
IMMM 2021

The Eleventh International Conference on Advances in Information Mining and

Management

ISBN: 978-1-61208-864-8

May 30th – June 3rd, 2021

IMMM 2021 Editors

Guadalupe Ortiz, University of Cádiz, Spain

 1 / 17

IMMM 2021

Foreword

The Eleventh International Conference on Advances in Information Mining and Management
(IMMM 2021), held between May 30 – June 3rd, 2021, continued a series of academic and industrial
events focusing on advances in all aspects related to information mining, management, and use.

The amount of information and its complexity makes it difficult for our society to take
advantage of the distributed knowledge value. Knowledge, text, speech, picture, data, opinion, and
other forms of information representation, as well as the large spectrum of different potential sources
(sensors, bio, geographic, health, etc.) led to the development of special mining techniques,
mechanisms support, applications and enabling tools. However, the variety of information semantics,
the dynamic of information update and the rapid change in user needs are challenging aspects when
gathering and analyzing information.

We take here the opportunity to warmly thank all the members of the IMMM 2021 Technical
Program Committee, as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors who dedicated much of their time and efforts to contribute to IMMM 2021. We truly
believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the IMMM 2021 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that IMMM 2021 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of information
mining and management.

IMMM 2021 Chairs:

IMMM 2021 Steering Committee

（刘安安）An-An Liu, Tianjin University, China

IMMM 2021 Publicity Chair
Marta Botella-Campos, Universitat Politecnica de Valencia, Spain
Daniel Basterretxea, Universitat Politecnica de Valencia, Spain

 2 / 17

IMMM 2021

COMMITTEE

IMMM 2021 Steering Committee

（刘安安）An-An Liu, Tianjin University, China

IMMM 2021 Publicity Chairs

Marta Botella-Campos, Universitat Politecnica de Valencia, Spain
Daniel Basterretxea, Universitat Politecnica de Valencia, Spain

IMMM 2021 Technical Program Committee

Akhlaq Ahmad, Umm Al Qura University, Saudi Arabia
Zaher Al Aghbari, University of Sharjah, UAE
Stelios Andreadis, Information Technologies Institute (ITI) | Centre of Research and Technology Hellas
(CERTH), Greece
Kiran Kumar Bandeli, Walmart Inc., USA
Nadezda Chalupova, Mendel University in Brno, Czech Republic
Despoina Chatzakou, Centre for Research and Technology Hellas, Greece
Seongah Chin, Sungkyul University, South Korea
Tommy Dang, Texas Tech University, USA
Qin Ding, East Carolina University, USA
Ahlem Drif, Farhat Abass University, Sétif 1, Algeria
Hannes Fassold, JOANNEUM RESEARCH - DIGITAL, Graz, Austria
(David) Dagan Feng, The University of Sydney, Australia
Paolo Garza, Politecnico di Torino, Italy
Alessandro Giuliani, University of Cagliari, Italy
David Griol, University of Granada, Spain
Gabriel Henrique de Souza, Federal University of Juiz de Fora, Brazil
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Yin-Fu Huang, National Yunlin University of Science and Technology, Taiwan
Muhammad Nihal Hussain, University of Arkansas at Little Rock, USA
Liliana Ibeth Barbosa-Santillan, University of Guadalajara, Mexico
Young-Gab Kim, Sejong University, South Korea
Cristian Lai, ISOC - Information SOCiety | CRS4 - Center for Advanced Studies, Research and
Development in Sardinia, Italy
Jean-Charles Lamirel, Université de Strasbourg Equipe SYNALP (ex. INRIA TALARIS) - LORIA - Nancy,
France
Mariusz Łapczyński, Cracow University of Economics, Poland
Yuening Li, Texas A&M University, USA
Chih-Wei Lin, Fujian Agriculture and Forestry University, China
An-An Liu, Tianjin University, China
Flaminia Luccio, Università Ca' Foscari of Venice, Italy
Francesco Marcelloni, University of Pisa, Italy

 3 / 17

Michele Melchiori, Università degli Studi di Brescia, Italy
Vasileios Mezaris, Information Technologies Institute (ITI) | Centre for Research and Technology Hellas
(CERTH), Thessaloniki, Greece
Mohit Mittal, INRIA, France
Jose Manuel Molina Lopez, University Carlos III de Madrid, Spain
Muhammad Ali Nayeem, Bangladesh University of Engineering and Technology, Bangladesh
Naoko Nitta, Osaka University, Japan
M Solel Rahman, Bangladesh University of Engineering & Technology (BUET), Bangladesh
Takfarinas Saber, University College Dublin, Ireland
Andreas Schmidt, Karlsruhe University of Applied Sciences & Karlsruhe Institute of Technology (KIT),
Germany
Harsh Shrivastava, Singapore University of Technology and Design, Singapore
Josep Silva, Universitat Politècnica de València, Spain
Marija Stanojevic, Temple University, USA
Alvaro Suarez Sarmiento, Universidad de Las Palmas de G.C., Spain
Tatiana Tambouratzis, University of Piraeus, Greece
Abdullah Uz Tansel, Baruch College CUNY, USA
Edgar Tello-Leal, Universidad Autónoma de Tamaulipas, Mexico
Lorna Uden, Staffordshire University, UK
Paula Viana, Polytecnic of Porto - School of Engineering & INESC TEC, Portugal
Maria Luisa Villani, Italian National Agency for New Technologies, Energy and Sustainable Economic
Development (ENEA), Italy
Haoliang Wang, Adobe Research, USA
Ning Wu, School of Computer Science and Engineering - Beihang University, China
Guang Yang, Walmart, USA
Shibo Yao, New Jersey Institute of Technology, USA
Tong Zhao, Amazon, USA

 4 / 17

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 17

Table of Contents

Predicting Software Quality from Development and Release Factors
Rishita Mullapudi, Tajmilur Rahman, and Joshua Nwokeji

1

An Effective Approach for Genetic-Fuzzy Mining Using the Graphics Processing Unit
Chun-Hao Chen, Yu-Qi Huang, and Tzung-Pei Hong

7

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 17

Predicting Software Quality from Development
and Release Factors

Rishita Mullapudi
Computer and Information Science

Gannon University
Erie, PA

Email: mullapud002@gannon.edu

Tajmilur Rahman
Computer and Information Science

Gannon University
Erie, PA

Email: rahman007@gannon.edu

Joshua Nwokeji
Computer and Information Science

Gannon University
Erie, PA

Email: nwokeji001@gannon.edu

Abstract—Long lasting sustainable systems require quality
software releases. If a new version of the software encounters rel-
atively fewer post-release defects, i.e., bugs, then we can consider
that version as a better quality release. In the competitive world
of faster release and shorter release cycle based development, it
is challenging to deliver a quality release of a software product.
Predicting the release quality certainly helps developers to take
precautions and measures to prevent post-release bugs. Although
many researchers studied software quality prediction, a lack of
robust empirical study on software development historical data
to predict their impact on software release quality has been
observed. In this study, we predict the release quality of Eclipse
Equinox project by constructing a decision tree model from six
factors, such as code changes (churns), commits, churns in test-
files, churns in config-files, last-minute-change, etc., observed
from the historical data extracted from the version control
system. Such development and release factors will give us a
better understanding on how the developers’ activities affect the
quality of a software release. Five quality levels, i.e., classes
are used in our classification model from the Eclipse bugs
depending on the presence of different levels of severity of bugs.
Furthermore, we will construct three more models, Naı̈ve Bayes,
K-means Clustering, and Linear Regression, and will compare
the accuracy of prediction. The outcome of this study will be a
set of classification models built on the six development factors
and an insightful comparison among them.

