
SERVICE COMPUTATION 2014

The Sixth International Conferences on Advanced Service Computing

ISBN: 978-1-61208-337-7

May 25 - 29, 2014

Venice, Italy

SERVICE COMPUTATION 2014 Editors

Arne Koschel, Hochschule Hannover, Germany

Alfred Zimmermann, Reutlingen University, Germany

                             1 / 82



SERVICE COMPUTATION 2014

Foreword

The Sixth International Conferences on Advanced Service Computing (SERVICE COMPUTATION
2014), held between May 25-29, 2014 in Venice, Italy, targeted service computation on different facets.
It considered their ubiquity and pervasiveness, WEB services, and particular categories of day-to-day
services, such as public, utility, entertainment and business.

We take here the opportunity to warmly thank all the members of the SERVICE COMPUTATION
2014 Technical Program Committee, as well as all of the reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors who dedicated much of their time and efforts to contribute to SERVICE COMPUTATION
2014. We truly believe that, thanks to all these efforts, the final conference program consisted of top
quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the SERVICE COMPUTATION 2014
organizing committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that SERVICE COMPUTATION 2014 was a successful international forum for the
exchange of ideas and results between academia and industry and for the promotion of progress in the
area of advanced service computing.

We are convinced that the participants found the event useful and communications very open.
We hope that Venice, Italy, provided a pleasant environment during the conference and everyone saved
some time to enjoy the charm of the city.

SERVICE COMPUTATION 2014 Chairs:

Mihhail Matskin, KTH, Sweden
Hideyasu Sasaki, Ritsumeikan University - Kyoto, Japan
Bernhard Hollunder, Hochschule Furtwangen University – Furtwangen, Germany
Paul Humphreys, Ulster Business School/University of Ulster, UK
Arne Koschel, Hochschule Hannover, Germany
Michele Ruta, Politecnico di Bari, Italy
Alfred Zimmermann, Reutlingen University, German
Aida Omerovic, SINTEF, Norway
Martin Wynn, University of Gloucestershire, UK
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Claus Pahl, Dublin City University, Ireland
Ali Beklen, CloudArena, Turkey
Mark Yampolskiy, Valderbilt University, USA
Steffen Fries, Siemens Corporate Technology - Munich, Germany
Emmanuel Bertin, Orange Labs, France
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Sergey Boldyrev, HERE Espoo, Finland
Rong N. Chang, IBM T.J. Watson Research Center, USA
Wasif Gilani, SAP Research, UK

                             2 / 82



Alexander Kipp, Robert Bosch GmbH, Germany
Marcello Coppola, ST Microelectronics - Grenoble, France
Jan Porekar, SETCCE, Slovenia

                             3 / 82



SERVICE COMPUTATION 2014

Committee

SERVICE COMPUTATION Advisory Chairs

Mihhail Matskin, KTH, Sweden
Hideyasu Sasaki, Ritsumeikan University - Kyoto, Japan
Bernhard Hollunder, Hochschule Furtwangen University – Furtwangen, Germany
Paul Humphreys, Ulster Business School/University of Ulster, UK
Arne Koschel, Hochschule Hannover, Germany
Michele Ruta, Politecnico di Bari, Italy
Alfred Zimmermann, Reutlingen University, German
Aida Omerovic, SINTEF, Norway
Martin Wynn, University of Gloucestershire, UK
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Claus Pahl, Dublin City University, Ireland

SERVICE COMPUTATION 2014 Industry/Research Chairs

Ali Beklen, CloudArena, Turkey
Mark Yampolskiy, Valderbilt University, USA
Steffen Fries, Siemens Corporate Technology - Munich, Germany
Emmanuel Bertin, Orange Labs, France
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Sergey Boldyrev, HERE Espoo, Finland
Rong N. Chang, IBM T.J. Watson Research Center, USA
Wasif Gilani, SAP Research, UK
Alexander Kipp, Robert Bosch GmbH, Germany
Marcello Coppola, ST Microelectronics - Grenoble, France
Jan Porekar, SETCCE, Slovenia

SERVICE COMPUTATION 2014 Technical Program Committee

Witold Abramowicz ,Poznan University of Economics, Poland
Saeed Aghaee, University of Lugano, Switzerland
Riyad Alshammari, KSAU-HS University, Saudi Arabia
Dimosthenis S. Anagnostopoulos, Harokopio University of Athens, Greece
Julian Andrés Zúñiga, University of Cauca, Colombia
Ismailcem Budak Arpinar, University of Georgia, USA
Johnnes Arreymbi, School of Architecture, Computing and Engineering - University of East London, UK
Irina Astrova, Tallinn University of Technology, Estonia
Jocelyn Aubert, Public Research Centre Henri Tudor, Luxembourg
Benjamin Aziz, School of Computing - University of Portsmouth, UK
Youcef Baghdadi, Department of Computer Science - Sultan Qaboos University, Oman
Ebrahim Bagheri, Ryerson University, Canada
Zubair Ahmed Baig, KFUPM - Dhahran, Saudi Arabia

                             4 / 82



Gabriele Bavota, University of Sannio, Italy
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Ali Beklen, Cloud Arena, Turkey
Oualid Ben Ali, University of Sharjah, UAE
Morad Benyoucef, University of Ottawa, Canada
Emmanuel Bertin, Orange Labs, France
Sergey Boldyrev, HERE Espoo, Finland
Juan Boubeta-Puig, University of Cádiz, Spain
Antonio Brogi, University of Pisa, Italy
Massimo Cafaro, University of Salento, Italy
Radu Calinescu, University of York, UK
Juan Carlos Cano, Universitat Politècnica de València, Spain
Wojciech Cellary, Poznan University of Economics, Poland
Chin-Chen Chang, Feng Chia University, Taiwan
Maiga Chang, Athabasca University, Canada
Rong N. Chang, IBM T.J. Watson Research Center, U.S.A.
Claudia-Melania Chituc, Eindhoven University of Technology, Netherlands
William Cheng-Chung Chu, Tunghai University, Taiwan
Soon Ae Chun, City University of New York, USA
Javier Cubo, University of Malaga, Spain
Giuseppe De Pietro, Institute for High Performance Computing (ICAR) / National Research Council of
Italy (CNR) - Napoli, Italy
Manuel Andrea Delgado, University of the Republica, Uruguay
Leandro Dias da Silva, Federal University of Alagoas, Brazil
Kamil Dimililer, Near East University, Cyprus
Erdogan Dogdu, TOBB University of Economics and Technology - Ankara, Turkey
Juan Carlos Dueñas López, Universidad Politécnica de Madrid, Spain
Haikal El Abed, Technische Universitaet Braunschweig, Germany
Nancy El Rachkidy, Polytech - Clermont University, France
Vincent C. Emeakaroha, University College Cork, Ireland
Onyeka Ezenwoye, Georgia Regents University, USA
Marvin Ferber, University of Bayreuth, Germany
Massimo Ficco, Second University of Naples, Italy
Sew Bun Foong, National University of Singapore, Singapore
Sören Frey, syscovery Business Solutions GmbH, Germany
Steffen Fries, Siemens Corporate Technology - Munich,, Germany
Nadia Gamez, University of Malaga, Spain
G. R. Gangadharan, Institute for Development & Research in Banking Technology [IDRBT] - Hyderabad,
India
Maira Gatti, IBM Research, Brazil
Parisa Ghodous, Claude Bernard University of Lyon, France
Joseph Giampapa, Carnegie Mellon University’s Software Engineering Institute USA
Christopher Giblin, IBM Research - Zurich, Switzerland
Wasif Gilani, SAP Research, UK
Luis Gomes, Universidade Nova de Lisboa / UNINOVA-CTS - Monte de Caparica, Portugal
Andrzej Goscinski, Deakin University, Australia
Gustavo González, Mediapro Research - Barcelona, Spain
Andrzej M. Goscinski, Deakin University - Victoria, Australia

                             5 / 82



Victor Govindaswamy, Texas A&M University-Texarkana, USA
Mohamed Graiet, Institut Supérieur d'Informatique et de Mathématique de Monastir, Tunisie
Maki K. Habib, American University in Cairo, Egypt
Ileana Hamburg, IAT - Westfälische Hochschule Gelsenkirchen, Germany
Takahiro Hara, Osaka University, Japan
Sven Hartmann, Clausthal University of Technology, Germany
Martin Henkel, Department of Computer and Systems Sciences – Stockholm University, Sweden
Bernhard Hollunder, Hochschule Furtwangen University - Furtwangen, Germany
Wladyslaw Homenda, Warsaw University of Technology, Poland
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Samuelson W. Hong, Zhejiang University of Finance & Economics, China
Sun-Yuan Hsieh, National Cheng Kung University, Taiwan
Marc-Philippe Huget, LISTIC/Polytech Annecy Chambery/University of Savoie, France
Paul Humphreys, Ulster Business School/University of Ulster, UK
Mirjana Ivanovic, University of Novi Sad, Serbia
Hemant Jain, University of Wisconsin- Milwaukee, USA
Jinlei Jiang, Tsinghua University - Beijing, China
Ivan Jelinek, Faculty of Electrical Engineering - Czech Technical University Department of Computer
Science and Engineering, Czech Republic
Alexander Jungmann, University of Paderborn, Germany
Alexandros Kaloxylos, University of Peloponnese, Greece
Rajaraman Kanagasabai, Institute for Infocomm Research, Singapore
Tahar Kechadi, University College Dublin, Ireland
Nhien An Le Khac, University College Dublin, Ireland
Hyunsung Kim, Kyungil University, Korea
Alexander Kipp, Robert Bosch GmbH, Germany
Manuele Kirsch Pinheiro, Université Paris 1 - Panthéon Sorbonne, France
Mourad Kmimech, l’Institut Supérieur d’informatique de Mahdia (ISIMA), Tunisia
Arne Koschel, Hochschule Hannover, Germany
Yousri Kouki, ASCOLA - INRIA, France
Natalia Kryvinska, University of Vienna, Austria
Patricia Lago, VU University Amsterdam, Netherlands
Ulrich Lampe, Technische Universität Darmstadt, Germany
Annett Laube-Rosenpflanzer, Bern University of Applied Sciences - Biel/Bienne, Switzerland
Guanling Lee, National Dong Hwa University, Taiwan
Keqin Li, SAP Product Security Research, France
Kuan-Ching Li, Providence University, Taiwan
Noura Limam, University of Waterloo, Canada
Cho-Chin Lin, National Ilan University,Taiwan
Damon Shing-Min Liu, National Chung Cheng University, Taiwan
Qing Liu, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia
Shih-His (Alex) Liu, California State University - Fresno, USA
Hui Ma, Victoria University of Wellington, New Zealand
Khaled Mahbub, City University, UK
Sabri A. Mahmoud, King Fahd University of Petroleum and Minerals, Saudi Arabia
Kurt Maly, Old Dominion University, USA
Lefteris Mamatas, University College London, UK
Gregorio Martinez, University of Murcia, Spain

                             6 / 82



Lena Mashayekhy, Wayne State University, USA
Mihhail Matskin, KTH, Sweden
Manuel Mazzara, Polytechnic of Milan, Italy
Viktor Medvedev, Vilnius University, Lithuania
Souham Meshoul, University Constantine 2, Algeria
Lars Mönch, FernUniversität in Hagen, Germany
Fabrizio Montesi, IT University of Copenhagen, Denmark
Fernando Moreira, Universidade Portucalense, Portugal
Haris Mouratidis, University of East London, UK
Debajyoti Mukhopadhyay, Maharashtra Institute of Technology, India
José Neuman De Souza, Federal University of Ceará, Brazil
Francisco Javier Nieto De-Santos, Atos Research and Innovation - Bilbao Spain
Mara Nikolaidou, Harokopio University of Athens, Greece
Roy Oberhauser, Aalen University, Germany
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Hichem Omrani, CEPS/INSTEAD - GEODE dept., Luxembourg
Claus Pahl, Dublin City University, Ireland
Ingo Pansa, iC Consult, Germany
Namje Park, Jeju National University, Korea
Petra Perner, Institute of Computer Vision and applied Computer Sciences, Germany
Dana Petcu, West University of Timisoara, Romania
Willy Picard, Poznan University of Economics, Poland
J Brian Pickering, IT Innovation Centre, UK
Pasqualina Potena, Università degli Studi di Bergamo, Italy
Thomas E. Potok, Oak Ridge National Laboratory, USA
David J. Pym, University College London (UCL), UK
Lianyong Qi, Qufu Normal University, China
Juan J. Ramos-Munoz, University of Granada, Spain
José Raúl Romero, University of Córdoba, Spain
Wolfgang Reisig, Humboldt-Universität zu Berlin, Germany
Feliz Ribeiro Gouveia, Fernando Pessoa University, Portugal
Juha Röning, University of Oulu, Finland
Gustavo Rossi, Universidad Nacional de La Plata, Argentina
Javier Rubio-Loyola, CINVESTAV - Information Technology Laboratory, Mexico
Michele Ruta, Politecnico di Bari, Italy
Klaus Schmid, University of Hildesheim, Germany
Ulf Schreier, Furtwangen University, Germany
Dieter Schuller, Technische Universität Darmstadt, Germany
Frank Schulz, SAP Research Karlsruhe, Germany
Nazaraf Shah, Coventry University, UK
Kuei-Ping Shih, Tamkang University, Taiwan
Masakazu Soshi, Hiroshima City University, Japan
George Spanoudakis, City University London, UK
Dimitrios G. Stratogiannis, University of Western Macedonia/National Technical University of Athens,
Greece
Young-Joo Suh, Pohang University of Science and Technology (POSTECH), Korea
Gerson Sunyé, Université de Nantes – INRIA, France
Giordano Tamburrelli, Università della Svizzera Italiana (USI), Swizterland

                             7 / 82



Anel Tanovic, BH Telecom d.d. Sarajevo, Bosnia and Herzegovina
Orazio Tomarchio, University of Catania, Italy
Georgios I. Tsiropoulos, Technical University of Athens, Greece
Theodoros Tzouramanis, University of the Aegean, Greece
Roman Vaculin, IBM Research / T.J. Watson Research Center, USA
José Valente de Oliveira, Universidade do Algarve, Portugal
Massimo Villari, Universita' di Messina, Italy
Maxime Wack, Université de Technologie de Belfort-Montbéliard, France
Alexander Wahl, Hochschule Furtwangen University - Furtwangen, Germany
David Wallom, University of Oxford, UK
Ian Warren, University of Auckland, New Zealand
Mandy Weißbach, Martin-Luther-University Halle-Wittenberg, Germany
Zhengping Wu, University of Bridgeport, USA
Mudasser Wyne, National University - San Diego, USA
Lai Xu, Bournemouth University, UK
Mark Yampolskiy, Valderbilt University, USA
Chao-Tung Yang, Tunghai University, Taiwan R.O.C.
Kim Jinhui Yao, University of Sydney, Australia
Qi Yu, Rochester Institute of Technology, USA
Xiaofeng Yu, Nanjing University, China
Zhifeng Yun, Louisiana State University, USA
Anastasiya Yurchyshyna, University of Geneva, Switzerland
Gianluigi Zavattaro, University of Bologna, Italy
Jelena Zdravkovic, Stockholm University, Sweden
Sherali Zeadally, University of Kentucky, USA
Liangzhao Zeng, IBM, USA
Wenbing Zhao, Cleveland State University, USA
Weiliang Zhao, University of Wollongong, Australia
Hong Zhu, Oxford Brookes University, UK
Alfred Zimmermann, Reutlingen University, Germany
Wolf Zimmermann, Martin-Luther-University Halle-Wittenberg, Germany

                             8 / 82



Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

                             9 / 82



Table of Contents

Decentralized and Reliable Orchestration of Open Services
Abul Ahsan Md Mahmudul Haque and Weihai Yu

1

Why Are Reputation Systems Absent from Cloud Services- Reason Analyses and Suggestions
Lianyong Qi, Jiancheng Ni, Chao Yan, Xiaona Xia, and Chunmei Ma

9

Web Services Framework for Wireless Sensor Networks
Mark Gray and Philip Scherer

15

An Ontology for User Profile Modelling in the Field of Ambient Assisted Living
Carina Fredrich, Hendrik Kuijs, and Christoph Reich

24

Analyzing Behavioral Compatibility for Web Service Choreography Using Colored Petri Nets and ASK-CTL
Maya Souilah Benabdelhafid, Beatrice Berard, and Mahmoud Boufaida

32

Always stay agile! Towards Service-oriented Integration of Business Process and Business Rules Management
Christopher Gath, Alexander Hodicke, Sophia Marth, Jorn Siedentopf, Andreas Hausotter, and Arne Koschel

40

Genetic Algorithm to the Power of SMT: a Hybrid Approach to Web Service Composition Problem
Artur Niewiadomski, Wojciech Penczek, and Jaroslaw Skaruz

44

Towards a Flexible and Privacy-Preserving Reputation System for Markets of Composed Services
Alexander Jungmann, Sonja Brangewitz, Ronald Petrlic, and Marie Christin Platenius

49

Performance Evaluation of OM4SPACE’s Activity Service
Irina Astrova, Arne Koschel, Alexander Olbricht, Matthias Popp, Marc Schaaf, and Stella Gatziu Grivas

58

Evaluating the Data Quality and the Uncertainty in Electroencephalogram Signals for a Neuromarketing Service
which Computes Attentional Engagement
Wuon-Shik Kim, Sang-Tae Lee, Yaeeun Kim, and Hyoung-Min Choi

62

A Platform for Secure and Trustworthy Service Composition
Francesco Malmignati, Michela D'Errico, and Fausto Andreotti

67

Powered by TCPDF (www.tcpdf.org)

                               1 / 1                            10 / 82



Decentralized and Reliable Orchestration
of Open Services

Abul Ahsan Md Mahmudul Haque and Weihai Yu
University of Tromsø – The Arctic University of Norway

Email: {Mahmudul.Haque, Weihai.Yu}@uit.no

Abstract—An ever-increasing number of clouds and web applica-
tions are providing open services to a wide range of applications.
Whilst traditional centralized approaches to services orchestra-
tion are successful for enterprise service-oriented systems, they
are subject to serious limitations for orchestrating the wider
range of open services. Decentralized orchestration provides
an attractive option for applications based on open services.
However, decentralized approaches are themselves faced with
a number of challenges, including the possibility of loss of
dynamic run-time states that are spread over the distributed
environment. This paper presents a dynamic replication scheme
for a decentralized approach to orchestration of open services,
where a network of agents collectively orchestrate open services
using continuation-passing messaging.

Keywords-web service; peer-to-peer; replication.

I. INTRODUCTION
An increasing number of individuals and enterprises are

having an increasing number of their data and business func-
tionality on line and in the cloud. To enable new applications
to access these data and functionality, cloud providers and
online business applications are offering open services through
published Application Program Interfaces (APIs). Service or-
chestration is the coordination and conduct of the execution of
multiple open services in the new applications [1].

Two technologies are highly relevant to the support of
applications built on top of open services. (1) Web mashups
are web applications that use content from multiple open ser-
vices. ProgrammableWeb (www.programmableweb.com), for
instance, lists thousands of open services and mashups. Al-
though web mashups have been around for several years,
they are still very limited in functionality (i.e., content only)
and systematic support. Most noticeably, they are typically
hand-crafted with low-level programming details. Execution
of external open services are conducted by the web servers
running the mashups. (2) Service-oriented computing (SOC)
has been very well developed and supports most of the
functionality such open-service based applications need. Tra-
ditionally, SOC focuses on cost-effective construction and
integration of sophisticated applications within and across
organizational boundaries. Therefore, unlike applications based
on external open services, services composed in SOC generally
limit themselves within enterprises or between enterprises
with mutual agreements (this is generally known as services
choreography [1]). Usually, dedicated central engines carry out
the orchestration of composite services.

Recently, there have been efforts that bring the SOC
technology to the cloud and open-service based applications.
For example, Amazon SWF [2] allows applications to coor-
dinate work (including service invocations) across distributed
components.

In all current approaches, services are orchestrated either
by dedicated central engines (SOC), or by sites hosting appli-
cations (mashups). This clearly has advantages, such as control
and overview of global run-time status. However, application
sites are typically vulnerable with respect to availability, scal-
ability and reliability, whereas finding feasible central engines
is hard when the services are beyond enterprise boundaries [3].
Even if such an engine exists (as with Amazon SWF), relying
on central engines and/or individual big-name vendors would
be subject to issues like censorship, surveillance, policy-
dependence etc. [4]. Furthermore, because open services are
potentially spread all over the world, long network delays are
unavoidable when the locations of central engines are fixed.

Based on the above observations, we believe a de-
centralized or peer-to-peer approach to open-services orches-
tration would be an attractive option to a wide range of next
generation open-service based applications. There have been
research activities in the SOC community on decentralised
orchestration of services (more on these in Section VII on
related work). It is generally challenging to support reliable
orchestration of external services that could be unreliable. It
is even more challenging for decentralized orchestration over
a large group of unreliable peers or agents.

Our decentralized orchestration mechanism is called
continuation-passing messaging (CPM) [5][6]. Our earlier
work addressed issues with exception handling and recovery in
order to support reliable orchestration when external services
are unreliable. In this paper, we present a dynamic replication
scheme for reliable orchestration with potentially unreliable
orchestration agents.

The paper is organized as the following. Section II gives a
motivating example. Section III presents a peer-to-peer system
model for services orchestration. Section IV reviews CPM.
Section V presents replicated CPM, the main contribution
of this paper. Section VI presents performance results. Sec-
tion VII discusses related work. Section VIII concludes.

II. EXAMPLE

Consider an application that assigns reviewers to papers
submitted to a conference for reviewing. The application
achieves this by doing the following. It first uses digital library
L to get a ranked list of candidate reviewers for each submitted
paper based on the title and keywords of the paper as well
as the publications of the candidate reviewers. Then, for the
candidates above a certain threshold, it uses citation indexing
service I to refine the shorted list based on co-authorship,
affiliation and citations. Finally, it uses the refined list and
its on-premise data, such as reviewers’ interests, to assign the
reviewers to the paper.

1Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            11 / 82



The application may handle different exceptions differently.
If during execution the digital library becomes unavailable, it
may try another digital library. If the citation indexing services
becomes unavailable, it may simply accept the ranking list
generated so far without any further refinement. It may be im-
portant for the conference organizer that once the application
starts to run, it keeps running until the final assignments are
done.

When the services of the example application are orches-
trated by a central engine or by the site running the application,
for every paper-reviewer pair, there is at least a round trip
of messages between the engine and the service. Ideally,
the engine can be placed close to the open service, and the
placement can be done at run time. This is the basic idea
behind continuation-passing messaging.

III. SYSTEM MODEL

A service provider (SP) provides services through an open
API with a number of operations. We use Sa, Sb etc., to denote
SPs and a, a1, a2, ā etc., to denote operations provided by Sa.
Operation a of Sa is invoked with message invoke(a) to Sa.
A service-based application (SA) consists of invocations to
a number of service operations in a given prescribed order.
Without loss of generality in our study, we adopt a service-
composition model similar to Web Services Business Process
Execution Language (WS-BPEL) [7].

Fig. 1 shows an example SA p that consists of invocations
to operations a at Sa, b at Sb, c at Sc and d at Sd. The SA
first invokes a and then forks two parallel branches. The first
branch invokes b n times in a loop. The second branch invokes
c and d in sequence.

p: scope(
sequence(
invoke(Sa, a, ā),
fork(
loop(n, invoke(Sb, b, b̄),
scope(
sequence(
invoke(Sc, c),
invoke(Sd, d, d̄)),

any : sequenc(compensate, invoke(Se, e))))),
any : compensate)

Figure 1. An example SA.

We assume that operations a, b and d have reverse oper-
ations ā, b̄ and d̄, and that operation c is read-only and does
not need a reverse operation. The element invoke(Sa, a, ā)
means: “run service operation a at Sa; if p has to be rolled back
due to an exception that occurs after operation a successfully
returns but before the entire p finishes, run service operation
ā to compensate for the executed effect of a”. Notice that
invoke(Sa, a, ā) is an SA construct that is not understood by
Sa. Sa only understands either invoke(a) or invoke(ā).

A scope is a unit of exception handling. Exception handlers
are associated with scopes. When an exception of certain type
is thrown in a scope, all current activities in the scope are
stopped and the corresponding exception handler is executed.
In Fig. 1, the top level scope has an exception handler for any
type of exceptions. It runs a single operation compensate that
rolls back the current execution using the recovery plan that

a

b

c

d

1 . . . n

normal execution

a

b

c

d

e

1 . . . n

rolling forward

b̄

...
b̄

d̄

ā

rolling back

Figure 2. Control flow of example SA.

is automatically generated during the execution. The exception
handler of the inner scope instead first rolls back the execution
of the scope so far and then rolls forward by invoking an
alternative service operation e.

Fig. 2 shows the control flows of a normal execution, a
rolling forward (after the execution of d failed) and a rolling
back (just before the entire p is about to finish).

Fig. 3 shows the service invocation messages (blue lines
with arrows) when the SA is orchestrated by the site Sp

that runs p. In this particular example, when the geographical
distance between Sp and Sb is long, the loop may incur a long
delay. If Sp is a mobile device, the execution of p could be
costly and unreliable.

Sp

Sa Sd

Sb

n times

Sc

Figure 3. Centralized orchestration by the host SA server.

In our decentralized approach, a network of orchestration
agents (OAs) collectively orchestrate the executions of SAs
using continuation-passing messaging (CPM) [6]. We use A,
Aa, Ab etc., to denote OAs. An OA has a coverage of SPs.
Suppose a is an operation of Sa that is under the coverage of
Aa. When a is part of an SA, invocation of a can be made
via Aa.

At a specific moment, SPs may or may not be covered by
OAs and OAs may have overlapping coverages. SPs become
covered by OAs either by registration or through a learning
process. An OA may not have the complete knowledge about
the coverages of other OAs. At present, we assume that OAs
learn effectively and every OA has nearly complete global
knowledge of OA coverages.

An OA can run on a dedicated server, such as provided by
a cloud provider. Alternatively, an SP may volunteer to be an
OA as well. Being an OA may make its service more attractive.
For example, if either Sb or the cloud hosting Sb has an OA,
the loop in p may appear to be much more effective [5][6].

The basic tasks for the management of the OA network
include OA membership, detection of OA availability, regis-
tration and discovery of SPs for their coverage, etc. Some of
the tasks are already provided by existing software (such as
the open source SERF [8]).

An SP may be unavailable, due to disconnection or system
crash, and does not respond to invocations. An SP may also
return an error. We assume that business critical services

2Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            12 / 82



Sp

Ap

Ab Ac

AdSa

Sb Sc

Sd

1

2
3

4

5

6
7

n times

Figure 4. Messages with CPM Orchestration.

support the at-most-once operation semantics. That is, an SP
can recognize duplicated invocations and execute the same
invocation at most once.

When an SP is not available or returns an error message, an
exception is thrown so that an appropriate exception handler
of the SA will handle it, such as by invoking an alternative
service or rolling back the execution so far. Our orchestration
mechanism guarantees effective propagation and handling of
exceptions.

An OA may become unavailable in two ways. It may leave
the OA network intentionally, or it may crash or get discon-
nected due to network failures. We assume a fail-stop crash
model. The replicated CPM enhances the availability of the
orchestration when the OAs are subject to such unavailability.

IV. CPM OVERVIEW

Fig. 4 shows the messages for CPM orchestration of the
example SA p. Here we assume that SPs Sb, Sc and Sd

are covered by OAs Ab, Ac and Ad, and Sa is not covered
by any OA. There are three types of messages for services
orchestration: service invocation messages (blue lines), CPM
messages (red lines) and scope management messages (not
shown in the figure). Orthogonal to the messages for services
orchestration, OAs exchange routing messages to update the
routing and health status of other OAs [6].

During orchestration, information like activity execution
order and SA-aware data is carried in CPM messages in terms
of continuations and environments. A continuation is a stack
of activities that will be carried out, beginning from the head
of the stack. An environment contains information of activity
status and SA-aware data. To facilitate exception handling,
messages also contain compensation continuations, which are
rollback plans automatically generated during SA execution.

The initial continuation and environment of a CPM mes-
sage are generated when an OA starts to orchestrate an SA. The
message is later on sent to subsequent OAs that independently
interpret the messages and invoke the service operations of
the appropriate SPs. New continuations and environments are
generated based on the messages being interpreted, as well as
the outcomes of the service executions.

Fig. 5 shows the overall structure of an OA. In an OA, a
message interpreter interprets an incoming or local message
according to the head activity of the continuation. The follow-
ing may happen during the interpretation.

An initial SA is converted into a CPM message.
OAs are assigned to the corresponding activity ele-
ments according to the information in the OA router.
For our example SA, orch(p, Sp) — orchestration of p

messages

OA
router

message
interpreter

scope
management

backup
management

message
handler

PM SR BSR BM RT

PM: pending messages, SR: scope registry, RT: routing table
BSR: backup scope registry, BM: Backup Messages

Figure 5. Structure of an Orchestration Agent.

from Sp as specified in Fig. 1 — is converted to
orchAp(scopeAp(sequence(invokeAp(Sa, a, ā) . . . ))), where
orchestration activities like orch and scope are assigned to
OAs Ap etc. For the purpose of space and readability, in what
follows, we use notations like scopeAp(−) to suppress the
details of the scope element.

In some cases, a message can be interpreted alone. For
example, orchAp(scopeAp(sequence(−)) is interpreted into
scopeAp(sequence(−)) · eorchAp(−), which in turn is inter-
preted into sequence(−) ·eosAp(−) ·eorchAp(−). Here eorch
and eos stand for end-of-orchestration and end-of-scope.

In other cases, multiple messages must be available to be
further interpreted, for example, when messages from multiple
parallel branches join. In this case, the first arrived messages
are put in the pool of pending messages (PM). They are further
interpreted when all dependent messages are available.

The interpretation of a message or multiple messages may
lead to one or more new messages. Some messages are further
interpreted locally by the same OA, like the orchAp(−) above,
and some are sent to other OAs for further interpretation.

