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Abstract—In communication systems, accurately identifying the 

transmitted data requires precise acquisition of the data reading 

position. The current packet extraction method, which uses a 

Start Frame Delimiter (SFD), suffers from poor noise resistance, 

leading to synchronization errors. To address this issue, this 

study proposes a novel packet extraction method that eliminates 

the use of SFD. By combining Reed-Solomon (RS) codes with a 

bit-shifting method, the proposed approach leverages the error-

correcting capability of RS codes to identify packets even when 

bit reading positions are misaligned. Simulation results 

demonstrate that the proposed method achieves zero packet loss 

and effectively resolves the synchronization problem. 

Keywords-Frame  synchronization;  Start Frame Delimiter; 

Telecommunications; Reed-Solomon. 

I. INTRODUCTION 

Frame synchronization is particularly critical for packet 
transmission in cognitive radio networks [1]. The Start Frame 
Delimiter (SFD) is a key element in frame synchronization. 
Frame synchronization is achieved by the transmitter 
appending an SFD to the beginning of the transmitted data 
frame. The receiver detects the SFD to confirm the arrival of 
a packet and removes it from the data stream to reconstruct the 
transmitted message. Thus, the SFD plays a central role in 
frame synchronization. However, a significant issue arises due 
to noise superimposed on the SFD, leading to synchronization 
failures. This issue, known as "frame synchronization loss," 
becomes particularly problematic when the SFD is falsely 
detected, potentially causing delays in resynchronization. 
Frame synchronization loss directly impacts the overall 
reliability of communication systems, as has been previously 
demonstrated [2]. Therefore, solutions to further reduce its 
occurrence are critically needed. Optimizing the SFD design 
alone has proven insufficient to fully eliminate frame 
synchronization errors. Consequently, this study aims to 
address the root cause by proposing a communication 
algorithm that eliminates the dependency on the SFD 
altogether. The structure of this paper is as follows: Section II 
provides an overview of related works on SFD design using 
Barker codes. Section III explains the objectives and 
methodology of this research. Section IV presents the 
simulation settings, results, and discussions. Finally, Section 
V summarizes the findings and outlines future research 
directions. 

II. RELATED WORK 

Approaches to address the issue of frame synchronization 

loss have included simulation-based performance evaluations 

of recovery time [2] and methods involving changes to frame 

length [3]. However, the primary cause of frame 

synchronization loss lies in the Start Frame Delimiter (SFD), 

making its design a critical approach. One such approach 

involves using Barker codes for SFD design. Barker code 

sequences function as known reference signals for frame 

synchronization and are known for their excellent 

autocorrelation properties [4]. Cuji et al. [5] implemented a 

frame detection algorithm based on the autocorrelation 

properties of Barker sequences in a digital communication 

system, comparing simulation results with those obtained in 

real wireless link environments. These studies confirmed the 

effectiveness of Barker codes in SFD design and their 

contribution to improving synchronization accuracy. We 

further evaluated various SFD patterns (primarily Barker 

codes) under different noise conditions to examine their 

impact on synchronization errors. The results showed that 

shorter SFD patterns, such as "1110," were the most effective 

in minimizing synchronization errors while maintaining a 

high success rate. While successfully identified the optimal 

SFD, synchronization errors have not been entirely 

eliminated. Thus, further research is needed to explore 

alternative methods to reduce synchronization loss [6]. We 

propose a novel communication method that eliminates the 

use of the SFD, which is the root cause of synchronization 

errors. This approach aims to fundamentally resolve the 

limitations of traditional synchronization methods. 

III. METHODOLOGY 

      This section outlines the objectives of this study and the 

methodologies employed. In this research, a method is 

proposed to extract only the bit sequences corresponding to 

packets from the entire received bit sequence. As shown in 

Figure 1, if the reading position of the bit sequence is 

misaligned, the interpretation of the data is entirely altered. 

Therefore, accurately determining the reading position is 

essential to identify the valid portions of the data. Since even 

a single-bit misalignment renders the bit sequence 

meaningless, precise identification of the packet position is 

indispensable. To achieve this, the proposed method employs 

coding techniques. Encoded data cannot be correctly decoded 

1Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-232-6
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unless it is read from the correct position. Figure 1 illustrates 

an example where bit misalignment causes all information to 

change, emphasizing the importance of proper decoding at 

the correct position. In the proposed method, bit shifting is 

performed on the received bit sequence based on the fixed 

length of the code, and decoding is attempted. The position 

where decoding succeeds is identified as the packet and 

extracted accordingly. Reed-Solomon codes, with a 

parameter (t = (N-K) / 2), can correct up to t symbol errors, 

where tt is the maximum number of correctable symbol 

errors, N is the total number of symbols in a codeword, 

and K is the number of plaintext symbols. Leveraging this 

property, completely unrelated bit sequences can be 

discarded, as they inherently contain more errors than RS 

codes can correct. Conversely, valid bit sequences can be 

successfully decoded as long as they contain no more than (t) 

symbol errors. Furthermore, unrelated bit sequences 

inevitably result in decoding failures because they contain (t) 

or more symbol errors. This characteristic enables accurate 

packet extraction.  

 
 

Fig. 1. Flowchart of the proposed method. 

IV. SIMULATION 

This section presents the simulation setup and results. 

A Simulation setup 

The outline of the simulation is as follows. The packet 

frame consists of a randomly generated data section, and 

the data section is protected by Forward Error Correction 

(FEC). Symbol length (n) and error correction capability 

(t) can be set arbitrarily. The transmission channel is 

modeled as an Additive White Gaussian Noise (AWGN) 

channel. The simulation involves sending 1000 packets, 

with each packet having a data section of 255 bytes. The 

idling period signal is always set to high, meaning the 

digital value 1. 

B Result and Consideration 

Figures 2 and 3 show the simulation results for varying 

code lengths of the Reed-Solomon (RS) code. It was 

revealed that both RS (128, 32) and RS (9, 3) achieve zero 

packet loss within the Bit Error Rate (BER) range that falls 

within the error-correction capability of the Reed-Solomon 

code. These results demonstrate the effectiveness of the 

proposed method. However, it was also observed that, on 

rare occasions, extra packets were erroneously extracted 

from incorrect positions. 

 

 
Fig. 2. Packet Extraction Rate RS (128, 32). 

 

 
                      Fig. 3.  Packet Extraction Rate RS (9, 3). 
 