Keywords—Software Quality, Release Quality, Software Qual-
ity Model, Open Source Software, Decision Trees

I. INTRODUCTION

One of the objectives of software development is to achieve
a high level of customer satisfaction [20]. In general, quality
is defined as the ability of a product to satisfy the needs and
expectations of customers. Software quality focuses on making
the customer happy by providing a satisfactory outcome of
the software application with an uninterrupted user-experience.
Moreover, explicit attention to the quality factors may save the
software life-cycle cost significantly [6]. Various approaches
and frameworks [21] [22] [23] for measuring software quality
have been proposed in literature. However, in this paper, we
use post-release bugs to measure software quality.

Software quality has been measured in various techniques.
Wehaibi et. al. examined the impact of self-admitted technical
debt as a measure of software quality [10]. On the other
hand, Araujo et. al. [1] used code-quality as a measure of
software quality.. However, the majority of the studies have

emphasized on predicting software quality issues to improve
software quality [9].

The increasing popularity of rapid releases bringing the
software products and new features into the market more
frequently than before [3]. Maintaining the quality of the
software product can be challenging in such a limited time-
frame of release-cycles since testing in rapid release becomes
challenging while manual system-integration test needs ef-
fective and efficient prioritization [11]. The effect of rapid
releases on software quality also has been studied by Khomh
et al. [24] for Mozilla Firefox. Since Eclipse is following a
rapid-release model for their development, this increases our
interest to choose the Eclipse Equinox project for this study.

A large amount of effort is involved in stabilization activities
such as correcting coding standards, fixing bugs, adjusting
configurations, twiking test files etc., during the testing or
Quality Assurance (QA) period in a release cycle [7]. Al-
though, in a rapid release, the effort during stabilization is
not as large as the development effort, developers tend to rush
towards the end of the development period right before the
releasing phase starts [7]. Therefore, we are more interested
to see whether the last minute changes have any impact on
the post-release bugs, i.e., the overall software release quality.

To drive this research, we are interested in finding answers
to the following research questions:

RQ1 How much code-change efforts are involved for a new
release version?
Here, we quantify the number of commits and churns (code-
changes) as a measure of effort to release a new version. We
use a number of commits and churns as release factors to
construct our prediction models.

RQ2 Do we see more post-release bugs when a new release
version involves more test-files or configuration related files?
We quantify the code-changes in test files and configuration
files in the commits to a release version. We use them as
release factors to construct our prediction models.

RQ3 How significant are the last-minute changes to produce
post-release bugs?
We consider the last one month window as the last-minute
changes before publishing a release version. We want to see
if we see more bugs where developers were more in a rush
during the last one month of development.

1Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

 7 / 17

TABLE I. COMMITS LABELED WITH BUILD AND RELEASE VERSION.

Commit Build Version Author Date Release Version
bdfb311c27b7af506d9df031c0fa86c01bd2d88f v200712031723 2007-11-29 14:21:48-05 3.1.2
850f068ac1f4264641adacc707c87f0f07a721de v20090127-1212 2009-01-27 11:15:27-05 3.5.0

7c88166c83944184600862ecbe77935cbb4360ef v200712031723 2007-11-29 14:55:38-05 3.1.2
2a34a6d8f11644b9ee80ac0cedbda0364f3f4116 v200712031723 2007-11-29 15:00:49-05 3.1.2
e539b0d4eeeb2686743eed41d2260a4bf6d92ef3 v200712031723 2007-11-29 14:27:35-05 3.1.2
adec7392cfe5ee6292a28d7520b567e897c8975b v20071015 2007-10-15 18:20:27-04 3.4.0
86ad8d63826d6186aa433020f7d4b06330feec04 v20071015 2007-10-15 16:33:20-04 3.4.0

TABLE II. COMMITS DETAILS.

Commit Churns Old File New File
bdfb3...2d88f 3 bundles/.../.../EclipseGeneratorApplication.java bundles/.../.../EclipseGeneratorApplication.java
850f0...721de 2 bundles.../.../BuildPublisherAntTasks.launch bundles.../.../PublisherAntTasks.launch
7c881...360ef 8 bundles/.../.../EclipseInstallGeneratorInfoProvider.java bundles/.../.../EclipseInstallGeneratorInfoProvider.java5
2a34a...f4116 56 bundles/.../.../generator/Generator.java bundles/.../.../generator/Generator.java

In this study, while finding answers to the RQ1 we obtain
the numbers for various release factors from our data that will
help us build our prediction models. Based on the results from
our prediction models, we will be able answer RQ2 and RQ3.
We define the quality levels of release versions depending
on the presence of different severity levels of bugs. We use
these quality levels as the classes of our prediction model for
training and testing. Our main focus is to understand if there
is any strong relationship between the quality levels and one
or more of the release factors.

The following sections are organized as: Section II talks
about the related studies in the literature and compares with
our contribution in this paper. Section III explains the data
source, data collection, and data pre-processing. Section IV
explains our methodology, Section V explains our preliminary
results obtained, statistics on the development/release factors
that build our prediction models. Finally, in Section VI we
summarize our research so far, explain how much progress
we have made, and how much work still remaining.

II. LITERATURE REVIEW

Many researchers have predicted software quality using
various prediction models. We are performing the study on
Eclipse post-release bugs and six development and release
factors. Similar to this, a study has been conducted by Misirli
et. al. where they performed an explanatory analysis on eclipse
beta-release bugs [18]. They considered six development re-
lated in-process metrics that have explanatory impact on beta-
release bugs. The factors that they used are, age, number
of edits, number of committers, average changed lines of
code, last edit date and average time between edits. In our
understanding a different set of factors may have a larger
impact on the post-release bugs. Compared to their approach,
we are considering a different set of development related
factors (metrics) in each release version such as, number of
commits, bug-fix commits, churn per file, churn per test-file,
churn per config-file, and last-minute churns. Furthermore, we
will investe each release version and predict the post-release
bugs using other prediction models.

Zimmerman et. al. [9] predicted software quality from the
historical data. Unlikely our approach, they considered bug-

fix changes as a measure of software quality. They focused on
analyzing the testing process to assess the impact on software
quality in a rapid release model.