If the head element of the continuation is an invocation
assigned to the OA, the OA sends an invocation to the SP
and waits for the result by putting a wait message in its
PM. For example, interpreting message invokeAp(Sa, a, ā) ·
fork(−) · eosAp(−) · orchAp(−), Ap sends invoke(a) to Sa

and puts waitAp(Sa, a, ā) · fork(−) · eosAp(−) · orchAp(−)
in its PM. The wait message is further interpreted according
to the outcome of the invocation.

An OA may also be a scope manager and maintains some
status information of each branch in its scope registry (SR). A
scope manager is notified with a scope management message
when the orchestration of an enclosing branch moves to a new
OA. For example, when a branch moves from Ap to Ab, the
scope manager Ap is notified of the move.

Table I lists the continuations in the remote CPM mes-
sages as shown in Fig. 4. Continuations of intermediate local
messages are not shown in the table. In the table, κ is a
continuation segment that is common in several continuations.

A join element joins multiple parallel branches into one. It
has an identifier and a join condition. Here the join condition
is simply the number of branches to be joined.

The eos element marks the end of a scope and encapsulates
necessary information for exception handling. The general
form of an eos element is eosA(id, κ, h1, h2 . . . ), where A

3Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            13 / 82



TABLE I. CONTINUATIONS IN MESSAGES

Msg Continuation

1 orch(scope(−), Sp)

2 invokeAb(Sb, b, b̄)

· loop(n− 1, invokeAb(Sb, b, b̄)) · κ
3 κ

4 invokeAc(Sc, c) · invokeAd(Sd, d, d̄)

· eosAp(−) · κ
5 invokeAd(Sd, d, d̄) · eosAp(−) · κ
6 eosAp(−) · κ
7 eorch(Sp)

κ joinAp(idj , 2) · eosAp(−) · eorchAp(Sp)

is the scope manager, id is the unique identifier of the
scope, κ is a compensation continuation, and h1, h2 etc.,
are exception handlers. The compensation continuation is the
recovery plan of the scope automatically generated during the
orchestration. Table II lists the compensation continuations in
the eos elements of the remote CPM messages. Notice that
Messages 4, 5 and 6 have two eos elements for the two nested
scopes.

TABLE II. COMPENSATION CONTINUATIONS

Msg Compensation continuation

1 nil

2 κ̄

3 invokeAb(Sb, b̄) · · · invokeAb(Sb, b̄) · κ̄
4 κ̄ nil

5 κ̄ nil

6 κ̄ invokeAd(Sd, d̄)

7 nil

κ̄ joinAp(idj′ , 2) · invokeAp(Sa, ā)

· eosAp(−) · eorchAp(Sp)

When Ab catches an exception, it runs the corresponding
exception handler in the enclosing eos element and at the same
time notifies the scope manager Ap of the exception. Ap then
propagate the exception to the other branch(es).

For a scope with a single branch, an exception is com-
pletely handled where it is caught. This is the case of the
nested scope of p. If Ad catches an exception, it handles the
exception without notifying the scope manager Ap.

V. REPLICATED CPM
With CPM, information about the orchestration is usually

already spread among multiple OAs. This information, if
carefully maintained and updated, could be used to handle
occasional unavailability of OAs. This is the key idea behind
replicated CPM.

A. Selection of backup OAs
With replicated CPM, an SA orchestration has a replication

degree k. That is, every activity is assigned with a list of
k + 1 OAs. The first OA in the list, called the active OA,
is responsible for the interpretation of the message. The rest
k OAs are backup OAs. For message c, we use c.A for the

active OA and c.A for the backup OAs. We also use c.A+ for
the list of both c’s active and backup OAs.

One of our primary goals for the selection of backup OAs
is to reuse stored states and keep the run-time overhead of
services orchestration as low as possible. The selection is based
on the following observations:
• Every OA assigned with some activity for the orches-

tration will sooner or later obtain some information
about the orchestration and this information would
overlap with some backup information.

• To keep an OA updated with the information about
an OA it backs up, it is often sufficient to send it the
deltas of the latest changes, which are typically small
fractions of the entire information.

• The amount of overlapping information, and therefore
the sizes of the deltas, depends on the freshness of the
currently stored information at OAs.

An important property of backup selection is that the
backups of an OA can be unambiguously calculated by any OA
at any time of the orchestration. This simplifies the handling
of events like OA crashes.

The selection algorithm is built on OA graphs (OAG) of
orchestrations. An OAG is first obtained with a projection of
the control flow of the SA to the assigned OAs. If the number
of OAs in an OAG is not sufficient for the number of backup
candidates, it is extended with more OAs.

Fig. 6 shows the OAGs of an orchestration of the example
SA p of Fig. 1 and an extension s with more OAs. In the
OAG of p, Ap is a parent of Ab and Ac. If an OA is assigned
to consecutive orchestration activities, the OA appears as a
single node in the OAG. For example, if both invoke(Sc, c)
and invoke(Sd, d, d̄) were assigned to Ad, only a single Ad

node would have appeared in the OAG. On the other hand, the
same OA may appear multiple times in an OAG if it is assigned
to activities separated by other OAs. For example, there are two
Ap nodes in the OAGs. Parallel branches are ordered. The
ordering of branches are decided when an SA is initialized
for orchestration. The general rule is that a branch with more
orchestration activities has higher priority. For example, the
branch with Ab has more orchestration activities than the other
branch when n of the loop is larger than 2. In Fig. 6, a branch
on the left has higher priority than a branch on the right.

The number of OAs in an OAG is the degree of the OAG.
It determines the number of backup candidates each OA may
have. If an orchestration of p requires that every OA should
have 4 backup candidates, the minimum degree of the OAG
is 5. This can be obtained by appending one more OA to the
youngest node Ap, as Au in Fig. 6. The selection of Au is
based on the information in the routing component, such as
geographic distances.

The backup candidates of an OA A are selected with the
following priority order:

S1. OAs of A’s enclosing scopes have higher priorities
than OAs of lower level nested scopes.

a) Scopes closer to A have higher priorities.
S2. In a scope, OAs of the same branch have higher

priorities than OAs of other branches.
In A’s branch,

a) Ascendant OAs have higher priorities than
descendant OAs.

4Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            14 / 82



Ap

Ab

Ac

Ad

Ap

Au

OAG of the example SA p

Ap

Ab

Ac

Ad

Ap

As

Ae

Af

As

Ag

Ac

OAG of an extended SA s

Figure 6. OA graph for backup selection.

b) OAs closer to A have higher priorities.
Among the other branches,

c) OAs of a higher-priority branch have higher
priorities.

d) In the same branch, OAs closer to the scope
manager have higher priorities.

Table III shows the lists of backup candidates (with length
4 for p and 7 for s) of the OAs for the two OAGs in Fig. 6.

TABLE III. BACKUP CANDIDATES

OA p (length = 4) s (length = 7)
As Ap, Ae, Af , Ag , Ac, Ab, Ad

Ap Ab, Ac, Ad,Au As, Ae, Af , Ab, Ac, Ad, Ag

Ab Ap, Ac, Ad,Au Ap, Ac, Ad, As, Ae, Af , Ag

Ac Ap, Ad, Ab,Au Ap, Ad, Ab, As, Ae, Af , Ag

Ad Ac, Ap, Ab,Au Ac, Ap, Ab, As, Ae, Af , Ag

Ae Ap, As, Af , Ag , Ac, Ab, Ad

Af Ae, Ap, As, Ag , Ac, Ab, Ad

Ag As, Ac, Ap, Ae, Af , Ab, Ad

Ac Ag , As, Ap, Ae, Af , Ab, Ad

The table only contains Ap and As once for each SA.
The reason is that the backups for Ap is computed when Ap

becomes a scope manager and it stays active until the end of
the scope.

As an example, the backups for Ae, are selected according
to the following rules of the selection algorithm: Ap (S1.a,
S2.a, S2.b), As (S1.a, S2.a), Af (S1.a, S2), Ag (S1.a, S2.c),
Ac (S1.a), Ab (S2.c) and Ad.

During an orchestration, c.A+, the actual active and backup
OAs for message c are selected from the first k + 1 available
OAs in the candidates OAs obtained from the OAG.

B. Normal execution
Every CPM message contains an integer k as the replica-

tion degree of the current branch, an OAG of degree l (l > k)
and a list of actual active OA and backups.

In addition, every message has a timestamp that can be used
to check causal relations between messages. A timestamp is
of the form [b0, n0] · [b1, n1] · . . . , where b0, b1, . . . are the
unique identifies of the branches which the message is part of,
and n0, n1, . . . are the sequence numbers in the branches. As
shown in Fig. 7, in the beginning, there is only one branch (0).
After a fork, two new branches (0, 0) and (0, 1) are created.
The orch message has sequence number 0 in branch (0). All

orch
[(0), 0]

invoke(b) · . . .
[(0), 1] · [(0, 0), 0]

wait(b) · . . .
[(0), 1] · [(0, 0), 1]

join · . . .
[(0), 1] · [(0, 0), n1]

invoke(c) · . . .
[(0), 1] · [(0, 1), 0]

wait(c) · . . .
[(0), 1] · [(0, 1), 1]

eos · . . .
[(0), 1] · [(0, 1), n2]

eorch
[(0), 2]

Figure 7. Message timestamps.

messages in the new branches have the same sequence number
1 in the parent branch (0), but different sequence numbers 0,
1, . . . , in the new child branches (0.0) and (0, 1).

To compare the causality of two messages m1 and m2,
we first get the longest prefix of their timestamps such that
b10 = b20, . . . , b

1
i = b2i (i ≥ 0). Message m1 happens before

Message m2 in the same SA execution, denoted m1 ≺ m2

or m2 � m1, if n10 = n20, . . . , n
1
i−1 = n2i−1 and n1i < n2i .

Messages m1 and m2 are concurrent, denoted m1 ‖ m2, if
n10 = n20, . . . , n

1
i = n2i .

Suppose that OA A, after interpreting a remote message
c0 and some local interpretations, is currently interpreting
message c. Suppose further that the current scope manager and
its backups are c.S and c.S (and c.S+ = {c.S} ∪ c.S). The
following are the steps related with sending messages during
the orchestration of a normal execution:

C1. When the orchestration of a branch is moving away
from A with CPM message c:

a) Select c.A+.
b) Send to c.A+ message c (or its delta).
c) Notify c.S+ ∪ c0.A− c.A+ about the move

with message m. m contains two sets of OAs
c.S+ and G = c0.A− c.A+.

C2. When A stores a local message c in its PM, it also
sends the delta of the message cA to c0.A.

Step C1.a selects the next active OA and its backups
according to the availability of OAs obtained from its RT. Step
C1.b extends the destination of a CPM message to include the
backups. Step C1.c has two purposes: 1) it extends a scope
message to include the scope manager’s backups (c.S+); 2) it
informs some of A’s backups (G, which no longer backup the
subsequent states of the same SA) to purge the backup states.
Step C2 informs A’s backups about its own state changes.

c.S+ in step C1.c was selected when the corresponding
scope element was interpreted. Step C1.c does not check
the availability of the scope manager like step C1.a. The
unavailability of an OA that has been active, like a scope
manager, is handled in Subsection V-C.

Some messaging overhead is reduced when OAs play mul-
tiple roles. For example, when c.A = {A}, which is typically
true for k = 1 (according to the backup selection rules), step

5Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            15 / 82



C1.b does not involve any additional remote message than a
non-replicated orchestration.

When OA Ar receives a CPM message c (or delta), it does
the following:

R1. Ignore c if Ar has already received a message c′ such
that c′ � c.

R2. If Ar = c.A, interpret c.
R3. If Ar ∈ c.A, store or update backup status of c.A.
R4. If Ar = c.S, update scope state in SR.
R5. If Ar ∈ c.S, update BSR.

If a message of a later stage of the same SA execution has
already been processed, the newly arrived message is ignored
(step R1). The message is handled depending on whether the
receiver is an active OA (step R2), a backup OA (step R3),
an active scope manager (step R3) or a backup scope manager
(step R4).

When OA Ar receives a message m, notifying that an
orchestration is moving from A to A′, it does the following:

M1. Ignore m if Ar has already received a scope message
m′ such that m′ � m.

M2. If Ar = m.S, update the status of scope in the SR.
M3. If Ar ∈ m.S, update the backup status of the scope

in BSR.
M4. If Ar ∈ m.G, purge backup status of A.

Notice that in some situations, c.A+ ∩ c.S+ 6= ∅, the tasks
for steps M2 and M3 are done in R4 and R5. In general, the
more these sets overlap, the more overhead is avoided.

C. Handling unavailability of OAs
When an OA becomes unavailable, its tasks for services

orchestration, either as an active or backup OA, are taken over
by other OAs. There are two types of tasks: interpretation of
CPM messages and management of scopes. In this subsection,
we focus on the first type, i.e., to continue interpreting CPM
messages when an OA becomes unavailable. The steps to
continue scope management is almost the same.

The unavailability of OAs is handled on a per-message
basis, or a per-branch basis, because every CPM message
represents an SA branch. When an OA in c.A+ becomes
unavailable, it is always the highest ranked available OA in
c.A+ to take the responsibility of handling the unavailability.

An OA becomes unavailable either when it leaves the OA
network on purpose, or when it crashes or is disconnected due
to some network failure. Before OA A leaves on purpose, it
notifies the highest ranked available OA in c.A+ − {A} for
every message c in its PM and BM about its leaving. An OA
Ar does the following when receiving this message:

L1. If A is the highest ranked OA in c.A+, Ar takes over
as the actual active OA of c.

L2. Add a new OA to c.A+ according to the OAG and
inform the new c.A+ about the latest update of c.

When an OA crashes or is disconnected from the network,
its unavailability is detected when another OA is unable to send
it a message. Because the OAs exchange routing messages
regularly [6], the unavailability is detected in short time.
Generally, the busier the OA network, the shorter the detection
time. As soon as an unavailability is detected, it is propagated
to the entire OA network.

When an OA Ar is notified of the unavailability of A, it
finds relevant CPM messages in its PM and BM. A message

c is relevant if A ∈ c.A+. For each such message c, it does
the following:

U1. If Ar is the highest ranked available OA in
c.A+ − {A}, do L1 and L2.

With respect to correctness, think of a message as repre-
senting a particular step of a branch. Because only the highest
ranked available backup OA takes over the role as the new
active OA of a message when the current active OA becomes
unavailable (and once an OA is detected as unavailable, it
will not be re-assigned to the same process execution when
it becomes available again), it is impossible for two OAs to
simultaneously take over as the new active OA of the same
message.

However, backups of different messages of the same branch
may coexist in different OAs. Consequently, different OAs
may independently take over the role as the active OAs of
different steps of the same branch. This does no harm when
business critical services enforce the at-most-once execution
model. In addition, if a scope manager observes that two OAs
are responsible for the orchestration of the same branch, it kills
the activities represented by the outdated messages. Eventually,
the active OA of the most up-to-date message wins as the only
active OA of the branch.

To make the last point clearer, consider this particular
situation: OA A becomes unavailable just after an orchestration
moved to the next OA A′, and the notification of the unavail-
ability arrives to Ar before the notification of the move (steps
C1.b and C1.c in Subsection V-B). In this situation, Ar may
take over and repeat the work that A had just finished before it
became unavailable. The repeated work will eventually arrive
at A′. By checking the timestamp of the message (step R1
in Subsection V-B), A′ can figure out that the orchestration of
this branch has already passed over this stage. The same is also
detected by the scope manager (step M1). In the worst case, if
a service invocation is repeated, a business-critical service will
return with an exception due to the at-most-once semantics.

The last issue will not occur for replicated scope managers,
because a scope manager never moves from OA to OA in the
basic CPM scheme.

At this point, it should be clear that the replication scheme
can tolerate up to k crashes during the time interval between
the detection and the handling of an unavailability.

VI. PERFORMANCE

We developed an OA prototype that runs in a simulator [9]
for performance study. We study the performance of OAs with
different degrees of replication and at different workload.

In our experiment, there are 100 SPs, 10 of the which
are OAs as well. That is, these 10 sites both process service
invocations and contribute to orchestration of services. Every
OA covers 10 SPs. The distances between an OA and the SPs
it covers are relatively short. An SP spends on average 100ms
to process a service invocation. An OA spends on average
10ms to interpret a CPM message, and 1ms to handle a scope
message, backup message or purge message. We model the
workload with multiprogramming levels (MPLs) of SPs, which
is the number of concurrent service operations it executes most
of the time. Initially, a fixed number of SA executions are
fed into the system. A new SA execution starts as soon as
an existing one terminates. An SA execution consists of 4
operation invocations to different randomly chosen SPs.

6Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            16 / 82



160
170
180
190
200
210
220
230

3 6 9

T
hr

ou
gh

pu
t

(S
A

s/
se

c)

MPL

k = 0
k = 1
k = 2
k = 3

Figure 8. Throughput of 100 SPs.

1.5

2

2.5

3

3.5

4

4.5

3 6 9

R
es

po
ns

e
tim

e
(s

ec
)

MPL

k = 0
k = 1
k = 2
k = 3

Figure 9. Response time of SAs.

Fig. 8 shows the aggregate throughput of all SPs (measured
in the number of completed SA executions per second). Fig. 9
shows the average response time of the SAs.

Fig. 10 shows the average resource utilization at OAs when
the SP MPL is 6. We only show the resource utilization at one
MPL, because although the total resource utilization varies at
different MPLs, the proportion of different kinds of message
handling is almost the same through all MPLs. As the degree
of replication increases, the overhead of backup management
(“B” and “G”) increases, and the capability of normal service
orchestration (“I” and “S”) and service operation execution
(“P”) decreases. Consequently, the overall SP throughput de-
creases and SA response time increases, as shown in Fig. 8
and Fig. 9.

It is interesting to notice that when k = 1, the overhead of
backing up orchestration states (“B”) is less than the overhead
of purging the backup states (“G”). The reason for this is that
when an OA A forwards the orchestration to the next OA A′,
c.A+ = {A,A′} in step C1 of Subsection V-B. In other words,
A already has the state locally and the overhead of backing
up the state is therefore low.

It is also interesting to notice that when k increases, the
overhead of purging the backup states (“G”) decreases. This
is because an OA backups up the states of several stages of
the same orchestration. When it store the backup state of a
new stage, it also purges the state of an earlier stage. In other
words, the larger overlap of c0.A and c.A+ in step C1.c of
Subsection V-B leads to the decrease of “G”.

When an OA becomes unavailable, other OAs will handle
the unavailability. We expected that this will cause a sudden
increase of workload which will influence the overall per-
formance of the system. For example, when k is 2 and SP
MPL is 6, an OA covering 10 SPs is handling (most of the

80%

P

I

k = 3

79%

P

I

k = 2

78%

P

I

k = 1

77%

P

I

k = 0

S
G
B

P: service process, I: message interpretation, S: scope management
B: store/update of backup states, G: purge of backup states

Figure 10. Resource utilization at OAs at MPL 6.

time) 60 CPM messages and backing up 120 for other OAs. If
an OA crashes, 180 messages will be handled by other OAs.
However, in our experiments, we could not observe significant
overall performance hiccup. The main observable difference
in overall performance is that MPL of OAs has increased
nearly 10%, both during handling of the unavailability and
afterwards. It turns out that the messages that the unavailable
OA was actively orchestrating (60 in this example) were the
primary contributor to the increase of load at other OAs. The
backup messages (120 in this example) contributed only very
little to the increase of load at other OAs. More precisely, it is
primarily the “I” part in Fig. 10 that contributed to the increase
of load at the remaining OAs.

VII. RELATED WORK

Decentralized orchestration in SOC research can be cat-
egorized into instantiation-based or messaging-based [5]. An
instantiation-based approach [10][11][12][13][14] instantiates
in advance a composition with resource and control allocation
in the distributed environment. The allocated resources and
control are responsible for the orchestration of the subsequent
executions of the same composition. This approach is therefore
more suitable for enterprise applications where allocation
of resources is possible, and compositions are stable and
are typically repeated many times [5]. In messaging-based
approaches [5][10][15][16], information like execution order
of activities is carried in messages. Since no resource or
control is allocated in the distributed environment before an
execution starts, messaging-based approaches would be more
appropriate for orchestration where either the compositions or
the environment are so dynamic that pre-allocation of resources
is impractical.

The focus of research on reliable services orchestration has
been on dealing with failures of constituent services, mostly
based on compensation-based recovery [5][12][13][16]. Little
work is done on dealing with failures of orchestration engines
or agents.

Several replication schemes have been proposed in the re-
search area of data streams and continuous queries. Gedik and
Liu [17] applied a passive or backup replication mechanism
to executions of continuous queries. A continuous query is
executed on peers with matching ids. The selection of replicas

7Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            17 / 82



or backups is based on peer ids and neighbor proximity of
the peer-to-peer network. In [18], data flow from sensors to
data processing programs through an overlay network of peers.
Peers are grouped into cells. Active replication is applied
to the peers in the same cells to enhance the availability
of the data flows. Martin, Fetzer and Brito [19] proposed
an active replication scheme to a stream variant of map-
reduce system consisting of stages of map-reduce operators.
Replication is applied among data partitions of the same stage.
The focus is on utilizing unused CPU cycles for replication.
Zhang et al. [20] introduced a hybrid active/passive replication
scheme to a peer-to-peer stream processing system to deal with
transient failures due to high workload. It dynamically switches
between active and passive schemes according to the workload
in order to utilize the best part of both schemes.

The key difference of the afore-mentioned replication work
and ours is that in continuous queries or data stream process-
ing, tasks assigned to processing agents or peers are long last-
ing. It is therefore more suitable to have a relatively stable set
of replicas and even special-purpose multicast communications
among them.

Continuation-passing messaging was presented in more
detail in our early work [5]. This early approach was however
too intrusive. It requires that service providers support message
interpretation. Although this might be arguably acceptable for
enterprise applications, it is too strong a requirement for open
services. Organization of OA networks for orchestration was
later presented in [6]. Support for exception handling and
rollback due to service failures was also presented in more
detail in [5].

VIII. CONCLUSION

We presented a replication scheme for decentralized or-
chestration of open services with continuation-passing mes-
saging. The scheme utilizes the knowledge about the control
structure that is encapsulated in messages and the run-time
state that is already spread in the distributed environment to
enhance the availability of the orchestration. For a degree-k
replicated orchestration, every branch can tolerate simultane-
ous crashes of up to k orchestration agents. Our performance
study shows the overhead of replication during normal services
orchestration.

There are still a number of issues to be addressed before
the new approach can be practically adopted.

Security is always an important concern of distributed
applications. We have not worked on security issues yet,
but our approach is already useful when used in special
cases. For example, if the orchestration agents are deployed
at geographically different places by the same organization or
a set of trusted applications, these agents can be used as a
smart pool of orchestration engines where the orchestration
activities are dispatched to the most appropriate engines.

The performance study shows that replication does incur
a performance penalty. An incentive model would encour-
age more service providers to offer as orchestration agents.
For example, applications that offer orchestration capabilities
should have higher priority when scheduled and should be
more entitled to higher degree of replication.

REFERENCES
[1] C. Peltz, “Web services orchestration and choreography,” Computer,

vol. 36, no. 10, 2003, pp. 46–52.

[2] Amazon SWF: The Amazon Simple Workflow Service, [retrieved:
April, 2014] http://aws.amazon.com/documentation/swf/.

[3] M. Wieland, K. Görlach, D. Schumm, and F. Leymann, “Towards
reference passing in web service and workflow-based applications,”
in Proceedings of the 13th IEEE International Enterprise Distributed
Object Computing Conference (EDOC), Auckland, New Zealand, 2009,
pp. 109–118.

[4] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “PeerSoN: P2P
social networking: early experiences and insights,” in Proceedings of the
Second ACM EuroSys Workshop on Social Network Systems (SNS),
Nuremberg, Germany, 2009, pp. 46–52.

[5] W. Yu and A. A. M. M. Haque, “Decentralised web-services orchestra-
tion with continuation-passing messaging,” IJWGS, vol. 7, no. 3, 2011,
pp. 304–330.

[6] A. A. M. M. Haque, W. Yu, A. Andersen, and R. Karlsen, “Peer-to-peer
orchestration of web mashups,” in The 14th International Conference
on Information Integration and Web-based Applications and Services
(iiWAS), Bali, Indonesia. ACM, 2012, pp. 294–298.

[7] Web Services Business Process Execution Language (WS-BPEL)
Version 2.0, Organization for the Advancement of Structured In-
formation Standards (OASIS), April 2007, [retrieved: April, 2014]
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[8] SERF, [retrieved: April, 2014] http://www.serfdom.io/.
[9] A. Varga, “OMNeT++,” in Modeling and Tools for Network Simulation,

K. Wehrle, M. Günes, and J. Gross, Eds. Springer, 2010, pp. 35–59.
[10] A. Barker and R. Buyya, “Decentralised orchestration of service-

oriented scientific workflows,” in Proceedings of the 1st International
Conference on Cloud Computing and Services Science (CLOSER),
Noordwijkerhout, Netherlands, 2011, pp. 222–231.

[11] B. Benatallah, M. Dumas, and Q. Z. Sheng, “Facilitating the rapid
development and scalable orchestration of composite web services,”
Distributed and Parallel Databases, vol. 17, no. 1, 2005, pp. 5–37.

[12] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda, “Decentralized
orchestration of composite web services,” in Proceedings of the 13th
international conference on World Wide Web (WWW), New York,
USA, 2004, pp. 134–143.

[13] G. J. Fakas and B. Karakostas, “A peer to peer (P2P) architecture
for dynamic workflow management,” Information & SW Technology,
vol. 46, no. 6, 2004, pp. 423–431.

[14] P. Muth, D. Wodtke, J. Weißenfels, A. K. Dittrich, and G. Weikum,
“From centralized workflow specification to distributed workflow exe-
cution,” J. Intell. Inf. Syst., vol. 10, no. 2, 1998, pp. 159–184.

[15] D. Martin, D. Wutke, and F. Leymann, “A novel approach to de-
centralized workflow enactment,” in Proceedings of the 12th Inter-
national IEEE Enterprise Distributed Object Computing Conference
(EDOC), Munich, Germany, 2008, pp. 127–136.

[16] T. Möller and H. Schuldt, “A platform to support decentralized and
dynamically distributed P2P composite OWL-S service execution,” in
Proceedings of the 2nd Workshop on Middleware for Service Oriented
Computing (MW4SOC), Newport Beach, California, USA, 2007, pp.
24–29.

[17] B. Gedik and L. Liu, “A scalable peer-to-peer architecture for distributed
information monitoring applications,” IEEE Transactions on Computers,
vol. 54, no. 6, 2005, pp. 767–782.

[18] R. Martins, P. Narasimhan, L. Lopes, and F. Silva, “Lightweight fault-
tolerance for peer-to-peer middleware,” in Proceedings of the 29th IEEE
Symposium on Reliable Distributed Systems (SRDS), New Delhi, India,
2010, pp. 313–317.

[19] A. Martin, C. Fetzer, and A. Brito, “Active replication at (almost)
no cost,” in Proceedings of the 30th IEEE Symposium on Reliable
Distributed Systems (SRDS), Madrid, Spain, 2011, pp. 21–30.

[20] Z. Zhang et al., “A hybrid approach to high availability in stream pro-
cessing systems,” in Proceedings of IEEE 30th International Conference
on Distributed Computing Systems (ICDCS), Genova, Italy, 2010, pp.
138–148.

8Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            18 / 82



Why are Reputation Systems Absent from Cloud Services: Reason and Solution  
 

Lianyong Qi, Jiancheng Ni, Chao Yan, Xiaona Xia, Chunmei Ma 
Computer Science College 
Qufu Normal University 
Rizhao, 276826, China  

Email: {lianyongqi@gmail.com, nijch@163.com, yanchao@qfnu.edu.cn, xiaxn@sina.com, rsmcm@163.com} 
 

 
Abstract—Feedback rating-based reputation system is 
usually considered as an effective approach to build the trust 
between cloud users and cloud providers. However, 
unfortunately, such a reputation system is absent from the 
present major cloud providers, e.g., Amazon, Google and 
Microsoft, which embarrasses a cloud user from selecting a 
trusted cloud service from a cloud provider. In view of this 
challenge, in this paper, we first analyze the cloud 
characteristics, and study why reputation systems are absent 
from cloud providers, from perspectives of cloud provider 
and cloud user respectively. Afterwards, two reputation 
systems of popular e-Commerce service platforms, i.e., 
Amazon.com and eBay.com, are investigated respectively. 
Finally, a reputation system tailored to cloud services, i.e., 
Cloud Reputation System (CRS) is brought forth. CRS not 
only considers the advantages of e-Commerce reputation 
systems, but also adapts to the cloud characteristics. We 
believe that the proposed CRS is helpful, for building the 
trust between cloud users and cloud providers in the future. 

Keywords-Cloud user; Cloud provider; Trust; Feedback 
rating; Reputation system; Service quality 

I.  INTRODUCTION  
As a natural evolution of Services Computing, Cloud 

Computing has recently gained more and more attentions, 
from both academic and industry domains [1][2]. By 
delivering various computing resources in a pay-as-you-
go manner, Cloud Computing is helping human to realize 
the long-held dream of computing-as-a-utility. In the 
cloud environment, a cloud provider could share its idle 
computing resources for additional income. While on the 
other hand, a cloud user can also benefit from moving 
his/her business applications towards cloud, so as to enjoy 
an easy-to-deploy, maintenance-free and cost-effective 
business competitive advantage [3]. 

However, due to the open and dynamic nature of cloud 
environment, the Quality of Service (QoS) of a cloud 
service is not always as good as advertised; even a 
Service Level Agreement (SLA) contract is made 
beforehand between a cloud user and a cloud provider [4]. 
We analyzed the reasons as follows. First, inside the 
cloud provider, we cannot expect the availability of a 
cloud service is always 100% in a billing cycle (e.g., 
numerous reported outage incidents [5]). Besides, inside 
attacks and damages are also possible (for example, 
Google has to fire the employees for their illegitimate 

operation on user data [6]). Second, outside the cloud 
provider, we cannot precisely predict the actual execution 
context (e.g., network delay), when a cloud user requests 
a cloud service from a cloud provider. Besides, malicious 
attacks from competitors are also inevitable in cloud 
environment [2]. Therefore, the delivered service quality 
of a cloud provider is fluctuant, and sometimes may not 
meet the quality expectation of the cloud user. In other 
words, cloud provider (or the service delivered by a cloud 
provider) is not always ‘trusted’ as promised. Therefore, it 
is of great significance to build trust between cloud users 
and cloud providers. 