V. CONCLUSION AND FUTURE WORK 

This study proposes a novel synchronization method that 

does not rely on the Start Frame Delimiter (SFD) to address 

the issue of synchronization errors. While previous studies 

have identified optimal SFDs, the problem of frame 

synchronization errors has not been completely resolved. In 

this research, a packet extraction method independent of SFD 

is proposed by extracting decodable sections as packets. 

Simulation results demonstrate the feasibility of the proposed 

synchronization method. However, a remaining challenge is 

the need for measures to address the rare occurrence of 

erroneously extracted packets from incorrect positions. 
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Reinforcement Learning Based Goodput Maximization with Quantized Feedback
in URLLC
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Abstract—This paper presents a comprehensive system model
for goodput maximization with quantized feedback in Ultra-
Reliable Low-Latency Communication (URLLC), focusing on
dynamic channel conditions and feedback schemes. The study
investigates a communication system, where the receiver provides
quantized channel state information to the transmitter. The
system adapts its feedback scheme based on reinforcement
learning, aiming to maximize goodput while accommodating
varying channel statistics. We introduce a novel Rician-K factor
estimation technique to enable the communication system to
optimize the feedback scheme. This dynamic approach increases
the overall performance, making it well-suited for practical
URLLC applications where channel statistics vary over time.

Keywords-URLLC, reinforcement learning, quantized feedback,
Rician-K estimation, goodput maximization.

I. INTRODUCTION

Ultra-Reliable Low-Latency Communication (URLLC) sys-
tems are facing the challenge of achieving reliability with max-
imum data transmission rates while dynamically responding to
fluctuating channel conditions. In this context, goodput, which
represents the rate of successful information transmission,
is a key metric for evaluating overall system performance.
Optimizing goodput emphasizes the significance of feedback
mechanisms. These mechanisms let the transmitter adapt its
transmission strategies efficiently [1].

A. Related Work

Various research explored scenarios where partial Channel
State Information (CSI) is available, aiming to reduce system
overhead compared to full feedback approaches. In [2], a
more systematic feedback approach is explored, focusing on
quantized CSI. Kim et al. [3] investigate wireless commu-
nication systems with partial CSI transmitted over an error-
free quantized feedback channel in the asymptotic regime,
proposing an adaptive feedback scheme to maximize goodput.
Recently, advancements in finite blocklength regime for low-
latency communication applications have been studied in [4].

On the other hand, significant advancements in URLLC with
feedback systems have been highlighted in recent years. [5]
addresses URLLC downlink transmission quality challenges
ensuring reliability and flexibility in feedback transmission.
Authors in [6] introduce Deep-HARQ, an AI-driven algorithm
optimizing the interface design for URLLC, significantly re-
ducing link latency. Furthermore, enhancements in downlink
link adaptation for URLLC to improve the channel quality
while enhancing system-level performance are presented in
[7]. These contributions mark significant advancements in
reliable URLLC systems with feedback mechanisms [8].

B. Motivation and Contributions
In this study, we assume a quasi-static fading channel

where the channel coefficient h remains constant during
transmission but varies over different codewords. One of the
primary performance metrics in quasi-static fading channels
is the system’s overall goodput, which can be assessed by the
expected rate achieved across a substantial number of packet
transmissions with varying transmission rates. This scenario
requires a feedback mechanism to transmit the current CSI
to the transmitter. Therefore, we propose a system model
that investigates the optimum quantized feedback scheme
with the purpose of maximizing the overall goodput of the
communication system. To extend the existing research, it is
also assumed that the channel statistics vary over time due
to factors such as mobility and scattering. For this purpose,
a Rician distributed channel model is taken into account with
an unknown shape factor, which will be defined in the next
section.

The foundation of the proposed study lies in a two-part
system. The contributions in the current paper can be listed as

• First, we introduce a novel technique for estimating
the Rician-K factor, which characterizes the channel’s
shape factor. This estimate serves as a key input for the
second part, where Reinforcement Learning (RL)-based
strategies for quantized feedback scheme selection are
applied.

• In the second part, we propose a novel RL-based search
algorithm to design an adaptive feedback scheme. RL
offers a flexible approach to learning and adapting to
varying communication environments.

Our approach enables transceivers to dynamically adapt feed-
back strategies to current channel conditions, thereby max-
imizing goodput. This model offers a practical solution for
dynamic channel adaptation which is crucial for evolving
wireless technologies and the increasing demand in next-
generation industrial communications for URLLC in the up-
coming beyond-5G era.

The remainder of the paper is organized as follows: Section
II details the system model and the definition of the problem,
considering the varying channel statistics. Section III intro-
duces our novel learning-based Rician-K factor estimator. In
Section IV, we present and review the RL-based quantized
feedback scheme. Section V provides a performance evalua-
tion of the proposed system, and Section VI concludes the
paper.

II. SYSTEM MODEL

We consider the discrete-time complex baseband wireless
communication system in which the transmitter transmits
a codeword over a quasi-static fading channel, where the
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complex-valued channel coefficient h is an independent and
identically distributed (i.i.d.) random variable according to
some distribution but remains constant over the codeword
transmission. For the sake of the focus of the study, it is
assumed that the receiver has perfect knowledge of h and
transmits this information back to the transmitter via an error-
free quantized feedback channel.

In such a communication environment, the received signal
y can be expressed as

y = hx+ z, (1)

where x and z represent the transmitted codeword and com-
plex Gaussian noise vector where the samples are i.i.d. and
zi ∼ CN(0, 1), where zi represents the ith component of z.

Let γ denote the i.i.d. channel magnitude which is deter-
mined as γ = |h|, where γ can be defined as a continuous
random variable with its corresponding Probability Density
Function (PDF), p(γ), and Cumulative Distribution Function
(CDF), P (γ). In this study, it is assumed that both p(γ) and
P (γ) are continuous and p(γ) ≥ 0 over 0 ≤ γ ≤ ∞.

A. Feedback Channel
It is considered that the receiver divides the positive real

line into Λ number of quantization regions and applies a
deterministic index mapping on the channel magnitude γ

L(γ) = l for γ ∈ [λl, λl+1), (2)

where l = 0, 1, · · · ,Λ−1 and λ0 = 0 and λΛ = ∞. Afterward,
the selected index, l, is transmitted back to the transmitter over
the error-free feedback channel. Therefore, CSI is partially
known to the transmitter.

