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(IMMM 2021), held between May 30 – June 3rd, 2021, continued a series of academic and industrial
events focusing on advances in all aspects related to information mining, management, and use.

The amount of information and its complexity makes it difficult for our society to take
advantage of the distributed knowledge value. Knowledge, text, speech, picture, data, opinion, and
other forms of information representation, as well as the large spectrum of different potential sources
(sensors, bio, geographic, health, etc.) led to the development of special mining techniques,
mechanisms support, applications and enabling tools. However, the variety of information semantics,
the dynamic of information update and the rapid change in user needs are challenging aspects when
gathering and analyzing information.
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Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the IMMM 2021 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that IMMM 2021 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of information
mining and management.
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Abstract—Long lasting sustainable systems require quality
software releases. If a new version of the software encounters rel-
atively fewer post-release defects, i.e., bugs, then we can consider
that version as a better quality release. In the competitive world
of faster release and shorter release cycle based development, it
is challenging to deliver a quality release of a software product.
Predicting the release quality certainly helps developers to take
precautions and measures to prevent post-release bugs. Although
many researchers studied software quality prediction, a lack of
robust empirical study on software development historical data
to predict their impact on software release quality has been
observed. In this study, we predict the release quality of Eclipse
Equinox project by constructing a decision tree model from six
factors, such as code changes (churns), commits, churns in test-
files, churns in config-files, last-minute-change, etc., observed
from the historical data extracted from the version control
system. Such development and release factors will give us a
better understanding on how the developers’ activities affect the
quality of a software release. Five quality levels, i.e., classes
are used in our classification model from the Eclipse bugs
depending on the presence of different levels of severity of bugs.
Furthermore, we will construct three more models, Naı̈ve Bayes,
K-means Clustering, and Linear Regression, and will compare
the accuracy of prediction. The outcome of this study will be a
set of classification models built on the six development factors
and an insightful comparison among them.

Keywords—Software Quality, Release Quality, Software Qual-
ity Model, Open Source Software, Decision Trees

I. INTRODUCTION

One of the objectives of software development is to achieve
a high level of customer satisfaction [20]. In general, quality
is defined as the ability of a product to satisfy the needs and
expectations of customers. Software quality focuses on making
the customer happy by providing a satisfactory outcome of
the software application with an uninterrupted user-experience.
Moreover, explicit attention to the quality factors may save the
software life-cycle cost significantly [6]. Various approaches
and frameworks [21] [22] [23] for measuring software quality
have been proposed in literature. However, in this paper, we
use post-release bugs to measure software quality.

Software quality has been measured in various techniques.
Wehaibi et. al. examined the impact of self-admitted technical
debt as a measure of software quality [10]. On the other
hand, Araujo et. al. [1] used code-quality as a measure of
software quality.. However, the majority of the studies have

emphasized on predicting software quality issues to improve
software quality [9].

The increasing popularity of rapid releases bringing the
software products and new features into the market more
frequently than before [3]. Maintaining the quality of the
software product can be challenging in such a limited time-
frame of release-cycles since testing in rapid release becomes
challenging while manual system-integration test needs ef-
fective and efficient prioritization [11]. The effect of rapid
releases on software quality also has been studied by Khomh
et al. [24] for Mozilla Firefox. Since Eclipse is following a
rapid-release model for their development, this increases our
interest to choose the Eclipse Equinox project for this study.

A large amount of effort is involved in stabilization activities
such as correcting coding standards, fixing bugs, adjusting
configurations, twiking test files etc., during the testing or
Quality Assurance (QA) period in a release cycle [7]. Al-
though, in a rapid release, the effort during stabilization is
not as large as the development effort, developers tend to rush
towards the end of the development period right before the
releasing phase starts [7]. Therefore, we are more interested
to see whether the last minute changes have any impact on
the post-release bugs, i.e., the overall software release quality.

To drive this research, we are interested in finding answers
to the following research questions:

RQ1 How much code-change efforts are involved for a new
release version?
Here, we quantify the number of commits and churns (code-
changes) as a measure of effort to release a new version. We
use a number of commits and churns as release factors to
construct our prediction models.

RQ2 Do we see more post-release bugs when a new release
version involves more test-files or configuration related files?
We quantify the code-changes in test files and configuration
files in the commits to a release version. We use them as
release factors to construct our prediction models.

RQ3 How significant are the last-minute changes to produce
post-release bugs?
We consider the last one month window as the last-minute
changes before publishing a release version. We want to see
if we see more bugs where developers were more in a rush
during the last one month of development.

1Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-864-8
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TABLE I. COMMITS LABELED WITH BUILD AND RELEASE VERSION.