Feedback rating and review are regarded as an 
effective manner to build trust between service providers 
and service users, and now widely adopted in present 
popular e-Commerce service platforms [7]. For example, 
if one buys a smartphone from an e-Commerce platform, 
he/she can leave a negative or positive rating (1-star to 5-
stars, and 5-star is the best) or review, according to his/her 
satisfaction towards the smartphone quality and shipping 
service. However, compared with e-Commerce, present 
major cloud providers, e.g., Amazon, Google and 
Microsoft lack such a reputation system. In this situation, 
if one requests a cloud service from a cloud provider, e.g., 
Amazon, he/she has no way to evaluate and predict the 
cloud service quality before the service is delivered and 
executed. Therefore, the absence of reputation system 
makes it a challenge for cloud users to select a trusted 
cloud service from cloud providers.   

In view of this challenge, in this paper, we study the 
reasons that reputation systems are absent from cloud 
providers, and put forward a reputation system tailored to 
cloud service delivery. The remainder of this paper is 
organized as below. In Section 2, we analyze the cloud 
characteristics and study why reputation systems are 
absent from the present cloud providers. Afterwards, in 
Section 3, two reputation systems of e-Commerce (i.e., 
Amazon.com and eBay.com) are investigated respectively. 
In Section 4, a reputation system for cloud services, i.e., 
CRS (Cloud Reputation System, CRS) is put forward, by 
considering the cloud characteristics analyzed in Section 
2 and the e-Commerce reputation systems investigated in 
Section 3. Related work and comparison analyses are 
introduced in Section 5, and finally, conclusions are 
drawn in Section 6. 

9Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            19 / 82



II.  ABSENCE OF REPUTATION SYSTEM FROM CLOUD 
PROVIDERS:  THE REASONS 

Rating-based reputation system is a good supplement 
for calculating the trustworthiness of a cloud service 
before its delivery. However, as far as we know, the 
present major cloud providers (e.g., Amazon, IBM and 
Microsoft) do not support such a reputation system. In this 
section, we analyze the reasons from the perspectives of 
cloud provider and cloud user, which are listed briefly in 
Table 1. 

TABLE I.  ABSENCE REASONS OF REPUTATION SYSTEM FROM CLOUD 

Perspectiv
e Id Reason 

Cloud 
provider 

1 Lack of incentive 

2 Have confidence in delivering high service quality 

3 Fear for malicious ratings 

Cloud 
user 

1 Hard to rate a cloud service with a long running period 

2 Hard to rate a cloud service in service combination  

3 Hard to observe the necessary QoS data for rating 

A. Reasons From the Perspective of Cloud Provider  
In this subsection, we study the reasons that reputation 

systems are absent from cloud, from the perspective of 
cloud provider. 

(1) Lack of incentive 
At present, the big and competitive companies 

constitute the majority of cloud providers. For example, 
Amazon occupies 80%-90% market share of IaaS [8]. In 
this situation, a cloud user has few choices when he/she 
requests a cloud service; hence, the big cloud provider, 
e.g., Amazon lacks incentive to build its reputation system. 
Besides, no competition exists inside a cloud provider. 
For example, if a cloud user requests elastic computing 
resources from Amazon, he/she has no other choice but to 
select EC2 service, because only EC2 service is able to 
provide the elastic computing functionality inside Amazon. 
In this situation, EC2 faces no competition inside Amazon. 
Therefore, from the perspective of Amazon, it is regarded 
as unnecessary to measure and publish the reputation of 
EC2, even if different cloud users may experience 
different service quality from EC2.  

(2) Have confidence in delivering high service quality 
The big cloud providers, such as Amazon, deliver rich 

cloud services and have advanced techniques to ensure 
that a high quality service is provided. Therefore, the big 
cloud providers often have confidence in their delivered 
service quality, and regard it unnecessary to build a 
reputation system for their cloud services. For example, as 
Fig.1 shows, Amazon declares 99.99% service availability 
in its SaaS SLA contract, and different compensation 
rates are available if the agreed availability is violated [3].  

However, as analyzed in Section 1, the service quality 
delivered by cloud providers is not always as high as 
promised, due to the malicious attacks from outside, or 
dynamic change of network environment. Besides, the 
simple compensation mechanism is not suitable for all 
cloud users, when SLA agreement is violated. For 
example, if a critical task is failed due to the poor quality 
of a cloud service, the user may prefer to leave a lowest 
rating (e.g., 1-star) to the cloud service, rather than 
receive a compensation of $100. 

 
Service Level Agreement 

Availability 
·99.99% uptime 

Compensation 
·Percentage of total charges paid by cloud user 

UPTIME (PER 15 MIN) COMPENSATION 
99.99% - 100% 0% 

98.00% - 99.98% 5% 
97.00% - 97.99% 10% 
95.00% - 96.99% 20% 

< 95.00% 50% 
 

Figure1. An example of SLA contract 
 

(3) Fear for malicious ratings 
After a user invoked a service, he/she can give the 

service a feedback rating, based on the perceived service 
quality and his/her quality preference. Therefore, the 
feedback rating is rather subjective, and the feedback 
rating-based reputation system is vulnerable to the 
malicious attacks. For example, a malicious user may give 
a 1-star rating to a 5-star delivered service, or give a 5-star 
rating to a 1-star delivered service, for commerce or 
competition reasons. Similar fears are also existent for the 
cloud providers, because a good reputation accumulated 
within a long period could be easily damaged by a 
malicious user rating. Therefore, from the perspective of 
cloud provider, it prefers to leave the reputation system 
empty, rather than have its service reputation attacked by 
potential malicious cloud users. 

B. Reasons From the Perspective of Cloud user  
Different from the traditional web service, cloud 

services have some particular characteristics. Next, we 
will introduce these characteristics, and analyze the 
reasons that reputation systems are absent from cloud, 
from the perspective of cloud provider. 

(1) Hard to rate a cloud service with a long running 
period 

Different from the traditional web services whose 
running period is short, the running period of a cloud 
service is usually long, e.g., one year, during which the 
cloud provider will deliver its cloud services continuously. 
In this situation, it is hard for a cloud user to rate a cloud 
service during its long running period. First, a cloud user 

10Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            20 / 82



cannot wait to give his/her final rating until the cloud 
service’s delivery ends, because the waiting time is too 
long (e.g., a cloud user has to wait for one year, in order 
to rate his/her requested one-year-period Email service 
from Google). Second, the service quality of a cloud 
service may change constantly, during the service’s long 
running period. Hence, a cloud user cannot give a fair and 
accurate rating, towards the dynamically changed service 
quality of a cloud service.  

(2) Hard to rate a cloud service in service combination 
Generally, a cloud provider delivers its cloud services 

in the form of service combination. For example, Table 2 
lists four cloud service combinations advertised by 
Amazon EC2 [9], i.e., {Small instance, Middle instance, 
Large instance and Extra-large instance}, where each 
instance is a combination of four categories of cloud 
services {Memory, EC2 Computing Unit, Local Storage, 
Platform}.  

TABLE II. AN INSTANCE OF CLOUD SERVICE COMBINATION 

 
Memory 

(GiB) 

EC2 
Computing 

Unit 

Local 
Storage 

(GB) 

Platform 
(bit) 

Small 1.7 1 160 32 or 64 

Middle 3.75 2 410 32 or 64 

Large 7.5 4 850 64 

Extra-large 15 8 1690 64 

 

In this situation, a cloud user can only give an global 
rating towards the whole service combination instance. 
For example, a cloud user gives a ‘4-star’ rating to service 
combination ‘Middle instance’ in Table 2. Obviously, this 
rating is a global rating towards the quality performance 
of combination (e.g., ‘Middle instance’), not a local rating 
for a single cloud service (e.g., ‘410 GB Local storage’ in 
‘Middle instance’). In this situation, the global rating has 
little effect in evaluating the service quality of a single 
cloud service; even if a global rating is given by a cloud 
user. For example, if a cloud user gives a lowest ‘1-star’ 
rating to ‘Middle instance’, we cannot determine whether 
the bad rating is caused by the poor quality of ‘3.75 GiB 
Memory’ or ‘2 EC2 computing unit’ or ‘410 GB Local 
Storage’ or ’32 or 64 Platform’. 

(3) Hard to observe the necessary QoS data for rating 
    In cloud environment, business applications of users 
are deployed and executed on the remote servers of cloud 
providers, not locally. Therefore, a cloud user has little 
control on its business execution, and thereby cannot 
observe the detailed QoS data associated with cloud 
service delivery, e.g., the actually delivered disk I/O, 
response time of storage service. Although several 
toolkits have been developed to monitor the QoS data of 
cloud service delivery, e.g., Amazon CloudWatch [10], the 

monitoring range is limited and the monitoring accuracy 
is doubtable. For example, if a cloud user utilizes 
CloudWatch to monitor EC2 service, the authenticity of 
monitored QoS data is doubtable, as both CloudWatch 
and EC2 are developed by Amazon. Therefore, it is hard 
for a cloud user to rate a cloud service, based on the little 
observed QoS data. 

Based on the above reason analyses, we have identified 
the obstacles that lead to the absence of reputation system 
from cloud, from perspectives of cloud provider and 
cloud user. Next, two reputation systems in e-Commerce, 
e.g., on-line Amazon.com and eBay.com will be 
investigated respectively, which could be regarded as 
beneficial references for building a reputation system for 
cloud services in the future. 

III.  INVESTIGATION OF REPUTATION SYSTEMS IN E-
COMMERCE 

Although few cloud providers also build their 
reputation systems, e.g., Rackspace Inc. [11], the 
reputation system is rather simple and cannot 
accommodate the cloud service delivery very well. In this 
section, the reputation systems of on-line Amazon.com 
and eBay.com will be investigated respectively, which are 
beneficial references for building a reputation system for 
cloud services, as e-Commerce and cloud provider both 
deliver their ‘services’ to the public. 

A. Reputation system of Amazon.com 
As a successful on-line mall that delivers thousands of 

products to people all over the world, Amazon.com [12] is 
famous for its delivered high-quality products and 
objective reputation system. For each product in 
Amazon.com, a reputation is built, which mainly consists 
of the following two components: user rating and user 
review. 

(1) User rating 
    For each product, a user can leave a feedback rating 
from ‘1-star’ to ‘5-star’ (‘5-star’ is the best), to indicate 
his/her satisfaction degree towards the product quality or 
service quality. Then according to the ratings from all 
users, an average rating is assigned to a product. For 
example, for ‘Kindle Fire HD’ product, totally 824 users 
give their ratings, where there are 34 ‘1-star’ ratings, 37 
‘2-star’ ratings, 115 ‘3-star’ ratings, 232 ‘4-star’ ratings 
and 406 ‘5-star’ ratings. Therefore, the average rating for 
‘Kindle Fire HD’ is ‘4.1-star’. This average rating could 
reflect the user-perceived product quality approximately. 
Besides, the user rating is not fixed, but variable. For 
example, if ‘Kindle Fire HD’ cannot work after one 
month use, the user may revise the pre-assigned ‘5-star’ 
rating to ‘1-star’ rating, so as to express his/her extreme 
anger. This kind of variable user rating is really suitable 
for rating the quality of long-lifecycle products. 

11Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            21 / 82



(2) User review 
Besides user rating, Amazon.com allows users to give 

their reviews about a product. Considering the above 
example, 824 reviews are available for ‘Kindle Fire HD’ 
product. In a review, a user could describe his/her 
satisfaction or dissatisfaction, as well as the reasons. 
Moreover, user B can rate a review from user A (‘helpful’ 
or ‘not helpful’), which can reflect whether user A’s 
review is helpful to user B. For example, if 100 users read 
a review from user A, and 98 users consider the review 
helpful, then a ratio ‘98/100’ is assigned to the review 
from user A. In this way, Amazon.com can avoid some 
malicious user ratings and reviews. 

Despite of the above advantages, the reputation system 
of Amazon.com still has some limitations. For example, 
anyone can rate a product; even if he/she did not buy this 
product from Amazon.com. In this situation, the reputation 
system could be easily attacked by malicious users, e.g., 
by Sybil attacks [3]. 

B. Reputation system of eBay.com 
Compared with Amazon.com, the reputation system of 

eBay.com [13] is more complicated, which mainly 
consists of three components: mutual rating, user 
review and Quantity sold. 

(1) Mutual rating 
Different from Amazon.com, the ratings of eBay.com 

are mutual: buyer rating and seller rating. 
Buyer rating: A buyer can rate the service quality of a 

seller by buyer rating. If buyer A buys a product from 
seller B, A can give an overall rating to B, i.e., ‘Positive’ 
or ‘Neutral’ or ‘Negative’. Moreover, more detailed 
ratings could be given, according to the four criteria {Item 
as described, Communication, Shipping time, Shipping 
and handling charges} of B, each of which could be rated 
from 1-star to 5-star by A. Therefore, A can give one 
overall rating and four detailed ratings towards B. For 
example, buyer A’s overall rating towards B is ‘Positive’, 
and detailed ratings are respectively {5-star, 4-star, 5-star, 
4-star} corresponding to the above four criteria. Besides, 
according to overall ratings from all buyers, seller B is 
assigned an overall ‘99.95% Positive’ rating (excluding 
the repeated ratings from the same buyer in one week) by 
eBay.com. Likewise, according to detailed ratings from all 
buyers, seller B is assigned a detailed {4.9-star, 4.7-star, 
5-star, 4.8-star} rating by eBay.com. 

Seller rating: A seller can also rate the hehavior of a 
buyer by seller rating. After the buyer rates the seller, the 
seller can also rate the buyer as ‘Positive’ or ‘Neutral’ or 
‘Negative’. According to the seller ratings from all sellers, 
a buyer (e.g., A) is assigned an overall seller rating, e.g., 
‘98.5% Positive’ by eBay.com. 

Time factor is also considered in eBay.com. For 
example, both the buyer rating and seller rating should be 

given in 60 days since a deal is agreed, and could be 
revised only once in 10 days since the rating is given. Of 
course, a buyer can also view the past buyer ratings of a 
seller, e.g., buyer ratings in recent one month, in recent 
six months or in recent one year. 

(2) User review 
The user review of eBay.com is similar with that of 

Amazon.com, so it will not be discussed repeatedly. The 
minor difference between them is that: in eBay.com, a 
review should be given in 60 days since a purchase 
behavior occurs, and can only be revised once in 10 days 
after its birth. 

(3) Quantity sold  
For each product, a ‘quantity sold’ number is assigned 

by eBay.com, to indicate the popularity of the product in a 
recent period. For example, ‘1000 sold last month’ shows 
a great confidence of buyers towards a product recently. 
Although ‘quantity sold’ is not a direct component of 
reputation in e-Commerce, it is still regarded as an 
important factor when evaluating the reputation of a 
product. 

Next, based on the above analyses, we compare the 
reputation systems of Amazon.com and  eBay.com, from 
different angles. The comparison results are listed in 
Table 3, where better reputation strategies are stressed 
with a darker background color. Here, for some reputation 
strategies employed, we cannot determine whether it is 
good or not, such as the last criterion in Table 3, i.e., 
‘quantity sold’. According to  eBay.com, ‘quantity sold’ is 
a good indicator towards the popularity and quality of a 
product; however, according to Amazon.com, ‘quantity 
sold’ is bad because it distracts users’ attention from 
focusing on the product quality itself. As in Table 3, 
neither of the two reputation systems can outperform the 
other. 

TABLE III. REPUTATION SYSTEM COMPARISONS: AMAZON.COM VS 
EBAY.COM 

 
 Amazon.com eBay.com 

User 
rating 

Overall rating Yes 
/1-star to 5-star 

Yes 
/Positive or Neutral or 
Negative 

Detailed rating No Yes 
Mutual rating No Yes 
Non-user rating Yes No 
Revisable Yes/anytime Yes/once in 10 days 
Timely rating Yes/not must Yes/in 60 days 
Repeated rating Yes No 
Malicious rating Yes/easy Yes/difficult 
Mandatory rating No No 

User 
review 

Timely review Yes/not must Yes/in 60 days 
Revisable Yes/anytime Yes/once in 10 days 
Rating for review Yes Yes 
Malicious review Yes/easy Yes/difficult 

Quantity sold No Yes 

e-Commerce  Feedback  
type 

12Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            22 / 82



IV. A REPUTATION SYSTEM FOR CLOUD SERVICES 
In this section, a reputation system for cloud services, 

i.e., CRS is put forward. Here, CRS does not discuss the 
concrete reputation calculation process of cloud services, 
instead, CRS provides detailed solutions for solving the 
obstacles and difficulties introduced in Section 2, when 
building a reputation system for cloud services. The 
details of CRS are listed in Table 4. Next, we explain why 
the proposed solutions can solve the present obstacles. 

TABLE IV. CLOUD REPUTATION SYSTEM CRS: OBSTACLE & SOLUTION 

ID Obstacle Solution 
1 Lack of incentive Number of invocations 

2 Have confidence in delivering 
high service quality 

Overall rating 
Detailed rating 

3 Fear for malicious ratings 

Mutual rating 
NO Non-user rating 
NO Non-user review 
NO repeated rating 

4 Hard to rate a cloud service with 
a long running period 

Revisable rating 
Revisable review 
Timely rating(alternative) 
Timely review(alternative) 
Period rating 

5 Hard to rate a cloud service in 
service combination Detailed rating 

6 Hard to observe the necessary 
QoS data for rating 

Detailed rating 
NO Mandatory rating 

 
Obstacle1: Lack of incentive. According to the 

Bandwagon Effect [14], the more frequently a cloud 
service is invoked, the more attractive it is for cloud users. 
Therefore, ‘Number of invocations’ is of positive 
significance, for promoting cloud providers to build their 
respective reputation systems. 

Obstacle2: Have confidence in delivering high 
service quality. The low ‘Overall rating’ and ‘Detailed 
rating’ data can reminder the cloud providers to improve 
their poor service quality, so as to avoid cloud providers’ 
overconfidence in their delivered service quality. 

Obstacle3: Fear for malicious ratings. The proposed 
‘Mutual rating’ can increase the risk of a cloud user, if 
he/she gives a malicious rating. Besides, the Non-users 
are not allowed to give a rating or review, by which we 
can reduce the malicious ratings or reviews from the Non-
users. Furthermore, repeated ratings are not allowed, 
which can increase the cost of a cloud user when he/she 
gives a malicious rating. 

Obstacle4: Hard to rate a cloud service with a long 
running period. For the cloud services with a long 
running period, a cloud user can give his/her timely rating 
or review after he/she invokes the service. Besides, a user 
can report the latest service quality rating every other 
period, which is called ‘Period rating’.  In order to cope 
with the dynamic changes of service quality during the 
long running period, users’ rating or review towards a 
cloud service are revisable. 

Obstacle5: Hard to rate a cloud service in service 
combination. Actually, it is difficult to rate a single cloud 
service in service combination. However, we can make 
some attempt under some reasonable assumptions. For 
example, as Table 2 shows, we assume that Response time 
is affected greatly by the single service ‘EC2 computing 
unit’ and likewise, Throughput is affected greatly by the 
single service ‘Memory’. Under these two assumptions, 
we can rate single services ‘EC2 computing unit’ and 
‘Memory’ approximately, through the ‘Detailed rating’ 
towards QoS criteria Response time and Throughput. 

Obstacle6: Hard to observe the necessary QoS data 
for rating. With the limited QoS data that is observed, a 
cloud user can give its detailed ratings towards few or 
partial QoS criteria, which is still of positive significance 
for future cloud service selection. Besides, mandatory 
rating is not allowed so as to ensure the authenticity. 

V. RELATED WORK AND COMPARISON ANALYSES 
Cloud computing has exhibited its great advantages in 

delivering use-on-demand and pay-per-use computing 
services [1][2][15]. More and more users are moving their 
business or personal applications towards cloud. However, 
due to the dynamic and open nature of cloud environment, 
a cloud service may not deliver a satisfactory quality level 
as promised in its SLA contract.  In other words, from 
perspective of a cloud user, a cloud service is not always 
‘trusted’ during its delivery period. Many researchers 
have observed and studied this trust problem.  

Academic area. SLA is considered as a feasible 
manner to build trust between a cloud user and a cloud 
provider [2]. A cloud provider is regarded as trusted, if its 
service is delivered with SLA-agreed quality. Sheikh 
Mahbub Habib, et al. [15] introduces a set of attributes, 
e.g., security, performance and compliance, to monitor 
and measure the SLA violation. However, some quality 
performance declared in SLA is hard to monitor directly. 
Therefore, as an indirect manner, Monoj Kumar 
Muchahari, et al. [16] proposes a feedback rating-based 
trust calculation method, i.e., TrustCalculator, to estimate 
the future quality of a cloud service, based on its past 
feedback ratings from cloud users. However, the assumed 
user rating is of a rather simple form, i.e., from 0 to 5, 
which cannot accommodate the complicated cloud service 
delivery very well. As malicious rating is possible, S. 
Wang, et al. [17] proposes a detection method of 
malicious rating, by comparing the monitored service 
quality and the expected service quality in SLA. The 
object of this proposal is to ensure that all the user ratings 
are real and trusted, not malicious, which has the same 
function as our proposed ‘Mutual rating’ and ‘Rating for 
review’ in R3. Talal H. Noor, et al. [18] proposes a Trust 
Feedback Collector to collect user feedbacks from cloud 
service delivery. This collector provides an essential 
foundation, for building our proposed R3 reputation 
system in cloud. 

13Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            23 / 82



Industry area. Compared with the enthusiasm in 
academic area, few progresses in industry area could be 
found in building a cloud reputation system. Concretely, 
only few cloud providers offer their reputation systems, 
e.g., Rackspace Inc. [11]. And the effect is not as good as 
expected, for example, only 45 user reviews are left in 
Rackspace reputation systems since 2009. In contrast, 
most major cloud providers, e.g., Amazon, Google and 
Microsoft don’t offer sufficient reputation systems to 
support the trust evaluation of their cloud services, which 
is the major motivation of our paper. In view of the 
disappointed industry status, we analyze the reasons that 
reputation system is absent from cloud industry, and 
introduce a R3 reputation system tailored for cloud 
service delivery, by using reputation systems in e-
Commerce for reference. 

VI. CONCLUSIONS 
Feedback rating-based reputation system is a 

promising way, to build trust between cloud users and 
cloud providers. However, nowadays, major cloud 
providers, e.g., Amazon, Google and Microsoft do not 
support such a reputation system, which hampers a cloud 
user from selecting a trusted cloud service before the 
service is executed. In view of this challenge, in this paper, 
we first study why reputation systems are absent from 
cloud providers. Afterwards, we put forward a novel 
reputation system CRS tailored to cloud service delivery. 
In the future, we will refine the proposed CRS reputation 
system by introducing more detailed and quantified 
reputation calculation formulas. 

ACKNOWLEDGEMENTS 
This paper is supported by the Open Project of State 

Key Lab. for Novel Software Technology (No. 
KFKT2012B31), Innovational Education Project for 
Postgraduate in Shandong Province (No. SDYY11138), 
Natural Science Foundation of Shandong Province of 
China (No.ZR2012FQ011, ZR2012FM023), Soft Science 
Research Project of Shandong Province (No. 
2013RKB01040), DRF and UF (BSQD20110123, 
XJ201227) of QFNU. 

REFERENCES 
[1] M. Menzel and R. Ranjan, “CloudGenius: Decision 

Support for Web Server Cloud Migration”, Proceedings of 
21th International Conference on World Wide Web 
(WWW 12), ACM Press, Apr. 2012, pp. 979-988, doi 
10.1145/2187836.2187967. 

[2] V. Mareeswari and E. Sathiyamoorthy, “A Survey on Trust 
in Semantic Web Services”, International Journal of 
Scientific & Engineering Research, vol. 3, Feb. 2012, pp. 1-5.  

[3] N. Limam and R. Boutaba, “Assessing Software Service 
Quality and Trustworthiness at Selection Time”, IEEE 

Transactions on Software Engineering, vol. 36, Jul. 2010, 
pp. 559-574, doi: 10.1109/TSE.2010.2. 

[4] C. Rong, S. T. Nguyen, and M. G. Jaatun, “Beyond 
lightning: A survey on security challenges in cloud 
computing”, Computers and Electrical Engineering, vol. 39, 
Jan. 2013, pp. 47–54, doi: 
10.1016/j.compeleceng.2012.04.015. 

[5] M. Armbrust, et al., “Above the clouds: A Berkeley view of 
cloud computing”, Technical Report No. UCB/EECS-
2009-28, University of California, 2009.  

[6] M. D. Ryan, “Cloud computing security: The scientific 
challenge, and a survey of solutions”, Journal of Systems 
and Software, vol. 86, Sep. 2013, pp. 2263– 2268, doi: 
10.1016/j.jss.2012.12.025.   

[7] J. Witkowski, “Incentive-Compatible Trust Mechanisms”, 
Proceedings of the 25th AAAI Conference on Artificial 
Intelligence (AAAI 11), AAAI Press, Aug. 2011, pp. 1865-
1866, doi: 10.1.1.222.1760. 

[8] C. Fershtman and N. Gandal, “Migration to the Cloud 
Ecosystem: Ushering in a New Generation of Platform 
Competition”, Communications & Strategies, vol. 85, Jan. 
2012, pp. 109-124. 

[9] EC2. http://aws.amazon.com/cn/ec2/ (accessed on 2013-9-9). 
[10] CloudWatch. aws.amazon.com/cloudwatch/‎ (accessed on 

2013-9-1). 
[11] Rackspace review. http://www.rackspacecloudreview.com. 

(accessed on 2013-9-1). 
[12] Amazon. http://www.amazon.com/(accessed on 2013-9-10). 
[13] eBay. http://www.ebay.com/(accessed on 2013-9-10). 
[14] R. Nadeau, E. Cloutier, and J.-H. Guay, “New Evidence 

About the Existence of a Bandwagon Effect in the Opinion 
Formation Process”, International Political Science Review, 
vol. 14, Jun. 1993, pp. 203-213, doi: 
10.1177/019251219301400204. 

[15] S. M. Habib, S. Ries, and M. Mühlhäuser, “Towards a 
Trust Management System for Cloud Computing”, 
Proceedings of 10th International Conference on Trust, 
Security and Privacy in Computing and Communications 
(TrustCom 11), IEEE Press, Nov. 2011, pp. 933-939, doi: 
10.1109/TrustCom.2011.129. 

[16] M. K. Muchahari and S. K. Sinha, “A New Trust 
Management Architecture for Cloud Computing 
Environment” Proceedings of  International Symposium on 
Cloud and Services Computing (ISCOS 12), Dec. 2012, pp. 
136-140, doi: 10.1109/ISCOS.2012.30. 

[17] S. Wang, Q. Sun, H. Zou, and F. Yang, “Reputation 
measure approach of web service for service selection”, 
IET Software, vol. 5, Oct. 2011, pp. 466–473, doi: 
10.1049/iet-sen.2010.0077. 

[18] T. H. Noor, Q. Z. Sheng, S. Zeadally, and J. Yu, “Trust 
Management of Services in Cloud Environments: Obstacles 
and Solutions”, ACM Computing Surveys, vol. 46, Oct. 
2013, pp. 1-35, doi: 10.1145/2522968.2522980.

 

14Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            24 / 82



 

Web Services Framework for Wireless Sensor Networks 

Mark Allen Gray and Philip Newsam Scherer 
Department of Computer Science and Electrical Engineering 

University of Maryland Baltimore County (UMBC) 
mgray2@umbc.edu, pscher1@umbc.edu 

 
 

Abstract — The recent proliferation of machine-to-machine 
service-oriented computing and the emergence of cloud 
computing platforms and services provides promising new   
capabilities for wireless sensor networks. A Wireless Sensor 
Network (WSN) by itself is heavily constrained to low-power 
usage resulting in low compute and storage capacity. Also, 
there are problems with aggregating sensor data from multiple 
WSN deployments for the purposes of creating and sharing 
sensor data in “big data” form and for sensor data fusion 
algorithm development. Researchers working on applications 
that require sensor data for modeling and prediction can 
simulate that data but testing their models against real-world 
sensor data and deploying their applications on real-time 
sensor data streams are repeating challenges. In this paper, we 
propose a web service framework that addresses and 
overcomes many of these common problems for users of 
WSNs. We describe the architecture of the framework and the 
REpresentational State Transfer (REST) Application Program 
Interface (API) for accessing framework resources. The results 
from our initial implementation demonstrated the framework 
operation over a continuous 175 hour data collection window 
and successfully presented statistics of processed streaming 
weather sensor data averaged over this entire data record. 

Keywords —  Web Services; Service Oriented Architecture; SOA; 
Wireless Sensor Network; WSN; REST; Cloud Computing. 

I.  INTRODUCTION 

The motivation for this research is the integration of 
wireless sensor networks with cloud services to operate on 
“big data’ systems and provide access to computationally 
intensive compute resources. The fundamental requirements 
of the project were to create a web service that: 
 

(1) Operates on big data, 
(2) Provides a computationally intensive service, 
(3) Hosts the data and compute resources in a cloud, and  
(4) Implements a service oriented architecture. 
 
Our approach was to meet these requirements by creating 

a web services framework for wireless sensor networks that 
addresses some of the challenges in that domain. A Wireless 
Sensor Network (WSN) by itself is heavily constrained to 
low-power usage resulting in low compute and storage 
capacity [1]. Also, there are problems with aggregating 
sensor data from multiple WSN deployments for the 
purposes of creating and sharing sensor data in “big data” 
form and for sensor data fusion algorithm development 
[2][3]. Researchers working on applications that require 
sensor data for modeling and prediction can simulate that 

data but testing their models against real-world sensor data 
and deploying their applications on real-time sensor data 
streams are repeating challenges [4][5]. Our web services 
framework (herein after referred to as the “framework”) 
addresses these challenges. 

