100 unique papers as the final set of primary
studies. The complete list of papers as well as descriptive
results of automatic and manual searches are available in a

technical report [3].

IV. ANALYSIS

Our analysis entails comparison (Section IV.A) and
classification (Section IV.B). We also observed evolutions
over time (Section IV.C).

A. Comparison
We have defined seven criteria to compare primary

studies, based on our research questions, to help us to
extract from each paper data that we are interested in.
Requirement Model: The UML diagram used to model
requirements is one of the most influencing factors when
selecting and comparing testing techniques.
Test Model: In some papers, test cases are extracted
directly from the requirement model in which case the test
model is the same as the requirement model. In other
papers, the requirement model is transformed into an
intermediate model, which is used to generate test cases.
Level of Automation: We have defined four levels of
automation: manual, partially automated, fully automated,
and automatable. A partially automated technique entails
some steps that require human expertise (e.g., expertise in
the testing technique, in the system under test, in the
domain of the system under test) while a fully automated
technique does not. Automatable means that some steps of
the technique are described with enough clarity and
precision (e.g., an algorithm in pseudo code) to be
automated. Should those steps be automated, the technique
would then become either fully automated or partially
automated (depending on whether some steps still require
human expertise). If a primary study does not indicate that
any of the steps can be automated, and therefore, the
evaluation discussed in the paper (if any) is manual, then
the technique is said to be manual.
Testing Level: We use a well known classification of
testing levels [2]: acceptance testing, system testing,
integration testing, module testing and unit testing.
Selection Criteria: These are the criteria being used to
derive test cases from the test model. (Note that we make a
difference between a selection criterion—a criterion being
used to create tests, and a coverage criterion—a criterion
to evaluate the coverage of an existing test suite, since
creating technology and tool support for the latter is
usually simpler than for the former.) Also we consider
whether the selection criteria are based on the requirement
model or some intermediate model when the test model is
not the requirement model. This is important since in the
latter case the mapping between the model element of the
test model being exercised and elements of the
requirement model is not necessarily straightforward.
Empirical Evaluation Technique: Since empirical
evaluation has become an important part of software

Table 1. Automatic Search (descriptive statistics)
IEEE Inspec Scopus ACM Springer

T R T R T R T R T R
Q0 64 49 123 86 133 87 26 11 20 12
Q1 124 38 290 83 589 93 46 12 52 22
Q2 30 19 61 38 154 74 20 10 8 6
Q3 25 21 45 33 98 46 20 13 6 3
Q4 405 130 NA NA NA NA 21 7 114 37
Q5 38 10 194 38 89 15 18 4 14 3
Q6 75 12 286 42 209 26 20 3 21 3
Q7 113 9 399 16 189 10 21 2 21 4

625Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 643 / 729

engineering research [20] and it is becoming more and
more common to provide empirical data to support an
idea, we compared primary studies according to the kind
of empirical evaluation they provide. Different taxonomies
of empirical evaluation techniques exist and we selected
one that distinguishes between an experiment, a case
study, and an example [22]. To distinguish between
experiments and case studies we use the notion of a state
variable [22]. In an experiment, the state variable can take
on different values to recognize the differences between
various situations, e.g., a controlled situation and the
situation under investigation, whereas the state variable
assumes only one value in a case study. On the other hand,
an example covers only some parts of a technique.
Empirical Evaluation Material: We want to distinguish
between papers that show application of the proposed
approach in an industrial context from the ones that show
application on a smaller application or fractions of it, or
from the ones that illustrate application on a toy example.

Others, before us, have described criteria to compare
software testing techniques. Neto and Travassos discuss
criteria similar to ours but in the context of model-based
testing [13, 14]. We report on a smaller amount of
information in this paper since this is only a conference
paper whereas they reported on the result of a complete
literature review. More specifically, among the 18
different criteria they discuss, seven are similar to ours,
two are not adequate to our situation (e.g., they consider
whether a technique is structural or functional, whereas we
only deal with the latter), and the remaining attributes will
be used in a future publication. Our future publication will
also compare the empirical results reported in primary
studies: for instance, in the software testing community,
researchers are typically interested in studying the cost
(e.g., in terms of number of test cases generated) and
effectiveness (at finding faults, either real or seeded). Our
set of criteria and the one of Neto and Travassos are
subsets of the larger, more extensive characterization
schema for software testing techniques [21].

B. Classification
In this section, we classify the primary studies (papers)

based on our seven comparison criteria.
Requirement Model. Figure 2 (a) summarizes the

different UML diagrams that are used in primary studies.
(We use only one term to refer to the UML 1.x and UML
2.x terminologies with respect to the state model.)
Sequence and statechart diagrams have the highest number
of hits. This is not surprising since these are probably the
most used diagrams to specify behavior and interactions,
and therefore functional requirements. Also, the statechart
diagram is the most precisely defined UML diagram and
therefore one of the most appropriate diagrams to derive

tests from. We also noticed that 38 papers used more than
one diagram as requirement model. This is a large amount
and can be a result of the fact that usually more than one
UML diagram is used during requirement engineering.
The most common combination of models is use case
diagram and either sequence diagram or activity diagram
to model use case scenarios (17 papers). These 17 papers
represent 77% of all the papers that rely on use cases for
RBT. This is likely due to the fact that use cases and
textual use case descriptions, although used a lot in
requirement engineering, are not precise enough to be used
alone during testing. Other common combinations are
class diagram plus sequence diagram (six papers),
sequence diagram plus statechart (four papers), and
activity diagram plus statechart (three papers).

Test Model. 45% of the primary studies generate test
cases directly from the requirement model: Figure 2 (b).
The UML diagram that is the most used as a test model,
either alone or in a combination with other diagrams, is the
activity diagram (16 papers). The sequence diagram (13
papers) and statechart diagram (12 papers) come next. In
55% of the papers, the requirement model is transformed
either into a formal model like Linear Transition System
[17] or an intermediate data structure like communication
tree [18] to generate test cases. This may be due to the lack
of formality of UML or the desire to use a test model for
which a testing technique already exists.

Level of Automation. Figure 2 (c). A lack of clear
description for several steps of the proposed techniques

(a) Requirement model (b) Test model

(c) Level of automation (d) Empirical evaluation

Figure 2. Classification according to (a) the requirement model, (b)
the test model, (c) the level of automation, and (d) the empirical
evaluation

626Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 644 / 729

prevented us from classifying 5% of the primary studies.
About 29% of the primary studies discuss automated tool
support under the form of a single tool supporting several
steps. These are a subset of the partially automated and
fully automated primary studies. The rest of the
(partially/fully) automated techniques discuss several
pieces of tool support (but not a single bundle). Though
not shown in Figure 2 (c), we note that all the techniques
that use a formal model as test model are at least either
partially automated or automatable. Equally interesting,
70% of the papers describing a manual process or that we
were not able to classify are the ones that derive tests
directly from the requirement model (i.e., the requirement
model and the test model were the same), regardless of the
kind or formal basis of requirement model used.

Testing Level. As expected, the majority of the primary
studies (86%) describe a system testing technique. This is
in accordance with the fact that system testing is designed
to verify whether the assembled system meets its
specification [2], and that requirements provide this
specification. Other testing levels are integration testing
(8%), unit testing (3%), and acceptance testing (2%). We
also found one paper addressing non-functional testing
(robustness testing). This small amount is not necessarily
surprising since the diagrams we selected are more used to
specify functional requirements than non-functional ones.

Selection Criteria. Since selection criteria depend on
the test model, we do not classify primary studies based on
this criterion: it would not be fair to say one technique
does not use a criterion supported by another technique
simply because they rely on different test models.
However, we look at criteria used for similar test models.
Some of the most used criteria for different diagrams are:
state, transition for the statechart diagram; use case
scenarios for the use case diagram; activity, transition,
action for the activity diagram; message sequence path for
the sequence diagram. We argue that, considering the
extensive literature on test selection criteria, the criteria
used in primary studies are among the simplest ones that
exist. For instance, an activity diagram being very similar
in structure (and purpose) to a control flow graph, it is
surprising that other graph-based control- and data-flow
criteria [2] are not experimented with. This also applies to
sequence or statechart diagrams .

Four of the primary studies focus solely on empirical
evaluation of different requirement based testing
techniques either by means of case studies or experiments.
We consider this to be a small proportion (4%) of
empirical evaluations of different techniques, and this
shows that there is room for more empirical studies in the
area of RBT. Since these papers do not propose any new
approach, we d not include them in the classification, but
we have discussed them separately [3].

Empirical Evaluation. We found primary studies
without any kind of empirical evaluation: Figure 2 (d).
Only 22% of the primary studies have performed
experiments to evaluate their approaches. This can be due
to constraints in terms of length on what can be reported in
a conference or workshop paper. Therefore we decided to
analyze conference and workshop papers separately from
journal papers and book chapters with respect to this
comparison criterion (see figure 3). As expected
experiments are used more often in journal papers while
the most used empirical evaluation techniques in
conference and workshop papers are case studies and
examples. Note that we found two journal papers (out of
21) with no data on any empirical evaluation. The two
journal venues are not listed in the Excellence in Research
for  Australia (ERA) journal and conference rankings;
Nevertheless, the two papers were listed in the results of
our automatic search.

Empirical Evaluation Material. The most occurring
evaluation materials are toy example (34 papers), fraction
of real world applications (18 papers), and industrial
applications (13 papers). 16 studies include no discussion
of the empirical evaluation material whatsoever: this
includes the ten studies with no evaluation, indicating that
six studies that report on an evaluation do not provide
details on the experimental material.

C. Time Trends
Since the UML has evolved over time we speculated

that our results would vary accordingly. Figure 4 (a) shows
an increase in the number of primary studies around the
year 2005. This can be caused by two factors. First, the
more precise semantics of UML 2.0, released in 2005,
might have made the UML more appropriate for testing.
Second, 2006-2011 is the overlapping period between the
manual and automatic searches. Therefore, the manual
search could be the main cause of this increase. To better
identify the root cause of the increase, we identified the
papers found by only one or the other type of search and
the papers found by both searches during the overlapping
period 2006-2011: Figure 4 (b). The figure starts in 2005
to better present the trend for the automatic search. It
shows that the trend is mostly due to the automated search.

Figure 3. - Classification of journal and conference papers based on
empirical evaluation method

627Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 645 / 729

We therefore conclude that the increase is due to the
release of UML 2.0.

V. THREATS TO VALIDITY

In any research work, there might be factors that can
jeopardize validity. Our work is no exception and we need
to discuss threats to validity. Systematic literature reviews
and mapping studies are typically performed by a group
composed of multiple researchers. In order to limit the
threat of not having many researchers involved in the
process, we followed guidelines [8] whereby we clearly
defined and documented the important steps of the study
including the review protocol, the research questions, the
search strategy, the inclusion/exclusion criteria. These
aspects are paramount to our study and results and this is
the reason why we devoted a fair amount of space to
describe them in this paper.

As mentioned before, both manual and automatic
searches have advantages and drawbacks and we used
both. One possible threat is that we might have missed a
relevant (conference or journal) issue. However, our
search was iterative and the dynamic search fed the
manual one. Plus, the automatic search was not restricted
in any way with that respect. Last, our knowledge of
software testing research tells us that missing a venue is
unlikely. A related threat is the possibility to miss a
relevant paper from the identified venues because we
manually selected them by only looking at the title,
abstract, and keywords. However, when this information
was not sufficient to make a decision we also looked at the
introduction, the conclusion and the entire paper. This was,
however, only necessary in a few cases, and we are
confident we did not miss important papers. Another threat
related to papers is the identification of primary studies.
Although we tried to define a precise set of
inclusion/exclusion criteria, there is always a chance of
introducing a bias while applying them to different papers.
Given the definition of those criteria, we however consider
the risk is low. Note that we focused our study on UML-
based RBT. We therefore excluded papers that describe
testing techniques based on finite state machines (FSM) or
extended finite state machines (EFSM). We do not
consider this a threat, even though some of the (E)FSM
techniques could be used in a UML context, since these
techniques can be studied separately, there is a vibrant
research community studying these techniques and there
exists surveys describing them [9, 11].

The last threat to validity is about the classification of
the primary studies. We tried to limit this threat by making
our comparison criteria as precise as possible. We also
reused existing classifications as much as possible.
Nevertheless, there can always be cases for which the
classification is affected by personal judgments (e.g.,

determining level of automation). In order to reduce the
risks of introducing a bias in paper classification, 10% of
the primary studies were selected randomly by the first
author and submitted for classification to the second
author. A few minor disagreements were noted and easily
fixed.

VI. CONCLUSION AND FUTURE WORK

Requirement-based testing aims at starting testing-
related activities as early as possible during the software
development life cycle [1]. Since software testing is
expensive, a great deal of research has been performed in
the area of requirement based testing, with the hope to
reduce testing costs. Unfortunately, as far as we know, to
date, no systematic mapping study can help determine the
current state of the art in requirement based testing.

The goal of our systematic mapping study was to
identify published research works in the area of
requirement-based software testing, and then provide a
framework to evaluate them. Since the domain of
requirement based testing is broad, such a mapping study
is an important initial step before conducing more specific
systematic literature reviews. In order to identify relevant
papers we performed both an automatic search and a
manual search, which resulted in about 1,300 papers. After
removing duplicates and applying inclusion/exclusion
criteria we obtained a set of 100 primary studies, which we
compared by using seven complementary criteria.

The results of the classification lead us to make a
number of interesting observations, including: (1) Almost
all the primary studies (99%) discuss a functional testing
technique. This indicates a lack of requirement-based
testing approaches that address non-functional

(a)

(b)

Figure 4. (a) Distribution of primary studies over time and (b) found by
different search methods

628Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 646 / 729

requirements. This is however not entirely surprising since
other UML diagrams than the ones we studied might be
needed to specify and therefore test non-functional
requirements; (2) Only a very small proportion of the
primary studies (4%) evaluated different requirement-
based testing techniques, suggesting a need for more
empirical comparisons of requirement-based testing
techniques; (3) A relatively small percentage of the
primary studies (22%) provide a formal evaluation of the
proposed testing technique under the form of an
experiment. When only looking at primary studies
published in journal venues, the proportion is higher
(48%), though we observed that 23% of the journal papers
only evaluate the proposed testing technique with an
example or provide no evaluation; (4) The test selection
criteria being used in the proposed requirement-based
testing techniques seem to be among the simplest that have
been suggested in the testing literature. For instance, we
did not find a single primary study where data flow criteria
are used, although data flow selection criteria can be used
in sequence, activity, or state machine diagrams and they
are known to complement control flow criteria.

Our future work includes an analysis of the primary
studies in a qualitative way to answer questions like: What
limits the application of the proposed techniques? What
are the avenues for further research in UML-based,
requirement-based software testing? We also plan to
extend the scope of the review to other requirement
modeling techniques than ones based on UML.

VII. ACKNOWLEDGMENT

This work was performed under the umbrella of a
NSERC-CRD grant. The authors would like to thank
NSERC, CRIAQ, CAE, CMC Electronics, and Mannarino
Systems & Software for their financial support.

VIII. REFERENCES

[1] G. Amit and B. Rajesh, “Testing functional requirements using B
model specifications,” Software Engineering Notes, 35, 2010, pp.
1-7.

[2] P. Ammann and J. Offutt, Introduction to Software Testing,
Cambridge University Press, 2008.

[3] N. Asoudeh and Y. Labiche, “Requirement based software testing
in a UML context: A systematic literature review”, Tech. Rep.
SCE-108,2011. Avialable from ,squall.sce.carleton.ca/ pubs/
tech_report /TR_SCE-11-08.pdf [retrieved: October, 2012]

[4] B. Beizer, Software Testing Techniques, International Thomson
Computer Press, 1990.

[5] P. Brereton, A. B. Kitchenham, D. Budgen, M. Turner ,and M.
Khalil, “Lessons from applying the systematic literaturereview
process within the software engineering domain”, JSS, vol. 80,
2007, pp. 571-583.

[6] B. Dobing and J. Parsons, “How UML is used,” Com. of the ACM,
vol. 49, 2006, pp. 109-113.

[7] C. Jones, Software Engineering Best Practices: Lessons from
Successful Projects in the Top Companies, McGraw-Hill, 2009.

[8] B. A. Kitchenham, “Guidelines for performing systematic
literature reviews in software engineering,” Tech. Rep. EBSE-
2007-001, 2007.

[9] R. Lai, “A survey of communication protocol testing,” JSS, vol.
62, 2002, pp. 21-46.

[10] A. V. Lamsweered, Requirements Engineering, Wiley, 2009.
[11] D. Lee and M. Yannakakis, “Principles and methods of testing

finite state machines-a survey,” Proc. of the IEEE, vol. 84, 1996,
pp.1090-1123.

[12] F. J. Lucas, F. Molina, and A. Toval, “A systematic review of
UML model consistency management,” IST, vol. 51, 2009, pp.
1631-1645.

[13] A. Neto and G.H. Travassos, “Evaluation of model-based testing
techniques selection approaches: An external replication,” Proc.
ESEM, 2009, pp. 267-278.

[14] A. Neto and G.H. Travassos, “Model-based Testing Approaches
Selection for Software Projects,” IST, vol. 51, 2009, pp. 1487-
1504.

[15] T. Pender, UML Bible, Wiley, 2003.
[16] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic

mapping studies in software engineering,” Proc. EASE, 2008, pp.
68-77.

[17] S. Pickin, C. Jard, T. Jeron, J.M. Jezequel, and Y. Le Traon, “Test
synthesis from UML models of distributed software,” IEEE TSE,
vol. 33, 2007, pp. 252-269.

[18] A. Pretschner, “Model-based testing in practice,” Proc. Formal
Methods, 2005, pp. 537-541.

[19] P. Samuel, R. Mall, and P. Kanth, “Automatic test case generation
from UML communication diagrams,” IST, vol. 49, 2007, pp. 158-
171.

[20] F. Shull, J. Singer, and D.I.K. Sjoberg, Guide to Advanced
Empirical Software Engineering, Springer, 2008.

[21] S. Vegas and V. Basili, “A Characterization Schema for Software
Testing Techniques,” ESE, vol. 10, 2005, pp. 437-466.

[22] C. Wholin, P. Runsen, M. Host, M. C. Ohlsson, B. Rengell, and A.
Wessslen, Experimentation in Software Engineering: An
Introduction, Kluwer Academic Publishers, 2000.

[23] RTCA: Software Considerations in Airbone Systems and
Equipment Certification. Radio Technical Commission for
Aeronautics (RTCA), Standard Document no. DO-178C. (2011)

629Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 647 / 729

Simulation-Based Management for Software Dynamic Testing Processes

Mercedes Ruiz

Department of Computer Science and Engineering

University of Cádiz

Cádiz, SPAIN

e-mail: mercedes.ruiz@uca.es

Javier Tuya

Department of Computing

University of Oviedo

Gijón, SPAIN

e-mail: tuya@uniovi.es

Daniel Crespo

Department of Computer Science and Engineering

University of Cádiz

Cádiz, SPAIN

e-mail: dani.crespobernal@alum.uca.es

Abstract - Managing software development projects requires

the coordination of different processes which may be

performed by different teams, e.g., a development team and a

separate testing team. This coordination aims at optimizing the

trade-off between cost, schedule and delivered quality.

Simulation models are a powerful tool to explore what-if

scenarios that help managers to achieve this trade-off and to

fine-tune different project parameters. This paper presents a

simulation model based on a multi-paradigm approach which

connects development and testing processes. The testing

process model is based on the process model described in the

ongoing standard ISO/IEC DIS 29119-2. The simulation model

is built using two different methods: the discrete-event

approach, to simulate the execution of the dynamic testing

processes, and the agent-based approach, to in-depth simulate

defects life cycle. Results show how the simulation model is

used to optimize the efficiency of the testing process.

Keywords - software testing process; multiparadigm

simulation; management

I. INTRODUCTION

Software testing is concerned with planning, preparation
and evaluation of software products and related work
products to: a) determine that they satisfy specified
requirements, b) demonstrate that they are fit for purpose and
c) detect defects [17]. In general, testing can be viewed as a
means of improving the quality of a given product and
mitigating risks due to poor quality.

Testing can be carried on using different approaches
(e.g., scripted or exploratory), at different levels (e.g., unit,
system, integration or acceptance), using different techniques
and tools and with different degrees of independency
(ranging from testing performed by the producer to third
party testing). When testing entails the execution of the
system under test, it is often referred to as dynamic testing.
Testing exists in an organizational context and is carried on a
given project or service. Therefore, the testing activities are
tightly interrelated with the development ones, and both shall
be planned, monitored and controlled. Problems of quality of
the system under test or delays in the development hamper
the testing process. Conversely, an inadequate or delayed

testing endangers the development process. If not managed
properly, both development and testing processes may
jeopardize the goals of cost, schedule and quality of a
project.

Both development and testing can be described as
processes and take advantage of the use of simulation models
for helping project and/or test managers in daily tasks of
planning, monitoring and control.

Informally, a simulation model can be considered as an
abstract view of a complex system comprised of a set of
rules that tell how to obtain the next state of the system from
the current state. Those rules can be of many different forms:
differential equations, state charts, process flowcharts,
schedules, etc. The outputs of the model are produced and
observed as the model is running.

There is much research on simulation models of the
software development process [12]. However there is lesser
research on simulation models for the testing process,
usually at the unit level. Furthermore, when testing is
considered as part of a simulation model of the development
process, it is often over simplified. The goal of this paper is
to devise a multi-paradigm simulation model for the testing
process to gain insights in how the testing process influences
the goals of a given project.

The main contribution of this work is a multi-paradigm
simulation model of the dynamic testing processes which
combines a discrete-event model and agent-based model.
The model can be used to simulate the testing process at the
system level and to help in decision-making in the test
managing processes.

The structure of the paper is as follows: Section II shows
the works related to our proposal; Section III introduces the
multi-layer process model proposed by the International
Standards group upon which our simulation model is based;
Section IV describes the simulation model; Section V shows
some simulation runs. Finally, our conclusions and further
work are given in Section VI.

II. RELATED WORK

The search string “simulation” AND “software testing

process” AND “management” and others alike used in

630Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 648 / 729

several digital libraries and citation databases of peer-

reviewed literature retrieves only a few number of papers. In

many of the papers retrieved, the term “simulation” is

frequently used to describe experiences in which simulation

is used as a tool for the testing process. In other works, the

term “simulation” makes reference to a set of formulas that

are solved by analytical means.

As an example of the first usage, in their collection of

works, Lazić, Mastorakis and Velasěvić [7]-[11] aim at

raising awareness about the usefulness and importance of

computer-based simulation in support of software testing. In

their works, simulation is used to ease the design and

execution of the testing processes of real military and

defense systems.

Some analytical models of the software testing process

can also be found. Zhang, Zhou, and Luo [19] propose a

reward-Markov-chain-based quantitative model for

sequential iterative processes and show how to use it to

estimate the time for the software testing process. Similarly

to this, Lizhi, Weiqin and Bin Zhu [12] propose an approach

to model the testing process based on hierarchical time

colored Petri Nets (HTCPN). However, while Petri-nets are

good at modeling resources and parallel processing,

simulation modeling models system components and their

interactions, making it possible to conduct arbitrary time-

related performance analysis, something which is not easy

using Petri-nets.
Consequently to overcome the problems of analytical

methods, simulation modeling can be applied in the context
of testing processes mainly because: a) it enables to find
solutions when analytical methods fail; b) it is a more
straightforward process than analytical modeling since the
structure of the simulation model naturally mimics the
structure of the real system, and c) it is scalable, flexible, and
easy to communicate since the modeling tools use visual
languages.

However, despite these advantages there is a small
number of contributions of simulation modeling in the field
of software testing processes. Saurabh [15] presents a system
dynamics (SD) model of software development with a
special focus on the unit test phase. This work is partially
based on Collofello’s et al. [2] work about modeling the
software testing process under the SD approach.

The motivation of these works is closely related to ours,
but the models are built under a different simulation
approach. System Dynamics approach operates at high
abstraction level and is mostly used for strategic modeling.
Hence, since a simulation model can only be used at the
abstraction level in which it has been created, such a highly
abstract model is not adequate for the operational and tactical
levels in which decision-making regarding the testing
processes takes place. In our case, since our main interest is
to simulate the testing processes the discrete event (DE)
modeling, with the underlying process-centric approach, has
been selected. Furthermore, we have also selected the agent-
based (AB) approach to be used together with the discrete-
event one resulting in a multi-paradigm simulation model.

Generally, each simulation approach (SD, DE, AB)
provides a set of different abstractions. If the system being
modeled is complex enough, and software development is,
then it is preferable to integrate different simulation methods
than using one single approach, since the final model will
represent the real system more realistically.

When we used the search string (“multi-paradigm” OR

“multi-method”) AND “simulation” AND “software testing

process” and others alike in the digital libraries and citation

databases, no single work was retrieved. Therefore, given

the results of the systematic literature review performed, not

fully documented here for space reasons, to the best of our

knowledge our proposal is the first one that aims at using

multi-paradigm simulation modeling to improve decision

making in software testing management.

III. MULTI-LAYER TEST PROCESS MODEL

Testing processes include a variety of management and

technical activities which are organized in a process model

in part 2 of the draft ISO standard for software testing:

ISO/IEC 29119-2 [4]. The purpose of this international

standard is to define a generic process model for software

testing that can be used by any organization when

performing any form of software testing. Testing is

structured in a multi-layer process model that defines the

software testing processes at (1) the organizational level, (2)

test management level and (3) dynamic test level. More

specifically, the dynamic test level describes how dynamic

testing is carried out within a particular phase of testing

(e.g., unit, integration, system and acceptance) or type of

testing (e.g., performance testing, security testing and

usability testing). It is composed of four processes that are

depicted in Figure 1.

 Test Design & Implementation Process: Describes
how test cases and test procedures are derived; these
are normally documented in a test specification, but
may be immediately executed.

 Test Environment Set-Up & Maintenance Process:
Describes how the environment in which tests are
executed is established and maintained.

 Test Execution Process: Describes how the test
procedures generated as a result of the Test Design
& Implementation Process are run on the test
environment established by the Test Environment
Set-Up & Maintenance Process.

 Test Incident Reporting Process describes how the
reporting of test incidents is managed.

The Test Execution Process is run after the tests have

been specified and the environment has been established

which leads to a strong dependency on the previous

processes. This process may need to be performed a number

of times as all the available test procedures may not be

executed in a single iteration. Additionally, this process

must be reentered as a consequence of detected failures after

the underlying defects have been corrected (retesting).

631Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 649 / 729

Figure 1. Dynamic Test Processes.

Besides, the Test Design & Implementation Process, and

the Test Environment Set-Up & Maintenance Process may

be reentered whether additional tests are needed after

execution or some problems are detected in the testing

environment. The Test Incident Reporting Process may be

also reentered as a result of: a) the identification of test

failures, b) something unusual or unexpected occurred

during test execution, or c) retest activities.

IV. MODEL DESCRIPTION

The simulation model developed is described below in
terms of its scope, result variables, process abstraction and
input parameters. The description is organized following
Kellner’s proposal for describing simulation models [5].

A. Model Proposal and Scope

To determine a model proposal, the key questions that
the model needs to address need to be identified. Then,
model scope is set so that it is large enough to fully solve the
key questions posed. In the context of this work, model
proposal is to help in decision-making in software testing
process management. Accordingly, the scope for this model
will be a portion of the life cycle, with a short time span (i.e.,
the months in which the testing activities take place), one
software product and two teams (i.e., development and
testing teams) organizational breadth.

B. Result Variables

The result variables are the information elements needed
to answer the key questions regarding the purpose of the
model. In our model, several process metrics have been
identified to help us understand the simulated process
capability. According to this, process metrics have been
classified into effectiveness and efficiency process metrics.

Effectiveness process metrics measure the extent to
which a process produces a desired result [1].

The following result variables fall into this category:

 Defect Closure Period (DCP). The longer a reported
defect takes to go from discovery to resolution, the
higher the project risk associated with the underlying
defect. Unresolved defects may: a) delay testing, b)
make development less efficient or c) prevent the
delivery of the software to the final customers. DCP
measures the difference between the time required to
repair a defect and the time required to confirm the
defect is repaired.

 Defect Open Count. This measure tracks the number
of times a defect report is opened. When the report is
first submitted this count is set to one. This count is
incremented each time the same defect report is
reopened due to a failure in the confirmation test
(retest).

 FixBacklog: Shows the percentage of defects closed
per all the defects opened in a given time.

 Total Planned Test: The metric shows the evolution
of the number of planned test cases along the testing
project.

 Total Executed Tests: Shows the evolution of actual
test cases which are executed along the project.

 Total Passed Tests: Shows the actual test cases
which are executed and successfully passed (e.g., did
not find any defects).

 Total Failed Tests: Shows the actual test cases that
are executed and failed (e.g., did find defects).

Efficiency process metrics measure the extent to which a
process produces its desired results in a not wasteful way
and, ideally, minimizing the resources used [1].

Result variables in this category follow:

 Actual test time: Shows the total length of the testing
process.

 Total team size and number of people per activity:
Shows the total size of the testing team and the
number of resources allocated to each activity of the
process, respectively.

 Process efficiency: Shows the ratio of the number of
defects closed per the number of defects found.

C. Process Abstraction

When developing a simulation model, the key elements
of the process, their inter-relationships, and behavior need to
be identified. The focus should be on those aspects of the
process that are especially relevant to the purpose of the
model, and believed to affect the result variables [5].

One of the decisions that need to be made in this phase is
the simulation paradigm that it is going to be used to build
the model. A simulation paradigm is a general framework for
mapping a real world system to its model. The choice of
paradigm should be based on the system being modeled and
the purpose of the modeling. When modeling complex
systems, it is frequent that different parts of the system are
most naturally modeled using different paradigms. In this
case, a multi-paradigm model is built.

In order to build our model, the multi-paradigm approach
has been selected. First, to model and simulate the dynamic
testing processes, the paradigm selected has been the
discrete-event or process centric approach. Under this
approach, the system being modeled is considered as a
process, i.e., a sequence of operations being performed
across entities, and this makes this paradigm the most natural
and adequate to build process simulation models. The model
is specified graphically as a process flowchart, where blocks
represent the operations to be done along the process.

Although a simulation model following this approach
allows us to analyze the evolution of the testing activities,

632Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 650 / 729

the resource consumption and the number of defects
detected, it would be interesting to add an extra functionality
to the simulation model allowing the user to track the life of
every defect since it is found until it is closed. It is important
to notice that to achieve this aim the level of abstraction used
needs to be changed from process-centric to individual-
centric. Agent-based modeling is a simulation approach that
allows the modeler to build a model under a bottom-up
perspective, that is, describing the behavior of individuals
(e.g., agents) and, if needed, their interactions. Frequently,
the behavior of an agent is formalized by means of a state
chart-like diagram. Therefore, this approach seems to be
most natural and adequate to describe the lifecycle of defects
found during the testing phase. As a consequence, a multi-
paradigm simulation model was our choice for our modeling
problem.

In summary, the model consists of two connected
models. A description of each of these models follows:

1) Discrete event model (DE).
The discrete event model represents the Dynamic Test

Processes in ISO/IEC 29119-2 [4] previously described in
Section III.

The development process produces two main artifacts that
are the input for the testing processes:

1. The test basis, usually the software specification,
which is modeled as a set of features.

2. The executable code that is to be exercised by the
tests.

 The availability of the test basis enables the execution of
the Test Design & Implementation Process which leads to a
number of test cases. However, test cases are not ready to be
executed until the test environment has been established
(Test Design & Implementation Process) and the executable
code released. Once the code is installed in the testing
environment, the Test Execution Process can begin. Failed
test cases are the input for the Test Incident Reporting
Process and the results communicated to the development
processes through the Agent-based model. Test execution
reenters when previously detected defects have been fixed by
development.

2) Agent-based model (AB).
During the software development process, each defect has

a lifecycle in which it reaches different states. In order to
simulate the different states that a defect reaches the agent-
based paradigm has been used. Under this approach, we
formalize the defects found as agents and their behavior as a
state chart that reflects the different states and transitions of
defect lifecycle. A description of each state in which the
agents can be follows:

 New: An agent reaches this state when a defect is
reported by the tester for the first time and is yet to
be approved.

 Analyzed: Once a defect is reported, the manager has
to analyze it in order to approve it as a genuine
defect, reject or defer it. The agent remains in this
state during the time in which this activity takes
place. When the activity is done, the information for
deciding what to do with the defect is available, and

so, the agent moves to the next state which can be
one of the following: a) Rejected: If a defect is found
to be invalid, b) Deferred: If a defect is decided to be
fixed in upcoming releases, and c) Assigned: If a
defect is found to be valid and assigned to a member
of the development team to fix it.

 Fixed: An agent moves to this state once the
developer communicates the defect is fixed. The
defect goes to the testing team for validation by
injecting a task in the DE model to indicate that the
test case that found this defect has to be executed
again (retest). The result of this execution will
determine the next state of the agent.

 Closed. If the tester finds that the defect is indeed
fixed and is no more a cause of concern, the agent
moves to the state Closed. Otherwise, if the defect is
not fixed or partially fixed, the agent will go again to
the state Assigned in which the work of a developer
working on its fixing will be simulated again.

D. Input Parameters

The input parameters to include in the model largely
depend upon the result variables desired and the process
abstractions identified. Input parameters allow setting up
different scenarios for simulation. The input parameters of
the simulation model are the following:

 Software size: Size of the software product under
development.

 FPA per Feature: Adjusted Functional Points per
feature.

 Number of Test Cases per Feature: Number of test
cases that need to be designed and executed per
feature.

 Initial number of tasks in Environment Setup. Initial
number of tasks that need to be done for the
common and global environment setup.

 Estimated Time for Environment Setup. Time
estimated to develop each environment setup task.

 Environment Setup Resources. Number of people
allocated to the Environment Setup processes.

 Estimated Time for Test Design and
Implementation. Time estimated to develop each
task of the Test Design and Implementation
processes.

 Test Design and Implementation Resources. Number
of people allocated to the Test Design and
Implementation process.

 Estimated Time for Test Execution. Time estimated
to develop each task of the Test Execution processes.

 Test Execution Resources. Number of people
allocated to the Test Execution processes.

 Estimated Time for Test Incident Reporting. Time
estimated to develop each task of the Test Incident
Reporting processes.

 Test Incident Reporting Resources. Number of
people allocated to the Test Incident Reporting
Processes.

633Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 651 / 729

 Estimated time to fix a defect. Time estimated to a
fix a defect by a developer.

 Code released for Test Execution. Indicates when
the code is released for testing. This value is
provided as a percentage of delay measured
regarding the initial estimated time for the testing
project.

 Probability of finding a defect per Test Case
Execution. Probability that a Test Case finds a defect
when the test case is executed the first time.

 Probability of finding a defect per Test Case in
Retest Execution. Probability that a Test Case finds a
defect when the defect has been reported as fixed.

In order to achieve more realistic results, the model
accepts a triangular distribution for most of the above input
parameters.

V. SIMULATION RUNS

The model implementation and the simulation runs have
been performed using Anylogic

TM
 software [18] with the

Enterprise Library. The model logic is written in Java.

a) Base scenario (BS). In this scenario the base

simulation is run to determine the values of the result

variables and, analyze the results of the process. In order to

obtain a set of reasonable parameters we have estimated the

costs of the different activities using a set of ratios observed

in average risk profiles [6]. We consider functional testing

for a system test phase in a project with waterfall

development, experienced builders and a structured test

approach driven by risk. Ratios of functional design,

realisation and functional test are 1:2:1. In relation with the

test processes, the ratios of test design & implementation,

execution, reporting and environment set-up are 50:40:5:5,

respectively. The values of the input parameters in this

scenario are displayed in TABLE I.

TABLE I. SCENARIO CONFIGURATION

Input parameter Value

Software size 800 FPA

FPA per Feature 5

Number of Test Case per Feature (0.5, 2, 4)

Initial number of tasks in Environment Setup 5 tasks

Estimated Time for Environment Setup (10, 14.4, 20) hours

Environment Setup Resources 1 person

Estimated Time for Test Design and

Implementation

(3, 4.5, 6) hours

Test Design and Implementation Resources 4 people

Estimated Time for Test Execution (1.5, 3.2, 4.5) hours

Test Execution Resources 4 people

Estimated Time for Test Incident Reporting (1.5, 3, 4.5) hours

Test Incident Reporting Resources 1 person

Estimated time to Fix a defect (3, 4.5, 6) hours

Code released for Test Execution 15%

Probability of finding a defect per Test Case

Execution

(5%, 15%, 25%)

Probability of finding a defect per Test Case in
ReTest Execution

(10%, 20%, 30%)

Figures 2 and 3 contain a summary of the main process

metrics. Figure 2 shows that 160 test cases were planned,

which were able to find 116 defects (see Figure 3), 6 of them

were rejected and 9 of them deferred. 101 defects were

closed and 26 reopened. The Test Efficiency reached with

this setting is 87%, which is reasonable in practice, showing

the consistency of the model when using the above

parameters.

Figure 2. Different process output metrics in base scenario

b) Optimization. Even though simulation runs are

useful to visualize the effect of different values of the input

parameters in the process performance, that is, to execute

what-if scenarios in managerial decision-making, a key

benefit can be obtained when we use together simulation

and metaheuristic optimization algorithms in a process

called simulation optimization. In this case, it is possible to

obtain which values need to take the input parameters in

order to maximize or minimize an output variable. To

show this

Figure 3. Number of defects in each state at the end of the simulation

application in our field of study we run an optimization

experiment to determine wheter it is possible to improve the

efficiency of the test process by controlling the moment in

which the executable code is available for testing. The

optimization will determine the distribution of the human

resources that maximizes test efficiency when the code is

released for testing in an range that varies from 5% to 50%

from the moment the testing process begin. The optimizer

OptQuest
®
 [14] built-in Anylogic

TM
 has been used for this

optimization. Table II shows the input values for the control

parameters of the experiment, the constraints impossed and

the results obtained in the optimized process compared with

the base case.

634Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 652 / 729

TABLE II. OPTIMIZATION CONTROL PARAMETERS AND OUTPUTS

COMPARED WITH BASE SCENARIO

The results of the optimization experiment show that

under the constraints imposed it is possible to achieve 97%

of efficiency in the process allocating 7 people to the process

and having a maximum delay of the code released for testing

of 27% of the initial time estimated. This will result into a

process which is 97% in closing defects but finishes one

month later than the base scenario. The conclusion drawn

from this particular experiment with regard to the base

scenario is that if the project is adequately scheduled, it is

possible to reduce the total number of test resources as well

as increase the process efficiency. In other situations

simulation can help to find the best input values for project

schedule, resource allocation and quality objective from

among all that lead to the optimization of the key process

outputs.

VI. CONCLUSION AND FURTHER WORK

This paper presented a simulation model for the dynamic
testing processes which allows a seamless integration
between the testing and development processes. The model
is devised as a multi-paradigm model composed by a discrete
event simulation model, to simulate the execution of the
dynamic test processes, and an agent-based simulation
model, to in-depth simulate the defects life cycle. Results
show that the simulation model can be effectively used to
optimize different project parameters and then help managers
to achieve a trade-off between cost, schedule and quality.

This is a first step in the use of multi-paradigm
simulation models for testing. Further work will include,
although not limited to, the consideration of agent-based
models to simulate parts of the dynamic test processes, the
integration into a more complex project development
simulation model [3] and experimentation in different
projects using different lifecycle models and including
different test levels of testing. After calibrating and
validating the model with historical data from the industry, it
will be also possible to exploit it as an operating tool for
decision-making in the industrial domain.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Science and Technology with ERDF funds under
grants TIN2010-20057-C03-03 and TIN2010-20057-C03-01.

REFERENCES

[1] Black, R. Managing the Testing Process: Practical Tools and
Techniques for Managing Hardware and Software Testing. Wiley
Publishing, 2002.

[2] Collofello J.S., Zhen Y., Tvedt J.D., Merrill D., and Rus, I. Modeling
software testing processes (1996) Conference Proceedings -
International Phoenix Conference on Computers and
Communications, pp. 289-293.

[3] Crespo D. and Ruiz M. Decision Making Support in CMMI Process
Areas using Multiparadigm Simulation Modeling. 2012 Winter
Simulation Conference. Berlin, December 9-12, 2012. Accepted.

[4] ISO/IEC DIS 29119-2 Software and Systems Engineering - Software
Testing – Part 2: Test Process. December 2011 (Draft International
Standard).

[5] Kellner M.I., Madachy R.J., and Raffo D.M. Software Process
Modeling and Simulation: Why, What, How?, Journal of Systems and
Software, Vol. 46, No. 2/3 (15 April 1999).

[6] Koomen, T., van der Aalst, L., Broekman, B., and Vroon, M. TMap
Next for result-driven testing. UTN Publishers, 2007.

[7] Lazić L. and Mastorakis N. The use of modeling & simulation-based
analysis & optimization of software testing (2005) WSEAS
Transactions on Information Science and Applications, 2 (11), pp.
1918-1933.

[8] Lazić L. and Mastorakis N. RBOSTP: Risk-based optimization of
software testing process Part 2 (2005) WSEAS Transactions on
Information Science and Applications, 2 (7), pp. 902-916.

[9] Lazić L. and Mastorakis N. RBOSTP: Risk-based optimization of
software testing process Part 1 (2005) WSEAS Transactions on
Information Science and Applications, 2 (6), pp. 695-708. Cited 3
times.

[10] Lazić L. and Mastorakis N. Integrated intelligent modeling,
simulation and design of experiments for Software Testing Process
(2010) International Conference on Computers - Proceedings, 1, pp.
555-567.

[11] Lazić L. and Velasěvić D. Applying simulation and design of
experiments to the embedded software testing process (2004)
Software Testing Verification and Reliability, 14 (4), pp. 257-282.

[12] Lizhi, C., Weiqin T., Bin Z., and Zhang J. Modeling Software
Testing Process Using HTCPN, Fourth International Conference on
Frontier of Computer Science and Technology, 2009. FCST '09, pp.
429-434, 17-19 Dec. 2009.

[13] Madachy, RJ. Software Process Dynamics. John Wiley & Sons, Inc.,
2008.

[14] OpTek Systems, Inc. OptQuest®. http:// www.opttek.com/ [retrieved:
October, 2012]

[15] Saurabh, K. Modeling unit testing processes a system dynamics
approach (2008) ICEIS 2008 - Proceedings of the 10th International
Conference on Enterprise Information Systems, 1 ISAS, pp. 183-186.

[16] Soni R., Jolly A., and Rana A. Effect of residual defect density on
software release management (2011) International Journal of
Software Engineering and its Applications, 5 (4), pp. 151-158.

[17] van Veenendaal, E (ed). Standard glossary of terms used in Software
Testing, Version 2.1. International Software Testing Qualifications
Board. Oct. 2010.

[18] XJ Technologies. AnylogicTM. http://www.anylogic.com/ [retrieved:
October, 2012]

[19] Zhang W.M., Zhou, B.S., and Luo, W.J. Modeling and simulating of
sequential iterative development processes (2008) Jisuanji Jicheng
Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS,
14 (9), pp. 1696-1703.

Input parameter Control

Input

Result

(Base

scena.)

Result

(Optim.)

Initial number of tasks in

Environment Setup

3-5 tasks 5 5

Environment Setup Resources 1-4 people 1 1

Test Design and

Implementation Resources

1-4 people 4 2

Test Execution Resources 1-4 people 4 3

Test Incident Reporting
Resources

1-4 people 1 1

Code released for Test

Execution

5% - 50% 15% 27%

Constraints Value

Testing Team Size <= 7 people

Maximum Testing Time
Overrun

<= 1 month

Process Efficiency obtained 87% 97%

635Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 653 / 729

A Systematic Approach to Risk-Based Testing Using
Risk-annotated Requirements Models

Marc-Florian Wendland, Marco Kranz and Ina Schieferdecker
Fraunhofer Institute FOKUS

Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
{marc-florian.wendland, marco.kranz, ina.schieferdecker}@fokus.fraunhofer.de

Abstract—Nowadays, software-intensive systems continuously
pervade several areas of daily life, even critical ones, and
replace established mechanical or manual solutions.
Development and quality assurance methods have to ensure
that these software-intensive systems are delivered both with
adequate quality, optimized resources and within the
scheduled time frame. The idea of risk-based testing is to
prioritize testing activities to what is deemed critical for the
software-intensive system. Although there is a common
agreement that risk-based testing techniques ought to be
rigorously applied, especially for safety- and security-critical
systems, there is actually little knowledge available on how to
systematically come to risk-optimized test suites. This paper
presents a novel approach to risk-based testing that deals with
the transition from risk management and requirements
engineering to test design activities and test case generation by
using models. The main contribution of the paper is the
description of a methodology that allows an easy combination
of test generation directives and risk level in order to generate
risk-optimized test suites.

Keywords - risk-based testing; behavior engineering; model-
based testing; requirements model; safety-critical systems

I. INTRODUCTION

Already in 1999, Amland stated that IT projects are very
rarely on time, schedule or budget, so when it comes down
to testing, the time to delivery is extremely short and there is
no budget left due to the development overrun [5]. This
statement holds even for today. This requires test case
design techniques to be able to identify the most important
test cases to be carried out in view of limited time. Thus, the
test cases need to be prioritized to be comparable with each
other.

A well-known and highly recommended approach is
risk-based testing ([24][28][29]). The idea of risk-based
testing is as simple as intuitive: Identify prior to test case
design and execution those scenarios that trigger the most
critical situations for a system in production and ensure that
these critical situations are both effectively mitigated and
sufficiently tested. Following Bach, risk-based testing aims
at testing the right things of a system at the right time [1].
He further states that each test process is actually carried out
in a risk-based way due to its sampling characteristics. In

most cases, the consideration of risk is rather made
implicitly, though.

A critical situation is not necessarily dedicated to safety-
or security-critical systems (though it is often used in the
context of such systems), but applies actually to any kind of
system. For example, the most critical situation for a text
processor application might be the save functionality, since
a malfunction may cause the user to switch to the product of
a competitor. However, in the area of safety-critical
systems, critical situations represent sensitive points in time
during the execution of a system, where a malfunction may
lead to harm of environment, human life, financial loss etc.
No matter what kind of system is tested, the idea of risk-
based testing remains the same, whereas the impact of a bad
test case selection may differ dramatically, of course.

Even though risk-based testing is deemed helpful to deal
with scarce resources, it is a matter of fact that there is only
little literature available that provide the tester with a
systematic and reproducible approach on how to actually get
to a risk-optimized set of test cases. We seek to address the
lack of well-founded methodologies for systematic and
applicable risk-based testing approaches. Therefore, we are
using semi-formal models to describe both the functional-
related requirements and a risk-optimized test model.
Furthermore, we show how formal test directives are
coupled with risk to automate the risk-based test case
generation.

The scientific contributions of this paper are:
- Outline of a coherent methodology that combines

information from risk analysis and assessment
activities with requirements engineering activities

- Use of formal requirements models to incorporate
risk-information for further exploitation

- Specify how test case derivation strategies are
being coupled to various risk levels in combination
with a risk matrix using test directives

- Describe a prototype tooling landscape including
complete set of modeling notations for the
proposed methodology

However, this paper does not claim to be an industrial
evaluation report. The remainder of the work is structured as
follows: Section 2 summarizes the state of the art of relevant
risk-based-testing approaches to the knowledge of the

636Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 654 / 729

authors. Section 3 describes the main contribution of this
paper, i.e., our methodology for model-based risk-based
testing. At first, we give a definition of relevant terms in the
realm of risk-based testing. We, then, briefly introduce
Behavior Engineering as the basis of our approach. Next, we
describe how risk information is incorporated into the
resulting requirements models. Afterwards, we show how
those risk-annotated requirement models are further
exploited for systematic test case generation. Section 4
briefly summarizes a prototype tooling landscape and
findings from a first application of the methodology.
Section 5 and 6 provide an outlook to future work and
conclude eventually.

II. RELATED WORK

The principles of risk-based testing have been addressed
by several often quoted publications before (such as
[1][2][4]). These articles are mainly dedicated to the
clarification of the terms and concepts that belong to risk-
based testing. The authors provide justified arguments why
risk should always be considered in structuring testing
processes. Amland presented a concrete example how risk-
based testing had been performed within a project in a
financial domain [6]. None of these articles, however,
provide precise statements or event suggestions how test
design techniques shall be chosen due to an identified and
given risk, which is a main contribution of our approach.