Seliya et. al. [17] used classification algorithms to predict
software quality. They used C4.5 [17] and Random Forest
decision-tree to build defect predictors. However, their focus
was to investigate the cost-sensitivity of the learning mecha-
nism on multiple data-sets collected from different software
projects.

Araújo et. al. used four code quality features related to
poor programming practice and evaluated the effectiveness of
these features on post-release bugs in the procedural software
applications [1].

Wehaibi et. al. [10] considered self-admitted technical debts
as a measure of software quality. Phadke et. al. [5] considered
fault-prone modules to measure and predict software quality.
However, none of them used any classification tree to construct
a prediction model.

Other prediction models have also been applied to predict
software quality, such as the Bayesian network. A Bayesian
network based approach has been taken to assess and predict
software quality by Wagner et. al. [19]. They introduce the
use of general quality models and show how the modelling of
activities and facts in an organization helps define quality more
precisely. They used the Bayesian network since it shows bet-
ter performance for assessment and prediction incorporating
variables with uncertainty.

We have not found any study which has followed the exact
similar approach that we are following. Our approach is to
construct a classification based prediction model based on the
factors related to development and release from the historical
development repository data. We would like to find if there
is any strong relationship between post-release bugs and one
or more of these factors. Furthermore, we will construct three
more prediction models to find the best result and explain
why such factors are significant to pay attention during the
development activities in a release.

III. DATA

We used Eclipse Equinox [13] development historical data
that we collected from their public Github repository which is

2Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

 8 / 17

a mirror of the official Eclipse repository [14]. We collected
the the post-release bug reports from their Bugzilla portal [12].

A. Repository Data

First, we cloned the Eclipse-Equinox repository, which
contains commits earliest from 2006 with a total of more
than 6K commits. More than 63 developers contributed to this
repository as of today. We then run a python script to extract
the commit history and store them into a postgres database.
The Python script extracts the commit data into 5 different
tables, where all the commits are stored in the main commit
table with author date (the date-time when the commit was
made), and the commit message. Another table related to this
table contains all the details about each commit such as lines
modified, files modified/renamed, etc.

Another useful data we collect from the repository is the
release-tags. Each time a build is created Github creates a tag
with that build-commit and by extracting those tags from the
repository we can track the release commits. Once we track
the release commits, we then apply another python script to
extract the git Directed Acyclic Graph (DAG) [15]. This script
walks backward through the DAG traversing each and every
commit all the way to the first one starting from a release
(build) commit and labeling the commits on it’s way with that
release tag. This is how we know which commit belongs to
which build version.

Once we have all the commits labeled with the build
versions, we then look for what release versions the builds
belong to. For this, we needed to put some manual effort
to search for the build archives for various Eclipse-Equinox
documentations [16]. We found lists of builds associated with
release versions from various Eclipse documentations and
online resources. Table I shows a segment of our commit data
labeled with build versions and the release versions. We get
the number of commits made to a release version from this
table. Number of churns, test-files, config-files, churns in test
files, churns in config files, these release factors we get from
commit details. Table II shows a portion of our commit details
data for the first four commits in table I. In this table, column
”Churn” contains the total number of lines of code changed
(addition + remove), ”File” and ”New File” columns indicate
if there is any file renamed, deleted, or added in that commit.

Table II shows a portion of our commit details data for the
first four commits in table I. In this table, column ”Churn”
contains the total number of lines of code changed (addition
+ remove). The “Old File” and “New File” columns indicate if
there is any file rename, or deletion or addition in that commit.
We get the release factors “total Churns”, “total files”, “churns
in test file”, “churns in config files” from the table II.

We get the release factors “total Churns”, “total files”,
“churns in test file”, “churns in config files” from the table
II. To calculate the churn data we sum up the addition and
deletion of lines of code in that commit. To calculate total
churns in test files and config files, we first identify the test
files and by search for the existence of the words “test” or
“Test” in the file path. To identify the configuration files, we

TABLE III. ECLIPSE EQUINOX BUG DATA.

Bug ID Release Version Bug Severity
564065 4.17.0 Critical
566014 4.17.0 Normal
61632 3.0.0 Blocker

191487 3.0.0 Critical
67588 3.0.0 Major

285341 3.5.0 Normal

search for the existence of the words “conf” or “setting” but
no “test” or “Test”. This is because there are test files to test
configuration settings too and we want to consider those files
as test files not configuration files.

Last Minute Changes: Finally, another development factor
we would like to investigate is how much changes developers
are doing during the last one month of the release time-line.
We are calling the last one month of changes as the “Last
Minute Churn”.

B. Bug data

Eclipse-Equinox bug reports are stored in their Bugzilla
portal [12]. We downloaded all the bug ‘id’s as a “csv” file
from that website. We wrote another python script to fetch
the details of each of the bugs using the bug id. This python
script pulls out the detailed information about each bug that
contains date, bug-status, bug description, release version the
bug was created, release version the bug was fixed, severity
of the bug, and many other useful information. We stored this
information into the same Postgres database. Table III shows
a segment of the bug data we collected from Eclipse Bugzilla
archive.

Eclipse Equinox uses bugzilla to store their bugs. Bugzilla
allows us to categorize bugs in different types: “Enhance-
ment”, “Trivial”, “Minor”, “Normal”, “Major”, “Critical”,
“Blocker” etc., depending on the severity of the bugs.

“Enhancement” types of bugs are not actually defects, they
are the limitations of a feature which probably because of
missing that part during the initial planning for the feature, or
during the development. “Trivial” bugs are the ones that do
not have much impact on the performance or user experience.
“Minor” bugs are the ones that have some impact but we
can live with it for some time. No one will complain, or no
significant performance issues at this point. However, it is a
defect and we need to address this. “Normal” bugs are the ones
that we need to address and schedule an appropriate scope
of fix. Users have complaints but they can at least manage
their work. “Major” bugs are the high-priority defects that are
causing problems to the users and we need to fix this as soon as
possible. “Critical” bugs are the bugs that are causing serious
problems to the system. System is mal-functioning, users are
having bad experience and having difficulties to do their work
using the relevant feature. “Blocker” has the highest degree
of impact which is blocking the affected feature, users are
completely unable to use the feature.

Post-release bugs are an obvious fenomena in a software
life-cycle. However, the presence of different types of severity
bugs in a release indicates the level of quality of the release

3Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

 9 / 17

Git
Repo

Development and
Release Commit Data

E
cl

ip
se

.B
ug

zi
lla

Commits

Ch/F

Ch/TF

Ch/CF

Bugfix
Commits

LM Ch

Development and
Release Factors

Decision
Tree

Compare

O
ut

pe
rfo

rm
in

g
M

od
el

 &
 D

is
cu

ss

S
ig

ni
fic

an
ce

 o
f F

ac
to

rs

Bayesian
Network

K-Means
Cluster

Linear
Regression

Post-release Bugs
Archive

QL1 QL2 QL3 QL4 QL5

FIG. 1. THE METHOD OF OUR STUDY AT A GLANCE.

version. Our study focuses on predicting not just the number
of post-release bugs, rather understanding the level of quality
of the release based on the presence of different severity-levels
of bugs.