In this paper, we first provide an overview of the 
framework in Section II and follow that with use case 
descriptions in Section III and related work in Section IV. 
We then describe the architecture of the framework and our 
initial implementation in Section V with a description of the 
results of our demonstration in Section VI. We conclude the 
paper with a description of future work in Section VII, a 
conclusion summary in Section VIII, acknowledgments in 
Section IX, and a list of references in Section X. 

II. SERVICE DESCRIPTION 

The web service that we provide is a framework for 
WSN data collection and processing in a cloud. The 
framework incorporates a service-oriented architecture 
(SOA) for distributed computing [6] and a REpresentational 
State Transfer (REST) [7] Application Program Interface 
(API) for machine-to-machine communication. To 
demonstrate the operation, a test case WSN is implemented 
and included as an example of using the framework. The 
primary components of the framework are: 

 
(1) REST API 
(2) REST Process Server 
(3) Hyper Text Transfer Protocol (HTTP) Client Server 
(4) Example Sensor Server 
(5) Example Data Processing 
 
The test case WSN used collects weather data from 

temperature, pressure, and humidity sensors. The sensor data 
is aggregated, time stamped, location stamped, and streamed 
into the framework where it is recorded to cloud storage 
resources and made available to users on-demand for 
inspection or for processing on cloud computing resources. 

The entire system is illustrated in Figure 1. There are two 
basic types of users: data producers and data consumers. 
Data producers are users that deploy WSNs and add them to 
the system. When they add a WSN to the system they can 
choose to make the data recorded from their WSN private, 
shared in a group, or shared with the public. Data consumers 
are users that wish to consume data shared by the data 
producers. A data producer is, by default, a data consumer of 
their own WSN data and of any shared data from other data 
producers. 

15Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            25 / 82



 

The REST process server forms the core of the system. It 
implements the API to all of the framework’s web services, 
abstracting the services into a set of resources with 
operations on those resources and encapsulating all cloud 
resources comprising the framework. Access to the API 
requires an API key. An administrator that deploys and 
maintains a system that uses the framework will allocate an 
admin API key. Only users with the admin API key can add 
users to the system. 

 

 
Figure 1.  Framework System Components. 

Users are added to the system through the HTTP client 
server. The HTTP client server implements a typical web 
portal Graphical User Interface (GUI) with user account 
signup and email verification which uses the admin API key 
to create the user. The HTTP client server is a user of the 
REST API.  Once authenticated, users use their username 
and password to log in to their account. Each user has a user 
profile with an associated workspace and a dashboard for 
interfacing to the system. 

Data producers will use their account to install their 
WSNs into the system. The account dashboard contains 
functions to add, modify, and remove a WSN. A WSN 
comprises a set of sensors and each sensor comprises one or 
more channels of data. For each WSN, sensor, and channel 
added to the system, the REST process server will allocate 
and return a Universally Unique IDentifier (UUID). The data 
producer will use their assigned API key and these UUIDs in 
their sensor server program for streaming their WSN sensor 
data into the system over the REST API to the sensor 
database. An example sensor server program written in 
Python [8] is included with the framework illustrating the 
use of the REST API for these purposes. 

Data consumers will use their account to discover and use 
publically available WSN data or to subscribe to a group 
share. The account dashboard contains functions providing 
different views of WSN data including live sensor data being 
collected, recorded data in the sensor database, or the 
application of a data processing function to the data and a 
display of the results. 

The system is currently designed with one built-in data 
processing function; an example data processing program is 
included. Future work will add the capability for data 
producers and data consumers to create a library of data 
processing functions and select the function to apply to a 
recorded dataset or live data. Additionally, the compute node 
type and number of nodes in the compute cluster running the 
data processing program will be user selectable. 

All of the components in Figure 1 that are identified as 
“cloud resources” are deployed on a cloud platform. From 
the user’s point of view, these resources are virtual and 
elastic. The elasticity of a cloud platform allows the system 
to scale up and scale down as demands require. For this 
project, these resources, due to schedule and budget 
constraints, were allocated on the UMBC BlueGrit 
computing system [9]. Future work will migrate the system 
to a commercial cloud platform for reliability and scalability 
testing purposes on a production cloud, for example Amazon 
Web Services (AWS) Elastic Compute Cloud (EC2). 

III. USE CASES 

The analysis, development, and deployment of wireless 
sensor network technologies are well-established in both 
academia and industry with applications in military, 
surveillance, environmental, industrial, transportation, 
healthcare, agricultural, home, and other many other use 
cases. Our framework extends these established use cases to 
address the following problems for hobbyists, researchers, 
and commercial enterprises: 

 
(1) Aggregating sensor data from multiple WSN 

deployments, 
(2) Creating and sharing sensor data in “big data” form, 
(3) Providing a source of sensor data for sensor data 

fusion algorithm development, 
(4) Replacing simulation data with real-world data in 

modeling and prediction algorithms, and 
(5) Deploying algorithms against real-world real-time 

sensor streams in a cloud. 

A. Hobbyists 

WSN hobbyists could deploy the web services 
framework on a public cloud platform to manage the 
aggregation of their WSN generated data providing 
centralized access to their data from any Internet connected 
device. This would allow hobbyists to globally share their 
data with other hobbyists in a controlled system with 
authenticated users and managed access permissions. In 
addition to sharing data, hobbyists could share their sensor 
data processing functions and generally collaborate with 
each other on all aspects of their WSN interests. Public cloud 
platforms often offer free services for usage rates under 

16Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            26 / 82



 

thresholds that would meet the requirements for the hobbyist 
use case. 

B. Researchers 

WSN academic, commercial, or military researchers 
creating intellectual property (IP) or other sensitive 
information could deploy the web services framework on a 
private (or community) cloud platform to manage the 
aggregation of their WSN generated data providing 
centralized access within their organization. This would 
allow the research team to collaborate amongst themselves 
or with other collaborative teams within their organization 
through a controlled system with authenticated users and 
managed access permissions. In addition to sharing data, 
researchers could share their sensor data processing 
functions and generally collaborate with each other on all 
aspects of their WSN research. As real-world data collects 
and builds in the sensor database, researchers across the 
organization could use the data in sensor data fusion and 
modeling and prediction algorithms. 

C. Commercial 

A production deployment of the web services framework 
on a commercial cloud platform could monetize the services 
and create value for the stakeholders. The service-oriented 
architecture is scalable over an elastic cloud infrastructure 
providing the service elasticity required for commercial 
service deployments. In this scenario, the cost to maintain 
the service scales up and down as the user demands scale up 
and down. Usage is on-demand with pay-as-you-go billing. 
Users on a commercial deployment could collaborate in the 
same way as described for hobbyists and researchers. The 
framework could be extended to support multiple cloud 
platforms with different price points that the user would 
choose or the user could provide the framework with the 
access credentials to cloud resources that they already have 
accounts with, in which case usage against those accounts 
would accrue against those accounts and a service fee would 
be added to monetize the transaction for the stakeholders. 

IV. RELATED WORK 

In this section, we look at current research and 
commercially deployed products that are related to web 
services for wireless sensor networks. 

A. WSN Middleware 

There is current academic research in the creation of WSN 
middleware primarily focused on the virtualization of WSN 
resources in a similar way that cloud computing offers 
virtualization of data and compute resources. One notable 
project is called “Serviceware” [10]. Serviceware is a 
service-oriented architecture of middleware that runs over 
the embedded WSN devices providing virtualization of the 
hardware in the form of services to multiple users 
concurrently. The motivation here is to drive down the cost 
of deploying, managing, and maintaining large-scale WSNs 
by maximizing the utility of the WSN resources to a broader 
user base and applications through infrastructure sharing. 
The authors note that maximizing WSN device utility also 

increases power consumption and further research is required 
to analyze the utility gains against the need to replace 
batteries more frequently. 

B. SensorCloud 

SensorCloud [11] is an existing commercially available 
proprietary product offering similar services as our web 
services framework for WSNs. Customers sign up for an 
account, choose a level of service with associated cost, 
receive an API key, and use the key to write code on their 
Internet connected sensor network devices that use their 
REST API. Like our REST API, users can get, add, update, 
and remove sensors and channels from their account and 
stream their sensor data to their account where it is stored in 
a database for query, retrieval, visualization, and analysis 
using data processing functions supplied by the user. 

Unlike SensorCloud, our entire framework, including the 
front-end web portal and the back end REST server, will be 
open source and operate on top of open source web service 
software stacks. Additionally, our front-end web portal 
provides a user interface to get, add, update, and remove 
WSNs, sensors, and channels. For each resource added, a 
UUID is assigned and the user simply uses the UUID in their 
code. All of this can also be done through our REST API in 
the same way one would if using SensorCloud. Further, each 
WSN in our framework has Global Positioning System 
(GPS) location and altitude information and each sensor 
attached to a WSN has X,Y,Z grid coordinates relative to the 
GPS location and altitude. Streamed sensor samples include 
both time and location data supporting mobile wireless 
sensor networks. A feature that SensorCloud includes that 
we currently have not specified is the ability to define Short 
Message Service (SMS) and email alerts when certain user-
defined conditions are detected. 

C. Google’s Data Sensing Cloud 

At the 2013 Google I/O Developer’s Conference in the 
San Francisco Moscone Center, Google implemented a 
version of the O'Reilly Data Sensing Lab, a collaborative 
project between O’Reilly Media and some of their partners. 
Google’s Data Sensing Lab deployed a 525 node, wireless 
sensor network at the conference feeding over 4000 
continuous streams of sensor data into the Google Cloud 
Platform with Google Cloud Datastore for sensor data 
recording and Google Compute Engine for sensor data 
processing with results presented through a web application. 
Sensing consisted of temperature, humidity, noise, light, 
motion, and pressure to analyze the general atmosphere and 
traffic patterns of conference attendees throughout the 
conference’s changing of events and agenda. A Google 
representative at the conference stated “We think about data 
problems all the time and this looked like an interesting big 
data challenge that we could try to solve.” [12] 

The fundamental architecture of Google’s project is very 
similar to our web services framework, although their focus 
was not in developing and demonstrating the required web 
services with an API, but on raising awareness and interest in 
hobbyists to build sensor nodes (the “lab” part of the project) 
and connecting to, and using, their cloud services. 

17Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            27 / 82



 

D. Xively Cloud Services 

Xively is building a business around services for the 
Internet of Things (IoT). User’s develop and deploy their IoT 
products into the Xively “Connected Object Cloud” using 
Xively development tools, directory services, and data 
services through their API. The Xively API is a REST 
interface providing developers with web services to stream 
and record their sensor data to Xively servers and connect to 
other objects in the Xively cloud. Users, for a fee, can 
connect to those applications and embed the results in their 
websites or stream the data, for a fee, into their applications 
using the Xively API. The user relationships within this 
cloud ecosystem form a marketplace for real-time sensor fee-
based data trading between connected devices and 
applications. “This sort of common platform is exactly what 
the Internet of Things really needs. Xively and similar 
platforms like Open.Sen.se will make it much easier and 
faster for unrelated devices to connect with each other and 
start delivering on the promise of smart homes, intelligent 
devices services and similar long-promised notions.” [13] 

An interesting capability here is the ability of sensor 
applications to use each other’s data. The addition of REST 
services to our framework for the data processing function to 
use the data from other WSN sources would move our 
framework into the realm of this IoT paradigm. Whereas the 
Xively service is a closed proprietary deployment on Xively 
cloud resources, our framework, when deployed, will be 
open source for deployment on any cloud platform. 

E. IBM InfoShpere Streams 

Typical processing of big data resulting from sensor 
networks is performed on data that has been collected into a 
database where it is later queried, extracted, and analyzed. In 
the IBM InfoSphere Streams (“Streams”) architecture, real-
time sensor data streams are analyzed on a high performance 
computing platform before storing to a database. In this 
paradigm, data analysis is continuous, resulting in a 
continuous stream of low-latency real-time results for trend 
prediction, accelerating user responses to critical real-time 
events. A motivation for business applications is to address 
global economic competition; a motivation for government 
applications is to address global cybersecurity threats. Other 
example applications include telecommunications, financial 
services, healthcare, transportation, environmental, 
insurance, and utilities. Streams can consume data from 
satellites, sensors, cameras, news feeds, and a variety of 
other sources including traditional databases and Hadoop 
systems. In summary, Streams can process huge volumes 
and varieties of real-time data from diverse sources with very 
low latency, providing decision makers with the relevant and 
timely information they need [14]. 

An interesting capability here is the ability to process the 
sensor data in real-time before recording to a database. The 
addition of REST services to our framework for the data 
processing function to be a applied to the data either before 
or after recording to the database would extend the our 
framework to provide a similar capability. Whereas the 
Streams service is a closed proprietary deployment on IBM 

cloud resources, our framework, when deployed, will be 
open source for deployment on any cloud platform. 

V. FRAMEWORK ARCHITECTURE 

The top-level architectural components and interfaces 
comprising our web services framework for wireless sensor 
networks are illustrated in Figure 1 and listed here: 

 
(1) REST API 
(2) REST Process Server 
(3) HTTP Client Server 
(4) Example Sensor Server 
(5) Example Data Processing 
 
As described previously, there are two types of users: (1) 

data producers that deploy one or more WSNs and install 
them into the system for private, group, or public use and (2) 
data consumers that subscribe to and use WSN data shared 
by data producers. 

The REST API forms the interface to the core services 
provided by the REST process server. The REST process 
server abstracts a set of resources that it manages and allows 
users to use those resources through REST request messages. 
All user API keys and cloud resources including the sensor 
database and compute cluster are allocated and managed by 
the REST process server. 

The HTTP client server provides a web portal for users to 
create an account in the system and acquire an API key for 
using the REST API. The portal also implements a 
dashboard of functions for data producers to get, add, 
modify, and delete the resources representing their WSNs. 
Additionally, with their API key, users can perform these 
WSN administration functions directly from programs they 
may write. 

The example sensor server runs on a WSN gateway node. 
It collects sensor samples from the attached sensor nodes and 
streams them to the REST process server where they are 
recorded to the sensor database. Users can access the live 
data or recorded data through the HTTP client server’s web 
portal or from their programs. Live data and recorded 
datasets can be displayed. A user provided data processing 
function can be applied to datasets and the results displayed. 

The test case WSN used in the project collects weather 
data from temperature, pressure, and humidity sensors. The 
sensor data is aggregated, time stamped, location stamped, 
and streamed into the framework where it is recorded to 
cloud storage and made available to users on-demand for 
inspection or for processing on a compute cluster. 

A. REST API 

The REST API forms the programming interface to the 
framework’s set of web services. A RESTful [15] interface 
has client and server roles where clients initiate requests to 
servers and the servers process the requests and return 
responses. The requests and responses are formed into 
messages. The server manages resources that are addressable 
through the client requests. The representation of a resource 
and its state is captured in a document within the messages, 
typically in eXtensible Markup Language (XML) or 

18Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            28 / 82



 

JavaScript Object Notation (JSON). Some REST interfaces 
support one or the other or both. The current specification of 
our framework uses the JSON format for the client request 
messages and the server response messages. 

Requests and responses are typically processed using 
HTTP. Clients initiate requests using the HTTP request 
methods GET, POST, PUT, and DELETE. The client session 
transitions through its states based on the resource 
information returned from the server. This design pattern 
frees the server from the complexity of maintaining client 
and user interface state information, simplifying server logic 
and increasing server robustness, reliability, and scalability. 

The framework’s web services are abstracted into a set of 
resources where each resource is addressed by a unique 
Uniform Resource Locator (URL) and the operations on a 
resource are defined by the HTTP methods requested against 
the URLs. For GET methods, query parameters attached to 
the URL further define the data requested from the resource. 
For POST and PUT methods, the HTTP message body will 
contain the data to be transferred to the resource. The 
framework’s root URL for accessing resources and services 
is: https://<FQDN>/api/<key>. FQDN indicates a Fully 
Qualified Domain Name, for example, www.example.com. 
Figure 2 illustrates the hierarchy of the resources comprising 
the framework and following is a description of each. 

 
Figure 2.  Framework Resource Hierarchy. 

(1) Groups – A group resource is created by an admin 
user. A group is used to manage a group of users that share 
access to the same framework managed resources. Group 
services include listing all groups, creating and deleting a 
group, getting and updating a group’s attributes, and adding 
and removing users to/from a group. The group resource was 
not implemented in the concept demonstration. The group 
resource URL relative to the root is: /groups/<groupid>. 

 (2) Users – Anyone with programmatic access to the 
REST API is a user. A program that sends a request message 
to the REST API must provide a user API key in the request 
message URL. API keys are created by an admin user that 
has an admin API key. The admin user makes a request on 
the REST API to create a user, and a unique user API key is 
returned. The HTTP client server web portal automates this 
process through the user account sign up process. User 
services include listing all users, creating and deleting a user, 

and getting and updating a user’s attributes. The user 
resource URL relative to the root is: 
/groups/<groupid>/users/<username> 

(3) Catalogs – All resources offered to a user by the 
framework are organized into a hierarchy. At the top of this 
hierarchy is the catalog resource. The framework is currently 
architected with a single catalog, however, it can be extended 
to provide multiple catalogs for deployments that may wish 
to implement a “marketplace” of disparate catalogs 
distinguished, for example, by different legal agreements and 
terms and conditions of service. Catalog services include 
listing all catalogs, creating and deleting a catalog, getting 
and updating a catalog’s attributes, and adding and deleting 
WSNs to/from a catalog. Catalog services were not 
implemented in the concept demonstration. The catalog 
resource URL relative to the root is: /catalogs/<catalogid>. 

(4) WSNs – The top-level resource in a catalog is a 
wireless sensor network. A user that creates a WSN is 
considered a “data producer” and the “owner” of the WSN. 
The user can choose to make their WSN private, shared 
within a group of users, or shared with the public (all users). 
In the framework architecture the “sensor server” runs on a 
typical WSN gateway device where the WSN sensor devices 
stream their data to the WSN gateway for local storage or 
transmission over a network, in this case, transmission to the 
REST process server over the Internet. The WSN resource 
encapsulates information about the WSN gateway where the 
sensor server software will run. For example the initial GPS 
coordinates of the WSN gateway are specified when the 
WSN resource is created and they can be updated from time 
to time for a mobile WSN. WSN services include listing all 
WSNs available to the user, creating and deleting a WSN, 
getting and updating a WSN’s attributes, adding and 
removing sensors to/from a WSN, recording samples to the 
WSN’s sensor database, viewing live data from the WSN, 
viewing the WSN’s recorded data, and applying a data 
processing function to a recorded WSN dataset. Applying 
data processing to the live stream was not implemented in 
the concept demonstration. The WSN resource URL relative 
to the root is: 
/catalogs/<catalogid>/wsns/<wsnid> 

(5) Sensors – The sensor resource encapsulates the 
identity, location, and sampling information about the sensor 
data channels that it physically contains and serves. 
Information about each sensor is captured when a sensor is 
created and it can be updated from time to time, for example 
the sampling frequency and the location for a sensor in a 
mobile WSN. Sensor services include listing all sensors 
owned by the user, creating and deleting a sensor, getting 
and updating a sensors’s attributes, and adding and removing 
channels to/from a sensor. The sensor resource URL relative 
to the root is: 
/catalogs/<catalogid>/wsns/<wsnid>/sensors/<sensorid> 

(6) Channels – Sensor channels are the sources of sensor 
data in the framework. The channel resource encapsulates 
the data type and data unit for a sensor channel. For example 
a data type could be “Temperature” and the data unit could 
be “Celsius”. Channel services include listing all channels 
owned by the user, creating and deleting a channel, and 

19Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            29 / 82



 

getting and updating a channels’s attributes. The channel 
resource URL relative to the root is: 
/catalogs/<catalogid>/wsns/<wsnid>/sensors/<sensorid>/cha
nnels/<channeleid>. 

(7) Samples – A sample resource is the only resource that 
is not created by the framework (unless a simulation 
capability were added). A sample is the set of sensor channel 
values captured at any point in time, and location, by the 
sensor server according to the sample set configuration and 
the sample frequency. The sample set can be all of the 
sensors connected to the sensor server or a subset. The 
sensor server collects the sample set, adds a time stamp, adds 
a location stamp (GPS location and altitude and local grid 
location and altitude relative to GPS), and posts the data to a 
WSN. 

B. REST Process Server 

The REST process server component of the framework 
identified previously in Figure 1 is implemented in our 
concept demonstration with the software stack illustrated in 
Figure 3 below.  At the top of the stack there are the 
framework’s web services that we developed and integrated 
with the lower layers. The web services layer uses the 
services of the lower layers to implement all resources and 
services exposed by the REST API. Internally, it manages 
the sensor database and compute cluster for each WSN and 
schedules the data processing functions and returns results as 
directed by REST requests. Views of live sensor data, 
recorded sensor data, and processed sensor data are 
composed by the REST process server and returned in REST 
responses in JSON format. 

 

 
Figure 3.  REST Process Server Stack. 

For the concept demonstration, we utilized the resources 
of the BlueGrit computing platform at UMBC. The REST 
process server stack is built on Linux using open-source 
software. At the foundation is Apache HTTP Server. Secure 
Sockets Layer (SSL) encryption was enabled and utilized to 
secure all messages passing over the REST API.  For 

database services, MySQL [16] was used. One database 
serves the framework and one database serves each WSN 
added to the system. Python was chosen for development of 
the framework’s web services and Flask [17] was chosen to 
provide the required web application framework for 
deploying our REST web services. Flask is open source and 
implements the Web Server Gateway Interface (WSGI) 1.0 
specification. 

C. HTTP Client Server 

The HTTP client server component of the framework 
identified previously in Figure 1 is implemented in our 
concept demonstration with the software stack illustrated in 
Figure 4 below.  At the top of the stack is the framework’s 
web portal that we developed and integrated with the lower 
layers. The web portal layer uses the services of the lower 
layers to implement the graphical user interface where users 
sign up for accounts, login into their account, and use a 
dashboard to manage their WSN deployments and to access 
and create views of WSN data and to process data and view 
the results.  Internally, the web portal makes REST API 
requests to the REST process server on behalf of the user. 
The code that implements this interface is encapsulated in a 
PHP module that we installed into Drupal [18]. Drupal is a 
modular open-source Content Management System (CMS) 
framework written in PHP Hypertext Preprocessor (PHP). 

 

 
Figure 4.  HTTP Client Server Stack. 

For the concept demonstration, we again utilized the 
resources of the BlueGrit computing platform at UMBC for 
the HTTP client server, although there is no requirement that 
this server and the REST process server be on the same 
platform as long as they are both connected to the Internet. 
The HTTP client server stack is also built on Linux using 
open-source software. Also, at the foundation, is Apache 
HTTP Server. SSL encryption was enabled and utilized to 
secure all information passing between the user’s web 
browser and the web portal.  For database services, MySQL 
was used. A single Drupal database holds all the web portal 

20Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            30 / 82



 

content and the module that we added to Drupal adds a table 
to that database. 

The use of Drupal for the web portal immediately solves 
the problem of putting a “web face” on the service without 
reinventing all of the wheels that comprise a professional 
user-friendly dynamic website, which is a fundamental 
requirement that we have established for our framework.  
And because Drupal is modular, you install and use what you 
need. Only the core set of five Drupal modules (System, 
User, Node, Block, and Filter) and two contributed modules 
for enabling SSL, are required for the framework’s web 
portal. Figure 5 is a screenshot of the web portal home page. 

 

 
Figure 5.  Web Portal Home Page. 

The second and more important problem that Drupal 
immediately solves is the user signup and account 
management problem. User signup, authentication, login, 
and password management are entirely implemented with the 
core User module. When user authentication is complete and 
a user is created in the web portal, a REST request with the 
admin key is sent to the REST process server and an API key 
is allocated, returned, and made available to the user through 
their account on the web portal. 

In addition to meeting these two fundamental 
requirements (a professional web face and user account sign 
up), a deployment of the framework’s web portal could 
leverage the work from thousands of contributed Drupal 
modules, depending on the specific needs of the use case. 
For the hobbyist and researcher use cases identified 
previously, a deployment for these users could add profiles, 
forums, blogs, and other social networking tools for user 
interest discovery and collaboration. For the commercial use 
case, the open-source Ubercart [19] suite of Drupal modules 
could be added which comprise a complete end-to-end 
ecommerce workflow that integrates with several payment 
processing service providers.  The commercial developers 
can create a catalog, add products, add terms and conditions, 
and build a shopping cart that buyers can take to checkout 
where their services are deployed. As of November 11, 2013 
the Drupal developer community reached 30,000 with over 
24,000 contributed modules [20]. 

D. Example Sensor Server 

The example sensor server component of the framework 
identified previously in Figure 1 is implemented in our 
concept demonstration with the software stack illustrated in 
Figure 6 below.  In this example test case, the sensor server 
is a “weather sensor server”. This example is intended to be 
the “hello, world” for an initial test of a sensor server in a 
framework deployment. As such, it does not rely on actual 
physical sensors and the associated problems of procuring, 
installing, and getting the sensors to work just to test the 
framework. Instead, we rely on sensors that are already 
deployed with their data available to us on a REST API 
which we will inject into our system as if it were data 
collected on a deployed WSN. We used the Weather 
Underground (Wunderground) REST API [21] on a test 
account we setup that utilized their free level of service 
which was sufficient for both integration testing and the 
demonstration without exceeding the free usage levels. 

 

 
Figure 6.  Example Sensor Server Stack. 

Our weather sensor server was written in Python and 
executed on a Mac mini with OS X. A main control loop first 
updates its sampling frequency by a query to the REST 
process server where all WSN configuration parameters are 
maintained. It then sleeps for a time equal to the sample 
period. When it awakens it makes two calls to the 
Wunderground API for the current GPS location (in our 
demonstration the location is static): (1) the current weather 
conditions for the current location and (2) the 24-hour 
forecast for the current location. From the JSON responses, 
the temperature (T), pressure (P), and humidity (H) are 
extracted for both cases. The current(T, P, H) represent 
sensor 1 with three channels of data and the forecast(T, P, H) 
represent sensor 2 with three channels of data. Using the test 
user’s API key and the resource IDs assigned by the web 
portal, two REST requests are made to the REST process 
server: (1) a POST of the current(T, P, H) with a timestamp 

21Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            31 / 82



 

equal to the current time and (2) a post of the forecast(T, P, 
H) with a timestamp equal to the current time plus 24 hours. 
In our demonstration, we set the sample frequency to 12 
times per hour, or once every five minutes and collected data 
for 151 hours. In addition to pushing the data out on the 
REST API, we also logged it to a text file in Comma 
Separated Value (CSV) format for testing and integration. 

E. Example Data Processing 

The example data processing component of the 
framework identified previously in Figure 1 is implemented 
in our concept demonstration with the program illustrated in 
Figure 7 below.  In this example test case, the data 
processing program is a “weather data processing” program. 
Like the example sensor server, this example is intended to 
be the “hello, world” for an initial test of a data processing 
program in a framework deployment. 

 

 
Figure 7.  Example Data Processing Program. 

The input to the data processing program is a sensor data 
file containing a dataset extracted from the sensor database. 
In a completely integrated system, the sensor data file would 
be pulled from the sensor database by the REST process 
server after a request to apply the data processing program to 
the data. The REST process server would place the file into a 
shared file system available to a compute cluster and launch 
the data processing program on that cluster. In our concept 
demonstration, we took the sensor data file that was recorded 
on the sensor server and uploaded it to a BlueGrit compute 
blade and executed the data processing program on the data. 

The data processing pipeline shown in Figure 7 illustrates 
a general input -> process -> output dataflow. For this test 
case, the sensor data file contains 175 hours of data collected 

on two sensors with 12 samples collected per hour per 
sensor. Each sample contains a timestamp and the current 
temperature, pressure, and humidity for that sensor. Each 
sensor 1 sample contains the actual temperature, pressure, 
and humidity at that time. Each sensor 2 sample contains the 
24-hour forecasted temperature, pressure, and humidity for 
that time. The “build input buffer” function averages the 12 
samples for each one hour time slot and creates two arrays 
indexed by hour; the “measured samples array” from the 
sensor 1 samples and the “forecast samples array” from the 
sensor 2 samples. The data in the input buffer is then 
processed. 

The “process data” function consists of four 
computations with the results of each computation saved to 
the output buffer. They are: 

(1) Compute the deltas between measured and forecasted 
(2) Compute the arithmetic mean over the deltas array 
(3) Compute the delta variance2 array 
(4) Compute the  standard deviation 
The “write results” function summarizes and formats the 

contents of the output buffer and writes it to a text file where 
the REST process server picks it up. 

Note that the first 24 hours (hour 0 through hour 23) of 
the 175 hours of data collected have no 24-hour forecast 
values for comparison and the last 24 hours (hour 151 
through hour 174) have no measured values, therefore, the 
actual computable dataset is 127 hours of data from hour 24 
to hour 150. 

VI. PROJECT RESULTS 

We successfully completed the initial design and 
implementation of each framework system component and 
demonstrated the functionality of each component 
separately, with partial integration of the HTTP client server 
with the REST process server. The following demonstrations 
of the REST API specification were presented: 
 

(1) User account creation 
(2) User dashboard walkthrough 
(3) Sensor server demonstration (of live data) 
(4) Sensor data processing (of recorded data) 
 
Implementation consisted of installing and configuring 

the open-source components of the server stacks and 
software development of key components. The web services 
in the REST process server stack consisted of a Python 
application that we developed (about 1000 lines) and 
installed on Flask. The web portal in the HTTP client server 
stack consisted of a PHP module (about 1100 lines) that we 
developed and installed in Drupal. The example sensor 
server consisted of a Python application that we developed 
(about 130 lines) and installed on an Internet connected Mac 
mini. The example data processing program consisted of a C 
program that we developed (about 900 lines) and executed 
on a BlueGrit compute blade. The computation results of the 
data processing program are presented in Figure 8. A 
performance comparison between a Windows laptop and a 
BlueGrit blade is presented in Figure 9. 

 

22Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            32 / 82



 

 
Figure 8.  Data Processing Computation Results. 

 
Figure 9.  Data Processing Performance Results. 

VII. FUTURE WORK 

Looking at this project as a set of sequential phases, this 
initial phase represents a three month concept study 
culminating in a concept demonstration which we have 
documented in this paper. Future work would address 
incomplete areas in the concept study and include research 
on new capabilities. 