Stallbaum and Metzger made a first step towards
automated generation of risk-based test suites based on
previously calculated requirements metrics (e.g., [8][9]). A
prototype research tool called RiteDAP has been presented
as being able to generate test cases out of weighted activity
diagrams in a two-stage process. At first, paths through the
activity are derived in a non-risk based way. Secondly, the
paths are ranked due to the risk they include. The traversal
algorithm of the test case generator is predefined and not
adjustable. The risk-based selection of test cases in that
approach is a simple ordering of paths due to their
subsumed risk exposures, what might be not sufficient. Our
approach, in contrast, envisages that already the traversal
algorithm shall be assigned to a certain risk level.

Bauer and Zimmermann have presented a methodology
called sequence-based specification to express formal
requirements models as low-level mealy machines for
embedded safety-critical systems (e.g., [10] [11]). By doing
so, they build a system model based on the requirements
specification. Afterwards, the outcome of a hazard analysis
is weaved into the mealy machine. The correctness of the
natural language requirements is actually assumed to hold,
so that there is no rigorous approach to verify or validate the
natural language requirements prior to performing the
hazard analysis. Finally, they describe an algorithm that
derives test models that include critical transitions out of the
system model for each single identified hazard in order to
verify the implementation of a corresponding safety
function. What they do not present is how to rank the

critical transitions in the test models with respect to their
risk priority. It is also not clear, whether and how the
algorithm they present can be modified in order to vary the
test case generation process. Apparently, this approach has
ever produced a prototyping tooling beyond research
projects.

Kloos has described an approach for transitioning from a
fault tree as produced by a fault tree analysis (FTA) [12]. It
is used in combination with a system model, expressed as
mealy machine, to generate a test model. A test model is in
their definition a system model with failure modes and
critical transitions leading to the failure modes. As explicitly
stated, this approach is dedicated to risk-based testing of
safety functions for safety-critical systems. Although the
authors claim their methodology to be risk-based, a clear
method how the test case generation is actually influenced
or guided by the identified risk is not provided.

The most recent approach to risk-based security testing
using models is given by Zech for cloud environments [7].
The presented methodology is in a very early state, though.
The author claims to fully automate the transition from
system models over risk models to misuse cases and
eventually to test code. The risk analysis is also planned to
be carried out completely automatically by using a
vulnerability repository. Neither one of the involved models
has been described in greater detail, nor have the involved
transformations been specified so far.

Chen discussed an approach for risk-based regression
testing optimization [13]. In his approach the author applies
a risk value to each test case to prioritize them. Based on
these risk values, the test cases are comparable and can be
prioritized to either be included in, or excluded from, a re-
running regression testing process.

The Behavior Engineering (BE) methodology describes
an approach to derive formalized requirements models, so
called behavior trees (BT) out of informal, i.e. textual,
requirements specifications. It was invented and firstly
described in a series of paper (e.g., [17] [18]). Although BE
is not related to risk analysis in the first place, we based our
approach on it, since we are convinced that the rigorous
methodology for requirements formalization is a good
starting point to conduct testing in general, and risk-based
testing in particular.

Although most of the literature presented above is
dedicated to the ideas, principles or theories of risk-based
testing, we do see a fundamental lack of concrete
methodology on how to integrate the various pieces of
information in a systematic way in order to guide the
activities of test case derivation. We seek to provide testing
experts with comprehensible instructions and a continuous
toolset that is based on the principles of model-driven
requirements engineering and model-based testing.

III. RISK-BASED TESTING IN A MODEL-BASED WAY

Our approach strives to be generic and applicable for
both systems that include functional-related risk mitigation

637Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 655 / 729

measures (like counter-measures or safety, respectively
security functions) and systems that do not include such
measures. The latter kind of systems mostly refer to non-
safety/security-critical systems, where certain execution
paths are deemed critical nevertheless and need intensive
testing as well.

In Figure 1, a high-level sketch of our methodology is
depicted. In short, the steps are the following:

1. Formalize the requirements specification as
integrated behavior tree

2. Augment the integrated behavior tree with risk
information

3. Identify for each risk exposure in the integrated
behavior tree an appropriate test directive and link
them together

4. Pass both the risk-augmented integrated behavior
tree and the test directive definition into a test
generator

A. Definitions of risk, risky situation and risk exposure

Industry-relevant standards (such as [26][28][29]) for
systems and software engineering or testing define risk (r)
as a function of likelihood (l) or probability that a situation
occurs during the execution of a system, which is deemed
critical, multiplied by the severity (s) of the consequences
that may happen if the risky situation is not mitigated, i.e.,

f(R) = l * s.
Beside the term risk, there are two other terms denoted

in industry standards that apply to the above given
definition: Risk factor [27] and risk exposure [26].

Figure 1. Overview of the presented methodology

As mentioned before, risk-based testing aims at testing

the most critical situations at first and more thoroughly.

However, we find that the term critical may cause
misunderstandings since people may implicitly think of
safety-critical systems. To prevent the reader’s confusion,
we rather use the term risky situation instead. A risky
situation may occur in any kind of system (safety-critical or
not) and describes a foreseeable sequence of events that
leads to a situation where a failure of the systems causes an
inacceptable loss (of data, reputation, life, money etc.) [25].
Finally, we use the term risk to denote an uncertain event or
condition that, if occurs, has a negative effect on the system,
and the term risk exposure as the comparable value that
determines how risky a certain situation really is compared
to other situations.

B. Towards risk-annotated requirements models

Risk management activities are performed on an
information source that provides the risk experts with
indications what might go wrong in the system in the field.
Each system development project starts usually with a set of
requirements that the intended system shall realize.
Requirements are normally captured in software/system
requirements specifications (SRS) that are structured in a
certain way [30]. As already mentioned before, risk analysis
activities or simple prioritization considerations are part of
almost any development project. At the level of functional-
related risk analysis, the SRS deemed to be one of the
important information sources, risk experts should take into
account. Once the risk analysis has been performed, the risk
exposure is usually integrated with the SRS. This leads to a
risk-annotated SRS.

Unfortunately, today’s requirements specifications are
mostly still textual. That entails some inherent problems
such as ambiguity due to informal and imprecise textual
specifications or the lack of human beings to grasp complex
and comprehensive textual specifications. Most recent
activities in the realm of requirements engineering strive to
employ model-based techniques in order to produce less
ambiguous and inconsistent SRSs. As mentioned before,
one of these approaches is BE. It is an intuitive yet effective
methodology to formalize the functional aspects of natural
language requirements for further validation and/or
verification activities. BE has been proven extremely
beneficial in large-scale industry projects [19]. BE defines
two core phases to transform informal requirements into
formalized BTs, expressed with the Behavior Modeling
Language (BML [36]). The first activity is called
requirements formalization and provides a well-defined
formalization strategy that is, each informal requirement
will be translated into a Requirements Behavior Tree (RBT).
A premise of BE is to stick as close as possible with the
vocabulary which was used for expressing the natural
language requirement with the advantage of removing any
ambiguity being present in the natural language. An RBT
comprises the behavioral flow of only one single
requirement, namely the requirement it originated from.
This keeps the complexity manageable, even of extremely

638Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 656 / 729

large-scale systems. Hence, the complexity of an entire
translation of large-scale requirement specifications is
narrowed to the complexity of translating single
requirements solely and in a repetitive manner. Myers [37]
called this “… an approach with a minimized local problem
space that remains constant regardless of the size of the
global problem space.”

After finishing the formalization of each requirement,
the key phase for revealing and detecting flaws in the
requirements specification takes place, the Fitness-for-
Purpose (or simply integration) phase. Requirements
commonly interact with other requirements, meaning, in a
consistent requirements specification without gaps there are
intersection points where requirements can be integrated
with each other. To identify these points and to continually
and rigorously integrate the RBTs with each other is the
purpose of the integration phase. Integration is done by
seeking parts in the RBTs which are logically identical. In
practice, it is often the case that the root node of one RBT
occurs elsewhere in another (or multiple) RBTs. Once such
potential integration points are identified, the involved
RBTs are integrated with each other [17]. The outcome of
this activity is the so called Integrated Behavior Tree (IBT),
expressing a behavioral and compositional overview of the
requirements specification of the system. During the
integration of RBTs, gaps and ambiguities within the
requirements specification can be effectively identified,
since a missing or ambiguously stated natural language
requirement leads to situation in which an RBT cannot be
integrated. If such a situation is detected, an issue has to be
recorded and involved stakeholders have to decide how to
resolve this situation. Thus, integration aims at improving
the quality of the original requirements specification as well
as creating an entire overview of the compositional and
behavioral intention of the intended system. At this point in
time, the requirements specification comprises all
information being relevant for the development team to start
their activities.

The starting point of our methodology is the outcome of
the requirements integration phase with BE, which results in
a requirements model expressed as integrated behavior tree
(see Figure 1). The requirements model is passed afterwards
to the risk experts, which also benefit from the integrated
view on the requirements. It allows experts to consider
potential failure (no matter if safety/security-critical or not)
by traversing or even simulating the behavior of the system
captured in a BT. For example, Grunske has presented
approaches on how BTs can be leveraged for semi-
automated hazard analysis [21]. How the actual risk analysis
task is performed is not addressed by our methodology.

Risk analysis copes with risky situations by identifying
risk mitigation actions. Risk mitigation may target several
aspects of a development project such as organizational,
process-related, functional or technical aspects. An
organizational mitigation of risk might be to allocate only
experienced and certified personnel to stem the project [2]; a

process-related one that sufficient testing and manual
inspections must be performed, whereas a technical
mitigation action might be to rely on well-known and
already established software technologies solely. Functional
risk mitigation often includes the identification of functional
counter-measures that reduce the risk exposure by the
system, if correctly implemented. In case there have been
functional counter-measures defined that shall mitigate risky
situations, they have to be included into the requirements
model together with the risk exposure. We end up with a
functional-related requirements model that is augmented
with risk exposures for risky situations. We call this a risk-
annotated behavior tree (Figure 2).

Figure 2. Risk-annotated BT (taken from [31])

C. The role of risk levels and risk matrices

An important concept in our methodology of risk-
optimized test case generation is risk level. Following the
ISTQB glossary [28] a risk level indicates the importance of
an identified and assessed risk, so it serves the purposes for
comparing risks with other risks. Risk levels can be
expressed either qualitatively or quantitatively. An often
used qualitatively scale for risk levels is low, medium,
high;however, there is actually no restriction on the number
of risk levels being used.

One possible approach, especially in qualitative risk
assessment, is to combine risk levels with a risk matrix. A
risk matrix is a two-dimensional table for combining
likelihood and severity of a risk. An example for risk levels
and risk matrixes is shown in Figure 3.

The uppermost table depicts a risk matrix with qualified
values for both likelihood and severity (see also [25]) and
assigned risk exposures. The middle table assigns cells of
the upper risk matrix with risk levels. For the sake of
simplicity, we will stick with the aforementioned three risk
levels high, medium and low.
Afterwards, the actual risk exposures to risk level
assignment can be derived out of the two previous tables.

639Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 657 / 729

The result is kind of an instantiation of the risk matrix
template plus the assigned risk levels for its cells. Risk
exposures that are classified by the same risk level are
considered to have an equally negative impact on the system
if the corresponding risky situation leads to a system failure.
This is shown in the lower table of Figure 3.

Figure 3. Risk levels, risk matrix, risk assignment

D. Systematic test case derivation using test directives

A test directive is an additional piece of information
within the test model that describes precisely what test
derivation technique and strategy shall be used by the test
generator to generate test cases for a certain risk level. This
implies that test directives are bound to risk levels and
transitively to the risky situation in the model. Utting [20]
provides a good overiew of test derivation strategies for
formal, graph-based models such as transition or state
coverage.

In risk-based testing, we want to ensure that more risky
situations are tested more thoroughly, because they are
deemed more critical. It holds true for all risky situations
that test cases try to provocate the risky situation to evaluate
whether they appear or not. A simple and intuitive
interpretation of more thoroughly tested for the example
depicted in Figure 2 is that we want to ensure that test cases
for the risk exposure RE_3 are more elaborated in terms of
both structure and data than the ones for RE_3. There are

many ways to come to those more elaborated test cases, for
example by using different data coverage strategies (e.g.,
simple equivalence classes for RE_3 in opposite to
boundary value analysis for RE_1) or structural coverage
criteria (e.g., shortest path into the risky situation RE_3 in
opposite to a path that is longer for RE_1). In our
methodology, we capture the information on how to derive
test cases for a certain risk level (and thus risk exposures) in
a test directive. They are the fundamental means in our
methodology to enable an automated derivation of risk-
optimized sets of test cases as depicted in Figure 1. They
make the entire test design activities more systematic,
understandable and even more important reproducible.
Additionally, the entire test generation process can be easily
adjusted to changed needs by just re-defining a test
directive’s strategy.

The task of defining test directives for certain risk levels
is most crucial in our methodology, since it has a crucial
impact on the entire risk-based approach. This task requires
the intellectual power of experienced personnel in both the
current domain and testing. We believe it should not, or
even cannot, be performed automatically. However, the
actual test case generation approach according to the test
directives bears an enormous automation potential. It allows
the labor-intensive, error prone and time-consuming manual
tasks to be outsourced to an automaton, such as a test case
generator.

Eventually, after test case generation has been carried
out automatically, a test model is created that contains all
the risk-optimized test cases that adhere to the test directive.
After execution, the test results analysis takes place. An
important outcome of the result analysis is whether the
initial assumptions on the risk were properly assessed. In
any case, the test results have to be taken into account for a
new development cycle, if there is one, in order to adjust the
initial assessments with empiric data taken from the test
process.

IV. TOOLS AND TECHNOLOGY LANDSCAPE

For the implementation of our methodology, a
consequent and integrated tooling landscape and modeling
notation are required. In former research projects (e.g., [31]),
we identified parts of that tooling landscape. Augmented
with the needs for the further elaborated methodology
presented in this article, the current tooling landscape and
modeling notations are required:

- A language to specify behavior trees based on the
Unified Modeling Language (UML) [24] and
tooling to perform BE [1]

- Risk extension for behavior trees
- A language and tooling to capture risk matrices,

risk levels and testing directives
- A language and tooling to express test models
- A language for executable test scripts

Our own premise for the implementation is to rely on

established and well-known technologies and modeling

640Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 658 / 729

notations instead of reinventing the wheel by using another
proprietary solution. We decided to apply UML for all parts
of the methodology by using so called profiles. A profile is a
subset of the UML that adds domain-specific concepts and
semantics to UML.

For the BE-related parts of the methodology, we
specified a UML profile for the BML (called UBML) that
already integrates risk information following the proposed
method by Bran Selic [38]. A BT represents the behavioral
description of single or integrated requirements. The tree
itself is embedded into a surrounding, virtual frame that co-
ordinates the process flow. Each node in a BT has a tight
interlinking with a component contained in the composition
tree, expressing that the behavior exhibited by that node will
be executed on the linked component. There is an almost
identical diagram type in the UML, namely the activity
diagram. Activities describe control (and data) flows similar
to BTs. Activities are constructed out of actions and edges.
An action represents the fundamental and indivisible unit of
an executable functionality that may operate on objects.
Edges connect actions with each other. Given those
ingredients, an activity appears appropriate to be customized
for expressing BTs. To keep the analogy with BML, for
each behavior node of BML [36] a direct counterpart
stereotype has been created in UBML, such as
BehaviorTree, Selection, Guard, Event. Structural aspects
like components and messages are included, too, partially
represented as stereotype (e.g. the stereotype Message
extends the UML metaclass Signal) and partially reusing
plain UML (e.g. UML metaclass Component and the
component diagram are used to model BE components). As
example, see the BT expressed as UBML in Figure 4. It is
very similar to the original BML notation as depicted in
Figure 2.

The test model artifact, as depicted in Figure 1, is
expressed with the UML Testing Profile (UTP) [23]. UTP
extends UML with test-relevant artifacts, which suits our
needs. As test execution language we rely on the Testing and
Test Control Notation version 3 (TTCN-3) [35]. All of these
technologies are fostered by non-profit organizations (e.g.,
OMG [32], ETSI [34]), what guarantees vendor and
methodological independence as well as continuous
maintenance.

We have not yet specified precisely on how to express
model risk matrices, risk levels and test directives in UML.
In addition, the dependencies among risk exposure (as part of
UBML), risk level and test directives have to be established
as well. An early implementation of test directive guided test
case generation has already been presented [15], and a more
elaborated one will be presented in [16]. There is currently
an ongoing discussion in the UTP working group [33]
whether test directives might be incorporated into the
specification. All modeling languages and tooling facilities
mentioned above are or will be integrated into our test
modeling environment Fokus!MBT, a UTP-based test
modeling tool.

V. CONCLUSION AND FURTHER WORK

In that paper, we presented an overview of a noval risk-
based testing approach that relies on the principles of model-
based testing. Our idea is based on test directives as
interpretation of test case derivation techniques that support
systematics, transparency and reproducibility of the test
derivation task. We do not claim that our methodology is
completely automated, because we do believe there is a need
for intellectual creativity that can only be carried out
manually, even if we rely on the principles of model-based
engineering. We doubt the feasibility of just pressing a magic
button and a risk-optimized set of test cases will be generated
automatically. However, there is great potential in expressing
suitable key artifacts of a system development process with
semi-formal models. It allows capturing the intellectual
power of experts in a computer-readable format, so that
labor-intensive tasks can be carried out by an automaton.

We are going to apply this approach to more case studies
in order to get empirical results for our methodology. What
we have done so far was a proof-of-concept, so there have
been some lessons learned that have impact on the
refinement of the modeling methodology. Another important
work to be done is to describe the entire modeling approach
on a more technical level in order to explicitly show how
things are interconnected with each other semantically and
technically.

Further technical work will, in particular, address the
target in particular the definition of a precise and stable
methodology for doing BE with UBML.

The main focus, however, will be set to the combination
and integration of test directives and risk levels, since this is
the main contribution of our risk-based methodology and
actually the most added value to the current state of the art in
the realm of risk-based testing.

Figure 4. Behavior Tree as stereotyped UML activity

diagram

641Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 659 / 729

ACKNOWLEDGMENT

This work was partially supported by the projects
ROTESS [31] and BTTest (DAAD project number
50449190).

REFERENCES
[1] G. J. Bach, “Heuristic Risk-Based Testing”, Software Testing and

Quality Engineering Magazine, November 1999, pp. 96-98.

[2] F. Redmill, “Exploring Risk-based Testing and Its Implications”, 1.
Software Testing, Verification & Reliability, 14(1), 2004, pp. 3-15.

[3] F. Redmill, “Theory and practice of risk-based testing”, Software
Testing, Verification & Reliability, 15(1), pp. 3-20 2005.

[4] S. Åmland, “Risk-based testing: Risk analysis fundamentals and
metrics for software testing including a financial application case
study”, Journal of Systems and Software 53(3), 2000, pp. 287-295.

[5] S. Åmland, “Risk Based Testing and Metric”, 5th International
Conference EuroSTAR 1999, Barcelona, Spain, 1999.

[6] S. L. Pfleegr, “Risky business: what we have yet to learn about risk
management”, Journal of Systems and Software 53(3), Elsevier,
2000, pp. 265-273.

[7] P. Zech, “Risk-Based Security Testing in Cloud Computing
Environments”, 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation (ICST), 2011, pp. 411-
414.

[8] H. Stallbaum and A. Metzger, “Employing Requirements Metrics for
Automating Early Risk Assessment”, In: Proceedings of the
Workshop on Measuring Requirements for Project and Product
Success, MeReP07, at Intl. Conference on Software Process and
Product Measurement, Spain, 2007, pp. 1-12.

[9] H. Stallbaum, A. Metzger, and K. Pohl, “An Automated Technique
for Risk-based Test Case Generation and Prioritization”, In:
Proceedings of the 3rd Workshop on Automation of Software Test,
AST'08, at 30th Intl. Conference on Software Engineering (ICSE),
Germany, 2008, pp. 67-70.

[10] T. Bauer et al., “From Requirements to Statistical Testing of
Embedded Systems”, In: Software Engineering for Automotive
Systems, (ICSE), 2007, pp. 3-10.

[11] F. Zimmermann, R. Eschbach, J. Kloos, and T. Bauer, “Risk-based
Statistical Testing: A Refinement-based Approach to the Reliability
Analysis of Safety-Critical Systems”, In: Proceedings of the 12th
European Workshop on Dependable Computing (EWDC), France,
2009.

[12] J. Kloos, T. Hussain, and R. Eschbach, “Risk-Based Testing of
Safety-Critical Embedded Systems Driven by Fault Tree Analysis”,
In: Proceedings of the IEEE Fourth International Conference on
Software Testing, Verification and Validation (ICST 2011), IEEE
Computer Society, Berlin, 2011, pp. 26-33.

[13] Y , Chen,. R. Probert, and P. Sims, “Specification-based Regression
Test Selection with Risk Analysis”, In: Proceedings of the 2002
conference of the Centre for Advanced Studies on Collaborative
research (CASCON '02), 2002, pp. 1.

[14] M.-F. Wendland, I. Schieferdecker, and A. Vouffo Feudjio,
“Requirements-driven testing with behavior trees”,. In: Proceedings
of the Fourth IEEE International Conference on Software Testing,
Verification, and Validation Workshops (ICST 2011), IEEE
Computer Society, 2011, Germany, 2011, pp. 501-510

[15] M.-F Wendland, J. Großmann, and A. Hoffmann, “Establishing a
Service-Oriented Tool Chain for the Development of Domain-
Independent MBT Scenarios”, In: Proceedings of 7th Workshop
System Testing and Validation (STV’10), IEEE Press, 2010, pp. 329-
334.

[16] M.-F. Wendland, M. Kranz, A. Hoffmann, and I. Schieferdecker,
“Integration of arbitrary test case generators into UTP-based test
models”, 2nd ETSI Model-Based Testing User Conference (MBTUC),
Tallinn, Estonia, 2012.

[17] R. G. Dromey, “From Requirements to Design: Formalising the Key
Steps” (Invited Keynote Address), In: IEEE International Conference
on Software Engineering and Formal Methods (SEFM'03), Brisbane,
Australia, 2003, pp. 2-11.

[18] R. G. Dromey, "Genetic Design: Amplifying Our Ability to Deal
With Requirements Complexity", in S. Leue, and T.J. Systra,
Scenarios, Lecture Notes in Computer Science, LNCS 3466, 2005,
pp. 95 - 108.

[19] D. Powell, “Requirements Evaluation Using Behavior Trees:
Findings from Industry”. In: Australian Conference on Software
Engineering (ASWEC’07), Australia, 2007.

[20] U. Utting and B. Legeard, “PracticalModel-Based Testing – A Tools
Approach”. Morgan Kaufmann Publ. (2007)

[21] L. Grunske, “An Automated Failure Mode and Effect Analysis based
on High-Level Design Specification with Behavior Trees”, In:
Proceedings of International Conference on Integrated Formal
Methods (IFM), 2005, pp. 129-149.

[22] K-S. Soon, T. Myers, P. Lindsay, and M.-F. Wendland, “Execution of
natural language requirements using State Machines synthesised from
Behavior Trees”, The Journal of Systems & Software 85, Elsevier,
2012, pp. 2652-2664.

[23] Object Management Group (OMG): Unified Modeling Language
(UML). http://www.omg.org/spec/UML/. Last visit: January 05, 2012

[24] Object Management Group (OMG): UML Testing Profile, Version
1.1 – Beta 1. URL: http://www.omg.org/cgi-bin/doc?ptc/2011-07-19,
Last visit:

[25] International Organisation for Standardisation (ISO): ISO:14971 –
„Medical devices -- Application of risk management to medical
devices“, http://www.iso.org/iso, Last visit: January 05, 2012

[26] International Organisation for Standardisation (ISO): ISO/IEC
16085:2006– Sytems and software engineering, 2006.

[27] International Organisation for Standardisation (ISO): ISO/IEC/IEEE
24765:2010 – Sytems and software engineering, Vocabulary, 2010.

[28] International Software Testing Qualifications Board (ISTQB):
ISTQB/GTB standard glossary for testing terms.
http://www.software-tester.ch/PDF-
Files/CT_Glossar_DE_EN_V21.pdf. Last visit: October 17, 2012.

[29] IEEE Standards Association (IEEE): 829-2008 – IEEE
Recommended Practice for Software Requirements Specifications,
2008.

[30] Institute of Electrical and Electronics Engineers (IEEE): 830-1998 –
IEEE Recommended Practice for Software Requirements
Specifications, 1998.

[31] ROTESS project: Risk-oriented testing of embedded, safety-critical
systems.
http://www.fokus.fraunhofer.de/de/motion/projekte/laufende_projekte
/ROTESS/index.html, last visit: October 17, 2012.

[32] Object Management Group (OMG): http://www.omg.org. Last visit:
October 17, 2012.

[33] Object Management Group (OMG) UML Testing Profile Revision
Task Force: http://www.omg.org/techprocess/meetings/
schedule/UTP.html (access restricted). Last visit: October 17, 2012.

[34] European Telecommunications Standards Institute (ETSI):
http://www.etsi.org. Last visit: October 17, 2012.

[35] Testing and Test Control Notation Version 3 (TTCN-3):
http://www.ttcn3.org/. Last visit: October 17, 2012.

[36] Behavior Modeling Language (BML): Behavior Tree Notation v1.0,
http://www.behaviorengineering.org/docs/Behavior-Tree-Notation-
1.0.pdf. Last visit: October 17, 2012.

[37] T. Myers, “The Foundations for a Scaleable Methodology for
Systems Design” , PhD Thesis, School of Computer and Information
Technology, Griffith University, Australia, 2010.

[38] B. Selic, “A Systematic Approach to Domain-Specific Language
Design Using UML”, In: Proceedings of the 10th IEEE International
Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC'07), USA, 2007, pp. 2-9.

642Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 660 / 729

An Automatic Security Testing approach of Android Applications

Stassia R. Zafimiharisoa
LIMOS - UMR CNRS 6158

Université Blaise Pascal, France
email: s.zafimiharisoa@openium.fr

Sébastien Salva
LIMOS - UMR CNRS 6158

Université d’Auvergne, France
email: sebastien.salva@udamail.fr

Patrice laurençot
LIMOS - UMR CNRS 6158

Université Blaise Pascal, France
email: laurencot@isima.fr

Abstract—In this paper, we propose a security testing ap-
proach which aims to check whether Android applications are
not vulnerable to malicious intents. An intent is an IPC (Inter-
Process Communication) mechanism which is used to compose
Android components together to form a whole application.
From Manifest files, which provide information about Android
applications, and based on the vulnerabilities expressed within
test patterns, we automatically generate JUnit test cases that
can detect intent-based vulnerabilities. Using formal methods,
executable security tests are then automatically generated from
any Android applications.

Keywords-security testing, Android applications, model-
based testing.

I. INTRODUCTION

As mobile usage grows, so should security: this sentence
summarises well the conclusions of several recent reports
[1] about mobile application security with platforms such as
iOS, Android or Windows Phone. These reports also show
that an alarming amount of malicious software is currently
available. On the other side, end-users wish using trustwor-
thy mobile applications; so, more and more developers have
in mind that security must not be left aside. Nevertheless,
eliminating security vulnerabilities in mobile applications is
not so obvious since these ones depend on different concepts
such as composition of software components, which have not
been completely covered by security studies.

This paper proposes a work in progress about an automatic
security testing method for Android applications. Since
mobile application security is a tremendous research field,
we focus here on the composition of Android components:
most of mobile applications gather a set of components com-
posed together statically or dynamically. With Android, these
components are glued by means of the concept of intent
which is an IPC mechanism. In reference to the Android
documentation [2], an intent is an abstract description of
an operation to be performed. Basically, an intent is a data
structure holding an abstract description of an action to be
executed by another component. This one is generally used
to call or launch another component, e.g., an activity (a
component which represents a single screen), or a service
(component which can be executed in background). For
example, an intent is used when a user wishes to search
for a contact for later sending an email.

The use of intents introduces vulnerability issues (avail-
ability, integrity issues, etc.) when intents are composed
of malicious data. The security testing method developed
in this paper aims at detecting whether components are
vulnerable to these malicious intents. The first step of this
method is the generation of formal models ioSTS (input
output Symbolic Transition Systems [3]) from Android
applications, and more precisely from Manifest files. These
Manifest files which can be found in Android application
packages (apk), contain the list of Android components,
permissions of these components and a list of intents that
can be performed. More precisely, with introspection of the
different compiled components, we derive an incomplete
class diagram which will be used to refine and reduce the
test case generation. We also parse Manifest files to derive
one ioSTS for each component that describes the intent
communication. Vulnerabilities (that would be tested) are
also described formally with ioSTS called test patterns. We
give an example of test pattern for availability testing in this
short paper. However, our method can be also used to test
other security concepts such as integrity or authorisation.
Then, our method constructs test cases by combining the
component models with test patterns. The resulting ioSTS
test cases are finally translated into JUnit test cases to be
later executed with classical development tools.

The paper is structured as follows: Section II presents
some works dealing with Android security and security
testing. The methodology is described in Section III. We
conclude in Section IV.

II. RELATED WORK

Several works, dealing with Android security, have been
proposed recently. Some works focused on the definition of
a more secure Android framework. For instance, different
actions were monitored to check the system integrity in
[4]. These approaches offer a different point of view, in
comparison to the work tackled in this paper which aims
at detecting applications vulnerabilities, since they target
the discovery of framework vulnerabilities. Analysis of
IPC were studied by E. Chin et al. [5]. They described
the permission system vulnerabilities that applications may
exploit to perform unauthorised actions. We have exploited
the described vulnerabilities to model test patterns which

643Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 661 / 729

can be used to generate test cases. We have also completed
this vulnerability list by means of the recommendations and
vulnerabilities referenced by the OWASP (Open Web Ap-
plication Security Project) communities [6]. At the moment,
only Web applications are considered, but this gives some
indications for mobile applications too. Then, our approach
do not require Android framework extension and deal with
a large coverage of Android applications vulnerabilities.

Security testing, based upon formal models, has been
studied in several works [7]. Mouelhi et al. propose to
produce test cases from security policies described with
logic based languages(OrBAC). This ones permits to decribe
specific properties such as access control [8].In these two
previous works, test cases are generated from specification
and invariants or rules describing security policies. Starting
with a similar approach, we also use formal models to
describe Android applications and vulnerabilities, and we
propose to push one step beyond in the automatic generation
of partial models to produce tests.

In [9], a threat model-based security testing approach is
presented. This method produces security test cases from
threat trees and transforms them into executable tests. Using
trees is intuitive for industry but the use of formal languages
offer several other advantages such as the description of the
testing coverage.

III. SECURITY TESTING METHODOLOGY

In this section, we present an automatic security testing
approach which can be used to detect vulnerability issues
based on the intent mechanism. The different steps of
the method are illustrated in Figure 1. Initially, several
models are extracted from an Android application: from
the compiled classes, we extract a partial class diagram by
introspection. This one lists the components and gives the
associations between classes. We also produce one ioSTS
per component. These ioSTSs will be combined with ioSTS
test patterns, which describe vulnerabilities, to produce test
cases. We obtain symbolic test cases which need to be con-
cretised with values. Finally, these latter are translated into
JUnit test cases to be executed with classical development
tools. These steps are more detailed in the remainder of the
paper.

A. Model generation

1) Android components and interactions: Android appli-
cations are usually constructed over a set of components.
A component belongs to one of the four basic components
types that are activities (user interfaces), services (back-
ground processing), content providers (database manage-
ment) and broadcast receivers (broadcast message handling).
The communication between these components is performed
by intents. An intent is a kind of bundle of information
which gathers: the action which has to be performed, data
specifies the type of data to operate on or the MIME

Figure 1. Test case generation.

(Multipurpose Internet Mail Extension) type, a category and
eventually some extras which represent variable affectations
which are required for the action [2]. Intents are divided
into two groups: explicit intents where the target component
is designated and must be launched and implicit intents
(the most generally ones) where a component of another
application is going to be used. The mapping of an intent
to a component is expressed in Manifest files with intent
filters. The latter are given for each component. Android
Manifest file is mandatory in a project and it specifies system
information about the application. In this paper, Manifest
files are used to extract the list of Android components
deployed in the application and their intent filters.

2) Component partial model extraction: A simplified
class diagram, giving the Android components of the ap-
plication, is initially computed. The relationships between
components are established by applying reverse engineering
based on introspection in Java. This step aims to later reduce
the test case generation. For instance, we only produce test
cases to check data integrity on components which have
access to databases or to content-provider components only.
Our approach combines introspection with the detection of
specific Android component methods defined in [2], which
give details about intents, and the access to data.

Then, we generate one ioSTS for each component to
describe the intents that it can accept. An ioSTS is a
kind of automaton model which is extended with a set of
variables, with transition guards and assignments, giving the
possibilities to model the system state and constraints on
actions. Its complete definition can be found in [3]. An
ioSTS is defined by the tuple < L, l0, V, V0, I,Λ, →>,
where: L is the finite set of locations, with l0 the initial
one, V is the finite set of internal variables, while I is the
finite set of interaction ones. Λ is the finite set of symbols
and → is the finite transition set.

IoSTS are generated with Algorithm 1. It constructs one
partial ioSTS specification per component listed in the Mani-
fest file. It is also based on the recommendations provided in
[2] to describe the different responses that can be observed
after the receipt of an intent by a component. In this paper,

644Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 662 / 729

we focus on activity and service components only. Intents
are expressed with the output action !intent composed of
specific variables for the action, the data, the category, the
type and the extras. IoSTS are constructed according to the
intent action type. The set denoted Ao is composed of the list
of Actions that requires response message after the intent,
e.g.,the action PICK. Aq is the set composed of the list of
Actions that do not need response, e.g.,the action VIEW.

An minimalist and straightforward example of
specification is given below. It illustrates one intent
composed of the action VIEW that is called to display
information about the first person in the contact list of the
mobile phone.
l0

?intent(action,data)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
action=ACTION V IEW∧data=../contact/people/1

l1
!display(ActivityA),[A.resp=isNull]−−−−−−−−−−−−−−−−−−−−−−−→ l0.

Algorithm 1: Partial Specification set Generation
input : Manifest file MF
output: An ioSTS set {Sct | ct is a component}
foreach component ct in MF do

foreach IntentFilter it(a, d, c, v) of ct in MF do
if ct.type = activity then

if a ∈ Ao then

l0
?intent(a,d,c,v),[a.in(Ao)]−−−−−−−−−−−−−−−−−→Sct

(lit,1)
!display(ActivityA),[A.resp6=Null]−−−−−−−−−−−−−−−−−−−−−−→Sct

l0

else if a ∈ Aq then

l0
?intent(a,d,c,v),[a.in(Aq)]−−−−−−−−−−−−−−−−−→Sct (lit,1)

!display(ActivityA),[A.resp=Null]−−−−−−−−−−−−−−−−−−−−−−→Sct
l0

else

l0
?intent(a,d,c,v),[a.in(Ac)]−−−−−−−−−−−−−−−−−→Sct

(lit,1)
!display(ActivityA)−−−−−−−−−−−−−→Sct l0

if ct.type = service then
if a ∈ Ao then

l0
?intent(a,d,c,v),[a.in(Ao)]−−−−−−−−−−−−−−−−−→Sct

(lit,1)
!running(ServiceS),[S.resp 6=Null]−−−−−−−−−−−−−−−−−−−−−−→Sct

l0

else

l0
?intent(a,d,c,v)−−−−−−−−−−→Sct

(lit,1)
!running(ServiceS)−−−−−−−−−−−−−→Sct

l0

B. Vulnerability modelling with ioSTS test patterns

We propose to define security vulnerabilities of Android
components with ioSTSs in order to combine them later
with ioSTS specifications. Our method can take different
security concepts, e.g., availability, integrity or authorization
in condition that they could be modelled with ioSTSs. One

Figure 2. Test pattern for availability

vulnerability is expressed by a tree whose final locations
are labelled by a verdict in {pass, fail, inconclusive}:
branches beginning from the initial location and ended by
fail express functional behaviours composed of malicious
intents and responses which show the presence of the vulner-
ability. Branches ended by inconclusive express functional
behaviours which do not help to conclude on the presence
or the absence of the vulnerability. Branches ended by pass
express functional behaviours which show the absence of
the vulnerability.

We only present a test pattern example to check availabil-
ity in this paper. Availability of Android components means
that they must respond despite the receipt of malicious
intents. An availability test pattern for Activity components
is shown in Figure 2. The other security properties are com-
posed with more states. Availability issues are detected when
exceptions such as ClassCastException, NullPointerExcep-
tion, RessourceNotFoundException, etc. are received [2].
So, the test pattern expresses that when one of these excep-
tions is observed, the fail location is reached. For instance,
these exceptions can be received when there is no input
validation of the URI path. System exceptions e.g., Activi-
tyNotFoundException, SecurityException, etc. mean that the
intent has been blocked directly by the Android system.
This is expressed by transitions leading to the inconclusive
location. Variables of the intent action take values in specific
sets with the term in. These sets are required to target the
test with specific values and above all to reduce the number
of test cases. The set Ac is composed of the list of Actions
found in the Android documentation [2]. In the same way,
C is a specific set of categories, T a set of types, U a
set of URI. V e is a set of extras i.e., tuples (key, values)
where the keys are extracted from the application package
(apk) and values are chosen randomly. RV stands for a
set gathering values known for relieving bugs and random
values. For instance, for the type String, RV (String) holds
values such as ””, ”$”, ”&”, and random values. Inj gathers
String values equal to XML and SQL injections.

C. Test case Generation

Test cases are generated by composing test patterns,
modelling vulnerabilities with component specifications. As
defined, a test pattern expresses one vulnerability in general

645Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 663 / 729

Figure 3. A test case example.

terms. This combination yields symbolic test cases which are
specialised to test one vulnerability by means of the func-
tional behaviours given in the specification. The combination
of one test pattern TP with one specification S is performed
by two steps: synchronous product of the specification with
the test pattern to extract from the latter, the functional
behaviours expressed in the specification, completion of this
product with incorrect and inconclusive behaviours given in
the test pattern by transition leading to fail or inconclusive
respectively.

1) Test case concretisation: The resulting test cases are
still composed of variables. To execute them, variables are
replaced with values by using a pairwise technique [10] on
the value sets provided by the test patterns (RV, Ac, etc.)
instead of using a cartesian product. This technique helps to
reduce the coverage of the variable domain by constructing
discrete combinations for pair of parameters only. A final
test case is shown in Figure 3. It illustrates a malicious
intent transition composed of the classical SQL injection
’ or ’1’=’1.

2) Automatic unit test generation: IoSTS test cases are
translated into JUnit test cases to be executed with Java
development tools. This is done with an algorithm that can
be summarised by: each ioSTS transition starting from the
initial location corresponds to the launch of an intent on
a component with its parameters defined in the ioSTS test
case. Then, the following transitions that correspond to both
observations and verdicts are translated into JUnit assertions.
Since inconclusive verdict are not allowed with JUnit, it will
be assigned to pass verdict and will be identified by specific
annotations. The following example illustrates a JUnit test
case.

public void testAvailability(){ ... setIntent(
ACTION_VIEW, ’ or

’1’=’1}; try{ mActivity=getActivity();
assertTrue(currentView,isNotNull());
assertTrue(activityResult,isNull());}
catch (ClassCastException c) {fail(c.message);}
catch (ActivityNotFoundException a)
{assertTrue(a.message,true);} ... }

IV. CONCLUSION AND FUTURE WORK

We have introduced a work in progress about Android
security testing based on the notion of intent which can

be considered as a glue of the components participating
in applications. The intent concept offers some advantages
and flexibility but is also a weak spot in security since
attacks can be send to components. Our method generates
models from Android Manifest files and constructs test
cases from these models and vulnerabilities models. The
originality of the method is to produce formal models from
Android documentations and files extracted from Android
applications automatically. The use of these formal models
will be useful to express without ambiguity the coverage of
the tests. The next step is to list all the possible intent-based
vulnerabilities (we have collected five vulnerabilities at the
moment) and to develop the corresponding testing tool to
perform experiments on real applications.

REFERENCES

[1] IT Business: Android Security, (June , 2012). [Online]. Avail-
able: http://www.itbusinessedge.com/cm/blogs/weinschenk/
google-must-deal-with-android-security-problems-quickly/
?cs=49291

[2] “Android developer page,” (May 1, 2012). [Online].
Available: http://developer.android.com/index.html

[3] L. Frantzen, J. Tretmans, and T. Willemse, “Test Generation
Based on Symbolic Specifications,” in FATES 2004, ser. Lec-
ture Notes in Computer Science, J. Grabowski and B. Nielsen,
Eds., no. 3395. Springer, 2005, pp. 1–15.

[4] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel,
“Semantically rich application-centric security in android,” in
Proceedings of the 2009 Annual Computer Security Applica-
tions Conference, ser. ACSAC ’09, 2009, pp. 340–349.

[5] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyz-
ing inter-application communication in android,” in Proc. of
the 9th International Conference on Mobile Systems, Appli-
cations, and Services, 2011, pp. 239–252.

[6] OWASP, “Owasp testing guide v3.0 project,”
2003, (accessed May 1, 2012). [Online]. Avail-
able: https://www.owasp.org/index.php/Category:OWASP
Testing Project#OWASP Testing Guide v3

[7] H. Marchand, J. Dubreil, and T. Jéron, “Automatic Testing of
Access Control for Security Properties,” in TESTCOM/FATES
2009, Nov. 2009.

[8] T. Mouelhi, F. Fleurey, B. Baudry, and Y. Traon, “A model-
based framework for security policy specification, deployment
and testing,” in Proceedings of the 11th international confer-
ence on Model Driven Engineering Languages and Systems,
2008, pp. 537–552.

[9] K. H. S. K. Aaron Marback, Hyunsook Do and D. Xu, “A
threat model-based approach to security testing,” in Softw.
Pract. Exper, 2012.

[10] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J.
Colbourn, “Constructing test suites for interaction testing,” in
Proc. of the 25th ICSE, 2003, pp. 38–48.

646Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 664 / 729

An Integrated Process for Developing Safety-critical Systems
using Agile Development Methods

Zhensheng Guo
Siemens AG, Corporate Technology

Erlangen, Germany
Joe.guo@siemens.com

Claudia Hirschmann
Siemens AG, Corporate Technology

Erlangen, Germany
Claudia.hirschmann@siemens.com

Abstract - This paper proposes a novel idea for developing
safety-critical software-intensive systems by the use of agile
development models. This idea comes from the dramatic
increase of the complexity for constructing technical systems
such as trains, cars and medical devices. Iterative and
incremental development becomes more and more popular and
effective in such fields. However, the development of safety-
critical systems is strictly defined by relevant safety standards.
A kind of finish-to-start relationship between the development
phases is required implicitly. This paper explains an idea to
integrate an iterative incremental development process into the
strict safety development lifecycle. At the end of this short
paper, an overview of the further activities is presented.

Keywords-safety-critical software-intensive systems; IEC 61508;
EN 50128; agile software development process; Scrum

I. INTRODUCTION
Software is replacing traditional mechanical and

electrical components with an extremely high speed and
huge extends. Many of such components are used in safety-
critical systems, where the malfunctions of software could
cause the damage of equipment, environmental pollution,
even injury or death of human being. Typical examples of
such systems are trains, cars, aircrafts, medical devices and
nuclear power plants. To develop high quality software
components, it is nowadays essential to use a suitable
development process model. In [15], several typical process
models are presented and compared for the suitability for
developing safety-critical systems: One of the core results of
the referenced paper is that strict finish-to-start process
models such as the V- Model XT [14] are suitable to
construct safety-critical systems, whereas agile process
models, like Scrum, are not recommended.

Agile software development methods follow the principle

of ‘plan – build – revise’ in short iterative cycles. At the end
of each cycle they deliver incrementally ready product
features. Agile methods provide good measures to handle the
reality of software development with its late requirements,
need for flexibility and fast reaction times; see [7].

The bases behind agile processes are the Manifesto for
Agile Software Development [1] and the Principles behind
the Agile Manifesto [2]. Agile processes welcome changing
requirements, deliver working software frequently and in
close cooperation with the customer trusting the motivated

development team. But, agile methods, like e.g. Scrum [8],
do not care about dedicated roles for quality management or
safety management, or documentation.

One of the most used agile methods is Scrum (see [6]),
which is continuously enhanced, like in “The Scrum Primer,
version 1.2” [3] or “The Scrum Guide” [4].

Application of agile methods in safety-critical, regulated
environments (as in medical technology) is discussed in
science and industry, see the ScrumMed conference
[5][9][10]. Application of agile methods in safety-critical
systems with focus on IEC 61508 or EN 50128 is still a gap
which we want to fill with our idea.

Nonetheless, many industry domains are using agile

methods to reduce the project risk and increase better
orientation, flexibility, transparency and even quality: So,
there is a gap and practical need for finding out how to use
iterative process models and agile methods save and
effectively for developing safety-critical systems.

There is no specific process model required in the safety
standards such as IEC 61508 [12] and EN 50128 [13]: in IEC
61508 a safety lifecycle is defined and required, in EN 50128
waterfall model and V-Model is referenced but not required.
The safety standards only require certain activities and
documentation with some quality according to the
corresponding Safety Integrity Level (SIL). The appropriate
process model can be decided by the individual project
whereat the new version of EN 50128 even mentions the
consideration of iterative development.

Therefore, an iterative process model for developing
safety-critical systems becomes important: integrating the
benefits without letting the drawbacks from safety view in.

II. IDEA FOR DEVELOPING SAFETY-CRITICAL SYSTEMS
USING AGILE DEVELOPMENT METHODS

Our idea is to map the activities of an agile process
model into the safety lifecycle. The agile process model will
be used, but not as the only process model. The traditional
strict finish-to-start process model will be used as well. This
limitation has the benefit that the required activities and
documents of the individual phases are done in the required
sequence of the safety standards.

The following section explains how the agile process
model can be mapped into the safety lifecycle.

In order to make our idea general, we take the software
safety lifecycle from the mother safety standard, IEC 61508,

647Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 665 / 729

part 3. In the software safety lifecycle in IEC 61508 part 3,
the activities and documents, which shall be done after each
individual phase, are readily identifiable from the name of
each phase of safety lifecycle.

Scrum shall contain the following activities and artifacts:

Product backlog (user requirements) and Release plan; Sprint
planning meeting and Sprint Backlog; Code including
documentation after each sprint / increment; Review meeting
and results; Retrospective.

Now, the Scrum activities and artifacts will be arranged
in the phases of the safety lifecycle as described in Figure 1.

Figure 1 illustrates the idea of the solution for developing
safety-critical systems using agile development methods
from the Software safety lifecycle view point. It shows
which agile elements would go into which step of the safety
lifecycle: The Product Backlog from Scrum method will be
applied for the SW safety requirements specification
additionally. SW design & development will be performed
according to Scrum’s Sprints including the Sprint planning
meeting, Sprint Backlog, the Daily Scrum Meetings, Sprint
Review, and regular Sprint Retrospectives. The Sprint
Review and Sprint Retrospective element from Scrum will
be applied for the Software safety lifecycle step of SW
aspects of system safety validation, as well, to facilitate
stakeholder involvement and continuous improvement of the
product and process.

The Sprints for the implementation of the different
features could be performed in parallel and sequentially,
depending on the dependability of the features that are
implemented in the sprints and corresponding safety
requirements respectively; so, the whole Software will be
implemented iteratively through as many Sprints as needed.

Figure 2 illustrates the idea of the solution for developing

safety-critical systems using agile development methods
from the Scrum view point. It shows the Scrum method’s
framework form Product Backlog over Release Plan, Sprint
Planning Meeting, Sprint Backlog into the Sprints ending
with the Sprint Review Meeting and Sprint Retrospective
Meeting, whose results flow back into the planning for the
next Sprint. In order to ensure accurate consideration of
safety issues, a Safety Manager will care for safety assurance
throughout the whole process. So the Safety Manager will
check the Product Backlog for certain safety goals and care
for proper ranking and arrangement in the Release Plan,,
Sprint Backlog and Sprint Review Result, and will monitor
and track safety items during the Daily Scrum Meetings and
the Sprint Retrospective Meetings. He supports the Scrum
Master in all sprints, takes part in the Sprint Review and in
the Sprint Retrospective to care for proper documentation,
etc.

