
SCALABILITY 2024

The First International Conference on Systems Scalability and Expandability

ISBN: 978-1-68558-216-6

November 17th – 21st, 2024

Valencia, Spain

SCALABILITY 2024 Editors

Petre Dini, IARIA, USA/EU

 1 / 26

SCALABILITY 2024

Forward

The First International Conference on Systems Scalability and Expandability (SCALABILITY 2024),
held on November 17-21, 2024 in Valencia, Spain, inaugurates a series of events covering all aspects
related to scalability challenges and solutions from design, to monitoring, and maintenance of
computational systems.

The true definition of scalability has to do with meeting demand. Scalable design is a form of
responsiveness. Scalability is the ability of a system to provide throughput in proportion to, and limited
only by, available hardware resources. A scalable system is one that can handle increasing numbers of
requests without adversely affecting response time and throughput.

The growth of computational power within one operating environment is called vertical scaling.
Horizontal scaling is leveraging multiple systems to work together in parallel on a common problem.
Cloud scalability in cloud computing refers to the ability to increase or decrease IT resources as needed
to meet changing demand. Scalability is one of the hallmarks of the cloud and the primary driver of its
exploding popularity with businesses. Scaling is one of the most important components of cloud cost
management: performance vs. availability vs. scalability tradeoff is essential.

Data storage capacity, processing power and networking can all be scaled using existing cloud
computing infrastructure. Better yet, scaling can be done quickly and easily, typically with little to no
disruption or down time. Third-party cloud providers have all the infrastructure already in place; in the
past, when scaling with on-premises physical infrastructure, the process could take weeks or even
months and required tremendous expense.

Whether traffic or workload demands increase suddenly or gradually over time, a scalable cloud
solution enables organizations to respond appropriately and cost-effectively to an increased need for
storage and performance. The switch to cloud has improved the computing power for organizations that
used to run servers on premises. The leading cloud providers - Amazon Web Services (AWS), Microsoft
Azure, and Google Cloud Platform - offer flexibility for organizations that may need to add or reduce
resources at a moment’s notice.

Virtualization is what makes cloud scalability possible. In cloud computing, scaling is the process
of adding or removing computing, storage, and network services to meet the demands a workload has
for resources in order to maintain availability and performance as utilization increases.

The number of IoT devices might soon reach 39 billion. Other more complex systems (such as
vehicles and power grids, equipped with sensing and storage capabilities) generate huge amounts of
data of various types. 5G operation uses a large scale of heterogeneous IoT devices while being
performance-efficient in real-time is challenging considering central processing by services hosted on
geographically distant clouds (latency incurred and the ingress bandwidth).

To leverage resources located at the edge of the network forming a continuum between the
cloud and the edge, the Fog/Edge computing paradigm is expected to increase not only scalability, but
also the agile adaptation of sudden traffic, speed, and load changes. The approach deals with latency
and bandwidth in close vicinity with data producers (IoT devices, such as home routers, gateways, or
more substantial micro data centers) by harnessing the edge. This approach raises security aspects
(trust, privacy, guarantees) in edge-based computing.

This conference was very competitive in its selection process and very well perceived by the
international community. As such, it attracted excellent contributions and active participation from all
over the world. We were very pleased to receive a large amount of top quality contributions.

 2 / 26

We take here the opportunity to warmly thank all the members of the SCALABILITY 2024
technical program committee as well as the numerous reviewers. The creation of such a broad and high
quality conference program would not have been possible without their involvement. We also kindly
thank all the authors that dedicated much of their time and efforts to contribute to the SCALABILITY
2024. We truly believe that thanks to all these efforts, the final conference program consists of top
quality contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the SCALABILITY 2024 organizing
committee for their help in handling the logistics and for their work that is making this professional
meeting a success.

We hope the SCALABILITY 2024 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in scalability and
expandability research. We also hope that Valencia provided a pleasant environment during the
conference and everyone saved some time for exploring this beautiful city

SCALABILITY 2024 Steering Committee

Xiaohua Feng, University of Bedfordshire, UK
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Byungchul Tak, Kyungpook National University, South Korea
Julian Kunkel, Georg-August-Universität Göttingen, Germany

SCALABILITY 2024 Publicity Chair

Francisco Javier Díaz Blasco, Universitat Politecnica de Valencia, Spain
Ali Ahmad, Universitat Politecnica de Valencia, Spain

 3 / 26

SCALABILITY 2024

Committee

SCALABILITY 2024 Steering Committee

Xiaohua Feng, University of Bedfordshire, UK
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Byungchul Tak, Kyungpook National University, South Korea
Julian Kunkel, Georg-August-Universität Göttingen, Germany

SCALABILITY 2024 Publicity Chair

Francisco Javier Díaz Blasco, Universitat Politecnica de Valencia, Spain
Ali Ahmad, Universitat Politecnica de Valencia, Spain

SCALABILITY 2024 Technical Program Committee

Alessia Auriemma Citarella, University of Salerno, Italy
Antonio Brogi, University of Pisa, Italy
Fabiola De Marco, University of Salerno, Italy
Luigi Di Biasi, University of Salerno, Italy
Paolino Di Felice, University of L'Aquila, Italy
Arianna D'Ulizia, Consiglio nazionale delle ricerche - IRPPS, Rome, Italy
Xiaohua Feng, University of Bedfordshire, UK
Alireza Ghasempour, University of Applied Science and Technology, Iran
Boujemaa Guermazi, Toronto Metropolitan University, Canada
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Hartmut Kaiser, Louisiana State University, USA
Julian Kunkel, Georg-August-Universität Göttingen, Germany
Pascal Lorenz, University of Haute Alsace, France
Lorena Parra Boronat, Universitat Politècnica de València, Spain
Gunter Saake, Otto-von-Guericke-University of Magdeburg, Germany
Ioakeim K. Samaras, Intracom Telecom, Software Development Center, Thessaloniki, Greece
Byungchul Tak, Kyungpook National University, South Korea
Asad Usmani, Goethe University Frankfurt, Germany
Daqing Yun, Harrisburg University, USA

 4 / 26

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 26

Table of Contents

Total Cost of Ownership: Cloud-based vs. Onboard Vehicle Software Components
Daniel Baumann, Martin Sommer, Eric Sax, Falk Dettinger, and Michael Weyrich

1

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks
Egi Brako, Julian Kunkel, and Jonathan Decker

7

Scalable Software Distribution for HPC-Systems Using MPI-Based File Systems in User Space
Jakob Dieterle, Hendrik Nolte, and Julian Kunkel

14

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 26

Total Cost of Ownership: Cloud-based vs. Onboard Vehicle Software Components

Daniel Baumann, Martin Sommer and Eric Sax
Institut fuer Technik der Informationsverarbeitung (ITIV)

Karlsruhe Institute of Technology (KIT)
Engesserstr. 5, 76131 Karlsruhe, Germany

E-Mail: {daniel.baumann, ma.sommer, eric.sax}@kit.edu

Falk Dettinger and Michael Weyrich
Institute of Industrial Automation and Software (IAS)

University of Stuttgart
Pfaffenwaldring 47, 70550 Stuttgart, Germany

E-Mail: {falk.dettinger, michael.weyrich}@ias.uni-stuttgart.de

Abstract—The automotive industry is increasingly focusing
on connected vehicles that have the opportunity to connect to
external platforms, such as the cloud or edge. In this context,
the electric/electronic (E/E) architecture is evolving from a signal-
oriented to a service-oriented architecture where loosely coupled
services, representing functions or the software components
(SWCs) they are composed of, can be dynamically connected.
At the same time, realization by means of independent services
enables the execution both in the vehicle and in the communication
network, like the cloud. The costs involved in developing, operating,
and maintaining vehicle SWCs have a significant impact on
whether it makes sense to execute them in the cloud. In this
paper, the authors propose an approach to calculate the Total
Cost of Ownership (TCO) with Capital Expenditures (CapEx)
and Operating Expenses (OpEx) of SWCs for the two different
execution platforms, vehicle and cloud. The TCO model includes
the lifecycle of the function from development to usage and
maintenance. In a case study with a machine learning SWC for
the heating, ventilation and air conditioning (HVAC) function,
the model is investigated and break-even periods for the two
platforms are calculated.

Keywords-Total Cost of Ownership; Electric/Electronic Architec-
ture; Cloud-based Software Components; Cloud Computing.

I. INTRODUCTION

The automotive industry is rapidly moving towards connected
vehicles, integrating a growing number of software-defined
functions [1]. This transition presents a critical decision for
upcoming Electric/Electronic (E/E) architectures: where to
execute these functions or the Software Component (SWC)
they are composed of, aboard the vehicle or in the cloud.

Safety-critical functions may require local processing to
minimize latency and ensure robustness, while non-safety
critical comfort functions are possibly suitable for cloud
execution. Previous work identified cost as a significant factor in
determining the suitability of the different execution platforms
[2].

Therefore, a comprehensive cost analysis based on Total
Cost of Ownership (TCO) is needed to enable high-quality
decision-making for the cloud offloading. This paper contributes
to the ongoing research on connected vehicle architectures
by providing a structured model for evaluating the economic
feasibility of cloud-based execution. We anticipate that this
model will be valuable for both automotive E/E architects and
software developers involved in the design and deployment of
software-defined functions for the future of connected vehicles.

The remainder of the paper is structured as follows: Section
II will describe the theoretical background necessary for

understanding the models utilized in the paper. Section III
will cover the related state of work, providing an overview
of existing research and literature on existing TCO models.
Following in Section IV, these models for the onboard and
the cloud-based SWCs are described. The TCO model will
then be analyzed with the two execution platforms cloud and
onboard in a case study with a fleet size of 1000 and 5000
vehicles in section V. A discussion of the use cases and the
cost reduction options will be provided in section VI. Finally,
section VII presents a conclusion to the paper and outlines
future work.

II. BACKGROUND

A. E/E architecture

The E/E architecture refers to the electrical and electronic
system of a vehicle, which includes all electrical components
and control units required to operate the vehicle [3].

Historically, specific functions were executed on dedicated
Electronic Control Units (ECUs) with limited interconnectivity.
This so-called distributed architecture has been replaced by the
domain-oriented architecture, where software is abstracted from
the hardware and logically subdivided according to functions
instead of according to individual control units [4]. This means
that more than one SWC runs on a single ECU. In the future,
centralized architectures will increasingly be used. Fewer but
more powerful control devices designated to High Performance
Computer (HPC) run the software components that underlie
the functionality [5].

Today’s automotive applications use signal-oriented architec-
tures in which the software and hardware components involved
are closely coupled with each other. In order to manage
the increasing proportion of software in the vehicle and to
enable dynamic E/E architectures, so-called service-orientated
architectures are being introduced. The various functions are
designed as independent services that can interact with each
other in a modular fashion. Instead of linking individual
components directly with each other as in the signal-orientated
architecture, the components are viewed as independent services
that can communicate via defined interfaces. [6]

Service-oriented E/E architectures can be used to design
vehicle systems in such a way that they can communicate
seamlessly with cloud services. This enables the utilization
of cloud resources, such as the provision of data-intensive
services. [7]

1Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 7 / 26

Legend

SWC A

Hardware

SWC B SWC C

Runtime Environment

I/O-, Memory-,
Microcontroller-,

and Comm.
Drivers

Basic Software
System-, Memory-

and
Communication

Services

I/O Hardware-,
Memory

Hardware- and
Comm. Hardware

Abstraction

Sensor Bus system

Software Component
(Application Layer)

Application Abstraction
Layer

Microcontroller
Abstraction Layer

Service Layer

ECU Abstraction and

Complex Drivers

Figure 1. Software components within the AUTOSAR layered software architecture (adopted from [3]).

We define cloud-based SWC as follows, referring to and
adapting Milani’s definition [8]: "Cloud-based software com-
ponents are regulation, control, or monitoring tasks that use
the computing & storage capacities of the cloud instead of the
available computing capacities of the vehicle. They can use
both information from the vehicle and data from the cloud as
input. The output of the relocated components optimize existing
functions in the vehicle, replace them, or create a new function
for themselves." The localization of software components can
be explained using the layer structure of the AUTomotive
Open System ARchitecture (AUTOSAR) architecture and refers
to the application layer (s. Figure 1). Whereas a software
component itself is defined as an "entity with discrete structure,
such as an assembly or software module, within a system
considered at a particular level of analysis" [9].

