
PESARO 2020

The Tenth International Conference on Performance, Safety and Robustness in

Complex Systems and Applications

ISBN: 978-1-61208-773-3

February 23 - 27, 2020

Lisbon, Portugal

PESARO 2020 Editors

Claus-Peter Rückemann, Westfälische Wilhelms-Universität Münster (WWU)/
DIMF / Leibniz Universität Hannover, Germany

 1 / 24

PESARO 2020

Forward

The Tenth International Conference on Performance, Safety and Robustness in Complex Systems
and Applications (PESARO 2019), held between February 23-27, 2020 in Lisbon, Portugal, continued a
series of events dedicated to fundamentals, techniques and experiments to specify, design, and deploy
systems and applications under given constraints on performance, safety and robustness.

There is a relation between organizational, design and operational complexity of organization and
systems and the degree of robustness and safety under given performance metrics. More complex
systems and applications might not be necessarily more profitable, but are less robust. There are trade-
offs involved in designing and deploying distributed systems. Some designing technologies have a
positive influence on safety and robustness, even operational performance is not optimized. Under
constantly changing system infrastructure and user behaviors and needs, there is a challenge in
designing complex systems and applications with a required level of performance, safety and
robustness.

We welcomed academic, research and industry contributions. The conference had the following
tracks:

 Methodologies, techniques and algorithms

 Applications and services
We take here the opportunity to warmly thank all the members of the PESARO 2020 technical

program committee, as well as all the reviewers. The creation of such a high quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to PESARO 2020. We truly believe that, thanks to
all these efforts, the final conference program consisted of top quality contributions.

We also thank the members of the PESARO 2020 organizing committee for their help in handling the
logistics and for their work that made this professional meeting a success.

We hope that PESARO 2020 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the areas related to
performance, safety and robustness in complex systems. We also hope that Lisbon, Portugal provided a
pleasant environment during the conference and everyone saved some time to enjoy the historic charm
of the city.

PESARO 2020 Chairs

PESARO Steering Committee
Wolfgang Leister, Norsk Regnesentral (Norwegian Computing Center), Norway
Mohammad Rajabali Nejad, University of Twente, the Netherlands

PESARO Industry/Research Advisory Committee
Jean-Pierre Seifert, TU Berlin & FhG SIT Darmstadt, Germany
Roger Rivett, Jaguar Land Rover, UK

 2 / 24

PESARO 2020

Committee

PESARO Steering Committee

Wolfgang Leister, Norsk Regnesentral (Norwegian Computing Center), Norway
Mohammad Rajabali Nejad, University of Twente, the Netherlands

PESARO Industry/Research Advisory Committee

Jean-Pierre Seifert, TU Berlin & FhG SIT Darmstadt, Germany
Roger Rivett, Jaguar Land Rover, UK

PESARO 2020 Technical Program Committee

Kaustav Basu, Arizona State University, USA
Morteza Biglari-Abhari, University of Auckland, New Zealand
Dieter Claeys, Ghent University, Belgium
Frank Coolen, Durham University, UK
Simon Eismann, University of Würzburg, Germany
Faten Fakhfakh, National School of Engineering of Sfax, Tunisia
Victor Flores, Universidad Católica del Norte, Chile
Rita Girao-Silva, University of Coimbra &INESC-Coimbra, Portugal
Teresa Gomes, University of Coimbra | INESC Coimbra, Portugal
Marco Gribaudo, Politecnico di Milano, Italy
Manu K. Gupta, Institut de Recherche en Informatique de Toulouse (IRIT), France
Mohamed-Faouzi Harkat, Badji Mokhtar - Annaba University, Algeria
Christoph-Alexander Holst, inIT - Institute Industrial IT, Germany
Rémy Houssin, Université de Strasbourg - ICube Laboratory, France
Sokratis K. Katsikas, Norwegian University of Science and Technology, Norway
Christos Kalloniatis, University of the Aegean, Greece
Atsushi Kanai, Hosei University, Japan
Georgios Keramidas, Think Silicon S.A., Greece
BaekGyu Kim, Toyota Motor North America Inc., USA
Wolfgang Leister, Norsk Regnesentral, Norway
Michele Mastroianni, University of Campania -Luigi Vanvitelli, Italy
Ilaria Matteucci, IIT-CNR, Italy
Mohammad Rajabali Nejad, University of Twente, the Netherlands
Mohamed Nidhal Mejri, Paris 13 University, France
Andrey Morozov,Technische Universität Dresden, Germany
Mohamed Nounou, Texas A&M University at Qatar, Qatar
Kishor Patil, Ghent University, Belgium / INRIA Sophia-Antipolis, France
Tuan Phung-Duc, University of Tsukuba, Japan
Vladimir Podolskiy, Technical University of Munich, Germany
Asad Ur Rehman, Instituto de Telecomunicações, Portugal

 3 / 24

Roger Rivett, Jaguar Land Rover, UK
Joel Scheuner, Chalmers - University of Gothenburg, Sweden
Jean-Pierre Seifert, TU Berlin & FhG SIT Darmstadt, Germany
Omar Smadi, Iowa State University, USA
Kumiko Tadano, NEC Corporation, Japan
Yulei Wu, University of Exeter, UK
Piotr Zwierzykowski, Poznan University of Technology,Poland

 4 / 24

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 24

Table of Contents

Accelerating Real-time Processing of Articles by Using an OpenCL-based FPGA for the OSS Syntactic Parser
SyntaxNet
Yoshiki Kurokawa, Yuichiro Aoki, Yuki Kondo, and Yaoko Nakagawa

1

Monitor for Safety-Critical Mirror Drivers of MEMS Micro-Scanning LiDAR Systems
Philipp Stelzer, Andreas Strasser, Philip Pannagger, Christian Steger, and Norbert Druml

7

Challenges in Mitigating Soft Errors in Safety-critical Systems with COTS Microprocessors
Amer Kajmakovic, Konrad Diwold, Nermin Kajtazovic, and Robert Zupanc

13

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 24

Accelerating Real-time Processing of Articles by Using an OpenCL-based FPGA for

the OSS Syntactic Parser SyntaxNet

Yoshiki Kurokawa, Yuichiro Aoki, Yuki Kondo, Yaoko Nakagawa

Research and Development Group, Center for Technology Innovation - Digital Technology

Hitachi, Ltd.

1-280, Higashi-Koigakubo, Kokubunji, 185-8601, Tokyo, Japan

Email: yoshiki.kurokawa.ee@hitachi.com, yuichiro.aoki.jk@hitachi.com, yuki.kondo.fe@hitachi.com,

yaoko.nakagawa.gn@hitachi.com

Abstract— To improve customer satisfaction is necessary to

provide services that enable real-time responses to complaints

for call-center operations. The real-time parsing of complaint

documents is more important for the real-time responses.

Using the Open Source Software (OSS) syntactic parser

SyntaxNet as a vehicle, a high-speed method using FPGA and

OpenCL to achieve throughput of 700 words/s (required for

real-time processing) is proposed. According to the results of

the SyntaxNet analysis, matrix size (which changes

dynamically according to the progress of the analysis) was

found to be a performance determining factor. The proposed

method was evaluated using public data, and the evaluation

results confirmed throughput of 661 words/s, which almost met

the requirement. As a result, the prospect of realization of a

real-time complaint document analysis service for call centers

was obtained.

Keywords-FPGA; OpenCL; Syntactic parser.

I. INTRODUCTION

For all companies, customer complaints point out
problems with products and services of companies, and they
provide important information for developing products and
services with higher quality. In general, a complaint from a
customer is first classified and extracted from a large amount
of inquiry information. The content of the complaint is then
analyzed, and countermeasures are investigated by customer-
complaint analysis. Parsing is the most-important process for
classification and analysis of complaints. The result of
parsing is the input for a series of analysis processes such as
grasping meaning, classifying sentences, and summarizing
contents [1]. Referring to the “three-second rule”, [2] that is
the rule of the response time of a web site, the parsing
complaint sentences part takes at least one second of the
entire complaint-classification process (taking three seconds).
Since the size of the complaint text is unknown, the text size
is assumed as a general text size. The general text size of
English-language news articles and magazine articles is an
average of 500 words and 900 words, respectively [3]. If a
general article is assumed as a news article or a magazine
article, so general text size is assumed 700 words length, that
is taken between 500 words of a news article and 900 words
of a magazine article. The required processing throughput
would be 700 words/s to process one document per second.
Therefore, the goal of this study is to increase the processing
throughput of the syntactic parser to 700 words/s.

Most of the appreciation of syntactic parser, immediate

TABLE I. SYNTACTIC PARSER
COMPLISON

processing is required at an edge computer. Processing at the
edge computer requires a hardware accelerator with low
power consumption and excellent processing capability.
Among hardware accelerators, a Field-Programmable Gate
Array (FPGA) is known to have low power consumption and
high power efficiency. As a logic circuit, an FPGA enables
offload processing, so it is structurally power efficient. This
study’s purpose is to speed up OSS application SyntaxNet by
FPGA, and to check offload feasibility.

The contributions of this study are that after probing
SyntaxNet, we found that most of the SyntaxNet execution
time is spent on matrix multiplication in Section II, to
address that issue, a method for matrix multiplication with a
high-speed external device FPGA, is proposed in Section III,
and by evaluating the SyntaxNet execution performance, it is
shown that SyntaxNet with FPGA can process a general
sentence in about 1 second in Section IV, then the execution
time was shortened and SyntaxNet was accelerated.

II. STATE OF THE ART

SyntaxNet [4] is an open-source syntax analyzer
announced by Google in 2016. To clarify the position of
SyntaxNet used in this study as a parser, it was compared
with other parsers, namely, Cabocha [10] and KNP [11] [12]
as parsers dedicated to Japanese and Stanford CoreNLP [13]

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 7 / 24

and SyntaxNet as parsers widely used for other languages.
The features and performances of those parsers are compared
with SyntaxNet in TABLE I. Processing speed was
calculated by measuring execution time ourselves. The other
parameters are based on previously reported research. In
terms of processing speed, Cabocha surpassed the other
parsers with throughput of 105K words/s, KNP achieved 105
words/s, Stanford CoreNLP achieved 145 words/s, and
SyntaxNet before speedup achieved 307 words/s. However,
Stanford CoreNLP uses 8 threads, while the others use one
thread. Accuracy of Cabocha is about 4% lower than the
other parsers. KNP Stanford CoreNLP, and SyntaxNet all
achieve accuracy of over 93% and show similar values for
processing speed and accuracy. For Japanese, Cabocha and
KNP are often used, but it looks like they are properly used
according to accuracy and function. Stanford CoreNLP is
popular for English and other languages, but SyntaxNet uses
the same syntax rules as Stanford CoreNLP, and it surpasses
the others in terms of number of supported languages and
performance, so it may be used in the future. Therefore, we
think that our study’s speeding up SyntaxNet is relatively
fast and the study is effective.