IV. METHODOLOGY

Our primary prediction model is the decision tree using the
six factors: “Churn per File” (Ch/F), “Total Number of Com-
mits” (# C), “Bugfix Commits” (# BfC), “Churn per Test File”
(# Ch/TF), “Churn per Config File’ (# Ch/CF)’, and “Last-
minute Churns” (#LCh). To obtain the best performing model
we will construct three more prediction models (Naı̈ve Bayes,
K-means Clustering, and Linear Regression) and compare the
performance. Finally, we will discuss the impact of each of the
factors on the results. Figure 1 presents our research-method
at a glance.

We define the quality levels based on the following formula
that considers high-impact bugs (hb), minor bugs (mb), major
bugs (Mb), and total bugs (Tb). According to this formula, the
magnitude (M) of a release is the product of the high-impact
bugs (hb) and the ratio of minor and major bugs associated
with a release version.

magnitudeM = hbεhb > 0 : hb ∗ (mb+Mb) ∗ 100/Tb (1)

Magnitude of a release indicates how large is the impact
of the bugs in that release. To measure that, we consider
the percentage of major and minor bugs. The magnitude of
the release is dominated by the presence of the high-impact

TABLE IV. QUALITY LEVELS (CLASSIFICATIONS).

Class Quality Magnitude
QL1 0 - 50
QL2 51 - 100
QL3 101 - 150
QL4 151 - 200
QL5 201+

bugs. Here, the number of high-impact bugs is the summation
of critical and blocking bugs. We multiply the percentage of
major and minor bugs by high-impact bugs to calculate the
magnitude of a release. For example, the quality magnitude of
release version 3.4.0 has been calculated like below:

m3.4 = 19 ∗ (26 ∗ 100/644) = 76.7 (2)

Here, the number of high-impact bugs is 19, and we multiply
by this only when this is > 0. Table VI shows the magnitudes
of release version 3.4.0, 3.5.0, and 3.6.0.

Release Magnitude: We define a threshold for the five
quality levels based on the severity of bugs. The Severity levels
include minor, major, critical, blocker. The five quality levels
are represented as “QL1”, “QL2”, “QL3”, “QL4” and “QL5”.
The thresholds for the quality levels are presented in Table IV.
If a release magnitude falls within this range, we will label
that release with the corresponding quality level. For example,
the magnitude of release 3.4 is 76.7. Therefore, we can label
this release with “QL2”.

Decision Tree: Our primary classification model is the
supervised learning technique “Decision Tree (DT)”. Decision
trees are easier to understand and categorize samples, and

4Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

 10 / 17

TABLE V. PRELIMINARY STATS ON DEVELOPMENT/RELEASE FACTORS.

Version # Ch/F # C # Ch/TF # Ch/CF # LCh # BfC
3.4.0 33.54 433 109.16 10.90 40.02 -
4.2.0 14.53 59 13.38 12.25 22.66 -
4.5.0 10.67 72 10.04 3.40 42.5 -

S
ep

t 2
00

8

O
ct

 2
00

9

ja
n

20
10

M
ar

ch
 2

01
0

M
ay

 2
01

0

Commits
Churns

N
ov

 2
01

2

N
ov

 2
01

3

N
ov

 2
01

7
FIG. 2. LAST-MINUTE CHANGES IN VERSION 3.6.0.

interpret the results. First, we prepare our model-data table
with labeled data labeled using the quality levels. Decision
trees do classification based on conditions at each level. In our
case that condition will check the quantity of the six factors
for each release, and calculate the magnitude using equation
(1) to classify it to a quality level. We will train our DT with
70% of our labeled data and will test with 30% of the data.

V. PRELIMINARY RESULTS

Our data has been pre-processed and by this time we have
obtained some preliminary statistics of the five of our six
factors. Table V shows the preliminary counts for the five
factors.

The column “# LCh” indicates the last minute changes in a
release version which we collect from the last one month of
churns in the release time-line as shown in figure 2. Eclipse
Equinox stops making any commits in the repository three
weeks before they announce their release version.

Figure 2 shows that as the developers in Eclipse approach
towards the release, the ratio of churns per commit keeps
increasing which has also been observed by Rahman et. al [7]
in Linux and Google Chrome. This indicates that similar to
Google Chrome and Linux, there is a little rush towards the
release period observed in Eclipse Equinox as well.

We have defined the quality levels based on the release
magnitudes from the bug data in Table IV. This magnitude
will be used to determine different quality levels based on
thresholds as explained in the methodology section.

TABLE VI. QUALITY MAGNITUDES OF RELEASES.

Version # Min Maj Crit Block Total Bugs M
3.4.0 6 20 12 7 644 76.7
3.5.0 14 17 5 8 349 115.0
3.6.0 3 11 5 1 180 47.0

VI. CONCLUSION AND FUTURE WORK

Software quality assurance is an important aspect in the soft-
ware development lifecycle. It helps the software developers to
measure the extents to which the product/software meets user’s
needs. The prediction of software quality has been studied in
literature and various models have been proposed. However,
achieving software quality still remains a major challenge to
the software developers especially when the “Rapid Release”
is in practice. The aim of this paper is to provide an approach
and better understanding to support software quality improve-
ment through prediction. We combine machine learning (ML)
and artificial intelligence (AI) models to examine how code-
changes and other relevant activities during development and
release impact software quality measured through post-release
bugs. Our study will provide an insight about developers
activities and code changes to the developers which will
improve existing methods where quality is usually assessed
post-development. We believe that if we are able to identify
a software is consuming high amount of effort in terms of
commits or other quality factors at an early stage of the
software development, then the software application is most
likely to meet user expectations, satisfaction and thus have a
higher quality.

We have not measured our sixth factor “bug-fix commits”
yet. We need to apply Natural Language Processing (NLP)
to understand the commit messages whether a commit is due
to bug-fix or not. At this point, we will prepare our training
and testing data. The classification model in this case would
be the decision-tree which will fit the release to a quality-
level based on the different threshold values of the quality-
magnitudes as described in the methodology. Furthermore, we
will construct three other prediction models: Naı̈ve Bayes,
K-means Clustering, and Linear Regression using the same
development/release factors. We will compare the results, de-
termine the best or outperforming model. We will also discuss
the significance of each of the factors on the post-release
bugs and will discuss the rationale behind. Furthermore, we
plan to continue in this line of study. We plan to increase
our sample size and expand the study to other open source
software projects.

REFERENCES

[1] C. W. Araújo, Z. Vanius, and N. Ingrid, ”Using code quality features
to predict bugs in procedural software systems.” In Proceedings of the
XXXII Brazilian Symposium on Software Engineering, pp. 122-131.
2018.