After receiving the partial CSI, the transmitter selects a
transmission rate, described as rl, which can be defined as the
selected rate for the lth quantized region, with the mission of
maximizing the goodput of the communication system, which
is the maximization of the overall correctly received informa-
tion rate. For instance, the goodput of a communication system
with constant transmission rate r and error rate ϵ is

G = r(1− ϵ). (3)

B. Problem Definition
The instantaneous channel capacity, for a given channel

magnitude γ with SNR P , is

C(γ) = log(1 + γ2P). (4)

Suppose Λ = ∞, which represents perfect CSI at the transmit-
ter, the maximum achievable goodput is the ergodic capacity
since it is possible to match the transmission rate to C(γ).
Thus,

GΛ=∞ =

∫ ∞

0

p(γ)C(γ)dγ. (5)

On the other hand, if Λ = 1, which means no CSI at the
transmitter, the maximum achievable goodput can be found
by solving the following optimization problem

GΛ=1 = max
r≥0

∫ ∞

√
2r−1

P

rp(γ)dγ. (6)

When Λ ∈ [2,∞), determining the maximum achievable
goodput value becomes a challenging task. Consequently, the

Figure 1. The proposed system model.

objective becomes identifying the optimal λl and rl configu-
rations that maximize the long-term goodput.

Suppose γr
l is the reconstruction point of the lth quanti-

zation region and the transmitter selects rrl = C(γr
l ) as the

transmission rate. For a given channel realization γ, where
λl ≤ γ < λl+1, we know that as long as

rrl ≤ log(1 + γ2P) = C(γ), (7)

error-free transmission is possible. Otherwise, the commu-
nication is in outage. Thus, once the γr

l s and rrl s for l =
1, 2, · · · ,Λ are estimated, the overall outage probability of
such a communication system is

Λ−1∑
l=0

(P (γr
l )− P (λl)). (8)

Therefore, the optimum selections of λls and rls can be found
by solving the following optimization problem

max
rrl ,λl,γr

l

Λ−1∑
l=0

rrl
(
P (λl+1)− P (γr

l )
)

(9a)

s.t. 0 < λl ≤ γr
l < λl+1 < ∞. (9b)

This problem has been studied in [3], [4], and [9], and it
was shown that optimum rrl s can be achieved by setting rrl =
C(λl) and quantization levels, λr

l for l = 1, 2, · · · ,Λ− 1, can
be found by solving the following equation with an iterative
algorithm

P (λr
l+1) = P (λr

l ) +

(
1

P
+ λr

l

)
p(λr

l ) log

(
1 + λr

lP
1 + λr

l−1P

)
.

(10)

C. Varying Channel Statistics

Notice that the channel statistics are assumed to be fixed
in the optimization problem above. In this paper, we extend
these results by letting the channel statistics vary over time.

It is assumed that h ∼ CN(µ, σ2), with slowly varying µ
over time. Since h ∼ CN(µ, σ2), the channel magnitude, γ,
is Rician distributed random variable with varying K-factor,
which represents the shape parameter of the distribution and
can be defined as the power ratio of the line-of-sight signal
power to the remaining multipath and is expressed as [10]

K = µ2/σ2. (11)
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This assumption is broader and more realistic for many real-
world applications where the channel statistics change due to
mobility, scattering, etc. In our analyses, we assumed that µ
remains constant for 200 channel realizations and then changes
to a new value.

For this purpose, we divide the proposed method into
two parts: i) Rician-K factor estimation and ii) RL-based
quantized feedback scheme selection. In the first part, we
introduce a novel technique for estimating the Rician-K factor.
The estimate obtained in this initial phase serves as an input for
the subsequent part, where an RL-based strategy is employed
to dynamically select and update the feedback scheme to
optimize the overall goodput of the communication system,
aligning it with the current channel statistics. The proposed
system model is shown in Fig. 1.

In Fig. 1, it is worth highlighting the presence of two distinct
feedback channels. The first feedback channel, depicted with
a solid line, serves as the quantized feedback channel and
is utilized in each transmission of a codeword. In contrast,
the second feedback channel, indicated by a dashed line,
plays a unique role during the training phase, specifically
for transmitting updated transmission rates associated with
quantization level l. It is important to emphasize that this sec-
ondary feedback channel is not employed in every subsequent
transmission; rather, its usage is triggered by the decision
made by the RL-based feedback scheme to update rl, as
will be discussed in Section IV. In this way, the transmitter’s
knowledge is restricted to the selected transmission rate rl
for each l, which minimizes the need for additional data
transmission during training since all learning algorithms are
implemented at the receiver. This also contributes to reducing
the overall computational load on transceivers, which is a
crucial factor for mitigating the latency due to computational
processes [11] and [12].

III. LEARNING-BASED ESTIMATOR FOR RICIAN-K
FACTOR

Rician-K factor estimation is a well-studied topic in the
literature. Moment-based and maximum-likelihood estimators
have been presented in [10], [13]. Here, we first introduce the
moment-based estimators and then present our findings.

The PDF of the channel magnitude γ is given by

p(γ) =
2γ

σ2
exp

(−(γ2 + µ2)

σ2

)
I0
(2γµ

σ2

)
, (12)

where Iz(·) is the modified Bessel function of the first kind
with order z. By using the first few raw moments of Rician
distribution [14], the following estimators can be found after
some straightforward mathematical steps

m1√
m2

=
1

2

√
π

K + 1
L 1

2
(K), (13)

m4

m2
2

= 1 +
(2K + 1)

(K + 1)2
, (14)

m6

m3
2

= 6 +
K2(5K − 9)

(K + 1)3
, (15)

where L 1
2
(K) is the Laguerre polynomial, defined as

L 1
2
(K) = exp

(
−K

2

)(
(K + 1)I0

(
K

2

)
+KI1

(
K

2

))
,

(16)

and mi represents the ith raw moment. By using the estimators
above, an estimate of K is obtained numerically by computing
the empirical moments and solving the nonlinear equations
presented, where a close approximation for the Laguerre
polynomial can also be used as in [15].

In this study, we extend these results and propose a novel
moment-based learning model for Rician-K estimation. In this
proposed method, we employ a more comprehensive set of
features unlike the already presented studies in the literature
[16], which uses the traditional amplitude samples directly.
Specifically, we extract the first ten empirical moments of
the Rice-distributed random variable as input features. These
moments include the empirical mean, variance, skewness, and
kurtosis.