III. SYNTAXNET

The SyntaxNet uses a transition-based algorithm [5] for
syntactic parsing and a neural network for the decision
process. SyntaxNet is overviewed in Figure 1. Parsey
McParseface, a model running on SyntaxNet has
demonstrated an analysis accuracy of 97.52% [4]. The
interior of SyntaxNet is largely divided into a part that
executes a transition-based algorithm (written in C ++) and a
part that uses python and tensorflow (written in C ++) to
execute judgments the next processing by using a neural
network.
The transition-based algorithm is a kind of parsing

algorithm that uses a state machine, stack, and buffer to parse
sentences. First, a sentence is input to the sentence buffer,
stack one word to stack at a time from the first word of the
sentence, make a judgement on the top two words of stack,
and one of the three actions is selected as a result of the

Figure 1. SyntaxNet algorithm

judgment. This judgement and action are repeated after all
the words disappear from the stack. After disappearing all
words, an action sequence and dependency relationship of
words is appeared. The process is completed with the result
of the relationship of their words. In the Figure, the
transition-based part performs other jobs except judgment.

Information concerning the top-two words on the stack is
sent to the neural network that performs only the judgment
job, and the result of judgment is sent to the transition-based
part. According to the result of execution-time analysis of
SyntaxNet by Intel Vtune™ Amplifier, the tensorflow
matrix-multiplication library Eigen [6] GEneral Block Panel
(GEBP) uses 73% of the processing time, as shown by the
pie chart in Figure 2. Since the GEBP is used for matrix
multiplication, then matrix multiplication uses for 73% of the
total processing time. In consideration of those results, the
aim of the present study was to speed up matrix
multiplication by the FPGA and improve the execution
performance of SyntaxNet to 700 words/s.

IV. PROPOSAL

OpenCL [7] is chosen for implementing logics on the
FPGA and for activating FPGA from the host computer.
OpenCL is a framework for implementing multithreading,
and its specification is managed by Khronos Group Inc. Intel
uses OpenCL as a framework for implementing FPGAs [8].
OpenCL was chosen for the reason explained below.

The development costs for offloading to the FPGA are
shared between design cost for the logic circuit and system
for starting up the FPGA, and these two costs must be
minimized. When OpenCL is used, the logic-circuit design
can be created in a shorter period of time than the Hardware
Description Language (HDL) design by compiling a C
program to be run on the FPGA. The system design has been
implemented so it does not have any costs. From the above
consideration, it is considered that the development costs can
be reduced by using OpenCL on FPGA.

Then we consider how to call the FPGA from host
computer. It would be efficient to call the FPGA from Eigen.
But Eigen is programmed as allowing multi-threaded
operation. If the FPGA is called form Eigen, multiple calling
would happen to one FPGA. Therefore, it is good place to
call where the point calling Eigen routine currently.

Figure 2. SyntaxNet Execution time analysis

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 8 / 24

Figure 3. Matrix multiplication algorithm

Another consideration, since data cannot be aligned in

the program, Direct Memory Access (DMA) transfer to the
FPGA is impossible with non-aligned data. A separate DMA
buffer is added for DMA, and a memory-copy routine is
added to copy data to the DMA buffer.

To minimize FPGA development cost, matrix-
multiplication open-source sample code written in OpenCL
was chosen for FPGA logic program, and the code was
modified for turning the code performance. The routine for
matrix multiplication is overviewed in Figure 3. Matrix
multiplication is described by a triple loop [9]. The outer
double loop specifies the position where the result, and the
innermost loop calculates the inner-product of each data. In
the OpenCL sample code, parallel processing of the
innermost loop and the other row are performed. The high-
speed internal memory size on FPGA is limited by FPGA
chip size, then all matrix-data are placed on low-speed
external DRAM, and partial data are copied to internal
memory before performing partial matrix multiplication.
Performances of the matrix multiplication on FPGA has
different values depend on row and column size. Figures 4
and 5 show the performance of maximum and minimum data
sizes used by SyntaxNet. According to Figure 4,
performance of the FPGA did not change for any submatrix
shape at minimum data size. Increasing the degree of
parallelism increases the number of invalid area of matrix
multiplication, but it does not improve matrix multiplication
performance. On the other hand, according to Figure 5, the
performance of the FPGA is almost constant at maximum
data size even if the size of the column changes,

Figure 4. FPGA matrix multiplication performance

(minimum)

TABLE II MEASUREMENT CONDITIONS

but the performance increases in proportion to the size of
row. Since the column side size is parallelized as much as
possible when OpenCL is executed, the circuit configuration
can only be slightly changed, and these circuits have the
same performance. Even so, since row size is a parameter
expressing how many elements are calculated in parallel, it is
thought that doubling the number of submatrix rows doubles
computation performance. Submatrix size above 64×64
could not be configured due to lack of FPGA resources, so
64×64 was considered to be the maximum. If execution time
for each matrix size is focused on, it is clear that minimum
matrix size takes about 6 ms, and maximum size takes about
150 ms. For that reason, maximum matrix size of 64×64 was
taken as the parameter of the matrix-multiplication kernel.

V. EVALUATION

Using the study up to the previous section, On the basis
of the results presented in Figures 4 and 5, a matrix
multiplication implemented on OpenCL on FPGA, and the
performance of SyntaxNet of the implementation was
evaluated and verified. The measurement conditions are
listed in TABLE II.
A Nallatech 385A board uses the FPGA to improve

performance. First, total execution time of SyntaxNet using
FPGA matrix multiplication was measured three times and
the average was taken.
The word throughput (which is taken as the performance

Figure 5. FPGA matrix multiplication performance

(minimum)

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 9 / 24

Figure 6. SyntaxNet performance (execution time)

measure of SyntaxNet) is shown in Figure 6. For comparison,
the performance achieved with one Central Processing Unit
(CPU) thread is also shown. In terms of word throughput,
processing time is decreased. The CPU processed 307
words/s, FPGA offload processed 661 words/s, and the
performance ratio of above two was 2.15 times. As a result,
661 words/s was achieved which was almost the target
performance 700 words/s, and then 700 words were
processed in 1.05 seconds. As a result, the FPGA achieved
661 words/s, compared to the target of 700 words/s, and it
could process 700-word article in 1.05 seconds.

A breakdown of the execution time of SyntaxNet based
on the above-described measurements and analysis, and the
performance ratio of CPU and FPGA offloading is given in
Figure 7. In Figures 7(a) to (d), processing performances of
CPU 1 thread and FPGA offloading are compared, and the
performance ratio is shown. Peak performance of matrix
multiplication measured by FPGA alone and performance of
matrix multiplication by Eigen processing routine of 1 CPU
is shown in Figure 7(a). The performance ratio is 8.53 times.
SyntaxNet uses various matrix sizes for actual matrix
multiplication. So SyntaxNet effective performance would
be lower performance than the peak performance.
The ratio of effective performance due to the matrix size

decreases by 6.56 times compared to that of Figure 7(b). It is
necessary to process various sizes of large and small size,
and processing of small matrix size degrades performance in

Figure 7. SyntaxNet execution time breakdown

FPGA processing. It is necessary to process large and small
matrix size, and processing of a small-size matrix degrades
processing performance of the FPGA. As a result, effective
performance is considered to decrease as a whole.
Furthermore, memory processing is generated for FPGA
processing. Therefore, when memory processing overhead
is added, the performance ratio drops by 4.15 times
compared to that shown in Figure 7(c). Then, in
consideration of this result, the performance ratio becomes
2.15 times as shown in Figure 7(d) by adding other
processing time of SntaxNet. Then offloading by FPGA
cannot be achieved due to such overheads. It is difficult to
measure these overhead previously. In consideration of the
host-side software conditions and offload device
characteristics, it will be necessary to make predictions.

VI. DISCUSSION

Performance improvements are considered in the future.
One of the methods for speeding up FPGA offloading is
simultaneously executing DMA transfer and matrix
multiplication by FPGA. However, as for SyntaxNet, the
second-layer neural-network matrix multiplication is based
on the result of matrix multiplication of the first-layer neural
network. Therefore, the second-layer DMA transfer cannot
be started until the first layer result is obtained. The second
and the third layers are the same. Furthermore, a transition-
based calculation is performed after the matrix multiplication
of the third layer, and the transition-based calculation result
is used to next neural network calculation. Therefore, in a
loop that handles sentences, all matrix multiplications
depending on the result need to be executed serially.
Therefore, two SyntaxNet calculations of sentences need to
be performed in parallel to hide the transfer time with the
matrix multiplication time in FPGA. These calculation
dependencies are eliminated by inserting irrelevant
processing. As a result, the DMA transfer time can be hidden.

The other method for improving the performance of
SyntaxNet is memory-copy reduction. In the current
implementation of FPGA offload, the host cannot be used for
DMA transfer from the array data area of the structure
prepared by tensorflow because of data alignment. It is
necessary to copy data to an area that aligned to 64 bytes. To
eliminate this copy for speedup SyntaxNet, the memory area
for the array data of the structure prepared by tensorflow
must be aligned to 64 bytes. It is due to the specification of
the PCIe bus of DMA transferring to the FPGA.

However, the FPGA matrix operation code divides
matrix to submatrix. Then the code can calculate only the
matrix size which is divisible by submatrix, but the code
requires that a matrix of a certain size can be processed.
When using the 64 × 64 submatrix, and matrix column size
is not divisible by 64, for example, the column is 8, the
remaining 56 parts should be 0 stuffed. It is necessary to
make the matrix multiplication an accurate answer by the 0
stuffing process to manage. Since the 0 stuffing process
perform memory copy, it can perform to change memory
alignment to 64 bytes. In this study, the percentage of 0
stuffing that did not require 0-bit stuffing was estimated to be

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 10 / 24

less than 5%. In the case of 95%, it needs memory copy
because of 0 stuffing, then only 5% of memory copy would
be eliminated by tensorflow modification. Then, it was found
that this method had little prospect of performance
improvement. It is thus concluded that the memory copy
elimination method cannot improve the performance of
SyntaxNet.

Another method to improve performance of SyntaxNet is
implementing kernel code as a systolic array, which is a
structure of logic circuit that repeats operations such as
multiplication and addition while moving data. A systolic
array is known as an efficient multiply-add operation method
when there are many combinations of operations. The
systolic array is improved calculation efficiency.

Especially in recent years, Google applied systolic array
to matrix-calculation circuits for deep learning such as TPU
[14]. Circuit logic diagrams of a matrix multiplier using a
self-designed systolic array are shown in Figures 8 and 9.

Each arithmetic unit in Figure 8 is a simple one
consisting of a multiplier and an adder. The arithmetic unit
multiplies a value (A) sending from the left, and another
value for multiplication (B) is held by the register. After that,
the arithmetic unit adds the sent value (S). Each value
coming from the left is sent to the right (An), and the value
after addition is sent to the bottom (Sn). This arithmetic unit
is arranged in two dimensions as shown in Figure 9. Its
operation consists of four steps as follows.

(1) Set all the values of matrix B.
(2) Send the values in the order from the left to the right.

The transmission one step down is started one cycle later,
and the pattern is transmitted diagonally in space.