Commit Build Version Author Date Release Version
bdfb311c27b7af506d9df031c0fa86c01bd2d88f v200712031723 2007-11-29 14:21:48-05 3.1.2
850f068ac1f4264641adacc707c87f0f07a721de v20090127-1212 2009-01-27 11:15:27-05 3.5.0

7c88166c83944184600862ecbe77935cbb4360ef v200712031723 2007-11-29 14:55:38-05 3.1.2
2a34a6d8f11644b9ee80ac0cedbda0364f3f4116 v200712031723 2007-11-29 15:00:49-05 3.1.2
e539b0d4eeeb2686743eed41d2260a4bf6d92ef3 v200712031723 2007-11-29 14:27:35-05 3.1.2
adec7392cfe5ee6292a28d7520b567e897c8975b v20071015 2007-10-15 18:20:27-04 3.4.0
86ad8d63826d6186aa433020f7d4b06330feec04 v20071015 2007-10-15 16:33:20-04 3.4.0

TABLE II. COMMITS DETAILS.

Commit Churns Old File New File
bdfb3...2d88f 3 bundles/.../.../EclipseGeneratorApplication.java bundles/.../.../EclipseGeneratorApplication.java
850f0...721de 2 bundles.../.../BuildPublisherAntTasks.launch bundles.../.../PublisherAntTasks.launch
7c881...360ef 8 bundles/.../.../EclipseInstallGeneratorInfoProvider.java bundles/.../.../EclipseInstallGeneratorInfoProvider.java5
2a34a...f4116 56 bundles/.../.../generator/Generator.java bundles/.../.../generator/Generator.java

In this study, while finding answers to the RQ1 we obtain
the numbers for various release factors from our data that will
help us build our prediction models. Based on the results from
our prediction models, we will be able answer RQ2 and RQ3.
We define the quality levels of release versions depending
on the presence of different severity levels of bugs. We use
these quality levels as the classes of our prediction model for
training and testing. Our main focus is to understand if there
is any strong relationship between the quality levels and one
or more of the release factors.

The following sections are organized as: Section II talks
about the related studies in the literature and compares with
our contribution in this paper. Section III explains the data
source, data collection, and data pre-processing. Section IV
explains our methodology, Section V explains our preliminary
results obtained, statistics on the development/release factors
that build our prediction models. Finally, in Section VI we
summarize our research so far, explain how much progress
we have made, and how much work still remaining.

II. LITERATURE REVIEW

Many researchers have predicted software quality using
various prediction models. We are performing the study on
Eclipse post-release bugs and six development and release
factors. Similar to this, a study has been conducted by Misirli
et. al. where they performed an explanatory analysis on eclipse
beta-release bugs [18]. They considered six development re-
lated in-process metrics that have explanatory impact on beta-
release bugs. The factors that they used are, age, number
of edits, number of committers, average changed lines of
code, last edit date and average time between edits. In our
understanding a different set of factors may have a larger
impact on the post-release bugs. Compared to their approach,
we are considering a different set of development related
factors (metrics) in each release version such as, number of
commits, bug-fix commits, churn per file, churn per test-file,
churn per config-file, and last-minute churns. Furthermore, we
will investe each release version and predict the post-release
bugs using other prediction models.

Zimmerman et. al. [9] predicted software quality from the
historical data. Unlikely our approach, they considered bug-

fix changes as a measure of software quality. They focused on
analyzing the testing process to assess the impact on software
quality in a rapid release model.

Seliya et. al. [17] used classification algorithms to predict
software quality. They used C4.5 [17] and Random Forest
decision-tree to build defect predictors. However, their focus
was to investigate the cost-sensitivity of the learning mecha-
nism on multiple data-sets collected from different software
projects.

Araújo et. al. used four code quality features related to
poor programming practice and evaluated the effectiveness of
these features on post-release bugs in the procedural software
applications [1].

Wehaibi et. al. [10] considered self-admitted technical debts
as a measure of software quality. Phadke et. al. [5] considered
fault-prone modules to measure and predict software quality.
However, none of them used any classification tree to construct
a prediction model.

Other prediction models have also been applied to predict
software quality, such as the Bayesian network. A Bayesian
network based approach has been taken to assess and predict
software quality by Wagner et. al. [19]. They introduce the
use of general quality models and show how the modelling of
activities and facts in an organization helps define quality more
precisely. They used the Bayesian network since it shows bet-
ter performance for assessment and prediction incorporating
variables with uncertainty.

We have not found any study which has followed the exact
similar approach that we are following. Our approach is to
construct a classification based prediction model based on the
factors related to development and release from the historical
development repository data. We would like to find if there
is any strong relationship between post-release bugs and one
or more of these factors. Furthermore, we will construct three
more prediction models to find the best result and explain
why such factors are significant to pay attention during the
development activities in a release.

III. DATA

We used Eclipse Equinox [13] development historical data
that we collected from their public Github repository which is
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a mirror of the official Eclipse repository [14]. We collected
the the post-release bug reports from their Bugzilla portal [12].

A. Repository Data

First, we cloned the Eclipse-Equinox repository, which
contains commits earliest from 2006 with a total of more
than 6K commits. More than 63 developers contributed to this
repository as of today. We then run a python script to extract
the commit history and store them into a postgres database.
The Python script extracts the commit data into 5 different
tables, where all the commits are stored in the main commit
table with author date (the date-time when the commit was
made), and the commit message. Another table related to this
table contains all the details about each commit such as lines
modified, files modified/renamed, etc.