A second step of this integrated process is to integrate the
Start and Done- criteria as a refinement of [11] into the
software safety lifecycle. Such criteria define start and end of
each sprint in the overall safety lifecycle.

The Done Criteria that are checked after each Sprint to
determine whether a task of the Sprint is completely done or
not, is steadily maintained and kept by the Safety Manager.

These Done Criteria, which serve as checklist, will include
for example safety relevant review activities, documentation,
and safety measures.

One crucial factor for use of such an integrated process

model is the correct definition of the sprints according to the
separation of the non-safety-critical functions from the
safety-critical functions and the decomposition of the safety
functions regarding their criticalities and dependencies.

III. FUTHER ACTIVITIES
We are planning to use this integrated process model in the
Scrum teams for developing safety-critical systems.
Important is that the overall safety activities will be well-
integrated and advised by the Scrum master and Safety
manager. Of course, the recommended and required
techniques according to the different SILs, Change
Management like other required activities from the relevant
safety standards will be used and integrated in each sprint.

IV. CONCLUSION
In this paper, we presented a novel idea to integrate agile
methods / Scrum into the safety lifecycle to enable iterative
incremental development in safety-critical systems.

Figure 1. Software safety lifecycle with Scrum elements.

Figure 2. Safety-oriented Scrum process framework.

V. REFERENCE
[1] http://agilemanifesto.org/. [retrieved: September, 2012].
[2] http://agilemanifesto.org/principles.html. [retrieved:

September, 2012].
[3] Pete Deemer, Gabrielle Benefield, Craig Larman, and Bas

Vodde: “The Scrum Primer, version 1.2”, 2010, pp. 4-16.

SW safety
requirements Spec.

SW design &
development

PE Integration
(hardware & software)

SW aspects of system
safety validation

SW operation &
maintenance

d

Validation plan for SW
aspects for system

safety

Product Backlog

Sprint planning meeting,
Sprint Backlog Daily Scrum

(Team Meeting)

Sprint

Review activities and
meeting, retrospective

648Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 666 / 729

[4] Ken Schwaber and Jeff Sutherland: “The Scrum Guide, The
Definitive Guide to Scrum: The Rules of the Game”, 2011,
pp. 3-15.

[5] Jörg Bindner and Claudia Hirschmann: “Agil in Medical
Technology? Hand in Hand with Quality Management”
(Transl.), published in OBJECTspectrum, Agility/2009, pp.
1-5.

[6] Results from Scott Ambler’s March 2006 ‘Agile Adoption
Rate Survey’ posted at www.ambysoft.com/surveys/.
[retrieved: September, 2012].

[7] Computerwoche: „Agile Methods in Comparison“ (Transl.),
http://www.computerwoche.de/software/software-
infrastruktur/2352712/ , April 2012. [retrieved: September,
2012].

[8] Roman Pichler: „Scrum – Using Agile Project Management
Successfully” (Transl.), 2008, pp. 7-123.

[9] ScrumMed, Conference for Scrum in Medical Technology.

[10] Andrea Heck: „How is a large software project in medical
technology getting agile“ (Transl.), Colloquium at Georg
Simon Ohm University of Applied Sciences.

[11] Jeff Sutherland: Sprint Ready and Done threshold, 2009.
[12] IEC 61508, Functional safety of

electrical/electronic/programmable electronic safety-related
systems, International Electrotechnical Commission, 2010,
pp. 19-20.

[13] EN 50128, European Standard of Railway applications -
Communication, signalling and processing systems - Software
for railway control and protection systems. 2011, pp. 10-26.

[14] V-Modell XT Version 1.3 English, Federal Republic of
Germany, 2006, pp. 10- 20.

[15] Adrien Mouaffo, Zhensheng Guo, Mahmudul Huq, Dieter
Rombach, and Peter Liggesmeyer, Tool support for a safety-
and security- based assessment model for software
engineering processes, in Software Process Improvement And
Capability dEtermination (SPICE) Conference, 2010.

649Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 667 / 729

ESAC-BPM: Early Security Access Control in
Business Process Management

Mahmoud F. Ayoub
Computer and Systems Engineering

Alexandria University
Alexandria, Egypt

Email: mfayoub@alexu.edu.eg

Riham Hassan
Computer Science

Virginia Tech
Blacksburg, VA, USA

Email: rhabdel@cs.vt.edu

Hicham G. Elmongui
Computer and Systems Engineering

Alexandria University
Alexandria, Egypt

Email: elmongui@alexu.edu.eg

Abstract—Business process modeling notations do not provide
explicit means to model security aspects such as access control,
integrity and confidentiality. Business analysts who are not typi-
cally security experts are incapable of modeling security aspects
that could not be modeled in business process modeling notations.
In this paper, we propose systematic means to model access
control explicitly in business process models. More specifically, we
used Business Process Modeling Notation (BPMN) as a graphical
notation to represent processes. Our proposed technique exploits
BPMN by employing business rule activities to carry the access
control logic as If-Then rules with conflict detection capabilities.
We prove the validity of ESAC-BPM formally. Further, we
demonstrate the technique using a case study for a reservation
process for a movie store by telephone, that needs data access
control policies to be applied on the process model.

Index Terms—Business process management, security data
access control, business rule activities.

I. INTRODUCTION

Business Process Management (BPM) is the process of op-
timizing business processes and aligning all the organizational
aspects with the requirements needed to be in a software.
BPM concerns about the validity, performance and agility
of business processes. A business process is a network of
activities done by collaborators to achieve a business goal.

Business Process Modeling Notation (BPMN) [1] is used
to represent business processes. With this unified graphical
representation, all business stakeholders can easily understand
business processes and can adjust any business modifications
quickly and in a standard way. It is very similar to activity
diagrams of Unified Modeling Language (UML). Therefore,
it is intuitive to business users and technical engineers, and
hence it can enclose the gap between them.

BPMN consists of graphical constructs and objects that
can be mapped to execution languages like Business Process
Execution Language (BPEL) as in [2], [3], and [4]. As a result,
the pace of processes development has increased and process
management became easier.

While modeling, a business analyst finds problems in ex-
pressing all the business requirements. Many of such require-
ments are about security. Engineering a secure software is a
challenging problem. In industry, almost security is the last
aspect to be considered and it is added to the software in an
adhoc manner. The analysts are the best ones in the software

cycle to know about the security holes and how to handle
them. However, they do not have a direct control on security
policies. Instead, they have to forward the required changes to
software engineers.

One important aspect of software security is the data access
control, which is a necessary and crucial design element
for any secure application. In general, an application should
protect its data and system resources against unauthorized
access by implementing access control restrictions on what
users can do. Access Control refers to the much more general
way of controlling access to data, including restrictions based
on things like the time of day, age, gender, the IP address of
the HTTP client browser, or any other derived variables that
can be extracted or calculated easily. Simpler access control
models often cannot adequately meet the complex access
control requirements that such relationships require, and so
more granular, powerful, dynamic models and mechanisms are
needed to address these new realities. In short, increasingly
complex data access and sharing drive the need for increas-
ingly complex access control models and mechanisms.

Attribute Based Access Control (ABAC) is one model of
access control. It uses attributes in a structured language to
define access control policies. There are 3 kinds of attributes:
subject, object and environment. 1) The subject represents who
requests data access. In typical applications, It can be a user,
application, or process. Subject related attributes are like age,
name, gender or role. 2) The object is the target identity to be
secured. It can be a file, database, data object or web resource.
Object related attributes are like name, size or URL. 3) The
environment is the context where the access request happens.
Environmental attributes are like time of day, weather, season
or place of request.

Process modeling languages and security policies languages
are both used to document organizational policies and pro-
cedures. While process modeling languages describe a pro-
cedural sequence of activities, security policy languages of-
ten rely on a declarative description of security constraints.
Understanding the relationship between the two languages
would maximize benefit, avoid content duplication, and reduce
their overall effort [5]. In this paper, we present a provably
systematic and easily deployable approach for embedding
security access control, as one example of security aspects,

650Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 668 / 729

that is designed for BPMN diagrams. Our approach is based
on a novel usage of business-rule activities which are in the
BPMN specification. So, we do not need to modify the BPMN
meta-model. It is based on putting all the security logic as If-
Then rules. Additionally, we integrate our approach with an
option to detect conflicts [6] between access control policies.
Access control policy conflicts usually happen as a result of
their complexity. We adopt ABAC as it is the most flexible
access control model, and it can be a replacement to any
access control model as shown later. In ABAC, access control
policies are given as boolean expressions, which are easily
written and understood. They are comprised of conditional
attributes and boolean operators (¬, ∧ and ∨). They are
mapped to business rules and are wrapped by a business rule
activity. Upon activation, a business rule activity activates the
associated business rules and on their completion, the activity
terminates. A business rule activity hides all the security logic
in its underlying properties. As a result, all complex logic
is not visible in the graphical view of a process model, and
so it is still easily understood. In such a way, we provide a
complete software solution by considering early security while
modeling business processes. Our evaluation shows that the
proposed approach can achieve significant secrecy gain with
minimal additions compared to the state of the art.

The rest of the paper is organized as follows. In Section
II, we discuss the related work. In Section III, we present
our approach. In Section IV, we prove the validity of our
approach. In Section V, we provide a complete test case
example examining our approach. And, finally, the conclusion
and future work are in Section VI.

II. RELATED WORK

Concerning different related work of embedding security in
business processes, there are many ways to do so with different
approaches. A first popular approach is to add text annotations
to different BPMN constructs. These annotations contain a
formal specification of security policies and need to be parsed
afterwards at runtime to enforce security requirements. There
were many security policy specifications languages used and
are presented here. Second approach changes the meta-model
of BPMN to add new constructs for security requirements.
These constructs are translated into security policies to be
enforced at runtime. Our approach does not change the meta-
model, but it creates new fragments based on business rule
activities and some gateways. So it is easily deployable.

Mülle et al. [14] and Darnianou et al. [15], propose lan-
guages for security policies specification. A business analyst
should study it for usage. In [18], security elements and
process models are integrated. The language constructs can
be inserted as a text annotation associated with BPMN con-
structs. Annotations are to be compiled and enforced at the
process execution stage. The language supports access control
by providing authorization, delegation, information filtering
and refrain policies. Additionally, they provide obligations,
basic constraints, meta policies and policy composition. After
integrating the process model with security elements, the

graphical representation of the process is complex and hard
to be understood. It is better to externalize all the security
logic.

In [16], a Policy Description Language (PDL) is proposed. It
is declarative and consists of 3 categories: 1) Set of events. 2)
Set of actions. 3) Set of functions to evaluate the environment.
Policy rule propositions take the following form.

event causes action—event(s) if condition
This means that if event occurs in a situation where condi-

tion is true, then the action or consequential events specified
will be executed. The language is a generic language that can
be used to describe any type of policies and not only security
policies. This type of formalization will allow representing
obligations, and prohibitions.

Rodrı́guez et al. [10] and Menzel et al. [11], concern
about the graphical representation of security constructs. Ad-
ditionally, they add to the meta-model of BPMN. Security
requirements are included in the extended meta-model. They
do not cover how the underlying layer works for enforcing
such security constraints. Additionally, they map each security
requirement to a BPMN construct and add a mark to it.
Supported security aspects are non-repudiation, attack harm
detection, integrity, privacy, access control, security role, and
security permissions. In contrast to our proposition, there are
no clues about how security constraints are to be enforced.
They model the requirements and leave it up to the developer
to decide how to implement them, which may introduce
security holes.

Wolter et al. [12] and [13], constitute their generic security
model that specifies security goals, policies, and constraints
based on a set of basic entities, such as objects, attributes,
interactions, and effects. It is a general description regardless
the notation used. For BPMN, they visualize the security
requirements as artifacts like a text annotation to a message
link for message confidentiality. They use the group artifact
on some activities to express the separation of duties (SoD)
security aspect.

In [17], a similar methodology, to our approach, for mod-
eling security requirements in business processes is proposed.
They cover both the design-time modeling and run-time en-
forcement of security requirements for business processes.
Such requirements are translated to XACML policies which
are enforced by generated Policy Enforcement Points (PEPs).
Additionally, Policy Decision Points (PDPs) are generated to
decide if a certain request is granted or not. A prototype
is implemented based on Activiti (http://www.activiti.org/),
extending the Eclipse designer and process engine. Some
security requirements are represented as new constructs in
BPMN and others like access control are represented by
domain-specific user interface.

In [19], security needs are supported by the commitments
view, which consists of a set of commitments between actors.
The conversation and choreography diagrams of BPMN 2.0
are targeted. An overview of intercompany processes between
several partners is given. Hence, annotations are used to show
which conversations and related participants the requirements

651Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 669 / 729

apply.

III. FORMAL METHOD OF SECURITY ACCESS CONTROL IN
BPMN

While accessing data objects, we authorize the incoming
read/write request based on the access control policies of
the requested object. For accessing data base object, we do
the same for the CRUD operations. Our proposed approach
adopt ABAC because of its flexibility and context awareness.
Access control policies are represented by boolean expressions
comprised of conditional attributes and boolean operators (¬,
∧ and ∨). Boolean expressions are transformed to business
rules. Our approach does not modify the meta-model of
BPMN’s, because there is a native support for business rules
via business rule activities. When a model token activates
such activity, the associated business rules are called. On
completion, the business rule activity completes and the result
is the actions specified in the body section of rules. In our
case, for handling access control policies, the action is either
permit or deny the incoming request.

Our approach uses system-wide rules by business analysts
to model security aspects (mandatory access control policies).
As illustrated in Figure 1, when the regional manager receives
a message of a loan application, it is reviewed using the loan
data file, and then the manager notifies the customer with the
result of application either by acceptance or refusal. In this
example, a business analyst is incapable of adding constraints
on accessing the data file like restricting the access time in
a certain duration of a day (6am ≤ time ≤ 6pm) or other
constraints.

Our proposed approach solves this problem by adding a
construct to be activated before accessing data objects. As
depicted in Figure 2, the secure read sub process is inserted
before accessing loan data file. This process can throw an
error event if it denies the incoming access request, and the
business analyst should handle the thrown error in a proper
way. In Figure 3, we give a further insight into our construct.
It contains a business rule activity that has all the logic of the
access control policy. The activity is followed by a gateway
to differentiate between a granted access and a denied one. If
the access is accepted, the subprocess finishes normally. If it
is denied, the subprocess throws an intermediate error event
to the calling process.

It is better to externalize the decision logic in an external
decision table like business rules rather than organizing them
among gates that control the model’s token path. In the former
approach, business analyst can express complex policies, eas-
ily review and validate the business rules controlling a certain
data object. On the other hand, the latter approach is subject
to policy changes and requires significant maintenance.

IV. VALIDITY PROOF OF FORMAL METHOD

To prove the validity of our approach, we split the proof into
3 steps as follows. 1) Traditional access control models can
be converted to ABAC. 2) We can transfer any ABAC policy

Fig. 1. Example before secure read activity

Fig. 2. Example after secure read activity

to some business rules. 3) Conflict detection. We present each
of these steps in detail in the following subsections.

A. Traditional Access Control Models to ABAC

ABAC is flexible enough among all other traditional models,
as presented in [7] and [8]. So we can express various
access control policies. Because they all depend on attributes
of 3 domains: subject, object and environment. 1) Subject
represents the identity who requests for a data access. Typical
attributes are like age, name, gender or role. 2) Object is the
target identity to be secured. It can be a file, database, data
object or web resource. 3) Environment is the context where
the access request happens. So for using ABAC, we have to
convert the given domain to its attributes and then create the
ABAC policies. We do a proof by complete induction on all
access control models from [9] and convert each one to the
corresponding ABAC model as follows.

1) Role Based Access Control (RBAC) to ABAC: RBAC
only concerns about roles in the system. So one of the inherent

Fig. 3. Collapsed secure read subprocess

652Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 670 / 729

TABLE I
MODELING RBAC RULES

Conditions Result
Role Access Granted

Manager Yes
Clerk No
TA Yes

TABLE II
MODELING BLP READ RULES. THE SIMPLE SECURITY PROPERTY (NO
READ-UP). EXPRESSION: SubjectLabel ∈ {Owner,Manager} AND

Operation = ”Read”

Conditions Conditions Result
Subject Label Operation Access Granted

Owner Read Yes
Manager Read Yes

Clerk Read No
Customer Read No

TABLE III
MODELING BLP WRITE RULES. THE STAR PROPERTY (NO WRITE-DOWN)

Conditions Conditions Result
Subject Label Operation Access Granted

Owner Write No
Manager Write Yes

Clerk Write Yes
Customer Write Yes

limitations of RBAC is the single dimension of roles. As a
result, if we want to model multiple attributes, the number of
roles needed to encode these attributes will grow exponentially.
Additionally, RBAC does not support environment attributes
and can not model BellLaPadula model. Table I shows how
to model an RBAC to an ABAC one.

2) BellLaPadula (BLP) Model to ABAC: BLP is used in
military organizations where there are object security labels
and subject clearances. They build the finite state machine of
the model. Assume that we have a model with the following
specifications. Object labels are ordered from top secured to
lower level as follows.

1) TOP SECRET
2) SECRET
3) CONFIDENTIAL
4) PUBLIC

The subject clearances are ordered in the same way as follows.
1) Owner
2) Manager
3) Clerk
4) Customer

Tables II and III show how to model this BLP model to an
ABAC one assuming we have a SECRET object to be secured.

This policy can be expressed by two attributes:
SubjectLabel and Operation as follows

(SubjectLabel ∈ {Owner,Manager}∧
Operation = ”Read”) ∨ (SubjectLabel ∈ {Manager,

Clerk, Customer} ∧Operation = ”Write”) (1)

TABLE IV
BUSINESS RULES FOR BPL MODEL

Condition R1 R2 R3 R4 R5 R6
Subject Label Owner Manager Clerk, Customer
Operation Read Write Read Write Read Write
Access Granted Yes No No Yes No Yes

B. ABAC Policy to Business Rules

In this subsection, we have an input ABAC policy expressed
as a boolean expression. We want to transform it to some busi-
ness rules that satisfy the expression. We deal with business
rules because BPMN has a complete support to them. This is
our main contribution that we make use of business rules in
embedding security in business processes. So there is no need
to modify the meta-model of BPMN.

The input boolean expression will consist of attribute vari-
ables each of which belongs to a certain range of the whole
attribute domain and logical operators (¬, ∧ and ∨). A family
of disjoint sets of each attributes can be detected from the
given boolean expression. Union of these sets is the whole
attribute domain and there is no intersection between them.
These sets make up the business rules to be put in business
processes. The cardinality of the number of business rules is
given as follows:

NumberOfBusinessRules =

N∏
i=1

|Ai| (2)

where N is the number of attributes in policy, Ai represents
the ith attribute and || returns the number of disjoint sets of the
given attribute. For example, in Equation 1, there are three sets
for the SubjectLabel attribute: {Clerk, Customer}, {Owner}
and {Manager}. For Operation attribute, there are two sets:
{Read} and {Write}. Hence we have six business rules and we
can put them in a decision table as in Table IV. Decision trees
can be used for visualizing business rules. But they are very
brittle when rules change and require significant maintenance.
Additionally, they are more complex when each parameter
potentially has a large number of different values where each
possible parameter value becomes a node at a branching point
in the tree. On the other hand, decision tables, as in Table
IV, can be used instead which are more compact and intuitive
when many rules are needed to analyze many combinations
of attribute values.

C. Conflict Detection

Several policies control access to each object. Each policy
consists of some business rules that adheres what the policy
specifies. Each rule has an action (whether permit or deny) to
access the object. Due to enterprise business processes and
complex access control policies, some conflicts may arise.
A conflict arises when two policies having some conditional
attributes in common but different in their actions.

We adopt the approach in XACML access control policies
[6], as in Algorithm 1, by representing each policy in d-
dimensional space, where d is the number of conditional

653Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 671 / 729

attributes. The plane sweep algorithm, as in [20], is used for
detecting pairwise conflicts. It has three steps: 1) project each
policy on a specified dimension plane and sort the projected
values. 2) sweep the plane. 3) report intersections.

Algorithm 1 Conflict Detection Algorithm
1: map all policies to the d-dimensional space
2: determine start and end of the range every policy covers
3: for each dimension do
4: determine all intersections via plane sweep algorithm
5: prune all policies that cannot conflict another one
6: end for
7: report all pairwise conflicts

The complexity of the plane sweep algorithm is O(n ∗
log(n)). And due to the fact that it is used d times in the
conflict detection algorithm. So the overall complexity of the
conflict detection algorithm is as in Equation 3

= d ∗ n ∗ log(n) (3)

where n is the number of policies and d is the number of
dimension.

We have developed many techniques to resolve the conflicts
among the rules. However, we omit their details due to
the space limitations. These techniques depend on how the
business rule engine works. Some techniques can call the
business rules in serial manner and finish when it takes a
decision from the calling business rules. Other techniques can
call all the business rules in parallel, and then aggregates the
results by voting algorithm, permit dominates, deny dominates
or others. A business analyst can do the proper modifications
to remove any conflict.

V. CASE STUDY

Our illustrative example describes a typical business process
for a movie rental shop. Reservations are done via telephone
calls by customers to store clerks. There are two requirements
to be considered for business security and management. 1) Ba-
sic requirement in which access control is based on customers’
age and the movies content ratings. Ratings are Restricted (R),
Parented Guidance Strongly Cautioned (PG-13) and General
Audience (G). 2) Advanced requirement which introduces
membership classes (Premium, Regular), which enforces a
new policy that only Premium users can view new releases.
Figure 4 shows the details of what a movie store clerk does
to securely create a right order for the incoming call request
according to the store policies. The diagram also handles any
possible attack for the data objects.

Figure 4 describes a business process of a movie store that
is triggered by a phone call. The clerk responds, and then
review the customer data. Before accessing Customer Data
file, we can apply access control policies on the subject role,
username, time of request, or type of operation. As shown
in Table V, it restricts the accessing of file to either clerks
and managers. Additionally, it puts additional time constraint

TABLE V
DECISION TABLE FOR ACCESSING THE CUSTOMER DATA OBJECT FILE

Conditions Result
Role Time Granted
Clerk 8am ≥ time ≤ 4pm Yes

Manager Any Yes

for each role. On activation the Secure Read business rule
activity, the associated business rules in Table V are activated
and produce the result, depending on the business rule engine,
either with permit or deny the incoming access control request.
If the business rule denies the request, the process terminates
to prevent an unauthorized access.

In case of granting the access control request, the process
execution continues and checks whether the customer already
exists in the system or not. If not, the process registers the
customer into the system. In this case, we may not need
any access control policies because they are already granted
at first. If the customer already exists, the process proceeds
with writing the incoming order. The process should enforce
the management requirements. So, the Secure Order business
rule activity is inserted before accessing the movies data file.
The ABAC policies for the basic and advanced requirements
are represented as boolean expressions in Equations 4 and 5,
respectively.

(Age ≥ 21 ∧Rating ∈ {R,PG13, P}) ∨ (21>Age ≥ 13

∧Rating ∈ {PG13, P}) ∨ (Age<13 ∧Rating ∈ {P})
(4)

(MemberType = ”Premium”)∨(MemberType = ”Regular”

∧MovieType¬ = ”NewReleased”) (5)

The Secure Order business rule activity either permits or
denies the incoming order request. If it denies the request,
it throws an intermediate error event and Deny Request task
is activated. If it permits the request, it continues normally
and activate the Accept Request task. In both directions, the
process terminates.

Finally, business analysts can model the security and man-
agement policies using our approach. They are easy deploy-
able into a process model definition. It is easy to add new
policies or attribute values without adding any constructs to
the BPMN diagram. This is because we put all the security and
management logic in business rule activities. In this way, we
still keep the diagram easily understood without embedding
complex constructs, artifacts and fragments.

VI. CONCLUSION AND FUTURE WORK

We presented a novel approach for embedding security in
business processes in a systematic manner. Therefore, we can
provide a complete software solution without the need of
post-adhoc security to be considered. We consider data access
control as an aspect of security. It is crucial in most business

654Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 672 / 729

Fig. 4. Movie store example

TABLE VI
BASIC REQUIREMENT DECISION TABLE

Conditions Result
Age Movie Rating Granted
≥ 21 {R, PG13, P} Yes

21>age ≥ 13 {PG13, P} Yes
<13 {P} Yes

TABLE VII
ADVANCED REQUIREMENT DECISION TABLE

Conditions Result
Member Type Movie Type Granted

Premium Any Yes
Regular Not new released Yes

processes where business analysts do not know either about
access control models or how to add them to their processes
while modeling. We used Business Process Modeling Notation
(BPMN) as a graphical notation to represent processes. In
this approach, we make use of business rule activities of the
notation via putting all the security logic to be put as If-
Then rules with conflict detection. This comes with minimal
overhead for business analysts. Business processes diagrams
are still readable and easily understood. We prove the validity
of the approach.

Our ongoing work is to consider other aspects of security
like confidentiality, integrity, and availability. We plan to
transform the new inserted fragments to BPEL in a systematic
way in order to provide a complete software solution with
early security consideration from the beginning.

REFERENCES

[1] BPMN, Business Process Model and Notation (BPMN). In
http://www.omg.org/spec/BPMN/2.0/PDF/, 01.7.2012.

[2] C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and W. M. P. van der Aalst,
”From BPMN process models to BPEL web services,” In Proceedings of
the 4th International Conference on Web Services (ICWS06), pp. 285-292,
Chicago, Illinois, USA, September 2006. IEEE Computer Society.

[3] J. Recker and J. Mendling, ”On the Translation between BPMN and
BPEL: Conceptual Mismatch between Process Modeling Languages,” In

Proceedings of the 18th International Conference on Advanced Informa-
tion Systems Engineering, pp. 521-532, 2006.

[4] J. Blox, ”BPMN 2 BPEL,” Eindhoven: Eindhoven University of Technol-
ogy, 2009.

[5] M. zur Muehlen and M. Indulska, ”Modeling languages for business
processes and business rules: A representational analysis,” Information
Systems, pp. 379-390, Elsevier, 2010.

[6] F. Huonder, ”Conflict Detection and Resolution of XACML Policies,”
Master Thesis, University of Applied Sciences Rapperswil, 2010.

[7] E. Yuan and J. Tong, ”Attributed Based Access Control (ABAC) for Web
Services,” In ICWS05: IEEE International Conference on Web Services,
Orlando, pp. 561-569, 2005.

[8] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman, ”A
Flexible Attribute-Based Access Control Method for Grid Computing,”
Journal of Grid Computing, vol. 7, no. 2, pp. 169-180, 2009.

[9] P. Samarati and S. D. C. di Vimercati, ”Access Control: Policies, Models,
and Mechanisms,” In FOSAD II, pp. 137-196, Springer-Verlag, 2001.

[10] A. Rodrı́guez, E. Fernández-Medina, and M. Piattini, ”A BPMN Exten-
sion for the Modeling of Security Requirements in Business Processes,”
IEICE Transactions on Information and Systems, pp. 745-752, 2007.

[11] M. Menzel, I. Thomas, and C. Meinel, ”Security requirements specifi-
cation in service-oriented business process management,” In ARES, pp.
41-48, 2009.

[12] C. Wolter, M. Menzel, and C. Meinel, ”Modelling security goals in
business processes,” Proc. GI Modellierung, pp. 197-212, 2008.

[13] C. Wolter and A. Schaad, ”Modeling of task-based authorization con-
straints in bpmn,” In BPM, pp. 64-79, 2007.

[14] J. Mülle, S. von Stackelberg, and K. Bohm, ”A Security Language
for BPMN Process Models,” Technical Report, Karlsruhe Institute of
Technology (KIT), 2011.

[15] N. Darnianou, N. Dulay, E. Lupu, and M. Sloman, ”The Ponder Policy
Specification Language,” International Workshop, Policies for Distributed
Systems and Networks, pp.29-31, 2001.

[16] J. Lobo, R. Bhatia, and S. Naqvi, ”A Policy Description Language,”
Proc. of National Conference of the American Association for Artificial
Intelligence, pp. 291-298, July 1999.

[17] A. D. Brucker, I. Hang, G. Lückemeyer, and R. Ruparel, ”SecureBPMN:
Modeling and Enforcing Access Control Requirements in Business Pro-
cesses,” In ACM Symposium on Access Control Models and Technologies,
pp. 123-126, 2012

[18] J. Mülle, S. von Stackelberg, and K. Bohm, ”Modelling and Transform-
ing Security Constraints in Privacy-Aware Business Processes,” In SOCA.
pp. 1-4, 2011.

[19] E. Paja, P. Giorgini, S. Paul, and P. H. Meland ”Security Requirements
Engineering for Secure Business Processes,” In 10th International Con-
ference BIR 2011, LNBIP, pp. 77-89, 2012.

[20] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. ”Compu-
tational Geometry, Algorithms and Applications,” Springer, 1998.

655Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 673 / 729

Intrusion Detection Using Ensembles

Alexandre Balon-Perin∗†
abalonpe@ulb.ac.be

†Ecole Polytechnique
Université libre de Bruxelles

Brussels, Belgium

Björn Gambäck∗‡
gamback@idi.ntnu.no

∗Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway

Lillian Røstad∗
lillianro@idi.ntnu.no

‡SICS — Swedish Institute
of Computer Science AB

Kista, Sweden

Abstract—The paper discusses intrusion detection systems
built using ensemble approaches, i.e., by combining several
machine learning algorithms. The main idea is to exploit the
strengths of each algorithm of the ensemble to obtain a robust
classifier. Network attacks can be divided into four classes:
probe, remote to local, denial of service, and user to root.
Each module of the ensemble designed in this work is itself an
ensemble using bagging of decision trees and is specialized in
the detection of one class of attacks. Experiments highlighted
the efficiency of the approach and showed that increased
accuracy can be obtained when each class of attacks is treated
as a separate problem and handled by specialized algorithms.
In all experiments, the ensemble was able to decrease the
number of false positives and false negatives.

Keywords-intrusion detection; ensemble approaches; bagging

I. INTRODUCTION

Intrusion detection systems (IDSs) are monitoring devices
that have been added to the wall of security in order to
prevent malicious activity on a system. Here we will focus
on network intrusion detection systems mainly because they
can detect the widest range of attacks compared to other
types of IDSs. Network IDSs analyse traffic to detect on-
going and incoming attacks on a network. Additionally, they
must provide concise but sound reports of attacks in order to
facilitate the prevention of future intrusions and to inform the
network administrators that the system has been compromised.
Current commercial IDSs mainly use a database of rules
(signatures), to try to detect attacks on a network or on
a host computer. This detection method is presently the
most accurate, but also the easiest to evade for experienced
malicious users, because variants of known attacks (with
slightly different signatures) are considered harmless by the
IDS and can pass through without warning. New attacks
and attacks exploiting zero-day vulnerabilities can also slip
through the security net if their signatures are unknown to
the IDS. (A zero-day vulnerability is a software weakness
unknown by the system developers which potentially could
allow an attacker to compromise the system. ‘Zero-day’ refers
to the first day, day zero, that the vulnerability is observed.)

Hence there is a need for mechanisms allowing the IDS
to learn by itself how to detect previously unseen attacks or
variants of known attacks. However, the problem is further
complicated by the extreme requirements of robustness of
the IDS. It must be able to detect all previously seen and
unseen attacks without failure, it must never let an attack
pass through unnoticed, and it must never deliver unwanted

warnings when the traffic is in fact legitimate. For a summary
of the main challenges that machine learning has to overcome
to be useful for intrusion detection, see [1].

Despite this, several attempts have been made to build
automatically adaptable intrusion detection systems using
various machine learning algorithms. So far though, the ma-
chine learning classifiers trigger too many false alarms to be
useful in practice. Part of the problem is the lack of labelled
datasets to train the classifiers on. The only labelled dataset
available is the KDD99 dataset (www.sigkdd.org/kddcup)
which is an adaptation of the DARPA98 dataset created in
1998 by the Defense Advanced Research Projects Agency
(DARPA). To address these problems, new machine learning
paradigms have been introduced in the field of intrusion
detection, and in general the machine learning community has
in recent years paid more attention to ensemble approaches,
i.e., combinations of several machine learning algorithms.

Network attacks can be divided into four classes: probe,
remote to local, denial of service, and user to root. Most
previous machine learning-based solutions include a single
algorithm in charge of detecting all classes of attacks. Instead,
in this work, one module of an ensemble is specialised on
the detection of attacks belonging to one particular class.
The main idea is to exploit the strengths of each algorithm
of the ensemble to obtain a robust classifier. Ensembles are
particularly efficient in cases like this, when a problem can
be segmented into parts, so that each module of the ensemble
is assigned to one particular subproblem. The modules in
turn include one or more algorithms cooperating together.

Furthermore, each class of attacks is characterized by very
specific properties, observable through the values of certain
features on instances in the dataset belonging to a specific
class of attacks. However, even though feature selection is
often applied in IDSs using machine learning techniques,
often only one set of features is selected for all classes
of attacks. In this work, one set of features is selected for
each class of attacks according to their relevance to the
corresponding class. The corresponding algorithm(s) is then
fed with the appropriate set of features. The system can, in
theory, reach a very high accuracy with a small cost, and
the ensemble processing can potentially be parallelized.

The rest of the paper is laid out as follows: First Section II
gives an overview of the state-of-the-art by introducing the
resources and methods used in the experiments and describing
related work, in particular focusing on previous efforts in

656Copyright (c) The Government of Norway, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 674 / 729

applying ensemble-based methods to intrusion detection. The
core of the paper is Section III which details two rounds of
experiments carried out, on feature selection for ensembles
resp. on feeding an ensemble of machine learning algorithms
with the most successful sets of features identified. Section IV
then discusses the results of the experiments at length and
points to ways in which the present work could be extended.
Finally, Section V sums up the previous discussion.

II. ENSEMBLE-BASED INTRUSION DETECTION

The ensemble method is a way to build different types
of approaches to solving the same problem: the outputs
of several algorithms used as predictors for a particular
problem are combined to improve the accuracy of the overall
system. The difficulty of ensemble approaches lays in the
choice of the algorithms constituting the ensemble and the
decision function which combines the results of the different
algorithms. Often, the more algorithms the better, but it is
important to take into account the computational expense
added by each new algorithm. The decision function is
often a majority vote which is both simple and efficient,
but alternatives should be analysed to obtain an optimal
combination. Another advantage of ensemble approaches is
their modular structure, unlike hybrid constructions which
are engineered with algorithms having non-interchangeable
positions. Consequently, the ensemble designer can easily
replace one or more algorithms with a more accurate one.

Bagging and boosting are the two main techniques used to
combine the algorithms in an ensemble. In an ensemble using
the boosting technique, the algorithms are used sequentially.
The advantage of this technique is that the most difficult
examples can be classified correctly without adding too much
computational overload. In an ensemble using the bagging
technique all algorithms of the ensemble are used in parallel.
In this case, each algorithm builds a different model of the
data and the outputs of all predictors are combined to obtain
the final output of the ensemble. In order to build different
models, either each algorithm of the ensemble, or the data
fed to each algorithm, or both, can be different. Since all
algorithms perform in parallel, each of them can be executed
on a different processor to speed up the computation.

A. The KDD99 Dataset

As observed in the introduction, part of the problem of
automatically creating good intrusion detection systems is the
lack of labelled datasets to train on. The only one available is
the KDD cup 99 dataset, which was used for the first time in
the 3rd International Knowledge Discovery and Data Mining
Tools Competition in 1999. It is based on the DARPA98
dataset (built during the DARPA98 IDS evaluation program)
which includes seven weeks of data from traffic passing
through a network engineered for the purpose, i.e., the traffic
was generated in a simulated and controlled environment.

Table I shows the distribution of instances of the KDD
cup 1999 training and test sets over the different classes. All
the examples are separated into the class Normal and four
different classes of attacks: Probe, R2L (remote to local),
DoS (denial of service), and U2R (user to root). Each entry

Table I
TYPES OF ATTACKS IN THE KDD CUP 99 DATA SETS

Set Normal Probe R2L DoS U2R

Training 972,781 41,102 1,126 3,883,370 52
Test 60,593 4,166 16,347 229,853 70

in the sets is represented by 41 features such as duration,
src_bytes, dst_bytes, etc., and a label. The training
set contains 4,898,431 entries and is highly unbalanced.
Whereas the DoS class contains 3,883,370 instances, the
classes U2R and R2L are represented by only 52 and 1,126
instances, respectively. With such a small number of examples
to train on, it can be expected that it will be difficult for the
classifiers to predict the correct classes of unseen examples.

The test set is composed of 311,029 entries with a
distribution of the examples over the different classes similar
to that in the training set. However, the number of examples
belonging to the class R2L is more than ten times higher, so
that in order to perform well on the test set, the predictor must
acquire a very high power of generalisation. Most importantly,
the number of unseen attacks added in the test set is huge: for
the classes U2R, R2L and Probe, it is respectively 44.29%,
63.34% and 42.94%. Furthermore, the attacks “spy” and
“warezclient” belonging to the class R2L are not represented
in the test set. In particular, “warezclient” attacks count for
more than 90% of the R2L training set. Finally, two entries
in the test set erroneously have a service value of ICMP,
as also previously reported [2]. Those were removed from
the test set before the experiments reported in Section III.

The major criticisms of the KDD99 dataset include the
unbalanced distribution of the data, the redundant records
which can introduce a bias in the learning phase because of
their frequency, that the dataset includes old attacks which
have been mostly mitigated, and that the data were captured
from a controlled environment somewhat different from what
is observed in the wild. The first two issues can be addressed
by sampling appropriate sets of examples in each class.
However, the distribution of R2L attacks in the training set
and the test set is a problem which is difficult to overcome.
Nevertheless, the KDD99 dataset is far from useless. Firstly,
if an IDS using machine learning does not perform well
on old attack provided that the data are well sampled, why
would it on newer ones? Furthermore, most of the research
in the field of machine learning applied to intrusion detection
uses the KDD99 dataset, making it a vector of comparison
between different approaches. The controlled nature of the
environment in which the data were captured is probably the
most problematic. For example, the high number of attacks
in comparison to normal traffic does not reflect the reality
of a network in which almost all traffic is normal.

B. Related Work

Intrusion detection systems have been around since the 80s.
In the late 90s researchers in artificial intelligence started to
incorporate their algorithms to improve IDSs. An intrusion

657Copyright (c) The Government of Norway, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 675 / 729

detection system should be able to autonomously recognize
malicious actions in order to defend itself against variants
of previously seen attacks and against attacks exploiting
zero-day vulnerabilities. Misuse-based IDSs can only detect
attacks whose signatures are available in their signature
database. Signatures of attacks are very specific, and a slight
variation of the attack can make it unnoticeable for the IDS.
That is why learning mechanisms must be implemented
to detect and prevent these attacks without having to wait
for an update of the signature database or a patch for the
vulnerable system. Still, machine learning algorithms are
designed to recognize examples similar to those available
in the training set used to build the model of the data.
Consequently, an IDS using machine learning would have a
hard time detecting attacks which patterns are totally different
from the data previously seen. In other words, even though
machine learning is a suitable candidate to detect variants
of known attacks, detecting completely new types of attacks
might be out of reach for these kinds of algorithms.

For a summary of most research involving machine
learning applied to IDSs until 2007, see [3] which covers a
range of techniques, including fuzzy sets, soft computing, and
bio-inspired methods such as artificial neural networks, evo-
lutionary computing, artificial immune systems, and swarm
intelligence; comparing the performance of the algorithms on
the KDD99 test set and showing that all algorithms perform
poorly on the U2R and R2L classes. The best results reported
are by genetic programming with transformation functions
for R2L and Probe and by linear genetic programming
(LGP) for DoS and U2R (with 80.22%, 97.29%, 99.7% and
76.3% accuracy, respectively). However, since ensemble-
based methods is a fairly new technique applied to intrusion
detection, their description in the review is somewhat limited.
The works on the topic date from 2003 and many papers
were written in 2004 and 2005. Recently, there has been a
renewed interest of ensembles in this field [4]–[6].

Abrahams et al. have performed three types of ensemble-
based experiments, all on a subset of the DARPA98 dataset
composed of 11,982 randomly selected examples: First, in [7],
an ensemble composed of different types of artificial neural
networks (ANN), support vector machines (SVM) with radial
basis function kernel, and multivariate adaptive regression
splines (MARS) combined using bagging techniques was
compared to the results obtained by each algorithm executed
separately. SVM used alone outperformed the other single
algorithms, but was totally outperformed by the ensemble.

Second, in [8], the combination of classification and
regression trees (CART) and bayesian networks (BN) in
an ensemble using bagging techniques was explored. Feature
selection was applied to speed up the processing: the
performance on the set of 41 features was compared to
a set of 12 selected by BN, 17 selected by CART and 19
features selected by another study. The final ensemble was
composed of three CART to detect Normal, Probe and
U2R examples, respectively; one ensemble of one CART
and one BN to detect R2L examples; and one ensemble of
one CART and one BN to detect DoS examples — with
each classifier trained on its resp. reduced set of features; an

approach quite similar to the one used in the present paper.
This was then extended by adding a hybrid model composed
of SVM and decision trees (DT) to the ensemble [9]. However,
the hybrid model did not seem to help much.

Third, in [10], fuzzy rule-based classifiers, linear genetic
programming (LGP), DT, SVM, and an ensemble were
evaluated using feature selection to reduce the number of
variables of the dataset to 12. The fuzzy rule-based classifier
outperformed the other methods when trained on all 41
features, while LGP seemed more appropriate when using a
smaller feature set. The ensemble was composed of one DT in
charge of the Normal instances, one LGP each for Probe,
R2L and DoS, and one fuzzy set of rules for U2R. The
results obtained with the ensemble were very encouraging
with accuracy > 99% for all classes (on the subset data).

Folino et al. [11] instead used the entire KDD99 dataset
and examined the performance of a system composed of
several genetic programming ensembles distributed on the
network based on the island model. The system showed
average performance for the Normal, Probe and DoS
classes, but very low for the U2R and R2L classes.

The key conclusion from all these works is that ensemble
approaches generally outperform approaches in which only
one algorithm is used. An ensemble is a very efficient way
to compensate for the low accuracy of a set of weak learners.
Moreover, feature selection should provide specific subsets to
train algorithms specialised in the detection of one particular
class of attacks. Mukkamala et al. [12]–[14] identified the five
most important features for each class of attacks. The features
were selected using SVM, LGP and MARS. Surprisingly,
neither protocol_type nor service was selected by
the three algorithms for the DoS class. In contrast, Kayacik
et al. [15] concluded that those features were the most
significant for that classs, even though their experiments
were conducted on hierarchical self-organizing maps (SOM).

III. EXPERIMENTS

The problem of intrusion detection can be divided into
five distinct subproblems, one for each class of instances
(Normal and the four types of attacks: Probe, U2R, R2L,
and DoS). Here each problem will be handled by one or more
algorithms of an ensemble, allowing each subproblem to be
treated separately in the experiments and to join the solutions
to the subproblems into a general solution for the problem
of intrusion detection. A dataset for each attack subproblem
was built by sampling a number of examples in one class of
attacks and the same number in the class Normal in order
to have a balanced dataset with 50% anomalous and 50%
normal examples (no algorithm was explicitly designed to
detect normal traffic). A balanced dataset is necessary to
avoid the problem of skewed classes where the accuracy of
the predictor can be made artificially high by increasing the
number of instances from one of the classes.

For the classes of attacks with few examples, R2L and
U2R, the entire set was selected. For the Probe class, 10,000
instances were selected randomly. This number was chosen
to have a significant sample with as many different examples
as possible without affecting the training time too much. The

658Copyright (c) The Government of Norway, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 676 / 729

DoS training set contains 3,883,370 instances, with ‘neptune’
and ‘smurf’ attacks counting for the majority (with resp.
1,072,017 and 2,807,886 instances). The other types of attacks
have much smaller number of examples, e.g., the type of DoS
called ‘land’ is represented only 21 times. For this reason,
samples of 5,000 examples each were selected randomly
from the ‘neptune’ and ‘smurf’ sets. All examples of the
other types of attacks were included for a total of 13,467
DoS instances. For all four classes, the same number of
Normal instances was selected. The experiments performed
are in direct continuity of the work done by Mukkamala
et al. [12]–[14], which identified the key features relevant
to each of the four classes of attacks. The first step of the
experiments was to assess the sets of features selected in [12].
Then in a second round of experiments those sets were fed
to an ensemble of machine learning algorithms. All models
were evaluated by 10-fold cross-validation.

A. Experimental Setup

Figure 1 shows the model for the ensemble used in this
work. First, the network packet being analysed is sent to
four different detector modules, one each for Probe, R2L,
U2R, and DoS. Each module executes a preprocessing step
to extract a number of features from the packet; the set of
features varies depending on the module (as further described
in Section III-B). The extracted features are then dispatched
to different decision trees which have been previously trained
with the same features on the training set, as shown at the top
of the figure for the Probe detector. Each decision tree is a
binary classifier which outputs 0 if the packet is considered
normal traffic and 1 if the packet is classified as anomalous.
A vector of dimension n containing the output of n classifiers
is then fed to the module decision function. In the figure
n = 4, but it could be any number of algorithms.

Finally, a vector of dimension 4 containing the output
of each module is fed to the ensemble decision function
which combines the results and outputs a value describing
if the packet is considered normal or anomalous, and if
anomalous from which class of attacks. The easiest situations
are when all modules, or all modules except one, output
Normal. In the former case, the system classifies the packet
as normal. In the latter, the system classifies the packet
as anomalous and is able to unambiguously identify the
class of attack concerned. If more than one module classify
the packet as anomalous, it will be more difficult for the
network administrator to understand which class of attack
the anomalous packet belongs to.

The resulting model is an ensemble of ensembles with
feature selection applied independently for each module.
However, in this work, we will not be concerned with
the decision functions for each module. Instead, we will
evaluate the intersection of the sets of false positives and
false negatives produced by the four algorithms in each
module. This will give us the optimal performance that each
module could achieve. The most important advantages of this
model is the possibility to execute the algorithms in parallel
and the modularity allowing the exchange of any algorithm
of the ensemble without any modification of the rest.

'

&

$

%

PROBE DETECTOR

- -
module
decision
function

�
�
�
��

�
�

-“SVM”
Decision Tree

@
@
@��

-“LGP”
Decision TreePPP

@@ -“MARS” Decision Tree�
��B

B
B -Combined Decision Tree�

�
�

PROBE DETECTOR- -Probe /
Normal

R2L DETECTOR- -R2L /
Normal

U2R DETECTOR- -U2R /
Normal

DoS DETECTOR- -DoS /
Normal

network
packet

-
ensemble
decision
function

�
�
�
�-

Figure 1. Model of the ensemble

B. Feature Selection Assessment

In the first experiment, several classifiers were trained with
different number of features. The goal of the experiment was
not to find the best algorithm possible and fine-tune it, but
rather to conclude on how well an algorithm performs with a
smaller set of features. In this case, it is only natural to use
exactly the same setting for the algorithms and to compare the
performance based only on the sets of features. Five decision
trees were trained with different sets of features. The results
obtained represent the performance of the algorithms on the
cross-validation set which is extracted from the training set.
The second experiment assessed performance on the test set.

The first classifier was trained with all 41 features in the
dataset. The next three were trained with 5 features selected in
[12] for each class of attacks by the three algorithms support
vector machines (SVM), linear genetic programming (LGP)
and multivariate adaptive regression splines (MARS). The
last classifier was trained on a “combined” set of features: the
union of the feature sets selected by the three algorithms. The
number of features in the “combined” set is 11 for Probe,
14 for U2R, 11 for R2L and 12 for DoS. These additional sets
help bringing down the number of false positives and false
negatives, as we will see in the results of the experiments.

As displayed in Figure 1, the algorithm used as a classifier
was decision tree (DT). Attempts were also made to use an
SVM with a Gaussian radial basis function kernel. However,
it could have given an advantage to features picked by SVM
when used for feature selection, and it seemed that the choice
of SVM greatly affected the set of features selected by MARS.
Furthermore, SVM was much slower than DT, roughly two
orders of magnitude both for training and classification. In
particular classification time is an important criterion to take
into account when building a real-world application.