[2] R. Chopra, ”Software quality assurance: a self-teaching introduction”.
Stylus Publishing, LLC, 2018.

[3] K. Beck and A. C. Andres. ”Extreme programming explained: Embrace
change. 2-nd edition.” (2004).

[4] AT Misirli, B. Murphy, T. Zimmermann, and A. B. Bener, ”An explana-
tory analysis on eclipse beta-release bugs through in-process metrics.”
In Proceedings of the 8th international workshop on Software quality,
pp. 26-33. 2011.

[5] A. A. Phadke and E. B. Allen, ”Predicting risky modules in open-source
software for high-performance computing.” In Proceedings of the second
international workshop on Software engineering for high performance
computing system applications, pp. 60-64. 2005.

5Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

 11 / 17

[6] W. B. Boehm, J. R. Brown, and M. Lipow, ”Quantitative evaluation of
software quality.” In Proceedings of the 2nd international conference on
Software engineering, pp. 592-605. 1976.

[7] M. T. Rahman and P. C. Rigby, ”Release stabilization on linux and
chrome.” IEEE Software 32, no. 2 (2015): pp. 81-88.

[8] M. V. Mäntylä, B. Adams, F. Khomh, E. Engström, and K. Petersen, ”On
rapid releases and software testing: a case study and a semi-systematic
literature review.” Empirical Software Engineering 20, no. 5 (2015): pp.
1384-1425.

[9] T. Zimmermann, N. Nagappan, and A. Zeller, ”Predicting bugs from
history.” In Software evolution, pp. 69-88. Springer, Berlin, Heidelberg,
2008.

[10] S. Wehaibi, E. Shihab, and L. Guerrouj, ”Examining the impact of self-
admitted technical debt on software quality.” In 2016 IEEE 23Rd inter-
national conference on software analysis, evolution, and reengineering
(SANER), vol. 1, pp. 179-188. IEEE, 2016.

[11] H. Hemmati, Z. Fang, M. V. Mäntylä, and B. Adams, ”Prioritizing
manual test cases in rapid release environments.” Software Testing,
Verification and Reliability 27, no. 6 (2017): e1609.

[12] Eclipse bugs. url: https://bugs.eclipse.org/bugs/xmlrpc.cgi, Accessed:
March 2021.

[13] Eclipse-Equinox Github repository. url:
https://github.com/eclipse/rt.equinox.p2. Accessed: December 2020.

[14] Eclipse-Equinox official repository. url:
git://git.eclipse.org/gitroot/equinox/rt.equinox.p2.git. Accessed:
December 2020.

[15] Gitlab documentation on Git DAG. url:
https://docs.gitlab.com/ee/ci/directed acyclic graph. Accessed: March
2021.

[16] Eclipse-Equinox build archive. url: https://archive.eclipse.org/equinox.
Accessed: March 2021.

[17] N. Seliya and T. M. Khoshgoftaar, ”The use of decision trees for cost-
sensitive classification: an empirical study in software quality predic-
tion.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 1, no. 5 (2011): pp. 448-459.

[18] A. T. Misirli, B. Murphy, T. Zimmermann, and A. B. Bener, ”An
explanatory analysis on eclipse beta-release bugs through in-process
metrics.” In Proceedings of the 8th international workshop on Software
quality, pp. 26-33. 2011.

[19] S. Wagner, ”A Bayesian network approach to assess and predict software
quality using activity-based quality models.” Information and Software
Technology 52, no. 11 (2010): pp. 1230-1241.

[20] T. Dey and A. Mockus, ”Deriving a usage-independent software quality
metric.” Empirical Software Engineering 25, no. 2 (2020): pp. 1596-
1641.

[21] I. Atoum, ”A novel framework for measuring software quality-in-
use based on semantic similarity and sentiment analysis of software
reviews.” Journal of King Saud University-Computer and Information
Sciences 32, no. 1 (2020): pp. 113-125.

[22] E. Stephen and E. Mit, ”Framework for measuring the quality of
software specification.” Journal of Telecommunication, Electronic and
Computer Engineering (JTEC) 9, no. 2-10 (2017): pp. 79-84.

[23] H. Schnoor and W. Hasselbring, ”Poster: Toward Measuring Software
Coupling via Weighted Dynamic Metrics.” In 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-
Companion), pp. 342-343. IEEE, 2018.

[24] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams. ”Do faster releases
improve software quality? an empirical case study of mozilla firefox.”
In 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR), pp. 179-188. IEEE, 2012.

[25] Eclipse transition to smaller release cycles.
“https://www.eclipse.org/lists/eclipse.org-planning-council/
msg02927.html”. Accessed: March 2021.

6Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

 12 / 17

An Effective Approach for Genetic-Fuzzy Mining Using the Graphics Processing

Unit

Chun-Hao Chen1, Yu-Qi Huang2 and Tzung-Pei Hong2, 3
1Department of Information and Finance Management, National Taipei University of Technology, Taipei, Taiwan

2Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung, Taiwan

3Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan

Email: chchen@ntut.edu.tw, cream08111230@gmail.com, tphong@nuk.edu.tw

Abstract—Association analysis is an important technique for

finding relationships among the given transactions. In real

applications, since transactions may have quantitative values,

the fuzzy-set theory was utilized for mining fuzzy association

rules. To extract useful rules, the given membership functions

were the critical factor. The genetic-fuzzy mining approaches

were thus presented to obtain appropriate membership

functions to mine fuzzy association rules. However, the

evolution process was time-consuming. In this paper, we then

propose an algorithm to reduce the processing time using the

graphics processing unit (GPU), namely the GPU-based

Genetic-Fuzzy Mining algorithm (GPU-GFM). It first collects

the chromosomes from the population and the chromosomes

generated by genetic operators. Then, chromosomes are sent to

GPU to calculate the fitness values. As a result, a fitness value

matrix is returned. At last, when reaching the termination

condition, the best chromosome will be outputted for mining

fuzzy association rules. Experiments were also conducted on

simulation datasets to show the performance of the proposed

approach.

Keywords-Association rule; genetic algorithm; fuzzy set;

fuzzy association rule; graphics processing unit.

I. INTRODUCTION

Data mining is commonly used to extract knowledge
from the given datasets, and the Apriori algorithm is the
well-known technique to be utilized for discovering
relationships among the transactions [2]. An association rule
is an expression of the relevance between items. For
instance, X → Y is an association rule, where X and Y are
itemsets. It means that when someone buys the items in the
X, then the customer has a high probability of buying Y at
the same time. For example, a customer who buys milk and
jam will also buy bread could be found as an association
rule and represented as {milk, jam} → {bread}.