(3) Send A for the operation and wait for the result to
appear in the lower buffer.

(4) Repeat (1) to (3) with the next data.
Data movement and calculation are performed at the

same time by such operation, and multiply-add operation is
efficient. We attempted to create this systolic array using
OpenCL. The proposed systolic array circuit was created on
the basis of OpenCL. In particular, a systolic-array code was
written with OpenCL as the hardware shown in Figure 9, and
the code looked like working. Then, the circuit ran on FPGA,
but its performance was three digits lower than we expect.

It would happen because the arithmetic unit has a lot of

Figure 8. Systolic array arithmetic unit

Figure 9. Systolic array layout

latency because of its floating-point multiplication, then
OencCL compiler create a lot of processing latency in the
array. The latency cannot be changed by changing the
OpenCL code only. The OpenCL is designed to make
hardware from an algorithm written in C. However, it is
difficult to describe hardware itself like the systolic array.

VII. CONCLUSION

To automatically classify and analyze customer
complaints, we investigated whether it is possible to speed
up the OSS syntax analyzer SyntaxNet with an FPGA,
implemented FPGA offload, evaluated an actual machine,
and obtained the following conclusions. We evaluated
SyntaxNet with FPGA offload, and confirmed that
SyntaxNet's execution performance was 661 words/s, almost
achieved the target of 700 words/s, and processed sentences
of 700 words in general size in about 1 second. The
execution time of an FPGA offload machine was measured,
and the measurement results confirmed that (i) the execution
performance of SyntaxNet was 661 words/s (which almost
achieved the target of 700 words/s) and (ii) sentences with
size of 700 words (in general) could be processed in about 1
second. These results demonstrate that automatic text
categorization and analysis can be immediately executed on
a system with a reduced number of servers by speeding it up
with power-saving FPGA acceleration. This FPGA
offloading can be applied to all neural networks using matrix
multiplication.

ACKNOWLEDGMENT

 The author thanks Dr. Tsuyoshi Tanaka for his
assistance in writing this paper.

REFERENCES

[1] D. Lin, Introduction to Natural Language Processing (NLP)

[0nline]. Available form:
https://www.slideserve.com/jory/introduction-to-natural-
language-processing-nlp 2014.3.12

[2] Akamai Technologies, Inc. New Study Reveals Impact of
Travel Site Performance. [Online]. Available from:

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 11 / 24

https://www.akamai.com/us/en/about/news/press/2010-
press/new-study-reveals-the-impact-of-travel-site-
performance-on-consumers.jsp 2010.06.14

[3] Forbes. Do You Read Fast Enough To Be Successful?.
[Online]. Available from:
https://www.forbes.com/sites/brettnelson/2012/06/04/do-you-
read-fast-enough-to-be-successful/#3b3dd025462e
2012.06.04

[4] D. Andor, C. Alberti, D. Weiss, and A. Severyn, “Globally
Normalized Transition-Based Neural Networks,” arXiv
1603.06042v2, March 2016.

[5] J. Chang, J. Seefried, S. Taylor, and A. Brandner,
“SyntaxNet: Google’s Open-sourced Syntactic Parser,”
Department of Computational Linguistics University of
Tubingen, January 2018.

[6] Eigen is a C++ template library for linear algebra. [Online].
Available from:
http://eigen.tuxfamily.org/index.php?title=Main_Page
2019.08

[7] Khronos Group. OpenCL Overview. [Online]. Available
form: https://www.khronos.org/opencl/ 2019

[8] Intel, Inc. Intel FPGA SDK for OpenCL Software Technology.
[Online]. Available from:
https://www.intel.com/content/www/us/en/software/program
mable/sdk-for-opencl/overview.html 2019

[9] Z. Wang, B. He, W. Zhang, and S. Jiang, “A Performance
Analysis Framework for Optimizing OpenCL Applications on
FPGAs” IEEE, 2016.

[10] T. Kudo and Y. Matsumoto, “Japanese Dependency Analysis
Using Cascaded Chunking,” , in Japanese, June 2002.

[11] S. Kurohashi and M. Nagao, “KN Parser : Japanese
Dependency / Case Structure Analyzer,” unknown, 1994

[12] S. Kurohashi and M. Nagao, “Building a Japanese Parsed
Corpus while Improving the Parsing System,” unknown, 1998

[13] Stanford University. Stanford CoreNLP – Natural language
software. [Online]. Available from:
https://stanfordnlp.github.io/CoreNLP/ 2019

[14] N. P. Jouppi, C. Young, N. Patil, D. Patterson, et.al “In-
Datacenter Performance Analysis of a Tensor Processing
Unit”, ACM/IEEE 44th, 2017

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 12 / 24

Monitor for Safety-Critical Mirror Drivers of

MEMS Micro-Scanning LiDAR Systems

Philipp Stelzer, Andreas Strasser, Philip Pannagger, Christian Steger

Graz University of Technology

Graz, Austria

Email: {stelzer, strasser, steger}@tugraz.at
pannagger@student.tugraz.at

Norbert Druml

Infineon Technologies Austria AG

Graz, Austria

Email: norbert.druml@infineon.com

Abstract—In future, more and more cars will be equipped
with Advanced Driver-Assistance Systems (ADAS) like Adaptive
Cruise Control (ACC), Collision Avoidance System and many
more. Currently, the driver is responsible by law to perceive
the environment and take over control if it is required. But
in foreseeable future highly automated vehicles or even fully
automated vehicles will appear on the road; where the vehicle is
responsible for perceiving the environment, operating the vehicle
and intervening in hazardous situations. At the latest then it will
be necessary that systems shall not fail unnoticed. Therefore,
it is mandatory to monitor safety relevant components. For
instance, also Light Detection and Ranging (LiDAR) Systems
like the 1D Micro-Electro-Mechanical System (MEMS) Micro-
Scanning LiDAR, which will be part of intelligent sensor fusion
in ADAS. Due to the fact that highly automated vehicles often
have various safety monitors installed, our novel Monitor for
the Safety-Critical MEMS Driver is an alternative approach to
the well-known Built-In Self-Test (BIST). In this publication,
we introduce a novel system architecture that is able to verify
the correct functionality of internal control systems in MEMS-
based LiDAR systems. To evaluate the effectiveness of our novel
monitoring approach, we have implemented the procedure on a
1D MEMS Micro-Scanning LiDAR prototype platform.

Keywords–ADAS; LiDAR; Signal Monitor; 1D MEMS Mirror;
Safety Monitor

I. INTRODUCTION

Fully automated driving is gaining more and more atten-
tion. Therefore, industry and academia put a lot of effort
into researching in the field of sensor fusion and functional
safety for sensors in the automotive domain. Key enablers of
highly automated vehicles will be robust Radio Detection and
Ranging (RADAR) and Light Detection and Ranging (LiDAR)
solutions with additional support from vision cameras. By
fusion of sensor data and control functions it is intended
to enable safe automated driving as well in rural as also in
urban environments. In the project PRogrammable sYSTems
for INtelligence in automobilEs (PRYSTINE) the consortium
aims for a Fail-operational Urban Surround perceptION (FU-
SION) [1]. For years, various Advanced Driver-Assistance
Systems (ADAS), such as Electronic Stability Control (ESC)
and Anti-lock Braking System (ABS), have been mandatory
in new cars in the European Union [2]. ESC and ABS are
ADAS, which are active safety components in contrast to
passive safety components, such as seat belts and airbags [3].
For highly automated vehicles, it is indispensable that ADAS

Figure 1. PRYSTINE’s concept view of a Fail-operational Urban Surround
perceptION (FUSION) [1].

are reliable and therefore to ensure the safety for the driver,
passengers and all other road users. Due to quantity and
reliability of such ADAS and integrated systems the Society
of Automotive Engineers (SAE) has introduced six levels of
driving automation. The higher the SAE level, the higher
ranked is the driving automation of the vehicle. Due to the
competences that the systems take over in the vehicle, it
is possible to declare the SAE level of the vehicle [4]. No
matter whether a vehicle, according to the manufacturer, would
support higher automation levels, it is currently necessary
in many countries that the driver continues to observe the
environment and in an emergency can take over control [5]. For
example, according to Article 8 of the Vienna Convention on
Road Traffic, the driver must be able to control the vehicle
continuously. The Vienna Convention on Road Traffic was
ratified by the majority of EU member countries and several
others. Large countries, such as the USA, China or England,
are not among the signatories [6]. Due to legal and technical
barriers, driving automation levels of vehicles are currently
not beyond SAE level 2. In order to introduce vehicles with
SAE Level 3 and higher in the future, it is imperative to adapt
the law from a legal point of view and to develop ADAS
with a higher level of safety, reliability and availability. In
projects like PRYSTINE, it is the goal to develop components
and systems for high reliable and safe ADAS [1]. To ensure
the proper functionality of systems it is mandatory to monitor

7Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 13 / 24

the system especially safety critical parts of it. In case of
a malfunction the system has to be degraded and in worst
case suspended. Hence, these safety monitors are essential for
ADAS in vehicles of SAE level 3 and above. Misbehaviour of a
system is only detectable if the system is monitored. Therefore,
we have been engaged in monitoring the critical signals of a
1D MEMS Micro-Scanning LiDAR System.

With our paper contribution we:

• create a novel test opportunity for control loops,

• ensure the detection of malfunction during test run and

• enhance safety due to this diverse monitoring ap-
proach.

The remainder of the paper is structured as follows. The
overview on related work of MEMS-based LiDAR systems
is given in Section II. The architecture of a novel safety
monitor for safety-critical signals in a MEMS-based LiDAR
System will be presented in detail in Section III and the
achieved results including a short discussion will be provided
in Section IV. A summary and short discussion of the findings
will conclude this paper in Section V.

II. RELATED WORK

LiDAR technologies, which are currently available in the
market are very bulky and cost intensive like the Velodyne
HDL-64E [7]. Therefore, industry and academia put a lot of
effort into the research of automotive qualified, long-range
and low-cost LiDARs. Druml et al. have introduced a 1D
MEMS Micro-Scanning LiDAR, which is able to perceive
the environment up to 200m, shall cost less than 200$ and is
qualified for automotive applications due to its robustness [8].
The functional principle of the 1D MEMS-based LiDAR by
Druml et al. is depicted in Figure 3. Several lasers are shot on
the 1D MEMS mirror. A vertical laser beam is deflected by the
mirror into the scenery. This vertical line is moved horizontally
across the Field-of-View(FoV) by oscillation of the mirror and
the reflected light of the obstacle is captured by a stationary
detector.

System

Safety

Controller

(AURIX)

Laser Illumination

MEMS Mirror

MEMS

Driver

ASIC

Actuation

Sensing

Reflected
Signal

Photo Diodes

dt

Emitted

Signal Point

Cloud

Data

Trigger and

Laser Power Setting

FPGA / Dedicated

LiDAR Hardware

Accelerators

Receiver

Circuits

Raw Data

Emitter Path

Receiver Path

Trigger and

Gain Setting

Config

and

Status

Figure 2. System concept of a 1D MEMS-based automotive LiDAR system
by Druml et al. [8].