659Copyright (c) The Government of Norway, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 677 / 729

Table II
ACCURACY OF THE FEATURE SELECTION ASSESSMENT

Classifier Probe U2R R2L DoS

DT: 41 features 99.865 93.000 99.022 99.948
DT: 5 SVM features 99.815 96.000 98.578 93.346
DT: 5 LGP features 99.320 90.000 97.378 98.689
DT: 5 MARS features 99.750 97.000 98.044 99.863
DT: 11–14 combined features 99.895 96.000 98.933 99.948

The results obtained in terms of accuracy are shown in
Table II and can be compared to those obtained with 41
features by [9] using the same decision tree. For the class
Probe, the accuracy is exactly the same as in [9]: 99.86%.
The classifiers trained with sets of 5 features are not far
behind the one trained with all 41. The reduced feature sets
seem to be a good choice when the algorithms are trained
using decision trees. However, the classifier fed with the 5
features selected by LGP performs slightly worse than the
others and could be replaced by a more accurate algorithm.

The results for U2R are worse than for Probe, but this
was expected: each false positive and false negative has a
larger impact on the general accuracy due to the small number
of examples. The results are much better than the 68.00%
accuracy obtained by [9] on U2R. However, the classifier
trained on features selected by LGP again perfomed poorly.
Interestingly, the algorithms trained on the features selected
by SVM and MARS outperformed the one trained on all
features. This is probably since 41 features are too many to
generalize from given the small number of examples.

The results for R2L are similar to those obtained for
Probe, even though the number of instances in the dataset
is much smaller. The results are also much better than [9]
who obtained 84.19% accuracy on this class. This experiment
clarifies that classifying Probe attacks and R2L attacks are
two very distinct problems, even if they are both intrusions,
which is why they should be treated separately. Again, the
selected features seem to be a good choice even if a small
drop of accuracy can be observed compared to Probe. The
classifier trained on the features selected by MARS has a
high rate of false positives and the one trained on features
selected by LGP has the lowest accuracy, but also a lower
false positive rate which implies a higher false negative rate.
DoS also shows better results than [9] who obtained

96.83% accuracy. The classifier trained on features selected
by SVM obtained the worse score, whereas features selected
by MARS gave the best score after the set of all features
and the combined feature set. This is important since there
is a set of 5 features that can perform almost as well as the
full feature set even on larger number of training examples.

The overall numbers of false positives (FP) and false
negatives (FN) drop significantly when using more than one
algorithm, as Table III shows. For the FP and FN analysis,
we call ensemblemax the number of examples wrongly
classified by all three algorithms trained on sets of 5 features
and the one trained on the “combined” feature set. This is the

Table III
FEATURE SELECTION ASSESSMENT: FALSE POSITIVES AND NEGATIVES

Probe U2R R2L DoS

Classifier FP FN FP FN FP FN FP FN

DT: 41 features 12 17 4 3 17 10 6 8
ensemblemax 0.7 3 0.3 0.3 6.6 0.5 0 1.6

maximum an ensemble composed of these four algorithms
could achieve if the combination of their individual results
was optimal; here calculated by taking the intersection of
the set of examples misclassified for each algorithm. The
experiment was run ten times for each class of attacks to
ensure accuracy of the results and to find the types of attack in
each class misclassified most of the time by ensemblemax.

All types of Probe attacks appear at least once as an FN,
however, ‘satan’ and ‘portsweep’ seem to be the most difficult
attacks to detect. When comparing the problematic instances
of ‘satan’, ‘portsweep’ and ‘ipsweep’ with true instances
of the same attack types, it seems that src_bytes is the
feature that gives the classifiers most trouble. In fact, for
probe attacks, src_bytes should be very small if not equal
to zero; when an example of these attacks has a high value for
src_bytes, it goes undetected. This is a big problem since
an attacker could easily fill the packets of the attack with
random bytes to evade the IDS. It could seem like a good
idea to get rid of this feature; however, src_bytes is very
important to detect Probe attacks: the only classifier that
performs poorly is the one trained on the features selected
by LGP, a feature set that does not include src_bytes.

For the U2R class, in general either one FP or one FN
appears in each test run. The FP can be explained by the
small number of examples in the dataset, only 52 Normal
examples are present. The FN is always a ‘rootkit’ attack
which is wrongly classified as normal traffic, but it is not
always the same instance, indicating that some information
is missing for the decision tree to classify ‘rootkit’ attacks.
These can be any kind of malware such as worm, Trojan or
virus with the ability to hide its presence and actions to the
users and processes of a computer; this is called a stealth
attack. The diversity found in malware probably has a huge
impact on the problem. Moreover, there are only 10 ‘rootkit’
attacks in the dataset, increasing the difficulty. Examining
the values of these examples for the 14 features of the
combined algorithm revealed that almost all 10 instances have
very different values for those features. The ensemblemax

performs perfectly in most cases, but it is difficult to conclude
anything with such a small dataset: One FP or FN out of 10
instances of the cross-validation set is quite a bad score.

The combination of all algorithms helps to bring down the
number of false positives and false negatives also for R2L, but
these numbers are again too high for a real-world application.
There are eight different types of R2L attacks represented
in the training set. After running the experiments ten times,
only three types of these attacks trigger false negatives for
the ensemblemax: ‘spy’, ‘imap’ and ‘phf’. There is not

660Copyright (c) The Government of Norway, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 678 / 729

Table IV
ACCURACY OF THE MODEL ASSESSMENT

Classifier Probe U2R R2L DoS

DT: 41 features 93.087 90.000 50.000 79.345
DT: 5 SVM features 77.628 40.000 50.000 87.698
DT: 5 LGP features 87.482 83.571 61.033 76.105
DT: 5 MARS features 84.037 85.000 50.000 82.200
DT: 11–14 combined features 79.969 94.286 50.000 85.361

much documentation about ‘spy’ attacks which are not even
represented in the test set. However, the signatures of ‘imap’
and ‘phf’ are described in [16]. Detection of these attacks
requires very specific features. In the case of an ‘phf’ attack,
the IDS “must monitor http requests watching for invocations
of the phf command with arguments that specify commands
to be run” [17]. None of the 41 features in the KDD99 dataset
gives any information about a specific command being run on
the system. It would be impractical to do so for each specific
command vulnerable to an attack. However, this could be the
reason why the machine learning algorithms are incapable
of detecting these kind of attacks with certainty. There are
two ways to solve this problem, either new features could
be added to the dataset or an IDS using signatures of attacks
should perform the detection for these particular types of
attacks. In the former case, the new features should not be too
specific to ensure that new attacks could also be identified.
In the second case, the IDS loses its ability to detect similar
attacks but its accuracy increases. To detect an ‘imap’ attack,
an IDS should be “programmed to monitor network traffic for
oversized Imap authentication strings” [17]. This seems more
within reach of our IDS, since service and src_bytes
are both represented in the feature set.
ensemblemax was highly successful on the DoS class,

returning zero FP. Table III shows that the number of FN is
reduced as well. Three types of attacks trigger FN: ‘smurf’,
‘neptune’ and ‘back’. The first two rarely appear in the list;
however, the third seems to be the most difficult type to
handle. This is not a surprise, since to detect a ‘back’ the
IDS must look for a big number of frontslashes (“/”) in the
request URL [16]. There are no features in the dataset taking
this particularity into account. Consequently, the model has to
rely on other features to make up for the lack of information,
leading to an imperfect result. Nevertheless, as expected,
ensemblemax brings robustness to the accuracy of the IDS.

C. Model Assessment

In the second round of experiments, several classifiers
were trained with different number of features on examples
from the training set. Again the algorithm used as classifier
was decision tree. The goal of the experiment was to evaluate
the model used in the previous experiment on the test set
after training on the same number of examples as selected
for the training set for each class in the first experiment. As
discussed in Section II-A, the test set is composed of many
examples of unseen attacks (attacks that are not represented
in the training set). The experiment aimed to assess if the

Table V
MODEL ASSESSMENT: FALSE POSITIVES AND FALSE NEGATIVES

Probe U2R R2L DoS

Classifier FP FN FP FN FP FN FP FN

DT: 41 features 86 490 3 11 0 16,347 69 7,268
ensemblemax 11.4 524 1.6 1 1 7,779 16.6 688

ensemble was capable of generalizing to new types of attacks
belonging to the same classes as the ones previously seen.

In most cases, the accuracy of all algorithms degraded
drastically in comparison to the first experiment as shown in
Table IV, where the values represent one run of the program.
In particular, the set of features selected by SVM obtains
the worst results, and does not seem to generalize well to
new types of attacks. The set selected by LGP managed
to keep a respectable accuracy on the Probe class, while
all classifiers except SVM showed results very similar to
those in the feature selection experiments on U2R, with the
“combined” set of features being the best one, outperforming
even the algorithm trained with all 41 features in the same
way that was observed in the feature selection experiment.

Particularly bad results could be expected for R2L because
of the poor distribution of attacks in the training set, and
Table IV confirms this: the accuracy of all algorithms is equal
or close to the 50% guessing baseline. Most of the attacks
are ‘warezclient’ (1020 out of 1126 in total for the R2L
training set) leaving only 106 instances of all other attack
types (seven different types) to train on — and ‘warezclient’
is not even represented in the test set. There is no chance
that the models built would perform well on new attacks (or
even on old) with this limited training set. Also the results
for DoS were much worse than in the first experiment, with
the set of features selected by LGP obtaining by far the worst
results. Nevertheless, all other algorithms performed better
than the one trained with all features.

As Table V shows, the ensemblemax is able to handle
part of the new attacks, but does not recognize them as easily
as the old ones, and the number of false negatives is very
high for most classes. For Probe, the most surprising fact
is that the attack ‘ipsweep’ seems to go undetected almost
all the time. This result is unusual because ‘ipsweep’ was
available in the training set and did not cause any trouble in
the previous experiment. One reason for this could be if the
examples of ‘ipsweep’ from the test set were very different
from the ones in the training set. However, after examining
the training set carefully, typical values for the features of an
‘ipsweep’ attack were observed, and it appears that the values
of ‘ipsweep’ in the test set are in the same range as those in
the training set. To conclude, the results are not as bad as
they look. First, almost all old attacks are perfectly detected,
especially ‘portsweep’ and ‘satan’ which triggered FN in the
first experiment are now absent from the attacks triggering
FN. The new attacks are detected most of the time, but the
number of FN is still too high to be useful in a real-world
application. Finally, solving the problem of ‘ipsweep’ would
substantially bring down the number of FN.

661Copyright (c) The Government of Norway, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 679 / 729

For U2R, the ensemblemax brings down the number of
FP to 1 and the number of FN to 0 with an average value
of 1.6 and 1.0, respectively, over five runs of the program.
As expected, sometimes a ‘rootkit’ attack goes undetected,
just as in the first experiment. Besides, ‘ps’ also rarely
appears as an FN. The most surprising result comes from
undetected ‘buffer overflow’ even though it never happened
in the previous experiment. However, ‘xterm’ and ‘sqlattack’
are detected all the time which is good because it means that
the ensemblemax generalizes well for the U2R class.

The number of FN for R2L explodes. Old and new types
of attacks are similarly misclassified. The only conclusion
that can be drawn is that the R2L training set contains too
few examples of each type of attack to be of any help.

For DoS, the major part of FN are due to new attacks. ‘pod’
is the only old attack that regularly triggers a few FN, while
other old attacks such as ‘smurf’ and ‘neptune’ sometimes
trigger FN, but the number of FN for those are very low. New
attacks are more problematic, with ‘mailbomb’, ‘apache2’,
‘processtable’ and ‘udpstorm’ recurrently triggering FN, even
if most of these attacks are detected in general. Even though
its generalization power is limited, ensemblemax performed
quite well overall on unseen DoS attacks and helped bring
down both FP and FN. This is quite an improvement, but
again not enough for a real-world application.

IV. DISCUSSION AND FUTURE WORK

The Feature Selection Assessment experiments showed that
the ensemble approach is indeed a very powerful paradigm
that can be used to bring down the number of FP and
FN. The lower accuracy observed by individual algorithms
is countered by the union of their results. Even with sets
containing only five features, the results are very encouraging.
Moreover, treating each class of attack as a different problem
solved by a specialised algorithm seems to work well when
compared to strategies using one algorithm to detect all
classes of attacks. “Divide and conquer” and “Unity is
strength” seem to be opposite views, but they are actually
both applied in this work with impressive results. In general,
algorithms using fewer features have slightly lower accuracy
and prediction time but much lower training time. The
results obtained by Mukkamala et al. [7] seem to be correct.
However, the features selected by LGP give the worst result
in most cases except for DoS where it is the feature set
selected by SVM which performs poorly. Consequently, the
sets of features selected by LGP should be reconsidered for
all classes except DoS, while the set of features selected for
DoS by SVM should be replaced. The number of different
types of attacks that go undetected is very small and only
few examples of these attacks are problematic. Most of the
time, the problem lays in the lack of information contained
in the dataset. Some attacks require very specific features
and should probably be handled by specialized programs or
signature-based IDSs. The class Probe is a bigger problem
since most of the attacks belonging to this class exploit a
legitimate feature used by network administrators; as a result,
all types of Probe attacks trigger FN at some point, even
though ‘portsweep’ and ‘satan’ are the most problematic.

A smaller feature set means that less information must be
extracted from a network packet in the data preprocessing
phase. Since the accuracy is not lowered too much in the
best cases, this is a huge improvement that could be used in
real IDSs. Moreover, the union of all algorithms using fewer
features tremendously improves the accuracy: on average
over ten runs of the program, only 0.7 FP and 3 FN were
observed for Probe over 20,000 examples, 6.6 FP and 0.5
FN for R2L over 2,252 examples, 0.3 FP and 0.3 FN for
U2R over 104 examples, and 0 FP and 1.6 FN for DoS over
20,000 examples. Even though these results are much better
than what could be achieved with a single algorithm, they are
still quite far from being useful in a real-world application
where the false positives and negatives should be < 1 for
some 15 millions examples in a 10Gb/s Ethernet network.
Arguably, 90% of the 15 millions examples will be normal
traffic containing no attack at all, but ensemblemax still
has to be improved to stand a chance against clever hackers.

The results described above are the best that an ensemble
composed of these algorithms and sets of features could
achieve. In its current state, there is no point in building an
experiment to assess a real combination of the results of the
individual algorithms in the ensemblemax. Further work
will have to be carried out to find the best suitable algorithms
and sets of features. Nevertheless, it is interesting to see
how well this ensemblemax can perform when predicting
previously unseen attack types. That was the topic of the
second round of experiments, on Model Assessment. Even if
ensemblemax in general helps tremendously to bring down
the numbers of false positives and false negatives, it is still
far from reaching the accuracy appropriate for a real-world
application. In particular, datasets which are not carefully
designed are proven to be useless in building accurate models
of the attacks. This is the case with the R2L training set
which contains mainly examples of the ‘warezclient’ attack
which is not even represented in the test set and very few
examples of all other types of attacks. The performance of
ensemblemax was acceptable for the classes of attacks U2R
and DoS. The performance on the Probe class was also
standard, even though ‘ipsweep’ attacks went undetected for
unknown reasons. Overall, we can say that the results of this
second round of experiments were not very satisfying, but
once again proved the usefulness of the ensemble approach.

In the future, particular attention has to be paid to the
features relevant to each attack. New features carrying
meaningful information about the attacks must be designed to
help the machine learning algorithms to successfully classify
all types of attack. The DoS and Probe classes are mostly
characterized by time-related features, whereas R2L and U2R
mostly are characterized by content-related features extracted
from the payload of the network packets.

V. CONCLUSION

The aim of this work was to show that ensemble
approaches fed with appropriate features sets can help
tremendously in reducing both the number of false positives
and false negatives. In particular, our work showed that the
sets of relevant features are different for each class of attacks

662Copyright (c) The Government of Norway, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 680 / 729

which is why it is important to treat those classes separately.
We developed our own IDS to evaluate the relevance of the
sets of features selected by Mukkamala et al. [12]. This
system is an ensemble of four ensembles of decision trees.
Each of the four ensembles is in charge of detecting one
class of attacks and composed of four decision trees trained
on different sets of features. The first three decision trees
were fed with sets of five features selected in [12]. The last
decision tree was fed with the union of these three sets of five
features from which the redundant features were removed.

The experiments showed that these sets were appropriate in
most cases. In the first experiment, the set of features selected
by linear genetic programming gave the worst results, except
for the class DoS for which the set of features selected by
SVM performed poorly. The second experiment gave less
interesting results because of the inappropriate distribution
of examples between the training and test sets of the KDD99
data. In particular, the ensemble could not generalize properly
on the R2L class because the training set mainly contains
a type of attack that is not represented in the test set. In
both experiments, we looked at the number of instances that
were misclassified by all four algorithms in order to obtain a
result from the best combination of these algorithms. Further
work would be required to develop a real decision function
combining the results of the different algorithms. However,
since the accuracy obtained here was not good enough for
a real-world application, designing decision functions was
unnecessary. Nevertheless, we are convinced that this work
is heading in the right direction in order to overcome the
limitations of current intrusion detection systems.

Finally, a thorough analysis of the examples that were
misclassified by the ensemble was performed, in particular
highlighting the types of attacks that were systematically
misclassified by the ensemble. By looking at the signatures
of these attacks, we were able to find the reasons for the
classification errors. In most cases, the attacks displayed
very specific features not captured by the set of variables in
the dataset. These attacks should probably be handled by a
specialized system or new variables should be developed to
train the classifiers.

ACKNOWLEDGEMENTS

The authors would like to express their thanks to Esteban
Zymanyi, Olivier Markowitch and Liran Lerman (all at
Université Libre de Bruxelles) for valuable comments.

REFERENCES

[1] R. Sommer and V. Paxson, “Outside the closed world: On
using machine learning for network intrusion detection,” in
Proceedings of the 2010 IEEE Symposium on Security and
Privacy, Washington, DC, Jun. 2010, pp. 305–316.

[2] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A
detailed analysis of the KDD CUP 99 data set,” in Proceed-
ings of the 2nd International Conference on Computational
Intelligence for Security and Defense Applications, Ottawa,
Ontario, Canada, Jun. 2009, pp. 53–58.

[3] S. X. Wu and W. Banzhaf, “The use of computational
intelligence in intrusion detection systems: A review,” Applied
Soft Computing, vol. 10, no. 1, pp. 1–35, 2010.

[4] E. Bahri, N. Harbi, and H. N. Huu, “Approach based ensemble
methods for better and faster intrusion detection,” in Proceed-
ings of the 4th International Conference on Computational
Intelligence in Security for Information Systems, Torremolinos-
Málaga, Spain, Jun. 2011, pp. 17–24.

[5] S. González, J. Sedano, A. Herrero, B. Baruque, and E. Cor-
chado, “Testing ensembles for intrusion detection: On the
identification of mutated network scans,” in Proceedings of the
4th International Conference on Computational Intelligence
in Security for Information Systems, Torremolinos-Málaga,
Spain, Jun. 2011, pp. 109–117.

[6] P. Zhang, X. Zhu, Y. Shi, L. Guo, and X. Wu, “Robust
ensemble learning for mining noisy data streams,” Decision
Support Systems, vol. 50, no. 2, pp. 469–479, Jan. 2011.

[7] S. Mukkamala, A. H. Sung, and A. Abraham, “Intrusion
detection using an ensemble of intelligent paradigms,” Journal
of Network and Computer Applications, vol. 28, no. 2, pp. 167–
182, Apr. 2005, special issue on computational intelligence
on the internet.

[8] S. Chebrolu, A. Abraham, and J. P. Thomas, “Feature
deduction and ensemble design of intrusion detection systems,”
Computers & Security, vol. 24, no. 4, pp. 295–307, 2005.

[9] S. Peddabachigari, A. Abraham, C. Grosan, and J. P. Thomas,
“Modeling intrusion detection system using hybrid intelligent
systems,” Journal of Network and Computer Applications,
vol. 30, 2005.

[10] A. Abraham, R. Jain, J. P. Thomas, and S.-Y. Han, “D-SCIDS:
Distributed soft computing intrusion detection system,” Journal
of Network and Computer Applications, vol. 30, no. 1, pp.
81–98, 2007.

[11] G. Folino, C. Pizzuti, and G. Spezzano, “An ensemble-based
evolutionary framework for coping with distributed intrusion
detection,” Genetic Programming and Evolvable Machines,
vol. 11, pp. 131–146, 2010.

[12] S. Mukkamala, A. Sung, and A. Abraham, “Cyber security
challenges: Designing efficient intrusion detection systems
and antivirus tools,” in Enhancing Computer Security with
Smart Technology. USA: CRC Press, 2005, pp. 125–161.

[13] S. Mukkamala and A. H. Sung, “Identifying significant
features for network forensic analysis using artificial intelligent
techniques,” International Journal of Digital Evidence, vol. 1,
no. 4, pp. 1–17, 2003.

[14] A. H. Sung and S. Mukkamala, “The feature selection and
intrusion detection problems,” in Proceedings of the 9th Asian
Conference on Advances in Computer Science. Chiang Mai,
Thailand: Springer-Verlag, 2004, pp. 468–482.

[15] H. Gunes Kayacik, A. Nur Zincir-Heywood, and M. I.
Heywood, “A hierarchical SOM-based intrusion detection
system,” Engineering of Applied Artificial Intelligence, vol. 20,
no. 4, pp. 439–451, Jun. 2007.

[16] K. Kendall, “A database of computer attacks for the evaluation
of intrusion detection systems,” in DARPA off-line intrusion
detection evaluation, proceedings DARPA information surviv-
ability conference and exposition, 1999, pp. 12–26.

[17] ——, “Intrusion detection attacks database,” Webpage (last
accessed: June 24, 2012), 2007, http://www.ll.mit.edu/mission/
communications/ist/corpora/ideval/docs/attackDB.html.

663Copyright (c) The Government of Norway, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 681 / 729

Linear Constraints as a Modeling Language for Discrete Time Hybrid Systems

Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci
Department of Computer Science – Sapienza University of Rome

Via Salaria 113, 00198 Rome, Italy
Email: {mari,melatti,salvo,tronci}@di.uniroma1.it

Abstract—Model Based Design is particularly appealing in
embedded software design where system level specifications are
much easier to define than the control software behavior itself.
Formal analysis of Embedded Systems requires modelling both
continuous systems (typically, the plant) as well as discrete
systems (the controller). This is typically done usingHybrid
Systems. Mixed Integer Linear Programming (MILP) based
abstraction techniques have been successfully applied to au-
tomatically synthesize correct-by-construction control software
for Discrete Time Linear Hybrid System, where plant dynamics
is modeled as a linear predicate over state, input, and next
state variables. MILP solvers requires constraints represented
as conjunctive predicates. In this paper we show that, under the
hypothesis that each variable ranges over a bounded interval,
any linear predicate built upon conjunction and disjunction
of linear constraints can be automatically transformed into an
equisatisfiable conjunctive predicate. Moreover, since variable
bounds play a key role in this transformation, we present an
algorithm that taking as input a linear predicate, computes
implicit variable bounds.

Keywords-Model-based software design; Linear predicates;
Hybrid systems

I. I NTRODUCTION

Many Embedded Systems areSoftware Based Control
Systems(SBCSs). An SBCS consists of two main subsys-
tems: thecontroller and theplant. Typically, the plant is
a physical system consisting, for example, of mechanical
or electrical devices, while the controller consists of con-
trol software running on a microcontroller. In an endless
loop, eachT seconds (sampling time), the controller, after
an Analog-to-Digital (AD) conversion (quantization), reads
sensor outputs from the plant and, possibly after aDigital-to-
Analog(DA) conversion, sends commands to plant actuators.
The controller selects commands in order to guarantee that
the closed loop system(that is, the system consisting of
both plant and controller) meets given safety and liveness
specifications (System Level Specifications).

Software generation from models and formal specifica-
tions forms the core ofModel Based Designof embedded
software [1]. This approach is particularly interesting for
SBCSs since in such a case system level specifications are
much easier to define than the control software behavior
itself. Correct-by-construction software generation as well as
formal verification of system level specifications for SBCSs
requires modelling both the continuous subsystem (the plant)
and discrete systems (the controller). This is typically done
usingHybrid Systems(e.g., see [2][3]).

Discrete Time Linear Hybrid Systems(DTLHSs) [4][5]
provide an expressive model for closed loop systems: a
DTLHS is a discrete time hybrid system whose dynamics

is defined as a linear predicate (i.e., a boolean combination
of linear constraints) on its continuous as well as discrete
(modes) variables. A large class of hybrid systems, including
mixed-mode analog circuits, can be modeled using DTLHSs.
System level safety as well as liveness specifications are
modeled as set of states defined, in turn, as linear predicates.

In [6], stemming from a constructive sufficient condition
for the existence of a quantized sampling controller for an
SBCS modelled as a DTLHS, we presented an algorithm
that, given a DTLHS modelH for the plant, a quantization
schema (i.e., how many bits we use for AD conversion) and
system level specifications, returns correct-by-construction
quantized feedbackcontrol software(if any) meeting the
given system level specifications. The synthesis algorithm
rests on the fact that, because of the quantization process,
the plantP is seen by the controller as aNondeterministic
Finite State Automaton(NFSA) P̂ , that is an abstraction
of P . The NFSAP̂ is computed by solvingMixed Integer
Linear Programming(MILP) problems, and thus it requires
the DTLHS dynamics given as a conjunctive predicate, i.e.,
a conjunction of linear constraints.

This paper is motivated by circumventing such a limita-
tion, by showing that, under the hypothesis that each variable
ranges over a bounded interval, any linear predicate can be
represented by an equivalent conjunctive predicate.

Bounds on variables that describe DTLHS behaviour is
a reasonable hypothesis. Usually, control software drives
the plant towards a goal, while keeping it inside a given
bounded admissible region. Bounds on present state vari-
ables essentially model thesensing region, that is the range
of values observable by the sensors, that usually is a bounded
rectangular region (i.e., the Cartesian product of bounded
intervals). Bounds on controllable input variables model the
actuation region, that is the range of values of commands
that the actuators may send to the plant and it is also
typically a bounded rectangular region. Non-state variables
may model both non-observable plant state variables and
uncontrollable inputs (i.e., disturbances). Therefore, bounds
on such variables are usually implied by bounds on state
variables or by reasonable assumptions about disturbances.

1) Our Main Contributions: In this paper we give an
algorithm to transform any linear predicate into an equi-
satisfiable conjunctive predicate, under the hypothesis that
each variable ranges over a bounded interval. This allows a
MILP based abstraction technique to be applied on a wider
class of DTLHSs (Section III) with respect to [6].

We consider predicates built upon linear constraints (i.e.,
inequalities of the shape

∑n

i=1 aixi ≤ b, Section II),

664Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 682 / 729

conjunctions and disjunctions. First, we show that, at the
price of introducing fresh boolean variables, a predicate
can be transformed into an equisatisfiableguarded predicate
(Section IV), that is a conjunction of guarded constraints,
i.e., constraints of the shapey → (

∑n

i=1 aixi ≤ b). Then,
assuming that each variable ranges over a bounded interval,
we show that any guarded constraint can be in turn trans-
formed into aconjunctive predicate, i.e., a conjunction of
linear constraints (Section IV-A). Conjunctive predicates are
the input language of MILP solvers. Finally, in Section V,
we give an algorithm that computes bounds for a variablex
in a given guarded predicateG(X), i.e., either it returns
two valuesmx,Mx ∈ R such that ifG(X) holds, then
mx≤x≤Mx, or it concludes that such values do not exist.
An evaluation of such algorithm is in Sections VI and VII.

A. Related Work

Mixed Integer Linear Programming (MILP) solving based
abstraction techniques have been designed for the verifi-
cation of Discrete Time Hybrid Automata (DHA) [4] and
implemented within the symbolic model checker HYSDEL
[7]. A MILP based DTLHS abstraction algorithm is the
core of automatic control software synthesis from system
level specifications in [6], and it requires DTLHS dynamics
modeled as a conjunctive predicate. The same limitation oc-
curs in abstraction techniques based on the Fourier-Motzkin
procedure for existential quantifier elimination [8].

The automatic procedure that we present here to transform
any linear predicate into an equisatisfiable conjunctive predi-
cate is reminiscent of Mixed Integer Programming modeling
techniques [9] in Operations Research and boolean formula
transformations involved in the conversion of a formula into
a conjunctive or disjunctive normal form [5][10].

Finally, an automatic convertion procedure targeting a
MILP formulation for automatic synthesis of schedules is
presented in [11], where the starting point is a deterministic
finite automaton rather than a linear predicate.

II. BASIC DEFINITIONS

An initial segment{1, . . . , n} of N is denoted by[n]. We
denote withX = x1, . . . , xn a finite sequence of distinct
variables, that we may regard, when convenient, as a set.
Each variablex ranges on a known (bounded or unbounded)
intervalDx either of the reals (continuous variables) or of
the integers (discrete variables). The set

∏
x∈XDx is denoted

by DX . Boolean variables are discrete variables ranging on
the setB = {0, 1}. If x is a boolean variable we writēx
for (1−x). The sequence of continuous (discrete, boolean)
variables inX is denoted byXr (Xd, Xb).

The set of sequences ofn boolean values is denoted by
B
n. The setBn

k⊆B
n denotes sequences that contains exactly

k elements equal to1. Given a, b∈Bn we say thata≤ b if
a is point-wise less or equal tob, i.e., if for all i∈ [n] we
have thatai≤ bi. Given a setB⊆B

n anda∈Bn we write
a≤B if there existsb∈B such thata≤b anda≥B if there
existsb∈B such thata≥b. We denote withJ(b) be the set
of indexes such thatbj=1, i.e., J(b)={j∈ [n] | bj=1}.

A. Predicates

A linear expressionL(X) =
∑n

i=1aixi is a linear
combination of variables inX with rational coefficients.
A constraint is an expression of the formL(X) ≤ b,
where b is a rational constant. We writeL(X) ≥ b for
−L(X)≤−b, L(X)= b for (L(X)≤ b) ∧ (−L(X)≤−b),
anda≤L(X)≤b for (L(X)≤b) ∧ (L(X)≥a).

Predicatesare inductively defined as follows. A constraint
C(X) is a predicate overX. If A(X) and B(X) are
predicates, then(A(X) ∧ B(X)) and (A(X) ∨ B(X)) are
predicates overX. Parentheses may be omitted, assuming
usual associativity and precedence rules of logical operators.
A conjunctive predicateis a conjunction of constraints.

A valuationoverX is a functionv that maps each variable
x ∈ X to a valuev(x) in Dx. We denote withX∗ ∈ DX

the sequence of valuesv(x1), . . . , v(xn). Given a predicate
P (Y,X), P (Y,X∗) denotes the predicate obtained by sub-
stituting each occurrence ofx with v(x). We call valuation
also the sequence of valuesX∗. A satisfying assignmentto
a predicateP (X) is a valuationX∗ such thatP (X∗) holds.
We denote withP also the set of satisfying assignments to
the predicateP . P (X) andQ(X) are equivalent, notation
P ≡Q, if they have the same set of satisfying assignments.
P (X) andQ(Z) are equisatisfiable, notationP ≃Q, if P
is satisfiable if and only ifQ is satisfiable.
B. Mixed Integer Linear Programming

A Mixed Integer Linear Programming(MILP) prob-
lem with decision variablesX is a tuple (max, J(X),
A(X)) where X is a list of variables,J(X) (objective
function) is a linear expression overX, and A(X) (con-
straints) is a conjunctive predicate overX. A solution to
(max, J(X), A(X)) is a valuationX∗ such thatA(X∗)
and ∀Z (A(Z)→ (J(Z)≤ J(X∗))). J(X∗) is the optimal
valueof the MILP problem. Afeasibilityproblem is a MILP
problem of the form(max, 0, A(X)). We write alsoA(X)
for (max, 0, A(X)). In algorithm outlines, MILP solver
invocations are denoted by functionfeasible(A(X)) that re-
turns TRUE if A(X) is satisfiable and FALSE otherwise, and
by function optimalValue(max, J(X), A(X)) that returns
either the optimal value of the MILP problem (max, J(X),
A(X)) or∞ if such MILP problem is unbounded. We write
(min, J(X), A(X)) for (max,−J(X), A(X)).

III. D ISCRETETIME L INEAR HYBRID SYSTEMS

Discrete Time Linear Hybrid Systems(DTLHSs) provide
a suitable model for many embedded control systems since
they can effectively model linear algebraic constraints in-
volving both continuous as well as discrete variables. In
Ex. 1, we present a DTLHS model of a buck DC-DC con-
verter, i.e., a mixed-mode analog circuit that converts the
DC input voltage to a desired DC output voltage.

Definition 1: A Discrete Time Linear Hybrid Systemis a
tupleH = (X, U, Y, N) where:
X = Xr ∪ Xd is a finite sequence of real and discrete

present statevariables.X ′ denotes the sequence ofnext state
variables obtained by decorating with′ variables inX.

665Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 683 / 729

R
C

rC

D

iD

L

u

+vu

+vD iC

+vO

Vi

iL
rL

iu +vC

Figure 1. Buck DC-DC converter

U = Ur ∪ Ud is a finite sequence ofinput variables.
Y = Y r ∪ Y d is a finite sequence ofauxiliary variables.

Auxiliary variables typically modelsmodes(switching ele-
ments) oruncontrollable inputs(e.g., disturbances).

N(X,U, Y,X ′) is a predicate overX∪U∪Y ∪X ′ defining
the transition relation(next state) of the system.

Example 1:The buck DC-DC converter is a mixed-mode
analog circuit (Figure 1) converting the DC input voltage (Vi

in Figure 1) to a desired DC output voltage (vO in Figure
1). Buck DC-DC converters are used off-chip to scale down
the typical laptop battery voltage (12-24) to the just few
volts needed by the laptop processor as well as on-chip to
supportDynamic Voltage and Frequency Scaling(DVFS) in
multicore processors. Because of its widespread use, control
schemes for buck DC-DC converters have been widely stud-
ied (e.g., see [12][13][14]). The typical software based ap-
proach is to control the switchu in Figure 1 (typically imple-
mented with a MOSFET) with a microcontroller. The circuit
in Figure 1 can be modeled as a DTLHSH=(X,U, Y,N).
The circuit state variables areiL and vC . However we can
also use the pairiL, vO as state variables inH model since
there is a linear relationship betweeniL, vC andvO, namely:
vO= rCR

rC+R
iL+

R
rC+R

vC . Such considerations lead us to the
following DTLHS modelH: X=Xr= iL, vO, U=Ud=u,
Y =Y r∪Y d whereY r= iu, vu, iD, vD andY d=q. Note how
H auxiliary variablesY stem from the constitutive equations
of the switching elements (i.e., the switchu and the diode D
in Figure 1). From a simple circuit analysis (e.g., see [15])
we have the following equations:

˙iL = a1,1iL + a1,2vO + a1,3vD (1)

˙vO = a2,1iL + a2,2vO + a2,3vD (2)

where the coefficientsai,j depend on the circuit parameters
R, rL, rC , L and C as follows:a1,1 = −

rL
L

, a1,2 = − 1
L

,
a1,3=−

1
L

, a2,1= R
rc+R

[− rcrL
L

+ 1
C
], a2,2= −1

rc+R
[rcR

L
+ 1

C
],

a2,3=−
1
L

rcR
rc+R

. Using a discrete time model with sampling
time T and writingx′ for x(t+ 1), we have:

i′L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (3)

v′O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD. (4)

The algebraic constraints stemming from the constitutive
equations of the switching elements are the following:

vD = vu − Vi (5)

iD = iL − iu (6)

(u = 1) ∨ (vu = Roff iu) (7)

(u = 0) ∨ (vu = 0) (8)
((iD ≥ 0) ∧ (vD = 0)) ∨ ((iD ≤ 0) ∧ (vD = Roff iD)) (9)

The transition relationN of H is given by the conjunction
of the constraints in Eqs. 3–9.

IV. FROM L INEAR TO CONJUNCTIVE PREDICATES

As shown in [6], MILP solvers can be used to build a
suitable discrete abstraction of a DTLHS. As mentioned in
Section II-B, MILP solvers require constraints represented
as conjunctive predicates. In this section, we show how this
limitation can be circumvented. We proceed in two steps.
First, in Section IV, we introduceguarded predicatesand
we show that each predicate can be transformed into an
equivalent guarded predicate at the price of introducing new
auxiliary boolean variables. Then, in Section IV-A, we show
that, under the hypothesis that each variable ranges over
a bounded interval, each guarded predicate can be in turn
transformed into an equivalent conjunctive predicate.

1) Guarded Predicates:
Definition 2: Given a predicateP (X) and a fresh boolean

variablez 6∈X, the predicatez→P (X) (resp. z̄→P (X))
denotes the predicate(z=0)∨P (X) (resp.(z=1)∨P (X)).
We callz theguard variableand bothz andz̄ guard literals.
If P (X) is a constraintC(X), a predicate of the form
z → C(X) or z̄ → C(X) is called guarded constraint.
A generalized guarded constrainta predicate of the form
z1 → (z2 → . . .→ (zn → C(X)). . .) A guarded predicate
(resp. generalizedguarded predicate) is a conjunction of
either constraints or guarded constraints (resp. generalized
guarded constraints).

To simplify proofs and notations, without loss of general-
ity, we always assume guard literals distinct: a conjunction
z→C1(X) ∧ z→C2(X) is equisatisfiable to the guarded
predicatez1→C1(X)∧z2→C2(X)∧z1=z∧z2=z (z1, z2
fresh boolean variables). Moreover, in algorithm outlines,
conjunctive predicates will be regarded as sets of constraints.

By applying standard propositional equivalences, we have
the following facts.

Fact 1: A predicate of the formz →
∧

i∈[n] Pi(X) is
equivalent to the guarded predicate

∧
i∈[n](z→Pi(X)).

Fact 2: A generalized guarded constraintz1 → (z2 →
. . . → (zn → C(X)). . .) is equisatisfiable to the guarded
predicate(z−

∑
i∈[n] zi≥1− n) ∧ (z→C(X)), wherez is

a fresh boolean variable.
Proof: Let z be a fresh boolean variable. We have:

z1→(z2→ . . .→(zn→C(X)). . .)
≡ z1 ∧ z2 ∧ . . . ∧ zn→C(X)
≃ (z1 ∧ z2 ∧ . . . ∧ zn→z) ∧ (z→C(X))
≡ (z̄1 ∨ z̄2 ∨ . . . ∨ z̄n ∨ z) ∧ (z→C(X))
≡ (1−z1)+(1−z2)+. . .+(1−zn)+z≥1 ∧ (z→C(X))
≡ (z−

∑
i∈[n] zi≥1−n) ∧ (z→C(X))

Lemma 3:Any predicateP (X) is equisatisfiable to a pred-
icate Q(X,Z) = G(X,Z) ∧ D(Z), whereG and D are
generalized guarded predicates andZ is the set of boolean
variables that occur positively as guards inG.

Proof: By induction on the structure of the predicate
P (X). If P (X) is a constraint or a conjunction, the state-
ment easily follows from inductive hypothesis.

Let P (X) be the disjunctionP1(X) ∨ P2(X). By induc-
tive hypothesis, there exist two generalized guarded predi-
catesQ1(X,Z1) =G1(X,Z1) ∧ D1(Z1) andQ2(X,Z2) =

666Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 684 / 729

G2(X,Z2) ∧ D2(Z2) such thatP1(X) ≃ Q1(X,Z1) and
P2(X)≃Q2(X,Z2). We can always choose auxiliary boolean
variables in such a way thatZ1 ∩ Z2=∅.

Taken two fresh boolean variablesy1 andy2, the predicate
y1→ Q1(X,Z1) ∧ y2→ Q2(X,Z2) ∧ y1+y2 ≥ 1 is equi-
satisfiable toP (X). The predicatey1→Q1(X,Z1) has the
form y1→(

∧
i∈[n]G

i
1(X,Z1)∧

∧
j∈[p]D

j
1(Z1)) and therefore

it is not a generalized guarded constraint. By Fact 1, it
is equivalent to the predicate

∧
i∈[n](y1 → Gi

1(X,Z1)) ∧
∧

j∈[p](y1 → D
j
1(Z2)). By applying Fact 1 also toy2 →

Q2(X,Z2), the statement follows by takingZ=Z1 ∪ Z2 ∪
{y1, y2}, G(X,Z) =

∧
i∈[n]y1→ Gi

1(X,Z1) ∧
∧

i∈[m]y2→

Gi
2(X,Z2), andD(Z) =

∧
j∈[p]y1 → D

j
1(Z2) ∧

∧
j∈[q]y2 →

D
j
2(Z2) ∧ (y1+y2≥1)

Proposition 4: Any predicateP (X) is equisatisfiable to
a predicateQ(X,Z) =G(X,Z ′) ∧ D(Z), whereG andD
are guarded predicates andZ ′ ⊆ Z is the set of boolean
variables that occur positively as guards inG.

Proof: By Lemma 3, any predicateP (X) is equisatisfi-
able to a generalized guarded predicateG1(X,Z1)∧D1(Z1).
By Fact 2,D1(Z1) is equisatisfiable to a guarded predicate
D2(Z1, Z2). Let G1(X,Z1) =

∧
i∈[n]z

i
1 → (zi2 → . . . →

(zini
→ Ci(X)) . . .) ∧ G′

1(X,Z3), where G′
1(X,Z3) is a

guarded predicate (Z3 ⊆ Z1). By Fact 2G1(X,Z1) is eq-
uisatisfiable to the guarded predicate

∧
i∈[n]wi→Ci(X) ∧

∧
i∈[n](wi −

∑
j∈[ni]

zij ≥ 1 − ni) ∧ G′(X,Z3). The state-
ment follows by takingZ ′=Z3 ∪ {w1, . . . , wn}, Z=Z ′ ∪
Z1 ∪ Z2, G(X,Z)=

∧
i∈[n](z

i→Ci(X)) ∧G′′(X,Z ′), and
D(X,Z)=

∧
i∈[n](z

i−
∑

j∈[ni]
zij≥1−n) ∧D′′(Z ′, Z ′′)

The functionPtoG (Alg. 2) summarizes the predicate trans-
formations given in the proof of Prop. 4. It calls function
PtoGG(Alg. 1) that performs predicate transformations given
in the proof of Lemma 3. The functionfresh() returns at
each invocation a (globally) fresh variable.

Algorithm 1 From predicates to generalized guarded pred.
Input: P predicate overX
Output: 〈G,D,Z〉 whereG is a general. guarded predicate,

Z is the set of its (fresh) guard variables,
D(Z) is a generalized guarded predicate over Z

function PtoGG(P,X)
1. if P is a constraintC(X) then return 〈C(X),∅,∅〉
2. let P = P1 ⋄ P2 (⋄ ∈ {∧,∨})
3. 〈G1, D1, Z1〉 ←PtoGG(P1)
4. 〈G2, D2, Z2〉 ←PtoGG(P2)
5. if P = P1∧P2 then return 〈G1∪G2, D1∪D2, Z1∪Z2〉
6. if P = P1 ∨ P2 then
7. y1← fresh(), y2← fresh(), Z ′←Z1 ∪ Z2 ∪ {y1, y2}
8. D′={y1→γ|γ∈D1}∪{y2→γ|γ∈D2}∪{y1+y2≥1}
9. G′ = {y1 → γ | γ ∈ G1} ∪ {y2 → γ | γ ∈ G2}

10. return 〈G′, D′, Z ′〉

Example 2:Let H be DTLHS in Ex. 1. Given the pred-
icate N that defines the transition relation ofH, function

PtoG computes the following guarded predicate equisatisfi-
able toN . Constraints 3–6 remain unchanged, as they are
linear constraints in a top-level conjunction. The disjunction
9 is replaced first by the following predicates:

z1→(iD≥0 ∧ vD=0) (10) z2→(iD≤0 ∧ vD=Roff iD) (11)

and then by constraints 13–16 below, obtained by moving
arrows inside the conjunctions, as shown by Fact 1. Simi-
larly, disjunctions 7 and 8 are eliminated by introducing four
boolean fresh variables. Summing up, disjunctions 7–9 in
Example 1 are replaced by the conjunction of the following
(guarded) constraints:

z4→(vu=Roff iu) (12)

z2→(vD=Roff iD) (13)

z1→(iD≥0) (14)

z1→(vD=0) (15)

z1→(iD≤0) (16)

z3→(u=1) (17)

z5→(u=0) (18)

z6→(vu=0) (19)

z1+z2≥1 (20)

z3+z4≥1 (21)

z5+z6≥1 (22)

With respect to the statement of Proposition 4, we have that
Z = {z1, z2, z3, z4, z5, z6}, G(X,Z ′) is the conjunction of
guarded constraints 12–19 and original constraints 3–6, and
D(Z) is the conjunction of constraints 20–22.

Algorithm 2 From linear to guarded predicates
Input: P predicate overX
Output: 〈G,D,Z ′, Z〉 whereG is a guarded predicate,

Z ′⊆ Z set of its guard variables,
D(Z) is a guarded predicate over Z

function PtoG(P,X)
1. 〈G,D,Z〉 ←PtoGG(P , X)
2. G′ ← ∅, D′ ← ∅, Z ′ = ∅

3. for all γ ∈ G ∪D do
4. if γ ≡ z1→(. . .→(zn→C(W)) . . .) then
5. w←fresh(), Z←Z ∪ {w}
6. if W ⊆X then G′←G′ ∪ {w→C(W)}
7. elseD′←D′ ∪ {w→C(W)}
8. D′ ← D′ ∪ {w −

∑
i∈[n] zi ≥ 1− n}

9. else if vars(γ)⊆X then
10. G′←G′ ∪ {γ} elseD′←D′ ∪ {γ}
11. return 〈G′, D′, Z ′, Z \ Z ′〉

A. From Guarded to Conjunctive Predicates
Definition 3: Let P (X) be a predicate. A variablex∈X

is said to beboundedin P if there exista, b∈Dx such that
P (X) implies a≤x≤b. A predicateP is bounded if all its
variables are bounded. We writesup(P, x) andinf(P, x) for
the minimum and maximum value that the variablex may
assume in a satisfying assignment forP . WhenP is clear
from the context, we will write simplysup(x) and inf(x).

Given a bounded predicateP (X), a real numbera, and
a variablex ∈ X we write sup(ax) for a sup(x) if a ≥ 0
and for a inf(x) if a < 0. We write inf(ax) for a inf(x) if
a≥ 0 and for a sup(x) if a < 0. Given a linear expression
L(X) =

∑n

i=1aixi over a set of bounded variables, we
write sup(L(X)) for

∑n

i=1sup(aixi) and inf(L(X)) for∑n

i=1inf(aixi).

Proposition 5: Each bounded guarded predicateP (X) is
equivalent conjunctive predicateQ(X).

667Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 685 / 729

Proof: The conjunctive predicateQ(X) can be obtained
from the guarded predicateP (X) by replacing each guarded
constraintϕ of the shapez→(L(X)≤b) in P (X) with the
constraintϕ′ = (sup(L(X))−b)z+L(X)≤ sup(L(X)). If
z=0 we haveϕ≡ϕ′ sinceϕ holds trivially andϕ′ reduces
to L(X)≤ sup(L(X)) that holds by construction. Ifz =1
bothϕ andϕ′ reduce toL(X)≤ b. Along the same line of
reasoning, ifϕ has the formz̄→ (L(X)≤b) we pickϕ′ to
be (b−sup(L(X)))z+L(X)≤b.

Together with Prop. 4, Prop. 5 implies that any bounded
predicate can be transformed into an equisatisfiable conjunc-
tive predicate, at the cost of adding new auxiliary boolean
variables, as stated in the following proposition.

Proposition 6: For each bounded predicateP (X), there
exists an equisatisfiable conjunctive predicateQ(X,Z).