B. Cloud Computing

In general, Cloud Computing refers to the characteristics of
a flexible and scalable infrastructure that conveys the illusion of
unlimited, on-demand access to IT resources. The most widely
adopted definition originates from the U.S. National Institute of
Standards and Technology (NIST) [10]: “Cloud computing is
a model to enable ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal
management effort or service provider interaction.” In cloud
computing, three different service models have emerged for
accessing cloud resources: Software as a Service (SaaS),
Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS) [10].

C. Total cost of ownership

TCO is a financial estimate of the overall cost of a product
or service over its entire lifespan, not just the initial purchase
price. TCO consider all the direct and indirect costs associated

with owning and using the product or service. First introduced
by Ellram and Siferd in 1995, the concept of TCO has become
widely adopted across industries and academia as a means
of evaluating the long-term economic viability of investments.
[11] TCO encompasses both the initial Capital Expenditures
(CapEx) and the aggregate of Operating Expenses (OpEx) [12]:

TCO = CapEx+OpEx (1)

CapEx refers to the upfront costs incurred at the time of
purchasing the product or service. In contrast, OpEx are the
ongoing costs associated with owning and using the product
or service over its entire lifecycle.

III. RELATED WORK

In their paper, Martens et al. [13] introduce a TCO approach
tailored to cloud computing services. It outlines different pricing
structures for cloud computing services and develops a formal
mathematical model. The cost categories identified include
strategic decision-making, evaluation and selection of service
providers, service charges for different cloud models, imple-
mentation, support, initial and ongoing training, maintenance
and modification, system failures, and backsourcing. A case
study is presented as an IaaS example, detailing the cost types
and related cost factors.

Kashef et al. [14] provide a detailed specification of cloud
computing costs for hybrid clouds. Twenty cost factors are
identified in the categories electricity, hardware, software, labor,
business premises and cloud service. Costs are broken down
into fixed and variable costs over time. The costs of a scenario
for running an in-house data center with ten different services
is shown.

Walterbuch et al. [15] introduce a TCO model tailored for
cloud computing services in a public cloud environment. The
example demonstrates the provisioning of a public IaaS Cloud
Computing Service.

2Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 8 / 26

The paper by Heinrich et al. [16] proposes a TCO model
for cloud computing, covering the cost of adoption, procure-
ment, migration, operation (external and internal), usage, and
exit. A case study is presented, comparing two scenarios: a
Serverless Scenario and a Lift and Shift Scenario, against an
on-premises architecture. Serverless refers to a platform for
deploying applications without the user having to care about
the underlying infrastructure. In contrast, the term lift and shift
is used to describe a function that is migrated to the cloud.
The study shows that the operation cost for cloud computing
is lower than that on-premises. In terms of total cost, the lift
and shift scenario is less expensive than on-premises after 15
years. The serverless scenario is always more expensive than
the on-premises solution.

There is a gap in the literature regarding the comparison of
traditional onboard functions with cloud computing services,
especially within the automotive sector. This paper aims to
address this gap by providing a detailed analysis of the TCO
of the automotive onboard and cloud functions. Furthermore,
we identify and analyze cloud computing as an enabler for
further automotive functions and services.

IV. TCO MODEL FOR SOFTWARE COMPONENTS

The development and operation of vehicle SWC in the
cloud or on board the vehicle is associated with costs. The
TCO of a SWC TCOSWC consist of the development costs
Cdev, the deployment costs Cdepl, both capital expenditures,
and execution costs Cexe which are operating expenses on a
monthly basis:

TCOSWC = Cdev + Cdepl︸ ︷︷ ︸
CapEx

+ Cexe︸︷︷︸
OpEx

(2)

Expert interviews were conducted with a German Original
Equipment Manufacturer (OEM) for the creation and evaluation
of the TCO model. The cost components of the onboard
function and the cloud function are explained in more detail
below.

The following cost breakdown relates to the SWC shown in
Figure 1, which are assigned to the application layer.

A. Onboard SWC

Similar to equation 2 the costs of an onboard vehicle SWC
can be summarized as:

TCOv,SWC = Cv,dev + Cv,depl + Cv,exe (3)

1) Development: The costs of developing an onboard vehicle
SWC Cv,dev can be divided into software Cv,dev,sw and
hardware Cv,dev,hw. In the following, hardware always refers
to ECUs with a microcontroller and the associated peripherals
[17]:

Cv,dev =

n∑
i=0

Cv,dev,sw +

n∑
i=0

Cv,dev,hw (4)

Software development costs Cv,dev,sw include expenses related
to designing, implementing, integrating and testing software

functions used in vehicle control systems. The development
costs of software increase due to the requirements for reliability
and safety. This is because careful validation and verification
are necessary to ensure that the software is error-free and ro-
bust. Hardware development costs Cv,dev,hw include expenses
for designing ECUs, sensors, actuators, and other physical
components required for the function’s functionality. These
components must often meet strict requirements for robust-
ness, reliability, and performance to withstand the demanding
environmental conditions of vehicle operation.

2) Deployment: The deployment costs of an onboard vehicle
function Cv,depl consist of the sum of expenses associated with
the material, production and logistic of the ECUs Cv,depl,ecu:

Cv,depl =

n∑
i=0

Cv,depl,ecu (5)

3) Execution: The execution costs Cv,exe pertain to ongoing
expenses associated with the operation and utilization of
onboard vehicle SWC. These costs encompass various aspects
Cv,exe,n, including Over-the-Air (OTA) updates of ECUs,
operation costs like the energy consumption costs, maintenance
and repair costs and costs for customer support and service.

Cv,exe =

n∑
i=0

Cv,exe,n (6)

B. Cloud-based SWC

As described in Section IV in equation 2, the cost of a cloud
function can be calculated as follows:

TCOc,SWC = Cc,dev + Cc,depl + Cc,exe (7)

1) Development: The development of a cloud-based function
Cc,dev is associated with various costs, including internal
introduction Cc,dev,intro, purchasing Cc,dev,pur, migration
Cc,dev,mig and software development Cc,dev,sw:

Cc,dev =

n∑
i=0

Cc,dev,intro +

n∑
i=0

Cc,dev,pur

+

n∑
i=0

Cc,dev,mig +

n∑
i=0

Cc,dev,sw (8)

The internal introduction costs Cc,dev,intro encompass strategic
planning, training and ensuring security protocols. Strategic
planning involves defining the objectives, scope and methods
for transitioning from traditional onboard functions to the
cloud. Training programs are essential to introduce employees
with the new technology and ensure smooth introduction and
use. Furthermore, it is essential to integrate security measures
to protect data and systems from potential threats. This often
requires investment in cybersecurity infrastructure. Procurement
costs Cc,dev,pur include the cost of purchasing or licensing
the software, as well as any associated infrastructure costs.
To run a function in the cloud, it is possible to migrate an
existing function or develop a function from scratch. The other
cost factor can be set to zero accordingly. Migration costs
Cc,dev,mig refer to the expenses associated with transitioning

3Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 9 / 26

from existing systems to cloud-based infrastructure, including
infrastructure switching, implementation, testing and configura-
tion. Software development costs, on the other hand, relate to
the implementation and testing phases of building cloud-based
functions. The development costs Cc,dev,sw/hw are divided
between software and hardware, as with the onboard function,
whereby the hardware here is limited to sensors, actuators and
other physical components. In contrast to the onboard function,
no execution platform needs to be developed.

2) Deployment: Capital expenditures for the deployment
of SWCs in the cloud are regarded as very low and therefore
negligible. The costs associated with deployment in the vehicle
are costs listed in the execution costs for the cloud case. Shifting
a SWC to the cloud, converts initial investments for computing
power and storage requirements into OpEx.

Cc,depl = 0 (9)

A touchscreen in the vehicle is required to use the function.
3) Execution: The execution of a cloud-based SWC is

associated with various costs Cc,exe. These include the costs for
the cloud service provider Cc,exe,CSP , the internal operation
Cc,exe,int, the usage Cc,exe,use and the update & upgrade of
the function Cc,exe,u&u:

Cc,exe =

n∑
i=0

Cc,exe,CSP +

n∑
i=0

Cc,exe,int

+

n∑
i=0

Cc,exe,use +

n∑
i=0

Cc,exe,u&u (10)

The primary cost factor for cloud-based SWC is the cost
of the Cloud Service Provider (CSP) Cc,exe,CSP . The cost
models vary depending on the model of cloud computing
and the cloud service provider. Microsoft Azure provides a
comprehensive overview of the different options [18]. One
commonly used pricing model is pay-as-you-go, where users
are billed based on their actual usage of cloud resources. This
flexible payment approach enables organizations to dynamically
scale their infrastructure according to their needs. Internal
operational costs Cc,exe,int include maintenance, support and
addressing downtime incidents. The costs associated with usage
Cc,exe,use include those for end-user operation, primarily data
transmission charges for a data contract. Additionally, the
cost of electricity used to operate the communication module
must also be paid and are part of the usage costs. Costs
associated with updates and upgrades Cc,exe,u&u are crucial
for maintaining the functionality, security and performance of
the cloud-based function over time. These costs may include
fees for acquiring new software versions, migrating data,
testing compatibility and deploying updates across the cloud
environment.

C. TCO reduction options

The reduction of the TCO of a vehicle SWC can be
implemented by the following three use cases:

1) Saving of a complete ECU in an existing E/E architecture:
Assuming that an existing ECU in the vehicle does not

have any design-related hardware proximity (e.g., due
to installed I/Os) and only a single offloadable SWC is
currently deployed on this ECU, it is conceivable that the
ECU can be completely omitted and replaced entirely by
cloud resources. In this case, the complete CapEx of the
ECU will be saved and replaced by OpEx of the cloud.
Due to the increasing integration of software components
on an ECU as described in section II, this case is very
unlikely.

2) Downsizing of an ECU in an existing E/E architecture:
By relocating individual SWCs that are executed on an
existing ECU to the cloud, the ECU can be re-dimensioned.
This means, for example, that less computing power
may be required for the ECU, meaning that a lower-
performance model within a series can potentially be
installed in the vehicle. Thus, saving potentials only arise
through cost savings in smaller models of a ECU series.

3) The cloud as a new execution platform alternative for new
E/E architectures: When designing a new E/E architecture
that is not restricted to the vehicle but allows the cloud as
a possible execution location, a TCO comparison needs
to be executed for cloud-suitable functions or SWC.

It is important to note that these examples are not exhaustive,
but rather provide an indication of the diverse approaches to
TCO reduction in the development and management of SWC.

V. CASE STUDY

The proposed TCO model is assessed with a new function
for electric city buses. The function is described in [19] and
proposes a cloud-based machine learning model that is able to
predict the Heating, Ventilation and Air Conditioning (HVAC)
energy consumption with different temperature set values.
As this is a new function, it is assigned to the use case 3 "cloud
as new execution platform for new E/E architectures" and the
two execution platforms need to be compared with the TCO
model.

A. Onboard SWC

1) Development: Software development for this new SWC in
the vehicle can be estimated at 150,000e while hardware
development is one third of this amount.

2) Deployment: Adding the new SWC to the vehicle’s on-
board E/E architecture adds the need for computing
resources that are currently not available. Therefore,
a new ECU would be needed. The cost of a high-
performance ECU with machine learning support sums
up to 30e. Additional hardware savings as proposed in
subsection IV-A are not feasible with the function.

3) Execution: The main cost driver is the cost of OTA updates.
The cost of executing the onboard SWC is rounded to
2e per month for four updates in a one-year period [20].

B. Cloud-based SWC

1) Development: The software development costs of the SWC
for the cloud can be set lower than for the vehicle. This
can be attributed to the fact that it is not necessary to rely

4Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 10 / 26

on automotive-specific runtime environments, but instead
common tools can be used for development on standard
hardware. For this reason, Cc,dev,sw is set to 90,000e.
Introduction, purchasing and migration cost add up to an
equal amount.

2) Deployment: Deployment costs are negligible as they are
converted into operating expenses.