The idea behind using these moments as input features is
because of their ability to capture the underlying statistical
characteristics of the Rician random variable γ. This approach
offers a more detailed and informative representation of the
channel compared to conventional moment-based estimators,
which often rely only on a few moments. Our learning-
based approach is based on the eXtreme-Gradient-Boosting
(XGBoost) regression model, which has gained popularity in
various domains for its capability to handle complex relation-
ships with high-performance predictions [17]. Other learning
algorithms such as linear regression, histogram-based gradient
boosting regression, random forest regressor, cat-boost regres-
sor, etc. are also investigated. We skipped their results since
their overall performance was worse than XGBoost.

A. Pre-processing
Notice that the number of inputs of the proposed learning-

based method does not change with the number of samples
collected, which makes the proposed method easily scalable.
On the other hand, identifying the number of samples, N ,
while computing the empirical raw moments becomes a sig-
nificant design problem. To find the best selection, we have
tested various N values and saw that the best performance is
obtained when the training dataset is comprised of N = 100.
However, similar performance results can be achieved with
selections of N > 50 since XGBoost uses a learning rate
to control the model’s parameter updates during training [18],
which aims to prevent overfitting while maintaining a low bias
and ensuring that the model generalizes well to unseen data.

B. Performance Comparison
To test the performance of the proposed method, we resorted

to Monte Carlo simulations and compared the results. For this
purpose, a training dataset comprising 105 Rician-K factors
is created. This dataset contains a range of K values, limited
within 0 ≤ K ≤ 100, and was appended with their respective
empirical raw moments, which were computed from randomly
generated samples, with each dataset comprising N = 100
samples. Even though we set a constant N for the training
dataset, we test the performance of the learning-based estima-
tor with various N values, which are N = {25, 50, 102, 103}.
On the other hand, we select the estimator formulated in (13)
as the moment-based estimator due to its leading performance
against (14) and (15) since it uses the advantage of the lower
order moments [10].

A comparison of the results is presented in Fig. 2, where
the sample mean of the predicted K values, K̂, are depicted
with upper and lower limits of the confidence region, which is
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Figure 2. Sample mean and sample confidence region of the two estimators, namely moment-based and learning-based estimators. Results have been depicted
for N = {25, 50, 100, 1000}. ( ) Sample mean. ( ) Upper and lower limits of the confidence region. ( ) Reference line.

calculated as the ±2×standard deviation of K̂. Although the
estimators are capable of detecting higher K values, we limit
the horizontal and vertical axes between [0 − 20] to have a
better look at the differences between the estimators.

The key observation derived from Fig. 2 is the remarkable
superiority of the learning-based estimator in comparison to
the moment-based estimator across all choices of N . Interest-
ingly, the learning-based estimator exhibits better performance,
even at N = 25, compared to the moment-based estimator’s
results at N = 102. Furthermore, the learning-based estimator
achieves nearly perfect estimations when N = 103.

IV. REINFORCEMENT-LEARNING BASED QUANTIZED
FEEDBACK SCHEME SELECTION

In this section, we focus on finding the optimum feedback
scheme, such as selecting the best λls and rls, to maximize
the overall goodput of the system. As mentioned in the
previous chapter, we use an RL-based search algorithm since
the proposed methods in the literature cannot adapt to variable
channel statistics.

Let us first denote the optimum selections as λ∗
l and r∗l .

It is shown in [3] that the optimum goodput is achieved
by assigning the r∗l = C(λ∗

l ). Thus, one can simplify the
optimization problem by omitting the rl variables. Next is
the discritization process of the quantization regions. For this
purpose, we define a finite number of values for λls and
reformulate the optimization problem in (9) as

max
λl,γl

Λ−1∑
l=1

rl
(
P (λl+1)− P (γl)

)
(17a)

s.t. 0 ≤ λl ≤ γl < λl+1 < ∞, (17b)
λl ∈ S, (17c)

where S represents the set of finite number of selections.
With this reformulation, the solution becomes a sequential

search and can be modeled as a Markov decision process and
therefore can be solved with RL [19].

A Markov decision process consists of four elements, such
as the environment, state space S , action space A, and reward
space Ω. In more detail, at each time step t (or at each
iteration) the process is in state st ∈ S and makes a decision
and chooses an action at ∈ A. A reward ωt ∈ Ω is
observed after taking the action. Thus, ωt is received from
the environment and is based on st and at.

For the reformulated optimization problem in (17), states,
actions and rewards are designed as follows:

• State space S: We set λls for l = {1, 2, · · · ,Λ − 1}
as the agents of the system, except λ0 and λΛ since
their locations are fixed. The set of possible selections
of λ defines S, which is a subset of R+. Therefore, st is
defined to be a vector consisting of the current locations
of λls for l = {0, 1, 2, · · · ,Λ}.

• Action space A: We design the RL algorithm in such a
way that in every subsequent iteration only one agent,
e.g. λl, can change its status. Thus,

at ∈ {−1, 0,+1}, (18)

where −1, 0, and 1 represent decreasing the index of the
agent in S by one, no change, and increasing the index
of the agent in S by one, respectively. Here, we also
apply the ϵ-greedy strategy [20], which can be defined as
selecting the best action with probability (1 − ϵt) and a
uniformly distributed random action with probability ϵt,
which gives the search algorithm the possibility to explore
the whole state space S without getting stuck into a local
maximum. Additionally, it is important to note that any
selected action at shall not cause any contradiction with
the constraint defined in (17b).
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• Reward space Ω: The reward function is defined as the
empirical mean of the goodput that is achieved with the
new state st, i.e.

ωt =
1

M

M∑
m=1

C(λL(γm)) ≜ GM
emp, (19)

where M represents the number of transmitted blocks
with state st and yet is another design configuration of
the RL model which will be discussed in the next section.

A. Q-Learning for Enhancing Goodput
The traditional approach in reinforcement learning involves

a method known as Temporal Difference (TD) learning. This
technique blends aspects of both Monte Carlo and dynamic
programming. It is similar to Monte Carlo since TD learning
acquires samples directly from the environment, and it is
similar to dynamic programming since it refines its estimates
based on both the current and previous assessments. One
of the main TD learning methods is Q-learning which can
be represented as an RL methodology allowing the agent to
acquire the best strategy for navigating a specific environment
[21]. This requires the agent to keep track of an approximation
of the anticipated long-term discounted rewards for every
possible state-action combination and then make choices to
maximize these rewards.