Example 3:Let H be the DTLHS in Examples 1 and 2.
We set the parameters ofH as follows:

rL=0.1Ω R=5Ω Vi=15V L=2 · 10−4H

rC =0.1Ω Roff =104 T =10−6secs C=5 · 10−5F

and we assume variables bounds as follows:
−2·104≤vu≤15 −4≤ iL≤4 −1≤vO≤7 −4≤ i′L≤96
−2·104≤vD≤0 −1.1≤v′O≤17 −4≤ iu≤4 −2≤ iD≤4

By first decomposing equations of the shapeL(X) = b in
the conjunctive predicateL(X)≤b∧−L(X)≤−b and then
by applying the transformation given in the proof of Prop. 5,
guarded constraints 14–19 are replaced by the following
linear constraints:

2z1 − iD ≤ 2 (23)

4 · 104z4 + vu − 104iu ≤ 4 · 104 (24)

6 · 104z4 − vu + 104iu ≤ 6 · 104 (25)

−2.104z1 − vD ≤ 2 · 104 (26)

2.104z2 + vD − 104iD ≤ 2.104 (27)

6.104z2 − vD + 104iD ≤ 6.104 (28)

2 · 104z6 + vu ≤ 15 (29)

2 · 104z4 − vu ≤ 2 · 104 (30)

vD ≤ 0 (31)

4z2 + iD ≤ 4 (32)

z5 + u ≤ 1 (33)

−u ≤ 0 (34)

15z6 + vu ≤ 15 (35)

z3 − u ≤ 1 (36)

u ≤ 1 (37)

V. COMPUTING VARIABLE BOUNDS

In this section, we present an algorithm that checks if a
variablex is bounded and that computes an over- and under-
approximation ofsup(x) and inf(x).

Given a guarded predicateG(X,Z), whereZ is the set of
guard variables, for any valuationZ∗, G(X,Z∗) is equiva-
lent to a conjunctive predicate (Prop. 7). A naïve algorithm
to find bounds for a variablex for any valuationZ∗ solves
the MILP problemsoptimalValue(x,max, G(X,Z∗)) and
optimalValue(x,min, G(X,Z∗)). If, for all Z∗ ∈ Bn, x is
bounded inG(X,Z∗) or G(X,Z∗) is unfeasible, thenx
is bounded inG(X,Z). Vice versa, if for someZ∗ ∈ B

n

G(X,Z∗) is feasible andx is not bounded, thenx is not
bounded inG(X,Z). Unfortunately, this exhaustive proce-
dure requires to solve2|Z| MILP problems.

The functioncomputeBoundsin Alg. 3 refines such idea
in order to save unnecessary MILP invocations. If all guard
literals are positive, if an assignmentZ∗

1 makes true more
guards than an assignmentZ∗

2 , then the conjunctive predicate
G(X,Z∗

1) has more constraints thanG(X,Z∗
2) and therefore

if x is bounded inG(X,Z∗
2) then it is also bounded in

G(X,Z∗
1), and ifG(X,Z∗

2) is unfeasible, then alsoG(X,Z∗
1)

is unfeasible (Prop. 7). In the following we establish the
correctness of functioncomputeBounds.

Proposition 7: Let Z = z1, . . . , zn and let G(X,Z) =∧
i∈[n](zi→Ci(X)) be a conjunction of guarded constraints,

where head variables occurs positively. Then:
1) For anyZ∗∈Bn, G(X,Z∗) is equivalent to the con-

junctive predicate
∧

j∈J(Z∗)Cj(X).
2) If Z∗

1 ≤ Z∗
2 , thenG(X,Z∗

2)⇒G(X,Z∗
1).

Proof: Statement 1 easily follows by observing that a
guarded constraintz → C(X) is trivially satisfied if z is
assigned to0 and it is equivalent toC(X) if z is assigned
to 1. Statement 2 follows from the observation thata ≤ b
impliesJ(a)⊆J(b) and henceG(X, b) has more constraints
thanG(X, a).

Definition 4: We say that a setC ⊆ B
n is a cut if for all

b ∈ B
n we haveb ≤ C or b ≥ C. Let D(Z) be a predicate

over a set boolean variablesZ=Z1∪Z2 and let|Z2|=n. A
cut C⊆B

n is (D,Z2)-minimal, if for all c∈C D(Z1, c) is
satisfiable, and for allb<C D(Z1, b) is not satisfiable.

To verify that a variable is boundedG(X,Z ′) ∧ D(Z),
whereG is a guarded predicate with positive guards in the
setZ ′⊆Z andD(Z) is a conjunctive predicate, it suffices to
check if it is bounded in the conjunctive predicateG(X, c),
for all c that belong to a(D,Z ′)-minimal cut.

Algorithm 3 Computing variable bounds in predicate

Input: 〈G,D,X,Z ′, Z, x〉 whereG is a guarded predicate,
Z ′⊆ Z set of its guard variables,x∈X a variable,
D(Z) is a conjunctive predicate over Z

Output: 〈b, inf, sup〉, whereb ∈ {B, ¬B, ¬F}.
If b = B, G(X,Z)⇒ inf ≤ x ≤ sup

function computeBounds(G,D,X,Z ′, Z ′′, x)
1. C←∅, r←|Z ′|, inf←+∞, sup←−∞, f←FALSE

2. r′←optimalValue(min,
∑

i∈[r] zi, D(Z))
3. r′′←optimalValue(max,

∑
i∈[r] zi, D(Z))

4. for k = r′ to r′′ do
5. end = TRUE

6. for all b ∈ B
r
k do

7. if C 6≤b then end← FALSE else continue
8. if feasible(D(Z, c)) thenC�C ∪{b} else continue
9. if feasible(G(X, b)) then

10. f ←TRUE

11. M ← optimalValue(max, x, G(X, b))
12. m ← optimalValue(min, x, G(X, b))
13. if M=∞ or m=∞ then return 〈¬B, _, _ 〉
14. sup ← max(sup, M), inf ← min(inf, m)
15. if end then break
16. if f then return 〈B, inf, sup〉 else return 〈¬F, _, _〉

Proposition 8: Let Q(X,Z) =G(X,Z ′) ∧ D(Z), where
G is a guarded predicate such that guard variables inZ ′⊆Z
occur positively andD is a conjunctive predicate. LetC be
a (D,Z ′)-minimal cut andx ∈ X. If, for all c ∈ C, x is
bounded inG(X, c) thenx is bounded inQ(X,Z).

668Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 686 / 729

Proof: SinceC is a(D,Z ′)-minimal cut, any satisfying
assignment(X∗, Z∗) to Q is such thatC ≤ Z ′∗. As a
consequence, there existsc∈C such thatc≤Z ′∗. Prop. 7.2
implies thatmax{x | G(X,Z∗)}≤max{x | G(X, c)} and
min{x | G(X,Z∗)}≥min{x | G(X, c)}. Therefore ifx is
bounded inQ(X, c) for any c ∈ C, then it is bounded in
Q(X,Z).

Stemming from Proposition 8, functioncomputeBounds
(Alg. 3) checks if a variablex is bounded in a guarded pred-
icate by finding a minimal cut. To limit the search space, in
line 2 (resp. line 3) it is computed the minimum (resp. maxi-
mum) number of 1 that a satisfying assignment to the predi-
cateD(Z) must have. The loop in lines 4–16 examines pos-
sible assignments to guard variables inZ, keeping the invari-
ant ∀b<C¬feasibleG(X, b) ∧ ∀b≥Cmax{x | G(X,Z)}≤
max{x |G(X, b)}∧min{x |G(X,Z∗)}≥min{x |G(X, b)}.
In the loop in lines 6–14, if the assignmentc under consid-
eration is greater than an assignment inC, no further inves-
tigation are needed (by Prop. 8x is bounded inQ(X, c)). If
D(Z\Z ′, b) is unfeasible, the assignmentc is not relevant,
becausec≤C, for any(D,Z ′)-minimal cutC. Otherwise,c
is a relevant assignment and it is added toC (line 8). If x is
unbounded inQ(X, c) (lines 11 and 13) we can immediately
conclude thatx is unbounded inQ(X,Z). Otherwise, we
update the approximations computed forinf(x) andsup(x)
(line 14). If for all assignments inc ∈ B

n
k we havec ≥ C

(Bn
k is a cut) we are done,C is a (D,Z ′)-minimal cut, and

inf and sup computed so far are over-approximation ofx
bounds inQ(X,Z) (line 15).

Algorithm 4 From predicates to conjunctive predicates
Input: P predicate overX
Output: 〈b, C〉, b ∈ {B, ¬B, ¬F}.

If b = B, thenC ≃ P
function PtoC((P,X))

1. 〈G,D,Z ′, Z ′′〉 ←PtoG(P,X)
2. D′ ←GtoC(D,Z ′ ∪ Z ′′, 〈0,1〉)
3. for all x ∈ X do
4. 〈µ,mx,Mx〉 ←computeBounds(G,D′, X, Z ′, Z ′′, x)
5. if µ 6=BOUNDED then return 〈µ,∅〉
6. return 〈µ,GtoC(G,X ∪ Z ′ ∪ Z ′′, 〈m,M〉)

Example 4: In Ex. 3 we assumed bounds for each vari-
able in the DTLHSH introduced in Example 1. Such bounds
has been obtained by fixing bounds for state variablesiL and
vO and for variablesvD and iD, and by computing bounds
for variablesi′L, v′O, iu, andvu using Alg. 3.

The functionPtoC in Alg. 4 presents the overall procedure
that transforms a bounded predicate into an equisatisfiable
conjunctive predicate. It calls functions in Algs. 1–3 and
the functionGtoC that performs predicate transformations
given in the proof of Prop. 5. As a first step, Alg. 4 translates
a predicateP (X) into an equisatisfiable guarded predicate
G(X,Z ′) ∧D(Z ′, Z ′′) by calling the functionPtoG. Since
boolean variables are trivially bounded (bounds are vectors
0 = 〈0, . . . , 0〉 and 1 = 〈1, . . . , 1〉), the guarded predicate

D can be transformed into a conjunctive predicateD′ by
calling the functionGtoC onD. To apply functionGtoC on
G(X,Z ′), we need bounds for each variable inX. These
bounds are computed by calling|X| times the functioncom-
puteBoundsand are stored in the two arraysm,M . If the
functioncomputeBoundsfinds thatG′ is unfeasible or some
x is not bounded inG′, the empty constraint is returned
together with the failure explanation. Otherwise, the desired
conjunctive predicate is returned.

VI. M ODELING ISSUES

The disjunction elimination procedure given in Alg. 4
returns a guarded predicate that may contain a large number
of fresh auxiliary boolean variables and this may heavily
impact on the effectiveness of control software synthesis
or verification. On the other hand, guarded predicates are
themselves a natural language to describe DTLHS behavior:
assignments to guard variables play a role similar to modes
in hybrid systems and, by using negative literals as guards,
we can naturally model different kinds of plant behavior
according to different commands sent by actuators.

Example 5:Disjunctions 7–9 in Ex. 1 can be replaced by
the conjunction of the following (guarded) constraints:
q→vD=0 (38)

q→ iD≥0 (39)

u→vu=0 (40)

q̄→vD≤0 (41)
q̄→vD=Roff iD (42)

ū→vu=Roff iu (43)
The resulting model for the buck DC-DC converter is

much more succinct than the guarded model in Ex. 2 and it
has two guard variables only, rather than six as in Ex. 2.

Alg. 3 cannot be directly applied to guarded predicates
with both positive and negative guard literals. This obstruc-
tion can be easily bypassed, by observing that a guarded
constraintz̄→ C(X) can is equisatisfiable to the guarded
predicate(z′→ C(X)) ∧ (z′+z = 1). This transformation
may double the number of guard variables and hence make
the application of Alg. 3 less effective than an exhaustive
algorithm on the original model with positive and negative
guard literals (see experimental results in Section VII). Sum-
ming up, guarded predicates turn out to be a powerful and
natural modeling language for describing DTLHS transition
relations. We end this section by proposing a syntactic check,
that most of the time may be used to compute variable
bounds avoiding to use the functioncomputeBounds.

Definition 5: A variablex is explicitly boundedin a pred-
icateP (X), if P (X) =B(x) ∧ P ′(X), whereB(x) = x≤
b ∧ x≥a, for some constantsa andb.

Proposition 9: Let H= (X,U, Y,N) be a DTLHS such
that each variablev∈X∪U ∪Y is explicitly bounded inN ,
and for allx′∈X ′ there are inN at least two constraints of
the formx′≥L1(X,U, Y) andx′≤L2(X,U, Y). ThenN
is bounded.

Proof: Since all variables inX, U , andY are explic-
itly bounded inN , they are also bounded inN . Therefore
inf(L1(X,U, Y)) andsup(L2(X,U, Y)) are finite. SinceN
is guarded, it is a conjunction of guarded constraints and for
all x′ ∈ X ′ it can be written asx′

1 ≥ L1(X,U, Y) ∧ x′
1 ≤

L2(X,U, Y) ∧N ′(X,U, Y,X ′) for a suitable predicateN ′.

669Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 687 / 729

This implies inf(L1(X,U, Y)) ≤ x′ ≤ sup(L2(X,U, Y)),
which in turn implies thatx′ is bounded inN .

Example 6:Let H1 be the DTLHS ({x}, {u},∅, N1),
whereN1(x, u, x

′)=(0≤x≤3)∧(0≤u≤1)∧(x′= x+3u).
By Proposition 9,H1 is bounded withinf(x′) = 0 and
sup(x′)=6. All other variables are explicitly bounded inN .
Explicit bounds on present state and input variables do not
imply that next state variables are bounded. As an example,
let us consider the DTLHSH2 = ({x}, {u},∅, N2), where
N2(x, u, x

′) = (0 ≤ x ≤ 3) ∧ (0 ≤ u ≤ 1) ∧ (x′ ≥ x+3u).
Since, for any value ofx and u, x′ can assume arbitrary
large values, we have thatH2 is not bounded.

VII. E XPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our predi-
cate transformation algorithmPtoC. We implemented Alg. 4
in C programming language, using GLPK to solve MILP
problems. We present the experimental results obtained by
using PTOC on an-inputs buck DC-DC converter, that we
model with three DTLHSsHi=(Xi, Ui, Yi, Ni), with i∈ [3],
s.t. X1 =X2 =X3, U1 = U2 = U3, Y1 ⊂ Y2 ⊂ Y3, N1 is a
predicate(Section II-A),N2 andN3 areguarded predicates
(Section IV) and guards inN3 are positive only.

We then run PTOC on Hi for increasing values ofn
(which entails that the number of guards increases), in order
to show effectiveness of PTOC. Namely, in Section VII-A1
we show experimental results for the whole algorithm in
Alg. 4. Furthermore, in Section VII-A2 we show that exploit-
ing knowledge of the system and modeling it with guarded
predicates we obtain better results than those in Section VII-A1.
To this aim, we suppose that predicatesG, D′ and variables
setsX,Z ′, Z ′′ in Alg. 4 may be directly given as an input
to functionPtoC (thus lines 1 and 2 in Alg. 4 are skipped).

Both in Section VII-A1 and VII-A2 we compare the com-
putation time of functionPtoC against functionPtoCexh,
which may be obtained from Alg. 4 by replacing the call to
functioncomputeBounds(our bottleneck here) in line 4 with
the naïve algorithm which exhaustively checks all possible
assignments to guard variables (see Section V). To this aim,
also PtoCexh has been implemented inside PTOC. As for
PtoC, also for PtoCexh it is possible to directly specify
predicatesG, D′ and variables setsX,Z ′, Z ′′.

A. Multi-Input Buck DC-DC Converter

A Multi-Input Buck DC-DC converter [16] (Figure 2),
consists ofn power supplies with voltage valuesV1<. . .<
Vn, n switches with voltage valuesvu1 , . . . , v

u
n and current

valuesIu1 , . . . , I
u
n , andn input diodesD0, . . . , Dn−1 with

voltage valuesvD0 , . . . , vDn−1 and current valuesiD0 , . . . , iDn−1

(in the following, we will also writevD for vD0 and iD for
iD0). As for the converter in Ex. 1, the state variables are
iL and vO, whereas action variables areu1, . . . , un, thus a
control software for then-input buck dc-dc converter has
to properly actuate the switchesu1, . . . , un. Constant values
are the same given in Ex. 3.

R

+vO
L

iD

Vn

Vn−1

Vi

V1

I
u
n

I
u
n−1

I
u
i

+v
u
n

un

D0

D1

Di

Dn−1

iL rL

+vC C

rCiC

+v
u
i

un−1

ui

+vD

...

...

I
u
1

+v
D
1

+v
D
i

+v
u
n−1 +v

D
n−1

+v
u
1 u1

Figure 2. Multi-input Buck DC-DC converter

Table I
PTOC PERFORMANCES(PREDICATES)

n r r′ r′′ k |cut| CPUr CPUe

2 12 6 12 11 64 1.48e+00 1.13e+02
3 18 9 18 17 512 8.33e+01 1.35e+04
4 24 12 24 23 4096 8.73e+03>1.38e+06

1) Multi-Input Buck as a Predicate:We model then-
input buck DC-DC converter with the DTLHSH1=(X1, U1,
Y1, N1), whereX1 = iL, vO, U1 = u1, . . . , un, and Y1 =
vD, vD1 , . . . , vDn−1, iD, Iu1 , . . . , I

u
n , v

u
1 , . . . , v

u
n. From a sim-

ple circuit analysis (e.g., see [15]), we have that state vari-
ables constraints are the same as Eqs. (3) and (4) of the
converter in Ex. 1. Analogously, as for the algebraic con-
straints, we have that Eq. (9) in Ex. 1 also holds for the
n-inputs converter. In addition to Eqs. (3), (4) and (9) of
Ex. 1, the Eqs. (45)–(48) below must hold.
∧

i∈[n]

(ui=0)∨(vui =0) (44)
∧

i∈[n]

(ui=1) ∨ (vui =RoffI
u

i) (45)

∧

i∈[n−1]

((Iui ≥0)∧ (vDi =0))∨ ((Iui ≤0)∧ (vDi =RoffI
u

i)) (46)

iL= iD+

n∑

i=1

I
u

i (47)
∧

i∈[n−1]

vD=v
u

i+v
D

i −Vi∧vD=v
u

n−Vn (48)

N1 also contains the following explicit bounds:−4≤ iL≤
4 ∧ −1≤ vO ≤ 7∧ −103 ≤ iD ≤ 103 ∧

∧n

i=1−10
3 ≤ Iui ≤

103 ∧
∧n

i=1−10
7 ≤ vui ≤ 107 ∧

∧n−1
i=0 −10

7 ≤ vDi ≤ 107.
We call functionPtoC with parametersN1, X1 ∪U1 ∪Y1

for increasing values ofn, and we compare its computation
time with that of functionPtoCexh. Table I shows our ex-
perimental results. In Table I, columnn shows the number
of buck inputs, columnr shows the number of guards (see
line 1 of Alg. 3), columnsr′, r′′ have the meaning given in
lines 2 and 3 of Alg. 3, columnk gives the value ofk at the
end of the for loop of Alg. 3, column|cut| gives the size of
cut at the end of the for loop of Alg. 3, and columnCPUr

(resp.CPUe) shows the computation time in seconds of
function functionPtoC (resp.PtoCexh). Table I shows that
heuristics implemented in functioncomputeBoundsgreatly
speeds-up variable bounds computation.

2) Multi-Input Buck as a Guarded Predicate:We mod-
ify the DTLHS H1 of Section VII-A1 by definingH2 =
(X2, U2, Y2, N2), whereX2 = X1, U2 = U1, Y2 = Y1 ∪
Y ′
2 = Y1 ∪ {q0, . . . , qn−1} andN2 is obtained fromN1 by

replacing Eqs. (9) and (45)–(48) with Eqs. (38)–(43) (where
q = q0, see Section VI), and by adding the following ones
(i∈ [n− 1]):

670Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 688 / 729

Table II
PTOC PERFORMANCES(GUARDED PREDICATES)

n r r′ r′′ k |cut| CPUr CPUe

4 16 8 8 8 256 1.17e+01 1.24e+01
5 20 10 10 10 1024 1.55e+02 6.93e+01
6 24 12 12 12 4096 2.65e+03 3.78e+02

qi→v
D

i =0 (49)

qi→I
u

i ≥0 (50)

ui→v
u

i =0 (51)

q̄i→v
D

i ≤0 (52)

q̄i→v
D

i =RoffI
u

i (53)

ūi→v
u

i =RoffI
u

i (54)

Finally, we defineH3 = (X3, U3, Y3, N3), whereX3 =
X2 = X1, U3 = U2 = U1 and N3 is obtained fromN2

by eliminating negative guards as described in Section VI.
This introduces2n additional auxiliary variables to manage
negations ofq0, . . . , qn−1, u1, . . . , un, thusY3 = Y2 ∪ Y

′
3 =

Y2 ∪ {q
′
0, . . . , q

′
n−1, u

′
1, . . . , u

′
n}.

For i = 2, 3, let constraints inNi be partitioned inGi and
Di s.t. Gi contains all guarded constraints inNi. We call
function PtoC with parametersG3, D3, X3 ∪ U3 ∪ Y1, Y

′
2 ∪

Y ′
3 ,∅ for increasing values ofn, and we compare its com-

putation time with that of functionPtoCexhwith parame-
ters G2, D2, X2 ∪ U2 ∪ Y1, Y

′
2 ,∅ Note thatG3 only con-

tains positive-guarded constraints, thus it is possible tocall
function PtoC on it. On the other hand,G2 also contains
negative-guarded constraints, thus it cannot be passed to
function PtoC, whilst it can be managed by functionPto-
Cexh.

Table II shows our experimental results. Columns mean-
ing in Table II are the same as of Table I. Predicate transla-
tion on the multi-input buck dc-dc model given as guarded
predicate is much faster due to a smaller number of auxiliary
variables (and constraints). The negative impact of auxiliary
boolean variables is clearly showed by the fact that function
PtoCexh, much slower than functionPtoC on a model of the
same size, performs better thanPtoC in this case, because
it can work on a model with half of the variables. This
phenomenon would be greatly amplified in a verification or
control software synthesis procedure. These results strongly
support guarded predicates as modeling language.

VIII. C ONCLUSIONS

The results presented in this paper contribute to Model
Based Design of embedded software by proposing an ex-
pressive modelling language for discrete time linear hybrid
systems. Indeed, MILP based abstraction of a DTLHS have
been used to synthesize correct-by-construction control soft-
ware that implements a quantized controller. They require
DTLHS dynamics modeled as a conjunctive predicate over
state, input, and next state variables.

In this paper, we circumvented such a limitation, by giving
an automatic procedure that transforms any predicate into
an equisatisfiable conjunctive predicate, provided that each
variable ranges over a bounded interval. Moreover, we have
presented an algorithm that, taking a linear predicateP and
a variablex, verifies if x is bounded inP , by computing
(an over-approximation of) bounds forx.

Finally, our experimental results show the effectiveness
of our algorithms. Most notably, they show that guarded
predicates may turn out to be a natural language to describe
succinctly DTLHS dynamics.

REFERENCES

[1] T. A. Henzinger and J. Sifakis, “The embedded systems
design challenge,” inFM, ser. LNCS 4085, 2006, pp. 1–15.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger,
P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine,
“The algorithmic analysis of hybrid systems,”Theoretical
Computer Science, vol. 138, no. 1, pp. 3 – 34, 1995.

[3] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic symbolic
verification of embedded systems,”IEEE Trans. Softw. Eng.,
vol. 22, no. 3, pp. 181–201, 1996.

[4] A. Bemporad and M. Morari, “Verification of hybrid systems
via mathematical programming,” inHSCC, 1999

[5] F. Mari and E. Tronci, “CEGAR based bounded model
checking of discrete time hybrid systems,” inHSCC, 2007

[6] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of
quantized feedback control software for discrete time linear
hybrid systems,” inCAV, ser. LNCS 6174, 2010, pp. 180–195.

[7] F. Torrisi and A. Bemporad, “HYSDEL — A tool for gener-
ating computational hybrid models for analysis and synthesis
problems,”IEEE Transactions on Control System Technology,
vol. 12, no. 2, pp. 235–249, 2004.

[8] S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke,
“Reachability for linear hybrid automata using iterative re-
laxation abstraction,” inHSCC, ser. LNCS 4416, 2007, pp.
287–300.

[9] F. S. Hillier and G. J. Lieberman,Introduction to operations
research. McGraw-Hill Inc., 2001.

[10] D. Sheridan, “The optimality of a fast cnf conversion and its
use with sat,” inSAT, 2004.

[11] A. Kobetski and M. Fabian, “Scheduling of discrete event
systems using mixed integer linear programming,” inDiscrete
Event Systems, 2006

[12] W. Kim, M. S. Gupta, G.-Y. Wei, and D. M. Brooks, “En-
abling on-chip switching regulators for multi-core processors
using current staggering,” inASGI, 2007.

[13] W.-C. So, C. Tse, and Y.-S. Lee, “Development of a fuzzy
logic controller for dc/dc converters: design, computer simu-
lation, and experimental evaluation,”IEEE Trans. on Power
Electronics, vol. 11, no. 1, pp. 24–32, 1996.

[14] V. Yousefzadeh, A. Babazadeh, B. Ramachandran, E. Alar-
con, L. Pao, and D. Maksimovic, “Proximate time-optimal
digital control for synchronous buck dc–dc converters,”IEEE
Trans. on Pow. El., 23(4), 2008

[15] P.-Z. Lin, C.-F. Hsu, and T.-T. Lee, “Type-2 fuzzy logic
controller design for buck dc-dc converters,” inFUZZ, 2005,
pp. 365–370.

[16] M. Rodriguez, P. Fernandez-Miaja, A. Rodriguez, and J. Se-
bastian, “A multiple-input digitally controlled buck converter
for envelope tracking applications in radiofrequency power
amplifiers,” IEEE Trans on Pow. El., 25(2), 2010

671Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 689 / 729

ME-DiTV: A Middleware Extension for Digital TV

An Architectural Proposal of A Middleware Extension based on Dynamic Context Changes for

Distributed System

Victor Hazin da Rocha¹ ², Felipe Silva Ferraz¹ ²,

Heitor Nascimento de Souza¹, Carlos André Guimarães Ferraz²

¹CESAR – Recife Center for Advanced Studies and Systems

{vhr,fsf,hns}@cesar.org.br

Informatics Center

²Federal University of Pernambuco (UFPE) Recife – PE, Brazil

{vhr,fsf3,cagf}@cin.ufpe.br

Abstract—This paper aims at providing a trustworthy

architecture for a middleware extension, based on geolocalized

context information, focused on the development of distributed

interactive applications for digital TV. The proposed solution

was built using the middleware Ginga. Although it has been

implemented for the Brazilian Digital TV System, the

architecture described in this paper can be applied to other

existing Digital TV middleware with the same benefits. Among

those, this work presents a project as a study case to

demonstrate the solutions viability and performance analyses

on its implementation furthermore this works aims to create

an easier way to build distributed, context-sensitive

applications.

Keywords-Digital TV;Distributed System; Middleware .

I. INTRODUCTION

Most recent data from Brazilian Institute of Statistics
shows that 97,2% of Brazilian homes have a Television
Device instead of that only 39,3%[1] residences that have a
computer. In this scenario, it is possible to realize that the
popularity of the television system plays an important role in
integration and distributed solutions..

The TV was not originally designed to provide an
infrastructure that enables applications and the challenge is
increased when we think about distributed applications,
whose development is more complex and requires mastery
and expertise by the developers [2].

The web pages or applications are usually available 24
hours a day. This is different from the scenario of television
programs, which are transmitted only at predefined times by
the broadcaster. Therefore, an interactive application sent by
the broadcaster is only available to the viewers during the
time in which the program is displayed. Thus, depending on
the audience of this program and the attractiveness of the
application, the application can have millions of
simultaneous accesses, overloading broadcaster servers.

This work´s main purpose is to present a middleware
extension that can be compatible with different systems and
will make development of distributed application easier.

This paper will first present concepts related to
Middleware architecture, followed by the proposition of a
Middleware Extension. Next, we present and discuss a case
study that uses Brazilian Digital Television infrastructure to
create a distributed voting system.

The outline of the rest of the paper is organized as
follows. Section 1 gives an introduction to the paper. Section
2 describes some middleware concepts. Section 3 describes a
few characteristics of Digital TV. Section 4 illustrates the
architecture of the proposed solution. Section 5 presents the
study case and Finally, Section 6 finishes the paper by
explaining a couple of conclusions.

II. MIDDLEWARE

Distributed systems create new problems that do not exist
in centralized systems, like connections problem or network
saturation [2]. The question is how to facilitate the
development or implementation of distributed applications in
such a way that is possible to solve additional
problems created by the distribution itself.

In principle, there are different options - from hardware

support level to the extension of programming languages to

enable support of distributed applications. Software

solutions typically provide flexibility because of their

suitability for integrating existing technologies (such as

operating systems and programming languages). These

conditions lead to the concept of Middleware.

Middleware offers general services to support

distributed applications execution. The term Middleware

suggests that it is software situated between the operating

system and the application. Viewing abstractly, Middleware

can be envisaged as a “tablecloth” that spreads itself over a

heterogeneous network, abstracting the complexity of the

underlying technology from the application using it [3].

There are several ways to categorize Middleware. In this

paper, we will use the four main types of Middleware found

in the literature. These are: transactional, procedural,

message-oriented and object-oriented middleware [4].

672Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 690 / 729

A. Transactional Middleware

Transactional Middleware supports transactions

involving components that run on distributed hosts. This

kind of Middleware was designed in order to support

distributed synchronous transactions. It should be used

when transactions need to be coordinated and synchronized

over multiple databases [4].

B. Procedural Middleware

Remote Procedure Calls (RPCs) were designed by Sun

Microsystems in the early 1980s as part of the Open

Network Computing (ONC) platform. Sun provided remote

procedure calls as part of all their operating systems and

submitted RPCs as a standard to the X/Open consortium,

which adopted it as part of the Distributed Computing

Environment (DCE) [5]. RPCs are now available on most

Unix implementations and also on Microsoft’s Windows

operating systems.

According to Pinus [4], RPCs could be used in small,

simple applications with primarily point-to-point

communication. RPCs are not a good choice to use as the

building blocks for enterprise-wide applications where high

performance and high reliability are needed.

C. Message-oriented Middeware

Message-oriented middleware (MOM) bear the

communication between distributed system components by

facilitating message exchange. According to Pinus [4], there

are two different types of MOM: message queuing and

message passing.

Message queuing is defined as indirect communication

model, where communication happens through a queue. A

message from one program is sent to a specific queue,

identified by name. After the message is stored in this

infrastructure, it will be sent to a receiver.

In message passing - a direct communication model - the

information is sent to the interested parties. One flavor of

message passing is publish-subscribe (pub/sub) middleware

model. In pub/sub clients have the ability to subscribe to the

interested subjects. After subscribing, the client will receive

any message corresponding to a subscribed topic. MOM

should be used in the applications where the network or all-

components availability is not trustable [4].

D. Object-oriented Middleware

Object-oriented Middleware (OOM), evolved from

RPCs, extends them by adding object-oriented concepts.

These concepts are: inheritance, object references and

exceptions. OOM allows referencing of remote objects and

can call operations on them. OOM should be considered for

applications where immediate scalability requirements are

somewhat limited. These applications should be part of a

long-term strategy towards object orientation [4].

III. DIGITAL TV

Digital TV is popular because of the the quality of the

image provided by the broadcaster. However, this concept is

minimalist. There are three deep concepts of Digital TV:

Interactivity, Portability and Connectivity; these concepts,

supported by software definitions, are the core of Digital TV

[6].

The interactivity and connectivity allows digital TV

viewers to submit content and to get a reaction from it. This

means it is possible for the viewer to interact with a

particular broadcast content [7].

A. Middleware Ginga

Ginga is the name of the middleware specification for

the Nipo-Brazilian Digital TV System (SBTVD, from the

Portuguese Sistema Brasileiro de TV Digital). It consists of

a set of standard technologies and innovations which make

the most advanced middleware specification and the best

solution for the brazilians requirements [6].

The middleware is divided into two main integrated

subsystems, which allow the development of applications

following two different programming paradigms. Those

subsystems are called Ginga-NCL (for declarative NCL

applications) and Ginga-J (for imperative Java applications).

The use of any of these two paradigms depends on the

requirements of each application [6].

In addition to making it possible to send applications to

compatible TVs, Ginga provides information about content

transmitted to the receiver through a set of tables, called SI

(Service Information). Among the tables that compose this

group we highlight the EIT (Event Information Table) and

NIT (Network Information Table). The EIT is responsible

for delivering information related to the program schedule,

while the NIT contains information about the network that

the content is being made[8].

Ginga-J was chosen to be used in this article because of

the support to the network layer of the Ginga middleware.

1) Ginga-J

Ginga-J is designed to provide an infrastructure for the

implementation of applications based on Java language,

with features aimed specifically for the digital TV

environment [9].

Ginga-J, as the name suggests, supports Java procedural

language. According to [10] " it is the logical subsystem of

the Ginga middleware responsible for processing

imperative applications written using the Java language".

IV. ARCHITECTURE

This section aims at describing the architecture of the

solution proposed by this work.

The first important project decision was the choice for

building a message-oriented middleware. This choice was

made because MOM systems can provide distributed

communication on the basis of asynchronous interaction

model allowing the system to continue processing once a

message has been sent [11].

673Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 691 / 729

Figure 1 shows the macro architecture for the

implemented solution. The middleware was divided

into three separate layers, which will be detailed below.

Figure 1. Macro Architecture

The described architecture is compatible with existing

middleware such as MHP [12] and Ginga [8]. The goal is to

facilitate the creation of distributed interactive applications

for Digital TV which can have millions of simultaneous

accesses, causing an application to work as a distributed

system, dividing the access to the servers based on the

context of the device responsible for TVs connection, called

as set-top box.

Application

Extension
Middleware

(Ginga/MHP/ARIB)

Java Virtual Machine

OS

Figure 2. Potential Middleware extension.

To make possible for the extension to be used by

existing middleware, the module presented in this paper was

developed in Java. This choice was made because Java is

the language used on the main Digital TV middlewares,

such as MHP, ARIB (Association of Radio Industries and

Businesses) and Ginga-J. Despite the fact that the extension

is not be incorporated into any TV middleware, it can still

have access to Middleware Features since it is presented in

the same level as other applications.. Figure 2 shows how

the extension is positioned connecting the Middleware and

the application, considering as basis a mixed architecture of

the MHP/ARIB/Ginga-J. The module presented in this

paper should include together with the application as is

highlighted in the Figure 2, this is required for not be

necessary to change the existing middleware

implementations.

For a possible adoption of this extension we choose to

use Ginga middleware. Figure 3 shows the usage scenario of

the proposed extension as part of a bigger structure.

1

1

1

1

The application is transmitted by

broadcast (1)

Server A

Server B

3

Naming Server

2

2

2
2

3

TV sends / receives data from the

server (3)

TV "search" the service in the

name server (2)

3

3

TV Station

Figure 3. Usage scenario

The first step is to build an application that makes use of

the feature of distribution based on location provided by the

extension; this application must be registered in the naming

service and sent by the broadcaster to viewers via broadcast

(1). When the application is received by the TV middleware,

a query is made to the naming service (2) to discover what

is the most appropriate server based on the location to

perform information exchanges. When the application

receives the reply of the naming service, it can finally

exchange information via messages with the broadcaster

server (3).

A. Infrastructure

Figure 4 shows the class diagram of this layer.

Figure 4. Class Diagram from Infrastructure Layer

This layer is responsible for sending messages to

the network layer within the operating system, making

transparent communication between processes and

applications that uses the middleware and hide the use

of sockets from the layers above.

Classes and methods of communication layer cannot be

called directly by the developer. It is only used by others

layers to send messages over the network.

674Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 692 / 729

Figure 5. Class Diagram from Communication Layer

B. Communication

The communication layer is the responsible for the

creation of each message that will be send through the

network and for the creation and management of queues.

This layer also makes abstract the sending of messages

to the application. Figure 5 has the diagram that represents

this layer.

Only the Sender and Receiver classes can be called by

the application developer, providing the mechanisms of

transparency of communication.

C. Common Services

This layer is responsible for providing naming service

and the location transparency. Furthermore, others services

could be provided such as, security service.

The services of this layer are available for use by both

the middleware and the application. The class diagram that

best describes the architecture can be seen in Figure 6.

Figure 6. Class Diagram from Common Services Layer

The service name of the proposed extension provides

four methods for application developers: bind, reBind

unBind, lookUp. The bind/rebind/unbind methods are

responsible to register/deregister a server/service in the

naming service, together with that, lookup method is

responsible for naming service and find server/service

address using the service name and the information about

who is transmitting the application, obtained from the

network. Since the information contained in the network is

part of the context of the set-top box (or the device), we

assume the naming service provided by the solution is

context-sensitive

V. STUDY CASE

To validate the architecture proposed in this paper, we

implemented a version for an extension compatible with the

Ginga middleware, using the Java 1.3. This is the Java

version compatible with Ginga [13]. Ginga was chosen

because it is the middleware of the Brazilian Digital TV.

The current implementation includes all the features that

were described in the architecture section, it contains a total

of 24 classes. This implementation contains more classes

that were explained in Figure 4, Figure 5 and Figure 6,

because some helper classes were created.

A. Voting System

To better evaluate the architecture two identical

applications were developed. The difference between them

is restricted to how they send objects across the network.

The App01 is the application that uses the middleware

extension built in this work, while App02 does not use the

extension.

The application chosen to be developed was a voting

system for reality shows. The system receives a vote given

by the user / viewer through some input device, in the

present case we use remote control and since the input is

received, the Middleware takes care of sending to the

broadcast server.

As the focus of this work is to facilitate the development

of applications making transparent the communication layer,

the GUI was not implemented.

The application works by pressing one of the input keys

in the remote control. The information of which button was

pressed is detected and then sent to the server via message.

675Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 693 / 729

String vote = "participant01";
Sender.getInstance().open();
Sender.getInstance().send(vote);
Sender.getInstance().close();

Figure 7. App01 Code

In Figure 7, we can see the code of App01, which is

responsible for sending the vote of set-top-box/television to

the server, this application uses the module constructed in

this work.

Figure 8 shows the code of App02 that is responsible for

doing the submission of the votes. Note that in App02 the

server address should be passed with the application, so

their location cannot be changed dynamically. In App01,

only the parameters defined in this paper must be sent

together with the application, and the server location could

change dynamically.

Socket clientSocket;
clientSocket = new Socket(Constants.APPLICATION_HOST,
Constants.APPLICATION_PORT);

ObjectOutputStream outToServer;
outToServer = new ObjectOutputStream(
 clientSocket.getOutputStream());

String vote = "participant01";
outToServer.writeObject(vote);
outToServer.flush();
clientSocket.close();

Figure 8. App02 Code

Looking at the code responsible for the communication

of the two applications, one can observe that the code of

App01 is much simpler and transparent than the App02.

Figure 9 shows the server code responsible for receiving the

votes from the App01, while Figure 10 contains the server

code of App02.

RemoteInformation ri = new
RemoteInformation(Constants.APPLICATION_PORT,
Constants.APPLICATION_HOST);

DirectoryServiceClient.getInstance().reBind(Constants.S
ERVICE_NAME,Constants.LOCALITY, ri);

MainReceiver r = new MainReceiver();
r.init();
public MainReceiver() {
 receiver = new Receiver();
}
public void init() throws InterruptedException {
receiver.open();
receiver.addMessageListener(new MessageListener() {
 public void onMessageReceived(MessageEvent event)
 {
 countVotes(receiver.receive());
 }
 });
}

Figure 9. App01 Server Code

Differently from clients, the server of App01 has more

code lines than the App02 server. This happens because the

middleware extension proposed in this paper enables

transparent error handling, and offers a names service,

allowing the server to changes its IP address dynamically.

int port = Constants.APPLICATION_PORT;
welcomeSocket = new ServerSocket(port);
Socket connectionSocket = welcomeSocket.accept();
ObjectInputStream input = new ObjectInputStream(
connectionSocket.getInputStream());
countVotes(input.readObject());
connectionSocket.close();
welcomeSocket.close();

Figure 10. App02 Server Code

In the next subsection, we will present an experiment to

evaluate the performance of the applications built here to

validate the proposed extension.

B. Validation and Results

To analyze the middleware impact, tests were executed

to measure the performance and reliability of the two

applications. The tests were made in a laboratory of Digital

TV with a television embedded with Ginga and a Playout

EITV, which is a complete TV broadcast station that can

perform transmissions containing TV programs in high

definition and interactive content [14]. The configuration of

the testing environment is illustrated in Figure 11.

TV

EITV Playout

Application Server

Naming Server

Figure 11. Test Environment

The test was done as follows: for each application, we

added a function to send 100 votes consecutively when one

of the colored keys on the remote control was pressed.

The modified applications were transmitted one at a

time, to the TV using the EITV Playout. For each

application, the time between the arrival of the first and last

on the server was measured. Each vote was sent separately,

a new connection was opened to send the vote, after send it,

the connection was closed. The experiment was done to

simulate an environment where a user wants to vote more

than once. The experiment was repeated five times only due

676Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 694 / 729

to the stability of the local network of the test environment,

and the results are shown in Table I.

TABLE I – TIME IN SECONDS BETWEEN THE ARRIVAL OF THE

FIRST AND LAST VOTE ON THE SERVERS

Id

Time(s) to complete send

action on App01

Time(s) to complete send

action on App02

1º 32,57 31,17

2º 31,99 31,48

3º 32,49 31,58

4º 32,26 31,73

5º 32,19 31,68

Avg

Function
32,30 31,53

Analyzing the results presented in Table I, we can

realize that App01 had a delay of less them 2,4% comparing

to App02. App01 shows its potential even losing in

performance, by using the localization and communication

transparency provided by this work proposal.

VI. CONCLUSION

This work proposed an extension that provides a

context-sensitive feature to applications, in a way to make

easier and more abstract communication for adopted

implementations. After a brief explanation about the

architecture, a proof of concept was developed and validated

using performance tests.

Even though the study case presented was developed for

Brazilian Digital Television Middleware, the proposed

solution can be adopted in different Middleware, or as a solo

API.

Through the analysis of the results, it can be seen that

the extension can decrease the performance in less than 3%,

but shows its power by creating an easier way to build

distributed, context-sensitive applications. Furthermore, it

guarantees a more dynamically and network-error free

environment since it abstract those scenarios.

ACKNOWLEDGMENT

This work is supported by the CAPES (process 23038-

023577/2008-23, AUX-PE-RH-TVD 385/2008).

REFERENCES

[1] IBGE, Síntese de indicadores sociais : uma análise das

condiçoes de vida da populaçao brasileira. IBGE, 2010.

[2] A. S. Tanenbaum and M. V. Steen, Distributed Systems -

Principles and Paradigms. Prentice Hall, 2002,.

[3] A. Puder, K. Römer, and F. Pilhofer, Distributed Systems

Architecture: A Middleware Approach. Morgan

Kaufmann, 2005.

[4] H. Pinus, “Middleware: Past and present a comparison” ,

2004. [Online]. Available:

http://www.research.umbc.edu/~dgorin1/451/middleware/

middleware.pdf. [Accessed: 20-Sep-2012].

[5] The Open Group, “DCE 1.1: Remote Procedure Call.”

[Online]. Available:

http://www.opengroup.org/public/pubs/catalog/c706.htm.

[Accessed: 20-Sep-2012].

[6] “Ginga Digital TV Middleware Specification,” 2012.

[Online]. Available: http://www.ginga.org. [Accessed: 10-

Sep-2012].

[7] L. Cosentino, “Software: a essência da TV digital,” in TV

Digital Qualidade e Interatividade, Brasília: IEL/NC,

2007, pp. 41–49.

[8] “ABNT NBR 15603-1:2007. Televisão digital terrestre -

Multiplexação e serviços de informação (SI) - Parte 1:

Serviços de informação do sistema de radiodifusão.” .

[9] “Site Oficial da TV Digital Brasileira,” 2012. [Online].

Available: http://dtv.org.br. [Accessed: 10-Sep-2012].

[10] L. F. Soares, “Ambiente para desenvolvimento de

aplicações declarativas para a TV digital brasileira,” in TV

Digital Qualidade e Interatividade, Brasília: IEL/NC,

2007, pp. 51–62.

[11] E. Curry, Message-Oriented Middleware, in Middleware

for Communications (ed. Q. H. Mahmoud), John Wiley &

Sons, Ltd, Chichester, 2004.

[12] “MHP,” 2012. [Online]. Available: http://www.mhp.org/.

[Accessed: 05-Sep-2012].

[13] “ABNT NBR 15606-6: Televisão digital terrestre –

Codificação de dados e especificações de transmissão

para radiodifusão digital - Parte 6: Java DTV 1.3.” 2010.

[14] “EITV Playout - Estação completa de TV digital

interativa para os padrões SBTVD, ISDB e DVB,” 2012.

[Online]. Available: http://www.eitv.com.br/playout.php.

[Accessed: 15-Sep-2012].

677Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 695 / 729

The Dynamic Composition of Independent
Adaptations including Interferences Management

Sana Fathallah Ben Abdenneji, Stéphane Lavirotte, Jean-Yves Tigli, Gaëtan Rey and Michel Riveill
Laboratory I3S (University of Nice-Sophia Antipolis / CNRS)

B.P. 145 06903 Sophia-Antipolis Cedex - France
{fathalla, stephane.lavirotte, tigli, gaetan.rey, riveill}@unice.fr

Abstract—Nowadays, software systems are becoming ever more
complex and are likely to evolve quickly. A challenge is being able
to adapt these systems and thus to integrate, swap or remove new
functionalities. Compositional adaptation provides a way to tackle
this at runtime. This situation, leads to satisfy new requirements
in software adaptation. Moreover, adaptations entities may be
developed independently and even can be specified by different
designers. Accordingly, the set of all adaptations that may be
deployed cannot be anticipated at design time. In such case,
they may interfere when they are composed. In this paper, we
propose an associative composition operation to support software
adaptation. In our research, we consider that the adaptation of
a running system is assimilated to the composition of the model
of the initial application (called initial graph) with new model
elements (graphs of adaptations).

Index Terms—software composition; adaptive software; inter-
ference management; graph transformation.

I. INTRODUCTION

Nowadays, software systems must be developed with the
capacity of being able to evolve quickly [1]. Software systems
must react to environments changes and consequently inte-
grate, swap or remove new functionalities. The compositional
adaptation approach [2] allows to change software units. In
compositional adaptation, the applications must be based on
a modular architecture with a loose coupling between the
software units composing it. The loose coupling between
component and its execution environment control facilitates
the dynamic reconfiguration of components assembly. Accord-
ingly, Component Based Software Engineering is well-suited
for compositional adaptation [3]. We will use throughout
the paper the more general term adaptation or adaptation
entities to point out the modification that will be done on the
application.

In this paper, we present an adaptation mechanism that
allows the dynamic composition of adaptation entities. In order
to support such composition, existing approaches consist either
in defining explicitly dependencies between adaptation entities
or either in calculating all possible combinations between them
in order to choose the most appropriate [4]. Since the result of
the composition may depend on the order in which adaptations
are made, the number of combinations to be calculated from n
adaptations may be n!. In this paper we propose an associative
and a commutative composition mechanism that allows to
minimize the number of combination by construction. The
application resulting from adaptations composition will be

always the same, regardless of their order of composition.
Accordingly, there is no need for a designer to explicit
the order when deploying adaptation entities or to calculate
combinations. Using this mechanism, adaptations are added
or removed independently of each other. More specifically,
all resulting interferences (interactions) between adaptations
entities are handled automatically at the composition step.
Interference is defined as ”a conflicting situation where one
adaptation that works correctly in isolation does not work
correctly anymore when it is composed with other adaptation”
[5]. These interferences should be managed in order to ensure
the consistency of the application after the adaptation process.
Moreover, since adaptation mechanism will modify only the
structure of the application, we model software applications
and adaptations entities by graphs. The main reason to choose
graph as a basis formalism is that it can define software
architecture easily as shown in [6]. The interference resolution
step will operate on the graph by applying a set of graph
transformation rules.

The remainder of this paper is organized as follows: next
section presents some related works. Then, Section III intro-
duces the model of our applications and details the example
that will be used all along the paper to illustrate our approach.
In Section IV, we detail formally our composition process
and how it addresses the issue of interference management.
Particularly, we show the associativity property that allows us
to offer a deterministic solution when we compose adaptation
entities. Then, we describe our implementation showing some
experimental results (Section V). Finally, we conclude in Sec-
tion VI on the contribution of this work and its perspectives.