3) Execution: The Microsoft Azure "Cloud services" offer
a suitable configuration named A0 for our function [21].
The function we have designed takes approx. 20 seconds
to calculate for one call. We designed the function to be
called every 300 seconds, such that we assume the A0
configuration is able to handle 10 calls representing 10
vehicles within the defined time frame of 300 seconds.
Cc,exe,CSP result in the A0 configuration monthly costs
divided by 10 which is 1,49e per month. Operation, usage
and update/upgrade costs sum up to 1e per month. Again,
this is based on updating 4 times annually.

TABLE I. OPEX AND CAPEX FOR CLOUD AND VEHICLE EXECUTION
PLATFORM

Exe Platform CDev CDepl CExe

Vehicle 200,000e 30e 2e/month
Cloud 180,000e 0e 2.49e/month

The life cycle of a city bus in Germany is 8.3 years [22]. The
TCO for both execution platforms for this timeframe calculate
to:

• TCOv,SWC = 200, 229.20e
• TCOC,SWC = 180, 247.92e

A break-even analysis for both execution platforms, both with
and without development costs, shows the following periods
after which the onboard SWC is again the cheaper option. In
this case, the development costs were divided between a bus
fleet of 1,000 respectively 5,000 city buses (see Figure 2):

• Break-even for 1,000 respectively 5,000 buses without
Cdev: 61 months (5.1 years)

• Break-even for 1,000 buses with Cdev: 102 months (8.5
years)

• Break-even for 5,000 buses with Cdev: 69 months (5.8
years)

VI. DISCUSSION

The role of cloud computing in the automotive sector is
becoming increasingly important as OEMs look for innovative
ways to improve the functionality and user experience of their
vehicles. In the future, many vehicle functions will be cloud-
based, making it possible to process data in real time, perform
updates and offer personalized services. Naturally, the issue
of costs plays an important role here. The TCO model in this
paper offers an approach to gain an overview of the costs to
be expected when applying a cloud or an onboard SWC. The
model enables a cost comparison and thus the inclusion of
costs in the decision-making process as to where the SWC
should be implemented. In Section IV-C, three approaches

0 20 40 60 80 100 120

Months

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

C
os

ts
in

€

TCO for a HVAC function

Cloud with a fleet of 1000

Vehicle with a fleet of 1000

Cloud with a fleet of 5000

Vehicle with a fleet of 5000

Figure 2. TCO for the HVAC function with a fleet of 1,000 (blue) and 5,000
(orange) city buses. The break-even points are marked with the horizontal
dotted line.

for cost savings are presented. Saving a complete ECU is, as
already mentioned, unlikely. Downsizing a current ECU by
moving SWC to the cloud only has a small financial effect,
in the single-digit euro range. This use case is therefore also
rather unlikely. The most likely use case: the cloud as the
new execution platform is in detail described in Section V.
The main costs of a cloud-based SWC for the OEM are the
monthly costs for the CSP, which depend on the type of
service used. In addition, the OEM has the option of becoming
a CSP and hosting its own cloud infrastructure. This can offer
strategic advantages as the OEM has more control over its
data and services, can better control security and potentially
save costs, especially for long-term use. Implementing its own
cloud infrastructure, allows the OEM to better meet specific
performance and data protection requirements. The OEM also
has the data that can be used for the development of new
functionalities, for example. Within the use case (Section V)
described, a fleet size of 1,000 and 5,000 vehicles is analyzed.
Economies of scale must be considered for smaller and larger
fleets, as they affect the cost structure. The larger the fleet
size, the sooner the break-even point is reached where the
aggregated cost of the cloud-based SWC becomes higher than
the onboard SWC. Here, the monthly costs for deployment
and execution are assumed to be constant, but as the fleet size
increases, the costs for ECUs and CSPs shrink [17]. But the
scaling factor of cloud costs is higher than that of onboard
costs. The described case study focuses on buses, whereas a
OEMs fleet of passenger cars is much larger and the economies
of scale are therefore of a different order of magnitude.

While comfort functions such as HVAC systems are not
considered safety-critical, network failures can still result in a
negative user experience. In the scenario where functionality
is lost due to network issues, the cost can be seen in terms
of user frustration and potential loss of confidence in the
product. To address this, manufacturers could implement

5Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 11 / 26

fallback mechanisms, such as offering offline modes for critical
features.

The increasing spread of cloud-based SWC is accompanied
by a shift from CapEx to OpEx, which will have an impact
on OEMs. This transition reduces upfront costs, allowing
OEMs to allocate their financial resources more efficiently.
Furthermore, cloud computing enables OEMs to dynamically
scale their operations in response to changing demand. Cloud-
based services represent also a viable strategy for end customers,
who may opt for monthly subscription payments as needed. This
approach provides original equipment manufacturers (OEMs)
with a continuous cash flow.

VII. CONCLUSION AND FUTURE WORK

This paper presents a TCO model that determines the total
costs of a vehicle SWC. A distinction is made between two
execution platforms, namely cloud and onboard. Three options
are presented for reducing the TCO of a SWC. The case of
a new execution platform, i.e. the relocation of an SWC to
the cloud, was examined using a machine learning function
in the city bus sector. Taking development costs into account,
the break-even point for executing the function in the cloud is
nearly the approximate lifespan of a city bus in Germany.

Although the presented TCO model offers a comprehensive
framework for evaluating the total costs associated with vehicle
SWCs across different execution platforms, there are several
areas that require further investigation. The current model could
be enhanced by incorporating additional dynamic cost factors,
such as fluctuating energy prices, varying cloud service fees,
and changes in hardware costs. A more dynamic model would
permit real-time cost assessment and more accurate forecasting.
Further research is needed to explore the scalability and
adaptability of the TCO model. This includes examining how
well the model performs in different organizational contexts and
identifying ways to customize the model for specific business
needs.

ACKNOWLEDGMENT

The authors would like to thank the Ministry of Science,
Research and Arts of the Federal State of Baden-Württemberg
for the financial support of the project INDU2 - OTRACE
within the InnovationsCampus Future Mobility.

REFERENCES

[1] J. P. Trovao, “Trends in automotive electronics [automotive
electronics]”, IEEE Vehicular Technology Magazine, vol. 14,
no. 4, 2019. DOI: 10.1109/MVT.2019.2939757.

[2] M. Sommer, D. Baumann, T. Rösch, F. Dettinger, E. Sax, and
M. Weyrich, “Process for the identification of vehicle functions
for cloud offloading”, in Science and Information Conference,
Springer, 2024.

[3] T. Streichert and M. Traub, Elektrik/Elektronik-Architekturen
im Kraftfahrzeug: Modellierung und Bewertung von Echtzeit-
systemen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
DOI: 10.1007/978-3-642-25478-9.

[4] A. Bucaioni and P. Pelliccione, “Technical architectures for
automotive systems”, in 2020 IEEE International Conference
on Software Architecture (ICSA), IEEE, 2020. DOI: 10.1109/
ICSA47634.2020.00013.

[5] M. Traub, A. Maier, and K. L. Barbehön, “Future Automotive
Architecture and the Impact of IT Trends”, IEEE Software,
vol. 34, no. 3, 2017. DOI: 10.1109/MS.2017.69.

[6] S. Frohn and F. Rees, From signal to service: Challenges
for the development of autosar adaptive applications, Vector
Informatik GmbH, Ed., Mar. 2018.

[7] E. Sax et al., “Analyse der Aktivitäten und Entwicklungs-
fortschritte im Bereich der Fahrzeugelektronik mit Fokus
auf fahrzeugeigene Betriebssysteme”, Themenpapier Cluster
Elektromobilität Süd-West, 2020.

[8] F. Milani and C. Beidl, “Cloud-based vehicle functions: Moti-
vation, use-cases and classification”, in 2018 IEEE Vehicular
Networking Conference (VNC), IEEE, 2018.

[9] International Organization for Standardization, Iso/ iec/ ieee
24765:2017: Systems and software engineering — vocabulary,
2017.

[10] P. M. Mell and T. Grance, The NIST definition of cloud
computing, Gaithersburg, MD, 2011. DOI: 10 . 6028 / NIST.
SP.800-145.

[11] L. M. Ellram, “Total cost of ownership: An analysis approach
for purchasing”, International Journal of Physical Distribution
& Logistics Management, vol. 25, no. 8, 1995.

[12] P. Rosati, F. Fowley, C. Pahl, D. Taibi, and T. Lynn, “Right
scaling for right pricing: A case study on total cost of ownership
measurement for cloud migration”, in Cloud Computing and
Services Science: 8th International Conference, CLOSER 2018,
Funchal, Madeira, Portugal, March 19-21, 2018, Revised
Selected Papers 8, Springer, 2019.

[13] B. Martens, M. Walterbusch, and F. Teuteberg, “Costing of
cloud computing services: A total cost of ownership approach”,
in 2012 45th Hawaii International Conference on System
Sciences, IEEE, 2012. DOI: 10.1109/HICSS.2012.186.

[14] M. M. Kashef and J. Altmann, “A cost model for hybrid
clouds”, in Economics of Grids, Clouds, Systems, and Services,
ser. Lecture Notes in Computer Science, K. Vanmechelen,
J. Altmann, and O. F. Rana, Eds., vol. 7150, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012. DOI: 10.1007/978-3-642-
28675-9{\textunderscore}4.

[15] M. Walterbusch, B. Martens, and F. Teuteberg, “Evaluating
cloud computing services from a total cost of ownership
perspective”, Management Research Review, vol. 36, no. 6,
2013. DOI: 10.1108/01409171311325769.

[16] S. Heinrich, N. Kreft, T. Schuster, and R. Volz, “A total
cost of ownership model for cloud computing infrastructure”,
in Proceedings of the 56th Annual Hawaii International
Conference on System Sciences, T. X. Bui, Ed., Honolulu, HI:
Department of IT Management, Shidler College of Business,
University of Hawaii, 2023.

[17] J. Schäuffele, Automotive Software Engineering: Grundlagen
Prozesse Methoden und Werkzeuge effizient einsetzen, 6. Wies-
baden: Springer Vieweg, 2016. DOI: 10 .1007/978- 3- 658-
11815-0.

[18] Microsoft, Pricing calculator, https://azure.microsoft.com/en-
us/pricing/calculator/, Retrieved: 21.10.2024, 2024.

[19] D. Baumann, M. Sommer, F. Dettinger, T. Rösch, M. Weyrich,
and E. Sax, “Connected vehicle: Ontology, taxonomy and
use cases”, in 2024 IEEE International Systems Conference
(SysCon), IEEE, 2024.

[20] S. Abuelsamid, Automotive over-the-air updates: A cost con-
sideration guide, Guidehouse Insights, Ed., 2021.

[21] Microsoft, Cloud services – preise, https://azure.microsoft.
com/de-de/pricing/details/cloud-services/#pricing, Retrieved:
21.10.2024, 2024.

[22] K. Bundesamt, Fahrzeugzulassungen, https: / /www.kba.de/
SharedDocs/Downloads/DE/Statistik/Fahrzeuge/FZ15/fz15_
2022.pdf?__blob=publicationFile&v=5, Retrieved: 21.10.2024,
2022.

6Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 12 / 26

A Quantitative and Qualitative Comparison of Machine Learning Inference
Frameworks

Egi Brako
Department of Computer Science

Georg-August-Universität Göttingen
Göttingen, Germany

e-mail: egi.brako@gmail.com

Jonathan Decker
Department of Computer Science

Georg-August-Universität Göttingen
Göttingen, Germany

Julian Kunkel
Department of Computer Science

Georg-August-Universität Göttingen
Göttingen, Germany

Abstract—As Artificial Intelligence (AI) continues to advance
and impact diverse fields, ensuring universal access to its abilities
becomes increasingly crucial. To make AI models accessible to
users, they must be deployed to process inference requests. We
conducted qualitative and quantitative analyses of popular open-
source serving frameworks by evaluating their performance on
three Machine Learning tasks. This research aims to shed more
light on the frameworks’ respective strengths and weaknesses,
consequently addressing the challenges posed by the process
of selecting a method of serving the models. The qualitative
comparison is carried out by taking into account the subjective
characteristics of each framework and scoring them on a number
scale. We then use Locust to run load-tests on these frameworks,
analyse their quantitative results, and compare them with each
other. Our results find that PyTorch TorchServe is the overall
best-performing framework, consistently surpassing the other
two in our performance test. We find that some platforms have
issues handling more complex models, showing incapabilities
for handling specific Machine Learning tasks. Our findings
show significant differences among the frameworks, contributing
valuable insights for developers and researchers in selecting the
most suitable framework serving Machine Learning models.