In the Q-learning process, the agent iteratively updates its
Q-table, which stores the expected cumulative rewards for
each state-action pair. The optimal policy can be found by
Bellman’s optimality equation [21]

Q∗(s, a) = E[ωt+1 + ηmax
a′

Q∗(st+1, a
′)|st = s, at = a]

(20)
where η represents the discount factor which is required to
bound the cumulative reward and maxa′ Q∗(st+1, a

′) defines
the best estimate for the next state st+1. (20) reveals that
Q-learning requires the current state-action pair, the resulting
reward, and the subsequent state. Thus, the updating process
of the Q-table can be formulated as

Q(st, at) = (1− α)Q(st, at)+

α(ωt + ηmax
a′

Q∗(st+1, a
′)), (21)

where α is the learning rate.
The total number of possible sts in the current problem can

be expressed as

|S|!/((Λ + 1)!(|S| − Λ− 1)!), (22)

where | · | represents the cardinality of the set. Given the
potential for rapid growth of this number, constructing a
comprehensive Q-table covering all possible st states becomes
impractical. To address this challenge, we adopt a strategy
where the algorithm treats each agent independently, thus it
only needs the creation of distinct Q-tables for each agent.
Additionally, given the variability in channel characteristics,
the Q-table must encompass all feasible K values.

Consequently, the Q-learning table size for each agent is
determined as |K||S|, where K is the set of all possible Rician-
K factors. Notably, it remains possible to append these distinct
Q-tables into a unified table with size

(Λ− 1)|K||S|+ 1. (23)

B. Algorithm Design
The proposed algorithm is implemented as follows
• Set M , α, η, and initialize the λl values for all agents.
• Initialize the Q-learning table with zeros. Set the ϵ values

for all agents, where ϵ1 = 0.5 in our implementation.
• Start the loop by selecting an agent, i.e. λl, where at each

iteration a different agent is selected.
• Select an action based on the ϵ-greedy algorithm.
• Update ϵt with respect to t, such that ϵt+1 = ϵt/

√
t.

• After selecting at, update λl and st.
• Send the new rl to the transmitter.
• Observe M number of transmissions, compute the reward

ωt according to (19), and update the Q-table using (21).
It is important to note that the proposed algorithm may not
yield the optimal feedback scheme, which is due to the
simplification of the Q-table size, as explained earlier, but it
achieves a close approximation.

V. PERFORMANCE EVALUATION

Here, we first show the effect of M on the algorithm
performance. For this purpose, we implement a Monte Carlo
simulation where Λ = 4, K = 10dB, and P = 20dB for
M = {102, 103} and show the average of ωt at each iteration
t with the variance with grey color around the average.
Results are depicted in Fig. 3, where the long-term maximum
achievable goodput value is also plotted as a dash-dotted line.
The results demonstrate that the effect of M is significant
for the design of the system. As can be seen from Fig. 3,
the algorithm can reach the optimum value in both cases but
faster, in terms of t, when M = 103. However, note that higher
M values require more transmission at each iteration. On the
other hand, in some cases, ωt exceeds the upper limit due to
its empirical nature.

Next, we focus on the overall performance of the proposed
method, where we set Λ = 4, P = 20dB, N = 102, and
M = 102, and let K change from 0dB to 10dB then to
20dB. To see the overall performance, we again implement
a Monte Carlo environment, from where the average ωts at
each iteration t are obtained and depicted in Fig. 4. The long-
term maximum achievable goodput values for each K are also
plotted with dash-dotted lines. It is possible to see that the
proposed method can track the change in channel statistics
and adapt its feedback scheme so that it can approach the
maximum achievable goodput values in every case. It is also
important to highlight that, thanks to the RL-based learning
approach, once the optimal feedback scheme for a particular
Rician-K factor is determined, the transceivers can instantly
adjust to the optimal scheme whenever the channel exhibits
the same K value.

VI. CONCLUSIONS

In this study, we introduce a learning-driven system for
goodput maximization with quantized feedback in wireless
communication, designed to meet the requirements of URLLC.
Our contributions include a novel Rician-K factor estimation
technique that improves the adaptability of feedback strategies
to changing channel conditions. Additionally, we employed
RL to dynamically select and update feedback schemes,
demonstrating the system’s ability to maximize goodput under
evolving channel conditions. The importance of dynamic feed-
back mechanisms is emphasized, which addresses the unique
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Figure 3. Mean and confidence region of ωt with respect to iteration t for
M = {100, 1000} when Λ = 4, K = 10dB, and P = 20dB. ( ) The
long-term average of the maximum achievable goodput. ( ) Average of
ωt.

Figure 4. Performance of the proposed method with varying K. ( ) Long-
term average of the maximum achievable goodput. ( ) Average of ωt.

challenges posed by URLLC in next-generation wireless net-
works. Future research could extend the proposed framework
to various other wireless communication scenarios.
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Abstract— This paper analyzes 130 nm Partially Depleted (PD) 

Silicon-On-Insulator (SOI) and 28 nm Full Depleted (FD) SOI 

technologies and proposes the design of two Power Amplifiers 

(PAs) for 5G Narrow Band-Internet of Things (NB-IoT) 

applications. They were fabricated and measured, 

demonstrating the gain adjustment capability of FDSOI 

technology via back-gate voltage, allowing approximately 3.6 dB 

of gain adjustment. Both PAs consist of a gain stage (driver) and 

a power stage, using pseudo-differential and cascode topologies. 

The 28 nm PA includes an additional stacked transistor in the 

power stage to accommodate a higher drain bias voltage. Both 

PAs met the required performance parameters in post-layout 

simulations, achieving maximum Power-Added Efficiency 

(PAEmax) of 49% and 38.5%, gain of 36 dB and 34 dB and 

saturated Power (Psat) of 32 dBm and 28.8 dBm, respectively 

for 130 nm and 28 nm, placing them at the state-of-the art. 

Keywords- Power Amplifier; CMOS; 130 nm PDSOI; 28 nm 

FDSOI; 5G applications; Nb-IoT. 

I.  INTRODUCTION 

The transition from 4G Long Term Evolution (LTE) to 5G 
has revolutionized the Internet of Things (IoT) with the advent 
of massive IoT, enabling the connection of numerous devices 
simultaneously. Narrow Band-Internet of Things (NB-IoT), a 
key 5G standard within Low-Power Wide-Area Networks 
(LPWAN), addresses the need for massive IoT by supporting 
battery-powered devices with extended lifespans and 
optimized installation costs. Operating on licensed 3GPP 
bands, NB-IoT offers higher data rates compared to 
unlicensed LPWAN technologies like LoRa and Sigfox. It 
achieves extensive coverage through transmission repetitions 
and increased signaling power, while its Single-Carrier 
Frequency Division Multiple Access (SC-FDMA) modulation 
reduces Peak-to-Average Power Ratio (PAPR), improving 
Power Amplifier (PA) efficiency and ensuring suitability for 
massive IoT applications  [1]. 