A. Incomplete areas to address 

• Complete the integration of the concept study components 
• Demonstrate parallel computation on the sensor data 
• Implement the group resource and services 
• Demonstrate on a commercial public cloud (Amazon) 

B. New capabilities to research 

• Cloud scalability, elasticity, load balancing 
• Mobile WSN demonstration 
• Data processing library creation and sharing  
• Virtualization middleware on the sensor server and sensors 
• Data processing on multiple input sources and types 
• Data processing on live sensor streams 
• Compute instance type and cluster size selection 
• Network Protocol Time (NTP) on the sensor server 

VIII. CONCLUSION 

In conclusion, we successfully demonstrated an 
architecture and initial implementation of a web services 
framework for wireless sensor networks. A test case WSN 
was simulated on a Mac mini pulling actual real-time 
weather data from the Wunderground REST API and feeding 
it into the framework. Each framework component was 
individually constructed, tested, and demonstrated. The 
cloud storage and compute resources were provisioned from 
the UMBC BlueGrit computing platform. Future work 
includes end-to-end integration and testing of all 
components, the demonstration of parallel computation, the 
implementation of user groups, and a demonstration on a 
commercial public cloud. Other future work includes several 
areas of research, notably cloud scalability, mobile WSN, 
data processing libraries and sharing, and virtualization 

middleware extending the concept of cloud computing into 
the WSN domain. 

IX. ACKNOWLEDGMENT 

The authors thank Dr. Milton Halem for his direction and 
encouragement over the course of this project and his 
teaching assistant Lawrence Sebald for his support in the 
installation and configuration of various software services on 
the UMBC BlueGrit computing platform. 

X. REFERENCES 
[1] W. Dargie and C. Poellabauer, Fundamentals of Wireless Sensor 

Networks: Theory and Practice, Wiley, 2010.  

[2] A. Cuzzocrea and G. Fortino, “Managing Data and Processes in 
Cloud-Enabled Large-Scale Sensor Networks: State-Of-The-Art and 
Future Research Directions”, 2013 13th IEEE/ACM International 
Symposium on Cluster, Cloud, and Grid Computing, pp. 583-588. 

[3] R. Govindan, J. M. Hellerstein, W. Hong, S. Madden, M. Franklin, 
and S. Shenker, “The Sensor Network as a Database”, University of 
Southern California, 2002, pp. 1-8. 

[4] D. Tracey and C. Sreenan, “A Holistic Architecture for the Internet of 
Things, Sensing Services and Big Data”, 2013 13th IEEE/ACM 
International Symposium on Cluster, Cloud, and Grid Computing, pp. 
546-553 

[5] S.K. Dash, S. Mohapatra, and P.K. Pattnaik “A Survey on 
Applications of Wireless Sensor Network Using Cloud Computing”, 
International Journal of Computer Science & Emerging Technologies, 
Volume 1, Issue 4, December 2010, pp. 50-55. 

[6] M. P. Singh and M. N. Huhns, Service Oriented Computing: 
Semantics, Processes, and Agents, Wiley, 2005. 

[7] Roy Thomas Fielding, Architectural Styles and the Design of 
Network-based Software Architectures, Dissertation, University of 
California, Irvine, 2000. 

[8] Python. [Online]. Available: www.python.org. Retrieved Dec 2013. 

[9] BlueGrit. [Online]. Available: 
http://bluegrit.cs.umbc.edu/userdocs.php . Retrieved December 2013. 

[10] S. Rea, M. S. Aslam, and D. Pesch, “Serviceware - A Service Based 
Management Approach for WSN Cloud Infrastructures”, 10th IEEE 
International Workshop on Managing Ubiquitous Communications 
and Services 2013, San Diego, March 2013, pp. 133-138. 

[11] SensorCloud. [Online]. Available: 
http://www.sensorcloud.com/system-overview. Retrieved Dec 2013. 

[12] K. Fogarty, “Google's Wireless Sensors: Big Data or Big Brother?”, 
www.networkcomputing.com, May 22, 2013. Retrieved Dec 2013. 

[13] B. Proffitt, “Xively Actually Connects Things to the Internet of 
Things”, www.readwrite.com, May 14, 2013. Retrieved Dec 2013. 

[14] R. Rea, “IBM InfoSphere Streams, Redefining real-time analytics 
processing”, IBM Software, Thought Leadership White Paper, May 
2013, pp. 1-8. 

[15] L. Richardson and S. Ruby, RESTful Web Services, O'Reilly Media, 
2007.  

[16] MySQL. [Online]. Available: www.mysql.com. Retrieved Dec 2013. 

[17] Flask. [Online]. Available: http://flask.pocoo.org. Retrieved Dec 
2013. 

[18] Drupal. [Online]. Available: https://drupal.org. Retrieved Dec 2013. 

[19] Ubercart. [Online]. Available: http://www.ubercart.org. Retrieved 
Dec 2013. 

[20] S. Choudhury, “30,000 Developers in Drupal.org and growing…”, 
[Online]. Available: https://drupal.org/node/2133153. Retrieved Dec 
2013. 

[21] Weather Underground (Wunderground) API. [Online]. Available: 
http://www.wunderground.com/weather/api/. Retrieved Dec 2013.

 

23Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            33 / 82



An Ontology for User Profile Modelling in the Field of Ambient Assisted Living

Carina Fredrich, Hendrik Kuijs, Christoph Reich

Faculty of Computer Science
Furtwangen University of Applied Science

Furtwangen, Germany
Email: {Carina.Fredrich, Hendrik.Kuijs, Christoph.Reich}@hs-furtwangen.de

Abstract—The lack of social integration of elderly people, es-
pecially with impairments like restricted mobility, is a huge
problem. Often, these people become isolated and social contacts
become impoverished. Ambient Assisted Living (AAL) IT systems
should support elderly people to stay in contact with their social
environment and should be adaptable exactly to their personal
needs. In this paper, we present a platform offering assistance in
communication, information acquisition and learning for elderly
people to allow them to stay longer at their own familiar homes.
The services of this platform are context aware and personal-
izable. Many AAL systems are context aware, but often focus
on the environmental context and not on the users themselves
and their personal characteristics, like health condition, interests,
needs, etc. In this work, the context is modelled as an ontology,
where the user is the central concept of the platform, in order
to realize personalization of services and a better assistance
by the system. The ontology developed by the project Person
Centered Environment for Information, Communication and
Learning (PCEICL) offers a historical view of the user’s changing
characteristics and environment, is simply expandable and is used
within the platform by software agents to communicate between
single services to adapt to the users needs.

Keywords–Ontology, Context, User Centric Ontology, AAL,
PaaS, OSGi, JADE, software agents

I. INTRODUCTION

Many solutions in the field of Ambient Assisted Living
(AAL) solve problems of home automation, freedom of bar-
riers and emergency diagnosis, as stated in [1], [2] or [3],
to allow elderly people to stay longer at home. But when
they need, for example, every day assistance, when they are
suddenly mobility-disabled, there is the problem of social
contact depletion. Especially in rural regions, it is not that
simple for older people to keep up their social contacts if
they are physically limited. Ordinary things like meetings
with friends, family members, or club members or going
shopping aren’t possible any more. This leads to loneliness,
isolation and often mental health problems. To counteract this,
personalizable systems, which help them stay informed or
assist them in their communication, are needed, especially
if they are adaptable to the needs of the elderly people, as
discussed by S. Lauriks et. al. [4].

For the personalization of a system and its services, it is
necessary to integrate context awareness. The system must
have knowledge about the user’s interests, preferences, im-
pairments, capabilities, etc. Most of the actual AAL systems
consider only the user’s environment (e.g., temperature, loca-
tion, smoke, etc.), but do not see the user as a central element.

A step towards this, the person’s needs are taken into account
and bear in mind the environmental information of the user to
get a personalizable AAL platform.

The research project Person Centered Environment for
Information, Communication and Learning (PCEICL) targets
the development of an age-appropriate platform, which as-
sists the users in their daily tasks of information acquisition,
communication and learning in order to live at home as long
as possible and at the same time stay socially integrated.
Because of the impairments emerging in advanced age, it is
absolutely necessary to adapt the user interface but also the
service functionality to the needs of each single user. The per-
sonalization is important because of the different combinations
of impairments and capabilities. The PCEICL platform offers
personalized services, which use context information about the
user and the environment to adapt according to the needs of
the user.

In this paper, context is used as defined in A. Dey and G.
Abowd in [5]:

Context is any information that can be used to
characterize the situation of an entity. An entity is
a person, place, or object that is considered relevant
to the interaction between a user and an application,
including the user and applications themselves.

There are other definitions only considering the environment
of the user, e.g., the location, other people and resources
nearby like Schilit et al. in [6]. But for reaching personalized
assistance, it is essential to centralize the user’s needs and
include the actual user’s environment. Because A. Dey and
G. Abowd determine context as both, i.e., the user and his
environment, the definition above is chosen as a basis for this
paper.

Section II presents related work showing the different
notions of context and context awareness. The use cases of the
AAL platform described in Section IV, are shown in Section
III. The platform for personalized services uses an ontology
for context modelling (see Section V), which is demonstrated
in action in Section VI. In Section VIII, conclusions are drawn
and future work is shown.

II. RELATED WORK

Due to the relevance of the AAL topic, there are many
projects, which develop assistance systems for elderly people
helping them to stay longer at home. Most of them use

24Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            34 / 82



some kind of context information to make their systems more
intelligent and adaptable. Often in these projects, context is
used to define the environment of the user and not the user
himself. This is because the majority of the projects develop
home automation systems or emergency detection systems.
But only a few aim to offer an assistance in staying socially
integrated.

The SOPRANO (Service Oriented PRogrammable smArt
enviroNments for Older Europeans) project [1], for example,
developed an open middleware for AAL solutions. The SO-
PRANO Ambient Middleware (SAM) receives user commands
or sensor data, enriches them semantically and determines an
adequate system response, which is then performed by the
connected actors installed in the living environment. If, for
example, SAM receives the information that a window is open,
it analyses the remaining context information and can inform
the user about the open window, before he is leaving the house.
The components communicate over semantic contracts and
are based on a common domain ontology. This ontology is
designed state-driven, that means that every concept (device,
person, location, etc.) of the ontology is represented by its
actual state. The PCEICL platform, on the other hand, focuses
on the user. The most important is to describe the user, since
for information retrieval the user’s condition is essential. So it
is not useful to apply the SOPRANO ontology, which focuses
on the sensors and actors, i.e., the environment of the user.

Another example considering the environment of the user
is PersonisAD presented by M. Assad et al. in [7]. Some
information about the user like his preferences are also part
of the consideration of the PersonisAD framework, but aren’t
detailed enough to reach a good personalization for older
people, like the PCEICL ontology.

The UNIVERsal open platform and reference Specification
for Ambient Assisted Living) (universAAL) project [8] aims
to join different approaches from lots of projects to a unique
AAL solution. One of this included projects is SOPRANO [1].
The goal of universAAL is a platform, that makes it viable to
develop AAL services. For this, there will be developer tools, a
store for distributing AAL services and a runtime environment.
So all of the stakeholders will be supported. The universAAL
platform is based on OSGi [9] and ontologies are used as
a common language for the components, too. Because of its
goal to create a standardized AAL solution, it is possible that
the universAAL platform and its ontologies will be building a
solid base for future work in the PCEICL project. But, at the
moment, the universAAL project is still in progress.

MobileSage aims to develop a smart phone based help-
on-demand service [10][11]. It means that the smart phone
offers context aware, personalized and location aware services
supporting the independence of elderly people. Such services
could support the navigation, the handling of devices like ticket
vending machines or household appliances or other daily tasks.
The personalization and context awareness is realized by an
ontology, which considers not only the environment of the user
but also the user and his characteristics. It is one of the few
ontologies in the field of AAL, which models a user profile
and the environment of the user. The central concept of the
ontology is the user, who is described by his profile. The
user profile therefore is divided in subprofiles like a preference
profile, a health profile or an interest profile. But for the help-

on-demand services the focus is still on the environment of the
user to offer, for example, services depending on the location
of the user. The PCEICL project places greater emphasis on
the user, who has to stay at home and isn’t mobile any more.
For this, the user must be described more in detail in his health
condition to provide him optimal assistance with the daily
tasks. Overall, both ontologies describe a user profile and so
there are many similar concepts but PCEICL concentrates on
information retrieval, communication and learning.

Another ontology that models a user profile for ambient
assisted living services is AALUMO, which is presented by P.A.
Moreno, M.E. Hernando and E.J. Gómez in [12]. AALUMO
extends the General User Model Ontology (GUMO), which
is an ontology for general use in many domains and scopes.
So it is not adapted to the special characteristics of elderly
users. GUMO is shown by D. Heckmann et al. in [13] and
describes the user in detail from the heart beat or the emotional
state to the interests or the personal information. AALUMO
added concepts like chronic diseases, which is a composition
of GUMO concepts (disease, physical and psychological limi-
tations, medication, etc.) for better adaptation to the properties
of the elderly users. In the PCEICL ontology, only the infor-
mation that is really necessary to customize the services in
an optimal way will be saved. Additional information about
the user, which is not yet covered by the ontology but will be
required in the future, could be added easily.

There is also a user profile ontology presented by M.
Sutterer in [14], but it is not adapted to the special needs
of elderly people. The personalization of service is situation-
dependent and therefore the user needs to indicate special
preferences for each situation, which are considered when the
situation occurs. It is assumed that this is hard to be realized
by elderly people and is therefore not the aim of the PCEICL
project.

To summarize, the PCEICL ontology is based on concepts
of the ontology of MobileSage and there will be future devel-
opments based on the results of universAAL.

III. USE CASE

In this section, the use cases are described to show the
usage of the context aware PCEICL platform and show the
usefulness of the PCEICL ontology in the evaluation section
(see Section VI). First, a brief description of the user is given
showing his current situation.

User description: Mr. F. is a 73 years old widower, has
two children and lives alone on a big farm outside a small
rural town. One of his children lives abroad, the other in a
city far away, so they rarely can visit their father. Mr. F. is a
member of a model railway club in the city about 30 km away.
Once a week, he used to attend the club meetings. Recently, he
broke his leg after he slipped on an icy surface and therefore
has mobility limitations and cannot leave the house very often.
His children are worried, because his friends and also his club
mates from the model railway club don’t have much time to
visit Mr. F. personally.

To support Mr. F. in his daily tasks, the PCEICL platform
assists him in communication, information acquisition and
learning. With this platform, he is able to stay socially inte-
grated. Especially his children can feel more comfortable, by

25Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            35 / 82



contacting him more easily during this convalescence period.
Next, the use cases for each of the three main support areas
are described.

A. Use Case (Communication Assistance)

Each contact in Mr. F.’s address list has specified several
communication channels, like telephone, email, video chat,
SMS, etc. Additionally, each contact has defined information
about the availability of the different communication channels
based on the contact person’s daily habits or appointments. It
is assumed that there is always at least one communication
channel, where the contact can be reached in an urgent
situation. Suppose Mr. F. wants to communicate with one of
his children. All he has to do, is to select the name of his
children from his address list. After this, the PCEICL platform
automatically selects the communication channel based on
the aforementioned schedule and preferred communication
channel (e.g., SMS because his son is busy).

B. Use Case (Information Acquisition Assistance)

Another application on the platform helps Mr. F. find
assistance from other people in the countryside. Although he
stopped active farming, there are many things to be done on his
farm. He has to feed his hare, do lawn mowing, do shopping,
repair things once in a while, clean the house, etc. All this is
very difficult or impossible for a mobile restricted person. If
he needs help, he should be supported by a PCEICL service.
Because the platform knows the user’s health condition, it
offers an “search-and-offer” service automatically. This could
be used to search assistance in the aforementioned daily or
weekly tasks, but also for special occasions. For instance, if
there is a social meeting with the model railway club, he
would like to participate in, the system will automatically
help him to get a lift or special transportation. If his health
condition gets worse and he cannot attend the meeting, the
lift will be canceled by the system. Because the system also
knows about the environment, e.g., the weather condition, it
can automatically organize help, for example, to clear the
snow.

C. Use Case (Learning Assistance)

Every day Mr. F. uses the PCEICL platform’s fitness
service. The fitness service guides Mr. F. through his every-
day exercises like arm circles, arm curls or leg straightening.
Because of the new change in health condition the service
automatically skips exercises which are not suitable for a
broken leg and adds some arm movement exercises to reach the
same fitness level. As he recovers slowly from his leg fracture,
the system can include specific exercises for his legs to restore
his mobility.

The use cases described above are basis for the evaluation
section (see Section VI) to show the benefits of the newly
developed PCEICL platform and ontology.

IV. THE PCEICL PLATFORM

Figure 1 shows the PCEICL platform realized as an OSGi
Platform as a Service (OSGi-PaaS) inside a cloud infrastruc-
ture to benefit of the PaaS scalability and the simple exten-
sibility through the OSGi bundle mechanism. The scalability

Figure 1: The PCEICL platform

is needed for CPU intensive functionalities, like image and
speech recognition. More and more OSGi bundles in the field
of home automation and health care are appearing and can
be easily integrated [15]. A specific OSGi bundle of the
PCEICL platform is a software agent OSGi bundle, which
facilitates the development of intelligent behavior and realizes
standardized communication between agents by using Agent
Communication Language (ACL) [16]. ACL defines the use of
ontologies, which we realized with the PCEICL ontology (as
shown in Figure 1). For the software agents, the Java Agent
DEvelopment Framework (JADE) [17] has been chosen. JADE
is widely used and already provided as an OSGi bundle, which
makes an integration of the agents in the OSGi environment
straightforward.

Agents are well known, when developing intelligent sys-
tems, for their support for standard communication between
them, and for helping the integration of external services. Ex-
ternal services could be existing services like nursing services,
communication services to contact a doctor, weather services,
etc. For example, the user personalized platform could use
the user information to exchange data between the PCEICL
platform and the nursing service’s system to indicate the
necessity of a visit to the elderly person.

The distribution, installation and deployment of the PCE-
ICL services is realized by an OSGi bundle store (PCEICL
Store, see Figure 1) equivalent to modern app stores for smart
phones or operating systems. These services can be selected
by the elderly users, by a personal assistant, by a relative or by
the system itself, to automatically update services or suggest
new services to be installed to satisfy the needs (interests,
impairments, etc.) of the user.

The profile and environment of the user is modelled by the
PCEICL ontology. This ontology includes all the information
about the person and its personal relevant environment to
adapt the PCEICL services and applications (e.g., impairments,
interests, hobbies, etc.). The stored profile of the user is
managed by the PCEICL platform in the form of a Context
Management Agent (see Figure 1), deciding which service
is getting what kind of information about the user. Because

26Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            36 / 82



of the privacy data minimization principle, not every service
should get all information. For example, the communication
service providing audio and video telephone calls should not
get information about the health condition of the user. It
gets access to information about the volume, the contacts and
possible colours or font sizes for the user interface.

The needs, interests, health condition, etc. are gathered in
several ways. On the one hand, there is a manual acquisition
of user data during the initialization of the system by the
user or a personal assistant and on the other hand there is
a continuous analysis of context data through, e.g., sensors
resulting in the adaption of user and environment data. The
environment context is managed by the Context Management
Agent.

In Figure 1, there are special agent OSGi bundles for the
three support areas of the PCEICL platform: communication,
information and learning. These agents realize an assistance
of the user with the context information given by the context
management agent.

V. THE PCEICL CONTEXT ONTOLOGY

For an optimal personalization of the PCEICL system, the
user context must be modelled, a semantically underpinned
agent communication is needed, the information should be
semantically connected to each other and there should be
rules describing the usage of the single information. As a
result, the context information and the ACL ontology part is
modelled in the form of the PCEICL ontology, which enables
the description of information relationships and the deduction
of new data out of existing information. For example, if the
system knows about the health condition of a user, capabilities
and impairments could be deduced from it. This ontology is
used in the Foundation for Intelligent Physical Agents-Agent
Communication Languages (FIPA-ACL) [18] and is managed
by the context manager agent of the PCEICL platform.

The procedure of the ontology design for the PCEICL plat-
form is based on the approach of N. Noy und D. McGuinness
[19]. The ontology is developed iteratively and, for this reason,
there will be adjustments of the ontology in the whole lifecycle
of the PCEICL project. Automatic updates of the concepts or
just the individual elements of the ontology must be possible.

The PCEICL ontology is the base for saving and interpret-
ing context information. It specifies the way of describing the
user, his properties and his environment for all components
of the PCEICL platform, particularly for the personalized
services. The ontology describes primarily the user and his
properties but additionally the user’s environment like weather,
time, date, devices/sensors, etc. Figure 2 shows an overview of
the basic concepts of the ontology. A more detailed description
can be found in [20].

In addition to the mandatory user data, like the personal
information (name, address, date of birth, contact information,
etc.), there are some more specific and more complex concepts,
like the interests, preferences, capabilities, or the health con-
dition. Many of the ontology classes are fixed defined classes,
defining the properties an individual of this class must have.
This leads to a better consistency of data.

Figure 2: Overview of the basic concepts of the PCEICL ontology

The central role of the user is reflected in the class User,
as shown in Figure 2. It is connected via properties to almost
every other main class of the ontology. The User class is
derived from the defined class Person, shown in Figure 3. For
all instances of this class it is necessary to have exactly one
id and exactly one personal information. So, every person is
defined uniquely in the system.

Figure 3: Class Person

For the PCEICL communication services of the platform,
it is necessary to have a contact list. Every Person in this list
is represented by an instance of the class Contact, which is
also derived from class Person. Additionally to an ID and
the personal information, there is a categorization of each
contact to give the system knowledge about the relationship
of the contact to the user. So, the system could distinguish
between family members and, for example, doctors. For each
contact, photos could also be saved. The information about
the communication channels of the persons are saved in the
concept PersonalInformation.

The class Education contains only information about the
user’s academic status, e.g., foreign languages the user speaks.
This class can also be used to save data about learning
progresses of the user. More information about the education
of the user is at the moment not relevant for the platform and
therefore, this information should not be saved. If it will be
relevant in future to save more information, the ontology could
easily be extended by other attributes.

The interests are represented by the class Interest. To
differentiate between interests, like sports watching on TV
and actively exercised interests, like actively playing a sport,
the class Activity is also part of the ontology. Figure 4 shows

27Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            37 / 82



the concept of the class Interest, which is almost the same
as for the class Activity. In addition to the name and the
type of the interest or activity, it is possible to store more
specific information, like pictures, websites, or descriptions
(class AdditionalInformation). The class Interest should also
have a property hasLevel, which describes how much the user
is interested in something.

Figure 4: Class Interest

In the class Preference, distinction is made between Per-
sonal Preference, which is structured like the class Interest and
System Preference. Personal preferences could be, for example,
the favorite color or the taste of music. In the class System
Preference settings of services or the platform itself could be
saved. This settings could be derived from other information.
For example, there could be a user who cannot differentiate
between red and green. As a result, the system should not use
red and green for the user interface. In such cases, the system
should automatically derive the system preferences from the
health condition or other information, which are given about
the user. In the system preferences, account information is also
stored, which can be username and password, a certificate, etc.

The class Capability is divided into CognitiveCapability
and PhysicalCapability and is also structured like the class
Interest. The capabilities and limitations stored in this class
should also be derived from the health information of the user.

Figure 5: Class HealthCondition

The most important information is the health condition
of the user. A lot of other information could be generated
knowing about the impairments of the user. Therefore, a class
HealthCondition exists, which is presented in Figure 5. Every
single instance describes the impairments and diseases of the
user. So, information can be saved about the medication of
the disease or the physician treating the disease, who is saved
as a contact in the list. Each impairment or disease can be
rated by the property hasLevel by saving information such as
the dioptre numbers or the status of disease. For the correct
medical description of the disease, you can save an ICD-Code
for each instance of the class HealthCondition. ICD means

International Statistical Classification of Diseases and Related
Health Problems Code [21] and is a worldwide used coding of
diagnoses. So, a uniform and correct description of the health
condition of the assisted person can be reached.

Figure 6: Class History

The PCEICL ontology also offers a concept to consider
the context historically. So, you can observe the changes of
the learning behaviour or of the capabilities and impairments,
for example. Therefore, a class History is designed taking an
expired instance of one of the classes shown in Figure 6 and
combining it with an actual timestamp. For example, if the user
has a cold, this information will be saved as HealthCondition
instance. If the cold is overcome, the instance will be combined
with a timestamp and will be saved as a history object.

A. PCEICL Ontology Example

Figure 7 shows an example of the user profile information
covered by the concepts of the ontology. It represents the user
profile of Mr. F., who has been introduced in the use cases of
Section III.

VI. PCEICL ONTOLOGY IN USE

In this section, the introduced use cases of Section III
are called into play to show the platform services using the
concepts of the ontology. The development of some parts of
the PCEICL platform is still in progress. When the prototyping
phase is completed, there will be a socio-scientific accompa-
nying evaluation of the services by a group of persons aged
60 and older.

A. Use Case (Communication Assistance):

The communication app itself is just a simple client ser-
vice getting only the information needed to interact with the
user. Therefore, the main context information is about the
contacts saved as individuals of the class Contact. For the
communication app, information about the system preferences
of the user are used to adapt the GUI. Most of the settings
can automatically be derived from the health condition of the
user (ontology class: HealthCondition). For example, if the
user has a red-green colour blindness, these colours should
be excluded from possible system settings or if the user has
a hearing deficiency, the volume should not be set under a
minimum level. These pieces of information could be saved

28Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            38 / 82



Figure 7: PCEICL ontology example

in the class SystemPreferences. Other information must be
collected manually, like information about existing accounts.

For the organization of club meetings, information about
the other club members is needed. This is also realized by
the Contact class, which offers the possibility to order the
contacts in a category club members, so the app can show
only the relevant club persons. When the elderly person wants
to organize a meeting at his home or when the system searches
for a ride to an external meeting or event, this grouping
functionality gives great support.

B. Use Case (Information Acquisition Assistance):

For the application which assists the user in organizing
information acquisition, primarily knowledge about the health
condition (ontology class: HealthCondition) and environment
(ontology class: Environment) of the user is helpful. The main
advantage of this app is, that it asks if it should organize
assistance in something depending on the actual context.
Context could be for example the condition of the user, his
impairments, the weather, the time, the sensory in the house,
etc. Due to the information given by the concepts of the
ontology, the system can decide if there is a need for a special
service or not. The user is always asked if help by the system
is needed without being patronizing.

Due to the acquisition of the interests, activities and per-
sonal preferences of the user, it is possible to offer the user
the “search-and-offer” service assistance of finding all kinds
of support. Since the user in our use cases has a broken leg, he
could get a snow shoveling offer automatically, during winter
time. The model railway passion of Mr. F. can be supported
by helping him to get a lift for the weekly meetings by the
“search-and-offer” service. It uses the information saved in
the instances of the classes Interest and Activity for providing
personalized functions.

C. Use Case (Learning Assistance):

The fitness status of Mr. F. can be gathered by the Educa-
tion class. If he reaches a new level of fitness by doing all the
required exercises, the level can be saved in this class. Through
the History class, it is possible to consider the whole progress
of fitness condition. If there are steps backwards, the exercises
could be adapted accordingly. The health condition information
makes it possible to automatically offer only the exercises that
are feasible for the user with his current impairment.

VII. PCEICL ONTOLOGY SUMMARY

There are several advantages of the newly introduced
PCEICL ontology: (1) centralized user view, (2) services
adaptable to user’s needs, (3) historical view, (4) usage of the
ontology for ACL, (5) expandability. These advantages may
be summarised as follows:

(1) Context awareness is a mandatory requirement for an
optimal assistance for elderly people. It is also important
not to consider only the environment of assisted persons, but
especially the assisted persons themselves and their needs. The
PCEICL ontology offers a centralized user view. Therefore,
useful information about the user can be applied to offer
personalized services.

(2) All services are adaptable to the user’s needs.
They can use information about the capabilities, impairments,
interests, etc. of the person and can tailor their user interface
and also their functionality to the abilities of the user. For
example, they can control the volume, the font size or the
colours, depending on the condition of the ears or the eyes of
the user.

(3) Due to the historical view integrated into the ontology,
it is also possible to react to changes of the user profile. The
services can, for example, repeat helpful information if the
user begins to suffer from dementia.

29Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            39 / 82



(4) The ontology is used within the PCEICL platform as
a common understanding of the user profile data. It is used
to semantically interpret the user context in the different use
cases and during the communication between the agents of
the PCEICL platform.

(5) Another benefit of the ontology is its facilitated ex-
pandability. This is because of the centralized concept User,
where it is easy to add new properties to expand the user
profile. Other reasons are the hierarchical structure and the
reuse of concepts by many classes. Only currently useful
information is saved in the ontology for a better data privacy.
Concepts, which turn out to be relevant in the future, can be
easily integrated into the ontology.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an ontology, which constitutes
the base of a context aware platform as a service. The PCEICL
platform itself is based on OSGi with the opinion to use JADE
agents for the integration of semantic intelligence in form of
an ontology. The presented PCEICL ontology is the base for
ACL communication of the agents. In the future, there will
be an OSGi store, where the OSGi bundles can be distributed.
Due to the use of cloud technologies, the platform is flexible
and scales as needed.

The use of ontologies in the field of AAL is not new, but
the centralized role of the user in context modelling is not
widespread. In the PCEICL ontology, the user is the central
concept. The user is described by his properties like health
condition, capabilities, preferences, his social environment, etc.
For the exact and correct description of the user’s health con-
dition, the ICD-Code ICD-Code is used, which is a worldwide
applied classification system for diagnoses. With the concepts
of the ontology it is also possible to have a historical view
on the user and his environment. So, it is possible to analyse
the user’s development of learning or the development of the
health condition to permanently adapt the system to the needs
of the user. Due to the centralized user view, also a better
expandability of the ontology is reached.

Future work will be a dynamic adaption of the ontology
during runtime. Some context information will be captured
and analysed automatically and the result could lead to a
modification of the ontology. For example, the system could
monitor the behaviour and the search requests of the user
and could conclude that the interests of the user changed. In
this case an adaption of the interest instance in the ontology
should occur. Some other information shouldn’t be captured
automatically. Such an information is, for example, the healing
of a disease and should be detected by a doctor. After this
detection, the ontology should adapt accordingly.