Keywords-artificial intelligence; inference engines; machine
learning;

I. INTRODUCTION

Machine Learning (ML) has emerged as a pivotal technology
across various domains, revolutionizing industries such as
transportation, healthcare, and finance. With the growing
reliance on ML models for critical decision-making and
everyday applications, the need to effectively serve these
models to a wider audience has become increasingly important.
Model serving refers to the deployment, management, and
maintenance of ML models in production environments, ensur-
ing their availability, responsiveness, and accuracy in delivering
predictions or results in real-time.

Serving frameworks, also known as inference frameworks,
play a crucial role in this process by facilitating the deployment
of ML models at scale. These frameworks manage multiple
requests, optimize computational resources, and enable seam-
less model updates. Despite their significance, selecting the
right serving framework remains a challenge due to varying
requirements and the distinct features each framework offers.

This paper aims to provide a comprehensive comparison
of three popular ML serving frameworks: TorchServe[1],
TensorFlow Serving[2], and Triton Inference Server[3]. By

evaluating both performance metrics, such as latency and
throughput, and usability factors, including user-friendliness
and documentation quality, this research seeks to identify the
most suitable framework for different ML tasks.

The remainder of the paper is organized as follows: Section
II reviews related works, highlighting previous studies, ad-
vancements, as well as gaps in the field. Section III details the
methodology, including the experimental setup and evaluation
metrics. The results of the experiments are then presented in
Section IV followed by an evaluation and discussion of the
findings in Section V. Finally, Section VI concludes the paper
with a summary of the research and suggestions for future
work.

II. RELATED WORK

As the field of ML grows, the focus extends beyond
individual models and their training to include the efficient
deployment and serving of these models to users. Previous
studies, such as MLPerf Inference Benchmark [4] and its
succeeding research The Vision Behind MLPerf: Understanding
AI Inference Performance [5], have made significant strides
in establishing benchmarks for ML inference, focusing on
key performance metrics and trade-offs between accuracy and
performance. These works laid the groundwork for evaluating
ML models across various applications, though they were
limited by the scope of models and scenarios considered. For
instance, models like Bidirectional Encoder Representations
from Transformers (BERT) [6] and transformers [7] were
not included, leaving room for further exploration of these
applications.

In the area of custom serving systems, works like Clipper:
A {Low-Latency} online prediction serving system [8] provided
foundational insights into real-time ML predictions, with a
focus on modularity and performance optimization techniques.
However, Clipper’s evaluation was limited to specific bench-
marks, and it is no longer maintained, making its findings
somewhat outdated.

Edge computing research, as reviewed in Deep Learning With
Edge Computing: A Review [9] or Edge Computing: Vision and
Challenges [10] has also been extensive, focusing on bringing
Deep Learning computations closer to end devices for tasks
like computer vision and Natural Language Processing (NLP).
While valuable, this body of work is more concerned with

7Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 13 / 26

inference on edge devices rather than general-purpose serving
frameworks.

Our research fills the gap by providing a comprehensive,
up-to-date comparison of widely-used ML serving frameworks,
offering critical insights for selecting the most suitable platform
for diverse ML applications.

III. METHODOLOGY

This research aims to evaluate the performance and usability
of different machine learning inference frameworks. The
challenge here lays in merging these aspects to form a
comprehensive research question. The common part that stands
out is this broad concept of "usefulness". This has led us
to examine both aspects separately, and to form individual
evaluations for them. Both performance metrics and the
practical, user-oriented aspects contribute to determining how
useful these frameworks are, under various conditions, for
different users.

A. Performance

For the performance evaluation, we need to define formal
methods and metrics to find out the best-performing framework.
For this, we chose two different methods of load-testing
(scenarios) for each serving framework: multi-stream load
test, and single-stream throughput test. The former works by
regularly querying the serving platform, and firing the next
request as soon as the previous one completes. This will keep
the platform under constant heavy load, simulating a worst-case
scenario helps ensure the system is reliable, even under heavily
demanding circumstances. On the other hand, the single-stream
test measures how well the platform handles a continuous flow
of requests, one at a time, as quickly as possible. It helps
determine the maximum rate at which the platform can process
inference requests without any delays or slowdowns. In both
of these scenarios, three different metrics will be measured,
namely: Throughput (in Requests per second), Latency (in
milliseconds), and Failures (in failures per second). These
measurements will help us understand how well the systems
work in different situations.

B. Usability

For the usability evaluation, we must define formal metrics
and strictly evaluate the serving frameworks, as it is difficult to
conduct without set criteria. Our usability analysis focuses on
how effortlessly a user can set up and serve the chosen models,
along with the complexity of the serving process. Given that
all of the frameworks under review are considerably sized
projects, it is reasonable to expect a high level of support for
users, both in the documentation and through the community.
It is difficult to judge qualitative characteristics in a specific
way, therefore we have written criteria, which will serve as
our reference parameters throughout our analysis.

The reference parameters throughout our analysis will be
five loose criteria that we have defined, which we will use to
judge the frameworks’ qualitative characteristics. Namely, these
criteria are User-Friendliness, Documentation Quality, Project

Features, Community Support, and Maintainance and Update
Frequency. They will all receive a score based on our experience
with the framework ranging from 1 to 5. A higher score
indicates better usability, with a score of 5 given to a framework
that is intuitive to set up and deploy, with comprehensive
and understandable documentation, active community support,
helpful features for model customization, and frequent updates.
Conversely, a score of 1 would indicate significant problems in
usability, such as convoluted setup processes, incompatibility
with specific models, outdated documentation, no community
engagement, or infrequent updates. Through this, a systematic
comparison can be made based on the observations and findings
made throughout this research. By conducting such a detailed
analysis, we can present a comparison that highlights the
strengths and weaknesses of each framework.

C. Workloads

In order to test these frameworks, we had to choose models
and tasks that represent diverse ML applications and tasks
to ensure as comprehensive a comparison as possible. When
choosing the ML tasks, we focused on ones that are relevant
to the field, and are different in nature from each other. We
decided on three important ones, namely: Image Classification,
Automatic Speech Recognition, and Text Summarization.

Image Classification is the task of analyzing a picture and
automatically identifying and labeling the objects or subjects
it contains. There are many well-known benchmarks and
datasets in this field that allow us to compare performance,
which provide widely accepted metrics, making it easier for
comparison. For this task, we chose the ResNet50 [11] model.
It is a variant of a Convolutional Neural Network (CNN),
explicitly designed for image classification tasks. Due to its
popularity in both research and industry, ResNet50 serves as
a dependable standard for assessing the effectiveness of new
algorithms or techniques in image classification.

Automatic Speech Recognition is the task of transforming a
spoken language into written text. This involves analyzing
the sound waves in a voice file and transcribing them to
text. For this task we have chosen the Wav2Vec2 [12] model,
specifically Wav2Vec2-base-960h, which is a model pre-trained
and fine-tuned on 16kHz sampled speech audio taken from
the LibriSpeech [13] dataset. Wav2Vec2 is a good choice
due to its self-supervised learning being able to directly find
useful representations from raw audio inputs and provides a
fair ground to investigate different ML inference frameworks’
capabilities without the influence of feature extraction tech-
niques. Comparatively, other models might require extensive
preprocessing or feature extraction techniques, which adds
complexity and may introduce biases.

Text summarization is a task in NLP that involves shortening
a text in a way that captures the main points or themes of
the original text. It is a sequence-to-sequence task, which
can shed light on how different frameworks handle and
perform with high-dimensional, textual data. The chosen BART
[14] model is designed for several NLP tasks, such as text
generation, translation, and summarization. It functions by first

8Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 14 / 26

corrupting the text and then learning to reconstruct it, working
bi-directionally. The "-large-CNN" variation is specifically
trained on article and summary pairs from the CNN and Daily
Mail dataset. This model tackles the challenges of language
understanding, context preservation, and summarization in the
broad field of NLP.

It is important to mention that all the model implementations
are taken as-is, directly from the respective model zoos, such
as the Torchvision and the Keras packages. In some cases,
the pre-trained model weights were not available in the model
zoos, in which case we took their official implementations
in Huggingface. Both PyTorch and TensorFlow have different
formats for the pre-trained model weights, meaning they had to
be saved separately. Usefully, NVIDIA Triton Inference Server
serves models from both these frameworks and accepts any
format of model weights that are accepted by the individual
frameworks.

D. Benchmarking Environment

After downloading and saving the model files in their
respective formats, we have to create our load-testing solution.
Locust was our platform of choice for multiple reasons. It
offers distributed load generation, meaning that all the events
and virtual users can scale to multiple processes, and even
multiple processors. This is very important in our case since
we do not want to overload the model serving platform by
running hundreds of virtual users in the same processor, as
this might lead to inconsistent data. We can take advantage
of this since we have plenty of resources due to our use of
High Performance Computing (HPC). All experiments were
conducted on a NVIDIA Quadro RTX 5000.

After choosing our tasks, models, and load-testing method,
we have to consider putting all of these together in systematic,
reproducible experiments. Due to the fact that we are running
all the tests in an HPC environment, we chose Singularity
to containerize our frameworks. In every experiment, one
container serves the model, and another runs our load-tests.
We have separate containers for each framework, where we
bind the respective models when it is time to test them. All
of the containers have their own configuration, which are
easily reproducible due to the Singularity definition files. Every
experiment started with both containers being deployed using
SLURM batch files. To gather data from the experiments, we
ran each test 5 times, saved the results in a csv file, and took
the average of all runs. We chose this to increase the reliability
and reproducibility of the results, minimizing the impact of
outliers and background noise. After this step was complete, we
raised the number of virtual users created by our load-testing
container, and repeated the previous steps, until the experiment
for a single model was complete.

Our chosen method not only increases reproducibility of
our results, but also provides more data for statistical analysis,
allowing us to understand the range and standard deviation
of the results, strengthening the conclusions drawn from the
study.

IV. RESULTS

All in all, the range of the recorded results was small,
with the only exception of this being the Wav2Vec2 model
running on the Triton (TensorFlow) framework (as shown in
Figure 1). This small range shows that our experimental results
were consistent, suggesting that variations in the results can
be attributed to actual performance differences rather than
methodological inconsistencies or random errors.

In Figure 1, we can see the prediction latency for all the
models when testing the framework performance with only
one virtual user (our single-stream test). We have chosen to
show only the graphics of the tests with 1 user, since the
prediction latency is more or less similar for a specific model
and framework combination, no matter the user load. The
reason why the value of the latency increases when raising
the user count is because all submitted requests must wait in
the queue until all others before it have finished. Since the
throughput stays constant, raising the number of incoming
requests (user count) will raise the amount of time that a
request waits in the queue. This phenomenon can easily be
verified by taking a look at the internal logs of the serving
frameworks, which show the precise inference time.

A. ResNet50

For ResNet50, PyTorch consistently outperformed other
frameworks in terms of throughput across all user counts. That
being said, Figure 2 shows that Triton’s (PyTorch) performance
is trailing not too far behind, whereas TensorFlow Serving is
in this case definitively slower.

When considering all of the frameworks, the reported
throughputs for the ResNet50 model are generally good. Apart
from TensorFlow Serving, the fact that the other frameworks’
throughputs are (consistently) around the 100 RPS (Requests
per Second) mark is really good. It shows that they are able
to handle a very large number of requests at the same time
without any slowing down.

Similar to the throughput, PyTorch exhibited a higher
comparative performance when considering latency, followed

Figure 1. Latency results for 1 virtual user (in milliseconds)

9Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 15 / 26

Figure 2. Throughput of the ResNet50 model (in requests per second)

closely once again by Triton (PyTorch). TensorFlow showed the
highest latency of all the frameworks. The same relationship
between the frameworks can be seen in the test with 100 users,
although the numbers change slightly in user counts 10-75.

These latency results, although they differ from each other,
show that the frameworks’ general performance is excellent.
With Pytorch and Triton, the average processing time for
any request is under one second, even when considering 100
concurrent users. TensorFlow and Triton (TensorFlow) also
offer a worst-case response time of around 1.3 seconds. In a
realistic scenario, even if the system were under the heaviest
load, this would be a very short time to wait for a response. This
can be attributed to the speed and efficiency of the frameworks,
but also to the small size of the model, which will become
evident later, when we examine the other models.

