
MOBILITY 2017

The Seventh International Conference on Mobile Services, Resources, and Users

ISBN: 978-1-61208-568-5

June 25 - 29, 2017

Venice, Italy

MOBILITY 2017 Editors

Josef Noll, Basic Internet Foundation #Basic4All and University of

Oslo/ITS, Norway

Khalil El-Khatib, University of Ontario Institute of Technology, Canada

 1 / 53

MOBILITY 2017

Forward

The Seventh International Conference on Mobile Services, Resources, and Users (MOBILITY
2017), held between June 25-29, 2017 in Venice, Italy, continued a series of events dedicated to
mobility-at-large, dealing with challenges raised by mobile services and applications considering
user, device and service mobility.

Users increasingly rely on devices in different mobile scenarios and situations. "Everything
is mobile", and mobility is now ubiquitous. Services are supported in mobile environments,
through smart devices and enabling software. While there are well known mobile services, the
extension to mobile communities and on-demand mobility requires appropriate mobile radios,
middleware and interfacing. Mobility management becomes more complex, but is essential for
every business. Mobile wireless communications, including vehicular technologies bring new
requirements for ad hoc networking, topology control and interface standardization.

The conference had the following tracks:

 Mobile architectures, mechanisms, protocols

 Challenges in mobile environments

We take here the opportunity to warmly thank all the members of the MOBILITY 2017
technical program committee, as well as all the reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly
thank all the authors that dedicated much of their time and effort to contribute to MOBILITY
2017. We truly believe that, thanks to all these efforts, the final conference program consisted
of top quality contributions.

We also gratefully thank the members of the MOBILITY 2017 organizing committee for their
help in handling the logistics and for their work that made this professional meeting a success.

We hope that MOBILITY 2017 was a successful international forum for the exchange of
ideas and results between academia and industry and to promote further progress in the field
of mobile services, resources, and users. We also hope that Venice, Italy provided a pleasant
environment during the conference and everyone saved some time to enjoy the unique charm
of the city.

MOBILITY 2017 Chairs

MOBILITY Steering Committee
Przemyslaw Pochec, University of New Brunswick, Canada
Rainer Wasinger, University of Tasmania, Australia
Carlo Vallati, University of Pisa, Italy
Masayuki Murata, Osaka University Suita, Japan
Sara de Freitas, Murdoch University, Australia

 2 / 53

Robert S. Laramee, Swansea University, UK
Georgios Kambourakis, University of the Aegean, Greece
Jun Kong, North Dakota State University, USA
José Raúl Romero, University of Córdoba, Spain

MOBILITY Industry/Research Advisory Committee
Danny Soroker, IBM T.J. Watson Research Center, USA
Jin-Hwan Jeong, SK telecom, South Korea
Marco Manso, RNC Avionics, UK

 3 / 53

MOBILITY 2017
Committee

MOBILITY Steering Committee

Przemyslaw Pochec, University of New Brunswick, Canada
Rainer Wasinger, University of Tasmania, Australia
Carlo Vallati, University of Pisa, Italy
Masayuki Murata, Osaka University Suita, Japan
Sara de Freitas, Murdoch University, Australia
Robert S. Laramee, Swansea University, UK
Georgios Kambourakis, University of the Aegean, Greece
Jun Kong, North Dakota State University, USA
José Raúl Romero, University of Córdoba, Spain

MOBILITY Industry/Research Advisory Committee

Danny Soroker, IBM T.J. Watson Research Center, USA
Jin-Hwan Jeong, SK telecom, South Korea
Marco Manso, RNC Avionics, UK

MOBILITY 2017 Technical Program Committee

Mansaf Alam, Jamia Millia Islamia, New Delhi
Carlos Carrascosa, Universidad Politécnica de Valencia, Spain
Amitava Chatterjee, Jadavpur University, Kolkata, India
Michal Choras, University of Science and Technology, UTP Bydgoszcz, Poland
Sara de Freitas, Murdoch University, Australia
Wael M El-Medany, University of Bahrain, Kingdom of Bahrain
Angelo Furno, IFSTTAR-ENTPE | Université de Lyon, France
Zabih Ghassemlooy, Northumbria University, UK
Chris Gniady, University of Arizona, USA
Mesut Güneş, Otto-von-Guericke-University Magdeburg, Germany
Sofiane Hamrioui, University of Haute Alsace, France
Sergio Ilarri, University of Zaragoza, Spain
Rossitza Ivanova Goleva, Technical University of Sofia, Bulgaria
Jin-Hwan Jeong, SK telecom, South Korea
Christian Jung, Fraunhofer IESE, Germany
Georgios Kambourakis, University of the Aegean, Greece
Jun Kong, North Dakota State University, USA
Robert S. Laramee, Swansea University, UK
Grace A. Lewis, Carnegie Mellon Software Engineering Institute, USA
Abdel Lisser, Université Paris Sud, France

 4 / 53

Chen Lyu, Cranfield University, UK
Marco Manso, RNC Avionics, UK
José Manuel Fonseca, FCT-UNL, Portugal
Masayuki Murata, Osaka University Suita, Japan
Diala Naboulsi, Concordia University, Canada
Keivan Navaie, Lancaster University, UK
Andrzej Niesler, Institute of Business Informatics | Wroclaw University of Economics, Poland
John (Hyoshin) Park, University of Massachusetts Amherst, USA
Wuxu Peng, Texas State University, USA
Laurence Pilard, University of Versailles, France
Przemyslaw Pochec, University of New Brunswick, Canada
Philippe Pucheral, UVSQ & INRIA Saclay | UFR des Sciences - Université de Versailles/St-
Quentin, France
José Raúl Romero, University of Córdoba, Spain
Anna Lina Ruscelli, TeCIP Institute | Scuola Superiore Sant'Anna, Pisa, Italy
Rajan Shankaran, Macquarie University, Australia
Danny Soroker, IBM T.J. Watson Research Center, USA
Javid Taheri, Karlstad University, Sweden
Carlo Vallati, University of Pisa, Italy
Miao Wang, Freie Universität Berlin, Germany
Rainer Wasinger, University of Tasmania, Australia
Hui Wu, University of New South Wales, Australia
Mudasser F. Wyne, National University, USA
Kamil Zyla, Institute of Computer Science | Lublin University of Technology, Poland

 5 / 53

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 6 / 53

Table of Contents

Improving Quality on Native and Cross-platform Mobile Application
Rudy Bisiaux, Mikael Desertot, Sylvain Lecomte, Joachim Perchat, and Dorian Petit

1

Scalable Light-Weight Peer-to-Peer Risk Communication Framework for Critical Infrastructures Management
Titus Okathe, Khalil El-Khatib, Stephen Marsh Marsh and Shahram S. Heydari, Shahram Heydari, and Tim
Storer

6

Reliable, Context-Aware and Energy-Efficient Architecture for Wireless Body Area Networks in Sports
Applications
Richard Jaramillo, Alejandro Quintero, and Steven Chamberland

11

Wireless Communications in Railway Systems
Anna Lina Ruscelli, Gabriele Cecchetti, Andrea Sgambelluri, Filippo Cugini, Alessio Giorgetti, Francesco
Paolucci, Silvia Fichera, and Piero Castoldi

19

Assessment of Data Storage Strategies Using the Mobile Cross-Platform Tool Cordova
Gilles Callebaut, Michiel Willocx, Jan Vossaert, Vincent Naessens, and Lieven De Strycker

25

An Analysis of Mobile Application Update Strategies via Cordova
Cristiano Inacio Lemes, Michiel Willocx, Vincent Naessens, and Marco Vieira

33

A General System for Self Collecting Individual Data - Application to Medical Data
Michel Schneider, Suan Tay, Chloe Gay, Marinette Bouet, and Emmanuel Coudeyre

41

Powered by TCPDF (www.tcpdf.org)

 1 / 1 7 / 53

Improving Quality on Native and Cross-Platform
Mobile Applications

Rudy Bisiaux, Mikael Desertot, Sylvain Lecomte, Joachim Perchat, Dorian Petit
FRANCE

name.firstname@univ-valenciennes.fr

Abstract—This paper discusses quality markers for a mobile
application, both during conception and development, to propose
the most suitable way to validate them automatically. We focus
on native and cross-platform applications, as well as component
based development. To achieve this, we rely both on research
papers of the domain, and on our partnership with the Keyneosoft
company. An industrial expertise is useful to identify real prob-
lems encountered with quality processing for mobile applications.

Keywords–Mobile, Quality, Product Line.

I. INTRODUCTION

With more than 4 billion mobile devices around the world
[5] and more than 5 million applications in the different
stores [2], the mobile is omnipresent. But developing mobile
applications means complying with several constraints and
that comes at a cost [22]. In this paper, we highlight the
differences between the implementation of classic apps (for
Desktop, Web or server) and mobile apps. Afterwards, we
define the quality of a mobile application [24] and determine
some quality checkpoints. Finally, we describe a solution for
validating these checkpoints, to be able to evaluate the overall
quality of a mobile application. The objective is to reduce
the cost of creating and maintaining these applications by
addressing quality control in these two phases. A lot of time is
wasted to rollback, hot-fix or replace parts of the application
during conception, development or tests, if a minimum quality
threshold is not reached. To do this, we introduce the mobile
application development concept in Section II. We define the
needs for mobile application development, software quality
and software engineering in Section III. We detail our approach
in Section IV. To finish we conclude in Section V.

II. MOBILE DEVELOPMENT

Developing mobile applications is different from developing
classic software even if some similarities exist (like concep-
tion, development, test or continuous integration). Two main
divergent points are explained based both on the Keyneosoft
experience and a survey about mobile applications develop-
ment challenges [15].

A. Market constraints
A mobile application is produced and released only in a

few weeks. This implies the creation of the application quickly
and correctly from the beginning. Once deployed, there is no

time left to correct mistakes. Moreover, the first release of a
mobile application will contain only a few primary features.
Afterwards, more and more features are added. The quality of
the initial application and all its additional features have to be
certified. An application with poor development quality will
be more difficult to manage, and adding features will cause
regressions.

The heterogeneity of mobile Operating Systems, even in
the same family, is also a major problem. The behavior of
an application can be different between two OS versions. An
example is given by Android version 6.0, where an application
needs runtime permissions to work whereas these permissions
were not mandatory on previous versions of this OS [11]. To
reach all the market stores (Android, iOS) with an application,
we have to multiply the supported OS (different languages
imply a higher cost of production). Some answers have been
proposed, offering cross-platform solutions. Multiple cross-
platforms frameworks exist, which are based on web develop-
ment like Ionic [14] or cross compiling like COMMON [17]
and Xamarin [6].

Another heterogeneity issue is due to the manufacturers
who apply overlays on OS. Once again, the behaviour of
the application can be disturbed by these overlays and the
developer has to check for all of them. The last heterogeneity
drawback concerns the device screen size. The user interface
has to be clear and consistent regardless of the screen size.
But with Android or iOS devices, managing the screen size
has also a cost, even when using cross-platform solutions.

All these constraints are imposed by the market; they can
not be changed but need to be considered when developing
mobile applications.

B. Development constraints

To deal with the complexity of mobile applications, different
kinds of designs are available. The most popular is the MVC
(Model-View-Controler) pattern [19], but some technologies
like Xamarin replace this design pattern with MVVM (Model-
View-ViewModel) [20], where a view-controller replaces the
current controller to notify the view. With these two kinds
of designs, the application does not embed a lot of data.
The data is usually extracted from a database or a Web
service call. For remote sources, a mobile application needs
to be connected to collect them. Then, the quality of these
services can not be certified because they are externals. This
identifies one of the most important challenges, namely, how

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 8 / 53

to maintain the distributed quality over the business logic of
mobile applications.

Another challenge is the integration of third party libraries,
like when using social networks for connection/identification.
These libraries contain uncontrollable code, which has a high
risk for quality criteria. They are often interdependent from
the main application, and do not follow the releases of the
platform’s update. When changing an obsolete library, the
developer has to verify the impacted code in the application,
especially since it has a strong dependency to it.

These constraints produce a lot of bugs, like code quality
bugs or integration bugs. In addition, there is currently a
context difference between the development of the application
and its actual use after release. Indeed, the context like the
number of users or the stability of the remote services can
change the final quality.

In this paper, we present a suitable solution to take these
constrains into account.

III. STATE OF ART

In this section, we discuss the different aspects needed to
qualify the mobile software process.

A. Software product line
To understand how mobile software is made, let us have

a look at the Software Product Line (SPL) defined by the
Software Engineering Institute (SEI) to manage and organize
a software product processing [12]. This SPL describes the
different steps of the process. At the beginning, the entry points
are the client needs (functionalities), used at the conception
phase to determine the different implementations technologies.
But it also helps to define the way functionalities will be
isolated in different modules, relying on the components stan-
dards. These technical and functional requirements are done by
experts. The components designed are then produced during
the implementation phase. Finally, the test phase intends to
validate the different components and functionalities created
during the implementation phase. Afterwards, the release phase
is triggered to distribute the final product. Continuous integra-
tion is the usual way to automate these phases. In Figure 1,
we detail the common use of continuous integration. With
some tools, we can automate some parts of the software’s
process. An orchestrator can play defined jobs to control source
repositories or source codes with different versions, compile
the code, run tests and delivery the final product. A feedback
of all these operations can be provided to developers and to
managers. These processes are associated with management
methods from the way to develop a software, to the product
team management. The team management can impact the
quality of the process so we have to consider it. The size of
the team and the development’ speed time leads us to Scrum
management methods [18]. Indeed, this method is specially
well suited to these features as said in [22].

B. Software quality
Our research mainly focuses on the quality in mobile

applications. Quality is an important characteristic of software.

Figure 1: Continuous integration example

When many solutions exist for classic applications, the previ-
ous constraints are not embedded in these solutions. The need
for a specific mobile quality model is real, as described in
[22] or [24]. Software quality is a widespread subject already
validated by different kinds of certifications.

Firstly, we have certifications based on the software
company structure, like CMMI (Capability Maturity Model
Integration)[21]. This approach evaluates the maturity of the
company in order to determine its capability to produce quality
software. This approach is not suitable for mobile application
development because this kind of application is deployed
quickly [15] and also because they are organization specific
and our approach considers the source code level of the
process. Secondly, we have production certifications, where the

Figure 2: Square Software Quality criteria

most popular is Square from the ISO9126 certification [25].
The quality of the application is defined by rating different
criteria, as described in Figure 2. In our approach, we are
looking for validating these criteria by using mobile context
checkpoints. When Square certification gives a criterion, we
need to find a way to check it during mobile development.
Some approaches define a mobile quality model. For example,
Zahra [24] proposes to add data integrity notions to validate
data consistency when the application is paused or stopped. But

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 9 / 53

it is not enough. Because business logic distribution is strongly
used in mobile software, the data integrity must be constant
when the application interacts with other systems like servers.
So, we have to generate checkpoints that match the quality
criteria of the Square certification for every component in a
mobile application. Finally, we have to generate checkpoints
that match the quality of these components’ implementation.

Based on our definition of the mobile development con-
straints II-B, we notice that every constraint can not match
these criteria. The logic distribution as well as the high
dependency to third party libraries are too specific and can not
be associated with any criteria. For mobile software processes,
we use two new criteria to define the quality of remote services,
and the usability, quality and quality of integration, of a third
party library.

All of these checkpoints need to be controlled so we need to
monitor them and decide when we should process them. The
next section will tackle these problems.

IV. PROPOSITION

The first step to validate the checkpoints identified above,
is defining the stages of a basic software product line [12] :

• Conception, to generate the applications architecture.
• Implementation, to produce the sources.
• And finally, testing, which is done by multiple actors.

But these stages are validated by testing the final product.
Our approach is based on defining key points that have to
be checked at each level of the software product line.

Figure 3: mobile software product line

Figure 3 shows a basic mobile software product line. We
added, in green and purple, some steps for checkpoints val-
idations. Thanks to them, the goal is to have, at the end of
the process, a qualitative and sustainable mobile application
to match the market constraints. These steps are going to be
done simultaneously with the software product line ones, and
automatically powered by continuous integration tools [7].

A. Conception validation
At first, we generate control points (based on the software

engineering standards) for the conception phase of the appli-
cation. This will allow to validate the usage of design patterns
[23], libraries’ dependencies and isolation of components [3].
This step will be done by experts. The organizational part of
quality in a company is a key to permit these validations. Due
to delay constraints imposed by the market, this validation
could be time consuming. But agile project managements
like Scrum provide time management solutions. An exemple
of standard used in mobile development, is the component

based development. A component [3] is a reusable self-
working element. A mobile application is an aggregation of
these components. Each component has its own properties and
interfaces which allow other components to interact with him.
The quality of this component has to be validated for all the
constraints we saw above. As a component needs to work for
every OS and version, it has to work against any environment
and it can be modified without affecting the other components
using it. When all the components are validated individually,
and the integration of these components is validated too, we
can validate the whole application.

B. Implementation validation

Then, we are looking for implementation validation, and this
will be done in two ways. To guarantee that the implementation
is matching the conception, we use different methods.
• Generate class diagram using UML (Unified Modeling

Language) tools and compare them with the conception
phase.

• Use pair programming to validate the implementation by
different developers.

• Perform code revision, using version merge requests.
These approaches match with the organizational concept of
quality. Afterwards, some differences persist between concep-
tion granularity and implementation caused by the technology
environment. Because Android and Apple display guidelines to
establish implementation standards, they also provide tools to
check these rules. But these guidelines are not enough. For ex-
ample, there is no guideline description to explain the best way
to integrate a third-party library. The use of component based
programming imposes some rules too. These new rules are
suitable for mobile development and can easily be integrated in
static analyse tools (like Android lint). They can also be easily
integrated to a continuous integration platform. Furthermore,
a component or library developer can embed these rules in
their components or libraries. This analysis should be done on
every code modification and automatically, based on different
checkpoints we are going to formalize.

C. Test validation

Then, we check the validity of both unit and integration
tests. As shown in our software product line with Figure 3, the
tests can be split in three different domains, Unit, Integration or
Functional. The objective here is to define proper tests, check
implementations and finally run them over different devices,
under different OS versions and different context of use (with
or without network etc...). This allows us to validate that the
software does what it intend to in each context. We have to
define a severity threshold to reach for an application to be
released. These tests have to be written manually, but can
also be automatically recorded and played on several devices
with different tools. Once again, component based engineering
offers the possibility to embed tests with the component. The
continuous integration platform should integrate these tools to
automatically run tests.

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 10 / 53

D. Continuous validation
These different validation steps can certify the quality of

the application. We need to ensure that the conception and
the implementation are sustainable and that the tests are
continuously validating. For example, if just one month after
the release, Android releases a new version of its OS, some of
our checkpoints can be in a wrong state and our application
does not validate any more. We need a way for measuring
this impact without releasing a new version of the application.
To achieve this, trackers will be added to the application
source code to verify the different checkpoints sustainability
like in [16]. Once these track events are set, they retrieve
information about any potential anomaly and could alert the
developer. These notions are already used for crash reporting
and runtime healing like [16] but are not used yet to do the
same treatment we exposed. This method is used to keep an
eye on implementation, when the final user is interacting with
the application. Thanks to data callback, we can determine the
sustainability of a suitable implementation for evolutions.

The validation system has to be flexible, as some check-
points are more important than others and priorities may vary
during all the process time (configurable severity level).

E. Literature overview
Some papers report challenges like user acceptance [13],

highlighting quality criteria from user experience, like Appli-
cation interface design, Application performance, battery effi-
ciency, phone features and connectivity cost. In [4], Dehlinger
and Dixon point out the differences between classic applica-
tions and mobile applications, affecting the engineering pro-
cess. Criteria like mobile screen size heterogeneity, platform
heterogeneity etc. are a challenge for developers. Some papers
propose a new definition of quality criteria like [10] for a
specific branch of mobile app, the M-commerce, by question-
ing the user. Franke et al. propose a framework automating
some existing quality check [9] and to extract a quality model
ISO9126 [8]. The tradeoff between speed development and
quality is discussed by Hansen [1]. It shows that Agile develop-
ment is the best suited for mobile development and that quality
automatic tools can be used to reduce cost/tile/risk in mobile
applications. But the time spent to set up the automation and
to maintain it costs more than quality control by different ways
for small projects.

F. Realization
To illustrate our approach, we use the case of the Network

Http request. As said above, mobile software relies on network
to retrieve data from servers and to do this they use http re-
quest. We need an exhaustive list of our checkpoints in this use
case. These checkpoints are defined by using the specifications
of an http request like body, header and error code, pairing with
the use case of http request and the development skills. These
checkpoints can be embedded in third party libraries. When
these checkpoints pass, we can be sure that the application can
use an http request call or a library without errors or degrading
the quality. In the conception part we have to ensure that the

Http request is made by only one component (singleton). For
the implementation part, we have to check if every checkpoint
is validated by parsing the source code. For instance, we have
to be sure that when a POST request is sent, the body part is
filled. To finish, we add trackers to monitor the quantity and the
reason of rejected requests. We have defined every parameter
that compose an HTTP request to generate checkpoints and
validate all the parameters for an Http request.

V. CONCLUSION

Our goal is to increase the quality of mobile applications.
To achieve this, we identify a mostly exhaustive list of quality
checkpoints extended from the quality model ISO9126 to
verify. This quality level will be improved and simplified by re-
lying on component models, from common mobile application
functionalities to the core components. These checkpoints have
to be validated during all the software process (conception,
implementation, test and release) to guarantee its sustainability.
A checkpoint, the way to validate it and the actors are led by
the phase involved. Moreover, a tracking system is added to
monitor checkpoint validation, even after the application’s re-
lease. For now, we are working on implementing and validating
checkpoints over a simple distributed application in a software
product line.

REFERENCES

[1] Hansen Aaron. A mobile software quality framework. Lionbridge
Technologies, 2007.

[2] AppFigure. Mobile application quantity on appstore by statrista.
http://www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores/, 2015.

[3] Xia Cai, Michael R Lyu, Kam-Fai Wong, and Roy Ko. Component-
based software engineering: technologies, development frameworks, and
quality assurance schemes. In Software Engineering Conference, 2000.
APSEC 2000. Proceedings. Seventh Asia-Pacific, pages 372–379. IEEE,
2000.

[4] Josh Dehlinger and Jeremy Dixon. Mobile application software engi-
neering: Challenges and research directions. In Workshop on Mobile
Software Engineering, volume 2, pages 29–32, 2011.

[5] DeviceFigure. Mobile device quantity in 2015 by statrista.
http://www.statista.com/statistics/274774/forecast-of-mobile-phone-
users-worldwide/, 2015.

[6] Jared Dickson. Xamarin mobile development. 2013.
[7] Paul M Duvall. Continuous integration. Pearson Education India, 2007.
[8] Dominik Franke, Stefan Kowalewski, and Carsten Weise. A mobile

software quality model. In Quality Software (QSIC), 2012 12th
International Conference on, pages 154–157. IEEE, 2012.

[9] Dominik Franke and Carsten Weise. Providing a software quality
framework for testing of mobile applications. In Software Testing,
Verification and Validation (ICST), 2011 IEEE Fourth International
Conference on, pages 431–434. IEEE, 2011.

[10] John D Garofalakis, Antonia Stefani, Vasilios Stefanis, and Michalis Nik
Xenos. Quality attributes of consumer-based m-commerce systems. In
ICE-B, pages 130–136, 2007.

[11] Google. Android 6.0 change. https://developer.android.com, 2015.
[12] Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid.

Dynamic software product lines. Computer, 41(4), 2008.
[13] Selim Ickin, Katarzyna Wac, Markus Fiedler, Lucjan Janowski, Jin-

Hyuk Hong, and Anind K Dey. Factors influencing quality of expe-
rience of commonly used mobile applications. IEEE Communications
Magazine, 50(4), 2012.

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 11 / 53

[14] ionic. Ionic home page. http://ionicframework.com/, 2016.
[15] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. Real chal-

lenges in mobile app development. In 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement,
pages 15–24. IEEE, 2013.

[16] Renaud Pawlak, Carlos Noguera, and Nicolas Petitprez. Spoon: Pro-
gram analysis and transformation in java. PhD thesis, Inria, 2006.

[17] Joachim Perchat, Mikael Desertot, and Sylvain Lecomte. Common
framework: A hybrid approach to integrate cross-platform components
in mobile application. Journal of Computer Science, 10(11):2165, 2014.

[18] Ken Schwaber and Jeff Sutherland. The scrum guide (2013).
http://www. scrum. org/Scrum-Guides¿. Acessado em, 16:18, 2013.