Another useful data we collect from the repository is the
release-tags. Each time a build is created Github creates a tag
with that build-commit and by extracting those tags from the
repository we can track the release commits. Once we track
the release commits, we then apply another python script to
extract the git Directed Acyclic Graph (DAG) [15]. This script
walks backward through the DAG traversing each and every
commit all the way to the first one starting from a release
(build) commit and labeling the commits on it’s way with that
release tag. This is how we know which commit belongs to
which build version.

Once we have all the commits labeled with the build
versions, we then look for what release versions the builds
belong to. For this, we needed to put some manual effort
to search for the build archives for various Eclipse-Equinox
documentations [16]. We found lists of builds associated with
release versions from various Eclipse documentations and
online resources. Table I shows a segment of our commit data
labeled with build versions and the release versions. We get
the number of commits made to a release version from this
table. Number of churns, test-files, config-files, churns in test
files, churns in config files, these release factors we get from
commit details. Table II shows a portion of our commit details
data for the first four commits in table I. In this table, column
”Churn” contains the total number of lines of code changed
(addition + remove), ”File” and ”New File” columns indicate
if there is any file renamed, deleted, or added in that commit.

Table II shows a portion of our commit details data for the
first four commits in table I. In this table, column ”Churn”
contains the total number of lines of code changed (addition
+ remove). The “Old File” and “New File” columns indicate if
there is any file rename, or deletion or addition in that commit.
We get the release factors “total Churns”, “total files”, “churns
in test file”, “churns in config files” from the table II.

We get the release factors “total Churns”, “total files”,
“churns in test file”, “churns in config files” from the table
II. To calculate the churn data we sum up the addition and
deletion of lines of code in that commit. To calculate total
churns in test files and config files, we first identify the test
files and by search for the existence of the words “test” or
“Test” in the file path. To identify the configuration files, we

TABLE III. ECLIPSE EQUINOX BUG DATA.

Bug ID Release Version Bug Severity
564065 4.17.0 Critical
566014 4.17.0 Normal
61632 3.0.0 Blocker

191487 3.0.0 Critical
67588 3.0.0 Major

285341 3.5.0 Normal

search for the existence of the words “conf” or “setting” but
no “test” or “Test”. This is because there are test files to test
configuration settings too and we want to consider those files
as test files not configuration files.

Last Minute Changes: Finally, another development factor
we would like to investigate is how much changes developers
are doing during the last one month of the release time-line.
We are calling the last one month of changes as the “Last
Minute Churn”.

B. Bug data

Eclipse-Equinox bug reports are stored in their Bugzilla
portal [12]. We downloaded all the bug ‘id’s as a “csv” file
from that website. We wrote another python script to fetch
the details of each of the bugs using the bug id. This python
script pulls out the detailed information about each bug that
contains date, bug-status, bug description, release version the
bug was created, release version the bug was fixed, severity
of the bug, and many other useful information. We stored this
information into the same Postgres database. Table III shows
a segment of the bug data we collected from Eclipse Bugzilla
archive.

Eclipse Equinox uses bugzilla to store their bugs. Bugzilla
allows us to categorize bugs in different types: “Enhance-
ment”, “Trivial”, “Minor”, “Normal”, “Major”, “Critical”,
“Blocker” etc., depending on the severity of the bugs.

“Enhancement” types of bugs are not actually defects, they
are the limitations of a feature which probably because of
missing that part during the initial planning for the feature, or
during the development. “Trivial” bugs are the ones that do
not have much impact on the performance or user experience.
“Minor” bugs are the ones that have some impact but we
can live with it for some time. No one will complain, or no
significant performance issues at this point. However, it is a
defect and we need to address this. “Normal” bugs are the ones
that we need to address and schedule an appropriate scope
of fix. Users have complaints but they can at least manage
their work. “Major” bugs are the high-priority defects that are
causing problems to the users and we need to fix this as soon as
possible. “Critical” bugs are the bugs that are causing serious
problems to the system. System is mal-functioning, users are
having bad experience and having difficulties to do their work
using the relevant feature. “Blocker” has the highest degree
of impact which is blocking the affected feature, users are
completely unable to use the feature.

Post-release bugs are an obvious fenomena in a software
life-cycle. However, the presence of different types of severity
bugs in a release indicates the level of quality of the release

3Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

                             9 / 17



Git 
Repo

Development and 
Release Commit Data

E
cl

ip
se

.B
ug

zi
lla

# Commits

# Ch/F

# Ch/TF

# Ch/CF

# Bugfix 
Commits

# LM Ch

Development and 
Release Factors

Decision 
Tree

Compare

O
ut

pe
rfo

rm
in

g 
M

od
el

 &
 D

is
cu

ss
 

S
ig

ni
fic

an
ce

 o
f F

ac
to

rs

Bayesian 
Network

K-Means 
Cluster

Linear 
Regression

Post-release Bugs 
Archive

QL1 QL2 QL3 QL4 QL5

FIG. 1. THE METHOD OF OUR STUDY AT A GLANCE.

version. Our study focuses on predicting not just the number
of post-release bugs, rather understanding the level of quality
of the release based on the presence of different severity-levels
of bugs.