B. Wav2Vec2.0

Earlier on, we imposed the usability constraint that the model
should be taken as-is, from official resources of the frameworks.
Due to this, it was impossible for us to get the base Wav2Vec2
model running in TensorFlow. Therefore, the performance
analysis for this model will not feature the TensorFlow Serving
framework.

When it comes to throughput, we can tell from Figure 3
that Triton and PyTorch displayed comparable performance at
lower user counts, but Triton excelled as the load increased. In
the test with 10 and more virtual users, all three frameworks’
throughputs stay constant, implying that this is caused by the
models themselves, and not by the user count.

Although we are comparing the frameworks to each other,
we should also consider the absolute values of the throughputs.
Triton (TensorFlow) being able to concurrently process 20
requests at all times is no small feat. This is much more signif-
icant when considering the performance of Triton (PyTorch),
which processes almost double the requests. Overall, we can
say that the throughput of the frameworks when observing
them individually is excellent.

An interesting observation is that Triton’s (TensorFlow)
prediction latency is (in comparison) quite high, starting from
the test with only one virtual user. This gets considerably worse
the more users are added to the load test, peaking at almost

Figure 3. Throughput of the Wav2vec2 model (in requests per second)

double that of Triton’s (PyTorch) prediction latency in the test
with 100 concurrent users.

This being said, in the test with one user, all frameworks
show a very small response time for most requests (under
100 ms). This makes it quite applicable to the task of real-
time text-to-speech transcription. However, as the concurrent
users requesting the Automatic Speech Recognition (ASR)
service increase, we can see the latency dramatically increasing.
Although the processing time for each individual request
remains relatively similar, the latency is higher due to their
waiting time in the queue. This shows that under heavy user
load, performance may degrade to the extent that the service
becomes unusable. Although this should be taken with a grain
of salt, since in real scenarios, the platform is not going to
constantly be under the heaviest load.

C. Wav2Vec2.0 truncated

The truncated version of Wav2Vec2 was implemented to
accommodate the limitations of the official TensorFlow imple-
mentation of the Wav2Vec2 model. This workaround involved
truncating (or padding) the inputs to be able to continue our
performance evaluation across all frameworks. This approach
results in incomplete outputs, as the truncated inputs do not
provide the full context necessary for full model predictions,
resulting in sentences seemingly cutting off. Despite these
obstacles, we believe the analysis offers interesting results into
the performances of the different frameworks.

Figure 4 gives an overview of the throughput results for the
Wav2Vec2 truncated model. This model exhibits the same
behavior as was observed in the base Wav2Vec2 model.
The truncated inputs, which are significantly shorter than
the normal Wav2Vec2 model inputs, reinforce the evidence
from the base Wav2Vec2 model that NVIDIA Triton provides
much better performance. As before, we can see here the
throughput plateauing in the tests with more than 10 users.
This time, however, due to the input being significantly shorter,
the absolute value is higher. Interestingly though, we can
observe that TensorFlow performs slightly better than PyTorch
and much better than Triton (TensorFlow), which is quite a
difference from the behavior observed thus far.

When considering the throughput values for each framework
individually, we can see that the values are 1.5 to 2 times

10Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 16 / 26

TABLE I. FRAMEWORKS’ PERFORMANCE, BASED ON THROUGHPUT AT 100 USERS (IN RPS)

Frameworks PyTorch Torchserve TensorFlow Serving Triton (PyTorch) Triton (TensorFlow)

ResNet50 104.10 40.59 99.74 74.53
Wav2Vec2 35.16 - 41.43 24.51
Wav2Vec2 (truncated) 51.24 69.34 83.14 41.14
BART 1.44 - - -

better than their respective values from the original Wav2Vec2
model. Due to the fact that all the inputs were truncated in
order to fit this model (meaning a large number of them were
incomplete), we believe it is impossible to reach a consensus
of whether these values would be useful for any real-world
application.

D. Issues and Challenges

Before we evaluate the results of our experiments, we have
to bring up the challenges faced throughout. As mentioned
above, TensorFlow could not serve Wav2Vec2 due to constraints
in TensorFlow Hub[15]. The SavedModel’s serving signature
requires an input tensor of size (-1, 50000), meaning
audio sequences must have 50,000 samples. Our attempts
to define a custom input format failed, possibly due to a
specific operation in the TensorFlow graph, specifically in the
convolutional layer in the positional convolutional embedding
(pos_conv_embed) of the Wav2Vec2 encoder.

After multiple failures, we decided to align all frameworks
with the TensorFlow model’s constraints. To match the required
input size, we truncate or pad the audio, which allows cross-
framework performance evaluation but introduces inaccuracies.
This (unusual) truncation process itself should ideally not
be included in the performance metrics, as it is part of
preprocessing rather than model inference. However, since
we are looking for an overall comparison of the entire model
inference pipeline and all the inputs are being truncated in
the same method, we are considering this step part of the
preprocessing.

We faced additional challenges with serving the BART
model, which can be generalized to generative models as
well. Triton requires models to be converted to TorchScript,

Figure 4. Throughput of the Wav2Vec2 Truncated model (in requests per
second)

using PyTorch’s JIT compiler to optimize and interpret them
at runtime. However, the BART model’s .generate()
function has dynamic operations that are difficult to trace
due to variable-length loops and control flows not handled well
by torch.jit.trace. This method of tracing essentially
captures the operations executed over a single forward pass to
create a static graph, hence failing to correctly trace operations
with dynamic control flow.[16]

Serving the BART model in TensorFlow faced similar
challenges due to the .generate() method’s loops and
conditionals that do not translate well to a static graph format.
Issues with TensorFlow Serving arose due to dynamic tensors
created by the method, which conflicts with the XLA[17].
These issues with BART highlight a serious limitation: the static
graph requirements of these frameworks make it hard to handle
models with complex control flows, such as generative models.
We could only serve BART with PyTorch, as TorchServe does
not require JIT compilation and allows custom model handlers
to call the .generate() method during handling.

V. DISCUSSION | EVALUTION

A. Evaluation

Judging from the individual model graphs as well as Figure 1,
we can see that PyTorch is overall the best when measuring
prediction latency. From the same figure we can also tell that
the range of the latency results for all (but one) frameworks
was quite stable, thus proving that the results are accurate.

Regarding the throughput, the results were consistent across
different user counts, with PyTorch and Triton (PyTorch)
competing closely for first place. The throughput performance
in Table I also points to the fact that the performance of
TensorFlow and Triton (TensorFlow) is consistently the worst,
in most cases performing around 0.5x than the best framework.
Nevertheless, Triton Inference Server showed a good capability
to increase the prediction speed for TensorFlow models,
bringing it closer to that of PyTorch.

Since PyTorch consistently shows the lowest latency in the
chosen models, it is ideal for real-time applications. Whereas
PyTorch excels in low latency, Triton (PyTorch) stands out
for high throughput across all models, only trailing behind the
former framework.

On the usability side, scores ranging from 1-5 were assigned
to each serving framework based on our personal experience
and observations. The scores align with the usability criteria
detailed in Section III.

The scores shown in Table II are crucial for adressing the
question of which is the most usable framework. PyTorch

11Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 17 / 26

emerges as the most usable framework, scoring nearly perfect
across all criteria. Its relatively easy setup, comprehensive
documentation, and features set it apart from the other
frameworks.

B. Discussion

Our results suggest that, although there have been quite
a few differences from the Biano-AI research [18], the best-
performing framework is still PyTorch. Nevertheless, the failure
rate in our research was completely different from the preceding
one. None of the tests we conducted showed any failed requests
across all frameworks and models tested, marking a significant
difference from the previous study.

The individual performance of all frameworks has also
improved considerably with TensorFlow Serving improving
the most. This suggests that ongoing updates and community
contributions are improving its capabilities, even though it still
lags behind PyTorch in some aspects.

Based on the results in Table 1, it is evident that the per-
formance of the ML inference frameworks varies significantly,
with each framework exhibiting strengths and weaknesses in
different areas.

The lower latency PyTorch consistently demonstrates makes
it a highly suitable choice for applications where real-time
predictions are crucial, such as in ASR tasks. Additionally,
PyTorch exhibits high throughput, meaning it can handle a large
number of requests per second without significant performance
degradation. This makes PyTorch ideal for high-demand
applications where both low latency and high throughput are
required.

TensorFlow, on the other hand, generally shows higher
latency compared to PyTorch and Triton (PyTorch). This higher
latency might be a limiting factor for applications that require
immediate responses. However, TensorFlow’s throughput is
competitive in the ASR task, especially in scenarios with high
user counts. This indicates that TensorFlow can still be effective
in applications where throughput is prioritized over latency,
making it a viable option for certain types of high-demand
environments.

Triton’s throughput, particularly with PyTorch models, is the
highest among the frameworks evaluated. This high throughput
makes Triton highly suitable for applications that need to handle
very high demand. Even when using TensorFlow models, Triton
shows improved latency and throughput compared to native
TensorFlow, making it a better choice for TensorFlow-based
applications that require higher performance.

To apply the results, we must also understand the metrics.
Our analysis pertains more to the relationship with the results,
rather than the results proper. Let us consider the use case
where we want to offer AI-as-a-Service. The important aspect
would be to offer the users requiring this service a response
from the model as soon as possible. When considering a real
scenario like this, the serving framework might not be under
load constantly, which means one of the main goals would
be to offer as low of a latency as possible. This is why when
we look at the results, we consider the latency concerning
the test with a single virtual user. This is also why we would
recommend the choice of either PyTorch or Triton (PyTorch),
instead of the (much) slower TensorFlow Serving. However,
for applications where TensorFlow’s ecosystem and tools are
needed, its performance may still be acceptable, especially
given the significant community support and documentation
available.

Alternatively, in a situation where usability is paramount for
users with limited technical expertise, the choice of serving
framework extends beyond performance metrics alone. Ease
of setup, deployment, and maintenance are critical factors
influencing usability. We identify PyTorch as the best option
here, scoring the highest in our usability scores (see Table II).
Its comprehensive documentation and community support
ensure that users can deploy models with minimal issues
and easily troubleshoot problems that arise. It should be
mentioned that Triton also performs well, particularly in serving
models from other frameworks and offering many features for
optimization.

VI. CONCLUSION AND FUTURE WORK

This work has provided a quantitative and qualitative
comparison of various ML inference frameworks. The research
question aimed to identify the most suitable framework for
different use cases based on performance and usability metrics.

The methodology involved a carefully constructed approach
to ensure the reliability of our findings. We selected representa-
tive models for three distinct tasks. Each model was deployed
and tested on the respective frameworks under controlled
conditions. Our experiments included two different types of
load-tests: single-stream and multi-stream. Both performance
and usability were assessed based on clear, concise criteria
that we constructed.

This study’s contribution lies in its in-depth analysis of
the ML serving frameworks, providing valuable insights for
different use cases and applications. By evaluating both

TABLE II. USABILITY SCORES (1-5). HIGHER SCORES INDICATE BETTER USABILITY.

Frameworks PyTorch Torchserve TensorFlow Serving NVIDIA Triton

User-Friendliness 5 3 4
Documentation Quality 5 3 5
Project Features 5 4 5
Community support 4 5 4
Maintenance and Update Frequency 4 5 5

12Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 18 / 26

performance and usability, this research shows that the choice
of serving framework is as critical as the selection of the
model for ML tasks, proving that the serving framework can
significantly impact the overall effectiveness and efficiency of
the deployed model.

Our study was limited to the default configurations of the
frameworks and models, therefore future work should include
testing the ML models without any constraints, and exploring
which frameworks would be the most effective at running the
different models. Other than that, expanding the scope of future
work to investigate performance across more diverse use cases,
or to include novel frameworks, such as in edge computing,
could provide valuable insights into the field of ML.

In conclusion, this paper has provided a thorough comparison
of TensorFlow Serving, PyTorch TorchServe, and NVIDIA Tri-
ton Inference Server, showcasing their strengths and weaknesses
in different scenarios. The insights gained from this research
can guide users to select the most suitable framework based
on particular requirements.

REFERENCES

[1] PyTorch, Github - pytorch/serve, https://github.com/PyTorch/
serve, Accessed: 2024.11.15.