[19] Kishori Sharan. Model-view-controller pattern. In Learn JavaFX 8,
pages 419–434. Springer, 2015.

[20] Artem Syromiatnikov and Danny Weyns. A journey through the land of
model-view-design patterns. In Software Architecture (WICSA), 2014
IEEE/IFIP Conference on, pages 21–30. IEEE, 2014.

[21] CMMI Product Team. Cmmi for development, version 1.2. 2006.
[22] Anthony I Wasserman. Software engineering issues for mobile applica-

tion development. In Proceedings of the FSE/SDP workshop on Future
of software engineering research, pages 397–400. ACM, 2010.

[23] Pree Wolfgang. Design patterns for object-oriented software develop-
ment. Reading, Mass.: Addison-Wesley, 1994.

[24] Sobia Zahra, Asra Khalid, and Ali Javed. An efficient and effective
new generation objective quality model for mobile applications. Inter-
national Journal of Modern Education and Computer Science, 5(4):36,
2013.

[25] Dave Zubrow. Software quality requirements and evaluation, the iso
25000 series. Software Engineering Institute, Carnegie Mellon, 2004.

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 12 / 53

Scalable Light-Weight Peer-to-Peer Risk Communication Framework for Critical
Infrastructures Management

Titus Okathe, Khalil El-Khatib, Stephen Marsh and
Shahram S. Heydari

Faculty of Business and IT
University of Ontario Institute of Technology

Oshawa, Canada
{Titus.okathe, Khalil.el-khatib,Stephen.marsh,

shahram.heydari}@uoit.ca

Tim Storer
University of Glasgow

School of Computing Science
 Glasgow, Scotland

timothy.storer@glasgow.ac.uk

Abstract—Critical infrastructures are growing in scale and
complexity and are becoming increasingly interdependent on
one-another. This paper argues that existing centralized
methods in monitoring and management are unlikely to be
sustainable as this trend continues. To address this challenge,
this paper presents a complementary model of critical
infrastructure monitoring, management and inter-
infrastructure communication. The model leverages the
advantages of a distributed peer-to-peer method of
communication amongst artifacts within infrastructures to
provide a scalable, flexible and light-weight means of
communication, interaction, and awareness.

Keywords- critical infrastructures; communication model;
interdependence

I. INTRODUCTION
Situational awareness has always proven to be extremely

important for the management and operation of any system,
and especially in the case of critical infrastructures (CI)
[1,2,3,4]. To build this situational awareness, operators of CIs
collect data from their own systems as well as from other
system operators. However, the growing independencies
between CIs means that their interactions can be characterized
as that of a system-of-systems in which no one entity has
overall control or even a global view of the entire system [5].
As a consequence, each infrastructure owner is dependent on
peer infrastructures to provide information about the status of
facilities or services on which it is dependent for successful
operation. These other operators can be from within the same
sector, as in the case of the Union for the Co-ordination of
Transmission of Electricity (UCTE) or from a different sector,
as is the case with the EDXL [6].

Whilst existing frameworks for information exchange can
assist with providing situational awareness for CI operators,
there are still some problems that can hinder the task of
building a more comprehensive picture of situations faced by
operators. These include:

1. Data exchange between CI operator is always based
on existing collaboration, and does not allow for
spontaneous exchange;

2. Data exchange is always carried out at the
infrastructure level (between command and control
centers), and invariably does not allow individual
nodes from one infrastructure to talk to a nodes in
different infrastructure;

3. Data exchange still involves a human in the loop,
usually the CI operator, to scan through the collected
data, who, based on their understanding of the effect
of the information on other infrastructures, decides
whether or not to pass on the information to other
operators;

4. Lack of a simple, common language to express risk or
status information[7].

Critical infrastructures are increasing in scale, complexity
and interdependence, magnifying these challenges. As a
consequence, there is a need to develop flexible, scalable and
autonomic mechanisms for exchanging information at
appropriate levels of detail in a timely manner across
infrastructures. In this paper we propose a risk/status
communication framework that abstracts the detailed
descriptions of pertinent risks as a statement of infrastructure
artifact comfort. We explain how this model provides a light-
weight means for effectively communicating risks at an
appropriate level of abstraction across heterogeneous, legacy
infrastructures.

The rest of this paper is organized as follows: Section 2
reviews existing work on inter-infrastructure communication
and coordination. Section 3 presents the proposed peer-to-
peer model and outlines different models of inter-
infrastructure communication that can be adopted for different
circumstances. Section 4 evaluates the proposed model and
Section 5 draws conclusions and presents the next steps in the
research.

II. BACKGROUND
There is an extensive literature on the modeling,

monitoring and management of critical infrastructures [8],
protection tools, as well as mechanisms for facilitating
effective information exchange [9]. Fundamentally, the
purpose of exchanging information among critical
infrastructures is to improve their reliability and safety. In

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 13 / 53

light of this there has been research in the area of how to
quantify risk; how to represent risk across infrastructures; and
the development of suitable information architecture to
support these mechanisms amongst heterogeneous systems.

Hu et al. [10] and Algirdas et al. [11] propose a framework
for describing risk by looking at the concepts of dependability
and security. The proposed framework combines the attributes
of dependability and security and they include: availability,
reliability, safety, integrity, maintainability, confidentiality,
authenticity, and non-repudiation.

MICIE [12] has the objectives of (1) design of CI
modeling techniques which can help in the modeling of the
effects of undesired events occurring in a given CI on the
Quality of Service (QoS) of its services as well as those of
interdependent CIs, (2) design and implementation of an
infrastructure for secure cross CI information sharing and
mediation, and (3) design and implementation of a MICIE on-
line risk prediction tool that encompasses the CI modeling.
MICIE also uses a Service Quality Descriptor (SQD) data
structure to exchange information between interdependent
CI’s [13].

Several research groups have investigated techniques for
modeling infrastructure interdependencies, highlighting the
challenge of presenting dependencies in a uniform manner.
Beccuti et al. [14] described the CRUTIAL project which
employs a Petri-net like approach to modeling systemic
effects of individual dependency failures in multiple critical
infrastructures. Klein [15] and Klein et al. [16] describe the
Integrated Risk Reduction of Information-based Infrastructure
Systems (IRRIIS) project, which integrates models from a
variety of heterogeneous infrastructures in order to analyze
their interdependencies. Several other techniques have also
been applied to understanding dpendencies in critical
infrastructures, such as systems-of-systems modeling [17] and
agent based simulations [18].

Several research efforts are underway to facilitate
effective and timely information exchange between CIs. The
Critical Infrastructure Warning Information Network
(CIWIN)[19] is part of the effort by the European Union (EU)
to build a secure network for the exchange of critical
infrastructure alerts and warnings among EU member states.
CIWIN “…offers an efficient and rapid alternative to often
time-consuming methods of searching for information, i.e.
create a type of "one-stop-system" to obtain all relevant
information on Critical infrastructures in the EU”[15].
Additionally, CIWIN “offers the possibility to Member States
to communicate directly and upload information that they
deem relevant”. However, there have been concerns as to the
relevance of such a platform given that many of the member
states already have Rapid Alert Systems (RAS) of their own
which can already perform the functions proposed by the
CIWIN [20].

Separately, in [21], Flentge et al. present a language for
exchanging information across CIs called the “Risk
Management Language” (RML). RML is developed around
the idea of analyzing CIs using the Implementation-Service-
Effect Metamodel (ISE)[22]. RML is an XML based and is
therefore extensible. It divides the messages exchange by CIs
into three (3) groups:

− Information messages: used to provide information to
the service consumer about the possibility of service
degradations, as well as any time span and their
location.

− Negotiation messages: used by the service provider
and the service consumer to exchange and negotiate
terms of service delivery.

− Administrative messages: used to control the message
exchange.

RML has been tested within the context of the IRRIIS
project [23]. Other techniques have also been proposed for
extending this work to the autonomic management of
interactions between and within infrastructures. Gustavsson
and Ståhl described the work on applying self-healing
techniques to critical infrastructures in the INTEGRAL
project [24]. Hall-May et al. [25] and Krrüger et al. [26] have
separately advocated the use of a service oriented architecture
approach to integrating infrastructure management systems.

III. PROPOSED MODEL
This paper proposes a novel approach to critical

infrastructure monitoring, management and inter-
communication. The proposed model leverages a
decentralized agent based, peer-to-peer architecture in which
individual artifacts in different critical infrastructures are able
to interact directly with others via a variety of communication
models. This contrasts with conventional models of critical
infrastructure inter-management, in which each entire
infrastructure is treated as an agent, service or other
computational entity and where communication only occurs
between centralized control centers.

In our proposed model, an infrastructure is represented as
a collection of agents, with each agent representing some
artifact in an infrastructure. For example, consider a fictional
modern city comprising many infrastructures such as:

• An electrical power supply infrastructure consisting
of electricity consumers, generating facilities, sub-
stations, pylons and cabling.

• The water supply consisting of pipes, reservoirs,
filtration plants, pumps and water consumers.

• The road network, comprising road lanes,
intersections, traffic signals and vehicles.

• The telecommunications network, comprising
switches, servers, end-user communication devices,
wireless and mobile network base stations and
cabling.

• An underground railway network consisting of train
sets, rail links and stations.

All of these infrastructures are interdependent on the state
of each other. A water pump, for example may depend on
power supplied by the electricity infrastructure. On the other
hand, a nuclear power station may depend on a ready supply
of water to act as a coolant.

In the proposed model, each of the artifacts (road lane,
railway station, vehicle and so on) is represented as an agent.
Figure 1 illustrates an example of the architecture for three
infrastructures: power supply, telecommunications and

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 14 / 53

transportation. Each infrastructure is shown as a circle
containing a number of artifacts represented as agents.

We anticipate that agents within the same infrastructure
will be able to communicate with each other directly, using a
variety of specialized messages and protocols that suit the
specific needs of the infrastructure. In particular, we assume
that most infrastructures will continue to maintain a
centralized control center that will receive status information
communicated from infrastructure artifacts, as well as issue
commands. However, the arrangement of communication
between agents within an infrastructure is an infrastructure
dependent issue and not considered further here. Each
infrastructure has very different technical characteristics
requiring tailored monitoring and management systems.
Consequently, we presume that each infrastructure owner will
adopt information and communication technologies for
infrastructure monitoring, management and internal
communication that suits their own needs. This allows each
infrastructure owner to continue to use a heterogeneous range
of legacy ICTs for infrastructure management as they see fit.

Separately, inter-infrastructure communication is enabled
by permitting agents from different infrastructures to also
communicate with each other. This allows the
communication of information across infrastructure inter-
dependencies directly between relevant infrastructure
artifacts, rather than via central control centers. For example,
a water pump in the water supply infrastructure can be
informed of a pending shortfall in the power supply by a
nearby power system artifact, giving it time to either reduce
the amount of power it requires to operate (by moving to a
more efficient but less capable mode, for example) or
transition to a safe state for temporary shut-down.

A challenge here is the vast array of infrastructure status
information that may be pertinent to a dependent
infrastructure artifact. Deciding which information must be
communicated and in what format so that it can be understood
by a peer infrastructure. This diversity reflects the different
physical systems that have to be managed in different
infrastructures, and the priorities for measuring different
characteristics. For example, water flow rates, reservoir levels
and purity may be important characteristics for a water supply
infrastructure. However, a nuclear power station may only
need to be alerted if the level of water in its coolant reservoir
drops below a certain critical minimal level.

As described in Section 2, several research efforts are
underway to develop standardized means of communicating
this information between infrastructures that may be managed
using a heterogeneous range of ICTs; and Genc et al. describe
the application of a service based publish and subscribe
software architecture to the problem of information
distribution[27]. However, neither of these approaches
addresses the general need to provide a holistic over-view of
the status of a critical infrastructure to peers in a flexible and
scalable manner.

 The model proposed in this paper employs a different
approach, by abstracting the detailed status information that
is specific to a particular infrastructure artifact as an overall
sense of comfort in infrastructure artifact. The concept of
computational comfort has previously been employed in the
management of user-personal device interactions in order to
provide a more flexible and context adaptable security
environment. [28,29,30] In this previous work, a personal
device (such as a smartphone or tablet) would continually
evaluate its sense of comfort based on a range of factors, such
as the user’s actions, data accessed, connected services and
networks, physical location and time. The device can then
adjust its security posture as well as deter less desirable
actions based on its overall sense of comfort. For example, a
user accessing personal family photographs at home may
enhance a device’s sense of comfort (because this is a familiar
activity). However, performing the same action in a public
place or work environment may cause the device comfort
level to drop. In this situation, the device would begin to resist
(but not prevent) the users action in order to communicate the
sense of discomfort as a warning that the actions may be
inappropriate.

A range of factors may contribute to the sense of comfort
of an agent in a critical infrastructure, depending on the nature
of the underlying artifact. Some examples are:

• Flow rates on a reservoir supply pipe.
• Power fluctuations on an electrical line.
• Average vehicle speed on a road link.
• Congestion on a road link, or frequency of traffic

signal changes at an intersection.
The computation of an individual infrastructure node’s

comfort is therefore specific to that node. However, the node
(agent) can use the computed sense of comfort to
communicate in an abstract manner about potential problems
within the infrastructure to dependent artifacts (nodes) in other
infrastructures.

Figure 1. Peer to peer model of inter-infrastructure artifact
communication.

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 15 / 53

The inter-infrastructure agent communication may occur
according to several different models of interaction,
depending on the relationship between the respective
infrastructure owners and the nature of the underlying
artifacts. The different models of communication are shown
in Figure 1:

• A shared agent, with a presence in both of the
communicating infrastructures, labeled (a) in Figure
1. A shared agent receives communications directly
from agents in all of the infrastructures it resides in.
This arrangement reflects a situation where two
infrastructure owners have a significant amount of
trust in one another. The agent’s level of comfort is
computed from the infrastructure specific factors of
all the infrastructures it resides in.

• Direct agent to agent communication, labeled (b) in
Figure 1. This represents a medium level of trust
between two infrastructures. The agents are able to
inform each other directly about their current level of
comfort. This peering between agents represents a
situation where one agent represents an artifact that is
dependent on the performance of its peer.

• Communication mediated by an agreed independent
third party, labeled (c) in Figure 1. This arrangement
represents the lowest level of trust between two
infrastructures. The agents in the peer infrastructures’
communication is mediated by an agreed independent
third party. This may be in order to prevent direct
access between agents, for example, to permit
anonymous communication of information, or to
filter messages. This model is analogous to
information security coordination centers that have
been established in several jurisdictions for industry
specific incident reporting.

The selection of the appropriate form of inter-agent
communication is a design decision that will depend on the
relationship between infrastructure owners and the nature of
the underlying infrastructures. The use of shared agents
between infrastructures allows for a closely integrated sense
of comfort that allows agents in both infrastructures to
respond directly to problems. However, this model assumes
a willingness of infrastructure providers to ‘share’ control of
artifacts within their infrastructures and may not be
appropriate in all cases. Mediated communication can
provide for information that is more limited and anonymous,
but can make this information less useful (an agent may not
be able to determine which peer is causing the mediator to
report discomfort). The middle case provides for a
compromise situation in which direct communication of
comfort is permitted between certain peer artifacts in an
infrastructure.

A final aspect of the proposed model is that agents in one
infrastructure may also comprise a number of agents in a
critical infrastructure themselves. In this situation, an
aggregated agent presents an overall comfort level for the
underlying infrastructure. In Figure 1, the power station agent
in the power supply infrastructure could be a large complex
system, comprising many supporting infrastructure artifacts.
However, the overall status of the power station can be

abstracted for the purpose of communication to peer artifacts
in the power supply infrastructure.

IV. EVALUATION OF THE PROPOSED MODEL
In the context of disaster management, Genc et al. have

argued that the challenges in information distribution in
critical infrastructures include interoperability, timeliness,
security, flexibility and adaptability, due to the evolutionary
nature of the set of participants [23]. Considering the
proposed model against these criteria:

• Interoperability: the model imposes minimal new
standards on the implementation of CI management
systems. Each infrastructure is able to decide for
itself which artifacts should be enabled to express
comfort levels to peer artifacts. In addition, the
computation of comfort levels for a given artifact is
left to the infrastructure owner. This leverages the
expertise in each infrastructure and minimizes the
need for cross-infrastructure communication.

• Timeliness: The three models of artifact interaction
described in Section 3 provide for real time (type a or
b) or mediated communication (type c) as appropriate
to the situation between two infrastructures. In
addition, the communicated information is abstracted
away from the details of the infrastructure, enabling
infrastructure artifacts to respond rapidly to changing
contextual information.

• Security: The different communication models
proposed in Figure 1 allow an infrastructure owner to
customize their interactions with peer infrastructures
based on perceived security risks. Mediated
communication can provide a firewall between
infrastructures where there is a desire for indirect
communication (for anonymity or confidentiality
purposes (for example).

• Flexibility: The proposed model provides for
considerable variation in adoption for infrastructure
owners. A system architect is able to select which
artifacts in an infrastructure act as agents able to
express comfort, as well as selecting which agents
they will communicate with in other infrastructures
and in what way. In addition, the hierarchical
composition of infrastructures allows an

• Adaptability: Depending on the situation, the model
allows critical infrastructure providers to exchange
information with whomever they deem important in
the current situation, and without the need for lengthy
relationship set-up process.

V. CONCLUSION AND FUTURE WORK
We present a new, complementary model for the

communication of infrastructure awareness within and
between Critical Infrastructures. The model is lightweight,
and uses the concept of comfort, itself a subjective measure of
potential security or risk tolerance, to allow individual
artifacts (nodes) within infrastructures, represented by
autonomous agents, to make informed, self-aware judgments
of ongoing real-time situations.

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 16 / 53

Currently, the model is abstract and has not been fully
implemented, although we have implementations of
infrastructure awareness and modeling using Esri’s ArcGIS
system. It is our intent to take this model and develop it into a
working system for Critical Infrastructures, and couple it with
our ongoing work in the area of Infrastructure Awareness and
Augmentation.

REFERENCES
[1] Commission of the European Communities: Communication

from the Commission on a European Programme for Critical
Infrastructure Protection, COM(2006) 786 final, 2006.

[2] European Commission Information Society and Media
Directorate-General: Availability and Robustness of Electronic
Communications Infrastructures The ARECI Study Final
report, March 2007.

[3] J. Yoon, S. Dunlap, J. Butts, M. Rice, and B. Ramsey,
"Evaluating the readiness of cyber first responders responsible
for critical infrastructure protection," International Journal of
Critical Infrastructure Protection, 13 , 2016, pp.19-27.

[4] A. Farouk "Critical Infrastructure Protection in Developing
Countries," Handbook of Research on Economic, Financial,
and Industrial Impacts on Infrastructure Development. IGI
Global, 2017, pp.23-39.

[5] J. Boardman and B. Sauser, “System of Systems: The Meaning
of,” the IEEE/SMC International Conference on System of
Systems Engineering, 2006, pp. 118-123.

[6] M. Raymond, S. Webb, and P.I. Aymond, “Emergency Data
Exchange Language (EDXL) Distribution Element,” v. 1.0
OASIS Standard EDXL-DE v1.0, 1, May 2006.

[7] Union for the Co-ordination of Transmission of Electricity
(UCTE): Final Report, System Disturbance, 2006.

[8] M. Alam and K.A. Shakil, “A decision matrix and monitoring
based framework for infrastructure performance enhancement
in a cloud based environment,” Advances in Engineering and
Technology Series, Elsevier 7, pp.147-153, 2014.

[9] J. Parajuli and K. E. Haynes. "Transportation Network
Analysis in Nepal: A Step toward Critical Infrastructure
Protection," 2016.

[10] J. Hu, P. Bertok and Z. Tari, “Taxonomy and Framework for
Integrating Dependability and Security,” Information
Assurance: Dependability and Security in Networked Systems,
Elsevier, 2008, pp. 149-170.

[11] A. Aizienis, J. -C Laprie, B. Randell, and C. Landdwehr,
“Basic Concepts and Taxonomy of Dependable and Secure
Computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, 2004, pp. 11-33.

[12] S. De Porcellinis, G. Oliva, S. Panzieri, and R. Setola, “A
Holistic-Reductionistic Approach for Modeling
Interdependencies,” Critical Infrastructure Protection III, C.
Palmer and S. Shenoi (Eds.), vol. 311, 2009, pp. 215-227,
Springer AICT.

[13] M. Aubigny, C. Harped, and M. Castrucci “Risk ontology and
service quality descriptor shared among interdependent critical
infrastructures,” Critical Information Infrastructures Security,
Springer, 2011, pp. 157-160.

[14] M. Beccuti, G. Franceschinis, M. Kaâniche, and K. Kanoun,
“Multi-level dependability modeling of interdependencies
between the Electricity and Information Infrastructures,” Int.
Workshop on Critical Information Infrastructures Security
(CRITIS09), volume 5508 of Springer LNCS, 2008, pp. 48-59,
Frascati (Rome), Italy.

[15] R. Klein, “Information Modelling and Simulation in Large
Dependent Critical Infrastructures. An Overview on the
European Integrated Project IRRIIS,” the 3rd International
Workshop on Critical Information Infrastructures Security,

CRITIS 2008, Rome, Italy, October 2008, LNCS 5508,
Springer, Berlin.

[16] R. Klein, E. Rome, C. Beyel, R. Linnemann, W. Reinhardt,
and A. Usov, “Information Modelling and Simulation in Large
Interdependent Critical Infrastructures in IRRIIS,” the 3rd
International Workshop on Critical Information Infrastructures
Security, CRITIS 2008, Rome, Italy, October 2008, LNCS
5508, Springer, Berlin.

[17] W. Tolone, “Making Sense of Complex Systems Through
Integrated Modeling and Simulation,” Advances in
Information and Intelligent Systems, volume 251 of Studies in
Computational Intelligence, Springer, 2009.

[18] E. Casalicchio, E. Galli, and S. Tucci, “Modeling and
Simulation of Complex Interdependent Systems: A Federated
Agent-Based Approach,” CRITIS 2008, pp. 72-83.

[19] Commission of the European Communities, "European
Commission," [Online]. Available:
http://ec.europa.eu/governance/impact/commission_guideline
s/docs/sec_2008_2701_ia_ciwin_en.pdf. [Accessed June
2017].

[20] Commission of the European Communities, "CIWIN,"
[Online]. Available: http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:07
86:FIN:EN:PDF. [Accessed June 2017].

[21] F. Flentge, C. Beyel and E. Rome, “Towards a standardised
cross-sector information exchange on present risk factors,”
Critical Information Infrastructure Security, Springer, 2008,
pp. 349-360.

[22] F. Flentge and U. Beyer, “The ISE metamodel for critical
infrastructure,” Critical Infrastructure Protection, Springer,
2007, pp. 323-326.

[23] R. Klein, “The EU FP6 Integrated Project IRRIIS on
Dependent Critical Infrastructures,” Critical Information
Infrastructures Security, Springer, 2011, pp. 26-42.

[24] R. Gustavsson and B. Ståhl “Self-healing and Resilient Critical
Infrastructures,” Critical Information Infrastructure Security,
Third International Workshop, CRITIS 2008, Rome, Italy.

[25] M. Hall-May and M. Surridge, “Resilient Critical
Infrastructure Management Using Service Oriented
Architecture,” CISIS 2010, The Fourth International
Conference on Complex, Intelligent and Software Intensive
Systems.

[26] I.H. Krrüger, M. Meisinger, M. Menarini, and S. Pasco, “Rapid
Systems of Systems Integration - Combining an Architecture-
Centric Approach with Enterprise Service Bus Infrastructure.”
Proc. IRI'06, IEEE Systems, Man, and Cybernetics Society,
Sep. 2006, pp. 51-56.

[27] Z. Genc, F. Heidari, M.A. Oey, S.van Splunter, and F.M.T.
Brazier, “Agent-Based Information Infrastructure for Disaster
Management.” Springer Berlin Heidelberg, 2013, pp.349-355.

[28] S. Marsh, P. Briggs, K. El-Khatib, B. Esfandiari, and J.A.
Stewart, “Defining and investigating device comfort.” Journal
of Information Processing 19, 2011, pp. 231–252.

[29] S. Marsh, S. No¨el, T. Storer, Y. Wang, P., Briggs, L. Robart,
J. Stewart, B. Esfandiari, K. El-Khatib, M.V. Bicakci, M.C.
Dao, M. Cohen, and D.D. Silva, “Non-standards for trust:
Foreground trust and second thoughts for mobile security.”
Proceedings STM 2011, Springer.