ACKNOWLEDGMENT

The project ZAFH-AAL (“Zentrum für Angewandte
Forschung an Hochschulen für Ambient Assisted Living”) is
funded by the Ministry of Science, Research and the Arts of
Baden-Württemberg, Germany. The funding program for the
universities of applied science is called: Zukunftsoffensive IV
“Innovation und Exzellenz” (ZO IV). The PCEICL project is
a sub-project of the project ZAFH-AAL.

REFERENCES

[1] M. Klein, A. Schmidt, and R. Lauer, “Ontology-Centred Design of an
Ambient Middleware for Assisted Living: The Case of SOPRANO,” in
In: Towards Ambient Intelligence: Methods for Cooperating Ensembles
in Ubiquitous Environments (AIM-CU), 30th Annual German Confer-
ence on Artificial Intelligence (KI 2007), 2007.

[2] L. Litz and M. Gross, “Covering Assisted Living Key Areas based on
Home Automation Sensors,” in Networking, Sensing and Control, 2007
IEEE International Conference on, 2007, pp. 639–643.

[3] J. A. Botia, A. Villa, and J. Palma, “Ambient Assisted Living system
for in-home monitoring of healthy independent elders,” Expert Systems
with Applications, vol. 39, no. 9, 2012, pp. 8136 – 8148.

[4] S. Lauriks et al., “Review of ICT-Based Services for Identified Unmet
Needs in People with Dementia,” in Supporting People with Dementia
Using Pervasive Health Technologies, ser. Advanced Information and
Knowledge Processing. Springer London, 2010, pp. 37–61.

[5] A. K. Dey and G. D. Abowd, “Towards a better understanding of
context and context-awareness,” in HUC ’99: Proceedings of the 1st
international symposium on Handheld and Ubiquitous Computing.
Springer-Verlag, 1999, pp. 304–307.

[6] B. Schilit, N. Adams, and R. Want, “Context-Aware Computing Ap-
plications,” in Proceedings of the 1994 First Workshop on Mobile
Computing Systems and Applications, ser. WMCSA ’94. Washington,
DC, USA: IEEE Computer Society, 1994, pp. 85–90.

[7] M. Assad, D. Carmichael, J. Kay, and B. Kummerfeld, “PersonisAD:
Distributed, Active, Scrutable Model Framework for Context-Aware
Services,” in Pervasive Computing, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2007, vol. 4480, pp. 55–72.

[8] R. Ram et al., “universAAL: Provisioning Platform for AAL Services,”
in Ambient Intelligence - Software and Applications, ser. Advances in
Intelligent Systems and Computing. Springer International Publishing,
2013, vol. 219, pp. 105–112.

[9] “OSGi Alliance,” [retrieved: March, 2014]. [Online]. Available:
http://www.osgi.org/

[10] K. Skillen, L. Chen, C. Nugent, M. Donnelly, and I. Solheim, “A user
profile ontology based approach for assisting people with dementia in
mobile environments,” in Engineering in Medicine and Biology Society
(EMBC), 2012 Annual International Conference of the IEEE, 2012, pp.
6390–6393.

[11] K.-L. Skillen et al., “Ontological User Profile Modeling for Context-
Aware Application Personalization,” in Ubiquitous Computing and Am-
bient Intelligence, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, vol. 7656, pp. 261–268.

[12] P. Moreno, M. Hernando, and E. Gómez, “AALUMO: A User Model
Ontology for Ambient Assisted Living Services Supported in Next-
Generation Networks,” in XIII Mediterranean Conference on Medical
and Biological Engineering and Computing 2013, ser. IFMBE Proceed-
ings, L. M. Roa Romero, Ed. Springer International Publishing, 2014,
vol. 41, pp. 1217–1220.

[13] D. Heckmann, T. Schwartz, B. Brandherm, M. Schmitz, and
M. Wilamowitz-Moellendorff, “Gumo - The General User Model
Ontology,” in User Modeling 2005, ser. Lecture Notes in Computer
Science, L. Ardissono, P. Brna, and A. Mitrovic, Eds. Springer Berlin
Heidelberg, 2005, vol. 3538, pp. 428–432.

[14] M. Sutterer, O. Droegehorn, and K. David, “UPOS: User Profile
Ontology with Situation-Dependent Preferences Support,” in Advances
in Computer-Human Interaction, 2008 First International Conference
on, 2008, pp. 230–235.

[15] “eHealth / AAL,” [retrieved: March, 2014]. [Online]. Available:
http://www.prosyst.com/what-we-do/ehealth-aal/products/

[16] “Agent Communication Language Specifications,” [retrieved: March,
2014]. [Online]. Available: http://www.fipa.org/repository/aclspecs.html

[17] “Java Agent DEvelopment Framework,” [retrieved: March, 2014].
[Online]. Available: http://jade.tilab.com/

[18] “The Foundation of Intelligent Physical Agents,” [retrieved: March,
2014]. [Online]. Available: http://www.fipa.org/

[19] N. F. Noy and D. L. McGuinness, “Ontology Development 101: A
Guide to Creating Your First Ontology,” Online, 2001, [retrieved:

30Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            40 / 82



March, 2014]. [Online]. Available: http://www.ksl.stanford.edu/people/
dlm/papers/ontology101/ontology101-noy-mcguinness.html

[20] C. Fredrich, “Kontextgetriebene "Software as a Service" im
Bereich "Ambient Assisted Living",” Master’s thesis, Hochschule
Furtwangen University, 2013, [retrieved: March, 2014]. [Online]. Avail-
able: http://www.wolke.hs-furtwangen.de/assets/files/Theses/2013_
SS13_Carina_Fredrich_Kontextgetriebene_SaaS_im_Bereich_AAL.pdf

[21] “World Health Organization (WHO): International Classification
of Diseases (ICD),” [retrieved: March, 2014]. [Online]. Available:
http://www.who.int/classifications/icd/en/

31Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            41 / 82



Analyzing Behavioral Compatibility for Web Service Choreography
Using Colored Petri Nets and ASK-CTL

Maya Souilah Benabdelhafid

Constantine2 University
LIRE Laboratory

Chaab Essas
Constantine, Algeria

Email: mabenabdelhafid@gmail.com

Béatrice Bérard

Sorbonne University
LIP6 Laboratory
UPMC & CNRS

Paris, France
Email: beatrice.berard@lip6.fr

Mahmoud Boufaida

Constantine2 University
LIRE Laboratory

Chaab Essas
Constantine, Algeria

Email: mboufaida@umc.edu.dz

Abstract—Web services have become the technology of choice
for Service-Oriented Computing (SOC) implementation. Their
composition is a recent field that has seen a flurry of different
approaches proposed towards the goal of flexible distributed
heterogeneous inter-operation of software systems. These systems
are usually derived from higher-level models rather than be coded
at low level. In practice, achieving Web service compatibility
nonetheless continues to require significant efforts for modeling at
multiple abstraction levels. Existing formal approaches typically
require the analysis of the global space of joint executions of
interacting Web services. We propose a formal approach where
Web service choreography is represented with the high-level
model of Colored Petri Nets (CPNs). ASK-Computational Tree
Logic (ASK-CTL) is used to describe the behavioral compatibility
of these services in terms of message order properties. Then,
model checking is applied for the verification of these properties.
The effectiveness of our work has been validated with the recent
version of CPN Tools.

Keywords-Web Service Choreography; Behavioral Com-
patibility; Model Checking; CPN; ASK-CTL.

I. INTRODUCTION

SOC is a new computing paradigm that utilizes services
as the basic constructs to support the development of rapid,
low-cost and easy composition of distributed applications
even in heterogeneous environments [1]. Web services [2] are
considered as one of the most promising computing paradigms,
which work as plugin mode to provide the value-added ap-
plications in SOC and Service-Oriented Architecture (SOA)
[3]. They may use the Internet as the communication medium
and open Internet-based standards, such as the Simple Object
Access Protocol (SOAP) as transmission medium and the Web
Services Description Language (WSDL) for their description.
They currently support the externalization of atomic business
capabilities [4]. Specifically, it is commonly accepted that a
Web service description should include not only the interface,
but also the business protocol supported by the service (i.e.,
its behavior, which is the specification of possible message
exchange sequences that it supports). Services can be com-
posed through choreography and orchestration. Choreography
describes the interactions between participating services to the
business process from a global perspective, while orchestration

uses a central coordinator. Many composition methods as
well as several proposals, such as Web Services Business
Process Execution Language (WSBPEL) [2] for orchestration
or Web Service Choreography Definition Language (WSCDL)
[5] for choreography, have been brought forward to construct
and describe the interactions among services. However, they
are concerned only with syntactic or semantic compatibility
among services, and the behavioral compatibility is ignored.

Behavioral compatibility analysis for Web service composi-
tion is one of the most important topics. In this paper, our goal
is to investigate this topic in the context of choreography. We
provide a formal basis for developing demonstrably correct
choreography. Our definition for this correctness is related
to message order requirements. We consider the problem of
choreographing Web services from a high-level, conceptual
perspective, that abstracts from the details of the interaction
paradigm. As pointed by De Backer et al. [6], the first step of
verifying if two Web services are compatible should occur on
an abstract level that hides unnecessary underlying coordina-
tion and allows to focus on high-level units of collaboration.
This simplifies the verification and provides a first step towards
a compatibility before investigating details of a Web service
description such as the content of a message. We propose
the modeling of Web services and their choreography using
CPNs [7] and show how a model checking technique can
be employed to verify if the modeled choreography satisfies
the order properties given as ASK-CTL [8] formulas. The
CPN models are implemented using the recent version of
the software CPN Tools (CPN Tools 4.0 [9]). The ASK-CTL
toolkit provided with this tool is used to perform automated
verification in order to prove that a service choreography
is correct at design time. This is an important step towards
reliable service choreography composition, since problems
could be detected early in the development cycle, before even
starting the implementation.

The rest of this paper is structured as follows. In Section II,
we give a simple illustrating example of Web service behaviors
in a choreography. Formal definitions of CPNs and ASK-CTL
are recalled in Section III, with a brief description of the
model checking technique. The formalization of behavioral

32Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            42 / 82



compatibility is presented in Section IV. Related works are
discussed in Section V. Conclusions and future works are
presented in Section VI.

II. MOTIVATING EXAMPLE

Let us consider a simple example where the scenario is that
of a travel agency, with the cooperation of four partners:

1) Travel Agency has two main tasks: airline booking and
hotel reservations,

2) Bank acts as a financial intermediary between the Airline
company (respectively the Hotel) and the Travel Agency,

3) Airline Company sells flight tickets to Travel Agencies,
4) Hotel proposes nights to Travel Agencies.
The last three partners want to provide functionalities to

the Travel Agency partner using the Web service technology.
Each partner is a published Web service, participating in a
choreography and is modeled as a business process including
the description of its partners (or a link permitting to get it),
the description of its interface (but not its local operations),
and the description of an abstract process that represents its
behavior (exchanged messages). The behavior of the four Web
services is as follows (see Fig. 1.).

Fig. 1. A Web service choreography: A Travel Agency Example

First, a customer contacts the Travel Agency Web service
and chooses its travel plan including information about the
order and the payment method. Consequently, this service
contacts the Bank Web service to pay the Airline Company
(respectively the Hotel) Web service. Next, the Bank pays the
Airline Company (respectively the Hotel) and asks them for
the payment confirmation. The Airline Company (respectively
the Hotel) sends its confirmation. If the payment operations
are completed successfully then the Travel Agency contacts its
customer and confirms his travel plan, and if one of them fails
then it contacts the customer and asks if any other plan suits
him or to cancel his request. The messages exchanged between
the four Web services have constraints of order forming their
behaviors.

The possible scenarios can be the following message
ordering sequences: 0, 1, 2, 3, 2′, 3′, 4, 5 or 0, 1, 2, 2′, 3, 3′, 4, 5
or 0, 1, 2, 2′, 3′, 3, 4, 5 or 0, 1, 2′, 3′, 2, 3, 4, 5 or
0, 1, 2′, 2, 3′, 3, 4, 5 or 0, 1, 2′, 2, 3, 3′, 4, 5.

To guarantee the successful execution of these scenarios,
Web services need to be verified formally in order to ensure
that mutual interactions between them do not lead to any con-
flict. Specifically, we need to verify their compatibility. There
are three aspects of service compatibility: syntactic, semantic,
and behavioral [10]. Syntactic compatibility means that the
structural interfaces of the interacting services are consistent.
Semantic compatibility means that the interacting services
exchange information that can be understood in a consistent
and unambiguous way. Finally, behavioral compatibility means
that the interacting services agree on what to expect from each
other in terms of operations to execute, outcomes to deliver,
and messages to be sent and received.

The static compatibility including the syntactic and semantic
compatibility is essential to be checked. Checking the behav-
ioral one, however, is a much more challenging task. In the
example, the four partners may be syntactically and semanti-
cally compatible in interfaces, but they can behave improperly
for the message exchange protocol. An example of behavioral
property that we will later check is the following requirement:
The payment confirmation will be sent by the Airline Company
after it receives the payment confirmation request. It is obvious
that if this property is not satisfied, then the collaboration
leads to an erroneous message ordering even if they are
syntactically and semantically consistent. Thus, the behavior
of services must be taken into account in composition. The
manual checking of service compatibility would clearly be
error-prone and time consuming. Consequently, an approach
to realize automatic and transparent checking is necessary.

This example will be modeled and the above behavioral
property will be verified in order to respect the six anticipated
scenarios.

III. BACKGROUND

In this section, we briefly recall some formal definitions
related to model checking formulas of the ASK-CTL logic
for CPNs.

A. Colored Petri Nets

CPNs represent today one of the most widely used for-
malism incorporating data and hierarchy [11]. They are a
discrete-event modeling language combining PNs and the
functional programming language CPN ML. Initially, CPNs
were supported by Design/CPN, later replaced by CPN Tools
that supports the design of complex processes and the analysis
of such processes using simulation and state space analysis.

In this section, we first recall definitions of CPNs that
will be useful in establishing a CPN model for Web service
choreography. These definitions are presented here in a simple
way in order to adapt them to our problem of behavioral
compatibility. A relation between them and CPN Tools 4.0
notations is also presented.

Definition 1 (Multi-set). A multi-set over a non-empty set Z is
a mapping b : Z → N, where N is the set of natural numbers.
The support of b is the set supp(b) = {z ∈ Z | b(z) 6=
0}. We denote by Bag(Z) the set of multi-sets over Z with

33Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            43 / 82



finite support and we write sometimes explicitly b ∈ Bag(Z)
as b =

∑
z∈Z b(z)z. An order relation, an addition and a

difference on multi-sets are defined as follows. For two multi-
sets b, b′ ∈ Bag(Z):
• b ≤ b′ if for all z ∈ Z, b(z) ≤ b′(z),
• b+ b′ is given by

∑
z∈Z(b(z) + b′(z))z.

• if b ≤ b′, then b′ − b =
∑

z∈Z(b′(z)− b(z))z.

Remark 1. In CPN Tools 4.0, special symbols are used for
multi-sets: the order relation is noted �, the addition is noted
++, with ++

MS

∑
for a sum, and the symbol ‘ is placed

between b(z) (the multiplicity) and z (the element). These
notations appear in Figures 3 and 4 for instance, where CPNs
are extracted from the graphical interface of the tool.

CPN definitions use a set Σ of color domains containing
the set Bool = {true, false} and a set V of variables. The
variables are typed by the function Type : V → Σ and we
consider a set Exp(V ) of expressions using elements of V as
free variables (or the empty expression).

Definition 2 (CPN Syntax). A CPN over the set of color
domains Σ and the set of variables V is a 5-uplet N =
(P, T,C,E,M0) where:
• P is a finite set of places,
• T is a finite set of transitions such that P ∩ T = ∅,
• C : P → Σ associates a color domain with each place,
• E : P ×T ∪T ×P → Exp(V ) associates with each pair

(p, t) or (t, p) an expression typed as a multi-set over the
color domain of the place: Type(E(p, t)) = Bag(C(p))
and Type(E(t, p)) = Bag(C(p)),

• M0 is the initial marking, with M0(p) ∈ Bag(C(p)) for
each place p ∈ P .

Remark 2. We do not define explicitly the set of arcs to
simplify the notations and we use the habitual convention of
Petri nets: the expression is empty if there is no arc, an empty
expression evaluating to an empty multi-set.

The following definition presents the semantics of CPNs.

Definition 3 (CPN semantics). The semantics of a CPN N is
described by a transition system TN = (M,M0,−→):
• the configurations of M are markings M , with M(p) ∈
Bag(C(p)) for each place p ∈ P ,

• the initial configuration is the initial marking M0,
• the transition relation −→ is defined as follows.

Let t be a transition and let v be a valuation of vari-
ables. We write v−(p, t) ∈ Bag(C(p)) and v+(t, p) ∈
Bag(C(p)) for the respective values of E(p, t) and
E(t, p) for p ∈ P .
The transition M t,v−−→ M ′ is possible if, for each place
p ∈ P , M(p) ≥ v−(p, t) and in this case,
M ′(p) = M(p)− v−(p, t) + v+(t, p) for each p ∈ P .

An execution starting from M is a sequence of firings M t1,v1−−−→
M1

t2,v2−−−→M2 . . .. A marking M ′ is reachable from M if there
exists a finite execution M t1,v1−−−→M1

t2,v2−−−→M2 . . .
tn,vn−−−→Mn

starting from M such that M ′ = Mn.

Remark 3. In this definition, a single transition is fired to

avoid the steps in the presentation of Jensen [7]. This is not a
problem because a step can be represented by the successive
firing of several transitions.

B. The logic ASK-CTL

The logic ASK-CTL of CPN Tools (see [12] for more de-
tails) is an extension of the standard CTL [13]. An ASK-CTL
formula is interpreted over the transition system TN (called
State Space (SS) in the tool) associated with a CPN model
N and takes into account both configuration information (on
markings, also called states) and transition information, thus
extending CTL, where only configurations are labeled with
sets of atomic propositions. The model checker of CPN Tools
checks if such a formula holds over TN .

In the following definition, we consider the transition system
TN of a given CPN N . Operators ¬,∧ are boolean negation
and conjunction, 〈.〉 is an existential ”next” modality, U is the
standard until modality of CTL and E, A are respectively the
existential and universal quantifiers on executions from CTL.

Definition 4 (ASK-CTL Syntax). The ASK-CTL logic has two
categories of formulas: state and transition formulas, defined
by mutual induction.

State formulas are given by the grammar:
A ::= α| ¬A |A1 ∧ A2| EU(A1,A2)| AU(A1,A2)| 〈B〉
where α is a mapping from the set M of markings into
booleans, A,A1,A2 are state formulas and B is a transition
formula.

Transition formulas are given by the grammar:
B ::= β| ¬β |β1 ∧ β2| EU(β1, β2)| AU(β1, β2)| 〈A〉
where β, β1, β2 are mappings from the set of pairs (t, v)
labelling transitions into booleans and A is a state formula.

The semantics of ASK-CTL is defined inductively on con-
figurations of the transition system TN in the spirit of CTL,
from the basis case: A configuration M satisfies α, written
M |= α, if α(M) is true. For instance:
- M |= EU(A1,A2) if there exists an execution M t1,v1−−−→
M1

t2,v2−−−→ M2 . . .
tn,vn−−−→ Mn starting from M such that Mn

satisfies A2 and all markings from M to Mn−1 satisfy A1.
- M |= AU(A1,A2) if for all executions starting from M ,
there exists a marking M ′ satisfying A2 with all intermediate
markings satisfying A1.
The next modality is similar to the one from the µ-calculus:
M |= 〈B〉 if there is a transition M t,v−−→M ′ from M satisfying
B, as defined below.

The semantics of transition formulas is defined similarly:
- A transition e = M t,v−−→M ′ satisfies β if β(t, v) is true.
- e |= 〈A〉 if M ′ satisfies A.
- The formulas EU(β1, β2) and AU(β1, β2) are then defined
like above on executions starting by e, with β1 and β2 satisfied
by successive transitions instead of configurations.

Note that we may also use the standard abbreviations
false = α ∧ ¬α, true = ¬false, ϕ → ψ = ψ ∨ ¬ϕ,
AFϕ = AU(true, ϕ) and AGϕ = ¬AF(¬ϕ).

34Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            44 / 82



C. Model Checking

A model checking procedure answers the following ques-
tion: Given a state ASK-CTL formula A and a CPN N , does
the initial configuration M0 of TN satisfy A ? For this, it
must be able to answer any similar question on reachable
configurations or transitions of TN . The tool uses Standard
ML (SML) functions for this purpose. For instance, checking a
state formula is expressed in SML by a function eval node :<
formula >,< node >, which takes two arguments: the
formula to be checked and a configuration (called node in
the tool) from where the model checking should start. The
mappings α are defined in SML by functions like NF(<
message >,< node function >), where node function
takes a node and returns a boolean and message is used when
a formula evaluates to false. Similarly, the mappings β are de-
fined by functions like AF(< message >,< arc function >
). A formula EU(α1, α2) for two mappings α1 and α2, simply
translates in SML as EXIST UNTIL(α1, α2), and so on.

Now, we deal with our proposed formal approach.

IV. A CPN AND ASK-CTL -BASED APPROACH

Our approach analyzes behavioral compatibility using the
above definitions of CPNs and ASK-CTL. It is composed of
two related phases (see Fig. 2.):
• Choreography Modeling and Validation: Modeling a Web

service choreography by constructing Web service behav-
iors based on CPNs semantics and composing them. This
modeling is validated by multiple simulations using CPN
Tools 4.0. The result is a behavioral model to check.

• Behavioral Properties Checking: Verifying some behav-
ioral properties on the generated behavioral model in
terms of message order using the model checking tech-
nique described above. We first formally describe the be-
havioral properties as ASK-CTL formulas. Subsequently,
we rewrite these formulas into SML format. In this way,
a concrete formalization of the behavioral properties is
obtained. The verification of these properties will be done
over the transition system (or SS) that has been generated
from the behavioral model by CPN Tools 4.0.

A. Choreography Modeling and Validation

In this first phase, we have three related steps: CPN Mod-
eling, Simulation, and CPNs Composition.

1) CPN Modeling: According to the Web service behav-
iors, which are specified by the informal language Unified
Modeling Language Diagram Activities (UML DA [14]), we
construct a formal model for each Web service behavior based
on CPN semantics such as the choreography may require dif-
ferent instances of a participating Web service. Consequently:
• the behavior execution states are captured by places.
• the message type (Web service instances and its incoming

messages) is captured by the color set of the token (we
do not look into the content of a message as it is not
known until run time).

• the operation of its instance is captured by a transition
(send or receive).

Fig. 2. Overview of our proposed approach

• the Web service initial state is captured by the initial
marking M0.

In our modeling, a Web service behavior is a conversation
protocol that is defined as a CPN N where:
• the set of colors is Σ = {INS , I ,MSGSTATE , I ×

MSGSTATE , INS × I ×MSGSTATE}, where:
– INS is a color set, which defines the Web service

instances:
colset INS = with ins1|ins2;
We define a variable x having as type INS :
var x : INS;

– the static subclasses of I ×MSGSTATE include I ,
which is an integer type that represents the message
identifier and MSGSTATE, which is an enumera-
tion type that represents a message:
colset I = int;
colset MSGSTATE = with TravelRequest
|Response|PaymentOrder|PaymentNotification
|PaymentConfirmationRequestAC
|PaymentConfirmationRequestH
|PaymentConfirmation;
we define two variables msgid and currentstate
and m0,m1,m4,m5 having respectively as type I ,
MSGSTATE , and I ×MSGSTATE :
var msgid : I;
var currentstate : MSGSTATE;
var m0,m1,m4,m5 : I ×MSGSTATE ;

– we define two variables xm2, xm3 having as type
INS × I ×MSGSTATE :
var xm2, xm3 : INS × I ×MSGSTATE ;

– we define also functions that will be attached to
transitions and eventually two arcs, for example the
function startSend1 that allows the sending of the
message m1 that represents the Payment Order in
Fig. 1. It is defined as follows:
fun startSend1((msgid, currentstate) : I ×

35Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            45 / 82



MSGSTATE ) = let val new msgid = 1
val new currentstate = PaymentOrder
in (new msgid, new currentstate) end

• a place p ∈ P represents the protocol state, a transition
t ∈ T represents the message exchange consisting on
an invocation of a Web service operation, and the initial
marking M0 represents the Web service initial state.

For instance a part of the Travel Agency Web service
behavior is shown in Fig. 3.

Fig. 3. A CPN modeling of a part of the Travel Agency Web service behavior

As we can see, each of the Travel Agency Web service
operation is represented by a transition. The initial marking
consists in the token in the place TR not received. The
relations between operations are modeled by the firing rules
of the CPN:
• Receive TR is the first transition that can be fired if the

token (0, T ravelRequest) is present in its input place.
• Send PO will then be fired with the function
startSend1 defined above.

We can now describe the CPN that models this part of the
Travel Agency Web service behavior.

1) Σ = {INS , I ,MSGSTATE , I ×MSGSTATE , INS ×
I ×MSGSTATE},

2) P = {TR not received, TP received, PO sent}
3) T = {Receive TR, Send PO}
4) E(TR not received,Receive TR) =

E(Receive TR, TP received) =
E(TP received, Send PO) = m0, . . .

5) M0 = {(0, T ravelRequest) ++ ins1}.
A finite execution of the protocol of the Travel
agency Web service is defined by a sequence
M0

Receive TR,msgid=0,currenstate=TravelRequest−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M1

Send PO,msgid=1,currenstate=PaymentOrder−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M2, ...
2) Simulation: The above figure showed that the marking

M0 of the Travel Agency model changed to another marking
M1 after the occurrence of the transition Receive TR. Another
transition could be enabled and fire as a result of the new
marking. This process of firing of a sequence of transitions
is called simulation. Fig. 3. shows the simulation tool palette
used for validating the Travel Agency Web service behavior.
We note that simulations are also performed on CPNs com-
position step. In addition, simulations analyze a finite number

of executions and help to validate the model by detecting and
finding errors in the CPN model and demonstrates that the
model works correctly. However, it is impossible to guarantee
the correctness of the model with 100% certainly because all
the possible executions are not covered [15]. This correctness
will be analyzed in the second phase of our approach.

3) CPNs Composition: From the Web service behaviors
that have been modeled on CPN models, we can now perform
their composition using the concept of sub-module and the
result will be a formal model that represents the Web service
choreography called behavioral model. In this composition, the
CPN models can be structured into a set of sub-modules to
handle large specifications. These modules-pages interact with
each other through a set of well-defined interfaces, in a similar
way to programming languages. Fig. 4. shows the CPNs
composition where we have four sub-modules (T,B,H,AC)
representing respectively the four Web services behaviors
(Travel Agency, Bank, Hotel, and Airline Company).

Fig. 4. CPNs Composition

For example, the two places TR not received and PN sent
represent input ports for the T sub-module. The two places
PO sent and R sent are its output ports. This means that these
places form the interface through which the T sub-module
exchanges tokens with the other sub-pages. It will import
tokens via the input ports and it will export tokens via the
output ports. The composition of p sub-modules N1, . . . Np is
denoted by N1⊕· · ·⊕Np. Since we have composed our CPNs
models representing the taken Web services, we can substitute
each sub-module by its corresponding CPN. As said above,
simulation is performed on the composition to validate it but,
it is not sufficient to prove its behavioral compatibility. To do
so, we perform the next phase.

B. Behavioral Properties Checking
From a generated behavioral model representing the Web

service choreography, the behavioral properties checking can
be performed through the verification of the message order
properties. The notion of syntactical and semantic compati-
bility are preconditions of the following checking. Also, we
consider the case where the component Web services in a
choreography have correct behaviors. In this case, whether
the composition can properly execute or not depends on the
behavioral compatibility of its participating Web services.

Definition 5 (Behavioral Compatibility). Let N = N1 ⊕ Np

be a CPN representing the behavioral model produced by

36Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            46 / 82



the composition of p CPNs N1, . . . , Np representing the Web
service models. Let (i, j, request,m) denote transition labels
for the sending of a request m from service i to service j and
let (i, j, answer,m) denote the transition label for the answer
to this request from j to i. Then, N is behaviorally compatible
with respect to message ordering if for all i, j,m, the following
state formulas are satisfied by the initial configuration of N :

• AG(〈(i, j, request,m)〉 → AF(〈(i, j, answer,m)〉)),
meaning that any request is eventually followed by an
answer, and

• AU(¬〈(i, j, answer,m)〉, 〈(i, j, request,m)〉), meaning
that no answer is sent until a request has been sent first.

Justification: We recall that each Web service is represented
by a CPN, each Web service interaction (send or receive)
is represented by a transition, and each exchanged message
is represented by a color set of the token. Analyzing the
behavioral compatibility of a Web service choreography is
subject to verifying its correctness. This correctness is related
to some qualitative requirements that are set on the order of
the exchanged messages. We note that the second formula
corresponds to the property given in Section II as example for
the case study: The payment confirmation will be sent by the
Airline Company after it receives the payment confirmation
request. Both of the two formulas will be verified using a
model checking technique based on SS. Thus, in this second
phase, we have three related steps: State Space Computation,
ASK-CTL/SML Property Description, and Model Checking.

1) State Space Computation: Our approach verifies the
behavioral compatibility of a Web service choreography by
using CPN Tools to automatically generate the transition
system TN associated with the choreography model. Only
nodes reachable from the initial marking M0 of the net
and the associated transitions are kept by the tool. For our
example above, the transition system TN has 17 nodes (see
Fig. 5.) representing the different markings, generated by all
transitions:
M0

x=ins1,Receive TR,msgid=0,currentstate=TravelRequest−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M1

M1
x=ins1,Send PO,msgid=1,currentstate=PaymentOrder−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M2

and so on, up to
M16

x=ins1,Send Response,msgid=5,currentstate=Response−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M17

The transition system TN can be used not only to obtain a
standard report (including standard properties such as deadlock
freeness) but also to verify ASK-CTL formulas like those
defined for compatibility.

2) ASK-CTL/SML Properties Description: ASK-CTL for-
mulas are used here to describe the behavioral properties to
be checked. Let us deal with the behavioral property taken for
our example (corresponding to a formula of the second type
in Definition 5).
Behavioral Property: The payment confirmation will be sent
by the Airline Company after it receives the payment confir-
mation request.