IV. METHODOLOGY

Our primary prediction model is the decision tree using the
six factors: “Churn per File” (Ch/F), “Total Number of Com-
mits” (# C), “Bugfix Commits” (# BfC), “Churn per Test File”
(# Ch/TF), “Churn per Config File’ (# Ch/CF)’, and “Last-
minute Churns” (#LCh). To obtain the best performing model
we will construct three more prediction models (Naı̈ve Bayes,
K-means Clustering, and Linear Regression) and compare the
performance. Finally, we will discuss the impact of each of the
factors on the results. Figure 1 presents our research-method
at a glance.

We define the quality levels based on the following formula
that considers high-impact bugs (hb), minor bugs (mb), major
bugs (Mb), and total bugs (Tb). According to this formula, the
magnitude (M) of a release is the product of the high-impact
bugs (hb) and the ratio of minor and major bugs associated
with a release version.

magnitudeM = hbεhb > 0 : hb ∗ (mb+Mb) ∗ 100/Tb (1)

Magnitude of a release indicates how large is the impact
of the bugs in that release. To measure that, we consider
the percentage of major and minor bugs. The magnitude of
the release is dominated by the presence of the high-impact

TABLE IV. QUALITY LEVELS (CLASSIFICATIONS).

Class Quality Magnitude
QL1 0 - 50
QL2 51 - 100
QL3 101 - 150
QL4 151 - 200
QL5 201+

bugs. Here, the number of high-impact bugs is the summation
of critical and blocking bugs. We multiply the percentage of
major and minor bugs by high-impact bugs to calculate the
magnitude of a release. For example, the quality magnitude of
release version 3.4.0 has been calculated like below:

m3.4 = 19 ∗ (26 ∗ 100/644) = 76.7 (2)

Here, the number of high-impact bugs is 19, and we multiply
by this only when this is > 0. Table VI shows the magnitudes
of release version 3.4.0, 3.5.0, and 3.6.0.

Release Magnitude: We define a threshold for the five
quality levels based on the severity of bugs. The Severity levels
include minor, major, critical, blocker. The five quality levels
are represented as “QL1”, “QL2”, “QL3”, “QL4” and “QL5”.
The thresholds for the quality levels are presented in Table IV.
If a release magnitude falls within this range, we will label
that release with the corresponding quality level. For example,
the magnitude of release 3.4 is 76.7. Therefore, we can label
this release with “QL2”.

Decision Tree: Our primary classification model is the
supervised learning technique “Decision Tree (DT)”. Decision
trees are easier to understand and categorize samples, and
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TABLE V. PRELIMINARY STATS ON DEVELOPMENT/RELEASE FACTORS.

Version # Ch/F # C # Ch/TF # Ch/CF # LCh # BfC
3.4.0 33.54 433 109.16 10.90 40.02 -
4.2.0 14.53 59 13.38 12.25 22.66 -
4.5.0 10.67 72 10.04 3.40 42.5 -
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interpret the results. First, we prepare our model-data table
with labeled data labeled using the quality levels. Decision
trees do classification based on conditions at each level. In our
case that condition will check the quantity of the six factors
for each release, and calculate the magnitude using equation
(1) to classify it to a quality level. We will train our DT with
70% of our labeled data and will test with 30% of the data.

V. PRELIMINARY RESULTS

Our data has been pre-processed and by this time we have
obtained some preliminary statistics of the five of our six
factors. Table V shows the preliminary counts for the five
factors.

The column “# LCh” indicates the last minute changes in a
release version which we collect from the last one month of
churns in the release time-line as shown in figure 2. Eclipse
Equinox stops making any commits in the repository three
weeks before they announce their release version.

Figure 2 shows that as the developers in Eclipse approach
towards the release, the ratio of churns per commit keeps
increasing which has also been observed by Rahman et. al [7]
in Linux and Google Chrome. This indicates that similar to
Google Chrome and Linux, there is a little rush towards the
release period observed in Eclipse Equinox as well.

We have defined the quality levels based on the release
magnitudes from the bug data in Table IV. This magnitude
will be used to determine different quality levels based on
thresholds as explained in the methodology section.

TABLE VI. QUALITY MAGNITUDES OF RELEASES.

Version # Min Maj Crit Block Total Bugs M
3.4.0 6 20 12 7 644 76.7
3.5.0 14 17 5 8 349 115.0
3.6.0 3 11 5 1 180 47.0

VI. CONCLUSION AND FUTURE WORK

Software quality assurance is an important aspect in the soft-
ware development lifecycle. It helps the software developers to
measure the extents to which the product/software meets user’s
needs. The prediction of software quality has been studied in
literature and various models have been proposed. However,
achieving software quality still remains a major challenge to
the software developers especially when the “Rapid Release”
is in practice. The aim of this paper is to provide an approach
and better understanding to support software quality improve-
ment through prediction. We combine machine learning (ML)
and artificial intelligence (AI) models to examine how code-
changes and other relevant activities during development and
release impact software quality measured through post-release
bugs. Our study will provide an insight about developers
activities and code changes to the developers which will
improve existing methods where quality is usually assessed
post-development. We believe that if we are able to identify
a software is consuming high amount of effort in terms of
commits or other quality factors at an early stage of the
software development, then the software application is most
likely to meet user expectations, satisfaction and thus have a
higher quality.