[30] T. Okathe, S.S.Heydari, V. Sood, O. Cole, and El-Khatib K,
"Middleware For Heterogeneous Critical Infrastructue
Networks Intercommunication," International Journal on
Smart Sensing and Intelligent Systems, vol. 9.3, 2016 , pp.
1261-1286.

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 17 / 53

Reliable, Context-Aware and Energy-Efficient Architecture for Wireless Body Area
Networks in Sports Applications

Richard Jaramillo, Alejandro Quintero, Steven Chamberland
Computer Engineering Departement

Polytechnic School of Montreal
Montréal, Canada

email: richard.jaramillo@ieee.org, alejandro.quintero@polymtl.ca, steven.chamberland@polymtl.ca

Abstract—Reliability, Context awareness and Energy efficiency
are some of the most important requirements for Wireless
Body Area Networks (WBANs). The proposed architecture for
WBANs puts together a Media Access Control (MAC)
protocol, a Transport Protocol and a Rate Control scheme
proposed in our previous work. It proposes the use of three
extra bits within each beacon period for indicating whether the
hub is going to assign new slot Reallocations to the nodes, to
request for lost packet Retransmissions from the nodes, to send
Rate-control requests to the nodes, or any combination of
them. Some experimental results are presented in order to
validate the requirements and a comparison with other
architectures is made using the main detected requirements for
WBANs.

Keywords–reliability; context awareness; energy efficiency;
congestion control; loss recovery, WBAN architecture.

I. INTRODUCTION
Information collected from body sensors in a WBAN is

sent to a hub or coordinator, which processes the information
and can also perform other functions, such as managing body
events, merging data from sensors, sensing other parameters,
performing the functions of a user interface and bridging the
WBAN to higher-level infrastructure and other stakeholders.

The IEEE Standard for Local and Metropolitan Area
Networks - Part 15.6: Wireless Body Area Networks (2012)
specifies short-range and wireless communications in the
vicinity of, or inside a human body (although it is not limited
to humans). It categorizes WBAN applications into medical
and non-medical [1]. Some examples of medical applications
might be: sleep staging, diabetes control and monitoring of
cardiovascular diseases. Some examples of non-medical
applications might be: entertainment, sports and military
operations.

The design of a WBAN implies the tackle of several
challenges. Among the most important challenges, we can
find: (i) the energy efficiency of the whole network, which
may require new MAC protocols, new routing protocols and
new energy scavenging sources; (ii) the consideration of the
impact of data loss, which may require additional measures
in order to ensure the Quality of Service (QoS); (iii) the
reliability of the network to grant accuracy and to guarantee
on-time delivery of data; (iv) the context awareness for
responding according to the current situation in the network.

The objective of this paper is to design an architecture for
WBANs, which tries to tackle these main challenges. The

architecture will be composed of three main components: (i)
A context-aware and energy-efficient mechanism for
providing QoS in WBANs; (ii) A reliable and energy-
efficient mechanism to provide packet loss recovery and
fairness in WBANs; and (iii) A context-aware rate control
scheme to provide congestion control in WBANs.

Sports WBANs have a different behavior compared to
other WBANs. In a Sports WBAN, most of the packets are
periodic with a small portion of emergency packets that need
to be delivered with low latency. A reliable, context-aware
and energy-efficient architecture for WBANs used in sports
applications is proposed, facing four challenges: energy
efficiency, context awareness, QoS and reliability.

Several architectures for WBANs have been proposed
recently in the literature. Some of them are mentioned in
Section II. The requirements of the proposed architecture are
summarized in Section III. Section IV presents all the
protocols and schemes, the general and the node
architectures, the global topology, the phases in the beacon
period, and the node behavior. Some experimental results are
presented in Section V for demonstrating the requirements
accomplishment. A comparison of some architectures with
the proposed architecture is made in the Section VI. Section
VII presents the conclusion and future work.

II. RELATED WORK
Wang et al. [2] have proposed a configurable quantized

compressed sensing (QCS) architecture, in which the
sampling rate and quantization configuration are explored
together for improving the energy efficiency. A rapid
configuration algorithm has been developed to locate the
optimal configuration of the sampling rate and the bit
resolution, always monitoring low energy consumption,
reducing the elapsed time while keeping an excellent
efficiency and capacity. However, loss recovery was not
mentioned.

In the following references, energy efficiency was not
contemplated. Felisberto et al. [3] proposes a WBAN
architecture to recognize human movement, identify human
postures and to detect harmful activities in order to prevent
risks. The architecture proposal comprises five basic
components. (i) Sensor node – responsible for acquiring data
of inertial and physiological sensors and transmitting them to
the Coordinator node. (ii) Coordinator node – responsible for
serving as a forwarder of data gathered by the Sensor nodes.
(iii) Gateway node – it is the interface between the WBAN

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 18 / 53

and the network that provides the Internet connection. (iv)
Mobile node – an alternative interface used when the
Gateway Node or Internet connection are not available. (v)
Control center – responsible for the registration and post
processing of the motion events sent by the Sensor nodes.

Almashaqbeh et al. [4] have proposed a Cloud-based
real-time remote Health Monitoring System (CHMS) for
tracking the health status of non-hospitalized patients while
they perform their daily activities. The system tries to
provide high QoS and to focus on connectivity-related issues
between the patients and the global cloud. The CHMS design
includes four basic components: Wireless routers, Gateways,
WBANs and Medical staff.

Domingo [5] has proposed a context-aware service
architecture for the integration of WBANs and social
networks through the IP Multimedia Subsystem (IMS). In
this architecture, multimedia services are accessed by the
user from several wireless devices via an IP or cellular
network based on the vital signs monitored in a WBAN. The
architecture is divided into four layers: (i) Device layer – the
sensors communicate with the gateway using ultra-wideband
(UWB) or the IEEE 802.15.6 standard, and the gateway
communicates with the monitoring station using Bluetooth or
ZigBee. (ii) Access layer – responsible for the access of the
monitoring stations to the radio channel. (iii) Control layer –
it controls the authentication, routing and distribution of IMS
traffic. (iv) Service layer - used to store data, execute
applications, or provide services.

Wan et al. [6] have proposed a framework for a pervasive
healthcare system with Mobile Cloud Computing (MCC)
capabilities. This system is composed of four main
components: (i) WBANs – which collect various vital
signals, such as body temperature or heart rate information
from wearable or implantable sensors. (ii) Wired/Wireless
transmission. (iii) Cloud services – which possess powerful
Virtual Machine resources, such as CPU, memory, and
network bandwidth in order to provide all kinds of cloud
services. (iv) Users – such as hospitals, clinics, researchers,
and patients.

Kartsakli et al. [7] cites a remote monitoring scheme that
provides ubiquitous connectivity for mobile patients. A
patient-attached monitoring device collects the WBAN data,
classifies them as high-priority (e.g., critical data such as
blood pressure, pulse rate and heart rate) or normal priority
(e.g., ECG signals) and forwards them towards the
healthcare provider through a heterogeneous WiFi/WiMAX
access communication network.

Kartsakli et al. [7] also cites a three-tier network
architecture for the remote monitoring of elderly or chronic
patients in their residence. The lower tier consists of two
systems: (i) a patient-worn fabric belt, which integrates the
medical sensors and is equipped with a Bluetooth
transceiver; and (ii) the ambient wireless sensors that form a
ZigBee network and are deployed in the patient’s
surroundings (e.g., in the patient’s home or in a nursing
house). In the middle tier, an ad hoc network of powerful
mobile computing devices (e.g., laptops, PDAs, etc.) gathers
the medical and ambient sensory data and forwards them to
the higher tier. The middle-tier devices must have multiple

network interfaces: Bluetooth and ZigBee to communicate
with the lower tier and WLAN or cellular capabilities for
connection with the higher layer. Finally, the higher tier is
structured on the Internet and includes the application
databases and servers that are accessed by the healthcare
providers.

Kartsakli et al. [7] also cites a system architecture based
on two independent subsystems for the monitoring and
location tracking of patients within hospital environments.
The healthcare monitoring subsystem consists of smart shirts
with integrated medical sensors, each equipped with a
wireless IEEE 802.15.4 module. The location subsystem has
two components: (i) a deployment of wireless IEEE 802.15.4
nodes that are installed in known locations within the
hospital infrastructure and broadcast periodic beacon frames;
and (ii) IEEE 802.15.4 end devices, held by the patients, that
collect signal strength information from the received
beacons. Both subsystems transmit their respective data (i.e.,
medical sensory data and signal strength information) to a
gateway through an IEEE 802.15.4-based ad hoc distribution
network.

III. MAIN REQUIREMENTS
The selected architecture should offer to the hub and each

node within the WBAN some specific advantages. The main
requirements of the proposed architecture can be enumerated
like:

x Energy Efficiency: to minimize the power
consumption avoiding or mitigating collisions, idle
listening, overhearing, and control packet overhead.
The proposed architecture should decrease
contention-based transmissions and increase the
sleeping time for each node.

x Reliability: to assure the end-to-end packet delivery
between the sensor nodes and the hub. The proposed
architecture should allow the nodes to be able of
sending all their emergency and normal packets to
the hub.

x QoS: to have the ability to deliver packets with the
least latency and the highest throughput. The
proposed architecture should allow the trade-off
between the energy efficiency and the desired
reliability of the WBAN.

x Congestion Control: ability to control traffic in the
WBAN in order to avoid packet collision and buffer
overflow. The proposed architecture should decrease
the packet loss due to the packet collision and both
normal and emergency buffer overflow.

x Rate Control: ability to prevent the nodes from
overwhelming the hub and the whole WBAN. The
proposed architecture should allow the hub to
control the packet rate of the sensor nodes in order to
keep an average rate in the whole WBAN.

x Loss Detection: ability to detect the lost packets in
the hub side and in each node side. The proposed
architecture should provide the early detection of
lost packets on both sides: the hub and the sensor
nodes.

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 19 / 53

x Loss Recovery: ability to make the lost packet
retransmission requests and to send the
corresponding packet retransmissions. The proposed
architecture should decrease the total number of lost
packet through the retransmission of some of them.

x Fairness: ability to distribute the network resources
equitably among all nodes of the WBAN. The
proposed architecture should allow all nodes to get
equal access to the network and give the
corresponding priority to those nodes with
emergency traffic and with high packet rate.

x Emergency Awareness: ability to respond to any
emergency event in any node at any time. The
proposed architecture should be able to detect early
any emergency event and to give the corresponding
priority to the emergency nodes.

x Context Awareness: ability to respond to any alert
(high buffer, low battery, emergency) in any node at
any time. The proposed architecture should be able
to detect high buffer levels, low battery levels, and
any emergency event into the nodes.

IV. PROPOSED ARCHITECTURE
This section explains the proposed architecture that

gathers all the protocols and schemes presented in the
previous work by Jaramillo et al. [8]-[10]. The section
presents the proposed phases for each beacon period. Then, it
summarizes all the protocols and schemes, depicts the
general and the node architectures, and the global topology.
Finally, the section explains the operation of the R’s
Indicator Bits (RIBs) scheme for each beacon period and the
overall node behavior.

A. Phases in the Beacon Period
Figure 1 depicts the three proposed phases within the

beacon period. The first phase is called Reallocation,
Retransmission & Rate-control Phase (3RP). It is used by the
hub for sending slot reallocations, retransmission requests
and the Rate Control Factor (RCF) to all nodes. The second
phase is Managed Access Phase (MAP). It is used by all
nodes for sending normal and emergency traffic, always
giving the highest priority to the emergency traffic. The third
phase is called Special Contention Access Phase (SCAP). All
nodes use SCAP for sending connection requests and
additional normal and emergency traffic.

There is no contention during 3RP due to the use of the
Time Division Multiple Access (TDMA) protocol. The hub
uses all slots for sending slot reallocations and the RCF.

Figure 1. Phases in the Beacon Period.

The nodes only send lost packet retransmissions after
they have received a lost packet retransmission request from
the hub. MAP also uses the TDMA protocol for transmitting
normal and emergency traffic. The use of Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) in
SCAP implies contention-based transmission during this
phase. At least one phase needs to offer contention to allow
the unconnected nodes to connect to the WBAN.

B. Protocols and Schemes
The energy-efficient and emergency-aware MAC

protocol for WBANs proposed by Jaramillo et al. [8] is
based on the existing MAC protocol described in the IEEE
802.15.6 standard, but with some modifications in the access
phases and the access methods for each beacon period in
order to provide more emergency awareness while keeping
energy efficiency. The proposed MAC protocol
outperformed the IEEE 802.15.6 MAC protocol, the IEEE
802.15.4 MAC protocol and the Timeout-MAC (T-MAC)
protocol in the percentage of emergency and normal packet
loss and latency, while maintaining similar energy
consumption as the IEEE 802.15.6 MAC protocol. In the
MAC layer, the hub uses the Slot Reallocation Algorithm
depicted in Figure 2 to create the slot reallocations for all
nodes.

Figure 2. Slot Reallocation Algorithm.

The reliable transport protocol based on loss recovery
and fairness for Sports WBANs proposed by Jaramillo et al.
[9] is a cross-layer design that detects out-of-sequence
packets and requests retransmission of some lost packets.
The hub and each node in the WBAN detect lost packets and
make the requests and retransmissions during 3RP. The hub
calculates the Fairness Index as the ratio between the number
of lost packets and the total number of received packets. The
hub uses the Fairness Index to prioritize the request creation
in order to provide fairness between all the nodes in the
WBAN. It outperformed the IEEE 802.15.6 Standard in the
percentage of the packet loss, while maintaining similar
energy consumption. The Packet Loss Detection Algorithm
is used by the hub and the nodes and it is depicted in Figure
3 and Figure 4, respectively. The hub and the nodes detect
lost packets in the MAC layer.

TDMA CSMA/CATDMA

3RPB MAP SCAP B

N1 N2 N3 ...Hub & Nodes NX NY ...NZ

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 20 / 53

Figure 3. Packet Loss Detection in the Hub.

Figure 4. Packet Loss Detection in the Node.

The rate control scheme for congestion control in Sports
WBANs proposed by Jaramillo et al. [10] is context-aware
and responses to emergency events in any node, reducing the
normal traffic rate. When an emergency event occurs in the
WBAN, the hub has to calculate RCF and communicate it to
all nodes in the network in order to keep the same average
rate of traffic during the entire emergency event. The
proposed solution improved the performance of the IEEE
802.15.6 Standard. The Rate Control Scheme depicted in
Figure 5 is used by the hub in the MAC layer to calculate the
RCF for all nodes, and it is used by the nodes in the
application layer for applying the RCF sent by the hub.

Figure 5. Congestion Control in the Hub.

C. General Architecture
Figure 6 depicts the proposed general architecture. The

hub and the sensors are composed of five modules. (i)
Sensing Module (SM) – in charge of sensing body
information and detecting alerts into the packets. (ii)
Memory Module (MM) – in charge of storing sensing data
and lost packets for future retransmissions. (iii) Battery
Module (BM) – in charge of detecting low battery levels. (iv)
Processing Module (PM) – in charge of processing body
information, creation of slot reallocations, detecting lost
packets, sending requested lost packets, and processing the
RCF for congestion control.

Figure 6. General Architecture.

(v) Radio-Frequency Module (RFM) – in charge of the
transmission of the body information between the nodes and
the hub (via either Human Body Communication - HBC,
Narrow Band - NB, or Ultra-Wideband - UWB). It also
manages the communication between the hub and the coach
devices, data centers, and other stakeholders (via either
Global System for Mobile communication - GSM, Long-
Term Evolution - LTE, Wi-Fi, or Worldwide Interoperability
for Microwave Access - WiMAX).

D. Node Architecture
Figure 7 depicts the node architecture with its five

modules. (i) The SM supports the Slot Reallocation
Algorithm with the detection of the alert type into each
packet. (ii) The MM supports the Slot Reallocation
Algorithm with the detection of future emergency buffer
overflow, and supports the Lost Packet Retransmission
Algorithm with the buffering of lost packet for future
retransmissions. (iii) The BM supports the Slot Reallocation
Algorithm with the detection of low battery levels. (iv) The
PM supports the Slot Reallocation Algorithm, the Rate
Control Scheme with the processing of the RCF, and
supports both the Packet Loss Detection Algorithm and the
Lost Packet Retransmission Algorithm with the creation of
lost packet retransmission requests and the sending of lost
packet retransmissions. (v) The RFM supports the Slot
Reallocation Algorithm, the Rate Control Scheme and the
Packet Loss Detection Algorithm, with the sending of slot
reallocations, the RCF, and lost packet retransmissions,
respectively.

E. Topologies
The proposed WBAN topology is always a star topology.

In this way, the use of a special routing protocol is not
needed. The hub must always be in the center.

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 21 / 53

Figure 7. Node Architecture.

The sensor nodes must be around the hub. The hub is in
the right hip. There are two sensor nodes over the wrists, two
sensor nodes over the ankles and one last sensor node over
the chest. Each sensor node has a direct wireless connection
with the hub, and there are not relaying nodes for the packet
routing. With this direct connection of sensor nodes to the
hub, the information takes the least possible delay in
transmission. Besides, the failure of a single node does not
compromise the remaining nodes.

Figure 8 depicts the global topology for the proposed
architecture. After gathering and processing the body
information from nodes within the WBAN star topology, the
hub can send this information both directly to a coach device
(via Wi-Fi, GSM, LTE) or to other stakeholders (via GSM,
LTE, Wi-Fi, WiMAX). The coach device can perform
additional processing to help the coach to improve the
training plan of the sportsman. The stakeholders can see the
processed information into the data centers to improve
research in training protocols of athletes, and deficiency
detection.

Figure 8. Global Topology.

F. RIBs in the Beacon
Table I shows the configuration of indicator bits into

each beacon for the proposed architecture. Only three extra
bits were used within each beacon for indicating whether the
hub is going to assign slot Reallocations, to request packet
Retransmissions, to send Rate-control requests, or any
combination of them. When an emergency event happens in
any node, the hub receives an alert from the node and it can
decide whether the congestion control is necessary and use
the Rate-control Indicator Bit (Third Bit). If there are many
lost packets detected by the hub, it may use the
Retransmission Indicator Bit (Second Bit). The Reallocation
Indicator Bit (First Bit) is always used by the hub after an
emergency event occurs in any node.

TABLE I. INDICATOR BITS INTO EACH BEACON

Type 3rd
Bit

2nd
Bit

1st
Bit

None 0 0 0
Reallocation 0 0 1
Retransmission 0 1 0
Reallocation & Retransmission 0 1 1
Rate-control 1 0 0
Reallocation & Rate-control 1 0 1
Retransmission & Rate-control 1 1 0
Reallocation, Retransmission & Rate-control 1 1 1

The value of 1 (one) in the Reallocation Indicator Bit,

means that the hub is going to send slot reallocations to all
nodes in the current beacon period. The value 1 (one) in the
Retransmission Indicator Bit means that the hub has detected
lost packets and it is going to send packet retransmission
requests in the current beacon period. The value 1 (one) in
the Rate-control Indicator Bit means that the hub has
received an emergency alert and it is going to send a RCF to
control the rate inside all normal nodes in the current beacon
period. This strategy allows to easily extend the number of
indicator bits for new hub behaviors.

G. Nodes Behavior
Figure 9 summarizes the behavior of each node for the

proposed architecture. After the beacon reception, the node
has two options: it evaluates the RIBs if it is connected or it
must wait until SCAP if it is unconnected. When it is
unconnected, the node will always send its connection
request during the next SCAP.

During 3RP phase (the yellow color zone), the node has
previously evaluated the RIBs, then, the node can listen to
slot reallocations sent from the hub, or listen to the RCF sent
from the hub, or listen to lost packet retransmission requests
sent from the hub and finally resend the lost packets
requested by the hub.

During MAP phase (the blue color zone), the node sends
emergency and normal packets giving the highest priority to
the emergency traffic. The node uses its own assigned slots
and it might use the remaining slots at the end of MAP if
needed. If there were slot reallocations for this beacon
period, the node will use the new slot reallocation received,
otherwise, it will use the original slot relocation received
when it connected to the WBAN for the first time.

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 22 / 53

Figure 9. Overall Behavior of the Nodes.

Finally, during SCAP phase (the green color zone), the
node sends management packets (e.g., connection requests)
and additional emergency and normal traffic. The priority
from the highest to the lowest for the traffic during SCAP is:
(1) Management packets, (2) Emergency traffic, and (3)
Normal traffic.

V. EXPERIMENTAL RESULTS
The MAC protocol, the Transport protocol and the Rate

Control schema were compared against the IEEE 802.15.6
Standard, the IEEE 802.15.4 Standard and the T-MAC
protocol. Castalia was chosen as the simulator because it
offers a very good implementation for the IEEE 802.15.6
MAC protocol [11]. The performance of the architecture was
evaluated using three parameters: (i) the packet loss; (ii) the
Energy Waste Index (EWI), which was calculated as the
ratio between the total percentage of lost packets and the
average consumed energy. The lower the EWI, the better the
energy effectiveness of the proposed solution; and (iii) the
latency of the normal and the emergency traffic.

In some simulations, the number of emergency events
was changed incrementally from one to five. Each
emergency event had the duration of five seconds. The
simulation time was 300s, the packet rate was 20pkt/s, and
the number of nodes was 10. The percentage of emergency
packet loss when the number of emergency events was
changed in the WBAN is depicted in Figure 10. The
proposed solution showed the lowest percentage of
emergency packet loss (almost 0% no matter the total
number of emergency events) because of the Slot
Reallocation Algorithm and the Packet Loss Detection
Algorithms. The behavior of the IEEE 802.15.4 MAC
protocol and T-MAC protocol with the emergency traffic
when we increased the number of emergency events in the
WBAN, demonstrates why we should not use WSN MAC
protocols directly on WBANs. As the emergency events
were not generated at the same time, the behavior of all
protocols stayed almost the same when we change the
number of emergency events in the WBAN.

Beacon
Reception

Wait until
SCAP

Sleep until
MAP

Wake up for
MAP

Transmit
Normal
Packet

Transmit
Emergency

Packet

Listen to
Immediate

Acknowledge

Listen to
Immediate

Acknowledge

Listen to slot
Reallocations

in 3RP Send
Immediate

Acknowledge

Wake up
For Beacon

Sleep
Until

Beacon

Sleep until
SCAP

Wake up
For SCAP

Transmit
Emergency

Packet

Transmit
Management

Packtet

Listen to
Immediate

Acknowledge

Listen to
Immediate

Acknowledge
or Connection

Assignment

Connected?

RIB?

Management
Packets?

More
Time

in MAP?

Emergency
Packets?

More
Time in
SCAP?

Emergency
Packets?

No

No

No

No

No

0

Yes

Reallocation=1

Yes

Yes

Yes

Yes

Normal
Packets?

Yes

No

Normal
Packets?

Transmit
Normal
Packtet

Listen to
Immediate

Acknowledge

Yes

No

Yes

No

Listen to RCF
in 3RP

Rate-control=1

Listen to
Retransmission
Requests in 3RP

Send requested
Lost Packets

Retransmission=1

Yes

16Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 23 / 53

Figure 10. Emergency Packet Loss vs Number of Emergency Events.

For other simulations, the simulation time was changed
incrementally from 400s to 2000s. The packet rate was
20pkt/s, and the number of nodes was ten. There were three
emergency events with the duration of five seconds each.
The Energy Waste Index when the simulation time was
changed in the WBAN is depicted in Figure 11. The
proposed solution showed the best Energy Waste Index for
emergency traffic (almost 0). The IEEE 802.15.4 MAC
protocol showed the worst Energy Waste Index because of
its poor performance with the emergency packet loss (more
than 80%). The Figure 11 shows how the IEEE 802.15.4 and
T-MAC protocols improve the Energy Waste Index with the
increase of the simulation time, but this is due to the increase
of the average energy consumption.

Figure 11. Energy Waste Index vs Simulation Time.

In the final simulations, the simulation time was 300s, the
number of nodes was six, the packet rate was 20pkt/s and
there was one emergency event at t=150s with the duration
of five seconds. The latency distribution for emergency
packets and normal packets is depicted in Figure 12 and
Figure 13, respectively. The number of emergency packets
with the lowest latency (between 0 and 100 milliseconds) in
the proposed solution was much higher than the other three
MAC protocols. This is due to the Slot Reallocation
Algorithm, the lack of contention for emergency traffic
during the MAP phase, and besides, the additional
contention phase (SCAP) for emergency and normal traffic
into each beacon period.

Figure 12. Latency for Emergency Traffic.

Figure 13. Latency for Normal Traffic.