We rewrite the corresponding ASK-CTL formula into SML
to obtain a concrete formalization of the property (see Table

Fig. 5. Transition system of our behavioral model

I). This formula is given by AU(¬A2, A1) where A1 denotes
the characteristic predicate for the transition of receiving the
payment confirmation request by the Airline Company Web
service and A2 denotes the characteristic predicate for the
transition of sending the payment confirmation by the same
Web service.

TABLE I
SML FUNCTIONS FOR CHECKING THE BEHAVIORAL PROPERTY OF THE

EXAMPLE

SML Description

Functions
and

values
declara-

tion

fun Arc1
a = (Bind.BehavioralModel′Receive PCR AC

(1, {xm2 =
(ins1, 2, PaymentConfirmationRequestAC)})

= ArcToBE a);
fun Arc2

a = (Bind.BehavioralModel′Send PC AC
(1, {xm2 =

(ins1, 2, PaymentConfirmationRequestAC)})
= ArcToBE a);

valA1 = AF (”Receive”, Arc1);
valA2 = AF (”Send”, Arc2);

Formula
val myASKCTLformula =

FORALL UNTIL(NOT (A2), A1);
Verification eval arc myASKCTLformula InitNode;

In this description, A1 is interpreted by:
fun Arc1
a = (Bind.BehavioralModel′Receive PCR AC

(1, {xm2 = (ins1, 2, PaymentConfirmationRequestAC)});
referring the variable xm2 of transition Receive PCR AC.

And A2 is interpreted by:
fun Arc2
a = (Bind.BehavioralModel′Send PC AC

(1, {xm2 = (ins1, 2, PaymentConfirmationRequestAC)});
referring to the variable xm2 of transition Send PC AC.

The global formula (FORALL UNTIL(NOT (A2), A1)
holds if the Payment Confirmation message is not sent
by the Airline Company until the Payment Confirmation
Request has been sent. Note that InitNode means the initial
marking of the transition system.

3) Model Checking: Here, we adopt the model checking
toolkit provided by CPN Tools 4.0 to check whether the gener-
ated behavioral model N meets the two conditions introduced
in the behavioral compatibility definition (definition 5).

First, ASK-CTL module should be loaded in CPN Tools
4.0. The commands are shown in high part of Fig. 6. Then,

37Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            47 / 82



the SML property description is written and then evaluated
by “evaluate ML” option in the simulation tool palette. The
checking result is shown in the green part of Fig. 6.

Fig. 6. Model Checking the behavioral property: true

We can see that the checking results returns true, which
indicates that the behavioral model satisfies the property. This
checking is not sufficient to say that the behavioral model is
correct. We also need to check the two conditions given in
the behavioral compatibility definition for all pairs (request,
answer) in our modeled system. In our approach, if failures
are detected then we must return to the first phase to correct
these errors. For our example, we make some errors related
to message order and in this case the checking results of
our same taken property is given in Fig. 7. The correction is
based on a behavior failure analysis that is done on exploring
all property violation scenarios and pinpoints areas where
modeling changes or revisions will be considered.

Fig. 7. Model Checking the behavioral property: false

Having shown that CPN based model checking of order
property is feasible, we can then exploit the CPN Tools
advanced graphical environment, to interactively simulate the
actions performed in possible property violation scenarios.
Behavior failure analysis is based on inspection of the ter-
minal markings in all property violation paths. The simulation
control functionality found in the CPN Tools 4.0 allows
firing transitions with an interactively chosen transition. Thus,
the actions included in the scenario of interest are easily
reproduced and we can explore all possible behavior revision
prospects to repair the detected property violation.

V. RELATED WORK

To capture the behavior of service composition in some
formal way, a variety of formal analysis techniques have
been proposed. Most of them adopt a formal model such
as PNs or Finite State Machines (FSM) or pi-calculus to
express service behavior in a service orchestration and then
utilize its theories and tools to accomplish the automatic
verification. For example, Lucchi and Mazzara [16] propose an
approach that analyzes service orchestration using WS-BPEL
and the formalism pi-calculus. Benatallah et al. [17] propose
an approach that analyzes the behavioral compatibility and
the similarity of Web services. Hamadi et al. [18] propose
an algebra of PNs to analyze the behavioral compatibility
of Web services. The orchestration is modeled by the use
of simple operators such as arbitrary sequence and more
complex operators like iteration. Also, Tan et al. [19] propose
an approach to analyze the compatibility of two services by
translating their BPEL abstract processes into CPNS and check
if their composition violates the constraints imposed by either
side.

Compared to the works listed above, the approach proposed
in [20] verifies service choreography by checking not only
deadlock-freeness but also other properties, such as liveness
and other specific properties. This approach is based on the
automata formalism for modeling and on model checking for
the analysis of behavioral compatibility and the satisfaction
of temporal constraints: timing conflicts that may arise in a
choreography can be detected. Another example that inves-
tigated choreography is [21], where Martnes et al. propose
a PN based approach to model and analyze the behavioral
compatibility of Web services, initially described by BPEL
processes. Each selected BPEL process is transformed into a
BPN. Then, the corresponding BPN models are composed, and
the deadlock-freeness of the resulting net has to be proven.

In contrast to these works, our paper focuses not only on
automatically reasoning about deadlock freeness, but also on
message ordering properties. In addition, our verification is
done at design time while current approaches are specific
to a given programming language and only focus on the
verification of already implemented composite services. The
benefit of our approach is that the composition specification
is proven to be correct before its implementation with a
programming language such as BPEL. Few works has been
done, to the best of our knowledge, in this research direction.
For example, Achilleos et al. [22] propose an approach that
combines Model Driven Architecture (MDA) and PNs to
provide design, verification and code generation. Recently,
in [23], a MDA for creating consistent service orchestrations
is presented. Service execution and interaction are described
with a high-level model in terms of extended PNs notation.
Also, recently, Dumez et al. [24] propose a MDA approach
to specify, verify and implement service composition using
existing specification and implementation languages. To sup-
port the formal verification of the composition, a translation
of the composition workflow model is done into a Language

38Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            48 / 82



of Temporal Ordering Specification (LOTOS [25]) formal
specification. The CADP [26] tool-set is then used to verify
the composition via its LOTOS specification. Our work has
a similar objective, adopting instead CPNs to formalize the
behaviors and interactions of services. This model is well
suited to specify service composition due to its composition-
ality properties. Moreover, it uses CPN Tools, providing the
designer with the ASK-CTL toolkit that is expressive enough
to describe message ordering.

Our paper presents a formal approach that goes beyond
checking for deadlock-freeness as proposed by the majority of
related work. We note that our approach has a disadvantage
since it is based on state space analysis that presents the
state explosion problem. To address this problem, we can use
reduction techniques that are supported by CPN Tools 4.0.

VI. CONCLUSION AND FUTURE WORK

CPNs enhance classical PNs with commonly agreed upon
extensions such as data and hierarchy. The resulting modeling
language is highly expressive and is supported by CPN Tools
4.0, a recent powerful software tool for the modeling and
analysis of CPNs. This paper used an example to explain
the behavioral compatibility that is analyzed using CPNs
during the early design phase of choreography, thus avoiding
iterative cycles between the choreography implementation and
the compatibility analysis. The interest of our proposed ap-
proach lies in the clear presentation of the analysis model and
readiness for its implementation. We have demonstrated how
to use CPNs to model and compose the Web service behaviors
and how to use CPN Tools 4.0 to analyze their behavioral
compatibility basing on ASK-CTL and model checking.

In future work, we will extend our model to allow the per-
formance analysis in terms of quantitative timing constrains.
Our new timed model will be based on Timed CPN [7], also
supported by CPN Tools 4.0, and its analysis will be done by
simulations that allow performance analysis. In addition, we
plan to extend our approach of verification by using MDA in
order to have a development process of service choreography
that is based of CPNs and Timed CPNs.

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
Oriented Computing: A Research Roadmap,” International Journal of
Cooperative Information Systems, vol. 17, no. 02, pp. 223–255, 2008,
ISSN: 0-2-1-8-8-4-3-0.

[2] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. Ferguson,
Web Services Platform Architecture: SOAP, WSDL, WS-policy, WS-
addressing, WS-BPEL, WS-Reliable Messaging and More. Prentice
Hall PTR, 2005, ISBN: 013-14-88-74-0.

[3] Y. Zhu and H. Gao, “A Novel Approach to Generate the Property for
Web Service Verification from Threat-Driven Model.” Applied Mathe-
matics & Information Sciences, vol. 8, no. 2, 2014.

[4] G. Piccinelli, W. Emmerich, C. Zirpins, and K. Schutt, “Web service
interfaces for inter-organisational business processes an infrastructure for
automated reconciliation,” in Enterprise Distributed Object Computing
Conference. IEEE, 2002, pp. 285–292.

[5] Y. Hongli, Z. Xiangpeng, Q. Zongyan, P. Geguang, and W. Shuling,
“A formal model for web service choreography description language
(ws-cdl),” in IEEE International Conference on Web Services, Chicago,
IL, USA. Plattner Institute, University of Potsdam, German, and
Queensland University, 2006, pp. 893–4.

[6] M. De Backer, M. Snoeck, G. Monsieur, W. Lemahieu, and G. Dedene,
“A Scenario-Based Verification Technique to Assess the Compatibility
of Collaborative Business Processes,” Data & knowledge engineering,
vol. 68, no. 6, pp. 531–551, 2009.

[7] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer Berlin Heidelberg, 2009.

[8] A. Cheng, S. Christensen, and K. Mortensen, “Model Checking
Coloured Petri Nets-Exploiting Strongly Connected Components,”
DAIMI Report Series, vol. 26, no. 519, 1997.

[9] M. Wastergaad, “CPN tools 4: Multi-Formalism and Extensibility,” in
Application and Theory of Petri Nets and Concurrency. Springer, 2013,
pp. 400–409, Jose-Manuel, C. and Jorg, D., Ed., ISBN: 978-36-42-38-
69-61, ISSN: 0-3-0-2-9-7-4-3.

[10] Z. Maamar, B. D., G. Mostefaoui, S. Subramanian, and Q. Mahmoud,
“Toward Behavioral Web Services Using Policies,” Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
vol. 38, no. 6, pp. 1312–1324, 2008, ISSN: 1-0-8-3-4-4-2-7.

[11] W. M. P. Van der Aalast, C. Stahl, and M. Wastergaard, “Strategies for
Modeling Complex Processes Using Colored Petri Nets,” in Transactions
on Petri Nets and Other Models of Concurrency VII. Springer, 2013,
pp. 6–55, Jensen, K. and Van der Aalast, W. M. P. and Balbo, G. and
Koutny, M. and Wolf, K., Ed., ISBN: 978-36-42-38-14-23, ISSN: 0-3-
0-2-9-7-4-3.

[12] S. Christensen and K. Mortensen, “Design/CPN ASK-CTL manual,”
University of Aarhus. 0.9 edn, 1996.

[13] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 8, no. 2, pp. 244–263, 1986.

[14] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language
Reference Manual. Pearson Higher Education, 2004.

[15] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri Nets
and CPN Tools for Modelling and Validation of Concurrent Systems,”
International Journal on Software Tools for Technology Transfer, vol. 9,
no. 3-4, pp. 213–254, 2007, ISSN: 1-4-3-3-2-7-7-9.

[16] R. Lucchi and M. Mazzara, “A pi-calculus based semantics for ws-bpel,”
The Journal of logic and Algebraic Programming, vol. 70, no. 1, pp.
96–118, 2007.

[17] B. Benatallah, C. F., and F. Toumani, “Analysis and Management of
Web Service Protocols,” in Conceptual Modeling–ER 2004, 2004, pp.
524–541, Atzeni, P. and Chu, W. and Lu, H. and Zhou, S. and Ling,
T.W., Ed., ISBN: 978-35-40-23-72-35, ISSN: 0-3-0-2-9-7-4-3.

[18] R. Hamadi and B. Benatallah, “A Petri net-based model for web
service composition,” in Proceedings of the 14th Australasian database
conference-Volume 17. Australian Computer Society, Inc., 2003, pp.
191–200, ISBN: 090-99-25-95-X.

[19] W. Tan, Y. Fan, and M. Zhou, “A petri Net-Based Method for
Compatibility Analysis and Composition of Web Services in Business
Process Execution Language,” Automation Science and Engineering,
IEEE Transactions on, vol. 6, no. 1, pp. 94–106, 2009, ISSN: 1-5-4-
5-5-9-5-5.

[20] N. Guermouche and C. Godart, “Characterizing Compatibility of Timed
Choreography,” International Journal of Web Services Research, vol. 8,
no. 2, pp. 1–28, 2011.

[21] A. Martnes, S. Moser, A. Gerhardt, and K. Funk., “Analyzing Compati-
bility of Bpel Processes,” in Proceedings of the International Conference
on Internet and Web Applications and Services/Advanced International
Conference, 2006. IEEE, 2006, pp. 147–147, ISBN: 076-95-25-22-9.

[22] A. Achilleos, K. Yang, N. Georgalas, and M. Azmoodech, “Pervasive
Service Creation Using a Model Driven Petri Net Based Approach,”
in Wireless Communications and Mobile Computing Conference, 2008.
IWCMC’08. International. IEEE, 2008, pp. 309–314.

[23] G. Grossmann, M. Schrefl, and M. Stumptner, “Design for service
compatibility,” Software & Systems Modeling, vol. 12, no. 3, pp. 489–
515, 2013, ISSN: 1-6-1-9-1-3-6-6.

[24] C. Dumez, M. Bakhouya, J. Gaber, M. Wack, and P. Lorenz, “Model-
Driven Approach Supporting Formal Verification for Web Service Com-
position Protocols,” Journal of Network and Computer Applications,
vol. 36, no. 4, pp. 1102–1115, 2013.

[25] H. Garavel and J. Sifakis, “Compilation and verification of lotos speci-
fications,” in PSTV, vol. 10, 1990, pp. 359–376.

[26] J. C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu, “CADP a Protocol Validation and Verification Toolbox,”
in Computer Aided Verification. Springer, 1996, pp. 437–440.

39Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            49 / 82



Always stay agile! 

Towards Service-oriented Integration of Business Process and Business Rules 

Management 
 

Christopher Gäth, Alexander Hödicke, Sophia Marth, Jörn Siedentopf, Andreas Hausotter, and Arne Koschel 

Hochschule Hannover – University of Applied Science and Arts  

Competence Center Information Technology and Management 

Hanover, Germany 

christopher.gaeth@stud.fh-hannover.de, alexander.hoedicke@stud.fh-hannover.de, sophia.marth@stud.fh-hannover.de, 

joern.siedentopf@stud.fh-hannover.de, andreas.hausotter@hs-hannover.de, and arne.koschel@hs-hannover.de 
 

Abstract— To keep their competitive edge, enterprises need to 

change their operational processes in a flexible and agile 

manner. A Service-oriented Architecture (SOA) may help to 

meet these needs. One key feature of a SOA is the 

externalisation of business process logic. However, process logic 

is often complex, hard to understand and difficult to adapt. This 

issue is due to a mingling of process and decision logic. In order 

to ensure flexibility and agility, decision logic should be moved 

to a separate service. There are several approaches to realise 

such a “rule” service conceptually. In this paper, a decision 

framework to select the appropriate rules execution approach is 

developed, based on a set of “factors”. The decision framework 

is applied to an application scenario from the insurance 

domain. 

Keywords - Business Process Management (BPM); Business 

Rules Management (BRM); Business Rules Management System 

(BRMS); Service-oriented Architecture (SOA); Workflow 

Management System (WfMS) 

I. INTRODUCTION 

Workflow Management Systems (WfMS) support com-
panies in the management and execution of business pro-
cesses [1]. Nowadays, the latest challenges for insurance 
companies such as the dynamic business environment and 
compliance with legal requirements highlight the need for 
business agility [2][3][4]. Business agility requires the indi-
vidual, quick, and flexible composition and adaption of busi-
ness processes [5][6]. This can be done in the context of 
Business Process Management (BPM). As a result of the 
composition and adaption, the number of decisions may rise 
within the processes. Hence, the complexity of the business 
processes can lead to a lack of business agility [4][5]. 

Business rules provide an opportunity to reduce the com-
plexity of the processes, whilst the complex decision logic is 
encapsulated. The necessary changes with respect to agility 
often relate to the complex decision logic and not to the pro-
cess or business logic. Thus, the separation of decision logic 
and process logic on the modelling and implementation level 
is a useful approach to reduce complexity [4]. 

Comprehensive service-oriented approaches have poten-
tial to create business agility [7]. Thus, a Service-oriented 
Architecture (SOA) can help to address challenges like the 
dynamic business environment. The service-oriented integra-
tion of BPM and Business Rules Management (BRM) pro-

vides potential to change business processes in an agile man-
ner [4]. The results of interviews with experts of the insur-
ance service sector emphasised the issue to choose an ade-
quate approach to automate the execution of business rules 
with respect to a missing decision support. Considering the 
dynamic business environment in the insurance services sec-
tor, the topics of the presented work are of potential value for 
several insurance companies in Germany [2][3]. 

The aim and the major contribution of this paper is a de-
cision framework for choosing an adequate business rules 
execution approach. The result of the application is based on 
a characteristic application scenario for companies operating 
in the insurance services industry.  

The subsequent research activity is to develop a proto-
typically service-oriented integration of BPM and BRM 
based on the results of the applied decision framework.  

Thus, the paper illustrates the work in progress related to 
the current research activities of the Competence Center In-
formation Technology and Management (CC_ITM). 

The remainder of the paper is structured as follows. In 
the first part (section II), the prior and related work are pre-
sented. The main sections (III to V) refer to the description 
of the service-oriented approach based on a workflow en-
gine, followed by an introduction of the application scenario 
as well as a description and an application of the developed 
decision framework. Finally, the paper ends with a conclu-
sion and looks upon some future research activities (section 
VI). 

II. PRIOR AND RELATED WORK 

Potential application scenarios regarding the combination 
of BPM and BRM were analysed in accordance with the 
requirements of the CC_ITM collaboration partners [8]. As a 
result, the application scenario “handle a goodwill request” 
was selected. The scenario, introduced in this paper in sec-
tion IV, is inspired by the insurance application architecture 
of the General Association of the German Insurance Indus-
try. The insurance application architecture describes inter 
alia reference process models for the insurance services in 
Germany [9]. The application scenario was already imple-
mented in prior research projects. The scenario was used for 
the evaluation of the prototypic implementation regarding a 

40Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            50 / 82



service-oriented approach based on a workflow engine 
[10][11][12].  

In addition, the elements, which are to be implemented 
with a rule-based approach, were determined within the sce-
nario. In the process, the business rule “set goodwill adjust-
ment” was identified. [13] suggests an extraction process for 
business rules identification from business process models. 
This process is useful, because business rules are often not 
explicitly included in the process models. A decision guide-
line for distinguishing between business process and busi-
ness rule is presented in [14]. Requirements concerning 
business rules technologies are defined in [2][3]. [15] illus-
trates variables for determining suitable solutions for busi-
ness rule implementation. As a result of the literature review, 
the decision guideline, the requirements and the variables 
provide a contribution to the decision framework. Since no 
previous research allows a simple choosing of an adequate 
business rules execution approach this decision framework is 
the first to extend the current state of research through the 
linking of factors, indicators and business rules execution 
approaches. The determination of the specific business rules 
execution approach depends on the elements, which are to be 
implemented with a rule-based approach. 

III. SOA APPROACH BASED ON A WORKFLOW ENGINE 

Figure 1 illustrates the simplified concept of an already 
implemented SOA. The architecture comprises several com-
ponents, which were developed in the context of Business 
Process Management, Business Activity Monitoring, and 
Service-oriented Architecture within the prior research pro-
jects and implements the application scenario “handle a 
goodwill request”. Based on the results of this research activ-
ity, the architecture is extended towards the service-oriented 
integration of BPM and BRM by a corresponding business 
rules execution approach. 

The workflow engine is used for the coordination and ex-
ecution of workflow models. Thus, the engine is responsible 
for ensuring that every activity within the workflow defini-
tion is executed in the defined order and that the data flow 
between the workflow client and the invoked service is rout-
ed correctly. 

 

Business Activity 

Monitoring System

Service

Workflow Client

Task Manager

Workflow Engine

 
Figure 1. Overview of the architecture 

The workflow client presents a user interface to call and 
activate the workflow. Users take their individual tasks from 
a “task list”. Some activities require input from the user. 

Therefore, the engine will request the input from the client as 
a result of a client call. 

The task manager is used to decouple the workflow en-
gine and the workflow client. Thus, the task manager is a 
software component, which abstracts from a specific work-
flow engine. The decoupling is necessary because the techni-
cally tight coupling to a specific workflow engine limits the 
opportunity of flexibility in the event of an enterprise merger 
or acquisition [11]. 

The invoked service implements the business logic nec-
essary to execute the activities specified within the workflow 
model. In accordance with the defined process model, the 
workflow engine invokes the service to execute the activity. 
The invoked service performs the activity and returns the 
result to the workflow engine. 

The Business Activity Monitoring System (BAMS) rep-
resents the software component, which is used for the real-
time monitoring of critical performance indicators to im-
prove the speed and effectiveness of business functions. The 
required data are collected within a data warehouse by the 
performance of extract, transform, and load processes. Based 
on these data, the BAMS generates complex events to build 
critical performance indicators. The complex event pro-
cessing is realised by triggers and stored procedures in active 
databases. The events are analysed and reported by the 
BAMS [10][11]. 

IV. APPLICATION SCENARIO 

Figure 2 illustrates the application scenario “handle a 
goodwill request”. The scenario constitutes a part of the sim-
plified insurance process “claim processing” and is required 
to apply the decision framework to choose an adequate busi-
ness rules execution approach. In the future, the scenario will 
be used to evaluate the prototypic implementation.  

With the handling of the process “handle a goodwill re-
quest”, insurance companies check whether and in what 
amount the customer claims are to be satisfied without obli-
gation of the insurance companies. The task “check good-
will” checks whether a claim without obligation of the insur-
ance company should be regulated in order to not compro-
mise the business relationship. In particular the privity of 
contract and the relation with the customer are checked. The 
amount of goodwill will be determined within the business 
rule “set goodwill adjustment”. The last task checks whether 
a contractual alteration is appropriate for the policyholder. 
As a result, it may also be determined that no contractual 
alteration is necessary or that a reasoned recommendation to 
contractual design shall be given [9].  

 

C
la

im
 p

ro
ce

ss
in

g

Handle a goodwill request

Check goodwill

Set goodwill

adjustment

Check and cause

contractual alteration

Refuse goodwill

Claim regulation

 
Figure 2. Application scenario “handle a goodwill request” 

41Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            51 / 82



V. DECISION FRAMEWORK 

To define the corresponding execution approach for the 
identified business rule “set goodwill adjustment” a decision 
framework was determined. A decision framework was cre-
ated based on factors gained by the performed literature re-
view. Table I describes the used factors. 

TABLE I.  FACTORS OF THE DECISION FRAMEWORK 

Factor Definition 

Frequency of rule 
change 

The volatility can be seen as a measure of flexibil-
ity in terms of changing business rules. To deter-
mine the expected volatility of a business rule, 
changes in the past can be considered. 

Understanding of 
implications 

Understanding of implications regarding a business 
rule modification describes whether the potential 
impact can be safely predicted or not. The risk 
level of changes is reflected by this factor. 

Distribution  
time 

Distribution time defines the time the business rule 
needs to give effect. Thus, the time between the 
release and the business rule provision is defined. 

Transparency 
The factor “transparency” specifies the need for 
justification of decisions regarding the execution of 
a business rule. 

Transaction  
volume 

The factor “transaction volume” defines the re-
quired volume of facts for rule execution. 

Versioning 

Most business rules are revised after some time. 
Here it is important to determine whether the old 
version of the rule must continue to be present, or 
whether the business rule is simply overwritten and 
only the new rule has to be available. 

 
There are several approaches to provide the needed busi-

ness rules execution approach. [2] identifies an inference 
machine, a database management system, a business applica-
tion, and configurations as possible approaches to execute 
business rules. The decision framework can help in choosing 
one approach by considering several application scenarios 
and the factors. Due to economic restrictions in this exempla-
ry implementation only the described application scenario is 
considered. Every rules execution approach has advantages 
and disadvantages in regard to the adopted factors. 

Inference machines enable the efficient and flexible exe-
cution of business rules. The encapsulation of complex deci-
sion logic allows an easier and faster implementation of nec-
essary adjustments. An inference machine enables transpar-
ency if the engine includes an explanation component. For 
business rules execution the inference machine requires all 
relevant facts. This can lead to increased transaction vol-
umes. Most of the inference machines allow rule versioning. 

Database management systems are not developed for fre-
quent changes in their structure but triggers, constraints, and 
stored procedures allow depicting rules. There has to be a 
high understanding of the implications when changes to da-
tabases are made. This leads to a long distribution time. The 
firing of triggers is often not transparent and changes are 
often not trackable. Databases are built for data processing 
and so allow high transaction volumes. 

Business applications are built for long-lasting business 
cases and not for frequent changes. A high understanding of 
the implications is needed for changing a business applica-
tion. So, the distribution time for changes made in business 
applications is long. Business applications need to be built to 

allow transparency in their decision logic if necessary. 
Providing several executable versions of business applica-
tions is difficult to handle. 

Configurations often allow fast modifications but are not 
designed for frequent changes. As configurations often only 
allow adjustments in a defined range the understanding of 
implications is medium. If the configuration is not accessible 
by the user it may take hours to provide a change. Transpar-
ency in the configuration decision logic is only possible 
through implementation in the business application that ac-
cesses the configuration. Versioning is hardly possible for 
configurations. Table II presents the mapping of indicators to 
the business rules execution approach. 

TABLE II.  DECISION FRAMEWORK 

Factor 
Indicator  

Business rules execution approach 

Frequency of 
rule change  

High (hourly to 
weekly) 

Low (monthly to 
annually) 

Never 

Inference 
machine 

Configuration / 
Database 

Business Ap-
plication 

Understanding 
of  
implications 

Low Medium High 

Inference  
machine 

Configuration 
Database / 
Business Ap-
plication 

Distribution 
time 

Minutes Hours Days 

Inference  
machine 

Configuration 
Database / 
Business Ap-
plication 

Transparency  

Yes n/a No 

Inference  
machine 

n/a 

Database / 
Configuration / 
Business Ap-
plication 

Transaction 
volume 

Low Medium High 

Inference  
machine 

Business Applica-
tion / Configura-
tion 

Database 

Versioning 

Yes n/a No 

Inference  
machine 

n/a 

Configuration /  
Database /  
Business Ap-
plication 

 
The requirements for choosing an adequate business rules 

execution approach results from the presented application 
scenario “handle a goodwill request”. In this context, a low 
frequency of rule change is assumed on average. The under-
standing of implications is high. A distribution time of 
minutes is expected and there should be transparency. Only a 
low transaction volume is assumed but there has to be ver-
sioning of business rules. The decision framework provides 
the opportunity to weight the factors. Depending on the re-
spective application scenario the importance of the factors 
has to be determined. Table III presents the weighting of the 
factors concerning the application scenario “handle a good-
will request”.  

42Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            52 / 82



TABLE III.  IMPORTANCE OF THE FACTORS 

Factor Importance 

Frequency of rule change 20% 

Understanding of implications 10% 

Distribution time 40% 

Transparency 10% 

Transaction volume 5% 

Versioning 15% 

 
The importance of the factors is not generally valid and 

depends on the individual application scenario. Table IV 
shows the rating regarding the appropriate business rules 
execution approach. The rating results from the requirements 
and the importance of the factors. For example the rating for 
the inference machine is 70%. Based on the requirements for 
choosing an adequate business rules execution approach 
concerning the factors distribution time, transparency, trans-
action volume, and versioning the inference machine is the 
result. Regarding the rating result of the inference machine 
the importance of the factors distribution time (40%), trans-
parency (10%), transaction volume (5%), and versioning 
(15%) were cumulated.  

TABLE IV.  RATING RESULTS 

Approach Result 

Inference machine  70% 

Database 30% 

Configuration 20% 

Business Application 10% 

 
As explicated above, an inference machine is suggested 

by the decision framework. The application of the decision 
framework can be considered as a decision-making aid. In 
addition to the illustrated factors within the decision frame-
work further factors were identified. To reduce the complexi-
ty for choosing an adequate business rules execution ap-
proach only factors that are relevant to the application sce-
nario were considered. 

VI. CONCLUSION AND FUTURE WORK 

The combination of technologies and concepts such as 
SOA as well as business rules processing / management is a 
promising approach for companies operating in the insurance 
services industry. As the key contribution of this article a 
decision framework for choosing an adequate business rules 
execution approach was developed and applied. By applying 
the decision framework one gets a criteria list, which decides 
when to use a particular concept to implement the business 
rules approach – especially an inference machine, a DBMS-
based approach, a configuration or a hard-coded application. 
Applying the decision framework to the “handle a goodwill 
request” scenario results in an inference-machine-based 
(BRM-based) approach to be most useful. Since the decision 
framework is so far work-in-progress it will be extended in 
future work. The future work has to include the evaluation of 
the usefulness, applicability, and validity of the decision 
framework and the corresponding results. This could be done 

by applying the decision framework in practice and deter-
mining framework extensions in the context of interviews 
with experts. Our subsequent research activity is to develop 
design decisions for the prototypical service-oriented integra-
tion of business process management and business rules 
management regarding the application scenario “handle a 
goodwill request”. 

REFERENCES 

[1] T. Schäl, “Workflow Management Systems for Process 
Organisations,” Berlin: Springer Verlag, 1996. 

[2] M. Schacher and P. Grässle, “Agile Enterprises with Business 
Rules: The Business Rules Approach,” Berlin: Springer 
Verlag, 2006, ISBN: 978-3540256762. 

[3] J. Boyer and H. Mili, “Agile Business Rule Development: 
Process, Architecture, and JRules Examples,” Berlin: 
Springer Verlag, 2011. 