Silicon-on-insulator (SOI) technology is pivotal for 
overcoming RF integration challenges in IoT circuits. 
Leveraging the high integration capabilities of 
Complementary Metal-Oxide-Semiconductor (CMOS), SOI 
reduces parasitic capacitances with a BOX layer, enhancing 
performance by over 20%  [2]. While SOI improves 
reliability, energy efficiency, and reduces variability 
compared to bulk CMOS  [3], NB-IoT's SC-FDMA 
modulation imposes strict PA design requirements, 

demanding linear operation and efficiency at low power. 
Advanced SOI technologies like Partially Depleted SOI 
(PDSOI) and Full Depleted SOI (FDSOI) provide tailored 
solutions, excelling in isolation and low-power scenarios, 
respectively  [4]. 

This paper analyzes the 130 nm PDSOI and 28 nm FDSOI 
technologies and proposes the design of two PAs for the 5G 
NB-IoT applications (see Fig. 1). The gain and linearity 
adjustment capability via the back-gate voltage of FDSOI 
technology is demonstrated. Both circuits consist of PAs with 
a gain stage (driver) and a power stage, using pseudo-
differential and cascode topologies. 

Following, Section II compares 130 nm PDSOI and 28 nm 
FDSOI technologies, highlighting their components and PA 
design methodology. Section III presents post-layout 
simulation and measurement results, including performance 
analysis, gain tuning via back-gate voltage for the 28 nm PA, 
and a state-of-the-art comparison. Section IV concludes with 
findings and future research directions. 

II. DESIGN METHODOLOGY 

This design methodology section presents a study on 
technologies and the designed PAs. Details about the metal 
layers of the 130 nm FDSOI and 28 nm PDSOI technologies 
are presented, followed by comparing both technologies 

 

 
Figure 1. 130nm PDSOI PA (top) and 28nm FDSOI PA (bottom). 
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inductors, capacitors, and transistors. Based on this analysis, 
the following subsection provides details of the schematics of 
the two designed PAs, highlighting their similarities and 
differences. 

A. Evaluation of Passives and Transistors of SOI 

Technology 

Fig. 2 presents the metal layers of the 130 nm PDSOI and 
28 nm FDSOI. The first observation concerns the difference 
in the number of available metal layers and their thickness. 
Indeed, the smaller the technology node, the higher the 
integration density, which also requires an increase in 
interconnection density. Several solutions are implemented to 
increase this density  [5]. The rise in metal layers and the 
reduction of the minimum etching widths are the most 
common and easiest to apply. However, reducing the 
minimum etching width impacts the maximum thickness 
metal layers can have due to manufacturing processes. This 
consequently explains the reduction in the thickness of the 
metal layers in the 28 nm FDSOI. 

Figs. 3 and 4 show an example of the inductor and 
capacitor performances for each technology, respectively. The 
comparison was made with inductors using an octagonal 
topology  [6]. In 28 nm FDSOI, the inductors are designed on 
the three thick levels ALU-IB-IA (see Fig. 2) to reduce 
resistivity and increase the quality factor at low frequency. In 

130 nm PDSOI, the two thick metal levels ALU-M4U (see 
Fig. 2) are used. For the same topology, the inductor achieves 
a quality factor Q of 28 at 2 GHz in 130 nm PDSOI, compared 
to 15 in 28 nm FDSOI. However, high-value inductors exhibit 
better high-frequency behavior in 28 nm FDSOI due to a 
higher self-resonant frequency, indicating lower parasitic 
capacitances. For capacitors, the quality factor at 2 GHz in the 
130 nm technology is around 300 for a capacitance of 1.1 pF 
(see Fig. 4). For the 28 nm technology, the quality factor at 2 
GHz is 40 for a capacitance of 0.88 pF. Indeed, the 28 nm 
technology has much thinner and more resistive metal layers 
than the 130 nm technology. On the other hand, the capacitors 
in 130 nm occupy larger silicon areas. 

 
Figure 2. Metal layers of 28 nm FDSOI and 130 nm PDSOI technologies. 

 

 
Figure 3. Comparison of inductances from 28 nm FDSOI and 130 nm 

PDSOI technologies. 

 
Figure 4. Comparison of capacitances in 28 nm FDSOI and 130_nm 

PDSOI technologies. 

 
Figure 5. Output Transfer Characteristics Id(Vds) in 28 nm FDSOI. 

 
Figure 6. Output Transfer Characteristics Id(Vds) in 130 nm PDSOI. 
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Figs. 5 and 6 show NMOS transistors' output transfer 
characteristics for RF applications for PA design. The 
transistors from 28 nm FDSOI have a higher current density, 
reaching 1.2 mA at the maximum Vgs voltage, compared to 
0.58 mA for the thick oxide transistor in 130 nm PDSOI. 
Additionally, the 28 nm transistors have lower threshold 
voltages, around 250 mV, compared to approximately 350 
mV for the 130 nm transistors, enabling operation at lower 
voltages. 

The 130 nm PDSOI technology offers better performance 
in terms of transistor quality in the saturation region. Indeed, 
the slopes ∂Id/∂Vds in the saturation region are lower for the 
130 nm PDSOI transistors than for the 28 nm FDSOI 
transistors. This also represents that the gds in 130nm are 
lower than in 28nm. The consequence is achieving more linear 
transistors for large-signal applications. 

B. Power Amplifier Design Methodology 

The two PA architectures were designed (see Figs. 7 and 
8) based on the preliminary sizing of the transistors and the 
analysis of the presented passive components. Both 
architectures were designed to achieve comparable 
performance and NB-IoT restrictions in post-layout 
simulations. This allows for evaluating their fabricated circuit 
measurements to compare the two technologies and discuss 
their advantages and limitations concerning the target 
application. 

Each circuit includes a driver stage with a single-ended 
input and pseudo-differential cascode topology at the output. 

Additionally, both circuits feature a pseudo-differential 
cascode power stage. The 28 nm design (see Fig. 7) employs 
a triple-cascode topology in its power stage to enable a supply 
voltage (Vdd) closer to the 130 nm technology, facilitating a 
fairer comparison. Both circuits were designed to achieve 
post-layout simulations (PLS) at the central frequency of 1.85 
GHz, a bandwidth exceeding 400 MHz, a gain of 35 dB, a 
maximum Power-Added Efficiency (PAEmax) above 30%, and 
power back-off PAE (PAEPBO) above 20%. 