The number of normal packets with low latency (between
0 and 160 milliseconds) in the proposed MAC protocol was
higher than the other MAC protocols, excepting the IEEE
802.15.4 MAC protocol, because of the poor average
performance of the latter with emergency traffic. With the
IEEE 802.15.4 MAC protocol, almost 90% of the emergency
traffic was delivered with the latency of more than 400
milliseconds, while almost 90% of the normal traffic was
delivered with the latency of fewer than 120 milliseconds.

VI. ARCHITECTURES COMPARISON
The Table II presents a comparison of the proposed

architecture with some architectures published recently and
described in Section II. In order to make the comparison with
other architectures, the main requirements of all the
architectures were used. The first architecture used for the
comparison was a Context-Aware Service Architecture for
the Integration of WBANs and Social Networks through the
IMS presented by Domingo [5]. The second architecture was
an Un-Obstructive WBAN for Efficient Movement
Monitoring presented by Felisberto et al. [3]. The third
architecture was a Cloud-Enabled WBAN for Pervasive
Healthcare presented by Wan et al. [6]. The fourth
architecture was a QoS-Aware Health Monitoring System
using Cloud-Based WBANs presented by Almashaqbeh et
al. [4]. The final architecture was a Configurable Energy-
Efficient Compressed Sensing Architecture with its
application on WBANs presented by Wang et al. [2].

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 24 / 53

TABLE II. ARCHITECTURES COMPARISON

Requirement Proposed
Architecture

Context-Aware
Service

Architecture [5]

Un-Obstructive
Architecture -

Movement
Monitoring [3]

Cloud-Enabled
Architecture -

Pervasive
Healthcare [6]

QoS-Aware
Health

Monitoring
System [4]

Compressed
Sensing

Architecture [2]

Energy Efficiency Yes No Yes Yes No Yes
Reliability Yes No No Yes No No
QoS Yes No No Yes Yes No
Congestion Control Yes No No No Yes No
Rate Control Yes No No No No Yes
Loss Detection Yes No No No Yes No
Loss Recovery Yes No No No No No
Fairness Yes No No No No No
Emergency Awareness Yes Yes Yes Yes No No
Context Awareness Yes Yes No Yes No No
Security No No No Yes No No
Coexistence No No No No Yes No
Interference No No No No Yes No
Topology changes No No Yes No No No
Node Placement Optimization No No Yes No No No
Nodes Wearability No No Yes No No No
Energy Harvesting No No Yes No No No

VII. CONCLUSION AND FUTURE WORK
The main objective was to design a reliable, context-

aware and energy-efficient architecture for WBANs,
ensuring QoS and fairness in sports applications. This
objective was achieved through the joint of some protocols,
algorithms, schemes, and the proposition of a new hub and
nodes architecture. The architecture is composed of: (i) an
energy-efficient, context-aware and reliable MAC protocol;
(ii) a reliable transport protocol based on loss-recovery and
fairness; and (iii) a context-aware rate control scheme for
congestion control in WBANs.

The architecture was compared with other architectures
using the main requirements of all the proposed
architectures. While some architectures focused on
challenges like coexistence, interference, topology changes,
node placement optimization, nodes wearability, and energy
harvesting, the proposed architecture is the only one focused
on energy efficiency, reliability, QoS, congestion control,
rate control, loss detection, loss recovery, fairness,
emergency awareness, and context awareness, all at the same
time.

Future work includes working in additional challenges to
design WBANs like high-security mechanisms and topology
changes support. Besides, the development of new energy-
efficient routing protocols taking advantage of the
coexistence of other WBANs in the vicinity. This work
could be extended to enhance the quality of life of children,
ill and elderly people.

REFERENCES
[1] IEEE Standard for Local and metropolitan area networks -

Part 15.6: Wireless Body Area Networks," in IEEE Std
802.15.6-2012 , vol., no., pp.1-271, Feb. 29 2012

[2] A. Wang, F. Lin, Z. Jin, and W. Xu, "A Configurable Energy-
Efficient Compressed Sensing Architecture With Its
Application on Body Sensor Networks," in IEEE Transactions
on Industrial Informatics, vol. 12, no. 1, pp. 15-27, Feb. 2016.

[3] F. Felisberto, N. Costa, F. Fdez-Riverola, and A. Pereira,
“Unobstructive Body Area Networks (BAN) for efficient
movement monitoring”. Sensors. 2012 Sep 13;12(9):12473-
12488.

[4] G. Almashaqbeh, T. Hayajneh, A. V. Vasilakos, and B. J.
Mohd, “QoS-aware health monitoring system using cloud-
based WBANs”. Journal of medical systems. 2014 Oct
1;38(10):121.

[5] M. C. Domingo, "A context-aware service architecture for the
integration of body sensor networks and social networks
through the IP multimedia subsystem," in IEEE
Communications Magazine, vol. 49, no. 1, pp. 102-108,
January 2011.

[6] J. Wan, C. Zou, S. Ullah, C. F. Lai, M. Zhou, and X. Wang,
"Cloud-enabled wireless body area networks for pervasive
healthcare," in IEEE Network, vol. 27, no. 5, pp. 56-61,
September-October 2013.

[7] E. Kartsakli, A. S. Lalos, A. Antonopoulos, S. Tennina, M. D.
Renzo, L. Alonso, and C. Verikoukis, “A survey on M2M
systems for mHealth: a wireless communications
perspective”. Sensors 14, no. 10 (2014): 18009-18052.

[8] R. Jaramillo, A. Quintero, and S. Chamberland, "Energy-
efficient MAC protocol for Wireless Body Area Networks,"
2015 International Conference and Workshop on Computing
and Communication (IEMCON), Vancouver, BC, 2015, pp.
1-5.

[9] R. Jaramillo, A. Quintero, and S. Chamberland, "Reliable
Transport Protocol Based on Loss-Recovery and Fairness for
Wireless Body Area Networks," 2016 IEEE First
International Conference on Connected Health: Applications,
Systems and Engineering Technologies (CHASE),
Washington, DC, 2016, pp. 18-23.

[10] R. Jaramillo, A. Quintero, and S. Chamberland, "Rate control
scheme for congestion control in wireless body area
networks," 2016 IEEE 12th International Conference on
Wireless and Mobile Computing, Networking and
Communications (WiMob), New York, NY, USA, 2016, pp.
1-6.

[11] NICTA. (2013). Castalia Wireless Sensor Network Simulator.
Retrieved from http://castalia.npc.nicta.com.au/

18Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 25 / 53

Wireless Communications in Railway Systems

Anna Lina Ruscelli∗, Gabriele Cecchetti∗, Andrea Sgambelluri∗, Filippo Cugini†,
Alessio Giorgetti∗, Francesco Paolucci∗, Silvia Fichera∗, Piero Castoldi∗,

∗Scuola Superiore S. Anna, Pisa, Italy
Email: {a.ruscelli | g.cecchetti | a.sgambelluri | a.giorgetti | fr.paolucci | s.fichera | p.castoldi}@santannapisa.it

†CNIT, Pisa, Italy
Email: f.cugini@cnit.it

Abstract—Railway management systems are based on a centra-
lized structure where the Central Post centrally manages all the
components, trains and railways, with the aim to guarantee the
safety of the service and the efficiency of the network capacity.
This architecture requires an extended exchange of information
between management units, monitoring systems and actuators. In
general, the communication is based on wired links that ensure
required performance, but present also some drawbacks. For
instance, copper cable-based links are affected by cables thefts
or can limit the type and the amount of information that can
be sent due to the capacity of involved technologies. In all these
scenarios, the introduction of a wireless link can improve the
safety, the performance and the flexibility of the communications.
In this paper, the use of wireless communications as backup or
extension of the pre-existent wired links is deepened. Trackside
and on-board communications, as well as European Rail Traffic
Management System and EURORADIO protocol are studied
analyzing the issues related to wired links and illustrating how
the use of wireless communications can face off their drawbacks.

Keywords—Railway systems; wireless communications; trackside
systems; on-board systems; signalling; ERTMS; EURORADIO;
RadioInfill; MRP.

I. INTRODUCTION

Railways are complex systems composed by infrastructure,
vehicles, and all the elements required to make these compo-
nents work together efficiently and safely. Vehicles for freight
and passengers transit on the railways that are a complicated
network of connections where they have to be synchronized
in order to avoid accidents. Furthermore, the transport system
has to be managed efficiently in order to increase the system
capacity in terms of number of convoys travelling on the
network. Both these requirements, safety and efficiency, require
and required along the time to monitor and manage the
trains transit and the railways. This is the motivation of the
complex and highly populated system composed by trackside
and on-board equipments used by the signalling system to
monitor the state of infrastructures and convoys, to dispatch
and actuate command. In particular, a huge variety of devices
performing important functions are distributed along a railway.
Examples are railway switches boxes that command switches,
equipment that monitor the trains status (bush temperature
detector) and the trains transit (axle counter, track circuit),
light signals used to communicate with the train drivers,
components that allow the communication between the ground
management system (Computer-Based Interlocking) to the on-
board management system (Lineside Electronic Equipment

and Encoder), etc. Furthermore, both on-board and trackside
devices communicate with the centralized management units
through some intermediate management and information points.
Indeed, the trains management has a centralized structure where
a central unit, the Central Post, has the task of manage the
network infrastructure and the trains. This unit distributes its
commands by means of intermediate points, the Peripheral
Posts, in general corresponding to the trains stations. At their
turn the Peripheral Posts dispatch and elaborate the command
received by the Central Posts to the trackside and on-board
equipments by means of the Computer-Based Interlocking
(CBI) system. Moreover Peripheral Posts and CBI receive
and elaborate the information collected by trackside and on-
board equipments and send the derived information to the
Central Posts in order to update the management system. This
centralized architecture allows to organically and safely manage
the complex railways system reaching all the devices distributed
along the railways.

Reflecting and following the historical evolution of the
railway systems dragged by the modifications of the involved
technologies, most of these equipments are evolved starting
from simple mechanical devices, to electromechanical, to
electric-digital components, see for instance the first CBI, where
the logic where implemented by a mechanical leverage, or old
railway switches that were manually operated. Furthermore,
these components are not isolated entities but they communicate
together in order to exploit their functions. Until now, most
of the communications are based on wired links, where the
information derived by the monitoring systems are dispatched
to the central management unit and the commands set by the
last one are sent to the actuators spread on-board of trains or
trackside. In dependency of the type of message and of the
involved devices these communications are based on different
protocols. However, as previously said, wired links based, for
instance, on copper cables, or optical fibers, are used. Through
the right choice of transmission technology and protocols and
thanks to the appropriate setting of transmission parameters,
wired links ensure required performance but present also some
drawbacks. For instance, copper cable-based links are affected
by cables thefts due to the high monetary value of copper
[1]. This is a severe damage, especially in the case of links
used for critical communications since their interruption can
seriously jeopardize safety trains transit. Furthermore, in some
cases, such as on-board communications, wired links limit the

19Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 26 / 53

type of information that can be sent due to the capacity of
involved technologies. In all these scenarios the introduction
of a wireless link can improve the safety, the performance
and the flexibility of the communications. In this paper, the
use of wireless communications as backup or extension of
the pre-existent wired links, in dependency of the application,
is deepened. Both trackside and on-board communications
are studied analyzing the issues related to wired links and
illustrating how the use of wireless communications can face
off their drawbacks. Some meaningful case studies will be
provided in order to corroborate the proposal along with the
highlight of some open issues related to the introduction of
wireless links.

The rest of the paper is composed by the mentioned study
that is exposed in Section II, whereas in Section III some
conclusions are drawn.

II. INTRODUCING WIRELESS COMMUNICATIONS IN
RAILWAY SYSTEMS

The railway management deals with a capillary structure
where railway lines are populated by a huge amount of devices
suitable to monitor the transit and the status of the train and
by actuators used to manage railway lines. They communicate
with the Central Post, responsible to centrally manage the
whole infrastructure, through the Peripheral Posts. Furthermore,
on board of convoys monitoring and actuators collect the
information about the state of the train and execute the received
commands. In general, the communication is based on wired
links that, in dependency of the applications, can result not
sufficient to support new functionalities, for instance video
surveillance or on-board entertainment, or are subject to critical
damages or copper cable thefts that seriously jeopardize the
critical management applications. Thus the evolution of railway
systems has to consider new solutions suitable to face off these
challenges. A possible solution is the adoption of wireless
communications both as a backup of the wired one, for instance
to ensure the service until the system is recovered, or as
integration to the wired one in order to allow new services or
to improve the pre-existent ones.

In the following, some use cases about the introduction of
wireless communications in the railway domain are illustrated
in order to highlight the potentialities of this approach.

A. Communications between wayside equipment and Peripheral
Post

Copper or fiber optic cables typically support communica-
tions between trackside devices and accidental or intentional
damage of copper cables can cause unavailability of the
corresponding link. Wireless communication can be introduced
as a backup of the wired link. This require to analyze the
communication requirements in terms of bandwidth, delay,
packets loss strictly related to the particular application. To
overcome the problem of possible interference, a Spread
Spectrum technology can be Zang2005Zang2005chosen as pos-
sible alternative to narrowband technologies [2]. Indeed, thanks
to its robustness against noise and intrusion, this technology is

suitable to provide the required reliable communication level.
Beyond the precise design and setting of the wireless link that
has to be apt to provide the required Quality of Service, further
investigations require analyzing the compatibility of legacy
communication interfaces of the involved railway devices, often
based on proprietary connectors, with the proposed wireless
devices that in general have standardized interfaces. In this
case, either a re-engineering of the devices is required, either
an interface adapter has to be designed for this connection.

A considered use case is the link between Eurobalise
and Lineside Electronic Unit (LEU). Switched Eurobalise
communicates with the corresponding LEU through the C
interface, which is continuously powered by the LEU and
it is connected to the physical wired link for the exchange
of telegrams, powering and other information about the train
transit. In order to use wireless links for their communications,
an interface adapter is required to be connected to the C
interface on one side and to the Ethernet interface of the
wireless device on the other side, as illustrated in Figure 1.
The same apply on the corresponding interface of the LEU.

�

���������

	

��������	

	
������
��

�
�

���������

�������

��������

�
����

���������

	

���

���������

�������

��������

�
����

Figure 1. Eurobalise - LEU case of study.

The adapter mechanically interconnects the proprietary input-
output connector of the C interface to the standard interface
of the Wi-Fi module. It adapts electrical features of the cable
signals to the corresponding ones of the serial or Ethernet
standard and preserves timing requirements. Creating wireless
link requires a careful design in order to connect in a point-
to-point topology the two Wi-Fi devices for the wireless
transmission between Eurobalise and LEU that implies to
consider different aspects. Since Eurobalise and LEU are placed
in fixed locations, the position of the directional antenna of each
Wi-Fi device has to be chosen carefully. Each antenna has to
be placed far not more than few meters from the corresponding
Wi-Fi equipment to minimize signal losses through the cable
and should be placed in Line of Sight of trackside poles where
the antennas are mounted, at a height compatible with other
railways elements eventually present. In case of obstacles and,
in general, in presence of Non Line of Sight, it is necessary to
insert one or more bridge-repeaters that turn around the obstacle.
Obviously, the radio link has to meet the requirements about
bandwidth, frame loss and delay, preserving the connection
between Eurobalise and LEU. In particular, the link budget, i.e.,
the algebraic sum of all gains and losses of each component of
the radio system has to be taken into account since it allows
to decide if it is necessary to act on transmission power or
antenna gains to obtain the desired performance. Experimental
results shown that the wireless link can meet the mentioned
requirements providing a backup connection suitable in case of
hard damage of the wired one due to accidental or intentional

20Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 27 / 53

0

50

100

150

 0 20 40 60 80 100 120 140

S
w

itc
h-

ov
er

 ti
m

es
 [m

s]

Detection time Td [ms]

Failure 1 - Tf
1

Recover 1 - Tr
1

Failure 2 - Tf
2

Recover 2 - Tr
2

Figure 2. Switch-over time of MRP. vs detection time

damage (theft or physical cut), improving the system fault
tolerance.

The completely reduction/elimination of copper cables
implies further open issues, related to the presence of power
cables. In this case the approach is completely different with
respect to communication cables, since the requirements involve
the continuous power provisioning. For instance, solution based
on energy harvesting could overcome this challenge [3].

B. Railway control networks and communications between
Peripheral Post and Central Post

Ethernet is penetrating railway communication networks
mainly for its simplicity and cost effectiveness but also thanks
to several emerging Industrial Ethernet solutions that improve
the Ethernet standard. Specifically, Industrial Ethernet solutions
often include proprietary redundancy management protocols
for the automatic handling of failures on ring topologies.
The International Electrotechnical Commission (IEC) has
published IEC 62439 in 2010 [4] including the specification of
a standard redundancy management protocol, i.e., the Media
Redundancy Protocol (MRP), that attracted the attention of
most network equipment vendors. With the settings specified
in IEC 62439, MRP guarantees a worst case recovery time
of 30 ms in rings composed of up to 50 switches, and can
support multi-ring topologies guaranteeing similar performance.
MRP is currently used in various network segments of RFI
railway communication serving the control of high-speed high-
capacity train. In [5], two factors are identified (i.e., offset
time and the physical detection time) that jointly affect the
MRP performance. Their impact on the recovery time has
been consistently evaluated with an analytical approach, with
simulations (see Figure 2 and Figure 3), and by means of
experimental measurements. Obtained results confirmed that,
in all the considered scenarios, the switch-over is performed
within the target time declared in IEC 62439.

In this scope, wireless communications can be used as a
backup of PVS wired communications between Peripheral
Post and Central Post, in most of the system performed by

0

50

100

150

 0 5 10 15 20

S
w

itc
h-

ov
er

 ti
m

es
 [m

s]

Offset time Toffset [ms]

Failure 1 - Tf
1

Recover 1 - Tr
1

Failure 2 - Tf
2

Recover 2 - Tr
2

Figure 3. Switch-over time of MRP. vs offset time

EURORADIO standard protocol or by proprietary national
protocols, such as Italian Protocollo Vitale Standard (PVS).
This intervention could have a huge impact involving important
communications, whereas the adoption of wireless communica-
tions, for instance based on IEEE 802.11ac protocol, can easily
provide the required levels of Quality of Service in terms of
bit data rate and security.

C. On-board LAN

Another important challenge is the introduction of wireless
communications on the Local Area Network on the train (i.e.,
on-board LAN). Typically on-board LANs on the trains are
implemented using commercial layer 2 switches interconnected
by means of copper cables traversing the several carriages.
This solution is able to provide adequate bandwidth (e.g.,
100 Mbps or 1 Gbps) on the LAN, but introduces some
rigidity in the dynamic re-combination of carriages. The
utilization of a wireless bridge among adjacent carriages
could facilitate dynamic re-arrangement of trains carriages
while guaranteeing adequate network performance. The main
problems to be addressed are the maximum supported bitrate,
and the required integration of the wireless devices in the
failure recovery mechanisms typically supported by the on-
board LAN. Regarding the supported bit rate traffic bandwidth
of up to 200 Mbps can be supported with very cheap hardware
(e.g., about hundred dollars each wireless bridge). Regarding
the integration of the recovery techniques, properly designed
scripts should be implemented and deployed on the wireless
devices so that failures of the local interfaces can be announced
to the rest of the on-board LAN to properly recover the affected
traffic flows.

D. ERTMS

European Rail Traffic Management System (ERTMS) [6],
[7] is the European reference management system suitable to
homogeneously manage different national trains when they
cross national boundaries. It aims to overcome the limits of
the diverse national management systems, each one based

21Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 28 / 53

on different communication protocols, system architectures,
trackside and on-board components. This heterogeneity implies
that when a train travels across different countries the on-board
equipment has to be able to interface to different signaling
systems. This problem is generally overcame by substituting
the locomotive, where the on board system is placed, or
equipping the locomotive with all the different equipment
corresponding to the different crossed nations. Obviously, this
approach is not flexible and efficient, impacting on travel
time and railway capacity. In this context ERTMS aims to
homogenize the signaling systems by the introduction of
a unique management system. Furthermore, its goal is to
improve the railway efficiency by a progressive substitution of
wired communications with wireless ones. This will allow a
reduction of trackside devices and the introduction of further
and improved functionalities, as will be described in the
following. The introduction of ERTMS theoretically follows
three different steps, starting from Level 1, compatible with pre-
existent systems based on exclusively wired communications,
to Level 2, see Figure 4, where wireless communications are
side by side to the wired ones, to the Level 3, where only
wireless links are used.

Figure 4. ERTMS Level 2

1) EURORADIO: ERTMS defines as secure communication
protocol EURORADIO [8] based on an open communication
network such as Global System for Mobile Communications
âĂŞ Railway (GSM-R). It is based on a layered architecture
and all the layers are executed onboard of the train to enable
the communication. In particular, a Safety Functional Module
(SFM) and a Communication Functional Module (CFM)
respectively deal with safety transmission functionalities and
communication system functionalities.

In [2], an implementation of EURORADIO is presented,
developed with open-source tools for better portability. It is
based on software stack of different layers that form a hierarchy
of functionalities starting from the physical hardware compo-
nents (Modem GSM-R) to the user interfaces at the software
application level (Radio-Infill Application), see Figure 5.

EURORADIO layers communicate together by means of
API. Each layer receives information from the layer above,

Figure 5. EURORADIO protocol.

processes and transfers that to the layer below, adding its own
encapsulation information (header).

EURORADIO is the basis for ERTMS Level 2 and Level 3
but it allows to improve the behavior also of ERTMS Level
1, where the trackside-traiborne communication (communi-
cation between the ground subsystem SST and the onboard
subsystem SSB) is through Eurobalises based on a duplication
of information. This communication is discontinuous being
Eurobalises placed in fixed and meaningful positions along the
railways lines. Furthermore, the train driver can modify the
train speed only after these information points. This makes the
speed curve not optimal, due to discontinuous accelerations and
decelerations, and the trains circulation not efficient. However,
the introduction of the RadioInfill function is suitable to provide
a compromise between the use of ERTMS Level 1 and the
continuous communications.

2) RadioInfill: RadioInfill function supported by EURORA-
DIO in ERTMS Level 1 at the application layer faces off the
lack of responsiveness typical of discontinuous ATP systems.
In ERTMS Level 1 the signaling information delivered to
the train driver is based on information points, for instance
light signals used to deliver stop and go information to the
train driver. A scheme based on duplicated information is
used for safety reasons. Double information points convey a
single type information: one notice point as an advice, and
one protection point as a confirmation. RadioInfill allows
an early release of the running restriction before the next
information point, as shown in Figure 6. The early release
function is used when routes conditions are further exchanged
and a train deceleration is no more necessary and to manage
deceleration in proximity of stations. Some implementation of
RadioInfill are based on pre-existent signaling system sending
coded electric signals through the track circuit or on dedicated

22Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 29 / 53

Figure 6. The early release of RadioInfill function.

trackside components (Euroloop). In [2], an implementation
of EURORADIO protocol and of RadioInfill is described. The
experimentation shown as this function can reduce the travel
time and improve the power saving reducing the number of
braking.

3) ERTMS Level 3: As mentioned, the distinctive element
of ERTMS Level 3 is the exclusive use of wireless commu-
nications for the exchange of information between train and
ground system, see Figure 7.

Figure 7. ERTMS Level 3

This allows the reduction of trackside signaling devices
with a consequent reduction in costs and maintenance load.
Furthermore, the speed curve is continuous improving energy
consumption efficiency and passenger travel comfort. At the
present time there are no implementations of ERTMS Level
3 but railway operators and European national authorities
are actively considering the evolution of their systems in
order to implement its functionalities, see Norway or Finland,
and some nations of the East of Europe are evaluating to
update their national management systems directly to ERTMS
Level 3, pushing forward the evolution and avoiding the huge
implementation of the consecutive different levels, starting
from Level 1.

4) Moving Blocks: The goal is to improve the efficiency of
rail traffic management and the quality of service offered by
increasing the capacity of the line. For this purpose, ERTMS
Level 3 is based on the use of the Moving Block concept to
manage trains on the same line [9]. Moving Block Signaling
(MBS) is an intelligent control system where safety zones
around the train are defined that can not be crossed by adjacent
trains. Specifically, MBS exceeds the Fixed Block limits where
the line is divided into fixed length blocks determined based
on the braking capacity of the train in worst case conditions,

taking into account the speed allowed in the line, and delimited
by signals. According to this system, a train can access a block
only if its next one is free, so the distance between two trains
on the same line is more than one block [10] [11]. This results
in an accumulation of braking times and excessive spacing
between the trains, affecting the density of trains on the line. To
increase the capacity of the line, i.e., the number of trains on it,
MBS introduces "mobile" blocks that are no longer delimited
by long distance signals and whose length is not fixed but
determined by the safety distance needed to completely stop
the train.