II. RELATED WORK

Systems adaptation can be triggered by several causes.
Researchers have proposed a variety of methodologies for
the development of self-adaptive systems. This objective can
be achieved using reflective architecture-based mechanism
[7]. To fulfill software adaptation objective, there is several
representation of adaptations. As a consequence, the process
of the detection and the resolution of interference are related
to the used method. In this section, we mention some of
works that have contributed to tackle the interference problem,
all other related works are out of the scope of this paper.
This problem is considered as the violation of the constraints
defined at design time of the system [7]. A system change

678Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 696 / 729

is valid only if the system satisfies the constraints after the
change. Otherwise, the change will be canceled. Barresi et
al. [8] define explicitly at design time the order in which
adaptation should be applied. This requires the knowledge of
all system adaptation at design time. But we have seen that we
need unanticipated adaptation entities that will be performed at
runtime and that can be loaded and unloaded at runtime. This
requirement has been included in K-Component Model [9].
Dowling et al. use graph transformation rules to separate the
adaptation code from the computational code and to perform
architecture adaptation. Furthermore, they are not interested in
the problem of interference. Similarly, Guennum et al. [10] use
graph transformation rules to perform software adaptation and
propose tree operators to compose rules. These operators allow
defining an order between rules or select only one rule to be
executed. These operators need to be defined at design time
and as a consequence require the knowledge of all possible
adaptations (contradictory with our constraint).

Another related area of research that relies on software
adaptation is the use of AOP (Aspect Oriented Program-
ming). David et al. [11] consider that software adaptation
is a crosscutting concern of the application and use aspects
to encapsulate adaptations code. In this area, the problem
of interference was well defined and several solutions were
proposed. Greenwood et al. [3] investigate a solution to
interferences in the context of AO-Middleware platform. To
do that, they define interaction contract which is used at
runtime. These contracts express several strategies to resolve
interferences such as priority, precedence and logical operators
(to combine contracts). Despite the use of these contracts
at runtime, their specifications are made by the developer
who should include all dependent relationships between the
adaptations. This will be a complex task because we con-
sider multi designers approach. Moreover, the strategy of
interference resolution may depend on the runtime state of
application. Dinkelaker et al. [12] define an extensible ordering
mechanism which can be modified at runtime. Such approach
still suffers limitation in term of software adaptation because
interference management at runtime needs to be anticipated.
In that direction, Cheung et al. [13] propose a composition
mechanism that repair interference problem in an anticipate
manner. Since interference can occurs at input and/or output
of components, they propose two composition mechanisms,
based on two different languages for adaptations, to handle
these problems separately. But, we have shown previously that
these problems need to be resolved together and not separately.
Their solution can resolve interference either for the output of
component or for the input of component but not for both
interferences types.

Graphs is not only intuitive representation of software
architecture, but are also used to identify errors on the analysis
level. The integration of the paradigm of graph with the aspect-
oriented paradigm has been proposed by Cirarci et al. [14].
They use the graph formalism to identify interference. Graphs
represent the several states of a program, according to different
order of aspect weaving. Interference is detected if the final

state changes according to the selected order.
Although all of previously described approaches propose

software adaptations mechanism that support interferences
detection and resolution, none considers a merge process for
computing reasonable system adaptation from a large set of
possible adaptation, which is the main focus in this article.

III. PRELIMINARIES

To be able to present our composition mechanism, we
introduce in this section the model of our software systems.

A. Modelling Software architecture Assemblies Using Graphs

In order to represent structural specifications of software
systems, several researchers use Business Process Model
(BPM), which embodies also the strategies for accomplishing
software evolution. It provides high-level specification that is
independent of the target platform. There exist many notations
to represent BPM [15]. In this paper, we abstract from any
specific notation and represent a process model as a directed
graph as per in the definition 1.

Definition 1. A process graph G is a set of vertices V
and a set of directed edges E (G = (V,E)). A vertex vi of
V is defined by a tuple (Id(vi), Typ(vi)) where Id(vi) is the
identifier of vi and the attribute Typ(vi) is its type. An edge
ej of E is written as ej = (vi, vk, lj) where lj is a label.

definition 2 (Successor and Predecessor). Let G = (V,E)
be a directed graph. For each vertex vi ∈ V : we define the
set of its predecessor vertices as [v0i, ..., vli]•vi where {∀vli ∈
V, (vi, vli) ∈ E} , and the set of its successors (or output)
vertices vi•[v0i, ..., vmi] where {∀vmi ∈ V, (vmi, vi) ∈ E}.

Each vertex has a type and depends on the target platform
language that we represent. In the remainder of this paper we
consider that applications are created as component assemblies
(component can be instantiated when a device appears and
destroyed when the device disappears). Vertices are classified
into two subclasses: (i) Black box vertices (Typ(v)=’Port’ and
id(v)=’ComponentName:PortName’), representing component
ports (event and method call); (ii) White box vertices (or
connectors), which determine the flow of the execution when
events are triggered. The attribute Typ(v) of a white box
vertex indicates the kind of connectors. We introduce 5 basic
connectors: PAR, SEQ, IF, CALL, DELEGATE. PAR•[vi, vj]
connector performs the concurrent execution of vertices vi and
vj . SEQ•[vi, vj] defines the order of execution; vi before vj .
IF•[vc, vi, vj] is used to choose a path between vi and vj . If
the vertex vc has the value true, vi will be performed (or se-
lected) otherwise vj will be executed. CALL connector allows
rewriting an existing edge. The connector DELEGATE•[vi]
specifies that the link to the vertex vi will be unique in case
of interference. CALL and DELEGATE are special con-
nectors that will never be instantiated in the final application
because they are used only to modify some links. Figure 1
shows an example of the application according to our model.
In order to facilitate the comprehensibility of this paper, we
use a lightweight representation. Each black box component
will be represented by a rectangle on which we add a label

679Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 697 / 729

Figure 1. An example of component assembly graph

on the form ComponentinstanceName : PortName. The
white box vertex will be represented by a rectangle on which
we add a label on the form : ConnectorName.

B. Running Example

We will now present the scenario that will be used through-
out this paper to present our approach. As an example, we
define a ubiquitous application that relies on variable and com-
municating devices which define its software infrastructure.
This software infrastructure appears dynamically populated by
the functionalities of these devices. As a consequence, the
application has to be adapted during execution time in order
to consider these changes. As all young people, Bob listens to
music all the time on his Smartphone. Inside his home, he has
an adaptation that redirect the sound from his phone to any
available audio device (Home cinema, speaker, etc.). Bob lives
alone. Today his mother visits him. Bob’s mother had recently
hearing problems; she cannot withstand the high tones. For
this reason, she has an adaptation (reconfiguration) that will
specify the threshold of the sound level for audio devices in
her surrounding physical environment. Bob doesn’t know that
his mother had hearing problems. He increases the level of
music.

Figure 2. The graphs of adaptations defined in the running example

We consider that the original application (called the base
assembly) is build from a physical audio device, which is
represented by a Blackbox component AudioHome at software
level. In our use case, there are two sub-assemblies (adapta-
tions) linked to the AudioHome device. The SoundRedirect
adaptation graph is depicted in Figure 2. In order to be
applied, this adaptation requires that there are instances of
PhoneBob* and Audio* components in the initial assembly
(for example, if no component with audio capability is found,
this adaptation will not be woven at all). A simple wildcard ’*’
is used in this example, but more complex regular expression
can be defined (Component instances’ types and component

ports’ names can both be wild-carded). This wildcard will be
replaced by the real device type of the infrastructure. It allows
these adaptations to be applied to real application although its
configuration is not completely known at design time. This
adaptation adds a new edge between the port RedirSound of
the component PhoneBob* and the port Play of the component
Audio*. Through this link the Audio* device will receive the
music to play. Figure 1 shows an example of instance graph
of this adaptation.

The Threshold Level adaptation is depicted in Figure 2.
The adaptation that is not relevant to the application at
the beginning, can become relevant only when its required
components appear in the application assembly (components
tagged in Figure by a ’*’). This adaptation specifies that when
an Audio device is detected, the user can define using his
phone the threshold for the sound level. The Min vertex is a
new connector, which will be defined in the next section. It
is used to forward the minimal received values from its input
vertices. The CALL vertex allows rewriting existing links.

In the final system both adaptations are running in parallel.
Even though the adaptation of Bob’s mother has delineated the
threshold, when Bob will increase the sound, this threshold
will be exceeded. This example illustrates a problem of a
concurrent access to a shared resource (audio device). In this
case, if we apply classical resolution approaches, such as
a precedence strategy, the problem will not be resolved. If
we apply the Threshold Level adaptation before or after the
SoundRedirect adaptation the problem will persist.

IV. A GRAPH-BASED APPROACH FOR ADAPTATIONS
COMPOSITION

In this section, we detail our approach for interference
resolution and the proof of the symmetry property.

A. Approach Overview

Until now, we have presented the adaptation entities graphs.
Since each adaptation entity is based on a set of required com-
ponents, we need to determine the set of relevant adaptations
(adaptations that can be applied). After that, we transform the
abstract description of relevant adaptations into a concrete one
(replacing ’*’ wildcard by the type of real components in the
base assembly). If various components satisfy the requirements
of an adaptation, then it can be applied as many times as there
are combinations of components instances. The combination
function computes all the places in the assembly where adap-
tations can be applied according to different strategies (build
all possible combinations, combine according to components
names, etc.). Subsequently, all these graphs need to be com-
posed with the graph of the base assembly. The composition
mechanism considers then these graphs, in order to generate
a single graph representing the adapted assembly. Despite the
order of graphs composition the final graph will be the same
due to the commutativity and the associativity properties.
There are two sub steps in the composition process: the first
sub step superimposes all graphs and also identifies potential
interferences. The second sub step is accomplished by the

680Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 698 / 729

Merging engine, which resolves these problems using graph
transformation rules. The final graph that represents the new
configuration of the system, will be exported to the adaptive
execution platform.

The interference problem is defined through two patterns.
The interference Type 1 is detected when there is a Black Box
vertex that has two or more outgoing edges. The interference
Type 2 is denied as a Black Box vertex that has at least
two incoming edges. In our previous work [16], we have
considered interference Type 1. In this paper, we introduce new
White box vertices and we focus on a new type of interference
that occurs when several adaptation try to access to a shared
component’s ports (Type 2).

B. Superimposition and Interference Detection process

The superimposition operation builds a unique graph GT =
(VT , ET) from the graph representing the initial assembly
Ginitial and several graphs resulting from the adaptation
instantiation step (GAdap1,...,GAdapN). GT = (((GBase ∪
GAdap1) ∪ GAdap2)... ∪ GAdapN) is the graph with VT =
VBase∪VAdap1∪...∪VAdapN and ET = EBase∪EAdap1∪...∪
EAdapN . When two graphs g1 and g2 share a vertex (vg1 and
vg2 have the same Typ and Id) the superimposition operation:
(1) keeps one vertex vg1 in the resulting graph (2) copies the
incoming edges (respectively the outgoing edges) of the vg2 to
vg1 (by modifying their target vertex and their source vertex
to be vg1). Starting from this point, interferences may appear
in the GT graph.

Interference will occur only when adaptations share at least
one port. This is due to the following constraints, which are
needed to guarantee the associativity and the commutativity
properties: (1) In order to preserve the independency of adap-
tations entities, these later can only share vertices of the base
assembly, (2) Adaptations cannot remove Blackbox vertices
or links explicitly (This may lead to the loss of associativity
and commutativity properties). Vertices are removed only if the
adaptation is withdrawn or components are not available. Thus,
the execution of an adaptation cannot prevent or enable another
adaptation to be performed. Thus, the potential for interference
between adaptations is greatly reduced. We defined two types
of interferences: (1) Control flow interference occurs when
adaptation entities share an output port of the same component
(2) Concurrent method call occurs when adaptation entities
share a method call of a component. In [16] we have already
detailed the process of resolution of interference Type 1. In
this paper, (i) we extend the set of white box vertices, (ii) we
proof the associativity and commutativity properties for these
new connectors, and (iii) we detail the process of resolution
of interference of Type 2.

We have seen in the previous example that the SoundRedi-
rect adaptation and the Threshold Level adaptation provide
an interference problem. These two adaptations share the port
Play of the component AudioHome with the base assembly
graph. Each adaptation sends a different value to this device.
The superimposition of these graphs illustrates an example of

interference of type (2) presented above. To tag this point in
the graph GT , a special vertex has been added in Figure 3.

Figure 3. The Interference detection step adds a ⊗ vertex to mark the
problem

Thus, what is the resulting behavior when both adaptations
are relevant to be applied? In this case, the system will respect
the threshold defined by the mother? Or will let Bob increases
the level of sound independently of the threshold. In the next
section we detail the resolution process of this problem.

C. Interference management using Graph transformation
rules

The interference management operation addresses the au-
tomatic resolution of interferences with the associativity and
the commutativity properties. To preserve this property, it has
been seen that adaptation entities are applied on the base
assembly GBase, which is free of any adaptation. Conse-
quently, the result of the interference management will be
the same whatever the order of adaptations composition. The
resolution mechanism builds its solution from ⊗ vertices
(added previously in GT graph). We have seen that graphs are
build from two subclasses of vertices: Black box and White
box. Basically, the algorithm used to resolve interferences
browses all ⊗ components in order to run a merging engine
on them [16]. Since we work on graphs, the merging will be
achieved by applying graph transformation rules.

A graph transformation rule has the form of p : L→ R and
is applicable to a graph GBase if there is an occurrence of L
in GBase. Using rules definition, the designer can control the
manner in which adaptation graphs will be merged. Thus, the
semantics of the deployed application will be affected by the
logic of merging given by the designer. Given two vertices,
v1 and v2 (they must share a ⊗ successor or predecessor
vertex), we define a set of graph transformation rules that
shows how they will be merged according to different possible
configurations (for example if v1 and v2 share a predecessor
vertex). Thus, we have defined the set of rules to merge each
white box vertex with all other vertices. Compared with our
previous work, we have extended the set of White box vertices
and accordingly their graph transformation rules.

1) Concurrent method call interference resolution: This
kind of interference occurs when at least two ports are
linked to a port of another component in the same time. To
resolve concurrent method call interference, we have defined
new connectors (which have 2 predecessors vertex and one
successor vertex). The first connector is [v1, v2]•FW . When
a data come from v1 and/or v2, this connector forward it to
its successor vertex(the method call). In other cases, it would

681Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 699 / 729

be necessary to add an [v1, v2]•AND or [v1, v2]•XCHoice
connectors (the XCHoice connector can be instantiated
according several strategies such as Min, Max, XOR,.. It
allows to choose one data from its input vertices). Similarly to
the Control flow interference resolution, adaptations entities
should specify connectors that should be added for each
method call. Otherwise the merging engine will apply its
default solution (FW connector). The merging algorithm is
defined in algorithm 1.
In order to merge interfering vertices, we first need to get

Algorithm 1 Merging(Graph GT)

ListFusvertex : is used to save the list of ⊗ vertex of GT

k : the number of ⊗ vertex in GT

for s = 0 to k = ListFusvertex.getSize() do
Pre= GetPredecessor(ListFusvertex(s))
Vertex v1= Predecessor(0) ;
Vertex v2= Predecessor(1) ;
Rule r=SelectRule(v1, v2)
Boolean res=ExecuteRule(r)
ListFusvertex = getFusV ertex(GT)

end for

the list of ⊗ vertices (ListFusvertex) from GT graph.
Each ⊗ vertex has exactly two predecessor’ vertices (saved
at Pre). Then, we set v1 to the first predecessor vertex and
v2 to the second predecessor vertex. Given two vertices v1
and v2, the SelectRule(v1, v2) function starts by searching
the graph transformation rule in the rule database in order to
merge these vertices (using Typ(v1) and Typ(v2) attributes).
If there is no graph transformation rule able to solve this
problem, then the default solution will be applied. For
example, if a designer has defined a permissive policy, all
adaptations will be met at the same time (parallel execution).
This is similar to applying a Forward FW connector to each
adaptation graph. The default solution will replace the ⊗
vertex (which cannot be resolved) by a FW vertex. Next
the function ExecuteRule(r) applies the selected rule r to
GT . This rule merges v1 and v2 and removes the current
⊗ vertex. After this, the merging engine selects the next ⊗
vertex from the list ListFusvertex. Using our case study,
we will show that the merging operation can be propagated
to the successors vertices of v1 or v2 in order to solve the
interference for each vertex. In such case we need to get
the new list ListFusvertex = getFusV ertex(GT) because
some ⊗ vertices have been added to the graph.

Figure 3 shows an interference on the port Play of the
component AudioHome. Thus, we will apply our merging
algorithm to resolve this problem. The ⊗ vertex has two
predecessors vertices v1 = Min and v2 = PhoneBobLG :
RedirSound. The rule r that will be applied is given in the
top of Figure 4.

Throughout this rule the designer has defined that he wants
rewrite an existent link (due to the CALL use). The trivial

Figure 4. The Graph transformation rule (R1) and the two steps for
interference resolution

way to do this is achieved by propagating v2 into the second
branch of the Min connector. The rule will reconnect these
vertices using a new ⊗ vertex. R1 rule can be applied in our
example because there is an occurrence of the left graph L
on GT . The matching step will unified the L graph variables
as following: A:a is PhoneBobLG : RedirSound ; B:b is
PhoneMotherSony : SetV alue port.

Figure 4 shows the result of R1 execution (Step1). First,
⊗ vertex is propagated in Min branch. Since there are still
⊗ vertices, the merging algorithm will continue the resolution
process. In this example, there are a CALL connector and a
port. In that case, the merging will apply a graph transfor-
mation rules that will connect the port to the output vertex
of the CALL connector. We have seen that this connector
allows rewriting an existent link. The graph of components
assembly of the final application is depicted in Figure 4, Step
2. We note that CALL connector will not be instantiated in
the final assembly because it is used only for the interference
resolution. When we define adaptation entities, this connector
should be used carefully.

D. The symmetry propriety

Associativity and commutativity properties guarantee a
good independence between adaptation entities, that is to say
that there is no need to define some explicit dependency
between them since the composition process ensures the con-
sistency of the result. The result of adaptations weaving will be
the same whatever the order of composition. The interference
resolution process must also guarantee this property when it
merges interfering adaptations. Let C be the set of connectors.
The symmetry is defined via three sub-properties:

• Idempotent: ∀c1 ∈ C and c1⊗c1=c1. Merging a con-
nector with it self should return the same connector.
This property is achieved by construction. We have
specified a graph transformation rule that keep only one
connector when we compose the same connector (i.e.,
SEQ•[a,b]⊗SEQ•[a,b]=SEQ•[a,b] when a 6=b).

• Commutativity : ∀c1, c2 ∈ C; c1⊗c2=c2⊗c1. It should
not matter in which order connectors are merged. The

682Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 700 / 729

function SelectRule presented previously, select the same
graph transformation rule independently of the order
of its parameter (it means SelectRule(c1,c2)= Selec-
tRule(c2,c1)). This property is ensured at composition
level by construction.

• Associativity: ∀c1, c2, c3 ∈ C; ((c1⊗c2)⊗c3)
=(c1⊗(c2⊗c3)). If the merge operation is associative,
then generalization to more than two connectors can be
achieved merely by repeated merges, in any order.

To grantees the determinism of the computed application
and also ensures the consistency of the composed system at
the implementation level, we need to prove the associativity
property. In order to resolve interferences at input port, we
have extended the set of White Box vertices to support new
semantic. Thus, for each new connector, we must prove the
associativity property of its merging rules. A fundamental
question to answer is that ”how associativity can be proved?”
To answer to this question we define steps to be done for
that end. We choose as example the new connector Min
(we use the notation Newc). Connectors do not necessarily
need to be symmetric (for example SEQ connector is not
symmetric because: when a 6=b, SEQ•[a,b] 6= SEQ•[b,a] but
its composition with itself and other connector is symmetric).
For the proof, we will require demonstrating that the merging
of Newc with any other connector is associative. The first step
to do is the definition of graph transformation rules that specify
the way of merging of the Newc connector with each other
connectors (we have already done the proof for all existent
connectors). After that we need to prove that:

• The merging of Newc with itself is associative. It
means that (Newc⊗ Newc)⊗ Newc = Newc⊗(Newc⊗
Newc). For example, using our graph transfor-
mation rules, we obtain {[a,b]•Min⊗ [a,c]•Min}⊗
[c,b]•Min=[a,b]•Min ⊗ {[a,c]•Min⊗ [c,b]•Min}=
[a,[b,c]•Min]•Min when a 6=b, a6=c and b6=c (there are
also other combinations to compute such as [b,c]•Min,
[a,d]•Min...).

• The merging of Newc with all the existent connectors
is also associative. That is to say: (Newc ⊗ Oldc1) ⊗
Oldc2 = Newc ⊗ (Oldc1 ⊗ Oldc2) where both Oldc1
and Oldc2 ∈{PAR, IF, SEQ, DELEGATE, CALL, FW}

In this paper, we will demonstrate this property for the rule
R1 presented previously. This rule shows the merging of a port
with a MIN connector. Let G1 = [a,CALL]•Min,G2 =
c,G3 = d be the set of input graphs of the composition
operation where a, b, c and d are ports’ components. We will
compose theses graphs as fellows: Comb1 = (G1⊗G2)⊗G3
and Comb2 = G1 ⊗ (G2 ⊗ G3) and we will show that the
resulting graph is the same. There are several configuration to
consider during composition:

case1: c = a and d 6= a and d 6= c
Comb1 = ([a,CALL]•Min⊗a)⊗d = [a,CALL⊗
a]•Min ⊗ d = [a, (CALL ⊗ a) ⊗ d]•Min =
[a, a⊗ d]•Min = [a, [a, d]•FW]•MIN
Comb2 = [a,CALL]•Min(a ⊗ d) =

[a,CALL]•Min ⊗ [a, d]•FW = [[a,CALL ⊗
[a, d]•FW]•Min = [a, [a, d]•FW]•Min
we conclude that comb1 = Comb2

case2: c = d and c 6= a
Comb1 = ([a,CALL]•Min⊗c)⊗c = [a,CALL⊗
c]•Min ⊗ c = [a, (CALL ⊗ c) ⊗ c]•Min =
[a, c]•Min
Comb2 = [a,CALL]•Min(c ⊗ c) =
[a,CALL]•MIN ⊗ c = [[a,CALL ⊗ c]•Min =
[a, c]•MIN
we conclude that comb1 = Comb2

case3: c 6= a and d 6= a and d 6= c
Comb1 = ([a,CALL]•Min⊗c)⊗d = [a,CALL⊗
c]•Min ⊗ d = [[a, (CALL ⊗ c) ⊗ d]•Min =
[[a, c⊗ d]•Min [a, [c, d]•FW]•MIN
Comb2 = [a,CALL]•Min(c ⊗ d) =
[a,CALL]•Min⊗ [c, d]•FW = [[a,CALL⊗ [c, d]
•FW]•Min = [a, [c, d]•FW]•Min
we conclude that comb1 = Comb2

We conclude that the rule R1 is associative. The proofs
of the associativity property of the merge function on other
new graph transformation rules are completely identical to the
proofs of the associativity shown for the fusion rule R1. We
do not detail the proof of other rules. To demonstrate that the
merging of each new connector is associative, we compute all
the possible composition combinations (connector with itself
and with existent connectors). In order to facilitate this task,
we have implemented a tool for associativity automatic proof.
The input of this tool is the definition of the new connector and
its graph transformations rules (we defined the graph of Min
connector and all graph transformation rules of its merging).
As output, it will show in which case this property is failed (if
it exists). Thus, the designer can modify the set of rules that
cause problems to guarantees the property. Using this tools we
have proved that the composition of Min connector with all
previous operators is associative.

V. PRACTICAL ISSUES

The compositional adaptation mechanism presented in this
paper has been implemented in the WComp platform, which
is a middleware for adaptation based on a dynamic compo-
sition of services based on the SLCA (Service Lightweight
component Architecture) model [17] . Components allow the
management of the black box properties of devices. The inter-
action is limited to the use of their required and provided ports
(the direct access to implementation is forbidden). In order to
manage adaptation in a transversal way to produce simultane-
ous modifications in different points of the application, we use
a paradigm named Aspect of Assembly(AA)[18] (based on
AOP principles). It produces components assembly (graphs)
that will be composed. The merging engine implementation
has been presented in [16] and [19]. The merging engine uses
graph transformation mechanism in order to merge vertices
where interferences have been detected. Various graph trans-
formation tools exist but the most used is AGG (Attributed
Graph Grammar) [20].

683Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 701 / 729

Performance is a decisive factor in self adaptive systems
(ubiquitous systems need to be quickly adapted to consider
their infrastructure changes). For that reason, we measured
the execution time of the composition operation. Then, we
can conclude in which case our solution can be used. The
ruling that the response time is acceptable or not depends
on application’s domains. The results of our experiments
are briefly presented in the rest of this section. Figure 5

Figure 5. The execution time of the Merging process

shows the execution time of the merging step. From these
experimentations, we conclude that our approach can be used
in application’s domain that don’t require a very low response
time to be adapted. For example, our composition process can
be used in the area of domestic application since it composes
adaptations about 1 second.

VI. CONCLUSION AND FUTURE WORK

The work described in this paper is derived from our expe-
rience in composing independently developed adaptations (but
jointly deployed). In this paper, we introduced a new connector
Min that enables our composition mechanism to handle the
concurrent method call interference problems. Using graph
representation, we formally defined the model of the running
system and the set of its adaptations. Our approach performs
some predefined graph transformation rules that will merge
special vertices of the graph in order to resolve problems.
We provide that this operation is associative as the order of
adaptations compositions does not matter.

Immediate perspective of this work is to provide a well
defined representation of connectors behavior. Model checking
techniques will be applied to ensure that the composition of
synchronous connectors does not violate the behavior of the
target application.

VII. ACKNOWLEDGMENTS

This work is supported by the French ANR Research
Program VERSO in the project ANR-08-VERS-005 called
CONTINUUM.

REFERENCES

[1] B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, and B. Cukic, “Software engineering
for self-adaptive systems: A research roadmap,” Software Engineering
for Self-Adaptive Systems, pp. 1–26, 2009.

[2] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng, “A taxonomy of
compositional adaptation,” Rapport Technique numéroMSU-CSE-04-17,
juillet, 2004.

[3] P. Greenwood, B. Lagaisse, F. Sanen, G. Coulson, A. Rashid, and
E. Truyen, “Interactions in ao middleware,” in Proc. Workshop on ADI,
ECOOP, 2007.

[4] F. Munoz and B. Baudry, “Validation challenges in model composition:
The case of adaptive systems,” ChaMDE 2008, p. 51.

[5] F. Sanen, E. Truyen, and W. Joosen, “Modeling context-dependent aspect
interference using default logics,” in Fifth workshop on Reflection, AOP
and Meta-data for Software Evolution, no. 5, 2008, pp. 1–5.

[6] M. Wermelinger, A. Lopes, and J. Fiadeiro, “A graph based architectural
(re) configuration language,” in ACM SIGSOFT Software Engineering
Notes, vol. 26, no. 5. ACM, 2001, pp. 21–32.

[7] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste, “Rain-
bow: Architecture-based self-adaptation with reusable infrastructure,”
Computer, vol. 37, no. 10, pp. 46–54, 2004.

[8] L. Baresi, R. Heckel, S. Thöne, and D. Varr´ o, “Style-based modeling
and refinement of service-oriented architectures,” Software and Systems
Modeling, vol. 5, no. 2, pp. 187–207, 2006.

[9] J. Dowling, V. Cahill, and S. Clarke, “Dynamic software evolution and
the k-component model,” in Workshop on Software Evolution, 2001.

[10] M. Guennoun, “Architectures dynamiques dans le contexte des applica-
tions à base de composants et orientées service,” 2006.

[11] P. David and T. Ledoux, “An aspect-oriented approach for developing
self-adaptive fractal components,” in Software Composition. Springer,
2006.

[12] T. Dinkelaker, M. Mezini, and C. Bockisch, “The art of the meta-aspect
protocol,” in Proceedings of the 8th ACM international conference on
Aspect-oriented software development. ACM, 2009, pp. 51–62.

[13] D. Cheung, J. Tigli, S. Lavirotte, and M. Riveill, “Wcomp: a multi-
design approach for prototyping applications using heterogeneous re-
sources,” in Rapid System Prototyping. Seventeenth IEEE International
Workshop on, 2006, pp. 119–125.

[14] S. Ciraci, W. Havinga, M. Aksit, C. Bockisch, and P. van den Broek,
“A graph-based aspect interference detection approach for uml-based
aspect-oriented models,” Transactions on aspect-oriented software de-
velopment VII, pp. 321–374, 2010.

[15] M. La Rosa, M. Dumas, R. Uba, and R. Dijkman, “Merging business
process models,” On the Move to Meaningful Internet Systems: OTM
2010, pp. 96–113, 2010.

[16] S. Fathallah Ben Bbdenneji, S. Lavirotte, J. Tigli, G. Rey, and M. Riveill,
“Mergeia: A service for dynamic merging of interfering adaptations
in ubiquitous system,” in UBICOMM 2011, The Fifth International
Conference on Mobile Ubiquitous Computing, Systems, Services and
Technologies, 2011, pp. 34–38.

[17] V. Hourdin, J. Tigli, S. Lavirotte, G. Rey, and M. Riveill, “Slca,
composite services for ubiquitous computing,” in Proceedings of the
International Conference on Mobile Technology, Applications, and Sys-
tems. ACM, 2008, p. 11.

[18] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, D. Cheung-Foo-Wo,
E. Callegari, and M. Riveill, “WComp Middleware for Ubiquitous
Computing: Aspects and Composite Event-based Web Services,” Annals
of Telecommunications (AoT), vol. 64, Apr 2009.

[19] S. Fathallah, S. Lavirotte, J.-Y. Tigli, G. Rey, and M. Riveill, “Adap-
tations interferences detection and resolution with graph-transformation
approach,” in the 6th International Conference Sciences of Electronic,
Technologies of Information and Telecommunications(SETIT), ser. ,
Sousse, Tunisia, Nov.

[20] G. Taentzer, “Agg: A graph transformation environment for modeling
and validation of software,” Applications of Graph Transformations with
Industrial Relevance, pp. 446–453, 2004.

684Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 702 / 729

Mission-oriented Autonomic Configuration of Pervasive Systems

Guillaume Grondin, Matthieu Faure, Christelle Urtado and Sylvain Vauttier
LGI2P / Ecole des Mines d’Alès, Nîmes, France

{Guillaume.Grondin, Matthieu.Faure, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

Abstract—In pervasive systems, software applications are
dynamically composed from the services provided by the
smart devices spread in the local environment. A system
must react to changes that occur in the environment and
reconfigure applications in order to maintain their operation
and assume their missions at its best. This paper advocates
the need for a mission description language, which enables
to describe applications in a declarative way as abstract
service compositions. The system uses mission definitions to
calculate a configuration that best executes them with the
currently available resources. This optimal configuration is
intended to maximize the utility of the system, considering
user preferences, available resources, and mission criticality.
Contextual adaptations are captured in the mission language
as modes and strategies, that respectively describe evolutions
of the assigned mission set and alternate ways to execute
missions. These mechanisms leverage service component ap-
proach, for the dynamic deployment of missions, and agent-
orientation, for autonomic configuration management.

Keywords-pervasive system; autonomic computing;
context-awareness; service composition language.

I. Introduction
As miniaturization of computer systems increases, cal-

culation and communication-enabled (so-called smart)
devices spread around us. These new computers alto-
gether form computer networks that have given birth to
a new paradigm called pervasive computing. Pervasive
computing leverages the services that are dynamically
discovered in the environment to meet user require-
ments. The dynamicity and openness of the environment
have a strong impact on the software that must adapt
to these changes. Thus, pervasive systems must provide
solutions for several inherent issues [1]:

- Context-awareness. The boundaries and con-
stituents of pervasive systems are not known beforehand.
Pervasive software must be able to dynamically discover
which resources are available in the environment. More-
over, it must know how to map user requirements with
the available resources in order to implement valuable
scenarios. Context-awareness is the capacity of pervasive
software to sense and build a proper inner representation
of varying environments.

- User empowerment. Pervasive systems are in-
herently user-oriented. Their purpose is to help users
leverage the services provided by the smart devices that
surround them in their environments. To be as useful
and relevant as possible, pervasive systems must provide

users with means to define and submit their own service
compositions. Indeed, elaborated specific requirements
cannot be met by predefined services. Pervasive systems
must therefore support the dynamic definition of their
missions, which entails dynamic adaptation touser de-
mands.

- Autonomous and dynamic adaptability. As
devices can freely join or quit the system anytime,
resources and services are volatile. Pervasive systems
must support dynamic change management to adapt
themselves to open, variable environments. For de-
pendability’s sake, service continuity must be trans-
parently maintained thus necessitating the system to
autonomously and dynamically react in order to evaluate
the situation and change either means used to reach its
defined objectives or its objectives themselves..

The remaining sections of this paper describe the per-
vasive system framework we designed to tackle these is-
sues. Section II sets the technical ground of our proposal,
which is a combination of a multi-agent system and a
service component architecture. It also briefly introduces
a water hazard monitoring system as an application
for our framework. Section III introduces the concepts
and syntax of Arold, our proposed mission description
language. Section IV briefly explains the principles of
optimized deployment calculation. Section V discusses
related work. Section VI draws a conclusion and per-
spectives about this work.

II. Technical Ground and Case Study
A. System, Agents, Components and Services

A pervasive system is dynamically composed of a set
of smart devices co-located in an environment. Smart
devices use their embedded communication capabilities
and intelligence (software) to interact and cooperate. In
our work (see Figure 1), the embedded software of each
device is managed in a modular and reconfigurable way,
which conforms to a service component approach [2].

Components are reusable, decoupled software modules
that encapsulate distinct functionalities. They can be as-
sembled together, so as to produce operational software,
thanks to well defined connectable interfaces that explic-
itly document the interaction capabilities of components.
Provided (server) interfaces document functionalities
that are implemented by a component and proposed as

685Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 703 / 729

Figure 1. A component-based and autonomic pervasive system

invocable services. Required (client) interfaces document
functionalities that must be called by a component as
external services it depends on. We use the component
model and container facility proposed by the OSGi
framework [3] to dynamically administrate the installa-
tion, assembling, replacement or removal of components
on each device. The OSGi framework also provides a
service registry where any instantiated component can
publish the services it proposes through its provided
interfaces. This enables the dynamic introspection and
retrieval of components that are available in a container.
Components can thus be managed and handled so as to
build and adapt software to the changing contexts in
which devices must operate. Three kinds of components
are actually deployed on a device: resource components,
that provide low-level technical services used to execute
concrete actions; task components, that define abilities
to manage the execution of higher-level activities, that
are intended to become part of mission compositions;
and an agent component, that contains a software agent
that manages the component-based architecture of the
embedded software.

An agent [4] is an active entity that is designed
to collect information, reason, make decisions and act
autonomously. We use agents’ activity to endow devices
with self-configuration. Such autonomic capabilities are
essential to pervasive systems: manual intervention can-
not cope with neither large scale or continuously chang-
ing systems. Moreover, an agent is a social entity that
is designed to interact with other agents in order to
manage complex activities as distributed collaborations.
A multi-agent system provides decentralized, peer-to-
peer, communication schemes that are naturally suit-
able for open and dynamic architectures of pervasive
systems. Agents senses automatically the presence of
other agents thanks to discovery protocols integrated
to middlewares. They dynamically create a community,

share information about the resources they control and
plan the distributed execution of missions.

B. The Hydroguard Pervasive Water Surveillance Sys-
tem

An application of our work is the control of the
Hydroguard Pervasive Water Surveillance System1. This
system is designed to monitor hydrological parameters
on rivers and coastal areas in order to detect critical
situations such as floods or pollutions. It is composed
from on-site devices that use various types of sensors
to measure meaningful physical quantities (pressure,
temperature, rainfall, pH, etc.). Each site has a specific
geographical situation. Its streams and waters have spe-
cific characteristics. Devices have to operate in various
contexts, for which their software must be specifically
configured, thanks to the chosen component-based ap-
proach. Moreover, this context is not fixed once and for
all. As devices operate outdoor, they may endure bad
weather conditions that cause communication losses or
device failures. In emergency cases, these changes may
be intentional: extra devices may be added to extend the
monitored area or to get additional measures; conversely,
devices may be moved to a more demanding site or to
mitigate failures. Hydroguard is thus a pervasive system
that must support dynamic arrival or leaving of devices.
Its devices must react to these changes and adapt their
behaviors and collaborations to maintain the continuity
of their monitoring missions. This is handled by the
autonomic dynamic adaptation capabilities provided by
the embedded agents. This way, supervision by human
operators is not required and the system may stay op-
erational even when remote administration is impossible
in exceptional situations.

Besides, as aforementioned, the system is designed to
run multiple missions in parallel, in order to monitor
multiple hazards. Depending on environmental situa-
tions, defined by domain experts in terms of thresholds
on specific monitored data, the criticality of missions
may evolve from normal (routine) to vigilance and finally
to crisis. This may require to change the operation mode
of some missions, for instance to timely follow the evolu-
tion of an incident, granting them higher priority so that
the system concentrates its resources on the more critical
and relevant missions first. Combined with the pervasive
nature of the system, the presence or the availability of
a resource is never guaranteed. Mission definitions must
therefore include various admissible ways to achieve
them, depending on criticality and resource availability,
that agents use to find the best execution configuration,
in any changing context. Mission definition is thus a key
issue for system adaptation, extending the perimeter of

1Partly funded by the French government FUI-AAP8 project.

686Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 704 / 729

Figure 2. Metamodel of Arold, a multi-context mission description language

context-awareness [5] to user requirements. We address
this issue with the proposal of Arold, a multi-context
mission definition language.

III. Arold: a multi-context mission description
language

As discussed in the previous sections, pervasive sys-
tems have open, dynamic architectures that may evolve
at any moment, in unanticipated ways. The invariant
part of the system is the set of functional objectives
it must achieve to meet the requirements of its users.
Arold is proposed as a mean to capture users’ re-
quirements as abstract, declarative mission definitions.
Missions definitions are then automatically mapped by
the manager agents controlling the pervasive system to
available resources so as to find an appropriate config-
uration to execute the missions in the current context.
This way, missions are not defined by components that
may disappear when devices leave the system. The main
concepts of Arold, as shown in its metamodel (see
Figure 2) are modes, missions, strategies and tasks.

A. Modes and Missions
A mission defines a functional objective that is as-

signed to the system. Being open, one inherent charac-
teristics of pervasive systems is to be composed from
various devices and to support versatile missions. In
Hydroguard, missions are, among many others, to fore-
cast weather, to monitor flood level, to send flood alerts
and to monitor water quality. Though every mission
corresponds to some user requirements, all the missions
do not have the same criticality and relevance, regarding
specific situations of the environment. Modes thus model
the different situations that the system is expected to

manage distinctively. In Hydroguard, Routine, FloodVig-
ilance and PollutionCrisis are mode examples. Modes
build a first level of context representation, which defines
the specific environmental situations that the system
has to manage. Missions build a second level of context
representation, which captures user requirements. Each
mode explicitly specifies the set of missions that is to
be achieved in the current situation (see Figure 3).
Missions are defined as independent concepts, so they
can be reused in as many modes as necessary. Mission
criticality is expressed by a priority: Mandatory, High,
Normal, Low. These priorities are affected by each mode,
so that mission criticality may vary to be adapted to
the context. Mandatory missions corresponds to critical
activities. If any mandatory mission cannot be executed,
the system cannot properly manage the current mode.
It must signal a failure and enter a failover mode.
Monitoring the conditions that determine transitions to
other modes is part of the mandatory missions that
must be associated to a mode. The system then tries
to execute as many missions as possible, depending on
available resources, starting by high priority missions
and finishing with low priority missions. To enable a
more flexible definition of modes, all the missions associ-
ated with a mode are not intended to always execute at
the same time, but possibly successively, as the situation
evolves. To manage this, missions hold a status attribute
that specify if they are active or not. Apart from its
mandatory missions, which are always active, a mode
defines a set of default missions that are active when
entering in this mode. The set of active missions then
evolves by explicit mission activations or deactivations
controlled by the already active missions.

687Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 705 / 729

B. Strategies and Tasks

A strategy defines a concrete implementation of a mis-
sion. A mission can be implemented by a set of strategies
(see Figure 3), that represent alternative ways to achieve
the functional objective represented by the mission.
Strategies build a third level of context representation,
which defines how the execution of missions may vary to
enable its adaptation to available resources. Strategies
need not be strictly equivalent. On the contrary, the
different strategies associated with a mission should rep-
resent various tradeoffs between resource requirements
and utility. This way, among the strategies that can be
currently executed, the system tries to find an optimal
set of strategies, that is the set of strategies that enables
to execute the largest set of active missions, with the
best efficiency. The efficiency of a strategy depends on its
cost (resource requirements) but most importantly to its
utility, regarding the achievement of the mission. Utility
is a score defined for each strategy by a mission, which
characterizes the quality of the result that is produced
by the execution of the strategy. Utility is contextual.
Associated to a mission used in a routine mode, an
economic strategy with a poor quality of service would
be ranked with a low utility. Associated with a mission
used in an emergency mode, it would be anyway useful
and ranked with a high utility.

A strategy is concretely defined by a set of tasks that
must be instantiated and connected together by the sys-
tem in order to execute the mission (see Figure 3). This
part of Arold is thus equivalent to a simple architecture
description language [6]. Each task represents a specific
service invocation, specified by a set of parameter values.
A task (e.g., WaterLevelCollector1) corresponds to an
instance of a task type (e.g., WaterLevelCollector), so
that different tasks can be defined corresponding to
a common kind of activity. A task type defines the
list of parameters (e.g., sensorIP, rate, levelID) to be
specified in each individual task. It also defines how the
task type is implemented, as a reference to a concrete
component (e.g., GenericWaterLevelSensor) that must
be used to instantiate this kind of tasks. Finally, a
task type specifies a set of in and out ports (e.g., the
WaterLevelCollector task type has an out port as it is a
data sink). In and out ports define the information (data,
control) that a task respectively receives from or sends to
others tasks. Task compositions are defined in strategies
by sets of connections between in and out ports of
their component tasks (e.g., connection between the Wa-
terLevelDatasource1 task and the WaterLevelCollector1
task). This can be regarded as similar to workflows.
However, task compositions do not hold any explicit
control structures in Arold. Composition is thus purely
structural and amounts to assemblies, as proposed in

Figure 3. Excerpt of a mission descriptor in Arold textual syntax

SCA [2]. Workflow control is embedded in tasks. When
interactions are required, external control management
is defined by ports. Ports are typed by service signatures
(e.g., the WaterLevelDataSink service saves a water level
value along with a localization ID and a timestamp).
These syntactical specifications are used to check the
soundness of connections between ports.

Finally, each task is defined by its resource con-
sumption. For the sake of simplicity, it is represented
in this paper as a unique attribute (resourceCost). In
our concrete implementation, resource consumption en-
compasses CPU, RAM, disk and network usage. These
attributes are first used individually to check that the
instantiation of a task on a device does not exceed its
amount of resources.

IV. Optimized Mission Deployment

Taking into account an operation context modelled
in Arold, the role of the manager agents embedded
in the devices composing the pervasive system is to
determine an optimized deployment of the set of active

688Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 706 / 729

missions in the current active mode. As aforementioned,
this deployment should be optimized so that, taking into
account resource limitation, the executed missions are
the most critical and the more useful to users. To calcu-
late this optimal deployment is an optimization problem,
with a high computational complexity, due to the choice
of the missions, strategies and devices where tasks are
instantiated. On a formal ground, the optimization of
mission deployment is a constraint satisfaction problem
analogous to a variant of the knapsack problem, which is
a NP-hard problem [7]. This problem consists in filling
up a knapsack with items of various volumes and values.
The best combination of items must be chosen so that
the knapsack the volume of which is fixed contains a
maximal total value. In our mission deployment prob-
lem, the best combination of tasks must be allocated
on the devices of the system, so that the total utility
of the corresponding strategies, for the active missions
in the current mode, is maximal. Mission deployment is
calculated separately for each level of priority, so that
resources are used by higher priority mission first.

For the sake of efficiency, we have implemented the
resolution of the mission deployment problem as a cen-
tralized mechanism. When started, a manager agent
queries the service repository of the OSGi platform to
retrieve the list of the task components that are installed
on the device it controls. It then broadcast a message
to request the election of a leader among the group
of manager agents of the pervasive system. We have
designed an election protocol, derived from the bully
algorithm [8], but adapted to the open structure of
pervasive systems (the description of which is out of
the scope of this paper). Centralization is thus mitigated
because it is a dynamic process in which any manager
agent can become the leader. When the manager agent
receives the address of the elected leader, it sends back
to the leader a list of its features, meaning its resource
capacity and the list of the task types it can instantiate.
It then waits for the leader to send configuration instruc-
tions, describing which tasks to instantiate and which
connection to set up. Meanwhile, the leader collects the
feature informations sent by the other manager agents.
Taking into account the missions specified by Arold
descriptors, these informations enable the leader to build
a global definition of the optimization problem to be
solved. This is a point where centralization becomes an
advantage: the more complete is the problem definition,
the more optimized the found solution may be.

Many resolution algorithms exist for the knapsack
problem. Our application is the dynamic reconfiguration
of a pervasive system. The optimization problem must
therefore be solved not only timely but also on a device
with limited resources. We thus designed an adaptation
of the greedy approximation algorithm, chosen for its

very low time and space complexity. The strategies asso-
ciated with active missions are ordered by their efficiency
(ratio between their utility and resource consumption).
The possible deployment of the most efficient strategies
are checked first (most rational choices). Strategies are
thus chosen, until every active mission is executed by a
strategy or no more strategy can be deployed because of
resource unavailability.

Determining where a task should be allocated, be-
tween a set of candidate devices, is another source of
combinatorial explosion. To solve this issue and preserve
the linear complexity of the greedy algorithm, we de-
signed a choice algorithm using an ordered list of devices,
similar to the ordered list of strategies. Based on both
the set of tasks that appear in the mission descriptors
and the list of features transmitted by each manager
agent, a probability that a task has to be affected on
a device is calculated. A potential load is calculated for
each device. A task is allocated on the device that has the
lowest potential load: this is here again the most rational
choice to avoid resource shortage and to tend towards
a balanced load between devices. After each allocation,
probabilities and potential loads are updated, to take
into account the already known task allocations. When
the allocation of a task is impossible, the corresponding
strategy is skipped. Deployment resolution carries on
with the next more efficient strategy to be tried. This
way, deployment is solved with a linear complexity that
fits the computation capabilities embedded in devices.
Though simple, this algorithm is able to produce on
average interesting suboptimal results.

V. Related Work
Arold deals with service compositions, a much stud-

ied topic related to web services choreographies but
also pervasive systems [1], [9], [10], [11]. These works
focuses on a transparent management of the execution
context, to let users declaratively express their required
compositions, without any specific knowledge about the
environment. The supporting frameworks deal with a
wide range of mechanisms: discovering available services,
matching available services with user defined composi-
tions, maintaining execution by automatically replacing
faulty services, balancing execution load. Goal-oriented
systems even go one step further. Users express the
results they wish to obtain and the system automatically
calculates, by backward-chained inferences, theservice
compositions that achieve the specified results [12]. All
these systems consider the context from a technical point
of view, that can thus become transparent for the user.
With Arold, user expertise and preferences are part of
the context definition, modelling variability and utility
as alternate strategies. The primary goal of the system
becomes to best satisfy all its users: the aforementioned

689Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 707 / 729

problems are then considered as constraints in a decision
problem (mission and strategy selection).

Multi-agent systems are often proposed to manage
pervasive systems [13], [14], [15], [16], [17], as they
both have open and dynamic architectures. Autonomic
adaptation is handled in a distributed way and emerges
as the result of peer-to-peer negotiation protocols. On
the opposite, we have chosen a centralized mechanism
for mission deployment , adapted from the optimized ex-
ecution plans used in grid-computing [18]. Though very
simple, to suit the limited resources of the devices, we
consider that it is able to produce faster more optimized
results than the convergence of a distributed process.