The abovementioned rule mining approach can only be
used to mine binary association rules [2]. In other words,
items in the transaction can only be considered as to buy or
not to buy, which limits the content of data analysis.
However, in real applications, the purchased quantity exists
and should be taken into consideration in the mining process.
Therefore, by using fuzzy sets, many algorithms have been
proposed for mining fuzzy association rules [8][9][10][14].
The main concept of those mining algorithms is that the
quantitative values are first transformed into fuzzy
representations using the given membership functions. Then,
the fuzzy representations are employed to discover fuzzy

association rules. For example, Hong et al. proposed an
approach for mining fuzzy association rules from
quantitative data [8]. Ouyang et al. proposed an algorithm to
mine direct weighted and indirect weighted fuzzy association
rules [14].

In those fuzzy association rule mining algorithms, the
membership functions are given in advance. Because the
predefined membership functions may not be appropriate
for all kinds of datasets to mine fuzzy association rules, and
because to obtain appropriate membership functions is an
optimization problem, the genetic-fuzzy mining algorithms
have then been proposed to obtain the membership
functions for mining fuzzy association rules using various
evolutionary algorithms, chromosome representations,
genetic operators as well as evaluation functions
[1][4][5][6][7][13][16][17]. However, the main problem of
the existing approaches is the evolution process is time-
consuming.

With the prevalence of General-Purpose computing on
Graphics Processing Units (GPGPU), in this paper, we
propose a GPU-based Genetic-Fuzzy Mining algorithm
(GPU-GFM) for handling the problem. It first generates the
initial population randomly. Then, the population is sent to
GPU to execute the Max-Min-Arithmetical (MMA)
crossover operator. The offspring and the original
chromosomes will return to CPU. After that, the mutation
operator is performed. To calculate the fitness values of
chromosomes, all chromosomes and transactions are sent to
GPU to calculate the fuzzy values. As a result, the fuzzy
value matrix is returned to the CPU. At last, the
chromosomes and the fuzzy value matrix are again sent to
the GPU for calculating the fitness values of chromosomes.
A fitness value matrix is then returned to the CPU. When
reaching the termination condition, the best chromosome is
outputted for mining fuzzy association rules. Experiments
were also conducted on simulation datasets with different
parameter setting to show the efficiency and effectiveness of
the proposed approach.

II. RELATED WORK

In this section, the genetic-fuzzy mining algorithms are
stated in Section II.A. The graphics processing unit based
optimization approaches are described in Section II.B.

A. Genetic-Fuzzy Mining Algorithms

Hong et al. proposed an algorithm that consists of two
phases for mining fuzzy association rules [6]. In the first
phase, the genetic algorithm has been utilized to obtain the

7Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

 13 / 17

membership functions according to the number of large 1-
itemsets and suitability of membership functions in a
chromosome. In the second phase, the derived membership
functions are used to discover rules. To reduce the time for
the evolution process, Hong et al. took the divide-and-
conquer strategy into consideration and proposed another
algorithm for solving the genetic-fuzzy mining problem [7].
The main concept is that every item has its own genetic
process to find membership functions. The obtained
membership functions are gathered for mining fuzzy
association rules. Because various criteria should be
considered for the optimization process, Alhajj et al.
proposed a multi-objective genetic algorithm for automated
clustering to obtain fuzzy association rules [1]. Considering
multiple minimum supports, Chen et al. then proposed an
optimization algorithm for finding membership functions for
items at a certain level. Then, the obtained membership
functions are employed to extract multi-level fuzzy
association rules [4]. In addition, the multi-objective genetic-
fuzzy mining algorithm has been proposed for discovering
multi-level fuzzy association rules [5]. Matthews et al.
proposed an evolutionary-based approach for mining
temporal fuzzy association rules for web usage data [8].
Palacios et al. proposed an algorithm, namely FARLAT-
LQD, for obtaining both suitable membership functions and
fuzzy association rule from imprecise transactions [15]. They
first use the genetic algorithm to membership function based
on 3-tuples linguistic representation model. Then, the
frequent-pattern tree-based algorithm is employed to mine
fuzzy association rules. Ting et al. proposed an enhanced
genetic-fuzzy mining algorithm for membership functions
and rule discovery [16]. The main advantage of the
algorithm is that it used the structure-based representation,
which considered the structures of membership functions for
chromosome encoding.

B. GPU-based Optimization Approaches

With the popularity of computational intelligence
nowadays, we often rely on computers to find the near
optimization solution using metaheuristic algorithms.
However, it usually needs a lot of time to obtain the result.
After the general-purpose computing on the graphic
processing unit was launched in 2011 by NVIDIA, the GPU
parallel processing was employed to speed up the evolution
process. For instance, Yousef et al. designed the genetic
algorithm with GPU to solve the university course timetable
problem [18]. Benaini et al. proposed an optimization
algorithm with GPU to solve the vehicle routing problem
because the path should be arranged in a short time. As a
result, the proposed approach significantly reduced the time
cost of obtaining the routing path [3]. Due to the government
policies and the increase in environmental protection
awareness in recent years, the energy-saving and efficient
dynamic flexible flow shop scheduling has become a
dynamic problem worthy of studying. To maintain the
original efficiency, the principle of energy saving must be
taken into consideration. In addition, scheduling problems
will change with the different situations, so the time cost is a
major issue. Luo et al. executed the GA method by GPU for

parallel calculation to reduce significantly the time cost [8].
In the field of 3D printing, it often hopes that the loss of
materials is as small as possible. Therefore, the support
material needs to be calculated to find the closest or best
solution. Li et al. used the GPU to handle the optimization
problem to discover the schedule [12].

III. PROPOSED GPU-BASED GENETIC-FUZZY MINING

ALGORITHM

In this section, the framework of the proposed GPU-
based Genetic-Fuzzy Mining algorithm (GPU-GFM) is
illustrated in Section III.A. The pseudo code of the GPU-
GFM is stated in Section III.B. Components of the GPU-
GFM are described in Section III.C.

A. The Framework of the GPU-GFM

The GPU-GFM framework is shown in Fig. 1.

Figure 1. The framework of the GPU-GFM.

In Fig. 1, it shows that the proposed GPU-GFM contains

five steps. They are: (1) The initial population P is

generated randomly according to the predefined population

size.; (2) The crossover operator is executed by GPU for

8Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

 14 / 17

speeding up the process to generate offspring which is

merged to P to get P’; (3) The mutation operator is executed.

After mutation, the population P’’ is generated; (4) The GPU

is utilized to transform quantitative transactions to fuzzy

values for chromosomes; (5) Based on the fuzzy values

matrix, the fitness values for chromosomes are calculated by

GPU. Steps 1 to 5 will continue until reaching the

termination condition.

In the following, we give a simple example to state the

GPU-GFM. Assume that the population size is fifty. In Step

1, fifty chromosomes are generated randomly as the initial

population P. Each chromosome represents a set of

membership functions for all items.