[2] TensorFlow, Github - tensorflow/serving, https://github.com/
tensorflow/serving/, Accessed: 2024.11.15.

[3] Triton Inference Server, Github - triton-inference-server/server,
https://github.com/triton-inference-server/server/, Accessed:
2024.11.15.

[4] V. J. Reddi et al., “Mlperf inference benchmark”, Computing
Research Repository (CoRR), vol. abs/1911.02549, 2019. arXiv:
1911.02549.

[5] V. J. Reddi et al., “The vision behind mlperf: Understanding ai
inference performance”, IEEE Micro, vol. 41, no. 3, pp. 10–18,
2021. DOI: 10.1109/MM.2021.3066343.

[6] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT:
pre-training of deep bidirectional transformers for language
understanding”, CoRR, vol. abs/1810.04805, 2018. arXiv: 1810.
04805.

[7] A. Vaswani et al., “Attention is all you need”, CoRR,
vol. abs/1706.03762, 2017. arXiv: 1706.03762.

[8] D. Crankshaw et al., “Clipper: A Low-Latency online prediction
serving system”, in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), 2017, p. 615.

[9] J. Chen and X. Ran, “Deep learning with edge computing: A
review”, Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–
1674, 2019. DOI: 10.1109/JPROC.2019.2921977.

[10] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges”, IEEE Internet of Things Journal, vol. 3,
no. 5, pp. 637–638, 2016. DOI: 10.1109/JIOT.2016.2579198.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition”, CoRR, vol. abs/1512.03385, 2015. arXiv:
1512.03385.

[12] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “Wav2vec
2.0: A framework for self-supervised learning of speech
representations”, CoRR, vol. abs/2006.11477, 2020. arXiv:
2006.11477.

[13] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books”,
in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2015, pp. 5206–5210. DOI:
10.1109/ICASSP.2015.7178964.

[14] M. Lewis et al., “BART: denoising sequence-to-sequence
pre-training for natural language generation, translation, and
comprehension”, CoRR, vol. abs/1910.13461, 2019. arXiv:
1910.13461.

[15] Kaggle, Wav2vec2 model on tensorflow2, https://www.kaggle.
com/models /kaggle/wav2vec2/ tensorFlow2/960h/1?tfhub-
redirect=true, Accessed: 2024.11.15.

[16] PyTorch, Torch.jit.trace – pytorch 2.4 documentation, https:
/ / pytorch . org / docs / stable / generated / torch . jit . trace . html,
Accessed: 2024.11.15.

[17] OpenXLA Project, Openxla project, https://openxla.org/xla,
Accessed: 2024.11.15.

[18] Biano AI, Quantitative comparison of serving platforms for
neural networks, https://biano-ai.github.io/research/2021/08/
16/quantitative-comparison-of-serving-platforms-for-neural-
networks.html, Accessed: 2024.11.15.

13Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 19 / 26

Scalable Software Distribution for HPC-Systems Using MPI-Based File Systems in User
Space

Jakob Dieterle
GWDG

Göttingen, Germany
e-mail: jakob.dieterle@gwdg.de

Hendrik Nolte
GWDG

Göttingen, Germany
e-mail: hendrik.nolte@gwdg.de

Julian Kunkel
Department of Computer Science

Georg-August-Universität Göttingen
Göttingen, Germany

e-mail: julian.kunkel@gwdg.de

Abstract—Even on state-of-the-art high-performance computing
systems, data-intensive tasks that are running on a lot of nodes
can encounter waiting times when accessing large files. This can
be caused by a bottleneck in the network bandwidth. To this end,
this paper aims to develop a filesystem that utilizes inter-node
communication to more efficiently distribute large files between
nodes and reduce the bandwidth usage on the network. The
presented file system was implemented using the Filesystem in
Userspace interface and the Message Passing Interface. During
evaluation, it showed promising performance compared to a slower
native file system but did not reach the performance level of an
optimized file system. A refined version was able to outperform
the slower native file system with 16 nodes by 8%, achieving a
bandwidth-reduction to latency-increase ratio of approximately
22.

Keywords-data distribution; optimized reading; one-sided com-
munication.

I. INTRODUCTION

With the steady increase of demand for computing power for
use cases both in research and industry and the slowdown of
Moore’s law [1], high-performance computing (HPC) systems
have to increase their number of nodes to keep up. This growing
number of nodes imposes significant challenges on the I/O
performance of large-scale HPC systems [2]. Distributing data,
container files, or software packages to hundreds or thousands
of nodes for a single job can lead to long waiting times before
any processing can even begin [3]. The bottleneck in such
situations is the bandwidth of the storage nodes hosting the
relevant files.

The comparable low available bandwidth originates from
different sources. For instance, large HPC systems are in-
creasingly built by partitioning the overarching system into
different compute islands [4]. A high-speed interconnect
connects all nodes within each island, while the connections
between different compute islands have a comparatively low
bandwidth. Since the overarching software stack does not
necessarily change drastically between the different islands, it
is preferable from an administrative perspective to centrally
manage and export a global software stack to the individual
islands. Therefore, accessing software typically requires going
through an interconnect with a limited bandwidth.

To tackle this issue, we want to develop a mechanism that
reduces the bandwidth usage on the interconnect to the storage
nodes by utilizing inter-node communication. Therefore, access
through the remote software stack is only done once, and

software distribution to potentially hundreds of nodes is done
via the local, high-speed interconnect. The challenge is to find
an efficient way to distribute the data between the nodes while
reading the file’s content only once. The best way to implement
such a mechanism in a user-friendly way is to include it in a
custom file system. Using the Filesystem in Userspace (FUSE)
interface will allow us to develop and run the file system in
user space, which is necessary with standard user privileges.
We will implement the file system using the Message Passing
Interface (MPI) to facilitate inter-node communication since
it is the most commonly used interface for message passing.
Our file system is supposed to run on the computing nodes,
handling the access of files provided by an existing distributed
file system. Popular examples of distributed file systems are
BeeGFS, Lustre, GPFS.

The main contributions of this work are:
• Presenting multiple designs for a file system to reduce

overall bandwidth usage to the storage nodes
• Implementation of two design approaches using different

communication paradigms
• Benchmarking the implemented file systems with various

configurations
The remainder of the paper is organized as follows: Section

II presents the used technologies and related work. In Section
III, we outline the design of the file system. Section IV is about
evaluating the implemented file system, including methodol-
ogy, results, and discussion. Finally, Section V contains the
conclusion, and we discuss future work.

II. BACKGROUND AND RELATED WORK

To make file systems available in user space, the FUSE
kernel module was incorporated into the Linux kernel with
version 2.6.14 [5], which consists of the kernel module and
the libfuse userspace library. By linking the libfuse library
to a program, a non-privileged user can mount their own file
system by writing their own open/read/write, etc. methods. This
allows the implementation of custom file systems that do not
necessarily require a dedicated storage device but can instead
use forward storage requests to an underlying file system. For
example, Fuse-archive by Google [6] allows the user to mount
different archive file types (.tar, .zip, etc.) and access it like a
regular directory while decompressing the data on the fly.

Rajgarhia and Gehan evaluated the performance of FUSE
using the Java bindings as an example [7]. They found that for

14Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 20 / 26

block sequential output, FUSE adds a lot of overhead when
dealing with small files and a lot of metadata but becomes
quite efficient with larger files. When running the PostMark
benchmark, FUSE added less than 10% compared to native
ext3.

Vangoor et al. also analyzed the performance of FUSE and
its kernel module design in greater detail [8]. According to
Vangoor et al., FUSE can perform with only 5% performance
loss in ideal circumstances, but specific workloads can result
in 83% performance loss. Additionally, a 31% increase in CPU
utilization was measured.

The most commonly used standard for passing messages
between nodes is the Message Passing Interface (MPI). MPI
provides different concepts for communication, such as point-to-
point communication (send, receive), collective communication
(broadcast, gather, allgather), and one-sided communication
(get, put).

The performance of MPI can vary depending on the environ-
ment and implementation that is being used. Hjelm analyzed
the performance of one-sided communication in OpenMPI
[9]. The paper provides an overview of OpenMPI’s RMA
implementation and evaluates its performance by benchmarking
the Put, Get, and MPI_Fetch_and_op methods for latency
and bandwidth. The benchmarks showed constant latency for
Put and Get for messages of up to 210 bytes and a drastic
latency increase for messages larger than 215 bytes. Analog to
the latency results, the bandwidth performance plateaus with
message sizes larger than 215 bytes.

There are also alternatives to MPI for message passing and
I/O management. One is Adios2, presented by Godoy et al.
[10]. Adios2 is designed to be an adaptable framework to
manage I/O on various scales, from laptops to supercomputers.
Adios2 provides multiple APIs with its MPI-based low-level
API designed for HPC applications. It realizes both parallel
file I/O and parallel intra/interprocess data staging. Adios2
adopts the Open Systems Interconnection (OSI) standard and
is designed for high modularity.

With the increasing complexity of HPC applications, the
complexity and size of software packages used for these
tasks also increase. Zakaria et al. showed that package
dependencies in HPC have increased dramatically in recent
years [11]. Different well-known software deployment models
are discussed in this paper, including store models like spack,
which is used on Sofja. The authors also present their solution,
Shrinkwarp, which reduces loading times for highly dynamic
applications. The paper focuses more on software distribution
models and package management than improving loading times
by increasing I/O efficiency.

Creating file systems in user space to improve I/O perfor-
mance is not new. There are already several other file systems
with similar goals. For example, FusionFS [12]. FusionFS is
a file system in user space that supports intensive metadata
operation by storing metadata for remote files locally and is
optimized for file writes.

The concept of disaggregation in HPC systems aims to
decouple resources like memory and processing power by

allowing direct memory access over network interfaces. Peng
et al. conducted a study on memory utilization, showing that
90% of all jobs utilized less than 15% of node memory and
90% of the time less than 35% of node memory is used [13].

Above, we presented existing projects that aim to improve
I/O performance. However, none of those focus on enhancing
performance for distributing large files from a few storage
nodes to many compute nodes.

III. DESIGN

Before designing a mechanism to distribute files with our file
system, a decision has to be made on which communication
paradigms MPI offers should be used. The obvious answer
to that might be collective communication since, with the
broadcast operation, distributing data from one node to all
other nodes is very easy and efficient. However, using collec-
tive communication also imposes very difficult to overcome
limitations. In case there are one or more nodes in the job that
don’t access a file that all the other nodes need to access, all
other nodes would get stuck when trying to broadcast the data,
or all nodes would have to be forced to join the broadcast, even
if they don’t need to access the broadcasted data. But even if
all nodes want to access the same file, they would also have
to access the blocks of the file in the same exact order, which
is not something we can expect. Point-to-point communication
can also be very efficient. However, it always needs interaction
from both involved nodes, which means distributing data to a
lot of nodes would have to be organized in a predetermined
way. The complexity of such a mechanism would most likely
scale very severely with a large number of nodes. MPI’s One-
Sided communication methods are known to be less efficient
but allow nodes to access designated parts of the memory of
the other nodes by utilizing remote memory access. With the
MPI_Get method, we can read data from other nodes without
interrupting the process on the target node. Using One-Sided
communication also gives us more flexibility since we don’t
have to synchronize the processes between nodes, simplifying
the mechanism and reducing busy waiting times. For these
reasons, we decided to design a mechanism specifically using
the MPI_Get method.

To fully use the benefits of the MPI_Get method during file
access, we want to ensure the entire file is already available
to be accessed only using direct memory access between the
nodes. To that end, the file is split into N parts, with N being
the number of nodes. In the open method of our FUSE file
system, each node reads its assigned part of the file from the
storage nodes. This process is predetermined for all nodes so
each node can create a lookup table to know which node holds
each part of the file (see Listing 1).