VI. Conclusion and future work
This paper presented a work in progress. Arold is an

original contribution, as a service composition language
that enables the contextual adaptations of the missions
of a pervasive system to be defined. It takes into account
mission criticality, resource availability and user prefer-
ences.

Dynamic context redefinition and multiple context
definition mitigation still are open issues. Future work
will have to detect and manage inconsistencies. Task
mobility will also be studied to support the redeployment
of running missions and its cost evaluated. Experiments
still have to be run to validate the performance hypoth-
esis about our proposed centralized mission deployment
scheme as compared to a massively distributed alterna-
tive. To do so, we plan to run simulations of large scale
distributed arcitectures on a machine cluster.

Ackowledgments
The authors would like to thank the participants of

the Hydroguard consortium.
References

[1] Bronsted J., Hansen K. M., and Ingstrup M.: Service
Composition Issues in Pervasive Computing. IEEE Perva-
sive Computing, vol. 325, pp. 311-326 (2011).

[2] Open SOA Collaboration: Service Component Architec-
ture Specification. http://www.osoa.org/, accessed 1-july-
2012, (2006).

[3] OSGi Alliance: Osgi service platform Release
4.http://www.osgi.org, accessed 1-july-2012, (2005)

[4] Wooldridge M.: An Introduction to Multi-agent Systems.
Wiley (2002).

[5] Bolchini C., Curino C. A., Quintarelli E., Scheiber F.A.,
and Tanca L: A data-oriented survey of context models.
ACM SIGMOD Record, vol. 36(4), pp.19-26 (2007).

[6] Medvidovic N. and Taylor R. N.: A Classification and
Comparison Framework for Software Architecture Descrip-
tion Languages. IEEE Transactions on Software Engineer-
ing, vol. 26(1), pp. 70-93 (2000).

[7] Kellerer H., Pferschy U., and Pisinger D.: Knapsack
Problems. Springer (2004).

[8] Mamun Q.E.K., Masum S.M., and Mustafa M.A.R.: Mod-
ified bully algorithm for electing coordinator in distributed
systems. WEAS Transactions on Computers, vol. 3(4),
pp.948-953 (2004).

[9] Ibrahim N. and Le Mouel F.: A Survey on Service Com-
position Middleware in Pervasive Environments. Interna-
tional Journal of Computer Science Issues, Vol. 1, pp. 1-12
(2009).

[10] Urbieta A., Barrutieta G., Parra J., and Uribarren A.:
A survey of dynamic service composition approaches for
ambient systems. Proceedings of the Ambi-Sys workshop
on Software Organisation and MonIToring of Ambient
Systems, ICST, pp. 1-8 (2008).

[11] Bakhouya M. and Gaber J.: Service Composition Ap-
proaches for Ubiquitous and Pervasive Computing Envi-
ronments: A Survey. Agent Systems in Electronic Busi-
ness, IGI Publishing, pp. 323-350 (2007).

[12] Heider T. and Kirste T.: Multimodal appliance coop-
eration based on explicit goals : concepts and potentials.
Proceedings of the Joint Conference on Smart objects and
Ambient Intelligence, ACM, pp. 271-276 (2005).

[13] Malek S., Mikic-rakic M., and Medvidovic N.: A De-
centralized Redeployment Algorithm for Improving the
Availability of Distributed Systems. Proceedings of the
3rd International Conference on Component Deployment,
Springer, pp. 99-114 (2005).

[14] Weyns D., Malek S., and Andersson J.: On Decentralized
Self-Adaptation: Lessons from the Trenches and Chal-
lenges for the Future. Proceedings of the ICSE workshop
on Software Engineering for Adaptive and Self-Managing
Systems, ACM, pp. 84-93 (2010).

[15] Bakhouya M. and Gaber J. : Self-organizing Approach
for Emergent Multi-agent Structures. Proceedings of the
Workshop on Complexity through Development and Self-
Organizing Representations, ACM (2006).

[16] Grondin G., Bouraqadi N., and Vercouter. L.: MAD-
CAR, an Abstract Model for Dynamic and Automatic
(Re-)Assembling of Component-Based Applications. Pro-
ceedings of the 9th International SIGSOFT Symposium
on Component-Based Software Engineering, LNCS 4063,
Springer, pp. 360-367 (2006).

[17] Hamoui F., Huchard M., Urtado C., and Vauttier S.:
SAASHA: a Self-Adaptable Agent System for Home Au-
tomation. Proceedings of the 36th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications,
IEEE, pp. 227-230, (2010).

[18] Parashar M. and Pierson J. M.: Pervasive Grids: Chal-
lenges and Opportunities. In Handbook of Research on
Scalable Computing Technologies, IGI Global, pp. 14-30
(2010).

690Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 708 / 729

The Consolidated Enterprise Java Beans Design Pattern for Accelerating Large-

Data J2EE Applications

Reinhard Klemm

Collaborative Applications Research Department

Avaya Labs Research

Basking Ridge, New Jersey, U.S.A.

Email: klemm@research.avayalabs.com

Abstract— J2EE is a specification of services and interfaces

that support the design and implementation of Java server

applications. A key concept in J2EE is Entity Enterprise Java

Beans (EJBs). Their purpose is to persist the state of

application objects and to share objects between transactions.

Although typically desirable, the persistence in entity EJBs can

also incur a heavy performance penalty. In this article, we

describe a novel software design pattern aimed at improving

the performance of entity EJBs in J2EE applications with large

numbers of EJB instances. The pattern maps multiple real-

world entities of the same type (e.g., users) to a single

consolidated entity EJB (CEJB), thereby significantly reducing

the number of required entity EJB instances. Consequently,

CEJBs can increase EJB cache hit rates and database search

performance. We present detailed quantitative assessments of

performance gains from CEJBs and show that CEJBs can

accelerate some common EJB operations in large-data J2EE

applications by factors between 2 and 14.

Keywords-caching; Enterprise Java Beans; object

consolidation; software design patterns; software performance

I. INTRODUCTION

Enterprise Java Beans (EJBs) [1] take advantage of a
wide range of platform services from EJB containers in J2EE
application servers. Examples of platform services are data
persistence, object caching and pooling, object lifecycle
management, database connection pooling, transaction
semantics and concurrency control, entity relationship
management, security, and clustering. EJB containers
obviate the need for redeveloping such generic functionality
for each application and thus allow developers to more
quickly build complex and robust server-side applications.
However, common EJB operations, in particular entity EJB
operations, such as creating, accessing, modifying, and
removing EJBs, tend to execute much more slowly than
analogous operations for Java (J2SE) objects (Plain Old
Java Objects or POJOs) that do not implement the functional
equivalent of the J2EE platform service [2].

One of the platform services for entity EJBs that can
incur a heavy performance penalty is data persistence.
Although not mandated by the EJB specification, entity EJBs
are typically stored as persistent objects in relational
databases and we will assume this type of storage in the
remainder of this article. Furthermore, we will concentrate
on entity EJBs with container-managed persistence (CMP)
rather than bean-managed persistence (BMP). CMP entity
EJBs have the advantage of receiving more platform
assistance than BMP entity EJBs and are thus usually

preferable from a software engineering point of view. They
also tend to perform better than BMP entity EJBs because of
extensive application-independent performance
optimizations that EJB containers incorporate for CMP EJBs
[3]. For the sake of simplicity, we will refer to CMP entity
EJBs simply as “EJBs”. Note that the mapping from EJBs to
database tables and the data transfer between in-memory
(cached) EJBs and the database is the responsibility of the
J2EE platform and can therefore be only minimally
influenced by the EJB developer. Hence, we cannot discuss
the impact of the technique presented in this article on
structural or operational details of the data persistence layer
of the J2EE platform. Instead, we will discuss how our
technique changes the characteristics of the EJB layer that is
under the control of the EJB developer and show how these
changes affect the overall performance of EJB operations.

In the past, a lot of research into improving J2EE
application performance has focused on tuning the
configuration of EJBs and of the EJB operating environment
consisting of J2EE application servers, databases, Web
servers, and hardware. In addition, some software
engineering methods such as software design patterns and
coding guidelines have been developed to address
performance issues with J2EE applications. This article
presents a novel software design pattern for accelerating
J2EE applications that we call consolidated EJBs (CEJBs).
We devised the pattern during a multiyear research project at
Avaya Labs Research where we developed a J2EE-based
context aware communications middleware called Mercury.
Mercury operates on a large number of EJB instances that
represent enterprise users (hence our User EJB examples
later in this article). Due to a large frequency of retrieval,
query, and update operations on these EJBs, Mercury
suffered from slow performance even after tuning J2EE
application server and database settings. Thus, we felt
compelled to investigate structural changes to Mercury’s
J2EE implementation as a remedy for the performance
problems and we arrived at the CEJB design pattern.

The remainder of this article is organized as follows. In
Section II, we describe some of the related work. Section III
presents the CEJB software design pattern and its use in
J2EE applications. We describe the details of CEJB
allocation, the mapping of entities to CEJBs, the storage of
entities within CEJBs, and retrieval of entities from CEJBs.
Our presentation focuses on EJBs according to the EJB 2.1
specification. This specification has been supplanted by the
EJB 3.1 specification [4] in the meantime. However, the
salient ideas of our work remain valid with EJB 3.1. We

691Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 709 / 729

compare the performance of CEJBs and EJBs in Section IV.
A summary and an outline of future work conclude the
article in Section V.

II. RELATED WORK

Much research has been devoted to speeding up J2EE
applications by tuning EJBs and J2EE application server
parameters. Pugh and Spacco [5] and Raghavachari et al. [6]
discuss the potentially large performance impact and
difficulties of tuning J2EE application servers, connected
software systems such as databases, and the underlying
hardware. In contrast, CEJBs constitute an application-level
technique to attain additional J2EE application speed-ups.

The MTE project [7][8] offers more insight into the
relationship between J2EE application server parameters,
application structure, and application deployment parameters
on the one hand and performance on the other hand. The
MTE project underscores the sensitivity of J2EE application
performance to application server parameters as well as to
the application structure and deployment parameters.

Another large body of research into J2EE application
performance has investigated the relationship between J2EE
software design patterns and performance. Cecchet et al. [9]
study the impact of the internal structure of a J2EE
application on its performance. Many examples of J2EE
design patterns such as the session façade EJB pattern can be
found in [10] and [11], while Cecchet et al. [9] and Rudzki
[12] discuss performance implications of selected J2EE
design patterns. The CEJB design pattern improves
specifically the performance of bean caches and database
searches for EJBs. The Aggregate Entity Bean Pattern [13]
consolidates logically dependent entities of different types
into the same EJB while CEJBs consolidate entities of the
same type into an EJB. Converting EJBs into CEJBs can
therefore be automated by a tool whereas the aggregation
pattern requires knowledge of the specific application and
the logical dependencies of its entities. Aggregation and
CEJBs can be synergistically used in the same application to
increase overall execution speed.

Leff and Rayfield [14] show the importance of an EJB
cache in a J2EE application server for improving application
performance. We can find an in-depth study of performance
issues with entity EJBs in [3]. The authors point out that
caching is one of the greatest benefits of using entity EJBs
provided that the bean cache is properly configured and
entity EJB transaction settings are optimized.

The CEJB technique complies with the EJB specification
and therefore can be applied to any J2EE application on any
J2EE application server. Several J2SE-based technologies,
from Java Data Objects (JDO) to Java Object Serialization
(JOS), sacrifice the benefit of J2EE platform services in
return for much higher performance than would be possible
on a J2EE platform. Jordan [15] provides an extensive
comparison of EJB data persistence and several J2SE-based
data persistence mechanisms and their relative performance.

Trofin and Murphy [16] present the idea of collecting
runtime information in J2EE application servers and to
modify EJB containers accordingly to improve performance.
CEJBs, on the other hand, do not change EJB containers but

improve performance by multiplexing multiple logical
entities into one entity as seen by the EJB container.

III. CONSOLIDATED EJBS

A. CEJB Goal and Concept

CEJBs are intended to narrow the performance gap
between EJBs and POJOs in J2EE applications with large
numbers of EJBs of the same class. A look at common
operations during the life span of an EJB explains some of
the performance differences between EJBs and POJOs:

 Creating EJBs entails the addition of rows in a table
in the underlying relational database at transaction
commit time, whereas POJOs exist in memory.

 Accessing EJBs requires the execution of finder
methods to locate the EJBs in the bean cache of the
J2EE application server or in the database, whereas
access to POJOs is accomplished by simply
following object references.

 Depending on the selected transaction commit
options (pessimistic or optimistic), the execution of
business methods on EJBs is either serialized or
requires frequent synchronization with the
underlying database. Calling POJO methods, on the
other hand, simply means accessing objects in the
Java heap in memory, possibly with application-
specific concurrency control in place.

 Deleting EJBs also removes the corresponding
database table rows at commit time. Deleting POJOs
affects only the Java heap in memory.

The preceding list identifies the interaction between EJBs
and the persistence mechanism as a performance bottleneck
for EJBs that POJOs do not suffer from. The persistence
mechanism includes the bean cache and the database. One
way of decreasing the performance gap between EJBs and
POJOs, therefore, is to increase the bean cache hit rate,
thereby reducing the database access frequency. In case of
bean cache misses and when synchronizing the state of EJBs
with the database, we would like to speed up the search for
the database table rows that represent EJBs. CEJBs are
intended to significantly decrease the number of EJBs in a
J2EE application. A smaller number of EJBs translates into
higher bean cache hit rates and faster EJB access in the
database due to a smaller search space in database tables for
EJB finder operations. In other words, CEJBs reduce the
number and execution times of database accesses by
increasing the rate of in-memory search operations.

CEJBs are based on a simple idea. Traditionally, when
developing EJBs we map each real-world entity in the
application domain such as a user to a separate EJB. This
approach can result in a large number of EJB instances in the
application. With CEJBs, on the other hand, we consolidate
multiple entities of the same type into a single “special” EJB.
Specifically, we store up to N POJO entities in the same EJB
(the CEJB), where N is an priori determined constant.
Because N is determined at application design time, the
CEJB-internal data structure for storing entities can be an
array of size N. Hence, locating an entity within a CEJB can
be accomplished through a simple array indexing operation

692Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 710 / 729

requiring only constant time. The challenge for developing
CEJBs is devising an appropriate mapping function
m:KE→KC×[0,N-1], where KE is the primary key space of
the entities and KC is the primary key space of the CEJBs.
Function m maps a given entity primary key k, for example a
user ID, to a tuple (k1, k2) where

 k1 is an artificial primary key for a CEJB that will
store the entity,

 k2 is the index of the array element inside the CEJB
that stores the POJO with primary key k.

The mapping function m has to ensure that no more than
N entities are mapped to the same CEJB. On the other hand,
m also has to attempt to map as many entities to the same
CEJB as possible. Otherwise, CEJBs would perform little or
no better than EJBs. Moreover, the computation of m for a
given entity primary key has to be fast.

B. Developing a CEJB

Consider a simple entity represented as an EJB User with
the J2EE-mandated local home interface, local interface, and
bean implementation:

 The local home interface is responsible for creating

new Users through a method create(String userID,

String firstName, String lastName) and finding

existing ones through method

findByPrimaryKey(String userID).

 The local interface allows a client to call getter and
setter methods for the firstName and lastName
properties of Users. It also contains a method
businessMethod(String firstName, String lastName)

with some business logic: the method simply assigns
its parameters to the firstName and lastName
properties of a User, respectively.

 The bean implementation is the canonical bean
implementation of the methods in the local (home)
interfaces. For the sake of brevity, we omit showing
the (quite trivial) bean implementation here.

In Figures 1-4, we present a CEJB CUser that we
derived from the User EJB. To arrive at CUser, we first map
the persistent (CMP) fields in User to transient String arrays
firstNames and lastNames and persistent String fields
encodedfirstNames and encodedlastNames. Note that we do
not implement firstNames and lastNames as persistent array
fields. Instead, we encode firstNames and lastNames as
persistent Strings encodedFirstNames and
encodedLastNames, respectively, during ejbStore operations.
To do so, ejbStore creates a #-separated concatenation of all
elements of firstNames and one of all elements of lastNames
where # is a special symbol that does not appear in first or
last names. This technique allows us to store the first names
and last names as VARCHARs in the underlying database
and avoid the much less time-efficient storage as
VARCHARs for bit data that persistent array fields require.
During ejbLoad operations the encodedFirstNames and
encodedLastNames are being demultiplexed into the
transient arrays firstNames and lastNames, respectively. The
CUserBean then uses the state of the latter two arrays until

the next ejbLoad operation refreshes the state of the two
arrays from the underlying database.

The ejbCreate method in Figure 3 assigns an objectID to
the appropriate persistent field. We will discuss the choice of
the objectID later. The method also allocates and initializes
the transient firstNames and lastNames arrays. The size of
the arrays is determined by the formal parameter N.

In the CUser local interface, we add an index parameter
to all getter and setter methods and to the businessMethod.
We also add the lifecycle methods createUser and
removeUser. The getter and setter methods in CUserLocal
have to be implemented by CUserBean because they are
different from the abstract getter and setter methods in
CUserBean. The new getter and setter methods access the
indexed slot in the array fields firstName and lastName.
Similarly, we have to change the businessMethod, which
now accesses the indexed slot in the firstName and lastName
fields rather than the entire EJB state. The createUser
method first ensures that the indexed slots in the firstNames
and lastNames are empty. If not, this user has been added
before and a DuplicateKeyException is raised. If the slots are
empty, createUser will assign the state of the new user to the
indexed slots in the arrays. The removeUser method ensures
that the indexed firstNames and lastNames slots are not
empty, i.e., the referenced user is indeed stored in this
CUser. If so, removeUser deletes the state of this user from
the firstNames and lastNames arrays.

Figure 5 shows a class ObjectIDMapping that
encapsulates an exemplary mapping function m from User
primary keys (Strings) to CUser primary keys (objectIDs).
Figure 6 contains an example of retrieving a CUser through
an ObjectIDMapping and executing the businessMethod on
the retrieved CUser. The only argument for the constructor
of an ObjectIDMapping is N, the maximum number of
entities consolidated in a CUser. The mapping function m is
computed in the setObjectID method. This method maps a
User primary key, objectIDArg, to the tuple (objectID,
index). The objectID is derived from objectIDArg by
replacing objectIDArg’s last character c (viewed as an
integer) with c – index. The value of index is the result of c

modulo N, i.e., c=qN+index where 0 index <N and q
is the integer quotient of c and N. While the objectID
identifies the CUser in which we store an entity with
objectIDArg as its primary key, the index identifies the slots
in the CMP array fields in CUser that store the given entity.
Although our definition of m is somewhat complex, its
computation is fast and it maps at most N entities to each
CUser, which is a key requirement for m.

C. Design Considerations for CEJBs

By creating a simple façade session bean we can
completely hide CUsers from the rest of the application and
expose only POJO entities to clients. With a façade session
bean, the two-step process of first retrieving a CUser and
subsequently accessing a POJO entity shown in Figure 6 is
reduced to one step. The façade bean is straightforward and
therefore we do not show it here. For more complicated

693Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 711 / 729

public interface CUserLocalHome extends EJBLocalHome {

 CUserLocal create(String objectID, int numElements) throws CreateException;

 CUserLocal findByPrimaryKey(String objectID) throws FinderException;

 CUserLocal getUser(String objectID, int numElements) throws FinderException;

}
Figure 1. Local home interface for CUser.

public interface CUserLocal extends EJBLocalObject {

 void createUser(int index, String firstName, String lastName) throws DuplicateKeyException;

 void removeUser(int index) throws RemoveException;

 String getFirstName(int index);

 void setFirstName(int index, String firstName);

 String getLastName(int index);

 void setLastName(int index, String lastName);

 void businessMethod(int index, String firstName, String lastName);

}

Figure 2. Local interface for CUser.

public abstract class CUserBean implements EntityBean {

private transient String[] firstNames = null;

private transient String[] lastNames = null;

public abstract String getObjectID();

public abstract void setObjectID(String objectID);

public abstract String getEncodedFirstNames();

public abstract void setEncodedFirstNames(String encodedFirstNames);

public abstract String getEncodedLastNames();

public abstract void setEncodedLastNames(String encodedLastNames);

public String ejbCreate(String objectID, int N) throws CreateException {

 setObjectID(objectID);

 firstNames = new String[N];

 lastNames = new String[N];

for (int index = 0; index < N; index++) {

 firstNames[index]= null;

 lastNames[index] = null;

}

 return null;

}

public void ejbLoad() {

 StringTokenizer encodedFirstNames = new StringTokenizer(getEncodedFirstNames(), “#”),

 encodedLastNames = new StringTokenizer(getEncodedLastNames(), “#”);

 int numElements = encodedFirstNames.countTokens();

 if (firstNames == null) {

 firstNames = new String[numElements];

 lastNames = new String[numElements];

 }

 for (int index = 0; index < numElements; index++) {

 firstNames[index] = encodedFirstNames.nextToken();

lastNames[index] = encodedLastNames.nextToken();

 }

}

public void ejbStore() {

 StringBuffer encodedNames = new StringBuffer();

 for (int index = 0; index < firstNames.length; index++) {

 encodedNames.append(firstNames[index]);

 encodedNames.append(“#”);

 }

 setEncodedFirstNames(encodedNames.toString());

 encodedNames.setLength(0);

 for (int index = 0; index < lastNames.length; index++) {

 encodedNames.append(lastNames[index]);

 encodedNames.append(“#”);

 }

 setEncodedLastNames(encodedNames.toString());

}
Figure 3. Methods in CUserBean relevant to the CEJB discussion, part I.

694Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 712 / 729

public void createUser(int index, String firstName, String lastName) throws DuplicateKeyException {

 if (!(firstNames[index] == null && lastNames[index] == null)) throw new DuplicateKeyException("User exists already");

 firstNames[index] = firstName;

 lastNames[index] = lastName;

}

public void removeUser(int index) throws RemoveException {

 if (firstNames[index] == null || lastNames[index] == null) throw new RemoveException("User does not exist");

 firstNames[index] = “ “;

 lastNames[index] = “ “;

}

public void businessMethod(int index, String firstName, String lastName) {

 firstNames[index] = firstName;

 lastNames[index] = lastName;

}

public void setFirstName(int index, String firstName) {

 firstNames[index] = firstName;

}

// other getter/setter methods go here…

}
Figure 4. Methods in CUserBean relevant to the CEJB discussion, part II.

public class ObjectIDMapping {

private int N,

 index;

private String objectID;

public ObjectIDMapping(int N) {

 this.N = N;

 index = -1;

 objectID = null;

}

public void setObjectID(String objectIDArg) {

 int lastElementIndex = objectIDArg.length() - 1,

 lastCharacter = objectIDArg.charAt(lastElementIndex);

 index = lastCharacter % N;

 objectID = objectIDArg.substring(0, lastElementIndex) + (lastCharacter - index);

}

public int getIndex() {

 return index;

}

public String getObjectID() {

 return objectID;

}

}
Figure 5. Class for mapping User primary keys to CUser primary keys and array index slots.

ObjectIDMapping idMapping = new ObjectIDMapping(N);

idMapping.setObjectID(“rKlemm”);

CUserLocal cUser = cuserLocalHome.findByPrimaryKey(idMapping.getObjectID());

cUser.businessMethod(idMapping.getIndex(), "Reinhard", "Klemm");
Figure 6. Accessing a CUser EJB.

entities than Users, consolidation through CEJBs requires
more effort but is straightforward and could be supported by
a tool. Ideally, such a tool would be offered as part of a J2EE
development environment and convert EJBs into CEJBs at
the request and under the directions of the developer. The
tool would also need to support the following scenarios:

 If User implements customized ejbLoad, ejbStore,
ejbActivate, or ejbPassivate methods, these need to

be adapted in CUserBean to reflect the fact that the
state of a User is stored across different arrays in the
CUserBean.

 Finder and select queries for User must be re-
implemented for the CEJB because they need to
access both a CUser and the arrays within a CUser.

 If User has customized ejbHome methods, we need
to add functionally equivalent ejbHome methods to

695Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 713 / 729

CUser. Changes to the original User ejbHome
methods are only necessary if these methods access
the state of a specific User EJB after a prior select
method. In this case, the CUser ejbHome methods
need to retrieve POJO entities instead of Users.

 If User is part of a container-managed relationship
(CMR), consolidation through CEJBs requires
removal of the CMRs and manual re-implementation
of the CMRs without direct J2EE support.

The mapping function m has a strong impact on the
performance of CEJBs and therefore needs to be defined
carefully for the given application. The mapping function
delivers its best performance if primary keys that occur in the
application are clustered. Clustering here means that for
every primary key k in the application there is a set of
roughly N primary keys for other entities in the application
that are similar enough to k to be mapped to the same
objectID by m. The challenge is therefore to analyze the
actual key space of the entities that are to be consolidated in
a given application and to then define an efficient and
effective mapping function based on this analysis.

IV. PERFORMANCE EVALUATION

A. Methodology

We compared the performance of Users and CUsers in a
J2EE test application. It uses the mapping function m in
Figure 5 because this function clusters the primary keys that
we chose for the entities in the test application -
lexicographically consecutive strings - to facilitate the
generation of a large number of user entities. The test
application executes a sequence of operations either on Users
(EJB mode) or CUsers (CEJB mode). In EJB mode, the
application executes the following sequence of steps:

1. Create n User EJBs.
2. Find User EJB with randomly selected primary key

and read its state through getter operations. Repeat
n times.

3. Find User EJB with randomly selected primary key
and execute businessMethod on it, thus changing the
EJB state. Repeat n times.

4. Delete all User EJBs through EJB remove
operations.

Between any two consecutive steps, the test application
creates 20000 unrelated EJBs in order to introduce as much
disturbance as possible in the application server bean cache
and in the connection to the underlying database. During our
performance testing, however, it turned out that these cache
disturbance operations had a negligible effect on the
performance differences between the CEJB and EJB modes.

In CEJB mode, the application performs the same steps
on CUsers instead of Users. Also, in step 4 in CEJB mode,
the application sequentially deletes all entities in each CEJB
but not the CEJB itself. We varied the maximum number N
of entities per CEJB, from 2 to 250 in consecutive runs of the
test application. The performance of the test application
peaked around N=20. We only present the performance
results for N=20.

We configured the test application with two different
transaction settings in two different experiments: in long
transaction mode, each step of the test application is
executed in one long-lived transaction. In short transaction
mode, the application commits every data change as soon as
it occurs, i.e., after each entity creation, change, or deletion.
Here, the application performs a large number of short-lived
transactions. In successive runs of the test application, n
iterated over the set {1000, 10000, 50000}. After each run,
we restarted the database server and the application server
and deleted all database rows created by the application.

We deployed the test application on an IBM WebSphere
5.1.1.6 J2EE application server with default bean cache and
performance settings. The hardware is a dual Xeon 2.4 GHz
server running Microsoft Windows 2000 Server. An IBM
DB2 8.1.9 database provides the data storage. All EJBs use
the WebSphere default commit option C.

B. Performance Analysis

Figures 7-12 display the results of our performance
testing with the test application in long and short transaction
modes for the three different values of n. The speedup in the
figures is defined as the time for an EJB operation divided by
the time for the equivalent CEJB operation. Speedup values
greater than 1 indicate results where CEJBs outperform
EJBs, values of less than 1 indicate EJBs performing better
than CEJBs. In long transaction mode, CEJBs significantly
outperformed EJBs. For n=50000, for example, creating
users with CEJBs was more than twice as fast as with EJBs,
finding and reading users was more than 5 times faster,
finding and changing users was more than 7 times faster, and
deleting users with CEJBs was more than 14 times faster.

Because the mapping function m in our test application
clusters the primary keys of the user entities, the CEJBs
consolidate almost the maximum possible number of entities
(20 per our definition of N). Hence, the number of CEJBs
necessary to store all user entities in the test application is
about 1/20

th
 that of the number of EJBs in EJB mode, which

translates into much improved application server caching
behavior and accelerated database search times. Once a
CEJB has been retrieved, extracting the desired entity from
the CEJB is a simple and fast array indexing operation.
However, if the chosen mapping function m for a given
application does not achieve the cluster property, CEJBs may
lose some of their performance advantage over EJBs.

In CEJB mode, entity deletion does not force the deletion
of EJBs in the application server or the database. Instead,
entity deletion in CEJBs is accomplished through the
removal of entities inside EJBs. Not surprisingly therefore,
deleting users in CEJB mode is much faster than in EJB
mode where an EJB needs to be removed in the application
server bean cache and the underlying database.

In short transaction mode, our performance testing
showed a very different outcome. Here, CEJBs only offer
performance advantages over EJBs for finding and reading
users operations. CEJBs are about as fast as EJBs during
finding and changing of users and during deletion of users
but much slower in creating users. In short transaction mode,
transaction commits after EJB state changes dominate the

696Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 714 / 729

execution time of the test application and void many
performance advantages due to consolidation. Hence, J2EE
applications that eagerly commit every EJB state change will
experience a significant speed-up as a result of consolidation
only if the EJB read to write ratio is very high.

In conclusion, CEJBs provide strong performance
advantages over EJBs in a J2EE application if (1) the
application contains a large number of EJBs, (2) it accesses
EJBs either in long-lived transactions or in short-lived
transaction with a large EJB read to write ratio, and (3) if a
mapping function m can be found for the EJB key space that
exhibits the cluster property.

Our test application is designed to execute a large
number of common EJB operations in a repeatable fashion.
As such, the test application is somewhat artificial. It does
not involve human interactions and arbitrary timing delays
due to human input. The pattern of EJB operations is highly
regular and maximizes EJB accesses, whereas other J2EE
applications may have irregular EJB accesses and also
contain computationally or I/O-intensive tasks. Our User
EJBs are simple while EJBs in common J2EE applications
can be more complex and linked to each other. However, we
believe that our test application realistically captures the
performance differences between EJBs and CEJBs in a large
class of J2EE applications that are characterized by large
numbers of entities, a high frequency of EJB accesses with a
large degree of regularity (e.g., certain data mining
applications such as our Mercury system), and a predictable
and regular primary key space for the entities.

Figure 7. Test application performance: long transaction mode, n=1000.

Figure 8. Test application performance: long transaction mode, n=10000.

Figure 9. Test application performance: long transaction mode, n=50000.

Figure 10. Test application performance: short transaction mode, n=1000.

Figure 11. Test application performance: short transaction mode, n=10000.

Creating
users

Finding
and

reading

users

Finding
and

changing

users

Deleting
users

EJBs 0.55 2.25 3.38 3.88

CEJBs 0.30 0.23 0.28 0.20

Speedup 1.84 9.62 12.01 19.00

0.00

1.00

2.00

3.00

4.00

5.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Creating
users

Finding
and

reading

users

Finding
and

changing

users

Deleting
users

EJBs 0.50 1.67 1.56 3.79

CEJBs 0.16 0.27 0.27 0.32

Speedups 3.02 6.14 5.72 11.84

0.00

1.00

2.00

3.00

4.00

5.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Creating
users

Finding
and

reading

users

Finding
and

changing

users

Deleting
users

EJBs 0.39 1.38 1.48 3.21

CEJBs 0.17 0.24 0.20 0.23

Speedup 2.24 5.75 7.58 14.28

0.00

1.00

2.00

3.00

4.00

5.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Creating
users

Finding
and

reading

users

Finding
and

changing

users

Deleting
users

EJBs 7.41 2.31 12.05 5.81

CEJBs 10.34 0.36 12.41 5.08

Speedup 0.72 6.44 0.97 1.14

0.00

2.00

4.00

6.00

8.00

10.00

12.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Creating
users

Finding
and

reading

users

Finding
and

changing

users

Deleting
users

EJBs 4.14 1.66 4.72 5.06

CEJBs 6.52 0.18 4.84 4.94

Speedups 0.64 9.05 0.98 1.02

0.00

2.00

4.00

6.00

8.00

10.00

12.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

697Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 715 / 729

Figure 12. Test application performance: short transaction mode, n=50000.

V. CONCLUSION AND FUTURE WORK

We presented a J2EE software design pattern that
consolidates multiple entities in J2EE applications into
special-purpose entity EJBs that we call consolidated EJBs
(CEJBs). Consolidation increases the locality of data access
in J2EE applications, thus making bean caching in the
application server more effective and decreasing search
times for entity EJBs in the underlying database. In J2EE
applications with large numbers of EJBs, CEJBs can
therefore greatly increase the overall application
performance. Using a test application we showed that CEJBs
can outperform traditional EJBs by a wide margin for
common EJB operations. For example, the CEJB equivalent
of an EJB findByPrimaryKey operation is more than five
times faster in one of our experiments, and the execution of a
data-modifying business method on an EJB is more than
seven times faster in CEJBs. CEJBs conform to the EJB
specification and can therefore be used in any J2EE
application on any J2EE application server.

We have three future research goals for CEJBs. First, we
would like to modify CEJBs in such a way that applications
with short-lived transactions and a small ratio of EJB read to
EJB write operations perform better than our current
solution. Secondly, we intend to investigate mapping
functions for CEJBs that (1) perform well if the primary key
space for EJBs is irregular or unpredictable, and (2) that can
be automatically defined without requiring complex
developer decisions. Thirdly, we would like to address a
currently open question for our CEJB design pattern, which
is how to adjust CEJBs so that they are beneficial in most
J2EE applications and thus could ultimately become a
standard way of implementing entities in J2EE applications.

REFERENCES

[1] Oracle Inc., “Enterprise JavaBeans Specification 2.1,”
retrieved September 28, 2012, from http://bit.ly/Ovip59.

[2] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W,
Zwaenepoel, “Performance Comparison of Middleware
Architectures for Generating Dynamic Web Content,” Lecture
Notes in Computer Science, Vol. 2672, Jan. 2003, pp. 242-
261.

[3] S. Kounev and A. Buchmann, “Improving Data Access of
J2EE Applications by Exploiting Asynchronous Messaging
and Caching Services,” Proc. 28th International Conference on
Very Large Databases (VLDB), Aug. 2002, retrieved
September 28, 2012, from http://bit.ly/QgduUf.

[4] Oracle Inc., “Enterprise JavaBeans Specification 3.1,”
retrieved September 28, 2012, from http://bit.ly/SlMyPN.

[5] S. Pugh and J. Spacco, “RUBiS Revisited: Why J2EE
Benchmarking is Hard,” Companion to the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), Oct. 2004,
pp. 204-205.

[6] M. Raghavachari, D. Reiner, and R. Johnson, “The
Deployer’s Problem: Configuring Application Servers for
Performance and Reliability,” Proc. 25th International
Conference on Software Engineering ICSE ’03, May 2003,
pp. 484-489.

[7] S. Ran, P. Brebner, and I. Gorton, “The Rigorous Evaluation
of Enterprise Java Bean Technology,” Proc. 15th International
Conference on Information Networking (ICOIN), IEEE
Computer Society, Jan. 2001, pp. 93-100.

[8] S. Ran, D. Palmer, P. Brebner, S. Chen, I. Gorton, J. Gosper,
L. Hu, A. Liu, and P. Tran, “J2EE Technology Performance
Evaluation Methodology,” Proc. International Conference on
the Move to Meaningful Internet Systems 2002, pp. 13-16.

[9] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Performance
and Scalability of EJB Applications,” Proc. 17th ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Application (OOPSLA), Nov. 2002,
retrieved September 28, 2012, from http://bit.ly/Qge98e.

[10] D. Alur, J. Crupi, and D. Malks, “Core J2EE Patterns,”
Prentice Hall/Sun Microsystems Press, Jun. 2001.

[11] F. Marinescu, “EJB Design Patterns: Advanced Patterns,
Processes, and Idioms,” John Wiley & Sons Inc., Mar. 2002.

[12] J. Rudzki, “How Design Patterns Affect Application
Performance – A Case of a Multi-Tier J2EE Application,”
Lecture Notes in Computer Science, No. 3409, Springer-
Verlag, 2005, pp. 12-23.

[13] C. Larman, “The Aggregate Entity Bean Pattern,” Software
Development Magazine, Apr. 2000, retrieved September 28,
2012, from http://bit.ly/PgBoxe.

[14] A. Leff and J. T. Rayfield, “Improving Application
Throughput with Enterprise JavaBeans Caching,” Proc. 23rd
International Conference on Distributed Computing Systems
(ICDCS), May 2003, pp. 244-251.

[15] M. Jordan, “A Comparative Study of Persistence Mechanisms
for the Java Platform,” Sun Microsystems Technical Report
TR-2004-136, Sep. 2004, retrieved September 28, 2012, from
http://bit.ly/U3GGPf.

[16] J. Trofin and J. Murphy, “A Self-Optimizing Container
Design for Enterprise Java Beans Applications,” 8th
International Workshop on Component Oriented
Programming (WCOP), Jul. 2003, retrieved September 28,
2012, from http://bit.ly/O4biAD.

Creating
users

Finding
and

reading

users

Finding
and

changing

users

Deleting
users

EJBs 3.08 1.34 4.69 5.01

CEJBs 5.35 0.18 4.75 4.96

Speedup 0.58 7.34 0.99 1.01

0.00

2.00

4.00

6.00

8.00

10.00

12.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

698Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 716 / 729

Explicit Use of Working-set Correlation for Load-balancing
in Clustered Web Servers

Stoyan Garbatov and João Cachopo
INESC-ID Lisboa / Instituto Superior Técnico, Technical University of Lisbon

stoyangarbatov@gmail.com and joao.cachopo@ist.utl.pt

Abstract— This work presents a new load balancing policy for
clustered web server systems. With this policy, every node in
the cluster is responsible for dealing with a particular subset of
request types. All requests are partitioned into disjoint groups,
according to the domain data contained in their working sets.
The composition of the working sets is established by using
automatic data access pattern analysis and prediction
techniques. Latent Dirichlet Allocation is employed as the
partitioning algorithm to maximize the similarity (correlation)
between the working sets of the requests placed in the same
group. The working-set correlation is used explicitly with the
aim of improving the data locality of all functionality that is to
be executed on a given node, leading to more efficient use of
computational resources and, ultimately, to increased
performance. The work was validated on the TPC-W
benchmark.

Keywords-clustered web servers; load balance; locality
awareness; Latent Dirichlet Allocation; scalability; performance.

I. INTRODUCTION

Scalability is a crucial property for many web systems. A
system is defined as scalable if it is possible to change it
(e.g., by adding more hardware) when the volume of
requests increases, so that it maintains the same performance
(in terms of throughput, response time, etc.). It takes some
careful engineering to achieve good scalability. The solutions
usually consist in designing the system in a particular way so
that whenever some of the supporting (software or hardware)
resources are upgraded, the system will be able to deal
transparently with growing workloads without compromising
its performance.

In the following, we use a classification of the existing
approaches that is similar to the one presented by Cardellini
et al. [5]. The simplest alternative for improving the
performance of a web system is to upgrade the machine that
is running the server to a machine with better specifications
(e.g., processing units, disks, etc), which is referred to as
hardware scale-up [7]. Unfortunately, this is a rather short-
term and not very cost-effective approach because the
increase of the workload, often driven by the increase of
clients, far outpaces the hardware performance growth that is
viable to be achieved for a single machine.

Many researchers concentrated their efforts on improving
the performance of the server at the software level (software
scale-up). Among these are improving the server's operating
system [13, 14], developing more efficient web servers [16],
and designing alternative request scheduling policies [6, 3].

Unfortunately, similarly to its hardware counterpart,
improving the software performance of a single server is not
a long-term solution to the web scalability issue.

Another class of approaches considers distributed
systems composed of multiple servers. The main objective of
this type of solutions is to spread the workload of the
incoming requests among the existing server nodes,
attempting to maximize the usefulness of the available
resources. The policy for distributing the requests is usually
performed by a single component called the load balancer.
Any web system solution that achieves scalability and better
overall performance by means of multiple server nodes is
referred to as a scale-out approach [7].

These can be further refined into global and local scale-
out solutions. The global scale-out approaches are
characterized by having server nodes placed in
geographically distinct locations, whilst a local scale-out has
all nodes in a single network.

Our work falls into the category of the local scale-out
approaches referred to as cluster-based web systems. These
approaches are characterized by having a single entry point
(the load-balancer), which is the only visible component
from the client point-of-view. This is done for transparency
purposes, so that the clients do not need to be aware of the
potential multiplicity of entities that are effectively
processing their requests, thereby avoiding all issues that
such knowledge would entail.

The great majority of research in this field is concerned
with the distribution of the workload in a uniform fashion
among all server nodes. However, it has also been
unequivocally demonstrated in [15], [1], and [8] that it is
possible to achieve significant performance gains if the
routing algorithm attempts to improve the data locality of
server nodes when requests are being processed. In fact, it is
well-known that to have good performance, a system should
exploit and maximize its data locality.

In this work, we do not attempt to distribute the workload
uniformly among server nodes. There are plenty of already
existing solutions that can be combined into the solution that
we propose here to give it uniform workload distribution
properties. Instead, in this work we concentrate on the issue
of improving the efficiency and performance of clustered
dynamic content web systems, by developing a request
routing algorithm that explicitly takes into account the
existing correlation between the working sets of incoming
requests, distributing them in a way that tries to maximize
the data locality of operations performed at server nodes.

699Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 717 / 729

With the solution proposed here, every server node
processes only a particular subset of request types: The
requests are partitioned into disjoint groups, based on the
contents of their working sets.

We identify the composition of the working set of each
request type with the help of automatic data access pattern
analysis and prediction routines. Then, we use the Latent
Dirichlet Allocation partitioning algorithm to maximize the
correlation between the working sets of all requests placed in
a particular group. This is done to improve the data locality
of all operations that are to be executed on a given server
node, leading to a more efficient use of system resources and
improved performance.

The contributions of this work are twofold. First, the
explicit use of the correlation between request working sets
is new and there is no previously existing work that makes
request distribution decisions in a similar manner. Second,
the system that we propose is entirely autonomous and self-
sufficient in its operation,: from the analysis of the
composition of the requests' working sets, up to the
distribution of the incoming requests among operating server
nodes, there is no point where human intervention is
necessary in the decision making process.

The article is organized as follows. Section II discusses
related work. Section III describes our new proposal in
detail. Section IV presents the benchmark that we used to
evaluate the new proposal and discusses the results obtained.
Finally, Section V presents some concluding remarks.

II. RELATED WORK

Scalability is an essential property for web systems that
are expected to deal with a large volume of traffic and
extensive variations in the number of clients. Thus, it is not
surprising the sheer volume of research that has been
performed in this domain. Given the scope of our work, in
this section we limit our discussion of related work to
research regarding request distribution for clustered web
systems. Cardellini et al. [5] performed a comprehensive
study of locally clustered systems, whereas Amza et al. [2]
evaluated transparent scaling approaches tailored for
dynamic content systems.

Pai et al. [15] introduced the concept of locality-aware
request distribution (LARD). The main idea behind this
concept is that for a clustered web server system to have
good scalability and operate efficiently, the load-balancing
policy should take into account the content associated with
incoming requests and redirect them so that the data locality
of the server node responsible for processing them is
improved. They use a hash function to partition the
functionality provided by a given system (under the form of
the types of requests that are available). The load-balancer
uses this information to redirect requests so that every
available server node is responsible for processing requests
that belong only to a certain partition. This approach
decreases the working-sets of all nodes to a portion of the
system working-set, allowing for improved data locality and
scalability. Pai et al. [15] performed simulations and
validation on a working prototype, demonstrating that,
through a locality-aware request distribution approach, it is

possible to achieve significantly better scalability and
performance than policies that do only uniform load
distribution among nodes.

The main issue that can be pointed out in the work of Pai
et al. [15] is that the partitioning of request types among
server nodes is performed by a hash function. The fact that
the partitioning mechanism is oblivious to the domain data
accessed when processing requests does not give any
guarantees as to the similarity of the types of requests
redirected to a given node, in terms of the data necessary for
their execution. Whereas such an approach may still lead to
smaller-than-system working-sets at most nodes, it is far
from optimal, because requests whose working-sets do not
intersect can be placed in the same partition, degrading the
overall locality of data. To maximize data locality, the
working-sets of all requests placed in the same partition
should overlap as much as possible, so that when a new
request arrives at a node, it is more likely that most (if not
all) of the data necessary for its successful completion is
already available. This cannot be achieved without explicitly
accounting for the relation between the functionality and the
data needed for its execution.

Zhang et al. [19] present a detailed simulation study of
AdaptLoad, which is a self-adjusting load-balancing policy
that takes into account observed workload variations to tune
its control parameters. With AdaptLoad, server nodes are
responsible for dealing with requests that have similar sizes
(e.g. processing times), seeking to minimize the overall job
slowdown by separating the execution of differently sized
tasks. The authors evaluate their approach against previously
existing load-balancing solutions and demonstrate positive
results, in particular when target systems are subject to
highly dynamic load conditions.

The work of Amza et al. [1] presents a novel lazy
replication technique, intended for scaling database back-
ends of dynamic content site applications operating on top of
computer clusters. This approach is referred to as conflict-
aware scheduling and provides throughput scaling and one-
copy serializability. This technique exploits the fact that, in
the context of database clusters, there is a scheduler
responsible for processing all incoming requests. By making
use of information regarding the domain data accessed
within transactions, Amza et al. [1] developed a conflict-
aware scheduler that provides one-copy serializability, as
well as reducing the rate at which conflicts occur. This is
achieved by guiding incoming requests to nodes based on the
data access patterns that are expected to occur during the
execution of the associated transactions. Yet, there is a
drawback of this approach that severely impairs its
practicality: Programmers are responsible for providing
information (under the form of a manually added tip) at the
beginning of each transaction about which domain data is
going to be accessed during its execution. Instead, we claim
that the system should be capable of performing an
automatic identification of the data access patterns that take
place during transactions.

The work of Elnikety et al. [8] introduced a memory-
aware load balancing method for dispatching transactions to
replicas in systems employing replicated databases. The

700Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 718 / 729

algorithm uses information about the data manipulated in
transactional contexts with the goal of assigning transactions
to replicas so as to guarantee that all necessary data for their
execution is in memory, thereby reducing disk I/O. For
guiding the load balancing technique, the authors developed
an auxiliary approach for estimating the volume and type of
data manipulated during transactions. An additional
contribution of their work is an optimization designated
update filtering for decreasing the overheads due to the
propagation of updates between replicas.

Zhong et al. [20] performed a study of the improvements
that can be achieved by placing data when taking into
account correlation information. They proposed a
polynomial-complexity algorithm for calculating object
placement that achieves a close to optimal solution with
regards to minimizing communication costs. Further
optimizations of the algorithm are indicated, by
concentrating upon a small set of higher-importance objects.
The approach is evaluated and demonstrated to produce
significant reductions of communication overheads.

Given the existing related work described so far, we may
draw some conclusions. Request distribution policies
emphasizing data locality appear to offer much better
scalability and performance gains, when compared against
approaches concentrating only on load distribution. Uniform
load distribution is still important and should be used to
complement locality aware policies, but should not be the
main goal. Despite all the good work done in the area of
locality-aware load distribution, existing approaches have (at
least) one of the following shortcomings:

- In their search for improved data locality, they do
not take into account explicitly the data access
patterns performed during execution of requests,
either because they lack a proper analysis of data
usage or because they expect that locality emerges
“naturally” when requests are distributed among
server nodes without taking into account the data
manipulated in their contexts.

- The analysis of which data access patterns occur is
performed manually.

- The clustering of requests/functionality among
server nodes is performed manually.

The current state-of-the-art in the area of load distribution
has ample room for improvements, which we explore with
the solution proposed in this paper.

III. SYSTEM DESCRIPTION

Our system is composed of three main modules – a data
access pattern analysis module, an optimal clustering
module, and a request distribution module.

The first module is responsible for identifying the
composition of the working-sets associated with all types of
requests that are executed by the system under consideration.
This is achieved by analyzing and predicting the behavior of
the target application in terms of the data access patterns that
occur throughout the application’s execution contexts (such
as methods and services). The analysis and prediction can be
performed by means of one of three alternative stochastic
model implementations, namely: Bayesian Updating [12],

Markov Chains [10], and Criticality Analysis [9] (each of
these references contains a thorough description and
discussion of the implementation, functionality, and
properties of the models). All three implementations provide
highly accurate results that characterize the contents of the
working set of any unit of functionality present in an
application. The process of collecting behavioral data as
input for this analysis is performed in an online fashion and
incurs an average of 5% to 8% overhead in comparison with
the original version of the target application performance.
The relatively low overhead makes it feasible to gather this
information even while the application is operating normally.
It should be noted that all modifications necessary for the
acquisition of the behavioral data are performed in a
completely automated manner by the system presented here.
The composition of the working-sets, as acquired by the first
module, is then supplied as input to the optimal clustering
module.