In Step 2, assume that the crossover rate is 0.8. Forty

chromosomes will be selected to generate offspring. Let two

chromosomes as a pair. Thus, totally twenty pairs will be

sent to GPU for offspring generation. The used crossover

operator, the MMA crossover, will generate four candidate

chromosomes for a given pair. Hence, after crossover,

eighty offspring will be generated and sent back to the CPU.

Then, the eighty chromosomes are merged to the P to form

P’. In other words, P’ has 130 chromosomes after the

crossover operator.

In Step 3, for mutation operator, assume that the mutation

rate is 0.04 and two chromosomes are mutated and added to

P’ to form P’’. After mutation, the P’’ has 132 chromosomes.

In Step 4, the quantitative transactions and P’’ are sent to

GPU for fuzzy value calculation. After calculation, a three-

dimension matrix called the fuzzy value matrix will be

generated. The index for the matrix including the

chromosome number, item number, and fuzzy region

number. Take (C1, I1, Low) is 5 as an example. It means the

fuzzy value of the fuzzy region Low for item I1 in

chromosome C1 is 5. The matrix is then sent back to the

CPU for the next step.

In Step 5, the P’’ and the fuzzy value matrix are sent to

GPU again for calculating the fitness values of the 132

chromosomes. In the GPU, a thread is used to calculate the

fitness value of a chromosome. It first calculates the number

of large 1-itemset according to the given fuzzy value matrix

and the predefined minimum support. Then, the suitability

of the chromosome is calculated. After calculation, an array

of fitness values is used to store the fitness value of

chromosomes and returned to the CPU. At last, if the

termination condition is reached, the best chromosome is

outputted. Otherwise, it will go for the next generation.

B. Pseudo Code of the GPU-GFM

Based on the GPU-GFM framework, the pseudo code of

the proposed algorithm is stated in Table I.

TABLE I. PSEUDO CODE OF GPU-GFM ALGORITHM.

Input:

Transaction data TD.

Parameters:

Population size pSize, crossover rate pc, mutation rate pm, generation G,

Population P, number of Items itemNum, minimum support ms,

Fuzzy Value Matrix FVM.

Output:

The best chromosome BC.

Procedure GPU-GFM:

1. P ← InitialPopulation(pSize, itemNum)

2. FOR iteration = 1 to G DO

3. GPU_P ← cuda.memcpy_htod(P)

4. GPU_P’ ← MMA_Crossover(pc, GPU_P, GPU_ThreadIdx)

5. P’ ← cuda.memcpy_dtoh(GPU_P’)

6. P’’ ← Mutation(p’, pm)

7. (GPU_P’’, GPU_TD) ← cuda.memcpy_htod(p’’, TD)

8. GPU_FVM ← FuzzyValueCalculation(GPU_P’’, GPU_TD,

 GPU_ThreadIdx)

9. FVM ← cuda.memcpy_dtoh(GPU_FVM)

10. (GPU_P’’, GPU_FVM) ← cuda.memcpy_htod(P’’, FVM)

11. GPU_FitnessValues ← FitnessValueCalculation(GPU_P’’,

 GPU_FVM, GPU_ThreadIdx)

12. FitnessValues ← cuda.memcpy_dtoh(GPU_FitnessValues)

13. P ← selection(P’’, FitnessValues, pSize)

14. END iteration FOR LOOP

15. BestChromosome selectBestChro(P, FitnessValues)

From Table I, the proposed algorithm first generates the

initial population P randomly according to the predefined

pSize (Line 1). Then, it starts the evolution process (Lines 2

to 14). The MMA crossover is then executed on GPU to

generate offspring, and the results are stored in GPU_P’

(Lines 3 to 4). The GPU_P’ will return to CPU and store in

P’ (Line 5). The mutation operator is executed to get P’’

(Line 6). To calculate fuzzy values of chromosomes, it

sends P’’ and transactions TD to GPU (Line 7). The fuzzy

values of chromosomes are calculated (Line 8). The result
GPU_FVM is returned to the CPU and stored in FVM (Line

9). For the fitness evaluation, the P’’ and FVM are again sent

to GPU (Line 10) for calculating fitness values (Line 11).

The result GPU_FitnessValues is returned to CPU and

stored in FitnessValues (Line 12). The selection process is

executed to generate the next population (Line 13). Finally,

if reaching the termination condition, the best chromosome

is outputted (Line 15).

C. Components of the GPU-GFM

1) Encoding Scheme

In the proposed approach, a chromosome is used to

represent a set of membership functions that are: MFSet1,

MFSet2, …, MFSeti, …, MFSetn. The MFSeti means the

membership functions for the i-th item. Let m linguistic

terms are used for an item, then the MFSeti can be

represented as ((c1, w1), (c2, w2), …, (cj, wj), …, (cm, wm)),

where cj and wj are center and width of a membership

function.

2) Initial Population and Genetic Operators

9Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

 15 / 17

In the proposed GPU-GFM, the initial population is

generated randomly. As to the genetic operators, the max-

min-arithmetical (MMA) crossover operator and one-point

mutation are employed to generate offspring. The elitist

selection strategy is utilized for reproduction.

3) Fitness Evaluation

The fitness function used to evaluate a chromosome in

the proposed approach is the same with the existing work

[7]. The formula is stated as follows:

f(Cq) = |L1| / suitability(Cq),

where |L1| is the number of large 1-itemsets that can be

generated using the membership functions in Cq, and

suitability(Cq) is used to avoid bad membership functions

that are overlapping or separate too much.

IV. EXPERIMENTAL RESULTS

In this section, experiments were made to show the

performance of the proposed approach. The experimental

environment is stated as follow: CPU: Intel(R) Core(TM)

i5-9300 CPU @ 2.4GZ, GPU: NVIDIA GeForce GTX 1650.

The proposed approach is implemented by Python 3.6.12.

with the PyCUDA 2020.1 and CUDA v10.2 for deploying

the algorithm on the GPU. The experimental datasets are

generated by the IBM generator. By using the four

parameters that are T: average transaction length ， I:

average maximum large itemset length，N: number of items,

D: transaction size, different simulation datasets can be

generated.

Experiments were first made to show the convergence of

the proposed approach. After 1000 generations, the results

are shown in Fig. 2.

Figure 2. Convergence results of the proposed approach.

From Fig. 2, we can see that the average fitness values

grow along with the increase of the generations, and finally

converge to a certain value.

Experiments were then made to show the execution time

of the proposed approach on the datasets with 170 items but

different transaction sizes, including 10K, 30K, 50K, 90K.

The results are shown in Fig. 3.

Figure 3. Execution time of the GPU-GFM on different transaction sizes.

From Fig. 3, we can observe that the execution time on

different data sizes increase linearly. It indicates that the

proposed approach is efficient. Then, the experiments on the

datasets with 10K transactions but different numbers of

items were made, and the results are shown in Table II.

TABLE II. EXECUTION TIME OF THE PROPOSED APPROACH WITH

DIFFERENT NUMBER OF ITEMS .