Figure 3. Functional principle of a 1D micro-scanning LiDAR [8].

A. 1D MEMS Micro-Scanning LiDAR

In this section, the 1D MEMS-based LiDAR System by
Druml et al. is presented. The system concept of the MEMS-
based LiDAR is depicted in Figure 2. Druml et al.’s system
consists in general of an emitter path, a receiver path and the
System Safety Controller (AURIX). In the emitter path are
included a laser illumination unit, the MEMS mirror and the
actuation and sensing unit of the mirror, the MEMS Driver
ASIC. Within the receiver path are an array of photo diodes
and the receiver circuits. The System Safety Controller is
the central unit, which is responsible ,e.g., for monitoring,
controlling and signal processing. According to the signal
processing part, the task of the System Safety Controller is to
compute and provide a 3D point cloud for dedicated ADAS [8].
Due to the dependence of correct position, direction and
verification signals of the mirror, the Driver ASIC, which is
responsible for the actuation and sensing of the MEMS mirror,
is described in particular. The MEMS Driver is providing
crucial signals to the System Safety Controller and therefore
it is mandatory that the delivered information is reliable.
By reference to the correctness of these crucial signals, the
System Safety Controller will create with the raw data from
the receiver circuits a plausible 3D point cloud. If the crucial
signals were corrupted the 3D point cloud would be useless
due to wrong assumptions of the reflected laser origin.

In Figure 4, the crucial signals are illustrated, which are
provided by the MEMS Driver ASIC. These signals are needed
to monitor during operation the current status of the MEMS
mirror. The POSITION L represents whether the mirror is

Figure 4. Crucial signals of the MEMS Driver ASIC from Druml et al.’s
LiDAR system [8].

8Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 14 / 24

Figure 5. A basic Built-In Self-Test Architecture [9].

aligned to the left or to the right side; logical high means
an alignment to the left and logical low to the right. DI-
RECTION L indicates in which direction the movement is
located; logical high means moving to left and logical low
to the right. Precise and high-frequent phase information of
the current mirror position is provided by a PHASE CLK
signal that counts from 0 to nmax in equal time steps during
one mirror oscillation. Furthermore, an ANGLE OK signal is
available besides the tracking signals. This ANGLE OK signal
notifies to the System Safety Controller if the Driver ASIC
operates according to the programmed specification (e.g., angle
setpoint is reached). To be able to ensure functional-, eye-,
and skin-safety this notification is mandatory: MEMS mirror’s
current position and MEMS Driver ASIC’s internal position
information must match to allow a laser shooting [8].

B. Test Facilities

One of the major objectives of the automobile industry is
to evolve the individual traffic. The coexistence of partial auto-
mated, highly automated and fully automated cars will be the
reality in the near future. In conventionally equipped vehicles,
the driver is responsible for environment perception, operation
of the vehicle and intervention in hazardous situations. In
prospective automated cars more and more competences will
move from the driver to the car. Based on information, which
is obtained from ADAS, the vehicle will make decisions.
Therefore, it is apparently necessary that this information is
reliable. To ensure safe and reliable operation of ADAS and
their embedded components like LiDAR, it is mandatory to
test the behaviour for correctness. BISTs and a wide variety
of safety monitors can be used for this purpose.

1) Built-In Self-Test:
A Built-In Self-Test (BIST) is thought to run simultaneously
to the circuit and is monitoring or checking the output of a
circuit to check its validity. The BIST needs a strategy for
generating input signals for the circuit and has to know how
to evaluate the correlated output. The circuit or device which
is tested is called the Circuit Under Test (CUT). A basic BIST
architecture is shown in Figure 5. A realization of a BIST
fundamentally needs to implement four new functions to the
existing system. First of all, there is the Test Pattern Generator
(TPG), which is responsible for generating the input signals
and for the test. The test pattern consists of multiple sets of test
cases, which theoretically simulates all possible combinations
of input signals. The complement to the TPG is the Output
Response Analyzer (ORA). Its task is to know every correct
output response of the CUT and decides whether the current
output is faulty or valid. To create a meaningful and valid test it
is important to isolate the test from any other input. Therefore,
the Input Isolation Circuitry (IIC) is implemented. Its task is
to decouple all input signals, which are commonly provided

to the CUT and replace them with test-signal coming from the
TPG. Last but not least, to synchronize the behaviour of the
TPG, ORA and IIC the Test Controller is implemented. It first
initializes a specific test then decouples the System Inputs and
finally activates the ORA which then outputs a Fail or Passed
signal [9][10].

2) Safety Monitor Approaches:
Besides BISTs, there are also other monitors, which verify the
behaviour of circuits and overall systems. Schuldt et al. [11],
for example, are strive to test and validate ADAS efficiently by
reference to systematically generated virtual test scenarios. The
idea hereby is to identify the factors, which are affecting the
assistance system. Hence, the test scenarios will be generated.
By reference to the test scenarios a test will be executed and
due to a variety of scenarios a evaluation of the results can
be done. Another approach to monitor ADAS is presented
by Mauritz et al. [12]. With this approach results obtained
from simulations are transferred to the road. They ensure a
consistently behaviour of the ADAS in both worlds due to a
simulation of realistic driving conditions and by utilization of
a set of runtime monitors. Furthermore, Meany [13] elucidated
that in all modern safety-critical systems the Integrated Circuits
(IC) are the root. According to Meany, besides redundant and
diverse development, it is necessary to monitor the ICs to be
fault-tolerant. There are several ways to monitor the IC during
operation. Meany addresses in his paper several opportunities
of IC diagnostics.

III. CORE CONCEPT AND ARCHITECTURE

In this section, we present our concept and architecture
for a novel safety monitor of MEMS-based LiDAR systems.
The reliability of the Driver is a sensitive topic, therefore it is
indispensable to monitor and test the Driver extensively and
diverse. Due to that we have introduced this novel procedure
to be able to test and monitor the Driver in a new way.
At first, the architecture modifications are highlighted and
described. Furthermore, we go through the process flow of
the monitoring and test period. With this new monitor there
is another possibility to detect faults in the Driver module at
an early stage and to take appropriate measures. Due to the
diversity of the testing module it should be possible to prevent
undetected faults even better.

In Figure 6, the modified block diagram is illustrated. In
principle, it is a common phase-locked loop (PLL), which is
essential for the MEMS mirror actuation, the System Safety
Controller, the MEMS mirror and our novel Safety-Critical
Mirror Driver Monitor (SCMDM). The HV(On/Off) signal
sets the points in time in the internal schedule at which
the High Voltage (HV) is switched on or off. This internal
schedule is administrated by the Mirror Subtiming block.
How fast or slow this schedule is processed is dependable
from the PLL and thus, we aimed to test the PLL on its
functionality. Due to this we have designed a SCMDM and
also adapted the existing architecture and integrate our novel
monitor into it. The core of the SCMDM is consisting of
a mirror simulation part and a decision part. The decision
part is responsible to decide when the test run is conducted
and for notification to the System Safety Controller. With the
start of the test run and the accompanying monitoring of the
system, it is also necessary to decouple the Driver from the
physical MEMS mirror. Hence, there were switches for the

9Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 15 / 24

Analog

Core

Phase Error

Detector
Loop

Filter
DCO

System

Safety

Controller

Mirror

SubtimingHV(On/Off)

ZCref

FDCO

p(n)

Mirror

Position

Information

ZCmeas

Safety-Critical Mirror Driver

Monitor

ZCsim

ZCfs

MEMS

Mirror

MEMS Mirror Movement
Simulation

CLTM

HVfs

MEMS Mirror

Movement

Simulat ion Controller

Figure 6. Block diagram of a PLL architecture with the novel adaptions to include a Safety-Critical Mirror Driver Monitor module in the system.

Zero-Crossing measured (ZCmeas) and High Voltage On/Off
(HV(On/Off)) signals implemented. In case of test run started
the SCMDM block disables the switch for ZCmeas signal by
Zero-Crossing forwarding stop (ZCfs) signal and the switch for
HV(On/Off) signal by High Voltage forwarding stop (HVfs)
signal. Furthermore, the SCMDM notifies the System Safety
Controller about a test run by the Control Loop Test Mode
(CLTM) signal.

After a test run is started (can be started at at a vehicle
start or when stopping in front of a traffic light) the Zero-
Crossing simulated (ZCsim) signal is instead of the ZCmeas
forwarded to the Phase Error Detector (PD) block. In case
of a vehicle start, the frequency of the simulated MEMS
mirror movement is set to a random but plausible frequency.
Otherwise, the frequency is set to a different frequency than
the actual mirror swing to test and monitor the behaviour of
the MEMS Driver during control operation. To be able to adapt
the simulated frequency of the Zero-Crossing (ZC) a MEMS
Mirror Movement Simulation Controller (MMMSC) is imple-
mented in the simulation part of the SCMDM. By reference to
the PLL error this controller is adapting the simulated MEMS
mirror frequency and works contrary to the PLL. Due to the
characteristics of the MEMS mirror concerning acceleration
and deceleration, the control loop of the simulation must take
these into account. This is necessary to be able to emulate the
physical MEMS mirror’s behaviour after frequency increase
respectively decrease. The acceleration of the mirror requires
more energy effort than its deceleration. Thus, the integrator
values have to be chosen accordingly to that fact. How the
flow of this procedure looks alike is depicted in Figure 7. The
test cycle and monitoring procedure is divided in the following
steps:

1) Checking for Driving Cycle
In the background, it is continuously checked whether
the vehicle is in the driving state or not. A stopped
driving cycle is, for example, a vehicle stop before
a traffic light or a vehicle start. A test cycle with
subsequent mirror restart usually lasts much shorter
than 1s. In both cases, traffic light stop and vehicle
start, there is at least 1s time to perform the test and
monitoring cycle. Hence, the SCMDM is started after

a stop of the driving cycle is detected.
2) Safety-Critical Mirror Driver Monitor Enable

After the driving cycle check gives green light for
the SCMDM the SCMDM is enabled and notifies the
System Safety Controller via the CLTM signal about
the test cycle. Next step is to adjust the frequency for
the simulated mirror.

3) Frequency Adjustment
On the basis of a simulated mirror movement the
adequate and orderly function of the MEMS Driver

Start Driving Cycle

Enable

Safety-Critical

Mirror Driver

Monitor

No

Enable

Zero-Crossing

Signal

Forwarding

Yes

Disable

Safety-Critical

Mirror Driver

Monitor

PLL Error

greater than

Treshold

Disable

Zero-Crossing

Signal

Forwarding

PLL Error

smaller than

Threshold

End

Set

Simulated

MEMS Mirror‘s

Frequency

Disable

HV On/Off

Signal

Forwarding

PI Control

Enable

HV On/Off

Signal

Forwarding

Compliance

with Timing

Constraints of

Test

Yes

Disable

Safety-Critical

Mirror Driver

Monitor

No

Notify

System Safety

Controller

Figure 7. Process flow of the Safety-Critical Mirror Driver Monitor module.

10Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 16 / 24

ASIC’s PLL shall be proved. Therefore, it is neces-
sary to set a start frequency for this simulated mirror
with a significant difference to the actual frequency of
the physical MEMS mirror. In case of a vehicle start it
is only necessary to choose a frequency within given
limits of the physical MEMS mirror. If the MEMS
mirror has already been in operation, the frequency
to be set must then be selected within plausible limits
and the selected frequency must also be sufficiently
different from the actual mirror frequency. After the
initial frequency of the mirror simulation is set the
system has to be decoupled from the physical MEMS
mirror during the test cycle.

4) Decoupling
Switches have been integrated into the existing ar-
chitecture to decouple the system from the MEMS
mirror. By means of HVfs the HV(On/Off) signal is
decoupled from the physical mirror and thus prevents
an unwanted mirror actuation. During the test phase,
the mirror is actuated in a open loop mode with the
HV(On/Off) value, which is configured before the
test is started. In order to prevent a disturbance of
the control loop in the test mode by the ZC of the
physical mirror, the ZCmeas signal is switched off.
Thus, only the ZCsim signal is forwarded to the PD
block and the PLL is not affected of two different,
actual and simulated ZC, signals.

5) PI Control
Then the control of the PLL and the simulated mirror
frequency begins. The PLL is operating as usual
and tries to match the internal adjusted frequency
with the simulated mirror frequency. The simulated
mirror is also adapting the frequency with respect
to the specifics of the acceleration and deceleration
of the physical mirror. By reference to the obtained
PLL error the MEMS Mirror Movement Simulation
(MMMS) part is informed whether an acceleration
(frequency increase) or a deceleration (frequency
decrease) has to be simulated. It is necessary to know
whether the simulated mirror needs to be accelerated
or decelerated because the integrator values of accel-
eration and deceleration are different. This is the case
because there is a difference in energy consumption
between acceleration and deceleration. This control
happens until either the simulated mirror has the
desired frequency or a time limit is reached.

6) End of PI Control

a) Control Success
After the control process was successful,
the SCMDM is disabled and the physical
MEMS mirror is integrated into the control
system again instead of the simulated one. To
re-integrate the MEMS mirror, the ZCmeas
signal is forwarded to the PD block and the
HV(On/Off) signal of the Mirror Subtiming
block is forwarded to the Analog Core that
connects to the physical mirror.

b) Control Abort
In the case that the control is aborted by
reaching the time limit, the SCMDM is also

disabled. In contrast to successful control,
however, a notification of failure is trans-
mitted to the System Safety Controller. The
System Safety Controller is then responsible
for what measures are taken. Such measures
could possibly be a further test run or a
degradation of the system.

7) Encoupling
After the test run is finished, the physical mirror is
coupled back into the system. This works in principle
similar to the start-up procedure. The physical mirror
in open loop mode is put back into closed loop mode
by activating the PLL. This completes the test run
and the system continues to operate as before.

With this novel procedure there is another possibility to
check the function of a control loop for MEMS-based LiDAR
systems. Especially for safety-critical components in environ-
mental perception systems, it is important that there is not
only redundancy of tests and monitors but also diversity. The
most important thing is to ensure the correct functioning of the
systems that provide information for ADAS and other fusion
components. The following section discusses and explains the
results of the novel monitor approach.

IV. RESULTS

In this section, we provide the measurement results of our
novel monitoring procedure, which has been introduced in
Section III.

Figure 8 shows the start of the novel monitor procedure.
After 427 mirror half periods, the frequency of the simulated
mirror is changed. The Angle Ok signal can be used as an
indicator for a frequency shift between mirror and driver be-
cause it indicates whether the angle setpoint is reached or not.
At the beginning of the frequency mismatch this is also clearly
visible in the ZC measurement. The red signal corresponds to
the ZC reference signal of the MEMS mirror Driver and the
blue one to the ZCsim signal. After the 427 mirror half period
it is clearly visible that the reference and the simulated ZC
signal are no longer synchronous. The exemplary course of
the mirror is recorded at Mirror Angle. The red curve indicates
the course of the mirror at the same frequency and the blue
curve looks like the course when the new frequency is set for

425 426 427 428 429 430

Mirror Half Periods [1]

0

1

A
n

g
le

_
O

K
 [

1
]

425 426 427 428 429 430

Mirror Half Periods [1]

0

1

D
ir
e

c
ti
o

n
_

L
 [

1
]

425 426 427 428 429 430

Mirror Half Periods [1]

0

1

Z
e

ro
-C

ro
s
s
in

g
 [

1
]

425 426 427 428 429 430

Mirror Half Periods [1]

0

1

P
o

s
it
io

n
_

L
 [

1
]

425 426 427 428 429 430

Mirror Half Periods [1]

0

M
ir
ro

r
A

n
g

le
 [

°
]

Figure 8. Measurement with the initial frequency adaption of the simulated
MEMS mirror.

11Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 17 / 24

1706 1707 1708 1709 1710 1711

Mirror Half Periods [1]

0

1

A
n
g
le

_
O

K
 [
1
]

1706 1707 1708 1709 1710 1711

Mirror Half Periods [1]

0

1

D
ir
e
c
ti
o
n
_
L
 [
1
]

1706 1707 1708 1709 1710 1711

Mirror Half Periods [1]

0

1

Z
e
ro

-C
ro

s
s
in

g
 [
1
]

1706 1707 1708 1709 1710 1711

Mirror Half Periods [1]

0

1

P
o
s
it
io

n
_
L
 [
1
]

1706 1707 1708 1709 1710 1711

Mirror Half Periods [1]

0

M
ir
ro

r
A

n
g
le

 [
°
]

Figure 9. Measurement with the frequency match of the simulated MEMS
mirror and the MEMS Driver.

the simulated mirror. Figure 9 shows that the frequency of the
mirror has been adjusted again and that the angle setpoint has
been reached again from the 1709 mirror half period onwards.
Here the Angle Ok signal is essential for detecting whether
the angle setpoint has already been reached again. It looks as
if the frequencies of mirror and Driver are equalized before
the 1709th mirror half period. The exemplary courses of the
mirror overlap almost completely and reference and simulated
ZC signal also occur again almost simultaneously. For our
measurement, the control required 1282 mirror half periods to
adjust the frequencies. That was about 220ms at this frequency.
Depending on the frequency difference between mirror and
Driver, this control time can be extended or shortened. Finally,
the results of the frequency adaption duration are summarised
and shown in Table I.

TABLE I. MEASUREMENT RESULTS

Begin End Time
in ms

Duration of Frequency Adaption 427 1709 ∼ 220

V. CONCLUSION

In our paper, we have introduced a novel architecture for
a Safety-Critical Mirror Driver Monitor. With this monitor a
new possibility is created to test the control of a MEMS-based
LiDAR system and to monitor the functionality of the Driver
during the test cycle. The diversity of system monitor options
is further increased with this new SCMDM, along with BIST
and other diagnostic variants, further reducing the likelihood of
malfunctions remaining undetected. With a duration of around
220ms, this test run is also well under 1s. So it is no problem
to perform this procedure while the start of the vehicle or
a vehicle stop in front of a traffic light. Even if the traffic
starts to move again, not even 1s passes until the LiDAR
system is operational again. Due to the speed at which the
vehicle starts to move (usually a slow start), it is only a
few centimetres at the most that the vehicle does not receive
any information from the LiDAR. By further optimizing the
parameters, the time required for the test run can probably
be shortened considerably. Our intention was to show that in
principle it is possible to simulate the mirror and thus create
a further possibility for MEMS Driver monitoring by means
of the novel monitor. Monitors such as these will be even

more important in the future for highly automated vehicles
than they already are in safety-critical vehicle components.
The top priority is to ensure the safety and reliability of the
ADAS in the vehicles and also to check whether this is the
case.

ACKNOWLEDGMENT

The authors would like to thank all national funding
authorities and the ECSEL Joint Undertaking, which funded
the PRYSTINE project under the grant agreement number
783190.

PRYSTINE is funded by the Austrian Federal Ministry
of Transport, Innovation and Technology (BMVIT) under
the program ICT of the Future between May 2018 and
April 2021 (grant number 865310). More information: http-
s://iktderzukunft.at/en/.

REFERENCES

[1] N. Druml, G. Macher, M. Stolz, E. Armengaud, D. Watzenig, C. Steger,
T. Herndl, A. Eckel, A. Ryabokon, A. Hoess, S. Kumar, G. Dimi-
trakopoulos, and H. Roedig, “PRYSTINE - PRogrammable sYSTems
for INtelligence in AutomobilEs,” in 2018 21st Euromicro Conference
on Digital System Design (DSD), Aug 2018, pp. 618–626.

[2] European Road Safety Observatory, “Advanced driver assistance sys-
tems,” https://ec.europa.eu/transport/road safety/specialist/observatory/
analyses/traffic safety syntheses/safety synthesies en, retrieved: Oc-
tober, 2019. [Online]. Available: https://ec.europa.eu/transport/road
safety/sites/roadsafety/files/pdf/ersosynthesis2018-adas.pdf

[3] M. Lu, K. Wevers, and R. V. D. Heijden, “Technical Feasibility of
Advanced Driver Assistance Systems (ADAS) for Road Traffic Safety,”
Transportation Planning and Technology, vol. 28, no. 3, 2005, pp. 167–
187. [Online]. Available: https://doi.org/10.1080/03081060500120282

[4] SAE, “SAE International Standard J3016 - Taxonomy and Definitions
for Terms Related to On-Road Motor Vehicle Automated Driving
Systems,” SAE International, Standard, January 2014.

[5] C. Brünglinghaus, “Wie das Recht automatisiertes Fahren hemmt,”
ATZ - Automobiltechnische Zeitschrift, vol. 117, no. 4, Apr 2015, pp.
8–13. [Online]. Available: https://doi.org/10.1007/s35148-015-0039-0

[6] United Nations Conference on Road Traffic, “19 . Convention
on Road Traffic,” https://treaties.un.org/pages/ViewDetailsIII.aspx?
src=TREATY&mtdsg no=XI-B-19&chapter=11&Temp=mtdsg3&
clang= en, retrieved: October, 2019. [Online]. Available:
https://treaties.un.org/pages/ViewDetailsIII.aspx?src=TREATY&
mtdsg no=XI-B-19&chapter=11&Temp=mtdsg3&clang= en

[7] Velodyne LiDAR, “HDL-64E,” 2016.

[8] N. Druml, I. Maksymova, T. Thurner, D. Van Lierop, M. Hennecke, and
A. Foroutan, “1D MEMS Micro-Scanning LiDAR,” in The Ninth Inter-
national Conference on Sensor Device Technologies and Applications
(SENSORDEVICES 2018), 09 2018.

[9] C. E. Stroud, A designers guide to built-in self-test. Springer Science
& Business Media, 2006, vol. 19.

[10] E. J. McCluskey, “Built-In Self-Test Techniques,” IEEE Design Test of
Computers, vol. 2, no. 2, April 1985, pp. 21–28.