When a node calls the read method of our file system to
access a part of the file, it will check which node or nodes
are holding the needed data. If the data is already in the local
buffer the data can just be returned from the buffer, otherwise,
the data has to be obtained from one or more nodes using the
MPI_Get method (see Listing 2). If data was retrieved from
other nodes, it would be written to the file_buffer, and

15Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 21 / 26

def my_open (p a t h) :
f i l e _ h a n d l e r = open (p a t h)

f i l e _ b u f f e r = MPI_Win_a l loca te
(f i l e _ h a n d l e r . s i z e , c h a r)

m e t a _ b u f f e r = i n t [f i l e _ h a n d l e r . s i z e]

m e t a _ b u f f e r = c a l c u l a t e _ d i s t r i b u t i o n
(f i l e _ h a n d l e r . s i z e , w o r l d _ s i z e)

o f f s e t , s i z e = c a l c u l a t e _ m y _ r a n g e
(f i l e _ h a n d l e r . s i z e , my_rank)

d a t a = r e a d (o f f s e t , s i z e)
f i l e _ b u f f e r [o f f s e t : o f f e t + s i z e] = d a t a

re turn f i l e _ h a n d l e r

Figure 1. Pseudo code for open method

def my_read (f i l e _ h a n d l e r , o f f s e t , s i z e) :

i f (i n _ b u f f e r (o f f s e t , s i z e)) :
re turn f i l e _ b u f f e r [o f f s e t : o f f s e t + s i z e]

t a r g e t s = g e t _ t a r g e t s (o f f s e t , s i z e)
f o r t a r g e t in t a r g e t s :

t _ o f f s e t , t _ s i z e = c a c l u l a t e _ t a r g e t _ r a n g e
(m e t a _ b u f f e r , o f f s e t , s i z e)

d a t a = MPI_Get (t _ o f f s e t , t _ s i z e , t a r g e t)
f i l e _ b u f f e r [t _ o f f s e t : t _ o f f s e t + t _ s i z e] = d a t a

m e t a _ b u f f e r [o f f s e t : o f f s e t + s i z e] = my_rank

re turn f i l e _ b u f f e r [o f f s e t : o f f s e t + s i z e]

Figure 2. Pseudo code for read method

the meta_buffer will also be updated accordingly so that
we don’t have to retrieve the data multiple times.

With this design approach, the bandwidth usage to the
storage nodes is minimized to a workload of just 1 · filesize,
instead of N · filesize, since each part of the file is only
read once during the open method. Afterward, the nodes only
communicate with each other to distribute the data. In the
following sections, we will refer to this design as the One-
Sided-Reading (OSR) file system. Additionally to this design
approach, a simple design using a broadcast operation in
the read method was implemented to compare performance
between the two communication paradigms. We will refer
to this implementation as Naive design approach or simple
broadcast approach.

IV. METHODOLOGY

This work’s main focus is read timings, which are important
variables in terms of the scalability of our file systems. To
evaluate the implemented file system’s performance, tests will
be conducted over a range of nodes and file sizes.

The tests were conducted on a smaller tier 3 HPC system.
That means all nodes are shared by default and not exclusively
allocated for each job. The Sofja System consists of 30 Nodes,
with each node providing two AMD EPYC 7763 64-core
processors on two sockets, totaling 128 cores per node and

3840 cores for the whole system. Each node also provides 512
GB of memory. The cluster is split up into two racks and uses
HDR100-InfiniBand fabric. The nodes have access to different
storage systems. The StorNext file system is used to access
the 3 PiB of Home directories. For intense I/O applications,
the dedicated Scratch file system can be used. The Scratch file
system offers more than 500 TiB of storage space, from which
more than 100 TiB are NVMe drives. The Scratch file system
provides much better I/O performance and higher bandwidth
than the Home directories and runs on BeeGFS. The 30 nodes
that will be used for testing also provide local SSDs that
offer temporary storage per job and memory-based storage on
/dev/shm.

Six use cases will be tested by accessing files with
sha256sum: access over the native file system, access over our
One-Sided Reading file system (OSR), copying the file to local
SSDs with the Naive approach before access (Bcast to local),
copying the file to /dev/shm with the Naive approach before
access (Bcast to /dev/shm), accessing the file directly with the
Naive approach (Bcast no copy, possible, since sha256sum
accesses the file sequentially like cp) and access over the
simple FUSE Passthrough. These six use cases will also be
tested with the Home directory as the original source of the
file and the Scratch file system as the source. That results in
twelve total test scenarios.

Each scenario will be tested on all combinations from the
number of nodes and file sizes. With the number of nodes
being: 1, 2, 4, 8, 16, and 24. And file sizes of 1KB, 100KB,
10MB, and 1GB. This means all ten scenarios will be tested
with 24 configurations. Each configuration will be tested ten
times to receive statistically robust result data. Although the
cluster offers 30 nodes, we only tested with up to 24 nodes
since not all nodes are available at all times.

To guarantee the resulting timings are valid, we have to
ensure the accessed files can not be cached on the nodes
between tests since we want to measure the time it takes to
actually read the file from the storage nodes over the network.
The best way to guarantee this would be to drop the page caches
between runs. However, that requires sudoer rights, which we
didn’t have. Thus the random test data was generated for each
individual test, that way the file’s content changes between
each test and thus cannot be accessed from caches. However,
just writing the file to the desired location can cause the file
to be in the page caches of the node that is generating and
writing the file. To ensure this doesn’t affect the measurements,
we will run the benchmarker with one extra node, which only
generates the file but doesn’t run any tests.

All tests are organized into runs. Each run tests one
combination of the number of nodes and file size for all six use
cases on either the Home file system or Scratch file system. For
each test run, three jobs are needed: the One-Sided Reading
file system, the Naive file system, and the Python benchmarker,
which executes test file generation, all tests, and writes the
resulting data into a csv file. When testing on n nodes, the
benchmarker has to be run with n+ 1 nodes so that the first
node of the benchmarker job is not included in the n nodes of

16Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 22 / 26

the jobs for the two file systems. The benchmarker generates the
test files using /dev/urandom. The time needed to calculate
the hash sum is measured using MPI’s MPI_Wtime method.

V. RESULTS

The results of the described benchmarks can be seen in
Figure 3, with more details listed in Table I. First, we look at
the results when accessing the files over the Home directory.
With small files, you can see that the native file system is the
fastest, and the number of nodes doesn’t affect the performance
much. With the 10 MB file, the native file system starts to lose
performance with a steady increase of time needed with more
than four nodes. Between one node (0.1 sec.) and 24 nodes
(0.23 sec.), the native file system is 2.3 times slower. The
effect is more pronounced with the 1 GB file, where it is 2.91
times slower (from 7.35 sec. to 21.41 sec.). During testing with
the 1GB file and 24 nodes, it achieved a throughput of 1.121
GB/s. The three different broadcast use cases also have no
visible loss in performance with the 1KB file but start to lose
performance beginning with the 100KB file and more than four
nodes, where all three perform very similarly. The Naive design
performs similarly with the 10 MB file when copying to local
SSDs or to /dev/shm. When copying to SSDs, the procedure
is 2.85 times slower with 24 nodes (0.4 sec.) compared to
1 node (0.14 sec.). When copying to /dev/shm, it is 3.58
times slower (from 0.12 sec. to 0.43 sec.). When accessing
the file directly, the Naive design starts to be much slower,
with more than eight nodes. That takes 5.69 times longer when
going from 1 node (0.13 sec.) to 24 nodes (0.74 sec.). The
trend is continued for the 1 GB file. From the three broadcast
use cases, copying the to /dev/shm achieves the highest
throughput on 24 nodes with the 1 GB file of 0.689 GB/s,
while accessing the file directly only achieves 0.331 GB/s with
the same configuration. The One-Sided Reading design is the
worst file system with small files and more than two nodes. It
is also the only file system that gets significantly slower with
an increasing number of nodes on the 1KB file. With the 10
MB file, the scaling of this file system is already better than
any of the broadcast use cases. Here, it is 2.56 times slower
when going from 1 node (0.16 sec.) to 24 nodes (0.41 sec.).
With increasing file size the loss in performance decreases,
with the 1 GB file, it is only 1.62 times slower (from 14.28 sec.
to 23.09 sec.). When accessing the 1 GB file with 24 nodes,
the One-Sided Reading file system is much faster than the
three broadcast use cases and only 1.68 sec. or 7.85 % slower
than the native file system, achieving a throughput of 1.039
GB/s. In general, the results for the Passthrough file system
are very similar to the performance of the Home file system.

When we look at the results when using the /dbnscratch
file system, we have slightly different results for our imple-
mented file systems. With just one node, all file systems are
faster than when using home; with 24 nodes, all broadcast
use cases and the One-Sided Reading file system are slower
compared to using home. That is also reflected in increased
multipliers when comparing the performance with one node
against 24 nodes, which can be found in Table I. The Scratch

Figure 3. Time measurements on Sofja system

TABLE I. RESULT COMPARISON FOR TESTS WITH 1 GB FILE

Time with 1 node

(in seconds)

Time with 24 nodes

(in seconds)
Increase

Throughput

with 24 nodes

/home 7.355 21.408 2.910 1.121 GB/s

OSR 14.289 23.094 1.617 1.039 GB/s

Bcast to local 11.703 37.161 3.175 0.646 GB/s

Bcast to /dev/shm 9.991 34.826 3.486 0.689 GB/s

Bcast no copy 11.124 72.505 6.518 0.331 GB/s

Passthrough 8.021 19.192 2.393 1.251 GB/s

/dbnscratch 1.772 1.427 0.806 16.819 GB/s

OSR 11.607 29.737 2.562 0.807 GB/s

Bcast to local 4.923 40.404 8.207 0.594 GB/s

Bcast to /dev/shm 3.625 41.221 11.372 0.582 GB/s

Bcast no copy 6.478 77.450 11.956 0.310 GB/s

Passthrough 5.872 12.426 2.116 1.931 GB/s

file system itself however is much faster than the Home
directory file system, even with a 1 GB file size it even
shows a performance increase when going from 1 to 24 nodes,
achieving a throughput of 16.819 GB/s. The simple Passthrough
file system shows similar performance in the beginning. The
better performance with small files and a few nodes can also
be attributed to the deviations between nodes again. Starting
with the 10 MB file, a significant difference can be observed
compared to the Scratch file system for any number of nodes.

It would be interesting to know how much each factor
actually affects performance. Comparing the overhead caused
by MPI and FUSE would be important to identify where the
file system can be improved. To this end, another test was
conducted with the OSR file system and the Naive file system.
With the OSR file system, the xmp_open method and the
xmp_read method were timed. In the xmp_read method of
the Naive file system, the time it takes to read the requested
range of bytes was measured, as well as the time it takes to
broadcast the read data. For both file systems, a counter was
added to count how many times the xmp_read method was
called on each node. Using this information we can calculate
the time the operations of the two file systems take in total. For
the OSR file system, we take the average of the xmp_open

17Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 23 / 26

Figure 4. Composition of performance factors for the OSR and Naive file
system

timings over the nodes to get the value for this method. For the
xmp_read method, we take the average over all calls of this
method on all nodes and then multiply this value by the number
of times the method was called on each node. The same is
done for the two timings we take in the xmp_read method
of the Naive file system. We can use the test results visualized
in Figure 3 to quantify the overhead FUSE introduces. We can
subtract the result for the Scratch file system from the same
result for the Passthrough file system when accessing the file
over the Scratch file system. This difference can be attributed
to the FUSE overhead since the simple Passthrough file system
does not add any features. It only passes the file system calls
through the FUSE kernel module. A more detailed view of
how the FUSE overhead is calculated and what it consists of
can be seen in the following equation.

FUSE-Overhead = time(FUSE Passthrough)− time(native)
= time(FUSE context switches

+ executing FUSE method
+ native FS call)
− time(native FS call)

(1)

Together with the result of measuring the time sha256sum
takes to calculate the hash-sum when the file is already in the
memory (0.653 seconds), we can deduct those measurements
from the total time it took to calculate the hash-sum during this
test, and we receive a remaining time, that should be very small
and can be attributed to the fact that we combine different
test results and other smaller factors that we were not able to
measure. The test was conducted by accessing a 1 GB-sized
file on the Scratch file system with eight nodes, as most of the
system’s nodes were occupied by other long-running jobs.