According to this method, the moving block is determined
by the position of the train and the safety distance from it,
and no other signaling equipment is needed being managed by
the ERTMS control system. Particularly in Moving Block, the
train is modeled with a safe-envelope consisting of the sum
of its length, a rear safety margin that takes into account the
distance of rollback, uncertainty in determining the position of
the train and spacing with the next train, and a frontal security
margin which, in turn, takes into account the uncertainty in
determining the train head and the distance traveled during
the maximum permissible time interval in which ground-
to-earth communication can be interrupted [12]. Thus, the
minimum distance of a train from the preceding one, the Limit
of Movement Authority (LMA), is dependent on the position
of the train ahead and its specific braking and speed properties.
This interdiction space moves along the line to proceed to
the next train. This reduces the length of the moving blocks
and, consequently, the distance between the trains, allowing to
increase the capacity of the line.

III. CONCLUSION AND FUTURE WORK

In this paper, some use cases about the introduction of
wireless communications as backup or integration to the
wired ones in the railway domain are illustrated. Trackside
and on-board communications, as well as ERTMS systems
and EURORADIO protocol are studied analyzing the issues
related to wired links and illustrating how the use of wireless
communications can face off their drawbacks.

Despite the use of wireless communications in most cases is
a challenge especially considering the strict safety and service
requirements but, from the other hand it opens new field of
application and feeds the evolution of the railway systems.

Future works will be focused on the management of the train
integrity. Until now, this function is guaranteed by the train
inauguration process and by the monitoring of the train and of
its queue in particular by means of the Train Communication
Network (TCN). Furthermore, it can be integrated by the use
of wireless communications, for instance, monitoring the round
trip time between the head and the queue of the train.

Further application of wireless communication that deserves
to be deepened is the "cloudification" of railway management
and services which can be based on wireless links as backup
connections.

23Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 30 / 53

REFERENCES

[1] H. of Commons Transport Committee, “Cable theft on the railway -
Fourteenth Report of Session 2010-2012,” House of Commons, Tech.
Rep., 2012.

[2] G. Cecchetti, A. L. Ruscelli, A. Sgambelluri, F. Cugini, and P. Castoldi,
“Wireless Spread Spectrum for trackside railways communication
systems,” in 11th World Congress on Railway Research WCRR, 2016.
[Online]. Available: https://www.sparkrail.org/Lists/Records/DispForm.
aspx?ID=23559

[3] A. L. Ruscelli, G. Cecchetti, and P. Castoldi, “Energy Harvesting
for Trackside Railways Communications,” in 11th World Congress
on Railway Research WCRR, 2016. [Online]. Available: https:
//www.sparkrail.org/Lists/Records/DispForm.aspx?ID=23560

[4] “Iec 62439,” https://webstore.iec.ch/publication/24447, (Retrieved: May,
2017).

[5] A. Giorgetti, F. Cugini, F. Paolucci, L. Valcarenghi, and A. e. a. Pistone.
[6] “Directive DC 2001/16/ec,” http://eur-lex.europa.eu/smartapi/cgi/

sga_doc?smartapi!celexplus!prod!DocNumber&lg=en&type_doc=
Directive&an_doc=2001&nu_doc=16, (Retrieved: May, 2017).

[7] “Directive DC 96/48/ec,” http://eur-lex.europa.eu/LexUriServ/LexUriServ.
do?uri=CELEX:31996L0048:it:HTML, (Retrieved: May, 2017).

[8] S.-. ERTMS/ETCS, “Subset-037 ERTMS/ETCS - class 1 EURORADIO
functional interface specifications,” www.era.europa.eu, UNISIG, jul
2005.

[9] H. Takeuchi, C. J. Goodman, and S. Sone, “Moving block signalling
dynamics: performance measures and re-starting queued electric trains,”
vol. 150, no. 4, July 2003, pp. 483–492.

[10] Z. Li-yan, L. Ping, J. Li-min, and Y. Feng-yan, “Study on the simulation
for train operation adjustment under moving block,” in Proceedings. 2005
IEEE Intelligent Transportation Systems, 2005., Sept 2005, pp. 351–356.

[11] N. A. Zafar, “Formal model for moving block railway interlocking system
based on un-directed topology,” in 2006 International Conference on
Emerging Technologies, Nov 2006, pp. 217–223.

[12] L. Xu, X. Zhao, Y. Tao, Q. Zhang, and X. Liu, “Optimization of
train headway in moving block based on a particle swarm optimization
algorithm,” in 2014 13th International Conference on Control Automation
Robotics Vision (ICARCV), Dec 2014, pp. 931–935.

24Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 31 / 53

Assessment of Data Storage Strategies Using the Mobile
Cross-Platform Tool Cordova

Gilles Callebaut, Lieven De Strycker

KU Leuven
DraMCo research group

Department of Electrical Engineering
Technology Campus Ghent, Gebroeders De Smetstraat 1

Email: firstname.lastname@kuleuven.be

Michiel Willocx, Vincent Naessens, Jan Vossaert

KU Leuven
MSEC, imec-DistriNet

Technology Campus Ghent, Gebroeders De Smetstraat 1
Email: firstname.lastname@cs.kuleuven.be

Abstract—The mobile world is fragmented by a variety of mobile
platforms, e.g., Android, iOS and Windows Phone. While native
applications can fully exploit the features of a particular mobile
platform, limited or no code can be shared between the different
implementations. Cross-platform tools (CPTs) allow developers
to target multiple platforms using a single codebase. These tools
provide general interfaces on top of the native APIs. Apart from
the performance impact, this additional layer may also result in
the suboptimal use of native APIs. This paper analyses the impact
of this abstraction layer using a data storage case study. Both
the performance overhead and API coverage is discussed. Based
on the analysis, an extension to the cross-platform storage API
is proposed and implemented.

Keywords–Cross-platform tools; data storage; performance anal-
ysis; API coverage; Apache Cordova/Phonegap.

I. INTRODUCTION

An increasing number of service providers are making their
services available via the smartphone. Mobile applications are
used to attract new users and support existing users more
efficiently. Service providers want to reach as many users as
possible with their mobile services. However, making services
available on all mobile platforms is very costly due to the frag-
mentation of the mobile market. Developing native applications
for each platform drastically increases the development costs.
While native applications can fully exploit the features of a
particular mobile platform, limited or no code can be shared
between the different implementations. Each platform requires
dedicated tools and different programming languages (e.g.,
Objective-C, C# and Java). Also, maintenance (e.g., updates or
bug fixes) can be very costly. Hence, application developers
are confronted with huge challenges. A promising alternative
are mobile cross-platform tools (CPTs). A significant part of
the code base is shared between the implementations for the
different platforms. Further, many cross-platform tools such
as Cordova use client-side Web programming languages to
implement the application logic, supporting programmers with
a Web background.

Although several cross-platform tools became more mature
during the last few years, some scepticism towards CPTs
remains. For many developers, the limited access to native
device features (i.e. sensors and other platform APIs) remains
an obstacle. In many cases, the developer is forced to use a

limited set of the native APIs, or to use a work-around –which
often involves native code– to achieve the desired functionality.
This paper specifically tackles the use case of data storage APIs
in Cordova. Cordova is one of the most used CPTs [22, 23]. It
is a Web-to-native wrapper, allowing the developer to bundle
Web apps into standalone applications.

Contribution. The contribution of this paper is threefold.
First, four types of data storage strategies are distinguished in
the setting of mobile applications. The support for each strategy
using both native and Cordova development is analysed and
compared. Second, based on this analysis a new Cordova plugin
that extends the Cordova Storage API coverage is designed
and developed. Finally, the security and performance of the
different native and Cordova storage mechanisms is evaluated
for both the Android and iOS platform.

The remainder of this paper is structured as follows.
Section II points to related work. Section III discusses the inner
workings of Cordova applications, followed by an overview
of data storage strategies and their API coverage in Cordova
and native applications. The design and implementation of
NativeStorage, a new Cordova storage plugin, is presented in
Section IV. Section V presents a security and performance
evaluation of the Cordova and native storage mechanisms. The
final section presents the conclusions and points to future work.

II. RELATED WORK

Many studies compare CPTs based on a quantitative
assessment. For instance, Rösler et al. [26] and Dalmasso et al.
[18] evaluate the behavioral performance of cross-platform
applications using parameters such as start-up time and memory
consumption. Willocx et al. [30] extend this research and
include more CPTs and criteria (e.g., CPU usage and battery
usage) in the comparison. Further, Ciman and Gaggi [17] focus
specifically on the energy consumption related to accessing
sensors in cross-platform mobile applications. These studies are
conducted using an implementation of the same application in
a set of cross-platform tools and with the native development
tools. This methodology provides useful insights in the overall
performance overhead of using CPTs. Other research focuses on
evaluating the performance of specific functional components.
For instance, Zhuang et al. [31] evaluate the performance of the
Cordova SQlite plugin for data storage. The work presented in

25Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 32 / 53

this paper generalizes this work by providing an overview and
performance analysis of the different data storage mechanisms
available in Cordova, and comparing the performance with
native components.

Several other studies focus on the evaluation of cross-
platform tools based on qualitative criteria. For instance,
Heitkötter et al. [19] use criteria such as development
environment, maintainability, speed/cost of development and
user-perceived application performance. The user-perceived
performance is analyzed further in [20], based on user ratings
and comments on cross-platform apps in the Google Play Store.
The API coverage (e.g., geolocation and storage) of cross-
platform tools is discussed in [24]. It is complementary with
the work presented in this paper, which specifically focuses
on the API coverage, performance and security related to data
storage.

III. DATA STORAGE IN CORDOVA

A. Cordova Framework

A typical Cordova application consists of three important
components: the application source, the WebView and plugins,
as depicted in Figure 1.

Figure 1. Structure of a Cordova application. Light grey arrows represent
JavaScript calls, darker grey arrows represent native calls. The Cordova

framework is illustrated by the grey area.

Cordova applications are, similar to Web apps, developed
in client-side Web languages (i.e. HTML, CSS and JavaScript).
Typically, developers use JavaScript frameworks such as Ionic
and Sencha, which facilitate the development of mobile-friendly
UIs.

The application code is loaded in a chromeless WebView.
By default, Cordova applications use the WebView bundled
with the operating system. An alternative is to include the
Crosswalk WebView [13]. The Crosswalk WebView provides
uniform behaviour and interfaces between different (versions
of) operating systems.

Cordova developers have two options for accessing device
resources: the HTML5 APIs provided by the WebView and
plugins. Despite the continuously growing HTML5 function-
ality [11] and the introduction of Progressive Web Apps [8],

the JavaScript APIs provided by the WebView are not –yet–
sufficient for the majority of applications. They do not provide
full access to the diverse resources of the mobile device, such
as sensors (e.g., accelerometer, gyroscope) and functionality
provided by other applications installed on the device (e.g.,
contacts, maps, Facebook login). Plugins allow JavaScript code
to access native APIs by using a JavaScript bridge between the
Web code and the underlying operating system. Plugins consist
of both JavaScript code and native code (i.e. Java for Android,
Objective-C and recently Swift for iOS). The JavaScript code
provides the interface to the developer. The native source code
implements the functionality of the plugin and is compiled when
building the application. The Cordova framework provides
the JavaScript bridge that enables communication between
JavaScript and native components. For each platform, Cordova
supports several bridging mechansims. At runtime, Cordova
selects a bridging mechanism. When an error occurs, it switches
to another mechanism. Independent of the selected bridging
mechanism, the data requires several conversion steps before
and after crossing the bridge. Commonly used functionality such
as GPS are provided by Cordova as core plugins. Additional
functionality is provided by over 1000 third-party plugins,
which are freely available in the Cordova plugin store [12].

B. Storage API Coverage

This work focuses on data storage mechanisms in Cor-
dova applications. Four types of data storage strategies are
distinguished: files, databases, persistent variables and sensitive
data. Databases are used to store multiple objects of the same
structure. Besides data storage, databases also provide methods
to conveniently search and manipulate records. File storage can
be used to store a diverse set of information such as audio, video
and binary data. Persistent variables are stored as key-value
pairs. It is often used to store settings and preferences. Sensitive
data (e.g., passwords, keys, certificates) are typically handled
separately from other types of data. Mobile operating systems
provide dedicated mechanisms that increase the security of
sensitive data storage.

The remainder of this section discusses the storage APIs
available in Cordova and native Android/iOS. A summary of
the results is shown in Table I.

TABLE I. STORAGE API COVERAGE

Cordova Android iOS

Databases
WebSQL

SQLite SQLiteIndexedDB
SQLite Plugin

Files Cordova File Plugin java.io NSData

Persistent Variables LocalStorage Shared Prefs NSUserDefaults
Property Lists

Sensitive Data SecureStorage Plugin KeyStore KeychainKeyChain

1) Databases: Android and iOS provide a native interface
for the SQLite library. Cordova supports several mechanisms
to access database functionality from the application. First,
the developer can use the database interface provided by
the WebView. Both the native and CrossWalk WebViews
provide two types of database APIs: WebSQL and IndexedDB.

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 33 / 53

Although WebSQL is still commonly used, it is officially
deprecated and thus no longer actively supported [10]. Second,
developers can access the native database APIs via the SQLite
Plugin [6].

2) Files: In Android, the file storage API is provided by the
java.io package, in iOS this is included in NSData. Cordova
provides a core plugin for File operation, namely Cordova
File Plugin (cordova-plugin-file) [4]. Files are referenced via
URLs which support using platform-independent references
such as application folder.

3) Persistent Variables: In Android, storing and accessing
persistent variables is supported via SharedPreferences. It
allows developers to store primitive data types (e.g., booleans,
integers, strings). iOS developers have two options to store
persistent variables: NSUserDefaults and Property Lists.
NSUserDefaults has a similar behaviour to SharedPreferences
in Android. Property Lists offer more flexibility by allowing
storage of more complex data structures and specification of the
storage location. Cordova applications can use the LocalStor-
age API provided by the Android and iOS WebView. Although
it provides a simple API, developers should be aware of several
disadvantages. First, LocalStorage only supports storage of
strings. More complex data structures need to be serialized
and deserialized by the developer. Second, LocalStorage is
known [1] to perform poorly on large data sets and has a
maximum storage capacity of 5MB.

4) Sensitive Data: Android provides two mechanisms to
store credentials: the KeyChain and the KeyStore. A KeyStore
is bound to one specific application. Applications can not
access credentials in KeyStores bound to other applications.
If credentials need to be shared between applications, the
KeyChain should be used. The user is asked for permission
when an application attempts to access credentials in the
KeyChain. Credential storage on iOS is provided by the
Keychain. Credentials added to the Keychain are, by default,
app private, but can be shared between applications from the
same publisher. Cordova developers can use the credential
storage mechanisms provided by Android and iOS via the
SecureStorage (cordova-plugin-secure-storage) [7] plugin.

IV. NATIVESTORAGE PLUGIN

An important limitation of using HTML5 APIs (e.g.,
IndexedDB and LocalStorage) to store data in Cordova applica-
tions is that both on Android and iOS the cache of the WebView
can be cleared when, for instance, the system is low on memory.
This section presents NativeStorage, a Cordova plugin for
persistent data object storage, mitigating the limitations of
the HTML5 storage mechanisms.

A. Requirements

The requirements of the plugin are listed below:

R1 Persistent and sufficient storage
R2 Storage of both primitive data types and objects
R3 Support for Android and iOS
R4 App private storage
R5 Responsive APIs
R6 A user-friendly API

1 // coarse grained API
2 NativeStorage.setItem("reference_to_value",<value>,

<success-callback>, <error-callback>);
3 NativeStorage.getItem("reference_to_value",<success-

callback>, <error-callback>);
4 NativeStorage.remove("reference_to_value",<success-

callback>, <error-callback>);
5 NativeStorage.clear(<success-callback>, <error-

callback>);

Listing 1. NativeStorage – Coarse-grained API

1 // fine grained API
2 NativeStorage.put<type>("reference_to_value",<value>,

<success-callback>, <error-callback>);
3 NativeStorage.get<type>("reference_to_value",<

success-callback>, <error-callback>);
4 NativeStorage.remove("reference_to_value",<success-

callback>, <error-callback>);

Listing 2. NativeStorage – Fine-grained API

B. Realisation

The plugin consist of JavaScript and native code. The
JavaScript API provides the interface to application developers.
The native side handles the storage of variables using native
platform APIs.

NativeStorage provides two sets of JavaScript APIs, a fine-
grained and a coarse-grained API, which are both asynchronous
and non-blocking. The coarse grained API (Figure 2a) provides
a type-independent interface, variables are automatically con-
verted to JSON objects via the JSON interfaces provided by the
WebView and passed as string variables to the native side. When
a value is retrieved, the WebView is used to convert the string
back to an object. The fine-grained API (Figure 2b) provides a
separate implementation for the different JavaScript types. On
the native side, the variables are stored via SharedPreferences
in Android and NSUserDefaults in iOS.

Object

Object

Disk

Web App Plugin

JSON
string

JSON
string

Object

Object

(a) Coarse-grained API

Boolean

Boolean
Disk

Web App Plugin

Boolean

Boolean

(b) Fine-grained API

Figure 2. NativeStorage API

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 34 / 53

C. Evaluation

The plugin is evaluated based on the previously listed
requirements.

Persistent storage is provided via the native storage mech-
anisms. The documentation of the used native mechanisms
doesn’t state a limitation on the storage capacity. Hence, as
opposed to LocalStorage, the storage capacity is only limited
by the available memory on the device, satisfying R1.

The native part of the plugin is developed for both Android
and iOS. These mobile operating systems have a combined
market share of 99% [15]. The used native storage mechanisms
were introducted in iOS 2.0 and Android 1.0. The plugin, hence,
provides support for virtually all version of these platforms
used in practice, satisfying R3.

The plugin uses NSUserdefaults and SharedPreferences
to store the data in app-private locations, ensuring that the
variables can not be accessed from outside the application.
This satisfies R4.

The APIs are implemented using an asynchronous non-
blocking strategy, facilitating the development of responsive
applications (conform R5).

Web developers are familiar with duck typing used in
languages such as JavaScript. These types of languages often
have APIs that don’t distinguish between data types. The coarse-
grained API provides such a storage mechanism. This API is
shown in Listing 6. Not all Cordova developers, however, have
a Web background. Therefore, a fine-grained API (Listing 5)
is provided for developers who are more comfortable with a
statically typed language, satisfying R6 and R2. Using both
the coarse- and fine-grained API, the different JavaScript data
types can be stored. Developers, however, need to be aware
that the object storage relies on the JSON interface of the
WebView to convert the object to a JSON string representation.
The WebView, for instance, does not support the conversion of
circular data structures. These types of objects, hence, need to
be serialized by the developer before they can be stored.

Since its release to Github [16] and NPM [5] the plugin has
been adopted by many Cordova application developers. We’ve
registered over 4000 downloads per month. Furthermore, the
plugin is part of the 4% most downloaded packages on NPM.
The plugin has been adopted in Ionic Native (Ionic 2) [3] and
the Telerik plugin marketplace [9]. Telerik verifies that plugins
are maintained and documented, thereby ensuring a certain
quality.

V. EVALUATION

The evaluation of the data storage mechanisms consists of
two parts: a quantitative performance analysis and a security
evaluation.

A. Performance

Developers want to be aware of the potential performance
impact of using a CPT for mobile app development [21].
This section evaluates the performance of the different storage
mechanisms for Cordova applications and compares the results
with the native alternatives. Each storage strategy is tested by
deploying a simple native and Cordova test application that

intensively uses the selected storage strategy on an Android
and iOS device. For Android the Nexus 6 running Android 6
was used, for iOS the IPhone 6 running iOS 9 was used. The
test application communicates the test results via timing logs
that are captured via Xcode for iOS and Android Studio for
Android. The experiments were run sufficient times to ensure
the measurements adequately reflect the performance of the
tested storage mechanisms.

1) Databases:

a) Test Application: The database test application ex-
ecutes 300 basic CRUD operations (i.e. 100 x create, 100 x
read, 50 x delete and 50 x read) of objects containing two
string variables. The performance is determined by means of
measuring the total duration of all the transactions. This test has
been executed using the SQLite (native and Cordova), WebSQL
(Cordova) and IndexedDB (Cordova) mechanisms.

b) Results and Comparison: The results are presented
in Table II. The mechanism for retrieving values by means of
an index clearly results in a better performance compared to the
SQL-based mechanisms. This analysis shows that IndexedDB
provides an efficient way of storing and retrieving small
objects. WebSQL –provided by the WebView– acts as a
wrapper around SQLite. This is illustrated by the performance
overhead associated with this mechanism. The deprecation of
the specification/development stop could also have contributed
to the performance penalty. The SQLite plugin suffers from
a performance overhead caused by the interposition of the
Cordova framework/bridge and has consequently a noticeable
performance overhead. The performance overhead introduced
by the Cordova bridge is discussed in more detail in the
following section.

TABLE II. RATIO OF DATABASE EXECUTION TIME TO THE NATIVE (SQLITE)
OPERATION DURATION (IN %). *IN IOS INDEXEDDB IS ONLY SUPPORTED

AS OF IOS 10.

Android iOS
Nexus 6 iPhone 6

SQLite (Native) 100 100
IndexedDB 6.94 12.47*
WebSQL 153 128
SQLite Plugin 133 116

2) Files:

a) Test Application: The test application distinguishes
between read and write operations. Each operation is tested
using different file sizes, ranging from small files (∼ 1 kB) to
larger files (∼ 10MB). The performance of small files provides
a baseline for file access. The performance of the read and
write operations itself can be determined via the results of the
large files. This test has been conducted ten times for each file
size. The read and write operations consist of different steps on
Android and iOS. Both the duration of the individual steps and
the entire operation (i.e. read/write) is measured via timestamps.
The application’s memory footprint is measured via Instruments
tool (Activity Monitor) in Xcode and via Memory Monitor in
Android Studio.

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 35 / 53

b) Results and Comparison: The results of the timing
analysis on Android and iOS is presented in Figure 3 and 4,
respectively. In both Android and iOS a significant performance
difference between the native and the Cordova mechanism
can be observed. R/W operations via the file plugin take
longer compared to the native mechanisms. On top of a
performance overhead, Cordova also comes with a higher
memory consumption, especially in iOS (Figure 5).

0 5 10 15 20

0

1,000

2,000

3,000

4,000

Filesize [MB]

O
pe

ra
tio

n
du

ra
tio

n
[m

s]

Native Write
Native Read

Cordova Write
Cordova Read

Figure 3. Duration of file operations in Android

0 1 2 3 4 5 6 7 8 9

10

0

1,000

2,000

3,000

4,000

Filesize [MB]

O
pe

ra
tio

n
du

ra
tio

n
[m

s] Native Write
Native Read

Cordova Write
Cordova Read

Figure 4. Duration of file operations in iOS

Speed. Tables III and IV give a fine-grained overview of
the different operations executed during respectively a file read
and write using the Cordova platform on Android. Tables V
and VI provide the results for iOS. Before data can be sent
over the Cordova bridge, it needs to be converted to a string.
This can create significant overhead when large binary files
such as images needs to be manipulated. Before they are sent
over the bridge, the binary data is converted to a Base64 string.
On Android, this is illustrated in the Processing file component
of Table IV. Sending the data over the bridge also comprises
a significant part of the overhead (i.e. Sending over bridge,
from Table III). For small files, the overhead originates for the
most part from resolving the platform-independent URL to a
local path and retrieving meta-data. Similar observations can
be made based on the iOS results.

TABLE III. EXECUTION TIME OF COMPONENTS ASSOCIATED WITH A READ
OPERATION IN CORDOVA ANDROID (FILE PLUGIN). THE PROCEDURE

”SENDING OVER BRIDGE” CONSISTS OF ENCODING, SENDING AND
DECODING MESSAGES FROM THE JAVASCRIPT SIDE TO THE NATIVE SIDE.

Component Duration [1MB] Duration [20MB]
(ms) (% total) (ms) (% total)

Resolve to local URL 58 46 59 7.56
Native reading 20 16 366 47
Sending over bridge 28 22 339 43

Total 126 780

TABLE IV. EXECUTION TIME OF COMPONENTS ASSOCIATED WITH A WRITE
OPERATION IN CORDOVA ANDROID (FILE PLUGIN). THE PROCEDURE

”PROCESSING FILE” CONVERTS THE BYTES –AS AN ARRAYBUFFER– TO A
STRING ARRAY. THE ”EXECUTE CALL DELAY” REPRESENTS THE DELAY
BETWEEN THE WRITE COMMAND EXECUTED IN JAVASCRIPT AND THE

EXECUTION AT THE NATIVE SIDE.