[11] F. Schuldt, F. Saust, B. Lichte, M. Maurer, and S. Scholz,
“Effiziente systematische testgenerierung für fahrerassistenzsysteme
in virtuellen umgebungen,” 2013, retrieved: October, 2019. [Online].
Available: https://publikationsserver.tu-braunschweig.de/receive/dbbs
mods 00052570

[12] M. Mauritz, F. Howar, and A. Rausch, “Assuring the Safety of Advanced
Driver Assistance Systems Through a Combination of Simulation and
Runtime Monitoring,” in Leveraging Applications of Formal Methods,
Verification and Validation: Discussion, Dissemination, Applications,
T. Margaria and B. Steffen, Eds. Cham: Springer International
Publishing, 2016, pp. 672–687.

[13] T. Meany, “Functional Safety for Integrated Cir-
cuits,” July 2018, retrieved: November, 2019. [On-
line]. Available: https://www.analog.com/en/technical-articles/
a54121-functional-safety-for-integrated-circuits.html

12Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 18 / 24

Challenges in Mitigating Soft Errors in Safety-critical Systems with COTS
Microprocessors

Amer Kajmakovic∗, Konrad Diwold∗, Nermin Kajtazovic¶, Robert Zupanc¶

∗Pro2Future GmbH & Institute of Technical Informatics, TU-Graz, Graz, AT
E-mail: (amer.kajmakovic, konrad.diwold)@pro2future.com

¶ Siemens AG, Graz, AT, E-mail:(nermin.kajtazovic, robert.zupanc)@siemens.com

Abstract—The number of Commercial-Off-The-Shelf (COTS) mi-
croprocessors and microcontrollers used in safety applications
increased significantly over the last decade. In contrast to safety-
certified microcontrollers, these microcontrollers are produced
without integrated protection against memory soft errors, and
limited in terms of available memory and computation power.
However, due to the constant optimizations of the memory’s
physical size and the voltage margins, the probability that
external factors, such as magnetic fields or cosmic rays, tem-
porally alter a memory state (and thus cause a soft error) rises.
Especially within safety-critical automation systems, it is crucial
to address such errors and a wide range of error mitigation
strategies have been proposed. In the context of established
brownfield automation systems, the redesign and deployment
of new hardware is usually not feasible. Therefore software-
based strategies are required, which can be deployed on existing
fail-safe architectures to further improve their performances,
without requiring their rework or conceptual changes. This article
identifies challenges associated with software-based soft error
detection and correction strategies. Along with the challenges, a
short overview of currently applicable software-based mitigation
strategies is given and the strategies are evaluated.

Keywords–soft errors; mixed-criticality; fail-safe; 1oo2D; em-
bedded memory; hamming; parity bit; redundant parity.

I. INTRODUCTION

Given their ever-decreasing packaging size, semiconductors
are becoming more susceptible to external influences such as
alpha particles, cosmic rays or magnetic fields [1]. Figure 1
shows the correlation of error rates in semiconductors and
technology/fabrication nodes (nm) size. It is noticeable, that
the Soft Error Rate (SER) is increasing with decreasing node
size, while the Hard Error Rate remains constant [2]. Given
their low costs and good performances, Commercial-Off-The-
Shelf (COTS) microcontrollers are increasingly deployed in
safety applications [3]. In contrast to safety-certified micro-
controllers, COTS microcontrollers are not produced with an
integrated protection against soft errors. As a consequence,
recent research proactively engages environmentally induced
soft errors by developing new methods for error detection,
mitigation, and data recovery [4]. This research direction has
also yielded new challenges and requirements.

The importance of detecting and resolving soft errors is
reflected by the numerous reports on soft error problems within
safety-critical applications. Reports are coming from a wide
range of industries, such as the automotive industry, space
industry, or the medical industry. Duncan and Roche’s analysis
of semiconductor reliability in the context of autonomous
driving [5] is devastating, as they conclude a (soft error
induced) failure rate of 1 part per million per year. Given that
a single-car implements approximately 8,000 semiconductors,

Aggressive

voltage scaling

(near-threshold

computing)

Figure 1. Software and hardware error rates in semiconductors [2].

the likelihood of a car exhibiting semiconductor induced errors
within its lifespan (of 15 years) is around 12%. While the
results of such failures are unclear while a car is operated,
semiconductor-based soft errors can be resolved (fairly easy)
by restarting the affected component. Not all safety-critical
systems provide the luxury, of resolving an error by ”turning
it off and on again”. Consider, for example, safety-critical
nuclear power plant equipment, where restarting a device in
the event of a soft error is not an option and could lead to
fatalities.

Safety-critical applications usually exhibit different levels
of criticality in terms of their underlying data. While a fraction
of data is system critical (i.e., if affected by an error the conse-
quences can be catastrophic), errors affecting non-critical data
will not impact the safety of operation. This phenomenon is
known as mixed-criticality. Incorporating mixed-criticality into
the design of mitigation strategies, by devising and applying
different detection and correction strategies on memory areas
holding data of different levels of criticality, allows to further
improve a system’s availability while guaranteeing a correct
treatment of system critical events.

The remainder of the paper is organized as follows: Section
II presents an overview of the mitigation strategies. Section III
defines the challenges and requirements for soft error software-
based mitigation strategies in safety-critical applications. Sec-
tion IV shows the evaluation of the two most suitable software-
based mitigation strategies. Section V introduces how existing
safety architectures can be improved with the software-based
approach. In the last section, summary and future work of the
paper are presented.

II. MITIGATING SOFT ERRORS

While soft errors represent the majority of memory errors,
they can be prevented and/or corrected. To prevent soft er-

13Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 19 / 24

rors, memories require fault-tolerance. Fault-tolerance denotes
a systems’ ability to handle faults in individual hardware
or software components, power failures, or other forms of
unexpected problems, while still meeting its specification [6].
There are different approaches to achieving fault tolerance.

Shielding constitutes one of the first approaches, that made
components fault-tolerant. Shielding is applied during the
production phase, where a specific particle-resistant layer was
deployed over the component’s package. The layer reduces
exposure of the bare component/device and prevents environ-
mental particles from influencing under-layers of the package.
Resistance to the electrical charges can also be achieved by
using specific designs and materials for critical points in the
component (e.g., strengthening the gate of the transistors).
Although techniques used during the production phase have
shown very effective against soft-errors, they always require
additional materials and significantly increase the cost of the
design and production.

If early stage design protections are not available, which
is often true for the COTS microcontrollers, then the system
redundancy is a very common solution to establish a fault-
tolerant system. Four main types of redundancy exist: hard-
ware, software, information, and time redundancy. The first
three types of redundancy are achieved by providing additional
components, functions, or data items that are not required for
fault-free operation, but function as a backup for the event of a
fault. Timing redundancy denotes repeating computations and
a comparison of computational results from different timings.

1) Hardware redundancy: Hardware system architectures
can provide fault tolerance via hardware redundancy. Safety-
critical systems often adopt an N-modular (where N > 2)
architecture, where the components exist in certain redundancy
n and perform the same computations in parallel. The correct
result is established based on majority voting. If one of the
modules fails, the majority voter masks the fault by identi-
fying the result of the remaining fault-free modules [6]. N-
modular systems can yield towards a higher Safety Integrity
Level (SIL), as they provide inherent fault tolerance and
consequently a low failure rate. SIL is a quality indicator
for systems that fulfill safety requirements in accordance
with the IEC61508 standard. Many safety systems use simple
architectures such as 1oo1D (1-out-of-1 with diagnostics) and
1oo2D (1-out-of-2 with diagnostics) [7]. In some cases, a
diagnostic system is realized with an additional CPU (i.e.,
lock-step architecture) or with an additional watchdog (i.e.,
challenge-response architecture) [8]. These architectures are
also known as fail-safe where in the event of a specific type of
failure, the system inherently responds in a way that will cause
no or minimal harm to equipment, environment or people. The
main advantage is that these architectures have a good balance
between functional safety (i.e., achieving high safety integrity)
and development process costs. A shortcoming of hardware
redundancy is its requirement for additional hardware. In the
context of memory, it will increase its cost, weight, size,
power consumption, and thus, impacts its designs and tests.
Moreover, additional hardware needs to be in-calculated from
the first stage of chip design. It is therefore almost impossible
to upgrade already existing systems with additional hardware
without degrading its performances, making it unsuitable for
brownfield automation.

2) Software redundancy: Software fault-tolerant techniques
are also based on the redundancy, which is applied to proce-
dures, processes, data or the whole execution code. The most
common type of software redundancy in embedded systems is
the multiplication of data. A simple way of doing this is to
store a variable copy simply transformed (e.g. with hamming
distance 4 or simple inverse function) in a different memory
area. This helps detect (via comparison), mitigate or recover
corrupted data. The main disadvantage of software redundancy
is memory consumption because multiplication of data, code
or processes requires additional memory space that is usually
limited in embedded systems. Also, in some cases, the code
execution time could be significantly increased [1], [4].

3) Informational redundancy: The most prevalent type
of redundancy in the context of memories is Informational
redundancy. It assumes the addition of extra information to the
data, which allows verifying the soundness of the information.
Usually, this additional information are codes, which are
computed based on the data itself. Those codes (so-called Error
Detection And Correction codes (EDAC)) were firstly used in
communication [6] for data recovery, but nowadays they are
widely used in the memories [9]. The family of EDAC codes is
expanding constantly, so far the most popular EDAC codes are:
Parity Codes (error detection without recovery) [10], Hamming
Codes (2-bit detection and 1-bit recovery) [10], Reed-Solomon
and Bose-Chaudhuri-Hocquengham Codes (for multiple bits
error masking) [9]. Also, some works considered the imple-
mentation of other EDAC codes used in communication such
as: LDPC codes [11], RS codes, Turbo codes [12].

Most of nowadays EDAC codes for memories are im-
plemented with an additional chip which is used to encode
and decode EDAC codes [13]. These additional chips increase
the cost of memory by 10-20%. Also, the memory’s die-area
increases by around 20% and processing speed decreases by
3-4% [9]. To avoid an increase in chip size and hardware re-
designs, software-based EDAC codes have been proposed [14],
[15]. However, such an approach leads to a decrease of
available memory as well as an increase of computation time,
access time, and the complexity of the overall system and usual
trade-offs between listed parameters need to be made. It is
worth mentioning that some conventional micro-controllers are
already offering embedded memories with EDAC codes (i.e.,
hamming code or parity bit chips that can protect data from
faults [16], [17]).

EDAC codes have two main properties that need to be
considered: speed and quality. Speed is defined as the time
needed for encoding/decoding EDAC codes and this time
extends the overall memory access time, while quality can
be determined as a number of the faulty bits that the code
can detect and correct. Naturally, there is a trade-off between
quality and speed. For higher quality, more complex EDAC
codes are required, which allow correcting multiple bit-flips.
In this case, both, code magnitude as well as computing
demand are increased due to these adaptations. Faster and less
memory expensive correction schemes are limited in terms of
the number of bits that can be corrected.