The second module, which has been described in more
detail in [11], is responsible for identifying the optimal
clustering of the target application's functionality (which, in
this particular case, is characterized by the request types that
the application provides) and domain data (working-set
composition), based on the data access pattern behavior
observed at runtime.

The algorithm used to perform the partitioning of
application request types is the Latent Dirichlet Allocation
(LDA) [4], which corresponds to the current state-of-the-art
in multivariate clustering algorithms. By providing the
composition of the working-sets associated with application
request types as input to the LDA, the algorithm is capable of
grouping the requests into several clusters. The partitioning
is performed so that all members of a given cluster have the
strongest possible (positive) correlation among themselves.
For the current work, cluster elements are application request
types, which are characterized by their working-sets. This
leads to LDA generating as output clusters of request types,
whose working-sets are very similar, because of their
positive correlation.

However, there are several control parameters (among
which is the number of clusters into which the elements
should be grouped) that need to be provided as input to the
clustering algorithm, and, thus, the only guarantee that LDA
provides is that the cluster output composition maximizes the
correlation between cluster elements, but only for the
particular set of control parameters given. Unfortunately,
there is no way to know, a priori, what are the control values
that would lead to the best possible results. So, to identify the
set of control parameters that leads to the highest quality
results, we use the Silhouette technique [17]. Intuitively,
good clusters have the property that cluster elements are
(conceptually) close to each other and far from the elements
of other clusters. The Silhouette technique captures this
notion and provides an indicator value of how good a
particular clustering is.

To find the optimal values of the control parameters for
the LDA, our system calculates the average Silhouette values
from several executions of the LDA algorithm for different
configurations of the control parameters, within their valid

701Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 719 / 729

range of values. Once the Silhouette coefficients are
available for all the evaluated scenarios, the values of the
control parameters that produced the highest coefficient
correspond to the optimal input scenario leading to the best
possible clustering. The cluster results obtained after this
step are provided as input to the request distribution module.

The request distribution module, which is where the new
distribution policy is enforced, was implemented as a
software switch, corresponding to Layer 7 (application) of
the OSI protocol stack.

The switch acts as the sole entry point through which all
incoming requests pass, before being distributed to a
particular server node. It is the only visible component of the
system, from the client point of view, making the
multiplicity of application server nodes transparent to the
clients.

Whenever a request arrives at the switch, it is examined,
determining its type. The output provided by the optimal
clustering module is consulted to determine the group to
which this particular request belongs. Once this has been
established, the request is forwarded to a server node that is
responsible for processing requests of that particular group.
After the request has been processed, the result is returned to
the switch, and then forwarded back to the client.

As long as the target application supports having multiple
instances of itself operating in parallel, without
compromising application consistency, there is no need to
make any modifications to the application for it to benefit
from the request distribution functionality provided by the
switch. The server nodes themselves are not aware of the
presence of the switch, acting as if they were receiving their
requests directly from the client.

The benefits of making sure that every server node deals
only with request types that belong to a single group are the
following. The effective working-set at server nodes should
be significantly lower than the overall system working-set,
not only because just a subset of all system functionality will
be processed there, but also because that functionality was
specifically selected with the purpose of maximizing the
similarity of the composition of the working sets. This leads
to more efficient use of computational resources (e.g. smaller
memory footprints) and to better data locality, resulting
ultimately in improved overall performance.

It can be argued that having all incoming requests and
outgoing results going through the switch may be a
performance and scalability bottleneck. However, we made
this design decision to keep an implementation aspect of the
proposed solution as simple as possible, because it is not in
the request hand-off protocol that the main contribution of
this work resides. Nevertheless, the switch implementation
supports replication. So, multiple switches may be arranged
in a hierarchical structure for the purpose of providing added
performance or availability, at the cost of some added
latency. This particular aspect of the work shall not be
discussed any further.

IV. RESULTS

To validate the effectiveness of our approach, we used
the TPC-W benchmark [18]. The TPC-W benchmark

specifies an e-commerce workload that simulates the
activities of a retail store website, where emulated users can
browse and order products from the website.

The main evaluation metric used in our experiments is
the number of web interactions per second (WIPS) that can
be sustained by the system under test. The benchmark
execution is characterized by a series of input parameters.
The first of these indicates the type of workload, which
varies the percentage of read and write operations that is to
be simulated by the emulated browser (EB) clients. Three
types of workload are considered here: Type1, with 95%
read and 5% write operations; Type2, with 80% read and
20% write operations; and Type3, with 50% read and 50%
write operations.

The analysis of the system was performed with the
benchmark executing in Type2 mode. The same profiling
results (from Type2) were employed for all 3 workload con-
figurations (Type1, Type2, and Type3) in the performance
testing phase.

The remaining input parameters for the benchmark were
as follows: the number of EBs was fixed at 10; we used a
ramp-up time of 300 seconds; the measurement was
performed for 1200 seconds after the ramp-up time; the
ramp-down time was 120 seconds; the number of book items
in the database varied between 1k, 10k, and 100k; and the
think time was set to 0, ensuring that the EBs do not wait
before making a new request. All results were obtained as
the average of 4 independent executions of the benchmark,
with the same configurations. The EBs, the request
distribution switch, and the benchmark servers were always
running on the same physical machine.

All of the performance measurements were made with
the benchmark running on a machine equipped with 2x Intel
Xeon E5520 (a total of 8 physical cores with hyper-threading
running at 2.26 GHz) and 24 GB of RAM. Its operating
system was Ubuntu 10.04.3, and the JVM used was Java
(TM) SE Runtime Environment (build 1.6.0 22-b04), Java
HotSpot (TM) 64-Bit ServerVM (build 17.1-b03, mixed
mode). The benchmark server nodes, as well as the request
distribution switch, were run on top of instances of Apache
Tomcat 6.0.24, with the options set to "-server -Xms64m -
Xmx${heapSize}m -Xshare:off -XX: +UseConcMarkSweep
GC -XX:+AggressiveOpts".

The performance results achieved when running the
TPC-W benchmark with three different request distribution
policies, and with three and four server nodes, shall be
presented and discussed next.

The first policy corresponds to the new policy developed
with this work. The second policy corresponds to an
idealized locality-aware request distribution (LARD), where
each server node is responsible for processing a subset of
request types, and there are no intersections among the sets
of request types assigned to different server nodes. This
policy is idealized because it assumes prior knowledge of the
composition of the workload, in terms of the relative
proportions of incoming request types, as well as the average
time that requests of a given type take to be processed. The
policy attempts to achieve the most uniform load distribution
possible, whilst keeping every server node dedicated to

702Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 720 / 729

processing a fixed subset of request types. The third policy
employs a classic (unweighted) round-robin approach for
distributing incoming requests among existing server nodes.

0

100

200

300

400

500

600

700

800

t1
_b

1
k

t1
_

b1
0

k

t1
_

b1
00

k

t2
_b

1k

t2
_

b1
0k

t2
_b

1
00

k

t3
_

b1
k

t3
_

b1
0k

t3
_b

10
0k

New

LARD

RoundR

Figure 1. WIPs, 4 server nodes with 512MB heaps

The objective here is to demonstrate that it is possible to
achieve improved throughput and efficiency in resource
utilization by employing a request distribution policy that is
explicitly aware of data locality, by taking into account the
composition of the working-sets associated with request
types. Given that, at this point of the work, there is no
attempt to do a uniform load distribution, and that the
conditions under which the system evaluation is performed
(all server nodes share the computational resources of the
same physical machine) do not allow for an objective and
accurate evaluation of the load distribution among server
nodes, no attempt shall be made at doing so. The evaluation
metrics that we use here are only the overall system
throughput and the efficiency in memory usage measured by
the sizes of the effectively used heaps by the server nodes. A
particular emphasis is given to the execution of the target
application in sub-optimal memory availability conditions.
These are expressed by running the server nodes with five
different configurations for the JVM maximum heap size
(Xmx): 512MB, 640MB, 768MB, 896MB, and 4096MB.

The throughput achieved by the three request distribution
policies when the system is operating with 4 server nodes
(where each is allowed to use up to 512MB of heap) can be
seen in Figure 1. Each group of bars corresponds to a
particular benchmark configuration, where t1, t2, and t3
indicate the type of workload, and b1k, b10k, and b100k
indicate the size of the database used. By analyzing the
results, it is possible to observe that the round-robin
distribution is consistently outperformed by the other two
policies, which display a rather similar throughput, across
most configurations.

TABLE I. THROUGHPUT DIFFERENCE (%), 4 SERVER NODES

N/L N/R N/L N/R N/L N/R N/L N/R N/L N/R
t1_b1k 0.6 4.2 -4.2 1.8 -7.1 5.1 -2.3 6.3 -1.4 2.9
t1_b10k -0.1 6.8 -1.7 -4.7 -6.1 -4.5 -3.9 -1.8 -1.9 -5.1
t1_b100k -2.3 3.8 0.0 3.7 -1.6 4.5 -2.6 3.2 -3.1 2.4
t2_b1k -4.4 61.5 1.6 27.5 -1.9 18.5 9.3 19.8 1.6 19.1
t2_b10k -1.3 10.1 0.5 3.8 -0.3 -8.5 0.0 -4.4 1.1 -5.5
t2_b100k -7.4 -0.5 -3.4 3.8 0.2 6.4 -3.2 3.1 -1.8 0.2
t3_b1k -6.7 28.8 -9.5 29.1 -9.9 31.1 -13.8 47.5 -10.8 26.2
t3_b10k -3.1 76.7 8.4 47.2 2.6 48.3 -11.3 30.2 -9.7 26.1
t3_b100k 5.3 18.9 9.6 -42.6 16.2 -13.6 -6.1 -8.4 -8.4 -6.0
average -2.2 23.4 0.1 7.7 -0.9 9.7 -3.8 10.6 -3.8 6.7

896MB 4096MB512MB 640MB 768MB

A thorough comparison of the performance gains
achieved when using the New policy against LARD and
Round-Robin, can be seen in Table I for 4 server nodes, and

in Table II for 3 server nodes. The columns with "N/L" in the
header contain throughput difference of New against LARD,
calculated as    100, %New LARD LARDT T T  , whereas "N/R" is

the comparative data of New versus Round-Robin.

TABLE II. THROUGHPUT DIFFERENCE (%), 3 SERVER NODES

N/L N/R N/L N/R N/L N/R N/L N/R N/L N/R
t1_b1k -2.07 5.13 3.95 28.89 -6.75 1.81 -2.65 2.46 -5.66 -4.10
t1_b10k -1.06 -7.56 1.23 -7.91 6.18 -0.67 -10.11 -9.59 0.95 -5.99
t1_b100k -2.53 3.37 -4.38 0.20 -3.08 0.97 -2.89 2.33 -1.30 3.95
t2_b1k -7.40 42.26 -5.59 36.83 -1.50 11.53 -9.35 14.44 -6.14 11.39
t2_b10k -6.39 -11.89 3.09 -3.89 -3.72 -8.78 4.17 -1.88 -7.76 -11.78
t2_b100k -7.16 0.90 -3.03 1.78 -3.24 -0.47 -1.77 2.98 -3.56 2.03
t3_b1k 12.56 56.01 -5.07 40.55 14.21 74.91 3.32 63.02 0.46 46.36
t3_b10k 1.28 82.07 1.77 97.21 2.58 46.64 9.13 58.50 -11.55 35.50
t3_b100k 35.42 36.60 17.71 -8.35 -3.64 -31.28 7.65 -10.83 -6.64 -8.42
average 2.52 22.99 1.08 20.59 0.11 10.52 -0.28 13.49 -4.58 7.66

4096MB512MB 640MB 768MB 896MB

The New policy outperforms Round-Robin in 33 out of
45 (73%) configurations for 4 server nodes with an average
of 11.62% better throughput, and in 29 out of 45 (64%) for 3
server nodes, with an average of 15.05%. The throughput
achieved by using Round-Robin is the most inconsistent,
across all configurations. This can be confirmed by
observing Table III, where the uncertainty, expressed in
terms of the covariance of the measurements, is displayed.
The lower the value of the covariance of a given
measurement, the higher the confidence in it - low
covariance implies that the quantity being measured is
unlikely to display values far from the mean.

TABLE III. MEASUREMENT UNCERTAINTY, 4 SERVER NODES

N L R N L R N L R N L R N L R
t1_b1k 0.03 0.04 0.053 0.00 0.08 0.17 0.07 0.03 0.05 0.01 0.04 0.02 0.01 0.02 0.04
t1_b10k 0.04 0.04 0.012 0.04 0.03 0.01 0.02 0.10 0.06 0.03 0.02 0.02 0.04 0.04 0.02
t1_b100k 0.01 0.02 0.009 0.00 0.03 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.02 0.01
t2_b1k 0.03 0.02 0.539 0.04 0.08 0.24 0.04 0.04 0.01 0.02 0.03 0.09 0.03 0.04 0.06
t2_b10k 0.03 0.04 0.051 0.01 0.04 0.07 0.03 0.07 0.02 0.05 0.06 0.02 0.03 0.05 0.03
t2_b100k 0.02 0.05 0.006 0.00 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.00 0.02 0.01
t3_b1k 0.20 0.07 0.058 0.11 0.02 0.06 0.13 0.09 0.11 0.09 0.14 0.16 0.21 0.08 0.10
t3_b10k 0.13 0.04 0.24 0.11 0.09 0.47 0.02 0.16 0.14 0.12 0.15 0.11 0.11 0.09 0.13
t3_b100k 0.21 0.03 0.237 0.02 0.09 0.32 0.06 0.17 0.15 0.06 0.08 0.20 0.08 0.12 0.13

4096MB512MB 640MB 768MB 896MB

The LARD policy outperforms the New approach in
most configurations, by a small margin. On the average, the
New policy provides 2.12% less throughput than LARD, for
4 server nodes, and 0.23% less throughput, for 3 nodes.
Given that this particular LARD implementation is an
idealized approach that makes use of perfect knowledge, a
priori, about the target's system behavior, it is quite positive
that the performance offered by the newly developed policy
is so similar to an approach that would not be possible to
achieve in practice.

heap = 86192t + 2E+08

heap = 52178t + 2E+08

heap = 28428t + 2E+08

1.0E+08

2.0E+08

3.0E+08

4.0E+08

time (s)

H
ea

p
 S

iz
e

(b
yt

es
)

New Heap

RoundR Heap

LARD H eap

Figure 2. Heap size, t3, 10k books, 4 nodes, 640MB

Figure 2 contains the effective heap size usage achieved
by the three policies, for a particular configuration of the
benchmark, when 4 nodes are running with a maximum of

w

703Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 721 / 729

640MB of heap. The average heap size of New is 5.3%
higher than LARD and 33.3% lower than Round-Robin. To
identify the trends in memory usage we show also the result
of a linear regression over the data collected. The gradients
indicate that the heap growth rate of the New policy equals
0.33 of the Round-Robin and 0.54 of the LARD, resulting in
the overall lowest growth in terms of heap.

GC (CPU%) = -0.0053t + 6.4395

GC (CPU%) = -0.0022t + 3.4356

GC (CPU%) = -0.0009t + 2.9331

0

2

4

6

8

10

12

time (s)

G
C

 (
%

 C
P

U
)

New GC

LARD GC

RoundR GC

Figure 3. Garbage Collection (%CPU), t3, 10k books, 4 nodes, 640MB

Figure 3 shows the percentage of CPU spent performing
garbage collection, for that same configuration of the
benchmark. The average values are 2.9% for New, 2.7% for
LARD and 5.1% for Round-Robin.

V. CONCLUSIONS

This work presented a new load balancing policy for
clustered web server systems that seeks to maximize data
locality by explicitly accounting for the correlation between
the composition of the working sets of requests. That policy
was applied to the TPC-W benchmark and evaluated against
two alternative request distribution strategies. The newly
developed approach provided significant performance gains
under the form of increased throughput and improved
efficiency in terms of memory usage, when compared
against the alternative solutions.

ACKNOWLEDGMENT

This work was partially supported by FCT (INESC-ID
multiannual funding) through the PIDDAC Program funds
and by the Specific Targeted Research Project (STReP)
Cloud-TM, which is co-financed by the European
Commission through the contract no. 257784. The first
author has been funded by the Portuguese FCT under
contract SFRH/BD/64379/2009.

REFERENCES
[1] Amza, C., Cox, A. L. and Zwaenepoel, W., 2003, Conflict-

aware scheduling for dynamic content applications,
Proceedings of the 4th conference on USENIX Symposium
on Internet Technologies and Systems, USENIX Association,
Vol. 4, pp. 6-20.

[2] Amza, C., Cox, A. L. and Zwaenepoel, W., 2005, A
comparative evaluation of transparent scaling techniques for
dynamic content servers, Proceedings of the 21st International
Conference on Data Engineering (ICDE 2005), IEEE, pp.
230-241.

[3] Bansal, N. and Harchol-Balter, M., 2001, Analysis of SRPT
scheduling: Investigating unfairness, ACM.

[4] Blei, D., Ng, A. and Jordan, M., 2003, Latent dirichlet

allocation, Journal of Machine Learning Research, 3 pp. 993-
1022,

[5] Cardellini, V., Casalicchio, E., Colajanni, M. and Yu, P.,
2002, The state of the art in locally distributed Web-server
systems, ACM Computing Surveys (CSUR), 34 (2), pp. 263-
311,

[6] Crovella, M., Frangioso, R. and Harchol-Balter, M., 1999,
Connection scheduling in web servers, Proceedings of the 2nd
conference on USENIX Symposium on Internet Technologies
and Systems - Volume 2, Boulder, Colorado, USENIX
Association, pp. 22-22.

[7] Devlin, B., Gray, J., Laing, B. and Spix, G., 1999, Scalability
Terminology: Farms, Clones, Partitions, Packs, RACS and
RAPS, http://www.scientificcommons.org/21762514,

[8] Elnikety, S., Dropsho, S. and Zwaenepoel, W., 2007,
Tashkent+: Memory-aware load balancing and update
filtering in replicated databases, ACM SIGOPS Operating
Systems Review, 41 (3), pp. 399-412,

[9] Garbatov, S. and Cachopo, J., 2010, Importance Analysis for
Predicting Data Access Behaviour in Object-Oriented
Applications, Journal of Computer Science and Technologies,
14 (1), pp. 37-43, IEEE.

[10] Garbatov, S. and Cachopo, J., 2010, Predicting Data Access
Patterns in Object-Oriented Applications Based on Markov
Chains, Proceedings of the Fifth International Conference on
Software Engineering Advances (ICSEA 2010), Nice, France,
pp. 465-470.

[11] Garbatov, S. and Cachopo, J., 2011, Optimal Functionality
and Domain Data Clustering based on Latent Dirichlet
Allocation, Proceedings of the Sixth International Conference
on Software Engineering Advances (ICSEA 2011),
Barcelona, Spain, ThinkMind, pp. 245-250.

[12] Garbatov, S., Cachopo, J. and Pereira, J., 2009, Data Access
Pattern Analysis based on Bayesian Updating, Proceedings of
the First Symposium of Informatics (INForum 2009), Lisbon,
Paper 23.

[13] Hu, Y., Nanda, A. and Yang, Q., 1999, Measurement,
analysis and performance improvement of the Apache web
server, Proceedings of the Performance, Computing and
Communications Conference, IEEE, pp. 261-267.

[14] Nahum, E., Barzilai, T. and Kandlur, D. D., 2002,
Performance issues in WWW servers, IEEE/ACM
Transactions on Networking, 10 (1), pp. 2-11,

[15] Pai, V., Aron, M., Banga, G., Svendsen, M., Druschel, P.,
Zwaenepoel, W. and Nahum, E., 1998, Locality-aware
request distribution in cluster-based network servers,
Proceedings of the eighth international conference on
Architectural support for programming languages and
operating systems, San Jose, California, United States, ACM,
pp. 205-216.

[16] Pai, V., Druschel, P. and Zwaenepoel, W., 1999, An Efficient
and Portable Web Server, Proceedings of the 1999 USENIX
Annual Technical Conference.

[17] Rousseeuw, P. J., 1987, Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis, Journal of
computational and applied mathematics, 20 pp. 53-65,

[18] Smith, W. TPC-W: Benchmarking An Ecommerce Solution.
Intel Corporation, 2000.

[19] Zhang, Q., Riska, A., Sun, W., Smirni, E. and Ciardo, G.,
2005, Workload-aware load balancing for clustered web
servers, IEEE Transactions on Parallel and Distributed
Systems, 16 (3), pp. 219-233,

[20] Zhong, M., Shen, K. and Seiferas, J., 2008, Correlation-
Aware Object Placement for Multi-Object Operations,
Proceedings of the 2008 The 28th International Conference on
Distributed Computing Systems, IEEE Computer Society, pp.
512-521.

704Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 722 / 729

Evaluating Performance of Distributed Systems With MapReduce and Network
Traffic Analysis

Thiago Vieira, Paulo Soares, Marco Machado
Rodrigo Assad, Vinicius Garcia

Federal University of Pernambuco (UFPE) – Recife, Pernambuco, Brazil
{tpbv,pfas,masm,rea,vcg}@cin.ufpe.br

Abstract—Testing, monitoring and evaluation of distributed
systems at runtime is a difficult effort, due the dynamicity
of the environment, the large amount of data exchanged
between the nodes and the difficulty of reproduce an error
for debugging. Application traffic analysis is a method to
evaluate distributed systems, but the ability to analyze large
amount of data is a challenge. This paper proposes and
evaluates the use of MapReduce programming model to deep
packet inspection the application traffic of distributed systems,
evaluating the effectiveness and the processing capacity of the
MapReduce programming model for deep packet inspection of
a JXTA distributed storage application, in order to measure
performance indicators.

Keywords-Measurement of Distributed Systems; MapReduce;
Network Traffic Analysis; Deep Packet Inspection.

I. INTRODUCTION

With the growing of cloud computing usage and the use
of distributed systems to provide infrastructure and platform
as a service, the monitoring and performance analysis of dis-
tributed systems became more necessary [1]. In distributed
systems development, the maintenance and administration,
the detection of error causes and the analysis and the repro-
duction of an error are challenges and motivates efforts to the
development of less intrusive mechanisms for debugging and
monitoring distributed applications at runtime [2]. Network
traffic analysis is one option to evaluate distributed systems
performance [3], although there are limitations on capacity
to process large amount of network packet in short time
[3][4] and on scalability to be able to process network
traffic over variations of throughput and resource demand.
Simulators [5], emulators or testbeds [4][6] are also used
for evaluate distributed systems, but these presents lacks for
reproduce the real behaviour of a distributed system and
its relation within a complex environment, such as a cloud
computing environment [4][6].

An approach to process large amount of network traffic
was proposed by [7]. The proposal consists in the use
of MapReduce [8] programming model to parse network
packets to a binary format, that can be used as input for Map
and Reduce functions to process network packet flow. This
proposal shows that MapReduce improves the computation
time and provides fault tolerance to packet flow analysis,

but the use of MapReduce for deep packet inspection (DPI)
and for evaluate distributed applications was not analyzed.

Because of the need to evaluate the real behaviour of
distributed systems at runtime, in a less intrusive way,
and the need of a scalable and fault tolerant approach to
process large amount of data, using commodity hardware,
we propose the use of MapReduce programming model to
implement a passive DPI for distributed applications. In this
paper we evaluate the effectiveness of MapReduce to a DPI
algorithm and its processing capacity to measure a JXTA-
based application in order to extract performance indicators
at runtime.

The remainder of this paper is organized as follows.
Section 2 describes the related works. Section 3 presents
the proposed solution. Section 4 describes the experiments
performed, Section 5 presents the results and the Section 6
concludes the paper and describes future works.

II. RELATED WORKS

To provide infrastructure and platform as a service in
a cloud computing model, it is necessary to have avail-
able a scalable and fault-tolerant infrastructure. Thus, the
use of distributed systems to obtain this requirements has
been widely used [9][10][11]. The Google Inc. developed
a distributed storage system [10][11] to use on its appli-
cations, which processes large amount of data and needs
high availability, scalability and feseability. Amazon has
its services based on Dynamo [9], which is a peer-to-peer
storage system to provide high availability and eventual
consistency to data storage. Other distributed technology
widely used by cloud computing providers is Hadoop [12],
which is an implementation of MapReduce to process data
intensive tasks over a cluster.

The evaluation of distributed applications is a challenge,
due the cost of monitoring distributed systems and the
lacks on performance measurement at runtime of large scale
distributed applications. To reproduce the behaviour of a
complex system in a test environment it is necessary to know
each relevant parameter of the system, and recreate them in
the test environment [6]. These needs are more evident in
cases where faults occur only when the system is over a

705Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 723 / 729

high load [4], which difficult the environment reproduction
and debugging.

Gupta et al [6] presents a methodology and framework
for large scale tests, able to obtain resources configurations
and scale near of a large scale system, through the use of
emulated scalable network, multiplexed virtual machines and
resource dilatation. Gupta et al also shows accuracy and
capacity of increase the scale and the realism on network
tests, although it do not obtain the same precision of an
evaluation of a real system at runtime.

Large scale tests can be executed in environments near
to real, using testbeds such as PlanetLab [13], which is a
widely used distributed environment composed by real or
virtual machines, geographically distributed over the world,
through real network resources. Although a testbed uses
real resources, to achieve precision on real time and data
intensive simulations, it is need to know and reproduce
each relevant parameter of the system, and recreate them
in the simulation environment, including impacts caused by
external systems.

Loiseau et al [4] argues the necessity of network traffic
evaluation with more granularity to complement simulations
and measurements, and to better understanding the network
traffic evolution and behaviour of each kind of network
traffic. To apply this kind of evaluation, it is necessary
devices and approaches to capture and process large amount
of data, such as Metroflux [4] and DPI solutions [14], but it
is still necessary scalable solutions to handle large amount
of network traffic over different demands and throughput.

MapReduce [8] is a programming model and a frame-
work for processing large data sets trough data-intensive
distributed computing, providing fault tolerance and high
scalability to big data processing. MapReduce became an
important programming model for large scale parallel sys-
tems, with applications on indexing, data mining, machine
learning, and scientific simulation [15]. Although many tasks
are expressible in MapReduce [8], it is necessary to know if
DPI problems can be expressed in MapReduce programming
model.

Lee et al [16] proposes a flow analysis method using
MapReduce programming model, where the network traffic
is captured, converted to text, and used as input to Map
functions. This work shows the improvement achieved in
computation time in comparison with flow-tools, which is a
flow analyses tool widely used to capture, filter and report
flow traffic. The conversion time from network traffic to text
may represent a relevant additional time, but it is not clear
if Lee et al (2010) considered this conversion time on its
evaluation and comparison with flow-tools.

Lee et al [7] presents a Hadoop-based packet trace pro-
cessing tool to process large amount of binary network
traffic. A new input type to Hadoop was developed, the
PcapInputFormat, which encapsulates the complexity of
processing a captured pcap trace and to extract the packets

using the libpcap [17] packet capture library. Lee et al
(2011) compares its proposal with CoralReef, which is a
network traffic analysis tool that also relies of libpcap, and
shows speedup on completion time to processing packet
traces with more than 100GB. The evaluation was limited to
process packet flow and extract indicators from IP, TCP and
UDP, not considering deep packet inspection, which needs
reassembly two or more packets to extract information. Ad-
ditionally, the PcapInputFormat rely on a timestamp based
heuristic for finding the first record from each block, using
sliding-window, which can be a limitation on accuracy, if
compared with the accuracy obtained by Tcpdump [18].

JXTA provides support to the development of peer-to-
peer applications, through the specification of protocols,
services and communications layers. Halepovic and Deters
[19] proposed a performance model, describing important in-
dicators to evaluate throughput, scalability, services and the
JXTA behaviour in different versions. Also, Halepovic and
Deters highlights the performance and scalability limitations
of JXTA, which can be improved by configurations, source
code modifications or by new JXTA’s versions. Halepovic
and Deters [20] analizes the JXTA performance in order to
show the increasing cost or latency with higher workload
and with concurrent requests, and they suggests more eval-
uations about scalability of large group of peers in direct
communication. Halepovic et al [21] cites network traffic
analysis as an approach to performance evaluation of JXTA-
based applications, but do not adopt it, due the lack on JXTA
traffic characterization. Although there is a performance
models and evaluations of JXTA, there are not evaluations
for the current versions and neither mechanisms to evaluate
JXTA applications at runtime, being necessary a solution to
measure the performance of JXTA-based applications and
provides information to evaluate its behaviour over different
circumstances.

III. THE SOLUTION

To evaluate JXTA distributed applications through net-
work traffic analysis it is necessary to capture and analyse
the content of JXTA messages split into network packets,
and be able to process large amount of network traffic in
acceptable time. To achieve this, we propose the use of
MapReduce, implemented by Apache Hadoop, to process
JXTA network traffic, extract performance indicators over
different scenarios, and provide an efficient and scalable
solution for DPI using commodity hardware. The architec-
ture of our solution is composed by four main component:
the Sniffer, that captures, splits and stores network packets
into Hadoop Distributed File System (HDFS); the Manager,
that orchestrates the collected data, the job executions and
stores the results generated; the jnetpcap-jxta [22], that
converts network packets into JXTA messages; and the
JXTAAnalyzer, that implements Map and Reduce functions
to extract performance indicators.

706Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 724 / 729

Figure 1 shows the overview of the proposed architecture
to capture the network traffic, through the Sniffer, split them
into files, and store this files into HDFS. The Sniffer must
be connected to the network where the target nodes are
connected, and be able to stablish communication with the
others nodes that composes the HDFS cluster. Figure 2
shows the architecture proposed to process network traffic
through MapReduce functions, which are implemented by
JXTAAnalyzer and deployed at each node of the Hadoop
cluster, and managed by the Manager.

Figure 1. Shows the overview of the architecture proposed to capture and
store the network traffic

Initially, the network traffic must be captured, split and
stored into HDFS. The packets are captured using Tcpdump,
a widely used libpcap network traffic capture tool, and are
split into files with 64 MB of size, which is the default
block size of the HDFS, although this block size may be
configured to different values. Files that are greater than the
HDFS block size are split into blocks with size equal or
smaller than the block size, and are spread among machines
in the cluster. As the libpcap, used by Tcpdump, stores the
network packets in binary files known as pcap files, it is
necessary to avoid split this files or to provide to Hadoop
an algorithm to split pcap files. Due the file split demands
additional computing time and increases the complexity of
the system, we adopted the split of pcap files into default
HDFS block size, using the split functionality provided by
Tcpdump. Thus, the network traffic is captured by Tcpdump,
split and stored into local file system of the Sniffer, and
periodically transferred to HDFS, which is responsible to
replicate the files into the machines of the cluster.

In the MapReduce programming model, the input data is
split into blocks and into records, which are used as input
for Map tasks. We adopt the use of whole files, with size
defined by the HDFS block size, as input for each Map tasks,
in order to extract information of more than one packet,
differently of Lee et al [7] approach, where each Map task
receives only one packet as input. With our approach it is
possible reassembly TCP packets, JXTA messages and other

protocols that has its content divided into many packets to
be transferred over TCP.

Figure 2. Shows the architecture proposed to process the network traffic

Once the pcap files has been stored into HDFS, an agent
called Manager is responsible for selecting the files to be
processed, to schedule the Map and Reduce tasks, and store
the generated results into a database. Each Map function
receives as input a path of a pcap file stored into HDFS,
the path received for each Map task is defined by the data
locality control of the Hadoop, which delegates each task
to nodes that have a local replica of the data, or to nodes
placed in the same rack of a replica. Then, the file is
opened and each network packet is processed to extract
the performance indicators and to generate as output a
SortedMapWritable object, with a sorted collection of values
for each performance indicator evaluated, which will be
summarized by Reduce functions.

One TCP packet can transport one or more JXTA mes-
sage, due to window size of the buffer used by JXTA Socket
to send and receive messages. Because of this, it is necessary
to evaluate the full content of each TCP segment to identify
all messages, instead of evaluate only the message header or
signature, as is commonly done in DPI techniques and by
widely used traffic analysis tools, such as Wireshark [23],
which is unable to recognize all JXTA messages, because
its approach do not identify when two or more messages
are transported into a TCP packet. Moreover, if a message
is greater than the size of the PDU in the TCP, the message
is split into some TCP segments. To handle these problems,
we developed a reassembly algorithm to recognize, sort and
reassembly TCP segments into JXTA messages, which is
described at Algorithm 1.

For all TCP packet of a pcap file, is verified if it is a
JXTA message or if it is part of a JXTA message that was

707Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 725 / 729

Algorithm 1 JxtaPerfMapper
for all tcpPacket do

if isJxta OR isWaitingForPendings then
parsePacket(tcpPacket)

end if
end for

function PARSEPACKET(tcpPacket)
parseMessage
if isMessageParsed then

upddateSavedF lows
if hasRemain then

parsePacket(remainPacket)
end if

else
savePendingMessage
lookForMoreMessages

end if
end function

not fully parsed and is waiting for its complement, then a
parse attempt is made, using Jnetpcap-jxta. As a TCP packet
may to contain one or more JXTA message, if a message
is fully parsed, then it is done another parse attempt with
the content not used by the previous parse. If the content
is a JXTA message and the parse is not successful, then its
TCP content is stored, with its TCP flow identification as
a key, and all next TCP packets that match with the flow
identification will be sorted and used to try to mount a new
JXTA message, until the parser is entirely successful. With
these characteristics, to inspect JXTA messages it is required
more effort than others cases of deep packet inspection,
where the analysis is based on inspection of message header
or protocol signature.

To evaluate JXTA messages captured as binary network
packet, we developed a parser called jnetpcap-jxta, which
converts libpcap network packet into Java JXTA messages.
Jnetpcap-jxta is written in Java and provides methods to
convert byte arrays into JXTA messages, using an extension
of JXTA default library for Java, known as JXSE. With
this, we are able to parse all kind of messages defined by
JXTA specification. Jnetpcap-jxta relies on JNetPcap library
to support the instantiation and inspection of libpcap packets,
JNetPcap was adopted due the performance to iterate over
packets, the large quantity of functionalities provided to
handle packet traces and due the recent update activities for
this library.

As showed by Figure 2, the JXTAAnalyzer is composed by
Map and Reduce methods, JxtaPerfMapper and JxtaPerfRe-
ducer, to extract performance indicators from JXTA Socket
communication layer, which is a communication mechanism
that implements a reliable message exchange and obtains
the better throughput between the communication layers

provided by the JXTA.
Each message of a JXTA Socket is part of a Pipe that

represents a connection established between the sender and
receiver. In a JXTA Socket communication, two Pipes are
established, one from sender to receiver and other from re-
ceiver to sender, which transports content messages and ac-
knowledges messages, respectively. To evaluate and extract
performance indicators from JXTA Socket, the messages
must be sorted, grouped and linked with its respectives Pipes
of content and acknowledge. The content transmitted into a
JXTA Socket is split into byte array blocks and stored into a
reliability message, that is sent to the destination and expects
to receive an acknowledge message of its arrival. Each block
that was sent or that was delivered, is queued by JXTA until
the system is ready to process them. The time between the
message delivery and the acknowledge be sent back is called
round-trip time (RTT), this may vary according to the system
load and may be used to evaluate if the system overloaded.

The JxtaPerfMapper and JxtaPerfReducer evaluates the
RTT of each content block transmitted over a JXTA Socket,
and extracts information about the number of connection
requests and message arrivals. Each Map function evaluates
the packet trace to mount JXTA messages, Pipes and Sock-
ets. The parsed JXTA messages are sorted by its sequence
number and grouped by its Pipe identification, to compose
the Pipes of a JXTA Socket. As soon as the messages are
sorted and grouped, then the RTT is obtained, its value is
associated with the respective key and written as an output
of the Map function. Each Reduce function receives as input
a key and a collection of values, which are respectively the
indicator and its values, then generates individual files for
each indicator.

The implemented Map and Reduce methods can be ex-
tended to address others performance indicators, such as
throughput or number of retransmissions, for this each indi-
cator must be represented by a unique key and the collected
values must be associated with its respective key. Moreover,
others Map and Reduce methods can be developed to analyse
others protocols and application traffics.

IV. EXPERIMENTS

As the two main goals of this work are to evaluate the
effectiveness and the processing capacity of MapReduce
to DPI in order to measure distributed applications, we
performed two set of experiments for different size of data
input and number of nodes in a Hadoop cluster, in order to
evaluate the MapReduce scalability and completion time to
DPI. We used as input a network traffic data captured from
a JXTA Socket communication between a server and some
clients from a distributed backup system. Two data set was
captured, with size of 16 GB and 34 GB, split into 35 and
79 files, respectively. The first experiment set processes 16
GB of data and varies the number of Hadoop slave nodes
between 3 and 10, the second experiment set processes 34

708Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 726 / 729

Nodes 3 4 6 8 10
Time 322.50 245.92 172.83 151.45 126.87

Std. Deviation 4.91 4.63 2.76 6.60 9.97
MB/s 50.80 66.62 94.80 108.18 129.14

(MB/s)/node 16.93 16.66 15.80 13.52 12.91

Table I
COMPLETION TIME TO PROCESS 16 GB SPLIT INTO 35 FILES

GB of data and varies the number of Hadoop slave nodes
between 4 and 19.

For each experiment set, we measure the completion
time and the capacity to process pcap files, in a Hadoop
cluster with different number of nodes. The experiments
were executed 30 times for each number of nodes, then
was measured the mean completion time and the standard
deviation of the value measured. All experiments were
performed at Amazon EC2, with a environment composed
by slave nodes with Ubuntu Server 11.10, kernel 3.0.0-16,
with 2 virtual cores composed by 2.5 EC2 Compute Units,
1.7 GB of RAM memory and 350 GB of hard disks, and
one master node with Ubuntu Server 11.10, with 1 virtual
core composed by 1 EC2 Compute Unit, 1.7 GB of RAM
memory and 160 GB of hard disks.

The Hadoop cluster was composed by one master node
and many slave nodes running Hadoop library version
0.20.203 with default configuration, using 64MB as block
size and with the data replicated 3 times over the HDFS.

The network traffic used as input data was captured from
a JXTA Socket Server receiving Socket requisitions and
transferring data from 5 concurrent clients, which sends data
to be stored at the server, with JXTA message content size
between 64KB and 256KB. The network traffic was captured
and processed, as described previously, in order to extract
round-trip time, number of requisitions and the number of
data sent to the server per time.

V. RESULTS

The results show the completion time to deep packet
inspection of JXTA network traffic using MapReduce, with
different input size and number of nodes in a Hadoop
cluster. The Tables 1 and 2 present respectively the results
of the experiment to process 16 GB and 34 GB of network
traffic, showing the number of Hadoop nodes used for
each experiment, the mean completion time in seconds, its
standard deviation, the processing capacity achieved and the
relative processing capacity per node in the cluster.

The completion time decreases with the increment of
number of nodes in the cluster, but not in a linear function.
This conclusion is clearer when observed that the relative
processing capacity per node decreases with the addition
of nodes in the cluster. With the growing of the number of
nodes in the cluster, increases the cost to manage the cluster,
the data replication, the allocation of tasks to available nodes
and the management of failures, also is increased the cost

Nodes 4 8 12 16 19
Time 464.46 260.48 188.93 166.99 134.22

Std. Deviation 4.18 5.52 6.23 3.81 5.77
MB/s 74.96 133.66 184.28 208.49 259.40

(MB/s)/node 18.74 16.71 15.36 13.03 13.65

Table II
COMPLETION TIME TO PROCESS 34 GB SPLIT INTO 79 FILES

with merging and sorting of the data processed by each Map
task. In small clusters, the probability of a node to have a
replica of the data received as input, is greater than in large
clusters. In large clusters there are more options of nodes
to delegate a task, but the number of data replication limits
these options to the number of nodes with a replica of the
data, this limitation increases the cost to schedule tasks and
distribute tasks in the cluster.

In our experiment, was achieved a mean processing ca-
pacity of 259.40 MB per second, in a cluster with 19 slave
nodes, processing 34 GB. For a cluster with 4 nodes was
achieved a mean processing capacity of 66.62 MB/s and
74.96 MB/s to process respectively 16 GB and 34 GB of
network traffic data, which indicates that the processing
capacity may vary as a function of the amount of data
processed and the number of files used as input data.

Figure 3. Scalability to process 16 GB

Figures 3 and 4 illustrate how the addition of nodes to
the Hadoop cluster reduces the mean completion time and
how is the scalability of processing capacity achieved to
processing 16 GB and 34 GB of network traffic data. In
both graphics, the behaviour of the scalability is similar, with
more significant scalability gains, through addition of nodes,
in small clusters, and less significant gains with the growing
of the number of nodes in the cluster, which indicates the
importance of evaluating the relation between costs and
benefits to addition of nodes.

709Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 727 / 729

Figure 4. Scalability to process 34 GB

In the JXTA network traffic analized, was possible to use
the MapReduce programming model to extract indicators of
the number of connection request, number of data receiving
and the round-trip time. With these data is possible to
evaluate the behaviour of the system, extract information
about its performance and provide a better understanding of
the network traffic behaviour of a JXTA-based application.
Figure 5 shows the network traffic behaviour of a JXTA
Socket server receiving connection request and data from 5
concurrent clients. In this figure it is possible to observe the
behaviour of the Java just-in-time compiler [24] optimizing
the bytecode through its convertion into an equivalent se-
quence of the native code of the underlying machine, in the
time when the rount-trip time increases and is normalized
after the optimization of the bytecode.

Figure 5. JXTA Socket trace analysis

VI. CONCLUSION AND FUTURE WORKS

To evaluate the network behaviour of distributed systems
at runtime, in a less intrusive way, with high processing
capacity, scalability and fault tolerance, it is necessary ap-
proaches and tools to support the development, management
and monitoring of distributed applications. To address this,
we proposed the use of MapReduce programming model
to deep packet inspection of distributed application network
traffic, and we performed experiments in order to show the
effectiveness and efficiency of our proposal.

We showed that MapReduce programming model can
express algorithms for DPI, as the Algorithm 1, implemented
to extract indicators from a JXTA network traffic, with
indicators shown in Figure 5. We applied the MapReduce
to DPI, using a network trace split into files with 64 MB,
to avoid the cost of split the network trace into packets and
also to be able to reassembly two or more packets to mount
JXTA messages from packets.

We analized the processing capacity and scalability
achieved for different number of nodes in a Hadoop cluster,
with different size of network traffic data, showing the pro-
cessing capacity and scalability achieved, and the influence
of the number of nodes and the data input size in the
capacity processing of network traffic. We showed that using
Hadoop as a MapReduce implementation, it is possible to
use commodity hardware, or cloud computing services, to
deep packet inspection of large amount of network traffic.

With our proposal, also it is possible to measure and
evaluate, at runtime and in a less intrusive way, the network
traffic behaviour of distributed applications with intensive
network traffic generation, making possible the use of this
captured information to reproduce the behaviour of the
system in a simulation environment.

In future work, we will evaluate and characterize the
behaviour followed by the scalability of MapReduce to DPI,
evaluating the optimal size of input data for large and small
clusters. Optimizations in the Hadoop environment, HDFS
and JNetPcap library can be investigated to improve the
approach to load pcap files, making the JNetPcap able to
read files from HDFS and avoiding another copy of the data.
Other future work is to investigate improvements or propose
a Hadoop scheduler to cases where the input data can not
be split and a full file is required as input to Map tasks. We
will also perform evaluations of MapReduce to deep packet
inspection of others protocols and distributed applications.

VII. ACKNOWLEDGEMENTS

This research was supported by the National Institute
of Science and Technology for Software Engineering (INES
- www.ines.org.br), funded by CNPq and FACEPE, grants
573964/2008-4 and APQ-1037-1.03/08.

710Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 728 / 729

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, and
M. Zaharia, “Above the clouds: A berkeley view of cloud
computing,” Tech. Rep., 2009.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A view of cloud computing,” Commun. ACM,
vol. 53, pp. 50–58, Apr. 2010.

[3] A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner,
S. Fernandes, and D. Sadok, “A survey on internet traffic iden-
tification,” Communications Surveys Tutorials, IEEE, vol. 11,
no. 3, pp. 37 –52, quarter 2009.

[4] P. Loiseau, P. Goncalves, R. Guillier, M. Imbert, Y. Kodama,
and P.-B. Primet, “Metroflux: A high performance system for
analysing flow at very fine-grain,” in Testbeds and Research
Infrastructures for the Development of Networks Communities
and Workshops, 2009. TridentCom 2009. 5th International
Conference on, april 2009, pp. 1 –9.

[5] D. Paul, “Jxta-sim2: A simulator for the core jxta protocols,”
Master’s thesis, University of Dublin, Ireland, 2010.

[6] D. Gupta, K. V. Vishwanath, M. McNett, A. Vahdat,
K. Yocum, A. Snoeren, and G. M. Voelker, “Diecast: Testing
distributed systems with an accurate scale model,” ACM
Trans. Comput. Syst., vol. 29, pp. 4:1–4:48, May 2011.

[7] Y. Lee, W. Kang, and Y. Lee, “A hadoop-based packet trace
processing tool,” in Proceedings of the Third international
conference on Traffic monitoring and analysis, ser. TMA’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 51–63.

[8] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51, pp.
107–113, Jan. 2008.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels, “Dynamo: amazon’s highly available key-
value store,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 205–220,
Oct. 2007.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” SIGOPS Oper. Syst. Rev., vol. 37, pp. 29–43, Oct.
2003.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“Bigtable: A distributed storage system for structured data,”
ACM Trans. Comput. Syst., vol. 26, pp. 4:1–4:26, June 2008.

[12] “Hadoop,” http://hadoop.apache.org/, [retrieved: september,
2012].

[13] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “Planetlab: an overlay
testbed for broad-coverage services,” SIGCOMM Comput.
Commun. Rev., vol. 33, pp. 3–12, July 2003.

[14] S. Fernandes, R. Antonello, T. Lacerda, A. Santos, D. Sadok,
and T. Westholm, “Slimming down deep packet inspection
systems,” in INFOCOM Workshops 2009, IEEE, april 2009,
pp. 1 –6.

[15] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,
and I. Stoica, “Improving mapreduce performance in
heterogeneous environments,” in Proceedings of the 8th
USENIX conference on Operating systems design and
implementation, ser. OSDI’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 29–42. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855744

[16] Y. Lee, W. Kang, and H. Son, “An internet traffic anal-
ysis method with mapreduce,” in Network Operations and
Management Symposium Workshops (NOMS Wksps), 2010
IEEE/IFIP, april 2010, pp. 357 –361.

[17] V. Jacobson, C. Leres, and S. McCanne, “libpcap,”
http://www.tcpdump.org/, 1994.

[18] “Tcpdump,” http://www.tcpdump.org/, [retrieved: september,
2012].

[19] E. Halepovic and R. Deters, “The jxta performance model
and evaluation,” Future Gener. Comput. Syst., vol. 21, pp.
377–390, March 2005.

[20] E. Halepovic, R. Deters, and B. Traversat, “Jxta messaging:
Analysis of feature-performance tradeoffs and implications
for system design,” in On the Move to Meaningful Internet
Systems 2005: CoopIS, DOA, and ODBASE, R. Meersman
and Z. Tari, Eds. Springer Berlin / Heidelberg, 2005, vol.
3761, pp. 1097–1114.

[21] E. Halepovic, “Performance evaluation and benchmarking of
the jxta peer-to-peer platform,” 2004.

[22] T. Vieira, “jnetpcap-jxta,” http://github.com/tpbvieira/jnetpcap-
jxta, [retrieved: september, 2012].

[23] “Wireshark,” http://www.wireshark.org/, [retrieved: septem-
ber, 2012].

[24] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani,
“Overview of the ibm java just-in-time compiler,” IBM Sys-
tems Journal, vol. 39, no. 1, pp. 175 –193, 2000.

711Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Powered by TCPDF (www.tcpdf.org)

 729 / 729

http://www.tcpdf.org