Component Duration [1MB] Duration [20MB]
(ms) (% total) (ms) (% total)

Processing file 108 65 1290 56
Execute call delay 38 23 632 28
Writing 20 12 369 16

Total 166 2291

Memory. In iOS, applications manipulating large files will
require large amounts of memory. This is illustrated in Figure 5.
As shown, reading and writing a 10MB file results in 400MB
of allocated memory. Reading and writing files larger than
10MB can result in unstable behavior on iOS due to the large
memory requirements. A solution for developers is to split
large file operations in different steps.

0 1 2 3 4 5 6 7 8 9 10

0

100

200

300

400

Filesize [MB]

M
em

or
y

co
ns

um
pt

io
n
[M

B
]

Native
Cordova

Figure 5. Memory consumption as a result of file operations in iOS

c) Conclusion: File storage on Apache Cordova comes
with a number of limitation in terms of performance. This is a
result of the Cordova framework/bridge technology. Allowing
binary data to pass over the Cordova bridge could significantly
improve the performance of plugins that perform operations
on binary data. For instance, in [25] an bridging technology is

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 36 / 53

TABLE V. PERFORMANCE READ COMPONENTS IN CORDOVA IOS

Component Duration [1MB] Duration [10MB]
(ms) (% total) (ms) (% total)

Resolve to local URL 11 3.56 16 0.6
Native reading 13.98 4.52 70 2.47
Arguments to JSONArray 202.77 65.62 2037.93 71.88
Sending over bridge 59.93 19.39 587.19 20.71

Total 309 2835

TABLE VI. PERFORMANCE WRITE COMPONENTS IN CORDOVA IOS

Component Duration [1MB] Duration [10MB]
(ms) (% total) (ms) (% total)

Processing file 266 97 2614 96
Native writing 7 3 96 4

Total 273 2710

presented that allows access to native device APIs in HTML5
applications via WebSockets and HTTP servers, supporting the
use of binary data.

3) Persistent variables:

a) Test Application: The performance is examined via
storing and retrieving string values. The total duration of storing
and retrieving a thousand variables is measured. The average
storage and retrieval time is used to compare the different stor-
age mechanisms. The Cordova mechanisms are LocalStorage
and NativeStorage. These are compared to NSUserDefaults
(iOS), Property Lists (iOS) and SharedPreferences (Android).

b) Results and Comparison: All mechanisms have an
execution time under 1ms, with the exception of NativeStorage
and Property Lists. The set operation takes around 1.9ms, the
get operation takes less than 1ms. NativeStorage is the only
mechanism which uses the Cordova bridge and framework,
introducing a certain overhead. However, the NativeStorage
API is asynchronous, hence, developers can continue processing
while the value is being stored. The listed measurements include
the time until the callback is fired. Property Lists load an entire
file in an array, after which individual parameters can be read.
As a consequence, the performance of the get operation, which
takes 9.83ms, is worse compared to the native alternatives.
SharedPreferences and NSUserDefaults also load all parameters
in memory, but this is done during the initialisation phase of
the application, which is not incorporated in the measurements.

B. Security

On both Android and iOS the security of storage mech-
anisms strongly depends on the storage location and the
platform’s backup mechanisms. Data stored inside the sandbox
of the application is only accessible by the application. However,
the backup mechanisms used in iOS and Android can result
in the exposure of sensitive data [27, 29, 28], or potentially
exhausting the limited cloud storage capacity. On iOS, this
can result in the rejection of the application (conform the Data
Storage Guidelines [14]). On Android, data stored inside the

application sandbox (e.g., the WebView’s storage) is included if
a backup is taken. The Backup API of Android can be used to
explicitly blacklist data that should not be backed up. On iOS,
whether or not a file is included in the backup depends on the
folder in which it is stored. For instance, by default, Cordova
stores the WebView’s data in a folder that allows backups. This
behavior can, however, be changed by modifying a Cordova
parameter.

1) Databases: All database mechanisms are by default
private to the application and can be backed up on both mobile
platforms, with the exception of the SQLite plugin in iOS.
The plugin initially followed the default behaviour, but as a
security measure the default storage location of the plugin in
iOS was changed to a directory which is not backed up. This
SQLite plugin also has an encrypted alternative, i.e. cordova-
sqlcipher-adapter. This alternative provides a native interface
to SQLCipher, encrypting SQLite databases via a user-supplied
password.

2) Files: In iOS files are protected by a protection class.
Each of these classes corresponds to different security properties.
As of iOS 7, all files are by default encrypted individually until
first user authentication. The file plugin doesn’t allow changing
this default behaviour. Native, each file can be secured using a
protection class best suited for the security requirements of that
file. The plugin allows the developer to choose between folders
that are public/private and backup-enabled/disabled. However,
on Android backup-disabled locations can be accessed by other
applications.

3) Persistent variables: All persistent variable storage
mechanisms are private to the application and included in
backups on both mobile platforms, with the exception of
Property List. Property lists can be stored in arbitrary locations,
and can be backed up depending on the specified location.

4) Sensitive Data: The Secure Storage plugin provides
storage of sensitive data on Android and iOS. On iOS, the
plugin uses the SAMKeychain [2] plugin which provides an
API for the native iOS Keychain. The plugin allows app-global
static configuration of the KeyChain items’ accessibility. This
could entail a security risk, as it does not allow fine-grained
protection of individual items. When a user backs up iPhone
data, the Keychain data is backed up but the secrets in the
Keychain remain encrypted with a phone-specific key in the
backup. The Android KeyChain only allows storage of private
keys. Hence, for storing other tokens such as passwords or
JWT tokens, an additional encryption layer is used. The plugin
generates a key that is stored in the KeyChain and used to
encrypt/decrypt sensitive data. The KeyChain on Android is
not included in backups.

VI. CONCLUSIONS

This paper presented an assessment of data storage strategies
using the mobile cross-platform tool Cordova. An in-depth
analysis was performed on the API coverage of the available
data storage mechanisms in Cordova and Native applications.
Based on the analysis, an additional Cordova storage plugin
was developed that improves the storage of persistent variables.

Furthermore, the performance and security of the available
storage mechanisms were evaluated. Our performance analysis

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 37 / 53

shows that using the Cordova bridge comes with a significant
performance penalty. Hence, the WebView’s JavaScript API
should be used when possible. However, apart from perfor-
mance, other parameters such as functionality and security can
have an impact on the selection of the storage mechanism.

Databases. If access to a full fledged SQL database is
required, the SQLite plugin should be used. However, in
most mobile applications, the functionality provided by the
significantly faster IndexedDB interface of the WebView is
sufficient.

Variables. As described in Sections IV and V, it is
recommended to use NativeStorage for storing persistent
variables, since LocalStorage does not guarantee persistence
over longer periods of time. This type of storage is often used
to store preferences. Preferences are typically only accessed
once or twice during the life cycle of the application. Hence,
the performance overhead of NativeStorage does not have a
significant impact on de performance of the application.

Files. The WebView does not provide a file storage API.
Hence, developers have to use the core plugin, Cordova File
Plugin (cordova-plugin-file).

Sensitive data. The security analysis presented in Sec-
tion V-B shows that plugins such as SecureStorage offer
increased security compared to the WebView’s JavaScript API
because they benefit from the platform’s native secure storage
APIs. It is therefore recommended to use a plugin such as
SecureStorage to store sensitive data.

Future work on this topic can include an in-depth analysis of
the CrossWalk WebView. Currently, Cordova applications suffer
from a major performance penalty every time the JavaScript
bridge is accessed. CrossWalk has its own plugin mechanism,
which could show better performance than Cordova plugins.

REFERENCES

[1] Cordova storage documentation. URL https://cordova.
apache.org/docs/en/latest/cordova/storage/storage.html.

[2] Samkeychain. URL https://github.com/soffes/SSKeychain.
[3] Nativestorage in the ionic framework documentation. URL

http://ionicframework.com/docs/v2/native/nativestorage/.
[4] Cordova file plugin npm website, . URL https://www.

npmjs.com/package/cordova-plugin-file.
[5] Nativestorage plugin npm website, . URL https://www.

npmjs.com/package/cordova-plugin-nativestorage.
[6] Sqlite plugin npm website, . URL https://www.npmjs.

com/package/cordova-sqlite-storage.
[7] Securestorage plugin npm website, . URL https://www.

npmjs.com/package/cordova-plugin-secure-storage.
[8] Progressive web apps. URL https://developers.google.

com/web/progressive-web-apps/.
[9] Cordova plugins in the telerik marketplace. URL http:

//plugins.telerik.com/cordova.
[10] Web sql database documentation. URL https://dev.w3.org/

html5/webdatabase/.
[11] Can i use ... ? URL http://caniuse.com/.
[12] Cordova plugins website. URL https://cordova.apache.

org/plugins/.
[13] Crosswalk website. URL https://crosswalk-project.org.
[14] ios data storage guidelines. URL https://developer.apple.

com/icloud/documentation/data-storage/index.html.

[15] Smartphone os market share, q2 2016. http://www.
idc.com/prodserv/smartphone-os-market-share.jsp, 2015.
access date: 20/10/2016.

[16] Cordova plugin nativestorage, 2016. URL https://github.
com/TheCocoaProject/cordova-plugin-nativestorage.

[17] Matteo Ciman and Ombretta Gaggi. Evaluating impact
of cross-platform frameworks in energy consumption of
mobile applications. In WEBIST (1), pages 423–431,
2014.

[18] Isabelle Dalmasso, Soumya Kanti Datta, Christian Bonnet,
and Navid Nikaein. Survey, comparison and evaluation
of cross platform mobile application development tools.
In Wireless Communications and Mobile Computing
Conference (IWCMC), 2013 9th International, pages 323–
328. IEEE, 2013.

[19] Henning Heitkötter, Sebastian Hanschke, and Tim A
Majchrzak. Evaluating cross-platform development ap-
proaches for mobile applications. In International Con-
ference on Web Information Systems and Technologies,
pages 120–138. Springer, 2012.

[20] Ivano Malavolta, Stefano Ruberto, Tommaso Soru, and
Valerio Terragni. End users’ perception of hybrid mobile
apps in the google play store. In 2015 IEEE International
Conference on Mobile Services, pages 25–32. IEEE, 2015.

[21] Vision Mobile. Cross-platform developer tools 2012,
bridging the worlds of mobile apps and the web, 2012.
access date: 13/04/2016.

[22] Vision Mobile. Cross-platform tools 2015, 2015. URL
http://www.visionmobile.com/product/cross-platform-
tools-2015/. access date: 13/04/2016.

[23] Vision Mobile. Developer economics state of
the developer nation q1 2016, 2016. URL
http://www.visionmobile.com/product/developer-
economics-state-of-developer-nation-q1-2016/. access
date: 13/04/2016.

[24] Manuel Palmieri, Inderjeet Singh, and Antonio Cicchetti.
Comparison of cross-platform mobile development tools.
In Intelligence in Next Generation Networks (ICIN), 2012
16th International Conference on, pages 179–186. IEEE,
2012.

[25] Arno Puder, Nikolai Tillmann, and MichałMoskal. Ex-
posing native device apis to web apps. In Proceedings
of the 1st International Conference on Mobile Software
Engineering and Systems, MOBILESoft 2014, pages 18–
26, New York, NY, USA, 2014. ACM. ISBN 978-
1-4503-2878-4. doi: 10.1145/2593902.2593908. URL
http://doi.acm.org/10.1145/2593902.2593908.

[26] Florian Rösler, André Nitze, and Andreas Schmietendorf.
Towards a mobile application performance benchmark. In
International Conference on Internet and Web Applica-
tions and Services, volume 9, pages 55–59, 2014.

[27] Peter Teufl, Thomas Zefferer, and Christof Stromberger.
Mobile device encryption systems. In 28th IFIP TC-11
SEC 2013 International Information Security and Privacy
Conference, pages 203 – 216, 2013.

[28] Peter Teufl, Thomas Zefferer, Christof Stromberger, and
Christoph Hechenblaikner. ios encryption systems -
deploying ios devices in security-critical environments. In
SECRYPT, pages 170 – 182, 2013.

[29] Peter Teufl, Andreas Gregor Fitzek, Daniel Hein, Alexan-
der Marsalek, Alexander Oprisnik, and Thomas Zefferer.
Android encryption systems. In International Conference

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 38 / 53

on Privacy & Security in Mobile Systems, 2014. in press.
[30] Michiel Willocx, Jan Vossaert, and Vincent Naessens.

Comparing performance parameters of mobile app devel-
opment strategies. In Proceedings of the International
Workshop on Mobile Software Engineering and Systems,
pages 38–47. ACM, 2016.

[31] Yanyan Zhuang, Jennifer Baldwin, Laura Antunna, Ya-
giz Onat Yazir, Sudhakar Ganti, and Yvonne Coady.
Tradeoffs in cross platform solutions for mobile assistive
technology. In Communications, Computers and Signal
Processing (PACRIM), 2013 IEEE Pacific Rim Conference
on, pages 330–335. IEEE, 2013.

32Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 39 / 53

An Analysis of Mobile Application Update
Strategies via Cordova

Cristiano Inácio Lemes, Michiel Willocx and Vincent Naessens
Faculty of Engineering Technology, MSEC, imec-DistriNet,

KU Leuven, Technology Campus Ghent,
Gebroeders Desmetstraat 1, 9000 Ghent, Belgium
{inaciolemes.lemes,surname.name}@kuleuven.be

Marco Vieira
CISUC – Centre for Informatics and Systems

FCTUC – University of Coimbra
3030-290 Coimbra, Portugal

mvieira@dei.uc.pt

Abstract—The demand for mobile apps is increasing steadily.
To maximize revenue in Business to Customer (B2C) settings,
multiple platforms and devices must be supported, which leads
to increased development cost. Mobile App Cross Platform Tools
(CPTs) tackle this problem as they allow to deploy and run
a single codebase on multiple platforms. Cordova is a popular
framework for cross-platform development. Multiple plugins sup-
port often recurring concerns. One prototypical example is update
plugins. This paper focuses on the assessment of update plugins in
Cordova, supporting the distribution of code updates. The paper
evaluates the most commonly employed ones and compares them
against traditional version updates with respect to security and
relevant quality parameters. We show that improvident plugin
selection and bad developer practices may seriously undermine
the security and quality of the mobile apps.

Keywords–Cross-Platform Tools; Security.

I. INTRODUCTION

The power of mobile devices such as smartphones and
tablets has begun to rival personal computers over the last
decade. The number of available devices has been increasing
and, simultaneously, the amount of apps available in app stores
has grown significantly, ranging from business-critical (e.g.,
banking) to social media [1], [2], [3], [4]. From the operating
systems currently available on the market, two players have
a substantial market share: Android and iOS. App developers
must at least support those platforms to reach a large number
of end users, although this fragmentation places a significant
burden on the overall development cost. In practice, app
development companies must acquire expertise in both iOS
and Android development, and the development cycle must be
undertaken for two distinct platforms.

Mobile App Cross-Platform Tools (CPTs) allow to deploy
a single codebase on multiple platforms, and a wide variety
of CPTs exist today [5]. Cordova [6] – formerly known
as Phonegap – is very popular and applies web-to-native
technology. This CPT enables the development of mobile
apps using JavaScript, HTML5 and CSS3 instead of using the
native development language [7], [8]. The app code is wrapped
into a stand-alone application integrated with a Webview.
Cordova offers a set of plugins for accessing device sensors
like cameras, calendar, and GPS. Each plugin is split into two
parts: (i) the native code which accesses the device feature
and (ii) the web code that creates an interface between the
application and the native code.

Update plugins are frequently used in Cordova, as they
support updating application code without having to upload

a new version to the platform’s app store (this strategy only
enables the updating of webcode, as native code cannot be
changed via any channel except the app store). Although
multiple update plugins exist and may therefore be integrated
within a Cordova app, different approaches are employed
internally to support web code updates.

This paper assesses and compares the major update plugins
considering their functional behaviour and impact on qualita-
tive properties. We selected major security, user experience,
and performance criteria of the Cordova update plugins based
on in-depth interaction with Small and medium-sized enter-
prises (SMEs) [9] The selection of the most appropriate plugin
is demonstrated as being crucial to increase the overall app
quality and that not all plugins are equally trustworthy. For
example, a bad selection strategy can undermine an app’s
overall security. Finally, the paper compares the Cordova
update strategies against more traditional Android version
updates. This paper shows that hot code updates offer a
viable solution for minor updates and bug fixes to applications.
However, large version updates that introduce new permissions
or add new plugins require the user to go through the OS
supplied application update process. Moreover, using plugins
for remote code updates can potentially introduce additional
vulnerabilities. Note that the scope of this work is updating
strategies on the Android platform. Android was selected for
this research because many update plugins only have Android
support. Nevertheless, most ideas presented in this work also
apply for iOS, as described in Section VI.

The remainder of this paper is structured as follows. Sec-
tion II discusses background and related work. A classification
of code update strategies in the context of mobile apps in
addition to an overview of Cordova plugins selected for this
study are detailed in Section III. Section IV lists the criteria
used when assessing the update strategies. The evaluation
of each strategy and a comparison among all strategies is
provided in Section V. Section VI reflects on the results.
Finally, conclusions are drawn in Section VII.

II. BACKGROUND AND RELATED WORK

Web apps allow servers to host their code and clients can
launch the code in their browser by typing in the correct
URL. This is a straightforward means of offering content or
services to smartphone or tablet users by way of a single
codebase. The code consists of web technologies like HTML,
CSS and Javascript and may be easily updated without app
store intervention. Also, end users are not required to install

33Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 40 / 53

an additional app. Although this approach is highly flexible,
it is also associated with drawbacks. First, the availability
and responsiveness of the application is dependent upon the
Internet connection of the mobile device. Second, mobile
browsers do not support advanced access to hardware sensors
and data, which constrains functionality and negatively impacts
user experience.

Hybrid approaches [10] are applied in many CPTs and aim
at combining the advantages of web technologies and native
functionalities. This requires a native web container embedded
in the application to allow web code to be executed on multiple
platforms. Native capabilities are accessible via a Javascript
bridge and native code execution enables access to device
sensors. A hybrid application must be included in the app store
and subsequently installed on the user’s device. Cordova is the
most popular hybrid approach available nowadays [7].

Recent research has focused on assessing and comparing
different CPTs in both a qualitative and quantitative way.
Heitkötter et al. [6] evaluate four CPT strategies and compare
them against native app development. Their work focuses on
two major characteristics: infrastructural support and develop-
ment. The latter covers an analysis of all development cycle
steps. Assessments are completed using a scale from 1 (very
good) to 6 (very poor). Rieger and Majchrzak [11] build
further on this work and propose extensions and revisions
for evaluations CPTs. They compared two CPTs and applied
their assessment to multiple devices. The evaluation criteria
was split into four groups: infrastructure, development, app,
and usage. A weight was also assigned to each criterion for
each CPT. A detailed evaluation of CPT performance was
realized by Willocx et al. [12]. Ten CPTs were assessed and
compared against native development using multiple perfor-
mance criteria. The assessment was performed on multiple
iOS, Android and Windows Phone devices. Other studies focus
on selecting the most feasible CPT for a specific application
or set of applications [7], [8], [13]. All these contributions
focus on usability and performance. However, update strategies
in particular and plugins in general are not evaluated from a
research perspective.

Many mobile applications rely on the Internet to download
or upload content. This makes them potentially vulnerable
to both passive and active attacks [14]. De Ryck et al. [15]
analyze such network attacks. Vashisht et al. [16] propose
splitting mobile threats into three categories: application-based
threats are vulnerabilities concerning applications installed
on the device; web-based threats expose security issues in
the mobile browser and applications which download content
from the Internet; and network-based threats originate from
the mobile or local wireless network. In practice, mobile
applications that access the Internet are potentially vulnerable
to any of these threats.

Other research focuses on assessing the security of major
mobile operating systems. La Polla et al. [17] offer an overview
of mobile threats and vulnerabilities before presenting possible
solutions to such threats. Peijnenburg [18] studied security con-
siderations concerning Android. Bhardwaj et al. [19] present
an in-depth security comparison between Android and iOS.

This paper evaluates and compares alternative Update
Strategies for mobile applications developed with Phone-
Gap/Cordova. It focuses on the strengths and constraints re-
lated to security, user experience and performance of multiple

Cordova update plugins. Moreover, we compare our findings
to traditional version updates in Android.

III. UPDATE STRATEGIES OVERVIEW

Mobile apps may be upgraded after they are published in
an app store. Multiple reasons can trigger code modifications,
including the addition of new features, the modification of
graphical user interface, and fixing defects, for example. In
practice, code update strategies can be classified according to
three categories: installing a new version, storing new mobile
code in a client side dedicated folder, and loading updated
code from a web server. These approaches are discussed below
in greater detail. Our analysis focuses on plugins that are
available at the official Cordova plugin store [20].

a) Installing updates: The developer submits a new
installation file to a server and the end users may upgrade
the app by installing this file on their devices.

• Google Play [21] is the default store for Android
applications, but other marketplaces exist [4]. APK
files are submitted to the store and published shortly
after human revision has taken place.

• Although the Cordova framework does not support
modifications in the native code of the application, a
dedicated plugin Cordova-plugin-app-update enables
updating the application by executing an installation
file. The installation file can reside at any server
selected by the developer.

b) Storing modified web code: The developer submits a
set of files containing app code to a server, after which the app
may download and store them in the device. Cordova uses a
dedicated www folder to store, amongst others, business logic
and user views. New, updated web code, cannot be stored
in this folder because it is read-only. Hence, update plugins
store updates outside of the applications. Four frequently used
plugins apply this strategy:

• The most frequently downloaded Cordova update plu-
gin according to the plugin store is cordova-plugin-
meteor-webapp. This is a new version of meteor-
cordova-update-plugin that fixes some bugs while
introducing new features such as performing a rollback
to the previous version when the new version is
unstable. Any server can host code updates.

• Cordova-plugin-code-push is developed by Microsoft
and is the second most frequently downloaded update
plugin belonging to this category. Each new app
release is stored on a server hosted by Microsoft.
CodePush CLI [22] is a tool that helps developers
managing app updates.

• The cordova-hot-code-push-plugin is the third most
frequently downloaded plugin. Updates are hosted on
an Amazon server. Cordova Hot Code Push CLI [23]
assists developers on managing new releases of the
application.

• Finally, cordova-plugin-dynamic-update does not em-
ploy any mandatory server, so developers can host the
update on any server. This plugin only implements
the most basic functionalities i.e. downloading new
content from the Internet and pointing the WebView
to the new files.

34Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 41 / 53

c) Loading remote code updates at runtime: This strat-
egy downloads remote code each time the app is running. The
user launches the application using a browser that connects to
the server from which the application is loaded.

IV. EVALUATION CRITERIA

Two major stakeholders may be identified in the context
of the update process, namely the developer and the end
user. The developer is responsible for upgrading a mobile
app and submitting the upgrade to the server. The end user
retrieves new releases when they are available on the server
and integrates it in the mobile app. At least two components
(or hardware platforms) are involved in a upgrade operation:
the server and the mobile. The server stores new application
releases sent by the developer, after which they may be
downloaded to a mobile device. This is based on two main
operations: submit and retrieve. In practice, developers submit
new app code to the server, whereas end users retrieve the
update some time afterwards. Both the server and the mobile
device need Internet access to perform these operations.

This section lists the set of properties that are used to com-
pare alternative update strategies. It resulted from compilation
of feedback offered by mobile app developers in the scope of
a technology transfer project CrossMoS [9].They are split in
two groups: Security Criteria and Quality Criteria. The former
concerns the security aspect of the update process, while the
latter focuses on user experience and performance.

A. Security Criteria
Figure 1 shows the interaction between the stakeholders

and the components involved in the update process, as well as
security concerns and their relation to the update process.

Figure 1: Security Parameters

Secure transport is a major security concern during both
the submission and retrieval phase. Inappropriate communica-
tion properties can compromise mobile app security and even
the device itself after the upgrade. An attacker should not be
able to modify the code in transit, typically attempted by Man-
In-the-Middle (MiTM) attacks (see details in the Section VI).

Developer authentication is an important security concern
during the submission phase. It discourages misbehaving enti-
ties from uploading malicious code. Depending on the specific
authentication strategy used, multiple updates may be linked to
the same (pseudonymous) user, or even linked to an identifiable
person or organization.

Accountability goes one step further than authentication
and requires a stakeholder to be held accountable by a dispute
handler (such as a law enforcement entity) for malicious be-
haviour. This study focus particularly on the accountability of
developers themselves. More specifically, we evaluate whether
developers can be held accountable for the submission of
malicious code to the server. Appropriate authentication can
already identify the individual behind a malicious submission,
but only signed code can be probably linked to a physical
entity.