Based on EDAC codes, a new method called scrubbing was
also developed. The idea behind scrubbing is to periodically
re-write data in its original location and eliminating soft errors,
if they are correctable through EDAC [18], or copy of original
data [19]. With this approach, an accumulation of soft errors

14Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 20 / 24

inside one region of memory can be avoided.
4) Timing redundancy: Another method that has been

recently investigated is the so-called timing redundancy. It
involves repeating a computation or data transmission two
or more times and comparing results with previously-stored
copies [6]. This type of redundancy is good when we need
to distinguish between transient and permanent errors. If the
fault is still there after repeating the test several times, then
it’s likely that error is a permanent one.

III. CHALLENGES IN MITIGATING SOFT ERRORS

To overcome soft errors, and consequently lower their
impact on the non-functional properties of the system, var-
ious methods for error detection, correction, and mitigation
were introduced. Available methods can be distinguished
into hardware- and software-based correction mechanisms.
Hardware-based mechanisms provide error detection and cor-
rection on an architectural level and use specific hardware.
As already stated, hardware approaches are not applicable in
the brownfield i.e., existing devices or systems and they are
usually demanding redesign and redeployment. For the already
deployed systems or devices, software solution fits better
because they can be deployed with a simple update or software
patch and consequently costs are minimized. Software-based
correction mechanisms operate on the memory itself without
altering the underlying hardware or architecture. Depending
on the application, an adequate correction quality is required,
which denotes the fault magnitude a strategy is capable to
detect, mitigate, and/or recover. Given that there is no such
thing as a free lunch, soft error strategies require additional
execution time and/or memory space, and therefore affect
processor run-time and can cause memory overhead. In the
next section, challenges for software-based solutions for soft-
error mitigation will be discussed.

These observations lead to a general trade-off problem
for the design and deployment of soft error detection and
correction, as it is always required to balance the quality
of detection (required by the underlying application) and the
resources required to implement appropriate correction and
detection strategies. Higher quality of the soft error correction
will require more computation time, space, and sometimes
additional hardware. Depending on the target system, this
might lead to a violation of the system’s requirements (in
terms of cost, available memory space and computation time
for the system’s applications). In the following, the system’s
requirements are outlined in more detail.

1) Run-time performance: The development of methods,
which provide sufficient error coverage, while keeping the im-
pact on the system’s run-time or memory overhead minimal is
particularly important in the context of safety-critical systems.
This is due to the fact that such systems have very strict timing
requirements (i.e., norms in the field define specific timing
limits here, such as Fault Tolerant Time Interval (FTTI) in
ISO26262 or Process Safety Time (PST) in the IEC61508
standard). The FTTI constitutes the timespan between fault
and hazard [20]. Faults must be detected and corrected within
this interval. If a correction is not possible, the system must
guarantee to reach a safe state within the FTTI. Therefore, the
run-time performance of correction strategies plays a crucial
role in the context of safety-critical systems as its application
must not lead to a violation of the FTTI requirements.

2) Memory consumption: Many strategies require addi-
tional memory space for their implementation, which is used
to store copies of data or code, or additional information
(required by the method), such as Parity bits or Error Detection
and Correction Codes (EDAC). From all software solutions,
EDACs codes exhibit the smallest overhead because the ratio
between additional bits required for protection and protected
bits is always less than one while this is not the case for full
redundancy. While in most cases EDAC codes can have a large
memory footprint, parity bits constitute their most lightweight
form. They allow monitoring the consistency of a memory
region (with a defined length) based on a single bit, which
denotes if the number of one-bits in the region is odd or
even. With decreasing the size of the protected region this
can lead to increased memory overhead. To give an example:
the protection of 32bit word via hamming code will result in a
3.15% memory overhead). One-bit recovery of a 32-bit word,
using Hamming code, would require additional 7 bits and thus
result in a memory overhead of 22%.

3) Mitigation quality: The quality of a strategy is defined
by its capability of detecting and correcting (recovering) faulty
bits. Furthermore, detecting and correcting capabilities are
expressed by the number of faulty bits that can be detected
and corrected. The simplest EDAC code (Parity) can detect all
odd bit flips but doesn’t have recovering capabilities. On the
other hand, a 2oo3 system can detect all bit flips and also can
correct, but the complexity and consequently costs are higher.

In fail-safe systems, detection of an error is usually re-
flected with the safety feature because detection is enough to
trigger activation of the safe state and prevents further safety
issues. Between error detection and activation of a safe state,
the system has a defined time for the recovery procedure. If
recovery is not possible for any reason, the system will go into
the safe state and availability will be affected.

4) Mixed criticality: When speaking about safety-critical
memory one must distinguish between different levels of
safety-criticality, which applies to the system data. Especially
in safety-critical applications, some data may have a higher
criticality level than the other. As already outlined, this phe-
nomenon is known as ”mixed-criticality”. While adequate
protection needs to be provided for the whole system, safety-
critical data requires stronger protection. Several recent studies
have investigated mixed-critically in memories, with a focus
on data delivery and prioritization by data criticality [21].

Taking mixed-criticality into account when designing mem-
ory detection and correction strategies, allows enhancing the
reliability and safety of the underlying system, as such strate-
gies aim for increasing the protection of safety-critical memory
parts. By treating different parts of the memory with a different
criticality, the overhead of the correction strategies can be
reduced (in contrast to the whole memory being subject to
rigid correction/detection strategies). In addition, incorporating
mixed-criticality can increase a system’s availability, as faults
in non-system critical memory areas will not necessarily lead
to the halt of the system.

5) Memory organization: Because of the environmental
changes, occurrences of soft errors in memory are not contin-
uous. The chance of a cell being hit by an error is randomly
distributed. Therefore, errors can appear at any time and in
any type of memory or memory part. This can aggravate

15Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 21 / 24

memory protection and detection mechanisms as they are type-
dependent. One can distinguish between two types of memory
in embedded systems: non-volatile and volatile memory. Non-
volatile memory sustains stored information during a loss
of power (e.g., flash memory), while volatile memory needs
constant power to retain stored data (e.g., SRAM) [22].

Embedded memory exhibits different regions: program
memory, data memory, registers and I/O ports [23]. Also,
from the software point of view, the memory layout of C/C++
programs consist of the different sections, that are saved in
different memory regions. Typical memory representation of
C/C++ programs consists of a code segment, data segment,
uninitialized data segment (bss), stack and heap. All of this can
impact the design of the correction/mitigation mechanism.

IV. EVALUATION OF EDAC CODES

As shown in the last section, it is crucial to estimate the
performance and overheads of soft-error mitigation strategies
in order to identify those appropriate for one’s problem domain
and underlying system requirements. This section demonstrates
how such an assessment could be performed, by calculating
and comparing memory consumption and run-time perfor-
mances of the Parity Bit (PB) and Extended Hamming Code
(EHC).

The evaluation is performed for varying lengths of pro-
tected data (as strategies scale different with these). For the
representation of the codes a common annotation (n, k) was
used, where n denotes the number of total bits and k the
number of the protected data bits. The number of required
check bits can be easily calculated as n − k. Utilizing these
parameters, memory consumption (mc) is calculated in (1) and
exhibited on the Figure 2

mc[%] = (n− k)/k · 100% (1)

Figure 2. Memory overhead for different types of Parity Bit (PB) and
Extended Hamming Code (EHC), where the x axis denotes total length of

word and y denotes percentage of the memory overhead.

The run-time performance of a given strategy is closely
connected with the complexity of the underlying algorithm. A
good indicator of the algorithm’s complexity is the number of
logical XOR operators it requires for its implementation.

In the context of PB, a calculation stemming from [24] was
used. The algorithm is based on the consecutive application of
shift and XOR operators. Alternatively, a lookup table could
be used to calculate the parity bits of 8-bit words. While using
a look-up table will slightly increase the memory consumption
of the algorithm it will decrease its complexity by 3 XORs.

Figure 3. Number of XORs for encoding process for different types of
PB(n, k) and EHC(n, k), where y-axis denotes the number of total XORs

gates and x-axis the number of the protected data bits.

The number of the XORs for EHC was calculated accord-
ing to (2).

XORs(k) = 2k+1 − k − 3 (2)

where parameter k can be derived from the following form of
hamming code annotation H(2k, 2k−k−1). The equation (2)
stems from [24] where it was calculated for the EHC recursive
encoding computation. Figure 3 shows the number of the XOR
operator for varying lengths of protected bits.

In terms of mitigation quality, a big difference between PB
and EHC can be observed. While PB is only capable to detect
errors with an odd number of bit-flips (including single-bit
errors), EHC can detect 2 errors and correct only one flipped
bit. In the context of safety-critical systems, this low mitigation
quality has a big impact on availability and safety.

In [25] a detailed report on the number of soft errors
in SRAM memory (512K x 8-bit) is given, which were
observed in space. Errors were recorded in a nanosatellite
that was circulating the Earth’s orbit. During the 2510 days of
recording, four different types of 247593 soft errors occurred.
The majority of these errors were single-bit errors (i.e. a total
of 244150 errors constituting 98.6% of the recorded errors),
while only 2996 errors (i.e., 1.21% of the recorded errors) were
double-bit errors. Multiple bit (> 2) errors occurred at an even
lower rate (corresponding to a total of 217 errors (0.08%)),
while the remaining errors (230 (0.09%)) were classified as
severe errors.

If the capability of presented algorithms was considered
in this example in addition to considering the safety-critical
scenario, PB would detect all single-bit errors and some of
the multiple bit errors, leading to a detection rate of 98.75%.
PB detection alone is not enough and would not increase the
availability of the system, because without recovery the sole
identification of an error would lead to the system being put
into a safe-state as it is not safe to continue calculations.
Using EHC, 99.8% error would be detected and 98.6% would
be corrected. This means that the system’s availability could
be increased significantly as it would only be stopped (put
in a fail-safe state) for 1.4% of the errors. This leads to
the conclusion that (on its own) EHC is significantly better
when it comes to safety and availability, however, this is also
associated with the higher memory overhead and complexity
(as shown before). Also, one should keep in mind that the
SRAM used was relatively old (approximately 20 years old),
and thus exhibits a lower probability for multiple bit errors
because of the higher technology node. With newer memories
(utilizing smaller technologies) the distribution of the error is

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 22 / 24

very likely to be different (i.e. more multiple-bit errors are to
be expected).

In the context of safety-critical systems, the application
of specific fail-safe architectures with hardware redundancy is
very common. The next section will introduce a widely used
fail-safe architecture and demonstrate how the application of
simple EDAC codes can further improve its availability.

V. ENHANCING AN 1OO2D SAFETY ARCHITECTURE

A typical representative of a fail-safe system is a 1oo2
architecture where the hardware, including sensor inputs, is
independently implemented twice. This leads to a multi-core
architecture similar to the one described in [26]. The output
of these parallel lines is checked and selected by a voter [27].
Therefore, when the two outputs differ, the result leading to
a safe and non-critical state is preferred and opted for by the
voter.