We have not measured our sixth factor “bug-fix commits”
yet. We need to apply Natural Language Processing (NLP)
to understand the commit messages whether a commit is due
to bug-fix or not. At this point, we will prepare our training
and testing data. The classification model in this case would
be the decision-tree which will fit the release to a quality-
level based on the different threshold values of the quality-
magnitudes as described in the methodology. Furthermore, we
will construct three other prediction models: Naı̈ve Bayes,
K-means Clustering, and Linear Regression using the same
development/release factors. We will compare the results, de-
termine the best or outperforming model. We will also discuss
the significance of each of the factors on the post-release
bugs and will discuss the rationale behind. Furthermore, we
plan to continue in this line of study. We plan to increase
our sample size and expand the study to other open source
software projects.
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Abstract—Association analysis is an important technique for 

finding relationships among the given transactions. In real 

applications, since transactions may have quantitative values, 

the fuzzy-set theory was utilized for mining fuzzy association 

rules. To extract useful rules, the given membership functions 

were the critical factor. The genetic-fuzzy mining approaches 

were thus presented to obtain appropriate membership 

functions to mine fuzzy association rules. However, the 

evolution process was time-consuming. In this paper, we then 

propose an algorithm to reduce the processing time using the 

graphics processing unit (GPU), namely the GPU-based 

Genetic-Fuzzy Mining algorithm (GPU-GFM). It first collects 

the chromosomes from the population and the chromosomes 

generated by genetic operators. Then, chromosomes are sent to 

GPU to calculate the fitness values. As a result, a fitness value 

matrix is returned. At last, when reaching the termination 

condition, the best chromosome will be outputted for mining 

fuzzy association rules. Experiments were also conducted on 

simulation datasets to show the performance of the proposed 

approach. 

Keywords-Association rule; genetic algorithm; fuzzy set; 

fuzzy association rule; graphics processing unit. 

I.  INTRODUCTION 

Data mining is commonly used to extract knowledge 
from the given datasets, and the Apriori algorithm is the 
well-known technique to be utilized for discovering 
relationships among the transactions [2]. An association rule 
is an expression of the relevance between items. For 
instance, X → Y is an association rule, where X and Y are 
itemsets. It means that when someone buys the items in the 
X, then the customer has a high probability of buying Y at 
the same time. For example, a customer who buys milk and 
jam will also buy bread could be found as an association 
rule and represented as {milk, jam} → {bread}.  

The abovementioned rule mining approach can only be 
used to mine binary association rules [2]. In other words, 
items in the transaction can only be considered as to buy or 
not to buy, which limits the content of data analysis. 
However, in real applications, the purchased quantity exists 
and should be taken into consideration in the mining process. 
Therefore, by using fuzzy sets, many algorithms have been 
proposed for mining fuzzy association rules [8][9][10][14]. 
The main concept of those mining algorithms is that the 
quantitative values are first transformed into fuzzy 
representations using the given membership functions. Then, 
the fuzzy representations are employed to discover fuzzy 

association rules. For example, Hong et al. proposed an 
approach for mining fuzzy association rules from 
quantitative data [8]. Ouyang et al. proposed an algorithm to 
mine direct weighted and indirect weighted fuzzy association 
rules [14].  

In those fuzzy association rule mining algorithms, the 
membership functions are given in advance. Because the 
predefined membership functions may not be appropriate 
for all kinds of datasets to mine fuzzy association rules, and 
because to obtain appropriate membership functions is an 
optimization problem, the genetic-fuzzy mining algorithms 
have then been proposed to obtain the membership 
functions for mining fuzzy association rules using various 
evolutionary algorithms, chromosome representations, 
genetic operators as well as evaluation functions 
[1][4][5][6][7][13][16][17]. However, the main problem of 
the existing approaches is the evolution process is time-
consuming. 

With the prevalence of General-Purpose computing on 
Graphics Processing Units (GPGPU), in this paper, we 
propose a GPU-based Genetic-Fuzzy Mining algorithm 
(GPU-GFM) for handling the problem. It first generates the 
initial population randomly. Then, the population is sent to 
GPU to execute the Max-Min-Arithmetical (MMA) 
crossover operator. The offspring and the original 
chromosomes will return to CPU. After that, the mutation 
operator is performed. To calculate the fitness values of 
chromosomes, all chromosomes and transactions are sent to 
GPU to calculate the fuzzy values. As a result, the fuzzy 
value matrix is returned to the CPU. At last, the 
chromosomes and the fuzzy value matrix are again sent to 
the GPU for calculating the fitness values of chromosomes. 
A fitness value matrix is then returned to the CPU. When 
reaching the termination condition, the best chromosome is 
outputted for mining fuzzy association rules. Experiments 
were also conducted on simulation datasets with different 
parameter setting to show the efficiency and effectiveness of 
the proposed approach. 