Access control measures are implemented on the server
side and restrict the possible actions that may be taken by
stakeholders when accessing the server. Only authenticated
developers and, maybe, collaborators or employees within the
same organization, can modify application code (potentially
with different access restrictions).

Code analysis/verification can be performed by the update
server to check for malicious behaviour in the submitted code.
Malicious code potentially exploits privileges (or permissions)
already granted to apps and likely leaks sensitive personal
data stored in the mobile device to an attacker. Moreover, it
can disturb the correct functioning by draining the battery or
stealing money in the background. The update server should
check whether the code performs any malign tasks before
making it available for download.

Secure storage implies that no third party or process
running on the server can modify the app code without the
consent of the developer. Insecure storage potentially results
in malware attacks such as those aforementioned.

Server authentication should be mandatory during the
retrieval phase. Mobile devices must be capable of verifying
the authenticity of the server hosting the code updates to avoid
malicious code being downloaded in the context of the client
app.

Our assessment also focuses on how the update strategy
deals with privileges (or permissions), as the amount of sen-
sitive personal data that can be leaked by an app is highly
dependent upon the privileges it is granted. Therefore it is
crucial to implement measures that maintain the number of
privileges granted under control. This property assesses what
permissions are granted to the app if the update plugin is
installed.

The overall security of the update strategy also depends
on the quality and codebase of the additional software that
must be installed to support updates. Some update strategies
rely solely upon OS software components, while others require
the installation of additional software plugins that may be
composed by integrating third party software libraries. Inte-
grating them can also increase the number of permissions
that are required to run the app. In practice, both plugins
and the software libraries on which they rely may contain
vulnerabilities. In its turn this can increase the impact of
successful attacks both from privacy as well as security point
of view.

The storage location of the mobile device may also have
an impact on the security status of the update strategy. Code
can either be stored in shared memory or solely be accessible
by the app itself, which obviously provides different levels of
security.

35Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 42 / 53

B. Quality Criteria
The set of quality criteria is depicted in Figure 2. They

primarily focus on user experience, performance, and overall
code quality.

Figure 2: Quality Parameters

For each update strategy, the extent to which user in-
teraction is required is evaluated. Either the update can be
performed fully transparently, or consent must be explicitly
given by the user. If user interaction is required, the type
and quality of information returned to the end user is eval-
uated. Similar, the properties of the schedule strategy and
its context are evaluated. Such properties can influence user
experience. First, the update time and context may differ
between alternative approaches. For instance, large (automatic)
updates over an xG network are associated with substantial
costs and consume unnecessary bandwidth, especially in a
roaming context. Second, the update process can either lock
the application until finished, or allow the user to use the
application during the update. Finally, the possibility of rolling
back unstable updates is investigated. This may be required if
an update results in crashes on certain devices.

Memory and transfer footprint define the amount of storage
required to store both the plugin and updated code and the
bandwidth needed to retrieve the update, respectively. Com-
pressed code can be transferred more efficiently and hence
has less impact on the time required to install the update
than non-compressed code. Similarly, downloading either a
complete new version or an increment with respect to the
previous version may be needed.

Code quality is often impacted by developer practices and
may potentially result in performance decreases or even app
crashes after installation. We define code quality in this work
from the user’s point of view, and evaluate if the mechanism’s
characteristics meet the user’s needs [24]. Code analysis per-
formed by update servers before the update is actually made
available and helps avoiding (un)intentionally introduced bugs.

The final quality criterion focuses on the tool support
available for the update process, like support associated with
the management of new releases, enabling collaboration, or
tools for covering the entire development cycle (such as design,
implementation, and testing).

V. RESULTS AND COMPARISON

This section details the results of the assessment of the
update strategies introduced in Section III. First, a general
overview of each strategy is provided, after which the security

and quality criteria are discussed. In the remainder of this
work, the update strategies are denoted as shown in Table I.

Table I: UPDATE STRATEGY NOTATIONS

Update Strategy Notation
Installation I

Google Play I1
Cordova-plugin-app-update I2

Storage S
Cordova-plugin-code-push S1
Cordova-hot-code-push-plugin S2
Cordova-plugin-meteor-webapp S3
Cordova-plugin-dynamic-update S4

Loading L

A. Overview of update strategies

1) Installation (I): New application code can be stored in
the commercial store managed by the OS provider or in another
marketplace selected by the developer. Software on the mobile
can poll whether a new version is available or new version
notifications can be sent to the mobile. Within this class, an
entire new version is typically submitted by developers and
can subsequently be downloaded.

Developers submit new versions of an app to the standard
Google Play (I1) store after having assigned it a higher
version number. Google reviews the application code using
two different approaches. First, an automatic malware scan
is performed. Second, a human reviewer investigates possible
violations with Google policy rules [25]. Two strategies can be
adopted to retrieve a software update: apps are either updated
automatically by the Google Play application or the update
process is manually controlled by the owner of the device.
Note that user consent is always asked when new permissions
are required. To save bandwidth, only files differing from
the previous version installed on the device are downloaded
[26]. Finally, the cordova-plugin-app-update (I2) supports the
installation of new executables without visiting the default
app store, even though the OS does not support this behavior
by default and even discourages it. For this, device owners
must modify OS configuration settings and the execution of
installation files from unknown sources must be allowed. The
content of the file is not reviewed, unlike the Google Play
strategy. When the app initializes, the plugin checks the version
number of the installed app against that of the version available
at the update server. A new APK is installed if an update is
available.

2) Storage (S): Native mobile apps are typically installed
in a read-only folder, which means that only the OS may alter
its content. Cordova uses this folder only to store the core files
of mobile apps (the native code), including the Webview. This
Webview can be pointed to a folder with write permissions
and the Web code is then stored and updated via this folder.
Any updates to core files can only be performed by submitting
and installing a new version. Each plugin follows a slightly
different strategy, as discussed next.

The cordova-plugin-code-push (S1) checks for updates at
a dedicated server and returns a URL from which the latest
update can be downloaded. The user must give their consent
after which a ZIP file containing the new web code can be
downloaded.

36Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 43 / 53

The cordova-hot-code-push-plugin (S2) checks for updates
by reading a configuration file from the server containing a
hash of all web code files. The plugin identifies the files
that were changed and only updates those files. When the
application is launched for the first time, all web code files
are copied in the writable www folder. The cordova-plugin-
meteor-webapp (S3) employs a similar approach.

Finally, the cordova-plugin-dynamic-update (S4) down-
loads the entire content of the www folder each time an
update is available. The previous update of the application is
overwritten.

3) Loading (L): App updates occur almost instantly. The
app is launched using a browser that loads the content from the
server and the only requirement is for the developer to submit
the new code to the server. The primary disadvantage of this
strategy is that the application only works when an Internet
connection is available. In the worst case scenario, the mobile
device must contact the server every time the user requests a
new page.

B. Security parameter assessment
Malicious individuals may exploit vulnerabilities and

thereby compromise the security of mobile app updates. Bad
design decisions as well as weak implementations can result
in security vulnerabilities. Table II summarizes the results of
the analysis of the security concerns listed in the previous
when assessing update strategies.

Table II: EVALUATION OF STRATEGIES ACCORDING TO
SECURITY PARAMETERS

Criteria/Strategy I1 I2 S1 S2 S3 S4 L
Submit update

Accountability yes no no no no no no
Secure transport (submit) yes no yes yes no no no
Developer Authentication yes no yes yes no no no
Access control yes no yes yes no no no
Secure storage (server) yes no yes yes no no no
Code analysis (server) yes no no no no no no

Retrieve update
Secure transport (retrieve)

HTTPS forced yes no yes yes no no no
SSL Certificates checked yes yes no yes yes yes yes
Hash check after download yes no yes yes no no -

Server Authentication yes no no no no no no
Privileges no yes yes yes yes yes no
Code verification (device) yes no no no no no -
Additional software no yes yes no no no -
Secure storage (device) yes yes yes yes yes yes -

Two approaches are possible for setting up an update
server. First, the update server can be fixed in the update
plugin. This means that each developer that uses the plugin
must push updates to that third-party server. The server often
represents a reliable Cloud platform (examples of such include
Android Play Store or Microsoft Azure) associated with a
series of advantages like high availability and small security
vulnerability due to regular software updates. Second, some
plugins enable developers to select their own storage server.
Therefore, security is highly dependent upon both the reputa-
tion of the developer and selected server. The plugins that fix
a specific update server (I1, S1, and S2) also provide a secure
communication channel between the developer and the server.
Other strategies are dependent upon the server hosting code
updates. Storage security also relies on the trustworthiness of

the server that hosts the updates. Similarly, some plugins rely
on existing back-end infrastructure and, hence, benefit from the
access control procedures offered by the used infrastructure.
Only the owner (and possibly collaborators) can modify code
within a particular application. The quality of other plugins
depends on the particular update server selected. Therefore, if
the developer is free to choose an update server, they must
select one that has good security practices. Note that the end
user is unaware of the selected server.

For the security of the end user, it is also important that
the update reaches the device securely. The Android Play
store is tightly integrated with the underlying operating system
and offers all required security measures, as a secure HTTPS
connection is strictly used for all communication.

Secure communication is not always guaranteed when
using a plugin approach. In fact, some plugins do not force
the use of HTTPS on the developer. S1 and S2 are an
exception to this. They respectively make use of the Amazon
and the Microsoft Azure platform to distribute updates, and
therefore always make use of HTTPS. In the other cases, the
responsibility to use HTTPS lies with the app developer.

When using an HTTPS connection, it is mandatory to
check the SSL certificates before accepting communication.
Plugins I2, S2 and S4 have custom native code for
downloading the update. They make use of Android’s
HTTPUrlConnection, UrlConnection and
HTTPClient, respectively, and are therefore secure
when HTTPS is used. Android provides the necessary
checks to secure the connection once an HTTPS domain
is detected in the URL (for more information [27], [28])
Plugin S1 contains no native code to download the update but
instead automatically includes the file-transfer-plugin in the
application when installing the update plugin, and contains
Web code to call the plugin to download the update. For
developers, it is important to know that the file-transfer-
plugin’s download() method contains an ”AllowAllHosts”
parameter. When this parameter is set to true, it overrides
Android’s HostnameVerifier’s [29] verify() method to
always return true. In this case, SSL certificates are blindly
accepted without any checks, which raises severe security
threats. Plugin S1 sets this parameter to true and is therefore
not secure. Developers using this plugin should manually
change this variable to false in the its web code in order to
ensure secure communication. Plugin S3 contains no code
for the actual download of the update. The straight-forward
way to download the update in this case is to include the
file-transfer-plugin in the application manually. Some example
code provided by the developers of the plugin also applies
this strategy. In this example, no AllowAllHosts parameter is
specified, thus the default value is false. Hence, developers
can use this example to provide secure communication.

After downloading the update, I1, S1 and S2 make use of
a hashing function to determine if nothing was changed during
the download. This acts as an additional measure against
MiTM attacks, and also ensures that no communication errors
occurred.

When loading web content in the Webview or a browser
(L), the security depends only on whether HTTPS is used or
not. When HTTPS is used, the communication is handled by
the Webview and is therefore secure.

37Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 44 / 53

Strategy I1 supports developer accountability. It relies on
the OS platform builder and requires one to update the submis-
sion via the Android store, and developers must sign the code
before submitting it to the server. This procedure verifies if the
files were submitted by a particular developer (or organization).
In addition, Play store examines the code submitted by the
developer before publishing the application on its store. In
practice, it looks for malicious code and violation of system
rules in the application files. If an unacceptable security or
privacy threat is discovered the application is not published,
the developer can be judged and their profile removed from
the store. Other storage platforms do not explicitly mention
code revision. Except for the Google Play Store downloads
and updates [30], no other strategy applies client side code
verification, despite there being some tools and methods cur-
rently available to execute it. Such tools could mitigate threats
introduced by selecting unreliable update servers.

The Google play store (I1) is the only update mechanism
that requires the user to authenticate to the update server.
Android requires the user to be logged in before allowing
downloading or updating applications.

The OS coordinates code updates within strategy I1. It
saves new files in a folder that cannot be overwritten (unless
a new code update is available) by the application or possible
malware. All other strategies retrieve updates stored in memory
only accessible by the app itself. This means that other,
potentially malicious apps, cannot access or modify that code.
Hence, once updates are installed on the mobile device, the
security depends upon the trustworthiness of the OS version.

Update plugins often require extra privileges to support
their tasks. Two permissions that every Cordova plugin re-
quires are internet and write_external_storage
permission. The former allows apps to open network sock-
ets and is enabled by default in the Cordova framework;
the latter allows apps to write content to external storage
on the device. These permissions can be abused by locally
installed untrusted code which downloads malicious content
from the Internet before writing it to the device and al-
tering the application to make it use this malicious con-
tent. The mount_unmount_filesystems permission is
used by I2 to manage the file systems for removable stor-
age. S2 also requires the access_network_state and
access_wifi_state permissions for accessing informa-
tion concerning network status.

Additional Cordova plugins (also called dependencies) are
installed automatically when strategies I2 or S1 are applied.
I2 installs an additional Cordova plugin for accessing the
OS version. S1 relies on a set of seven other plugins that
handle sending notifications to users, accessing configuration
information from the device, handle runtime permissions, file
management, among others. Note that installing such plugins
weakens the privacy properties of the app and weak implemen-
tations may ultimately lead to vulnerabilities that can, in turn,
compromise app security. Although S3 does not automatically
introduce any dependencies, it requires additional plugins to
work properly.

C. Quality parameters assessment
Table III provides an overview of the quality related

parameters for each update strategy. Strategies S3, S4, and
L neither require user confirmation nor notification of the end

user regarding code updates. All other strategies ask the user
to confirm the update. I1 also provides feedback to the user;
I2, S1, and S2 do not inform the user about the scope of the
updates, although certain code updates may negatively impact
the user’s privacy or security (as learned from the security
assessment).

Table III: EVALUATION OF STRATEGIES ACCORDING
TO QUALITY PARAMETERS

Criteria/Strategy I1 I2 S1 S2 S3 S4 L
User interaction yes yes yes yes no no no
Schedule strategy and its context

Update time and context req. any any any any any any
Lock the application yes yes no no no no -
Roll back automatically yes no yes yes yes no yes

Memory and Transfer footprint ++ ++ + - - + ++
Code Quality Verification yes no no no no no no
Tool Support yes no yes yes no no no

Manage new release yes - yes yes - - -
Manage collaborators yes - yes no - - -
Manage environment yes - yes yes - - -

I1 supports automatic updates of non-active applications.
Other approaches typically check whether an update is avail-
able when it launches or resumes, automatically. Alternatively,
the developers may provide a button in the app to begin the
update process. Strategy L receives updates when the page is
(re)loaded. Cordova update strategies Sx do not enforce any
constraints on running applications. In contrast, I1 and I2 lock
the application until the update process has ended.

Strategy I2 and S4 do not support roll backs to a previous
valid version in case of crashes caused by the update. When
such a situation arises the end users must reinstall the applica-
tion. All other strategies perform roll backs automatically when
an error occurs. Crashes in strategy I1 occur rarely, due to
heavy code revision by Google and the reporting of unexpected
behavior by the end-users [25]. This strategy guarantees that a
stable version of the application is available on the store until
the developer provides a valid new version.

A large amount of code and data is potentially downloaded
during the update process. Strategies I1 and S2 support contex-
tual constraints related to updates. For instance, these strategies
permit developers to specify that updates may only occur over
WiFi. Other strategies do not support this control and, hence,
the update can be downloaded via the mobile network operator,
thus potentially incurring additional costs.

Most strategies do not ensure code quality thresholds.
Indeed, only strategy I1 performs code quality analysis to
ensure stable app behaviour. Thus, other strategies may lead
to poorly implemented features, wasted processing time and
memory. Such situations can result in bad user experiences and
the misuse of the application given the resource constraints of
the device.

Strategies I1, S1, and S2 offer tool support to aid de-
velopers when building a new application release. All these
tools provide a feature to manage releases and make it easy to
uploade new releases to the server, and make them available
for download. The developer must change the version number
of the application in strategy I1, which also allows automatic
code signing before upload. In contrast, the tool used by
strategies S1 and S2 changes the version number automatically
during the upload process. These tools also calculate the hash

38Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 45 / 53

of the files in the current version, enabling mobile devices
to download only the altered files, and hence decreasing
bandwidth. I1 and S1 also support collaboration within a team
of developers via developer profiles. The application owner is
responsible for adding and removing collaborators and may
also identify who submits particular code updates. Strategy S2
does not offer this feature and only the owner may upload
releases on the server. All tools provide a production and test
environment. The latter enables the developer to simulate real
world situations.

VI. EVALUATION AND REFLECTION

Especially in the case of Cordova applications, man-in-the-
middle attacks on code transfers impose severe risks for the
security of the end user. Attackers can, for example, insert
malicious code in JavaScript files while in transit. The impact
of such a MiTM attack strongly depends on the capabilities
and privileges of the application. For example, many Cordova
applications include several plugins to provide desired func-
tionality such as access to the GPS, contacts, pictures and
the camera. Malicious code, injected by attackers, also has
access to the API’s of these plugins, and can use them to steal
personal information. In order to demonstrate the mechanisms
and the risks of a MiTM attack, the next paragraph describes
an example setup of such attack. It demonstrates a straight-
forward, realistic setup for executing MiTM attacks on regular
HTTP connections.

The setup is displayed in Figure 3 and consists of two
workstations, connected to the same network, and a mobile
device.

Figure 3: MiTM demonstration setup.

• Workstation 1 contains a classic Linux distribution.
This workstation is set up to create its own wireless
network, thereby acting as a public wireless access
point. All incoming wireless regular communication
(wlan0) is redirected to workstation 2.

• Workstation 2 runs a proxy tool. BurpSuite [31] was
used in our setup. It listens for the traffic forwarded
by workstation 1. An attacker can now read and alter
all requests and responses.

• The mobile device is connected to the Internet via
the wireless network provided by Workstation 1 and
contains the application under attack. All HTTP traffic
on the mobile device is now routed transparently
through both workstations.

This attack describes the situation when a user accesses a
public access point. Traffic can be eavesdropped and altered

without the user noticing. For the sake of clarity, workstations
1 and 2 are displayed as two separate entities. Note that
the functionality of both workstations can be combined into
a single one. MiTM attacks on unsecure SSL connections
(e.g. certificate checks are lacking) work similarly to the
demonstrated setup, but require an SSL stripping step in the
proxy (Workstation 2).

Our assessment mainly focused on the Android operating
system. Nevertheless, most ideas presented in the paper also
apply for iOS. In iOS, it usually takes several days before
an application is approved and available the app store, hereby
making hot code updates even more valuable than in Android.
On the other hand, iOS developers have strict limitations for
what a hot code update can change in an application [32].
The features and functionality have to be consistent with
the intended and advertised purpose of the application as
submitted to the App Store. Developers who do not comply
with these rules can lose their access to the App Store.Not all
Cordova plugins described in this work are available for iOS.
Naturally, Cordova-plugin-app-update (I2) provides no iOS
implementation because it relies on downloading and installing
an APK file. Also, cordova-plugin-dynamic-update (I4) does
not provide an iOS implementation. However, the security risks
discussed also apply for iOS. For example, if developers do not
secure the communication with the update server, the attack
described above can also be executed on iOS applications.

Independently of the targeted operating system, developers
have to be aware that plugins might contain unsafe behavior
and ignore the best development practices for the platform.
Hence, the source code should always be checked before
including it in applications. In Android, examples of this are
introducing too many permissions and overriding the security
mechanisms of the platform, as described in Section V. iOS
implementations of plugins can contain similar insecure behav-
ior. For example, the cordova-plugin-meteor-webapp plugin
disables Apple App Transport Security, introduced in iOS 9
[33].

VII. CONCLUSION

This paper presented an analysis of hot code updates
in Cordova, and compared them against traditional updates
through the app store and the loading strategy. Two sets of
parameters were discussed in this work. The first group of
parameters focused on the security aspect of the updating
mechanisms. One of the major concerns when using hot code
updates is the secure storage of the update and transition of
the update to the device. Some plugins are developed for one
specific type of server (e.g. Amazon, Microsoft Azure). In
this case, the developer can rely on these mature platforms
for securely hosting the update (secure storage on the server
and only use HTTPS for communication), and has access to
additional tools for managing the update. Other plugins do
not offer this complete solution. Hence, the developer is re-
sponsible for implementing a secure server to host the update.
Besides the server, the plugin is also responsible for secure
communication. Developers should check the implementation
before installing it in an application. Plugin developers should
rely on the underlying platform’s APIs as much as possible in
order to ensure secure communication.

The second group of parameters focused on the functional-
ity and the usability. The conclusion here is that, in many cases,

39Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 46 / 53

hot code updates offer a viable solution for minor updates
and bug fixes to an application. Based on the needs of the
developer and the application, different plugins can be selected.
Some plugins offer a simple but limited API, and are therefore
quick and easy to integrate in applications. The disadvantage
is that these plugins do not offer support for user interaction
such as asking permission from the user and giving the user
a visual overview of the progress. Other plugins offer a more
advanced API to the developer and allow more customization.
Hence, these plugins are also more complex to implement for
the developer.

REFERENCES

[1] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu, “Fast app launching
for mobile devices using predictive user context,” in Proceedings of
the 10th international conference on Mobile systems, applications, and
services. ACM, 2012, pp. 113–126.

[2] AppBrain. Number of android applications. [Online]. Available: http:
//www.appbrain.com/stats/number-of-android-apps [retrieved: October,
2016]

[3] C. Reese Bomhold, “Educational use of smart phone technology: A
survey of mobile phone application use by undergraduate university
students,” Program, vol. 47, no. 4, 2013, pp. 424–436.

[4] T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos, and
T. Karagiannis, “Rise of the planet of the apps: A systematic study of
the mobile app ecosystem,” in Proceedings of the 2013 conference on
Internet measurement conference. ACM, 2013, pp. 277–290.

[5] S. Amatya and A. Kurti, “Cross-platform mobile development: chal-
lenges and opportunities,” in ICT Innovations 2013. Springer, 2014,
pp. 219–229.

[6] H. Heitkötter, S. Hanschke, and T. A. Majchrzak, Evaluating Cross-
Platform Development Approaches for Mobile Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 120 – 138.

[7] P. R. de Andrade, A. B. Albuquerque, O. F. Frota, R. V. Silveira, and
F. A. da Silva, “Cross platform app: a comparative study,” arXiv preprint
arXiv:1503.03511, 2015.

[8] B. R. Mahesh, M. B. Kumar, R. Manoharan, M. Somasundaram, and
S. Karthikeyan, “Portability of mobile applications using phonegap: A
case study,” in Software Engineering and Mobile Application Modelling
and Development (ICSEMA 2012), International Conference on. IET,
2012, pp. 1–6.

[9] K. Leuven. Crossmos. [Online]. Available: https://www.msec.be/
crossmos/ [retrieved: June, 2017]

[10] M. Latif, Y. Lakhrissi, E. H. Nfaoui, and N. Es-Sbai, “Cross platform
approach for mobile application development: A survey,” in 2016
International Conference on Information Technology for Organizations
Development (IT4OD). IEEE, 2016, pp. 1–5.

[11] C. Rieger and T. A. Majchrzak, “Weighted evaluation framework for
cross-platform app development approaches,” in EuroSymposium on
Systems Analysis and Design. Springer, 2016, pp. 18–39.

[12] M. Willocx, J. Vossaert, and V. Naessens, “Comparing performance
parameters of mobile app development strategies,” in Proceedings of the
International Workshop on Mobile Software Engineering and Systems.
ACM, 2016, pp. 38–47.

[13] A. Pazirandeh and E. Vorobyeva, “Evaluation of cross-platform tools
for mobile development,” 2015.

[14] G. S. Kearns, “Countering mobile device threats: A mobile device
security model,” Journal of Forensic & Investigative Accounting, vol. 8,
no. 1, 2016.

[15] P. De Ryck, L. Desmet, F. Piessens, and M. Johns, Primer on client-side
web security. Springer, 2014.

[16] S. Vashisht, S. Gupta, D. Singh, and A. Mudgal, “Emerging threats in
mobile communication system,” in Innovation and Challenges in Cyber
Security (ICICCS-INBUSH), 2016 International Conference on. IEEE,
2016, pp. 41–44.

[17] M. La Polla, F. Martinelli, and D. Sgandurra, “A survey on security for
mobile devices,” IEEE communications surveys & tutorials, vol. 15,
no. 1, 2013, pp. 446–471.