The 130 nm PDSOI PA, depicted in Fig. 8, incorporates a 
pseudo-differential cascode power stage alongside a pseudo-
differential cascode driver setup. This configuration ensures a 
straightforward design and excellent performance tailored for 
NB-IoT applications. The design achieves higher output 
power by employing pseudo-differential architecture while 
minimizing constraints on the ground return path by 
suppressing even harmonics. Furthermore, the cascoded 
transistor arrangement enhances the amplifier's gain, allowing 
it to meet the 35 dB target specification. To ensure stability, 
given the high gain, neutralization capacitors (Cneutro) are 
incorporated. The matching networks are designed to enable 
broadband operation facilitated by a broadband matching 
transformer. In the 130nm technology, for the power stage, 
transistors were dimensioned with Wtotal=1200 μm and for the 
driver stage Wtotal=300 μm and the circuit was biased with 
Vdd=5V.  

Fig. 7 shows the complete schematic of the PA in 28 nm 
FDSOI technology. Two power cells are combined in the 

 
Figure 7. PA in 28 nm FDSOI technology schematic. 

 
Figure 8. PA in 130 nm PDSOI technology schematic. 
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power stage to compensate for the technology's power 
limitations. The PA consists of two triple-stack power cells, 
enabling a total output power of 28 dBm. The output matching 
network uses a distributed active transformer (DAT) to 
optimize the load impedance at the output through series 
recombination. The inter-stage matching is designed around a 
2-to-4 transformer, which performs impedance matching 
while distributing power across each power cell. Finally, the 
driver employs a cascode active balun topology, eliminating 
the need for a passive input balun. In the 28nm technology, 
the power stage used transistors with Wtotal=900 μm and for 
the driver stage Wtotal=225 μm, and the circuit was biased with 
Vdd=3V  

This circuit explores the potential for improving output 
power using stacked architecture and back-gate biasing, 
aiming to meet the power requirements of NB-IoT 
applications. The back-gate voltage permits fine-tuning of the 
gain and linearity performance, as will be shown in the results 
section. 

III. RESULTS AND DISCUSSIONS 

A. Post-layout Simulation and Measurement Performance 

Figs. 9 and 10 present the PA in 130 nm PDSOI and the 
PA in 28 nm FDSOI technologies S-parameters post-layout 
simulation (PLS) and measurements performance from 1 GHz 
to 3 GHz, respectively. The 130 nm PA presents an almost 
constant S21 performance (between 35 dB and 39 dB) from 
1.55 GHz to 2.4 GHz, an S22 near -3 dB, and an S11 less than 
to -5 dB in this frequency range. The 28 nm PA presents flatter 

behavior, with a maximum S21 performance of 33 dB 
between 1.5 GHz and 1.8 GHz, S22 less than -5 dB, and S11 
less than -15 dB.   

Fig. 11 presents the PA in 130 nm PDSOI technology gain 
and PAE performances for post-layout simulation and 
measurements in the frequency of 1.85 GHz. The measured 
gain performance presents a class AB characteristic shape, 
with 34.5 dB in low power and a maximum of 36 dB; the 
maximum PAE reaches 48.5% at a Psat of 31 dB in PLS and 
38% in measurements at a Psat of 28 dBm. 

Fig. 12 presents the PA in 28 nm FDSOI technology gain 
and PAE performances for post-layout simulation in the 
frequency of 1.85 GHz. The gain performance achieves 33.26 
dB in low power and a maximum of 34.72 dB; the maximum 
PAE reaches 38.5% at a Psat of 28.5 dB. The transistors were 
optimized until the edge of stability parameters predicting that 
losses in further components would assure stability. However, 
the implemented circuit presented stability issues in high-
output power.  

B. Fine Tuning Gain with Back Gate Transistor Bias in 

28nm FDSOI Technology 

In CMOS SOI technology, access to the transistor's back-
gate provides additional control over the device’s 
characteristics that can be leveraged to modify key 
performance parameters of a PA, such as output power, gain, 
and PAE. Changing the back-gate bias (Vbg) effectively 
modulates the transistor's threshold voltage Vth. A lower 
threshold voltage can increase the transistor's current driving 
capability, which may increase the power output and, 
potentially, the gain, depending on the biasing conditions. 

 
Figure 9. PA in 130nm PDSOI technology S-parameters post-layout 

simulation (PLS) and measurements performance. 

 
Figure 10. PA in 28nm FDSOI technology s-parameters post-layout 

simulation (PLS) and measurements performance. 

 
Figure 11. 130nm PA gain and PAE post-layout simulation and measured 

performances in 1.85 GHz. 

 
Figure 12. 28nm PA gain and PAE post-layout simulation performance in 

1.85 GHz. 
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However, this also can lead to higher power consumption and 
decreased efficiency. 

Fig. 13 presents the measured performance of gain versus 
Pout for the PA in 28 nm with three different levels of Vbg 
voltage. For Vbg=2V, the transistors are more biased for 
maximum conduction, resulting in the highest initial gain of 
31.3 dB and a curve with the typical shape of a class AB PA, 
reaching 21.8 dBm of linear output power. A Vbg=1V offers 
a more balanced operation, with a lower initial gain (30.2 dB) 
but greater linearity up to higher output power levels 
(OCP1=22.2 dBm). Meanwhile, Vbg=0V shows the lowest 
gain (27.7 dB) due to reduced transistor conduction but the 
highest linear output power (OCP1=23.6 dBm). 

These results demonstrate how the back-gate voltage in 
28nm FDSOI technology can be leveraged to optimize 
amplifier performance according to specific requirements for 
gain and linearity. 

C. 130nm and 28nm Power Amplifier Comparisons 

This subsection compares the two PAs in size and 
performance. As seen earlier at the start of the results section, 
the PA implemented in 28 nm technology occupies an area 
corresponding to 34% of the area occupied by the PA in 130 
nm technology. 

Comparing Figs. 9 and 10, the PA based on 130 nm 
PDSOI technology outperforms the 28 nm FDSOI in S-
parameters performance. The S21 gain of the 130 nm PA 
remains around 35 dB in the central range (1.6 to 2.3 GHz), 
while the 28 nm PA reaches 30 dB only in the range between 
1.5 and 1.9 GHz. However, the S22 and S11 of the 28 nm PA 
are more negative (below -5 dB and -15 dB, respectively), 
indicating better impedance matching at the input and output, 
with lower signal reflection. 