The total time the test took was similar to before: 21.432
seconds for the Naive file system and 26.426 seconds for the

Figure 5. Timings of OSR file system without metadata buffer compared to
with metadata buffer

OSR file system. Both results are a little bit higher than in
the previous tests; this could be caused by the job mentioned
that was running concurrently. The xmp_open method of
the OSR file system took 3.5 seconds on average over the
nodes. The xmp_read calls took around 0.002 seconds on
average over all nodes with the method to be called 7630 times,
resulting in a total time for the xmp_read method of 16.7112
seconds. The time we calculated for the FUSE overhead is 5.557
seconds. When subtracting these results and the 0.653 seconds
for calculating the hash-sum from the total time, the remaining
time of 0.004 seconds can be attributed to other factors. The
xmp_read method of the Naive file system was also called
7630 times. The average time for reading the range of bytes
was 0.00028, totaling 2.214 seconds. The broadcast operation
took an average of 0.00175 seconds, totaling 13.355 seconds.
Again, the time we calculated for the FUSE overhead is 5.557
seconds. Subtracting those values and the 0.653 seconds for
the hash-sum from the total time, the remaining 0.305 seconds
can be attributed to other factors. These results are visualized
in Figure 4.

Unfortunately, only after these tests did we realize that a lot
of performance was wasted by the very expansive metadata
operations needed for the simple caching mechanism. Before,
the location for every byte was stored in the metadata with the
according node ID. The metadata buffer was used to determine
on which node the needed data was located or if it was already
stored locally. Such a high resolution on the meta resulted in
vast amounts of required operations, especially when working
with large files. To test how much performance was lost, another
small set of tests was run without using a metadata buffer at
all. Instead, the nodes where the requested data is located were
inferred using the same algorithm to split the file and populate
the metadata buffer in the xmp_open method. The results
of these tests, compared to the old results, can be found in
Figure 5. We can see that we save at least 5 seconds without
the meta buffer operations. This means this version of the OSR
file system is more efficient than the native home file system
starting with only eight nodes.

18Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 24 / 26

VI. DISCUSSION

On the Home and Scratch file systems with small file sizes,
the custom file systems are slower than the native file systems.
In the case of the broadcast-based file systems, this is caused
by the MPI overhead, while for the OSR file system, this
is caused by the xmp_open method and the MPI overhead.
Compared to the One-Sided Reading design, the broadcast-
based file systems don’t show any performance loss with an
increasing number of nodes here since the file can probably be
broadcasted with only one operation. In contrast, the One-Sided
Reading design must start transferring data between nodes in
smaller batches. With increasing file sizes, the broadcast-based
file systems get significantly worse with increasing numbers of
nodes. The limiting factor here might be that the nodes must
wait a significant amount of time between broadcast operations
until all nodes have reached the next broadcast operation. That
gets worse with more nodes and adds up with larger files,
requiring a more significant number of broadcast operations.
It is unexpected, though, that accessing the file directly with
the Naive file system is so much slower with large files than
copying the file first. That might be caused by extra waiting time
when waiting for the next broadcast when some nodes need
more time to process the received data inside the sha256sum
algorithm than other nodes. The native Home file system starts
to show its limitations with the 10 MB file already and has
a maximum throughput of slightly above 1 GB/s. While the
One-Sided Reading file system is significantly worse than the
Home file system with a file size of up to 10 MB, it also
reaches a maximum throughput of around 1 GB/s with the 1
GB file (see Table I). But more importantly, the scaling from
one node to 24 nodes for the OSR file system (1.617) is better
than for the Home file system (2.910) when accessing the 1
GB file. The hypothesis is that with just some more nodes (32
or more), the OSR file system might start to be faster than
/home if both trends continue with a more significant number
of nodes. This is likely because the performance of the Home
file system is expected to worsen with an increasing number of
nodes because of the bandwidth bottleneck. In contrast, we can
expect the performance of the OSR file system to continue to
grow linearly as the bandwidth of the communication channels
between the nodes is not limiting the performance at this
scale. It is clear that the MPI overhead limits the Naive design
approach and OSR file system. The simple Passthrough shows
a similar performance to the Home file system. The FUSE
overhead is not so noticeable here since the Home file system’s
latency is already high.

It is also interesting to note that we have some unexpectedly
high results; for example, with 10 MB and two nodes and
with 1 GB and two nodes, the timings for most file systems
are unexpectedly higher even compared to four nodes. That
might be due to ’noisy neighbors’ also stressing the network
and storage nodes. Curiously, the OSR file system does not
seem to be affected by it as much. That might be because it
only reads the test file during the open method and relies on
communication between the nodes afterward, thus not affected

as much by ’noisy neighbors’. However, that is only speculation
and is difficult to verify.

When looking at the results when accessing the file over
the Scratch file system, the results are similar for the FUSE
file systems. The Scratch file system itself proves to be much
faster than Home. That can be due to various aspects, such as
better network bandwidth over a fabric connection, multiple
storage nodes sharing the load, better storage devices, etc. It is
also notable that for all file sizes, the performance gets better
with an increasing amount of nodes, which can probably be
attributed to caching on the storage servers themselves. The
results of the Passthrough file system show the overhead caused
by FUSE, especially with the 1 GB file. The Passthrough file
system is multiple seconds slower than Scratch, caused by the
multiple context switches, as mentioned in Section II. This
performance loss also contributes to the results of the other
custom file systems. We also do not have unexpected spikes,
as we observed when using the Home file system, since ’noisy
neighbors’ have less effect on our jobs when the native file
system does not reach its bandwidth limit as easily.

The small remaining time for both file systems confirms
that our measurements are accurate and that we identified the
most critical performance factors. In the case of the Naive
file system, the MPI overhead is associated with the time the
broadcast operation takes in the xmp_read method (orange
tile). For the OSR file system, the MPI overhead is associated
with the entire time xmp_read method takes (orange tile)
since the file is already entirely in memory, distributed over
the nodes, and all operations in the xmp_read method are
related to remotely accessing the file using MPI. The FUSE
overhead is the same for both file systems since the FUSE
overhead is dependent on the number of file system operations,
which is not influenced by the file system itself. The FUSE
overhead should also be the same for any number of nodes
since the number of file system calls per node is unaffected
by the number of nodes running the job. For both file systems,
the FUSE overhead is significantly less than the time the MPI
commutation takes, while the overhead caused by the MPI
communication will increase with a growing number of nodes.
Since this work aims to develop a file system that scales well
over an increasing number of nodes, we can confidently say
that the MPI communication overhead is the most significant
factor for performance. Limiting the MPI overhead should
be the first priority to improve the performance of the file
system as a whole. This could be done by reducing the number
of times the MPI_Get method is called to a minimum, for
example, by always reading the entire chunk of the file that is
assigned to a node so that each node never has to communicate
with another node more than once. This would increase the
number of times that a read can be covered by the local buffer
and decrease the number of times the MPI_Get method is
called.

After analyzing the results of the performance factor analysis,
we noticed that a significant amount of time spent during the
xmp_read method of the OSR file system is caused by a large
number of metadata operations interacting with the metadata

19Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

 25 / 26

buffer. This was mainly due to the very high resolution of the
metadata buffer, keeping track of the location of each byte. To
quantify the resulting performance impact, an updated version
of the file system was implemented without any metadata
buffer, eliminating the metadata operations. Removing the
buffers means we don’t have any caching mechanism, which
imposes a performance loss in most use cases. However, we
wanted to test the performance without the caching mechanism
since we suspected it to be extremely inefficient and impact
the results more than it should. The resulting performance
improvement is significant, with a 5-second improvement for
all test configurations. When comparing the new results to the
performance of the native file systems, the updated version
exceeds the performance of the Home file system with only
eight nodes. This performance gain is expected to grow with
an increasing amount of nodes. The optimized Scratch file
system is still much faster. However, we also did not create
a workload that caused a bottleneck for this file system. It
is important to note that the performance difference from the
first version of the OSR file system depends on the size of the
accessed file, not on the number of nodes accessing the file.

VII. CONCLUSION AND FUTURE WORK

In conclusion, an MPI-based FUSE file system is presented
that can use two different methodologies to orchestrate I/O from
multiple nodes. For highly synchronous reading operations, a
broadcast mechanism that could read a 1 GB file using less
than 4% of the bandwidth compared to the baseline is shown.
This entailed a performance penalty of approximately 250%
during the synthetic benchmark. In real-world scenarios, this
performance penalty might decrease if the available bandwidth
is also shared with other users. Therefore, one achieves a
bandwidth-reduction to latency-increase ratio of approximately
8.

The more flexible OSR mechanism reduced the performance
penalty to around 8% while retaining the same bandwidth
reduction, resulting in a bandwidth reduction to latency increase
ratio of approximately 22. The refined version of the OSR
file system improved performance even further. It was able to
reduce latency compared to the baseline while also retaining
the bandwidth reduction.

Future work should focus on testing the OSR file system on
a larger scale. Some technical improvements should also be
made, like developing an efficient caching mechanism, running
the file system multi-threaded on each node, and adding the
capability to handle multiple opened files simultaneously.

REFERENCES

[1] C. E. Leiserson et al., “There’s plenty of room at the top: What
will drive computer performance after moore’s law?”, Science,
vol. 368, no. 6495, eaam9744, 2020. DOI: 10.1126/science.
aam9744.

[2] S. Lang et al., “I/o performance challenges at leadership
scale”, in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09,
Portland, Oregon: Association for Computing Machinery, 2009,
pp. 1–12, ISBN: 9781605587448. DOI: 10 . 1145 / 1654059 .
1654100.

[3] W. Frings et al., “Massively parallel loading”, in Proceedings
of the 27th International ACM Conference on International
Conference on Supercomputing, ser. ICS ’13, Eugene, Oregon,
USA: Association for Computing Machinery, 2013, pp. 389–
398, ISBN: 9781450321303. DOI: 10.1145/2464996.2465020.

[4] M. A. Mollah et al., “A comparative study of topology design
approaches for hpc interconnects”, in 2018 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGRID), 2018, pp. 392–401. DOI: 10.1109/CCGRID.
2018.00066.

[5] T. kernel development community, “The linux kernel documen-
tation - fuse”, [Online]. Available: https://www.kernel.org/
doc/html/next/filesystems/fuse.html?highlight=fuse (visited on
10/24/2024).

[6] Google, “Fuse-archive repository”, [Online]. Available: https:
//github.com/google/fuse-archive (visited on 10/24/2024).

[7] A. Rajgarhia and A. Gehani, “Performance and extension of
user space file systems”, in Proceedings of the 2010 ACM
Symposium on Applied Computing, ser. SAC ’10, Sierre,
Switzerland: Association for Computing Machinery, 2010,
pp. 206–213, ISBN: 9781605586397. DOI: 10.1145/1774088.
1774130.

[8] B. K. R. Vangoor, V. Tarasov, and E. Zadok, “To FUSE or
not to FUSE: Performance of User-Space file systems”, in
15th USENIX Conference on File and Storage Technologies
(FAST 17), Santa Clara, CA: USENIX Association, Feb. 2017,
pp. 59–72, ISBN: 978-1-931971-36-2.

[9] N. Hjelm, “An evaluation of the one-sided performance in
open mpi”, in Proceedings of the 23rd European MPI Users’
Group Meeting, ser. EuroMPI ’16, Edinburgh, United Kingdom:
Association for Computing Machinery, 2016, pp. 184–187,
ISBN: 9781450342346. DOI: 10.1145/2966884.2966890.

[10] W. F. Godoy et al., “Adios 2: The adaptable input output
system. a framework for high-performance data management”,
SoftwareX, vol. 12, p. 100 561, 2020, ISSN: 2352-7110. DOI:
https://doi.org/10.1016/j.softx.2020.100561.

[11] F. Zakaria, T. R. W. Scogland, T. Gamblin, and C. Maltzahn,
“Mapping out the hpc dependency chaos”, in SC22: In-
ternational Conference for High Performance Computing,
Networking, Storage and Analysis, 2022, pp. 1–12. DOI: 10.
1109/SC41404.2022.00039.

[12] D. Zhao et al., “Fusionfs: Toward supporting data-intensive
scientific applications on extreme-scale high-performance com-
puting systems”, in 2014 IEEE International Conference on
Big Data (Big Data), 2014, pp. 61–70. DOI: 10.1109/BigData.
2014.7004214.

[13] I. Peng, R. Pearce, and M. Gokhale, “On the memory under-
utilization: Exploring disaggregated memory on hpc systems”,
in 2020 IEEE 32nd International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD),
2020, pp. 183–190. DOI: 10.1109/SBAC- PAD49847.2020.
00034.

20Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

Powered by TCPDF (www.tcpdf.org)

 26 / 26

http://www.tcpdf.org