[18] F. Peijnenburg, “Security in android apps,” 2013.
[19] A. Bhardwaj, K. Pandey, and R. Chopra, “Android and ios security-

an analysis and comparison report,” Int’l J. Info. Sec. & Cybercrime,
vol. 5, 2016, p. 30.

[20] A. Cordova. Plugin search - apache cordova. [Online]. Available:
http://cordova.apache.org/plugins/ [retrieved: June, 2017]

[21] Google. Google play. [Online]. Available: https://play.google.com
[retrieved: June, 2017]

[22] Microsoft. Codepush. [Online]. Available: http://microsoft.github.io/
code-push/ [retrieved: June, 2017]

[23] Github. Github - nordnet/cordova-hot-code-push-cli. [Online]. Avail-
able: https://github.com/nordnet/cordova-hot-code-push-cli [retrieved:
July, 2016]

[24] B. Kitchenham and S. L. Pfleeger, “Software quality: the elusive target
[special issues section],” IEEE software, vol. 13, no. 1, 1996, pp. 12–21.

[25] S. Perez. App submissions on google play now reviewed by staff, will
include age-based ratings. TechCrunch. [retrieved: March, 2015]

[26] A. Morris. Improvements for smaller app downloads on google play.
Android Developers Blog. [retrieved: July, 2016]

[27] Google. Httpurlconnection - android developers. [On-
line]. Available: https://developer.android.com/reference/java/net/
HttpURLConnection.html [retrieved: June, 2017]

[28] ——. Security with https and ssl - android developers. [Online].
Available: https://developer.android.com/training/articles/security-ssl.
html#HttpsExample [retrieved: June, 2017]

[29] ——. Hostnameverifier - android developers. [On-
line]. Available: https://developer.android.com/reference/javax/net/ssl/
HostnameVerifier.html [retrieved: June, 2017]

[30] T. N. Web. Google describes how android 4.2’s app verification checks
your downloads for malware. [retrieved: November, 2012]

[31] PortSwigger. Download burp suite - portswigger. [Online]. Available:
https://portswigger.net/burp/download.html [retrieved: June, 2017]

[32] Apple. Apple developer program information. [Online].
Available: https://developer.apple.com/programs/information/Apple
Developer Program Information 8 12 15.pdf [retrieved: December,
2015]

[33] ——. ios 9.0. [Online]. Available: https://developer.apple.com/library/
content/releasenotes/General/WhatsNewIniOS/Articles/iOS9.html [re-
trieved: June, 2017]

40Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 47 / 53

A General System for Self Collecting Individual Data - Application to Medical Data
Michel Schneider1, Suan Tay1, Chloé Gay2, Marinette Bouet1, Emmanuel Coudeyre2

michel.schneider@isima.fr, suan.tay@gmail.com, marinette.bouet@uca.fr, {cgay, ecoudeyre}@chu-clermontferrand.fr

1LIMOS, Université Clermont Auvergne, France
2Service MPR, CHU, Université Clermont Auvergne, France

Abstract-In this paper, we propose a system to allow the self-
collection of individual data through digital questionnaires and
sensors. The self-collecting person uses a tablet or a smart
phone and wears a watch that contains the sensors. The main
feature of this system is to memorize in a uniform way the
answers to the questionnaires and the values of the sensed
parameters in order to facilitate their joint analysis. The
system has been developed and tested to monitor osteoarthritis
patients. It represents an essential element of the control loop:
elaboration of recommendations – monitoring the execution of
these recommendations - evaluation and readjustment of these
recommendations. This system has been implemented in a
generic form and can be used to monitor any patient at home
or on the move outside. We explain, also, the extensions we are
currently making to obtain a general and flexible system.

Keywords-self collection; questionnaire; sensor; mobile device.

I. INTRODUCTION

The initial motivation for this work resulted from the
need expressed by the medical profession to have an easy-to-
use system for the self-collection of health data. This
involves checking that the patient is following the
recommendations made, measuring the results of these
recommendations, and then analyzing the results to readjust
the recommendations. For example, in the case of the
osteoarthritic patients we studied, it is a question of
collecting the information relating to physical activity,
difficulties encountered in performing certain movements,
taking medicines, etc.. Some information can only be
collected by questionnaire, but other pieces of information
can be conveniently collected via sensors (e.g., the number
of steps performed in a day). There is therefore a real interest
in associating the self-collection of personal data by digital
questionnaires and by sensors.

Self-collection by digital questionnaires has long been
considered in all areas. Various systems have been suggested
to create questionnaires and enable online responses. The
best known are Google Forms and Lime Survey [1].
Questionnaire collection raises problems of relevance that
are discussed in [2]|3][5]. In the medical field, questionnaires
have been validated to collect various pieces of information
about a state of health (see, for example, [4] for evaluating
personality, [6] for evaluating level of anxiety), or a practice
(see, for example, [7] for evaluating physical activity).

 Numerous studies have focused on the collection of
medical data by sensors. There is a wide variety of systems
and sensors [8][9]. One of the challenges is to capture in a
reliable and precise way physical activities [10][11] because

they are an accompaniment to many therapies.
Our goal was to develop a self-gathering system that
combines the two modes of collection (questionnaires and
sensors), and to store data collected in a uniform manner in a
warehouse so that they can be manipulated jointly. It is thus
possible to carry out analysis combining the two types of
data in order to search for correlations or to compute
indicators which, will serve to improve the recommendations
for the patients. For example, for osteoarthritis patients, we
can search correlations between the number of steps per day
(data coming from sensors) and pain level or difficulty to
make some movements (data coming from questionnaires).

Systems combining questionnaires and sensors have
already been proposed, but for specific purposes
[12][13][14]. The work of [12] uses questionnaires to collect
the values of situational variables and wireless sensors to
collect cardiac activity and physical activity. But, the two
types of data are stored and processed separately. In [13],
monitoring physical activity using wireless sensors is
experienced and discussed. Drawbacks are highlighted and it
is suggested to combine sensors and questionnaires. The
work of [14] studies the effects of different treatments on the
quality of life for adults with diabetes. This study is based on
data coming from sensors and others coming from
questionnaires. But, the two types of data are not integrated
in a same system. To our knowledge, there is no proposition
for an integrated system able to deal with the two types of
data. The main advantages of our system are the following:
uniform and integrated treatment of data coming from
questionnaires and that coming from sensors, full mobility of
the patient, management of the system by the medical staff
itself without the intervention of a specialist, direct
interoperability with analysis tools. Moreover, the system is
able to operate in different contexts, including medical and
non medical domains.

We explain the functioning of our system through
Sections II-VI, and then we present, in Section VII, the
extensions that we are currently carrying out to obtain a
general and flexible system.

II. OVERVIEW ON THE SYSTEM

1) General specifications. The proposed system
promotes the collection of health data by the patient himself.
The location of the patient at home or on the move is
irrelevant. The only constraint is that the patient has to
establish an Internet connection at regular intervals (for
example, every evening). Two modes of collection are
possible: on one hand, a collection by digital questionnaires

41Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 48 / 53

via smart phones or tablets, on the other hand, automatic
collection by using sensors embedded on smart phones or
connected watches. All data is transmitted to a central server
in a tabular format (compatible with Excel) for storage and
subsequent analysis by a software tool, such as SAS
(Statistical Analysis Software) [18] or R [19]. It must be
possible to carry out analysis relating to a patient or a group
of patients.

The creation of the survey questionnaires is carried out
by members of the medical staff. A user-friendly interface is
therefore available to perform this task. It is important that
this interface can offer a good variety of question types.

Each patient responds to one or more survey
questionnaires via the tablet or smart phone according to a
pre-established timeline. Notifications are generated by the
system as soon as a questionnaire is open. Physical activity
(number of steps per hour or per day) is captured via an
accelerometer installed on the watch. The advantage of the
automatic capture of the activity results from the observation
that the survey questionnaires do not allow a reliable
collection. Experiments have shown that patients
systematically overestimate their physical activity.
Tracked data is transmitted from the tablet or smart phone to
the central server via a certificate-based protocol using a
patient specific identifier. The exchanges always take place
on the initiative of the mobile devices.

It is the members of the medical staff who manage the
patients (and in particular the assignment of an identifier to
each patient) via a specific module.

The system must be simple to use so that its acceptability
by the users (members of the medical staff on the one hand,
patients on the other hand) does not pose any problem.

Mobile devices may be provided by the patient or by the
medical service. The patient provides the Internet access
device.

2) Architecture. The chosen architecture is simple
(Figure 1). It is based on a central server that hosts the data
and the questionnaire and the main computer application
(called the server application thereafter). This server is
installed in a protected intranet. Each patient has a tablet
(possibly associated with a watch, or a bracelet, or other
sensors) that can exchange data with the server via a secure
Internet protocol. It is the mobile application installed on the
tablet that initiates all exchanges with the server.

Figure 1. Architecture of the system

3) Main operations. The main operations permitted by
the system take place chronologically as indicated below.

 � Creation of questionnaires (actor: medical staff in
intranet).
 � Creation of patients (actor: medical staff in intranet).
 � Assignment of questionnaires to patients (actor: medical
staff in intranet).
 � Initialization of the mobile devices (actor: medical staff
in intranet): The mobile application is installed on the
patient's tablet and watch. The server connection information
is initialized on the tablet. The questionnaires are transferred
to the tablet.
 � Initialization of the tablet connection to the Internet
network (actor: patient).
 � Response to questionnaires and possible activation of the
watch (actor: patient): The data is stored temporarily on the
watch and the tablet.
 �Transmission of data to the server (actor: mobile
application in the Internet): The data is transmitted to the
central server as soon as the Internet connection is
established. Connection and transmission are fully
automatic. It is the mobile application that drives the
exchanges.

4) Technologies. For the server, we chose a WINDOWS
technology associated with MYSQL [15] to manage data
storage. The server application is encoded in Java. For
mobile devices (tablet or smart phone, watch), we chose an
Android technology [16] associated with SQLite [17]. The
advantages of Android are two-fold: great variety of mobile
devices supported by this system, affordable prices. The
mobile application is also encoded in Java. The tablet and
watch are interconnected in Bluetooth mode. Data
exchanges are carried out by Web services using REST
(Representational State Transfer) technology [20].

III. COMPUTER APPLICATION FOR THE SERVER

1) General interface. The general menu (Figure 2)
contains tabs for managing medical staff, managing patients,
managing survey questionnaires, assigning questionnaires to
patients, initializing collection, reporting about a patient or a
survey.

2) Model for questionnaires. As soon as a questionnaire
is created, a name is assigned to it (this name is used to
locate it on the tablet's home page). A questionnaire can be
divided into sections. A section may be submitted to the
user several times in the form of a series of predetermined
deadlines or in the form of a regular repetition over time. A
section can include different types of questions: multiple
choice questions, cursor questions, grid questions, open-
ended questions. These types correspond to those which are
most frequently encountered in the medical field. Other
types can be added with the same specification approach.
The wording of a question is handled in two formats: a long
format that is the full text of the question as it is displayed
on the tablet screen, and a short format that is used to locate
the question in the result table.

Final
users

Server

Data base

Staff

Tablet or
Smartphone

+ Watch

Sensors

Secure
Internet
protocol

42Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 49 / 53

Figure 2. Main menu for the server application

Once the creation of the questionnaire is validated, it

switches to the "finalized" state. This status means that the
survey is ready to be published to patients.

3) Assignment of questionnaires to patients. Any
finalized questionnaire may be associated with patients. The
"Assignment Survey" tab allows to associate surveys with
patients. It is possible to specify several associations
simultaneously.

4) Initialization of the mobiles devices of a patient. The
initialization of the mobile devices is obtained by scanning a
QR (Quick Response) code generated by the server
application. This QR code consists of the patient id, the
initialization date, the web service address on the server that
must be used for the data exchanges.

5) Results management. We separated the results of the
surveys and the results of the sensors in two different
classes: result and sensorResult. The typing of the collected
data is the same for the two classes and respects the
following format:

(patient id, variable name, collected value, date)
The variable name corresponds to the short label of a
question or to the label of the parameter collected by a
sensor.

6) Reporting about a survey or a patient. The results for
a survey (all patients combined) or the results for a patient
(answers to questions and parameter values coming from
sensors) can be downloaded in a same Excel file. An
example is given in Figure 3. From this file, we can then
make ad-hoc reporting or in-depth analysis by using a tool
such as SAS or R. It is interesting also to note that such a
file can be seen as the fact table of a warehouse with three
main dimensions : patients, variable, time. Approaches
proposed for calculating indicators in data warehouses can
thus be usefully exploited.

Figure 3. Reporting about a patient (excerpt)

IV. COMPUTER APPLICATION FOR THE MOBILE DEVICES

1) Answering a questionnaire. The names of the
different surveys associated with the patient are displayed in
different bannners on the tablet home page (Figure 4). These
names are those that were specified when creating
questionnaires. Banners with a gray background correspond
to surveys that are not due at the time of the consultation
and are therefore inaccessible. The patient can answer any
survey accessible by clicking on the corresponding banner.
The accessibility of a survey is determined in accordance
with the frequency or timelines specified at the time of its
creation.

Figure 4. Accessing surveys from the tablet home page

43Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 50 / 53

 Figure 5. Answering a question on the tablet (grid question)

Figure 5 shows the presentation of a grid question on the

tablet screen.
2) Step counting. The accelerometer of the watch and

the Google Step component are used to count the steps. A
higher layer was developed to aggregate the count over each
60 minutes interval. It is the value of this aggregate that is
transmitted to the server via the tablet.

Other medical sensors are embedded on Android supports
and can be installed on our system. They permit to capture
parameters such as Temperature, Blood Pressure, Pulse, and
Heart Rate.
 3) Data exchanges. The sending and receiving of data
between the watch and the tablet, on one hand, between the
tablet and the server, on the other hand, is done
automatically without user action. A short message is
displayed at the bottom of the page for a few seconds to
signal the shipment. The sequence diagram below (Figure 6)
describes the principle of exchanges between the mobile
devices and the server. The data of the watch is first stored
in its internal memory and then transmitted on its initiative
to the tablet. The data generated at the tablet level (ie the
answers to the questions) and those recovered from the
watch are stored in its internal memory and then transmitted

to the server at its own initiative. Initialization of the
exchange by the transmitter (watch or tablet) occurs every
30 minutes if the network is available (Bluetooth for
communication to tablet, Internet for communication to
server). The transmitter keeps the data until the receiver has
returned an acknowledgment of receipt. If this
acknowledgment fails within 30 minutes, the sender
attempts a new sending. When the acknowledgment is
received, the sender removes the data from its internal base.
 4) Deployment on the playstore. Our mobile application,
called TimeQuestion, was deployed on the playstore to
simplify the propagation of updates and initialization.
TimeQuestion includes the codes to be installed on the
tablet and the watch. The installation of TimeQuestion is
done automatically on the tablet and also on the watch, if a
watch is connected. The application is optimized for a 7-
inch tablet, but it can also be installed on a smart phone.

V. EXPERIMENTS

The system is now fully operational and the server is
permanently active. Various experiments have been carried
out with members of the Physical Medicine and
Rehabilitation Department of the Clermont-Ferrand Hospital
(France) and patients of this department in order to evaluate
the acceptability of the system.

First, multiple demonstrations were carried out by the
authors. Once the mobile devices have been initialized, it is
no longer necessary to worry about them. If they become
inactive following a discharge of their batteries, simply
recharge the batteries and restart them.

Several patients were asked to test the system when they
were in the PMR (Physical Medicine and Rehabilitation)
Department.

Figure 6. Data exchanges between the mobile devices and the server

44Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 51 / 53

One patient was asked to use the system for two weeks.
The PMR (Physical Medicine and Rehabilitation)
Department has put at her disposal a tablet of 7 inches as
well as an android watch. A survey with 16 questions
relating to movement difficulties was assigned to her. A
response was requested every two days. This patient was
asked to walk 30 to 60 minutes a day. We were able so to
verify that the data went back to the server on a regular
basis. Figure 3 illustrates an excerpt of the collected data
during this experiment.

All these actors found that the system was very
convenient to use and very useful.

We did not have the opportunity to address the
acceptability of the system by patients with disabilities, such
as those with hand tremors or those with visual deficiencies.
We are confident about the efficiency of our system for
those with hand tremors because tablets with large screen
sizes can be handled by the system. We have not explored
solutions for patients with visual deficiencies. For this type
of handicap, specific solutions need to be studied.

The MPR department studies the effects of hydrotherapy
for its osteoarthritis patients. It planned to use the system
with about ten patients for the next treatment periods.

VI. TOWARDS A MORE GENERAL AND FLEXIBLE SYSTEM

We explain in this section the extensions we have
undertaken to make the system more general and more
flexible.

1) Separate management of questions. In the current
version, each question is linked to a questionnaire.
Experiments have shown that the same question may appear
in different questionnaires. It is therefore a question of being
able to specify the questions separately, then to assemble
them to form the questionnaires.

2) Semantic standardization of labels. In the current
version, the wording of the questions and parameters
captured is left to the free choice of the medical staff. It is
then difficult to integrate the data coming from different
services (remember that these labels serve as semantic
reference for the collected data). Yet, this integration would
be interesting to deal with more massive data coming from
different horizons. To facilitate this integration, we propose
to constrain the choice of labels through a shared ontology
of the domain. We are adapting the specification of long and
short labels in order to impose the choice of a term in an
ontology.

3) Sensor assisted installation. In the current version,
each sensor is associated with a specific software
component which, collects the raw data transmitted, ensures
their filtering and aggregates this data over the relevant
period before transmitting them to the tablet. In addition, the
label of the sensed parameter is hard-coded in the
component. The extension consists of decomposing this
component into two parts: a part that remains specific to
each sensor (this part collects the raw data and performs the
filtering), a part that ensures the naming of the associated

parameter and the calculation of the aggregate. The main
menu of the server application is redesigned to allow the
choice of the sensor, the choice of the associated label, the
choice of the type of aggregation to be performed (sum,
average, etc.), the aggregation time interval. The second part
of the component can be then automatically generated. The
installation of a sensor can be so specified directly by a user
manager without requiring the intervention of a developer.

VII. CONCLUSION

The initial objective of this work was to design and
develop a system for the self-collection of medical data. The
data come from the responses to questionnaires transmitted
via the tablet, on the one hand, and the parameters collected
by the watch via sensors, on the other hand. The
questionnaires are defined by the members of the medical
staff through a convivial interface and their structures are
stored on the server in a relational database. They are then
loaded onto the tablet during an initialization procedure. The
application allowing the reading of the values of the sensors
is also automatically installed on the watch during this
initialization. All data collected from questionnaires and
sensors are stored in a unified tabular format to facilitate
their recovery by a spreadsheet in order to activate various
statistical analyzes or data mining treatments.

Our system has also other main advantages. It allows full
mobility of the patient. Its management can be handled by a
member of the medical staff without the intervention of a
specialist. Its operation is automatic as soon as the
initialization of the mobile devices has been carried out.

We have conducted experiments which have shown that
the system is well accepted by the patients.

It is interesting to note that it is possible to incorporate
other types of data into our warehouse. For example, in the
medical domain, the fact table could be used to store
medical analysis results or imaging reports. Technically, we
need to study the interconnection of our system with the
other systems used by physicians.

The data collected, in particular via the sensors, can
quickly become bulky, and one can wonder about the
suitability of such a system for handling big data. The main
problem is the server's storage capacity. A relational table
under Windows NTFS (New Technology File System) has a
maximum capacity of 2GB. We can evaluate the length of a
line in the result table or the sensorResult table to 200
Bytes. Suppose the server is used by a medical department
to track 100 patients. It is thus possible to store 200,000
answers to questions for a single patient and to store the
number of steps per 60 minutes over 25 years for a patient.
It is very comfortable. But if we want to integrate data
coming from several departments into hospitals across the
country, this capacity may become insufficient and other
storage technologies should be considered. Today, there are
technologies for big data that remain compatible with our
architectural choices and that do not put into question our
software.

45Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

 52 / 53

This system was initially defined on the basis of wishes
expressed by a hospital department. But it has been
designed and developed in a generic way and can be used to
collect any kind of data from an individual or a natural or
artificial entity. First, it can be used for monitoring
individuals in various situations: athletes in training,
workers in the performance of certain tasks, etc. But, it can
also be used for monitoring any type of non human entity.
The sensors are then installed on the entity and the
questionnaires are activated by a human observer of this
entity. For example, sensors can be used to monitor vegetal
growth and collect immediate environmental conditions
(e.g., moisture and temperature for air and soil).
Questionnaires can collect more environmental information
(e.g., nature and evolution of the surrounding plantations),
useful for explaining the vegetal growth.

This system is currently being extended to make it more
general and flexible. These extensions mainly concern three
directions: the separate specification of the questions, the
semantic standardization of the labels identifying the
collected data, the assisted installation of a sensor.

REFERENCES
[1] C. Schmitz, “Lime Survey: the free and open source survey software

tool”, Available on: http://www. limesurvey. org/, Accessed on June,
12, 2017.

[2] D. H. Granello and J. E. Wheaton, “Online data collection: Strategies
for research,” Journal of Counseling & Development, no 82(4), pp.
387-393, 2004.

[3] K. B. Wright, “Researching Internet‐based populations: Advantages
and disadvantages of online survey research, online questionnaire
authoring software packages, and web survey services,” Journal of
Computer‐Mediated Communication, no 10(3), 2005.

[4] A.Tellegen and N. G. Waller, “Exploring personality through test
construction: Development of the Multidimensional Personality
Questionnaire,” The SAGE handbook of personality theory and
assessment, no 2, pp. 261-292, 2008.

[5] D. Y. Leung and D. Kember, “Comparability of data gathered from
evaluation questionnaires on paper and through the Internet,”
Research in Higher Education, no 46(5), pp. 571-591, 2005.

[6] M. N. van Poppel, M. J. Chinapaw, L. B Mokkink, W. Van Mechelen
and C. B. Terwee, “Physical activity questionnaires for adults. Sports
medicine,” no 40(7), pp. 565-600, 2010.

[7] K. Kroenke, R. L. Spitzer, J. B., Williams and B. Löwe, “The patient
health questionnaire somatic, anxiety, and depressive symptom
scales: a systematic review,” General hospital psychiatry, no 32(4),
pp. 345-359, 2010.

[8] A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable
sensor-based systems for health monitoring and prognosis,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), no 40(1), pp. 1-12, 2010.

[9] H. Alemdar and C. Ersoy, “Wireless sensor networks for healthcare:
A survey,” Computer Networks, no 54(15), pp. 2688-2710, 2010.

[10] J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola and I.
Korhonen, “Activity classification using realistic data from wearable
sensors,” IEEE Transactions on information technology in
biomedicine, no 10(1), pp. 119-128, 2006.

[11] O. D. Lara and M. A. Labrador, “A survey on human activity
recognition using wearable sensors,” IEEE Communications Surveys
and Tutorials, no 15(3), pp. 1192-1209, 2013.

[12] A. Gaggioli, G. Pioggia, G. Tartarisco, G. Baldus, D. Corda, P.
Cipresso and G. Riva, “A mobile data collection platform for mental
health research,” Personal and Ubiquitous Computing, no 17(2), pp.
241-251, 2013.

[13] D.R. Bassett Jr, “Validity and reliability issues in objective
monitoring of physical activity,” Research quarterly for exercise and
sport, no 71, pp. 30-36, 2000.

[14] R. Rubin and M. Peyrot, “Treatment satisfaction and quality of life
for an integrated continuous glucose monitoring/insulin pump system
compared to self-monitoring plus an insulin pump,” Journal of
diabetes science and technology, no 3(6), pp. 1402-1410, 2009.

[15] J. Greenspan and B. Bulger, “MySQL/PHP database applications,”
John Wiley & Sons, Inc., 2001.

[16] R. R. Lombardo, J. Mednieks and B. Meike, “Android application
development: Programming with the Google SDK,” O'Reilly Media,
Inc., 2009.

[17] M. Owen and G. Allen, “SQLite,” Apress LP, 2010.

[18] R. C. Littell, ”Sas,” John Wiley & Sons, Ltd, 2006.

[19] R, “The R Project for Statistical Computing,” https://www.r-
project.org/, Accessed on June, 12, 2017.

[20] C. Riva and M. Laitkorpi., "Designing web-based mobile services
with REST," Service-Oriented Computing ICSOC 2007 Workshops,
Springer Berlin/Heidelberg, 2009.

46Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

Powered by TCPDF (www.tcpdf.org)

 53 / 53

http://www.tcpdf.org