Dataset Execution Time (s) Increasing Ratio

T2I2N0.032D10 85 -

T4I2N0.064D10 153 1.8 (= 153/85)

T6I2N0.096D10 217 1.4 (= 217/153)

T8I2N0.128D10 240 1.1 (= 240/217)

T10I2N0.16D10 298 1.2 (= 298/240)

Table II shows along with the increasing number of

items from 32 to 160, the execution time increases from 89

to 298 seconds. From the increasing ratio, when we double

the number of items from 32 to 64, the ratio is 1.8. The

other three values are between 1.1 to 1.4. It means the

execution time still increases linearly.

At last, comparisons of the proposed approach and the

previous approach [6] in terms of execution time for a

generation on the datasets with different transaction sizes

are shown in Table III.

TABLE III. COMPARISONS OF PROPOSED AND PREVIOUS APPROACHES IN

TERMS OF EXECUTION TIME.

Data Size Proposed Method Previous Method Speed-Up Ratio

10K 0.647 sec. 572.997 sec. 885

30 K 1.697 sec. 1710.271 sec. 1007

50 K 2.764 sec. 3154.801 sec. 1141

70 K 3.818 sec. 4537.069 sec. 1188

90 K 4.674 sec. 5172.524 sec. 1106

10Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

 16 / 17

From Table III, we can easily observe that the proposed

approach is better than the previous approach in terms of the

execution time of the evolution process, and the highest

speed-up ratio is up to 1188 times. From the experimental

results, we can conclude that the proposed GPU-GFM is

efficient significantly.

V. CONCLUSION AND FUTURE WORK

Association rule mining is always an interesting research
topic since it can be utilized to discover useful relationships
among items. In real applications, transactions may have
quantitative values. Fuzzy association-rule mining
algorithms are employed to handle that. To extract more
information, the genetic-fuzzy mining algorithms have then
been presented to find membership functions automatically
for fuzzy association-rule mining. Because the evolution
process is time-consuming, in this paper, we thus propose an
algorithm, namely the GPU-based Genetic-Fuzzy Mining
algorithm (GPU-GFM), to speed up the evolution process.
Experimental results show that: (1) the GPU-GFM is
efficient no matter the increase of the number of transactions
or items; (2) When compared to the previous approach, the
highest speed-up ratio is up to 1188 times in terms of
execution time. In the future, we will try to enhance the
proposed approach to observe more useful rules, e.g., using
all large itemsets instead of only large 1-itemsets as an
evaluation function.

ACKNOWLEDGMENT

This research was supported by the Ministry of Science
and Technology of the Republic of China under grant MOST
109-2622-E-027-032 and MOST 110AO12B.

REFERENCES

[1] R. Alhajj and M. Kaya, "Multi-objective genetic
algorithms based automated clustering for fuzzy
association rules mining," Journal of Intelligent
Information Systems, Vol. 31, No. 3, pp. 243-264, 2007.

[2] R. Agrawal, T. Imielinski and A. Swami, "Database
mining: a performance perspective," IEEE Transactions
on Knowledge and Data Engineering, Vol. 5, No. 6, pp.
914-925, 1993.

[3] A. Benaini and A. Berrajaa, "Genetic algorithm for
large dynamic vehicle routing problem on GPU,"
International Conference on Logistics Operations
Management, pp. 1-9, 2018.

[4] C. H. Chen, T. P. Hong and Vincent S. Tseng,
"Genetic-fuzzy mining with multiple minimum
supports based on fuzzy clustering," Soft Computing,
Vol. 15, No. 12, pp. 2319-2333, 2011.

[5] C. H. Chen, J. S. He and T. P. Hong, "MOGA-based
fuzzy data mining with taxonomy," Knowledge-Based
Systems, Vol. 54, pp. 53-65, 2013.

[6] T. P. Hong, C. H. Chen, Y. L. Wu and Y. C. Lee, "A
GA-based fuzzy mining approach to achieve a trade-off
between number of rules and suitability of membership
functions," Soft Computing, Vol. 10, No. 11, pp. 1091-
1101, 2006.

[7] T. P. Hong, C. H. Chen, Y. C. Lee and Y. L. Wu,
"Genetic-fuzzy data mining with divide-and-conquer

strategy," IEEE Transactions on Evolutionary
Computation, Vol. 12, No. 2, pp. 252-265, 2008.

[8] T. P. Hong, C. S. Kuo and S. C. Chi, "Trade-off
between computation time and number of rules for
fuzzy mining from quantitative data," International
Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, Vol. 9, No. 5, pp. 587-604, 2001.

[9] T. P. Hong, C. S. Kuo and S. C. Chi, "Mining
association rules from quantitative data," Intelligent
Data Analysis, Vol. 3, No. 5, pp. 363- 376, 1999.

[10] C. Kuok, A. Fu and M. Wong, “Mining fuzzy
association rules in databases,” SIGMOD Record, Vol.
27, No. 1, pp. 41-46, 1998.

[11] J. Luo, S. Fujimura, D. E. Baz and B. Plazolles, “GPU
based parallel genetic algorithm for solving an energy
efficient dynamic flexible flow shop scheduling
problem,” Journal of Parallel and Distributed
Computing, Vol. 133, pp. 244-257, 2019.

[12] Z. Li er al., "A GPU based parallel genetic algorithm
for the orientation optimization problem in 3D
printing," International Conference on Robotics and
Automation, pp. 2786-2792, 2019.

[13] S. G. Matthews, M. A. Gongora, A. A. Hopgood and S.
Ahmadi, "Web usage mining with evolutionary
extraction of temporal fuzzy association rules,"
Knowledge-Based Systems, Vol. 54, pp. 66-72, 2013.

[14] W. Ouyang and Q. Huang, "Mining direct and indirect
weighted fuzzy association rules in large transaction
databases," International Conference on Fuzzy Systems
and Knowledge Discovery, pp. 128-132, 2009.

[15] A. M. Palacios, J. L. Palacios, L. Sánchez and J. Alcalá-
Fdeza, "Genetic learning of the membership functions
for mining fuzzy association rules from low quality
data," Information Sciences, Vol. 295, No. 20, pp. 358-
378, 2015.

[16] C. K. Ting, T. C. Wang, R. T. Liaw and T. P. Hong,
"Genetic algorithm with a structure-based
representation for genetic-fuzzy data mining," Soft
Computing, Vol. 21, No. 11, pp. 2871–2882, 2016.

[17] T. C. Wang and R. T. Liaw, "Multifactorial genetic
fuzzy data mining for building membership functions,"
IEEE Congress on Evolutionary Computation, pp. 1-8,
2020.

[18] A. H. Yousef et al., "A GPU based genetic algorithm
solution for the timetabling problem," International
Conference on Computer Engineering & Systems, pp.
103-109, 2016.

11Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

Powered by TCPDF (www.tcpdf.org)

 17 / 17

http://www.tcpdf.org