II. RELATED WORK 

In this section, the genetic-fuzzy mining algorithms are 
stated in Section II.A. The graphics processing unit based 
optimization approaches are described in Section II.B. 

A. Genetic-Fuzzy Mining Algorithms 

Hong et al. proposed an algorithm that consists of two 
phases for mining fuzzy association rules [6]. In the first 
phase, the genetic algorithm has been utilized to obtain the 
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membership functions according to the number of large 1-
itemsets and suitability of membership functions in a 
chromosome. In the second phase, the derived membership 
functions are used to discover rules. To reduce the time for 
the evolution process, Hong et al. took the divide-and-
conquer strategy into consideration and proposed another 
algorithm for solving the genetic-fuzzy mining problem [7]. 
The main concept is that every item has its own genetic 
process to find membership functions. The obtained 
membership functions are gathered for mining fuzzy 
association rules. Because various criteria should be 
considered for the optimization process, Alhajj et al. 
proposed a multi-objective genetic algorithm for automated 
clustering to  obtain fuzzy association rules [1]. Considering 
multiple minimum supports, Chen et al. then proposed an 
optimization algorithm for finding membership functions for 
items at a certain level. Then, the obtained membership 
functions are employed to extract multi-level fuzzy 
association rules [4]. In addition, the multi-objective genetic-
fuzzy mining algorithm has been proposed for discovering 
multi-level fuzzy association rules [5]. Matthews et al. 
proposed an evolutionary-based approach for mining 
temporal fuzzy association rules for web usage data [8]. 
Palacios et al. proposed an algorithm, namely FARLAT-
LQD, for obtaining both suitable membership functions and 
fuzzy association rule from imprecise transactions [15]. They 
first use the genetic algorithm to membership function based 
on 3-tuples linguistic representation model. Then, the 
frequent-pattern tree-based algorithm is employed to mine 
fuzzy association rules. Ting et al. proposed an enhanced 
genetic-fuzzy mining algorithm for membership functions 
and rule discovery [16]. The main advantage of the 
algorithm is that it used the structure-based representation, 
which considered the structures of membership functions for 
chromosome encoding. 

B. GPU-based Optimization Approaches 

With the popularity of computational intelligence 
nowadays, we often rely on computers to find the near 
optimization solution using metaheuristic algorithms. 
However, it usually needs a lot of time to obtain the result. 
After the general-purpose computing on the graphic 
processing unit was launched in 2011 by NVIDIA, the GPU 
parallel processing was employed to speed up the evolution 
process. For instance, Yousef et al. designed the genetic 
algorithm with GPU to solve the university course timetable 
problem [18]. Benaini et al. proposed an optimization 
algorithm with GPU to solve the vehicle routing problem 
because the path should be arranged in a short time. As a 
result, the proposed approach significantly reduced the time 
cost of obtaining the routing path [3]. Due to the government 
policies and the increase in environmental protection 
awareness in recent years, the energy-saving and efficient 
dynamic flexible flow shop scheduling has become a 
dynamic problem worthy of studying. To maintain the 
original efficiency, the principle of energy saving must be 
taken into consideration. In addition, scheduling problems 
will change with the different situations, so the time cost is a 
major issue. Luo et al. executed the GA method by GPU for 

parallel calculation to reduce significantly the time cost [8]. 
In the field of 3D printing, it often hopes that the loss of 
materials is as small as possible. Therefore, the support 
material needs to be calculated to find the closest or best 
solution. Li et al. used the GPU to handle the optimization 
problem to discover the schedule [12]. 

III. PROPOSED GPU-BASED GENETIC-FUZZY MINING 

ALGORITHM 

In this section, the framework of the proposed GPU-
based Genetic-Fuzzy Mining algorithm (GPU-GFM) is 
illustrated in Section III.A. The pseudo code of the GPU-
GFM is stated in Section III.B. Components of the GPU-
GFM are described in Section III.C. 

A. The Framework of the GPU-GFM 

The GPU-GFM framework is shown in Fig. 1. 

 

Figure 1.  The framework of the GPU-GFM. 

In Fig. 1, it shows that the proposed GPU-GFM contains 

five steps. They are: (1) The initial population P is 

generated randomly according to the predefined population 

size.; (2) The crossover operator is executed by GPU for 

8Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

                            14 / 17



speeding up the process to generate offspring which is 

merged to P to get P’; (3) The mutation operator is executed. 

After mutation, the population P’’ is generated; (4) The GPU 

is utilized to transform quantitative transactions to fuzzy 

values for chromosomes; (5) Based on the fuzzy values 

matrix, the fitness values for chromosomes are calculated by 

GPU. Steps 1 to 5 will continue until reaching the 

termination condition. 

In the following, we give a simple example to state the 

GPU-GFM. Assume that the population size is fifty. In Step 

1, fifty chromosomes are generated randomly as the initial 

population P. Each chromosome represents a set of 

membership functions for all items.  