From a memories’ point of view, a 1oo2D architecture
provides independent memories for each parallel line of com-
putation. Two independent parallel memories ensure system
hardware and software redundancy. This means that (besides
memory specific data which is required for synchronization)
identical data can be found on both memories (Figure 4 depicts
the memory model in a 1oo2D architecture).

Figure 4. 1oo2D safety architecture.
All regions are equally exposed to the faults, however,

different kinds of protection can be applied to different regions.
Experts advise that protection should be implemented in the
form of periodical tests run over data. As an exemplary
guide, we can refer to the Safety manual [28] provided by
STMicroelectronics for their micro-controllers. For soft errors,
STMicroelectronics advises using redundancy for all safety-
relevant variables. Usual solutions provide a copy of original
data on the same memory chip or an additional (redundant)
chip. The data is periodically compared with the original to
detect the presence of errors [29]. When an error is detected,
it is not clear which memory (or part of the memory) was
affected, therefore such a solution leads to the detection but
not to the correction and will result in the system transitioning
into a safe-state.

A solution for overcoming this problem is to add mecha-
nisms (on top of the existing architecture), which allow recov-
ering faulty data and extend uptime of the system. Recovery
mechanisms in this context are usually EDAC codes based.
Adding additional hardware to the system is not feasible,
as this would require redesigning the system from scratch.
Another option is to apply software-based EDAC codes ap-
proaches.

Given that 1oo2D already provides the possibility to detect
memory errors, the question arises on how existing archi-
tectures (i.e., 1oo2D) can be combined with software-based
approaches.

A method, for enhancing existing 1oo2 hardware architec-
ture, was proposed in our work [30]. This method constitutes
an extension for mixed-critical real-time systems with an
underlying 1oo2 architecture. We refer to it as Redundant
Parity (RP). Figure 5 explains the basic concepts of the RP
method. The method relies on 1oo2’s ability to detect soft-
errors and uses parity bits to establish the location of the error.
Initially, the method generates parity bits for data that needs to
be protected (i.e., data in redundant memories). When bit flips
occur and 1oo2 comparator detects different bits in redundant
data, the usual way is to generate a signal that will trigger
the safe-state of the device. In contrast to that, the proposed
method calculates new parity bits for both protected parts of
the memories. In the next step, old parity bits are compared
with newly calculated parity bits to establish the fault source.
When the algorithm distinguishes between healthy and faulty
data, the recovery phase is activated. Recovery is performed by
simply copying healthy over the faulty data. To sum it up, the
method uses 1oo2 architecture’s inherent capability to detect
bit flip in combination with parity bit to detect which of the
redundant words is faulty and, in the end, it uses redundancy
for recovery.

Figure 5. Redundant parity method.

The method allows for correcting single-bit soft errors (the
majority of occurring soft-errors). In addition, odd multiple
bits soft errors can be corrected and even multiple bits can
be detected. In the context of the error data presented in the
Section IV, this method would detect 100% of the errors and
correct 99.4% of the errors. Memory overhead and complexity
would be equal to double memory overhead and double
complexity of the parity bit. Furthermore, the RP method
provides separated detection and recovery phases, leading to
less recovery time than in other EDAC methods. In addition,
the proposed method is completely independent of the software
architecture as it focuses on the memory’s word level rather
than on the variables or structures [31]. However, the results
also show that the application of the approach is limited to
a 1oo2 architecture, which already provides the required data
redundancy as well as self-tests to detect errors in the data.

VI. CONCLUSION

The main goal of this work was to review software-based
mitigation strategies for mixed-critical memories and identify
challenges, that need to be considered. Soft errors, induced by
external environmental factors, constitute a problem in memory
operation. As safety certificated microcontrollers are expensive
and complex industry is often utilizing COTS microcontroller.

To increase availability and reliability within COTS mem-
ories, a certain level of fault tolerance is required. Current

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

 23 / 24

safety-critical applications rely on simple fail-safe architec-
tures like 1oo1D or 1oo2D (which were outlined in Section V).
The reliability and availability of fault-tolerant systems can
be further improved if such simple fail-safe architectures
are extended with software-based recovery techniques such
as EDAC codes. In addition, deployment of the software-
based EDAC codes does not require additional hardware or
a redesign of the underlying architecture.

When deciding on a method to be implemented on existing
hardware, one must be aware of the overhead costs, which
are associated with a respective method, as it will likely
increase run-time and/or reduce the available memory space.
This aspect can be incorporated in strategy design, by di-
rectly addressing mixed-criticality of data within the correction
and detection strategies, and differentiating among memory
regions. The article tried to outline how such an assessment
could be performed, by calculating and comparing memory
consumption and run-time performances of different strategies,
which can then be linked to the existing requirements of
existing safety architectures, such as 1oo1D or 1oo2D.

The comparison of PB and EHC showed that, while PB
exhibits less complexity and run-time overhead it will not
increase availability per se, as detection will not lead to cor-
rection (in contrast to EHC). However, when PB is combined
with existing 1oo2 safety architectures, a mitigation approach
(named redundant parity) can be established, which is able
to both detect and correct most of the soft-error occurring in
memories, and thus significantly improve availability.

The method utilizes 1oo2’s inherent capability of soft error
detecting (achieved by a simple comparison test) and adds the
mechanism of parity bits to distinguish between faulty and
healthy data. In case an error is detected, the innate redundancy
of the 1oo2 architecture is used to recover the error by copying
healthy over faulty data.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the
Austrian Research Promotion Agency (FFG) (#6112792).

REFERENCES

[1] J. Vankeirsbilck, H. Hallez, and J. Boydens, “Soft error protection
in safety critical embedded applications: An overview,” in 2015 10th
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), November 2015.

[2] H. Iwashita, “International standards adopted by itu-t to address soft
errors affecting telecommunication equipment,” ITU-T International
Telecommunication Union - Telecommunication Standardization Sector,
Geneva, CH, Standard, 2018.

[3] H. Forsberg and K. Karlsson, “Cots cpu selection guidelines for safety-
critical applications,” in 2006 IEEE/AIAA 25TH Digital Avionics
Systems Conference, Oct 2006.

[4] V. Thati, J. Vankeirsbilck, J. Boydens, and D. Pissoort, “Data error
detection and recovery in embedded systems: a literature review,”
Advances in Science, Technology and Engineering Systems Journal,
2017.

[5] M. Duncan and P. Roche, “Paving the way towards autonomous
driving — tackling soft errors to security challenges,” in 2017 IEEE
International Reliability Physics Symposium (IRPS), April 2017.

[6] D. Elena, Fault-Tolerant Design. KTH Royal Institute of Technology,
Krista, Sweden: Springer, 2013.

[7] F. Handermann, “Process safety architecture system neutral solution
comparison,” Chemical Engineering Transactions, April 2016.

[8] R. Mariani and P. Fuhrmann, “Comparing fail-safe microcontroller
architectures in light of iec 61508,” in IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems (DFT 2007), 2007.

[9] A. Mukati, “A survey of memory error correcting techniques for
improved reliability,” Journal of Network and Computer Applications,
2011.

[10] E. Fujiwara, Code Design for Dependable Systems: Theory and Prac-
tical Application. New York, NY, USA: Wiley-Interscience, 2006.

[11] S. Jeon, E. Hwang, B. V. K. V. Kumar, and M. K. Cheng, “Ldpc
codes for memory systems with scrubbing,” in 2010 IEEE Global
Telecommunications Conference GLOBECOM 2010, Dec 2010.

[12] B. Tahir, S. Schwarz, and M. Rupp, “Ber comparison between con-
volutional, turbo, ldpc, and polar codes,” in 2017 24th International
Conference on Telecommunications (ICT), May 2017.

[13] M. Restifo, P. Bernardi, S. De Luca, and A. Sansonetti, “On-line
software-based self-test for ecc of embedded ram memories,” in IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, October 2017.

[14] N. Maruyama, A. Nukada, and S. Matsuoka, “Software-based ecc for
gpus,” Symposium on Application Accelerators in High Performance
Computing, January 2009.

[15] D. Dopson, “Softecc: a system for software memory integrity checking,”
Ph.D. dissertation, Institute of Technology. Dept. of Electrical Engineer-
ing and Computer Science, Massachusetts, 2007.

[16] Intel R© Embedded Memory User Guide, STMicroelectronics.
[17] MWCT101xS Safety Manual, NXP Semiconductors.
[18] G. Mayuga, Y. Yamato, T. Yoneda, M. Inoue, and Y. Sato, “An ecc-based

memory architecture with online self-repair capabilities for reliability
enhancement,” in 20th IEEE European Test Symposium (ETS), 2015.

[19] R. Santos, S. Venkataraman, A. Das, and A. Kumar, “Criticality-
aware scrubbing mechanism for sram-based fpgas,” in 24th International
Conference on Field Programmable Logic and Applications, 2014.

[20] IEC, “International Standard 61508 Functional safety: Safety related
Systems,” International Electrotechnical Commission, Geneva, CH,
Standard, 2005.

[21] J. S. Miguel and N. E. Jerger, “Data criticality in network-on-chip de-
sign,” in Proceedings of the 9th International Symposium on Networks-
on-Chip, ser. NOCS ’15. New York, NY, USA: ACM, 2015.

[22] K. Itoh, “Embedded memories: Progress and a look into the future,”
IEEE Design Test of Computers, January 2011.

[23] Reference manual for STM32 applications, Intel.
[24] L. Zhengrui, L. Sian-Jheng, and H. Honggang, “On the arithmetic

complexities of hamming codes and hadamard codes,” 2018.
[25] H. Caleb and B. Vipin, “Error detection and correction on-board

nanosatellites using hamming codes,” Journal of Electrical and Com-
puter Engineering, 2019.

[26] F. Reichenbach and A. Wold, “Multi-core technology – next evolution
step in safety critical systems for industrial applications?” in 2010
13th Euromicro Conference on Digital System Design: Architectures,
Methods and Tools, September 2010.

[27] C. Preschern, N. Kajtazovic, and C. Kreiner, “Built-in security enhance-
ments for the 1oo2 safety architecture,” in 2012 IEEE International Con-
ference on Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER), May 2012.

[28] STM32F4 Series safety manual - user manual, STMicroelectronics.
[29] Handling of soft errors in STM32 applications, Intel.
[30] A. Kajmakovic, N. Kajtazovic, K. Diwold, R. Zupanc, and G. Macher,

“Flexible soft error mitigation strategy for memories in mixed-critical
systems,” in 2019 ISSREW: International Workshop on Software Hard-
ware Interaction Faults, Oct. 2019.

[31] A. Kajmakovic, R. Zupanc, S. Mayer, N. Kajtazovic, M. Höffernig,
and H. Vogl, “Predictive fail-safe improving the safety of industrial
environments through model-based analytics on hidden data sources,”
in Proceedings of the 13th IEEE International Symposium on Industrial
Embedded Systems. IEEE Press, June 2018.

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Powered by TCPDF (www.tcpdf.org)

 24 / 24

http://www.tcpdf.org