PA gain (dB) and PAE (%) performances can be compared 
by Figs. 11 and 12. In PLS, the 130 nm PA achieves a higher 
maximum output power (~31 dBm) than the 28 nm PA (~28.5 
dBm), making it more suitable for high-power applications. 
Considering the PLS performance, the 130 nm PA achieved a 
saturated output power of 31 dBm and the 28 nm PA achieved 
approximately 28.5 dBm, making the 130 nm technology 
more suitable for high-power applications, as expected. The 
130_nm amplifier also provides slightly higher gain at lower 
output power levels. Furthermore, the 130 nm PA shows 
superior PAE performance in PLS, achieving a maximum of 
48.5%, while the 28 nm PA achieves 38.35%. Comparing 

measurements, Fig. 11 shows that the 130 nm PA achieves a 
Psat of 28.82 dBm and a P1dB of 27.29 dBm, while the 28 nm 
PA, in Fig. 13, reaches a Psat of approximately 25.5 dBm and 
a P1dB of 23.6 dBm. 

Although the performance values of the circuit made with 
130 nm technology are higher, the circuit in 28 nm technology 
allows for gain and linearity performance adjustment through 
back-gate voltage. This enables the choice to operate in either 
a high-gain mode or a high-linearity mode, depending on the 
communication requirements. 

D. State-of-the-Art Analysis 

A comparison with the state of the art is conducted to 
conclude the performance assessment of the PAs presented in 
this section. Table I summarizes the state-of-the-art PAs and 
the performance metrics of the PAs developed in this research. 

Considering 5G and NB-IOT applications requiring 
modulations with high PAPR, the comparison was primarily 
made with promising topologies and techniques, such as 
Doherty, Envelope Tracking, and other high-efficiency 
classes.  

It is observed that the two developed PAs outperform all 
PAs in Table I in terms of gain. Regarding Psat, the PA in 130 
nm outperforms the works  [5] [7] [8] [9] [10]. Regarding 
PAE, the PA in 130 nm outperforms the works [6] [8] [9] [10], 
and the PA in 28 nm outperforms the work [8]. 

Regarding output power, the developed PAs are 
promising, as they are being compared with Doherty PAs, 
which consist of two or more PAs in parallel. If double the 
power were considered for the presented PAs, they would be 
comparable to Doherty's maximum power-level topologies. 

The 130nm PDSOI pseudo-differential PA demonstrates 
an overall performance superior to the 28nm FDSOI design. 
PAs [11] and [12] leverage off-chip passive components, 
which enhance performance due to significantly higher-
quality factors than integrated passives. The PA architecture 
in [13] employs an envelope tracking technique, yielding a 
substantial improvement in PAE. Lastly, PA [14] is based on 
a switched amplifier architecture, enabling higher power 
density. 

The PA designed in 28nm FDSOI is competitive with the 
state-of-the-art performance; however, the low-quality factor 
of integrated passives tends to reduce the maximum 
achievable PAE. 

IV. CONCLUSION 

This paper compares two PAs with some topological 
differences but similar application intents. Both consist of PAs 
with a gain stage (driver) and a power stage (PA), using 
differential and cascode topologies. The PA implemented in 
28 nm technology presents a 3-stacked transistor in its power 
stage to allow for a higher drain bias voltage. This adjustment 
was deemed fair within the functional comparison, as the 
technology features thinner layers, necessitating such 
adaptations. The two employed technologies, 130 nm, and 28 
nm, can produce PAs suited for the intended application. 

This paper compares the passive and active elements of 
the two technologies, showing that the 130 nm PDSOI 
technology has much thicker layers than the 28 nm FDSOI 

 
Figure 13. 28nm FDSOI PA gain versus Pout measured performances for 3 

levels of back-gate voltage. 
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technology, making it more suitable for power emission. 
However, the 28nm technology also enables this functionality 
while occupying three times less space, albeit at a 
considerably higher cost and with lower performance, given 
its primary orientation towards digital circuits. 

The results indicate that the performance of the circuit 
fabricated in 130 nm technology is superior to that of the 28 
nm circuit. The comparison between PLS and measurements 
also shows that the 130nm technology is more predictable and 
mature, as the measurements for the 28 nm circuit deviated 
further from the PLS predictions. 

The 28 nm FDSOI technology enables fine-tuning of the 
PA's gain through back-gate voltage, thus providing 
additional operational freedom. 

The developed PAs exhibit superior gain performance 
compared to the state-of-the-art. They are promising in power 
when used in efficiency-boosting topologies that combine 
multiple PAs to increase PAE at backoff and maximize output 
power. 

For future research, it is suggested that we explore the use 
of these PAs in efficiency-enhancing topologies and power-
combining strategies, Doherty and Envelope Tracking, 
facilitating comparisons with the state-of-the-art and 
contributing to the development of circuits for 5G and NB-
IOT applications. 
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TABLE I - COMPARING WITH THE STATE-OF-ART 

Ref. 
Freq. 

(GHz) 

Psat 

(dBm) 

P1dB 

(dBm) 

PAE 

max (%) 

PAE 

6dB 

(%) 

Gain 

(dB) 
Topology Technology S𝐮𝐩𝐩𝐥𝐲 (V) 

[15] 2.3 32.8 32 59 40 27.5 LDMOS Doherty 130nm SOI** 3.4 

[16] 2.4 35.1 34 53  29.5 Doherty 130nm SOI 5 

[5] 1.95 30.5 29.7 53 40 26.5 Doherty 180nm SOI 4 

[7] 1.85 31.9 N/A 56.2  14.2 ET PA 180nm bulk 4 

[6] 2.6 33.1 N/A 43.5 N/A 28.1 4-stack E/Fodd 45nm SOI 3 

[8] 2.4 30.3 N/A 36.5 29.1 N/A C-commutées 40nm Bulk 2.4 

[9] 2.4 31.6 N/A 49.2  N/A Digital Outphasing 45nm bulk 2.4 

[10] 1.85 30.7 28.8 44.4 28 11 Quasi-Doherty 180nm SOI 3 

PA 130* 1.85 32 30 49 26.6 34 Cascode Classe-AB 130nm PDSOI 5 

PA 28* 1.85 28.8 28.3 38.5 20.8 33 Triple stack Classe-AB 28nm FDSOI 3 

*PLS | **SOI with LDMOS option 
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