In Step 2, assume that the crossover rate is 0.8. Forty 

chromosomes will be selected to generate offspring. Let two 

chromosomes as a pair. Thus, totally twenty pairs will be 

sent to GPU for offspring generation. The used crossover 

operator, the MMA crossover, will generate four candidate 

chromosomes for a given pair. Hence, after crossover, 

eighty offspring will be generated and sent back to the CPU. 

Then, the eighty chromosomes are merged to the P to form 

P’. In other words, P’ has 130 chromosomes after the 

crossover operator.  

In Step 3, for mutation operator, assume that the mutation 

rate is 0.04 and two chromosomes are mutated and added to 

P’ to form P’’. After mutation, the P’’ has 132 chromosomes. 

In Step 4, the quantitative transactions and P’’ are sent to 

GPU for fuzzy value calculation. After calculation, a three-

dimension matrix called the fuzzy value matrix will be 

generated. The index for the matrix including the 

chromosome number, item number, and fuzzy region 

number. Take (C1, I1, Low) is 5 as an example. It means the 

fuzzy value of the fuzzy region Low for item I1 in 

chromosome C1 is 5. The matrix is then sent back to the 

CPU for the next step. 

In Step 5, the P’’ and the fuzzy value matrix are sent to 

GPU again for calculating the fitness values of the 132 

chromosomes. In the GPU, a thread is used to calculate the 

fitness value of a chromosome. It first calculates the number 

of large 1-itemset according to the given fuzzy value matrix 

and the predefined minimum support. Then, the suitability 

of the chromosome is calculated. After calculation, an array 

of fitness values is used to store the fitness value of 

chromosomes and returned to the CPU. At last, if the 

termination condition is reached, the best chromosome is 

outputted. Otherwise, it will go for the next generation.     

B. Pseudo Code of the GPU-GFM 

Based on the GPU-GFM framework, the pseudo code of 

the proposed algorithm is stated in Table I.  

 

 

TABLE I.  PSEUDO CODE OF GPU-GFM ALGORITHM. 

Input: 

Transaction data TD. 

Parameters: 

Population size pSize, crossover rate pc, mutation rate pm, generation G, 

Population P, number of Items itemNum, minimum support ms, 

Fuzzy Value Matrix FVM. 

Output: 

The best chromosome BC. 

Procedure GPU-GFM: 

1. P ← InitialPopulation(pSize, itemNum) 

2. FOR iteration = 1 to G  DO 

3.     GPU_P ← cuda.memcpy_htod(P) 

4.     GPU_P’ ← MMA_Crossover(pc, GPU_P, GPU_ThreadIdx) 

5.     P’ ← cuda.memcpy_dtoh(GPU_P’) 

6.     P’’ ← Mutation(p’, pm ) 

7.     (GPU_P’’, GPU_TD) ← cuda.memcpy_htod(p’’, TD) 

8.     GPU_FVM  ← FuzzyValueCalculation(GPU_P’’, GPU_TD,  

                             GPU_ThreadIdx) 

9.     FVM  ← cuda.memcpy_dtoh(GPU_FVM) 

10.     (GPU_P’’, GPU_FVM) ← cuda.memcpy_htod(P’’, FVM) 

11.     GPU_FitnessValues ← FitnessValueCalculation(GPU_P’’,  

                                          GPU_FVM, GPU_ThreadIdx) 

12.     FitnessValues ← cuda.memcpy_dtoh(GPU_FitnessValues) 

13.     P ← selection(P’’, FitnessValues, pSize)   

14. END iteration FOR LOOP 

15. BestChromosome  selectBestChro(P, FitnessValues) 

From Table I, the proposed algorithm first generates the 

initial population P randomly according to the predefined 

pSize (Line 1). Then, it starts the evolution process (Lines 2 

to 14). The MMA crossover is then executed on GPU to 

generate offspring, and the results are stored in GPU_P’ 

(Lines 3 to 4). The GPU_P’ will return to CPU and store in 

P’ (Line 5). The mutation operator is executed to get P’’ 

(Line 6). To calculate fuzzy values of chromosomes, it 

sends P’’ and transactions TD to GPU (Line 7). The fuzzy 

values of chromosomes are calculated (Line 8). The result 
GPU_FVM is returned to the CPU and stored in FVM (Line 

9). For the fitness evaluation, the P’’ and FVM are again sent 

to GPU (Line 10) for calculating fitness values (Line 11). 

The result GPU_FitnessValues is returned to CPU and 

stored in FitnessValues (Line 12). The selection process is 

executed to generate the next population (Line 13). Finally, 

if reaching the termination condition, the best chromosome 

is outputted (Line 15). 

C. Components of the GPU-GFM 

1) Encoding Scheme 

In the proposed approach, a chromosome is used to 

represent a set of membership functions that are: MFSet1, 

MFSet2, …, MFSeti, …, MFSetn. The MFSeti means the 

membership functions for the i-th item. Let m linguistic 

terms are used for an item, then the MFSeti can be 

represented as ((c1, w1), (c2, w2), …, (cj, wj), …, (cm, wm)), 

where cj and wj are center and width of a membership 

function.  

2) Initial Population and Genetic Operators 
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In the proposed GPU-GFM, the initial population is 

generated randomly. As to the genetic operators, the max-

min-arithmetical (MMA) crossover operator and one-point 

mutation are employed to generate offspring. The elitist 

selection strategy is utilized for reproduction.  

3) Fitness Evaluation 

The fitness function used to evaluate a chromosome in 

the proposed approach is the same with the existing work 

[7]. The formula is stated as follows: 

f(Cq) = |L1| / suitability(Cq), 

where |L1| is the number of large 1-itemsets that can be 

generated using the membership functions in Cq, and 

suitability(Cq) is used to avoid bad membership functions 

that are overlapping or separate too much. 

IV. EXPERIMENTAL RESULTS 

In this section, experiments were made to show the 

performance of the proposed approach. The experimental 

environment is stated as follow: CPU: Intel(R) Core(TM) 

i5-9300 CPU @ 2.4GZ, GPU: NVIDIA GeForce GTX 1650. 

The proposed approach is implemented by Python 3.6.12. 

with the PyCUDA 2020.1 and CUDA v10.2 for deploying 

the algorithm on the GPU. The experimental datasets are 

generated by the IBM generator. By using the four 

parameters that are T: average transaction length ， I: 

average maximum large itemset length，N: number of items, 

D: transaction size, different simulation datasets can be 

generated. 

Experiments were first made to show the convergence of 

the proposed approach. After 1000 generations, the results 

are shown in Fig. 2. 

 

Figure 2.  Convergence results of the proposed approach. 

From Fig. 2, we can see that the average fitness values 

grow along with the increase of the generations, and finally 

converge to a certain value.   

Experiments were then made to show the execution time 

of the proposed approach on the datasets with 170 items but 

different transaction sizes, including 10K, 30K, 50K, 90K. 

The results are shown in Fig. 3. 

 

 

Figure 3.  Execution time of the GPU-GFM on different transaction sizes. 

From Fig. 3, we can observe that the execution time on 

different data sizes increase linearly. It indicates that the 

proposed approach is efficient. Then, the experiments on the 

datasets with 10K transactions but different numbers of 

items were made, and the results are shown in Table II.  

 

TABLE II.  EXECUTION TIME OF THE PROPOSED APPROACH WITH 

DIFFERENT NUMBER OF ITEMS . 

Dataset Execution Time (s) Increasing Ratio 

T2I2N0.032D10 85 - 

T4I2N0.064D10 153 1.8 (= 153/85) 

T6I2N0.096D10 217 1.4 (= 217/153) 

T8I2N0.128D10 240 1.1 (= 240/217) 

T10I2N0.16D10 298 1.2 (= 298/240) 

 

Table II shows along with the increasing number of 

items from 32 to 160, the execution time increases from 89 

to 298 seconds. From the increasing ratio, when we double 

the number of items from 32 to 64, the ratio is 1.8. The 

other three values are between 1.1 to 1.4. It means the 

execution time still increases linearly. 

At last, comparisons of the proposed approach and the 

previous approach [6] in terms of execution time for a 

generation on the datasets with different transaction sizes 

are shown in Table III.   

TABLE III.  COMPARISONS OF PROPOSED AND PREVIOUS APPROACHES IN 

TERMS OF EXECUTION TIME. 

Data Size Proposed Method Previous Method Speed-Up Ratio 

10K 0.647 sec. 572.997 sec. 885 

30 K 1.697 sec. 1710.271 sec. 1007 

50 K 2.764 sec. 3154.801 sec. 1141 

70 K 3.818 sec. 4537.069 sec. 1188 

90 K 4.674 sec. 5172.524 sec. 1106 
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From Table III, we can easily observe that the proposed 

approach is better than the previous approach in terms of the 

execution time of the evolution process, and the highest 

speed-up ratio is up to 1188 times. From the experimental 

results, we can conclude that the proposed GPU-GFM is 

efficient significantly.  

V. CONCLUSION AND FUTURE WORK 

Association rule mining is always an interesting research 
topic since it can be utilized to discover useful relationships 
among items. In real applications, transactions may have 
quantitative values. Fuzzy association-rule mining 
algorithms are employed to handle that. To extract more 
information, the genetic-fuzzy mining algorithms have then 
been presented to find membership functions automatically 
for fuzzy association-rule mining. Because the evolution 
process is time-consuming, in this paper, we thus propose an 
algorithm, namely the GPU-based Genetic-Fuzzy Mining 
algorithm (GPU-GFM), to speed up the evolution process. 
Experimental results show that: (1) the GPU-GFM is 
efficient no matter the increase of the number of transactions 
or items; (2) When compared to the previous approach, the 
highest speed-up ratio is up to 1188 times in terms of 
execution time. In the future, we will try to enhance the 
proposed approach to observe more useful rules, e.g., using 
all large itemsets instead of only large 1-itemsets as an 
evaluation function.  
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