[4] C. Gäth, “Potential of the Business Rules Approach - 
identifying and exploiting the potential in consideration of 
supportive and complementary approaches,” bachelor thesis, 
University of Applied Science and Arts, Hanover, 
unpublished, 2013. 

[5] T. van Eijndhoven, M. E. Iacob, and M. L. Ponisio, 
“Achieving Business Process Flexibility with Business 
Rules,” 12th Int. IEEE Enterprise Distributed Object 
Computing Conference (EDOC), 2008, pp. 95-104. 

[6] M. Döhring, L. Karg, E. Godehardt and B. Zimmermann, 
“The Convergence of Workflows, Business Rules and 
Complex Events,” 12th Int. Conference on Enterprise 
Information Systems (ICEIS), 2010, pp. 338-343.  

[7] G. Starke and S. Tilkov, “SOA Expert Knowledge,” 
Heidelberg: dpunkt.Verlag, 2007, ISBN: 978-3898644372. 

[8] J. Siedentopf, “Concept for a BRM-System and prototypical 
implementation of an application scenario,” bachelor thesis, 
University of Applied Science and Arts, Hanover, 
unpublished, 2013. 

[9] General Association of the German Insurance Industry, “The 
application architecture of the insurance industry”. [Online]. 
Available from: http://www.gdv-
online.de/vaa/vaafe_html/dokument/psl.pdf (2013, Dec. 22). 

[10] T. Bergemann, A. Hausotter, and A. Koschel, “Keeping 
Workflow-Enabled Enterprises Flexible: WfMS Abstraction 
and Advanced Task Management,” 4th Int. Conference on 
Grid and Pervasive Computing Conference (GPC), 2009, pp. 
19-26. 

[11] A. Hausotter, C. Kleiner, A. Koschel, D. Zhang, and H. 
Gehrken, “Always Stay Flexible! WfMS-independent 
Business Process Controlling in SOA,” 15th IEEE Int. 
Enterprise Distributed Object Computing Conference 
Workshops (EDOCW), 2011, pp. 184-193. 

[12] A. Hödicke, “Conception and Prototypical Implementation of 
a Software Architecture for a BPM and BRM System,” master 
thesis, University of Applied Science and Arts, Hanover, 
unpublished, 2013. 

[13] O. Levina, O. Holschke, J. Rake-Revelant, “Extracting 
Business Logic from Business Process Models,” 2nd IEEE 
Int. Conference on Information Management and Engineering 
(ICIME), 2010, pp. 289-293. 

[14] M. Zur Muehlen, M. Indulska, and K. Kittel, “Towards 
Integrated Modeling of Business Processes and Business 
Rules,” 19th Australasian Conference on Information Systems 
(ACIS), 2008, pp. 690-697. 

[15] M. L. Nelson, R. L. Rariden, and R. Sen, “A Lifecycle 
Approach towards Business Rules Management,” 41st Hawaii 
Int. Conference on System Sciences (HICCS), 2008, pp. 113-
123.

43Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            53 / 82



Genetic Algorithm to the Power of SMT:
a Hybrid Approach to Web Service Composition Problem

Artur Niewiadomski
Institute of Computer Science

Siedlce University
Siedlce, Poland

e-mail: artur.niewiadomski@uph.edu.pl

Wojciech Penczek
Institute of Computer Science
Polish Academy of Science

Warsaw, Poland
e-mail: penczek@ipipan.waw.pl

Jaroslaw Skaruz
Institute of Computer Science

Siedlce University
Siedlce, Poland

e-mail: jaroslaw.skaruz@uph.edu.pl

Abstract—The paper deals with the concrete planning problem – a
stage of the Web Service Composition in the PlanICS framework,
which consists in choosing the best service offers in order to
satisfy the user query and to maximize the quality function. We
introduce a novel planning technique based on a combination of
a Genetic Algorithm with a Satisfiability Modulo Theories Solver,
which allows to obtain better results than each of the methods
separately. The paper presents some preliminary, although very
encouraging, experimental results.

Keywords-Web Service Composition; Concrete Planning; Ge-
netic Algorithm; Satisfiability Modulo Theories; Hybrid Algorithm

I. INTRODUCTION

One of the fundamental ideas of Service-Oriented Architec-
ture (SOA) [1] is to compose simple functionalities, accessible
via well-defined interfaces, in order to realize more sophisti-
cated objectives. The problem of finding such a composition
is hard and known as the Web Service Composition (WSC)
problem [1][2][3].

PlanICS [4] is a framework aimed at WSC, easily adapting
existing real-world services. The main assumption in PlanICS

is that all the web services in the domain of interest as well as
the objects that are processed by the services, can be strictly
classified in a hierarchy of classes, organised in an ontology.
Another key idea is to divide the planning into several stages.
The first phase deals with classes of services, where each class
represents a set of real-world services, while the other phaces
work in the space of concrete services. The first stage produces
an abstract plan composed of service classes [5]. Next, offers
are retrieved by the Offer Collector (OC), a module of PlanICS,
and used in the concrete planning (CP). As a result of CP,
a concrete plan is obtained, which is a sequence of offers
satisfying predefined optimization criteria. Such an approach
enables to reduce dramatically the number of web services to
be considered, and inquired for offers.

This paper deals with the Concrete Planning Problem
(CPP), shown to be NP-hard [6]. Our previous works employ
several techniques to solve it: a Genetic Algorithm (GA) [7],
numeric optimization methods [8] as well as Satisfiability
Modulo Theories (SMT) Solvers [6]. The results of the exten-
sive experiments show that the proposed methods are comple-
mentary, but every single one suffers from some disadvantages.

The main disadvantage of an SMT-based solution is often a
long computation time, which is not acceptable in the case of
a real-world interactive planning tool. On the other hand, a
GA-based approach is relatively fast, but it yields solutions,
which are far from optimum and found with a low probability.

Thus, our aim is to exploit the advantages of both methods
by combining them into one hybrid algorithm, which is the
main contribution of this paper. The main idea of our new
hybrid approach involves a modification of the standard GA,
such that after every couple of iterations of GA, several top-
ranked individuals are processed by the SMT-based algorithm
in order to improve them.

Over the last few years, CPP has been extensively studied
in the literature. G. Canfora et al. [9] use a simple GA to obtain
a good quality concrete plan. Y. Wu et al. [10] transforms
CPP to a multi-criteria optimization problem and exploits GA
to find a concrete plan. However, the authors present the
experiments on a relatively small search space that could not
provide valuable conclusions.

The rest of the paper is structured as follows. In Section
II the PlanICS framework is introduced and CPP is defined.
Section III presents the main ideas of our hybrid approach
as well as some technical solutions. Next, the preliminary
experimental results are presented and discussed. The paper
ends with some conclusions.

II. CONCRETE PLANNING PROBLEM

This section introduces the main ideas behind the PlanICS

framework and gives all the necessary definitions for defining
the concrete planning problem.

An ontology contains a system of classes describing the
types of the services as well as the types of the objects they
process. A class consists of a unique name and a set of the
attributes. By an object we mean an instance of a class. By a
state of an object we mean a valuation of its attributes. A set
of objects in a certain state is called a world. A key notion
of PlanICS is that of a service. We assume that each service
processes a set of objects, possibly changing values of their
attributes, and produces a set of new (additional) objects. We
say that a service transforms a world. The types of services
available for planning are defined as elements of the branch of

44Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            54 / 82



abstract
planner

ontology
provider

concrete
planner

service registry

web services interfaces

offers

service selection

abstract
plans

source
of semantics

offer
collector

offer
plans

Figure 1. A simplified diagram of the PlanICS system architecture.

classes rooted at Service concept. Each service type stands
for a description of a set of real-world services of similar
functionality.

The main goal of the system is to find a composition of
services that satisfies a user query. The query interpretation
results in two sets of worlds: the initial and the expected
ones. Moreover, the query may include additional constraints,
especially quality constraints, the sum of which is used to
choose the best from all the potential solutions. Thus, the task
of the system is to find such a set of services, which transform
some initial world into a world matching some expected one in
such a way that the value of the quality function is maximized.
Figure 1 shows the general PlanICS architecture. The bold
arrows correspond to computation of a plan, the thin arrows
model the planner infrastructure.

In the first stage of the composition, an abstract planner
matches services at the level of input/output types and the
abstract values. At this planning stage, it is enough to know if
an attribute does have a value, or it does not, so we abstract
from the concrete values of the object attributes. The result
of this stage is a Context Abstract Plan (CAP), consisting of
a multiset of service types (defined by a representative se-
quence), contexts (mappings between services and the objects
being processed), and a set of final worlds containing objects
that fulfill the user query. See [5] for more details.

In the second planning stage, a CAP is used by OC,
i.e., a tool, which in cooperation with the service registry,
queries real-world services. The service registry keeps an
evidence of real-world web services, registered accordingly to
the service type system. During the registration, the service
provider defines a mapping between the input/output data of
the real-world service and the object attributes processed by the
declared service type. OC communicates with the real-world
services of types present in a CAP, sending the constraints on
the data, which can potentially be sent to the service in an
inquiry, and on the data expected to be received in an offer
in order to keep on building a potential plan. Usually, each
service type represents a set of real-world services. Moreover,
querying a single service can result in a number of offers.
Thus, we define offer sets as the main result of the second
planning stage.

Definition 1 (Offer, Offer set): Assume that the n-th in-
stance of a service type from a CAP processes some number
of objects having in total m attributes. A single offer collected
by OC is a vector P = [v1, v2, . . . , vm], where vj is a value
of a single object attribute processed by n-th service of the
CAP. An offer set On is a k × m matrix, where each row

corresponds to a single offer and k is the number of offers in
the set. Thus, the element oni,j is the j-th value of the i-th offer
collected from the n-th service type instance from the CAP.

The responsibility of OC is to collect a number of offers,
where every offer represents one possible execution of a single
service. However, other important tasks of OC are: (1) building
a set of constraints resulting from the user query and from
semantic descriptions of service types, and (2) a conversion of
the quality constraints expressed using objects from the user
query to an objective function built over variables from offer
sets. Thus, we can formulate CPP as a constrained optimization
problem.

Definition 2 (CPP): Let n be the length of CAP and let
O = (O1, . . . , On) be the vector of offer sets collected by OC
such that for every i = 1, . . . , n

Oi =

 oi1,1 . . . oi1,mi

...
. . .

...
oiki,1

. . . oiki,mi

 , and the j-th row of Oi is

denoted by P i
j . Let P denote the set of all possible sequences

(P 1
j1
, . . . , Pn

jn
), such that ji ∈ {1, . . . , ki} and i ∈ {1, . . . , n}.

The Concrete Planning Problem is defined as:

max{Q(S) | S ∈ P} subject to C(S), (1)

where Q : P 7→ R is an objective function defined as the sum
of all quality constraints and C(S) = {Cj(S) | j = 1, . . . , c
for c ∈ N}, where S ∈ P, is a set of constraints to be satisfied.

Finding a solution of CPP consists in selecting one offer
from each offer set such that all constraints are satisfied and
the value of the objective function is maximized. This is the
goal of the third planning stage and the task of a concrete
planner.

Example. Consider a simple ontology describing a frag-
ment of some financial market consisting of service types
inheriting from the class Investment, which represent various
types of financial instruments. Moreover, the ontology contains
three object types: Money having the attribute amount,
Transaction having the two attributes amount and profit,
and Charge having the attribute fee. Suppose that each
investment service takes m - an instance of Money as input,
produces t and c - instances of Transaction and Charge, and
updates the amount of money remaining after the operation,
i.e., the attribute m.amount. Assume that the user would like
to invest up to $100 in three financial instruments, but he wants
to locate more than $50 in two investments. Moreover, the user
wants to maximize the sum of profits and wants to use only
services of handling fees less than $3. The latter two conditions
can be expressed as an appropriate quality function and an
aggregate condition. Consider an exemplary CAP consisting
of three instances of the Investment service type. A single
offer collected by OC is a vector [v1, v2, v3, v4, v5], where v1
corresponds to m.amount, v2 to t.amount, v3 to t.profit,
and v4 to c.fee. Since the attribute m.amount is updated
during the transformation, the offers should contain values
from the world before and after the transformation. Thus
v5 stands for the value of m.amount after modification.
Assuming that instances of Investment return k1, k2, and
k3 offers in response to the subsequent inquiries, we obtain
three offer sets: O1, O2, and O3, where Oi is a ki × 5

45Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            55 / 82



matrix of offer values. The conditions from the query are
translated to the following constraints: C1 := (o1i1,1 ≤ 100)
and C2 := (o1i1,2 + o2i2,2 > 50), where i1, i2, and i3 are
variables ranging over 1 . . . ki. Moreover, the amount of money
left after the operation is an input for the next investment.
Thus, we have: C3 := (o1i1,5 = o2i2,1) and C4 := (o2i2,5 =
o3i3,1). The aggregate condition is translated to the following
constraint: C5 :=

(
max({o1i1,4, o

2
i2,4

, o3i3,4}) < 3
)
, while

the quality expression is translated to the quality constraint
Q1 :=

∑3
j=1 o

j
ij ,3

.

III. A HYBRID SOLUTION AND PRELIMINARY RESULTS

The analysis of several hard CPP instances is our main
motivation to combine the power of SMT with the potential
of GA. The main disadvantage of a “pure” SMT-based solution
is often a long computation time, which is not acceptable in
the case of a real-world interactive planning tool. On the other
hand, a GA-based approach is relatively fast, but it yields
solutions, which are far from optimum and found with low
probability. Thus, our aim is to exploit the advantages of both
the methods by combining them into one hybrid algorithm.

A. Overview

The main idea is as follows. The base of our hybrid
approach is the standard GA aimed at solving CPP. GA is a non
deterministic algorithm maintaining a population of potential
solutions during an evolutionary process. A potential solution
is encoded in a form of a GA individual, which, in case of CPP,
is a sequence of natural values. In each iteration of GA, a set
of individuals is selected for applications of genetic operations,
such as the standard one-point crossover and mutation, which
leads to obtaining a new population passed to the next iteration
of GA. The selection of an individual, and thus the promotion
of its offspring to the next generation depends on the value of
the fitness function. The fitness value of an individual is the
sum of the optimization objective and the ratio of the number
of the satisfied constraints to the number of all the constraints
(see Def. 2), multiplied by some constant β:

fitness(I) = q(SI) + β ·
|sat(C

(
SI)
)
|

c
, (2)

where I stands for an individual, SI is a sequence of the
offer values corresponding to I , sat

(
C(SI)

)
is a set of the

constraints satisfied by a candidate solution represented by I ,
and c is the number of all constraints. The role of β is to
reduce both the components of the sum to the same order of
magnitude and to control the impact of the components on the
final result. The value of β depends on the estimation of the
minimal and the maximal quality function value.

The main idea of our new hybrid approach involves the
following modification of the standard GA. After every couple
of iterations of GA, several top-ranked individuals are pro-
cessed by the SMT-based algorithm. Given an individual I ,
the procedure searches for a similar, but improved individual
I ′, which represents a solution satisfying all the constraints and
having a greater value of the objective function at the same
time. The similarity between I and I ′ consists in sharing a
number of genes. We refer to the problem of finding such an
individual as to the Search for an Improved Individual (SFII).

GA SMT GA SMT GA...

Initial
population

Top ranked
individuals

Improved
individuals

Result

Figure 2. Hybrid algorithm overview.

Since there are many possible ways to exploit this idea, we
start from the one which randomly selects the genes to be
changed. The overview of our hybrid algorithm is depicted in
Figure 2.

The SMT procedure combined with GA is based on the
encoding exploited in our “pure” SMT-based concrete planner
[6][8]. The idea is to encode SFII as an SMT formula which
is satisfiable if such an individual exists. First, we initialize an
SMT-solver allocating a set V of all necessary variables:

• oidi, where i = 1 . . . n and n is the length of the
abstract plan. These variables are needed to store the
identifiers of offers constituting a solution. A single
oidi variable takes a value between 1 and ki.

• oi
j , where i = 1 . . . n, j = 1 . . .mi, and mi is the

number of offer values in the i-th offer set. We use
them to encode the values of S, i.e., the values from
the offers chosen as a solution. From each offer set
Oi we extract the subset Ri of offer values which are
present in the constraint set and in the quality function,
and we allocate only the variables relevant for the plan.

Next, using the variables from V , we encode the offer
values, the objective function, and the constraints, as the
formulas shared by all calls of our SMT-procedure. The offer
values from the offer sets O = (O1, . . . , On) are encoded as
the formula

ofr(O,V) =
n∧

i=1

ki∨
d=1

(
oidi = d ∧

∧
oid,j∈Ri

oi
j = oid,j

)
. (3)

The formulae ctr
(
C(S),V

)
and qual

(
Q(S),V

)
, denoted

as ctr and q for short, encode the constraints and the objective
function, respectively. Details are provided in [6].

Let I = (g1, . . . , gn) be an individual, M = {i1, . . . , ik}
the set of indices of genes allowed to be changed, and q(SI)
the value of the objective function where n, k ∈ N.

Hence, the SFII problem is reduced to the problem of
satisfiability of the following formula:∧
i∈{1,...,n}\M

(oidi = gi)∧ ofr
(
O,V

)
∧ ctr∧ (q > q(SI)) (4)

That is, the formula (4) is satisfiable only if there exists
an individual I ′ = (g′1, . . . , g

′
n) satisfying all the constraints,

where ∀i/∈M gi = g′i and q(SI′) > q(SI), i.e., sharing with
I all genes of indices outside M and having the larger value
of objective function than I . If the formula is satisfiable, then

46Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            56 / 82



the values of the changed genes are decoded from the model
returned by the SMT-solver, and the improved individual I ′
replaces I in the current population.

B. Experimental Results

As benchmarks for our experiments we choose four in-
stances of CPP, which turned out to be difficult to solve
using our “pure” SMT- and GA-based planner [6][8]. All
the instances represent plans of length 15. Each offer set of
Instances 1 and 3 contains 256 offers, hence, the number of
the potential solutions equals 25615 = 2120. In the case of
Instances 2 and 4 each offer set consists of 512 offers, thus
the size of the search space is 51215 = 2135. The objective
functions are as follows:

Q1,2 =

n∑
i=1

oiji,1, Q3,4 =

n∑
i=1

(oiji,1 + oiji,2), (5)

while the set of the constraints is the same for all instances,
and is defined as:

C = {(oiji,2 < oi+1
ji+1,2

)}, for i = 1, . . . , n− 1. (6)

Besides the ordinary parameters of GA (which have been
set to the same values as in pure GA), that is, the population
size (1000), the number of iterations (100), the crossover
and mutation probabilities (95% and 0.5% respectively), we
introduce also parameters influencing the behaviour of the
SMT component. Namely, when to start the SMT procedure
for the first time (in the 20th iteration), how often the SMT
procedure should be run (the parameter int stands for the
number of the iterations between the subsequent SMT calls),
the number of individuals passed to the SMT-solver during one
iteration (parameter inds), and how many genes are allowed to
be changed by SMT (the parameter ch.genes). Every instance
has been tested 12 times, using a different combination of
the parameters combination, and every experiment has been
repeated 30 times on a standard PC with 2.8GHz CPU and Z3
[11] version 4.3 as SMT-solving engine.

The preliminary results of applying our new hybrid algo-
rithm to Instance 1 and 2 are presented in Table I, where
the columns from left to right display the parameter values
and for each Instance, the total runtime of the algorithm
(t[s]), the average quality of solutions found (avgQ), and the
probability of finding a solution (P). For reference, we report
in the two bottom rows the results of the pure SMT- and
GA-based planners. One can easily see that quality values
obtained in every experiment are higher than these returned
by GA. However, in several cases the runtime or probability
is not acceptable. We marked in bold the results, where the
probability of finding a solution is at least 40% and the runtime
is lower than that of the pure SMT-based planner.

For Instances 3 and 4, which objective function is more
difficult, the results are given in Table II. Still, in some cases,
the results are better than these returned by the pure planning
methods. Note that the pure SMT-based algorithm was not able
to find the optimal solution within given time limit (500 sec.).

Although the results are encouraging, the hybrid solution is
clearly a trade-off between the three measures: the quality, the
probability, and the computation time of the pure algorithms. In

TABLE I. EXPERIMENTAL RESULTS FOR INSTANCES 1 AND 2.

Parameters Instance 1 Instance 2
ch.genes inds int t[s] avgQ P t[s] avgQ P

8 1 10 9.29 1305.0 3.33 14.94 1382.0 6.67
20 8.25 1331.5 6.67 13.23 1371.5 13.3

10 10 41.04 1386.7 53.3 59.52 1437.6 36.7
20 22.44 1389.0 26.7 41.73 1414.0 33.3

20 10 76.29 1405.8 70.0 118.1 1441.0 73.3
20 34.28 1356.5 43.3 61.94 1420.3 40.0

12 1 10 39.61 1363.1 66.7 56.59 1405.3 93.3
20 14.48 1326.9 46.7 20.38 1380.0 40.0

10 10 203.6 1417.6 100 273.2 1455.8 100
20 114.7 1362.2 100 155.9 1431.3 100

20 10 346.5 1424.2 100 443.1 1460.5 100
20 196.4 1416.5 100 261.7 1455.3 100

Pure SMT 266 1443 100 388 1467 100
Pure GA 4.96 1218.5 8 5.61 1319.9 10

TABLE II. EXPERIMENTAL RESULTS FOR INSTANCES 3 AND 4.

Parameters Instance 3 Instance 4
ch.genes inds int t[s] avgQ P t[s] avgQ P

8 1 10 13.05 2176.5 6.67 22.08 2229.5 6.67
20 12.36 2054.3 10.0 22.02 2193.6 16.7

10 10 121.7 2311.5 46.7 248.3 2359.1 43.3
20 54.18 2279.4 26.7 151.9 2353.5 43.3

20 10 324.9 2369.4 76.7 566.8 2390.7 60.0
20 175.7 2304.2 50.0 290.8 2334.1 53.3

12 1 10 208.1 2153.4 46.7 239.7 2216.3 56.7
20 54.05 2274.1 36.7 64.08 2167.0 26.7

10 10 1727 2377.9 100 2205 2485.3 100
20 1066 2327.7 96.7 1325 2414.3 96.7

20 10 2814 2447.1 100 4456 2568.2 100
20 2027 2387.3 100 2477 2469.8 96.7

Pure SMT 500 2266* 100 500 2409* 100
Pure GA 5.95 2085.4 10 6.64 2001.9 7

order to compare the results obtained taking all the measures
into account at the same time, we define four simple score
functions: scorei(P, t, avgQ) = P

t · (avgQ − consti), where
P , t, and avgQ stand for the probability, the computation time,
and the average quality, respectively, and consti is a parameter,
which value is selected in such a way that for each Instance
i from I to IV, the score of the pure GA- and SMT-based
algorithm is the same. These scores are the benchmarks for
the comparison given in Figure 3. The values on the X-axes
correspond to the rows of Table I and II, while the Y-axes
indicate the values of the score functions. The black bars stand
for the best hybrid results in comparison with the pure SMT-
and GA-based algorithms. Notice that the hybrid algorithm
can improve the solution score of each pure algorithm from 2
times (Instance 4) to nearly 6 times (Instance 1).

IV. CONCLUSION AND FUTURE WORK

The prototype of the hybrid concrete planner has been
implemented and some preliminary experiments have been
performed. The very first results show that even using a simple,
or a naive strategy of combining the SMT- and GA-based
approach, one can obtain surprisingly good results. We believe
that the proposed method has a big potential. We plan to further
improve the efficiency of our hybrid approach in terms of: a
better quality of solutions, lower computation times, as well
as higher probabilities of finding solutions. Another important
task to be addressed in a future work is to investigate how to
choose the parameter values, in order to get a trade-off between
quality, probability, and the computation time desired by the
user. Moreover, using the experience gained from the concrete

47Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            57 / 82



0 

100 

200 

300 

400 

500 

600 

1 2 3 4 5 6 7 8 9 10 11 12 SMT GA 

Instance 1 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

1 2 3 4 5 6 7 8 9 10 11 12 SMT GA 

Instance 2 

-20 

0 

20 

40 

60 

80 

100 

120 

140 

160 

1 2 3 4 5 6 7 8 9 10 11 12 SMT GA 

Instance 3 

0 

50 

100 

150 

200 

250 

1 2 3 4 5 6 7 8 9 10 11 12 SMT GA 

Instance 4 

Figure 3. The evaluation of the experimental results using the score functions.

planning, we intend also to develop a hybrid solution for the
abstract planning stage.

ACKNOWLEDGMENT

This work has been supported by the National Science
Centre under the grant No. 2011/01/B/ST6/01477.

REFERENCES

[1] M. Bell, Introduction to Service-Oriented Modeling (SOA): Service
Analysis, Design, and Architecture. John Wiley & Sons, 2008.

[2] S. Ambroszkiewicz, “Entish: A language for describing data processing
in open distributed systems,” Fundam. Inform., vol. 60, no. 1-4, 2003,
pp. 41–66.

[3] J. Rao and X. Su, “A survey of automated web service composition
methods,” in Proc. of SWSWPC’04, ser. LNCS, vol. 3387. Springer,
2005, pp. 43–54.

[4] D. Doliwa et al., “PlanICS - a web service compositon toolset,” Fundam.
Inform., vol. 112(1), 2011, pp. 47–71.

[5] A. Niewiadomski and W. Penczek, “Towards SMT-based Abstract
Planning in PlanICS Ontology,” in Proc. of KEOD 2013 International
Conference on Knowledge Engineering and Ontology Development,
September 2013, pp. 123–131.

[6] A. Niewiadomski, W. Penczek, and J. Skaruz, “Smt vs genetic algo-
rithms: Concrete planning in planics framework,” in CS&P, 2013, pp.
309–321.

[7] J. Skaruz, A. Niewiadomski, and W. Penczek, “Automated abstract
planning with use of genetic algorithms,” in GECCO (Companion),
2013, pp. 129–130.

[8] A. Niewiadomski, W. Penczek, J. Skaruz, M. Szreter, and M. Jarocki,
“SMT versus Genetic and OpenOpt Algorithms: Concrete Planning in
the PlanICS Framework,” (submitted to Fundam. Inform.), 2014.

[9] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani, “An approach
for qos-aware service composition based on genetic algorithms,” in
Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation, 2005, pp. 1069–1075.

[10] Y. Wu and X. Wang, “Applying multi-objective genetic algorithms
to qos-aware web service global selection,” Advances in Information
Sciences and Service Sciences, vol. 3(11), 2011, pp. 134–144.

[11] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proc. of TACAS’08, ser. LNCS, vol. 4963. Springer-Verlag, 2008, pp.
337–340.

48Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            58 / 82



Towards a Flexible and Privacy-Preserving Reputation System
for Markets of Composed Services

Sonja Brangewitz
Department of Economics
University of Paderborn

Paderborn, Germany
Email: sonja.brangewitz@wiwi.upb.de

Alexander Jungmann
C-LAB

University of Paderborn
Paderborn, Germany

Email: alexander.jungmann@c-lab.de

Ronald Petrlic
Network Security Group
University of Paderborn

Paderborn, Germany
Email: ronald.petrlic@upb.de

Marie C. Platenius
Heinz Nixdorf Institute
University of Paderborn

Paderborn, Germany
Email: m.platenius@upb.de

Abstract—One future goal of service-oriented computing is to
realize global markets of composed services. On such markets,
service providers offer services that can be flexibly combined
with each other. However, most often, market participants are
not able to individually estimate the quality of traded services in
advance. As a consequence, even potentially profitable transac-
tions between customers and providers might not take place. In
the worst case, this can induce a market failure. To overcome this
problem, we propose the incorporation of reputation information
as an indicator for expected service quality. We address On-
The-Fly Computing as a representative environment of markets
of composed services. In this environment, customers provide
feedback on transactions. We present a conceptual design of a
reputation system which collects and processes user feedback,
and provides it to participants in the market. Our contribution
includes the identification of requirements for such a reputation
system from a technical and an economic perspective. Based on
these requirements, we propose a flexible solution that facilitates
the incorporation of reputation information into markets of
composed services while simultaneously preserving privacy of
customers who provide feedback. The requirements we formulate
in this paper have just been partially met in literature. An
integrated approach, however, has not been addressed yet.

Keywords–Reputation; Service Market; Service Composition;
Privacy Protection; On-The-Fly Computing.

I. INTRODUCTION

A major goal of On-The-Fly (OTF) Computing [1][2][3]
is the automated composition of software services that are
traded on dynamic markets and that can be flexibly combined
with each other. A user formulates a request for an individual
software solution, receives an answer in terms of a composed
service, and finally executes the composed service.

As an illustrative example, let us assume that someone
wants to post-process a holiday video. However, it does not
pay off to use a monolithic software solution because such
software provides a lot of dispensable functionality, and is
therefore too expensive to buy for just this purpose. What this
person needs is an individually customized software composed
of only those services, which together are able to satisfy

his needs. A famous web-based platform for individual post-
processing tasks is Instagram [4], which provides different
image processing services that can be applied to an uploaded
photo or video. However, the variety of available services is
restricted and the selection of appropriate services has still to
be done manually.

Now, let us consider a market of image processing services.
A person, who wants to post-process his video, becomes a
user within this market by formulating a request describing
what he expects from the composed service (e.g., the func-
tionality to create videos with reduced image noise and an
increased brilliance homogeneously distributed throughout the
entire video). Subsequently, a post-processing solution that
satisfies the user’s request is automatically composed based
on image processing services that are supplied by different
market participants. In this scenario, the user only has to pay
for the actually utilized functionality.

However, for market participants it is difficult to estimate
the quality of services before the service is actually used.
For example, an image processing service’s response time can
be predicted to a certain extent, but it is very dependent on
the specific context, e.g., its execution environment and its
current load. Other markets such as eBay or Amazon solve this
problem by using a reputation system. Within such a system,
the experiences other users made in previous transactions are
collected. Thereby, the reputation information provides new
users an indicator for the service quality they can expect. As an
example, let us consider that many users were entirely satisfied
with a specific image processing service and rated it with five
stars, for example. As a consequence, this service gained a high
reputation, which makes it more attractive for future users.
Not only the requesters, but also the whole market benefits
from considering reputation, because the providers of high-
quality products are rewarded with a high reputation, thereby
increasing their chances for future sales. On the other hand,
low-quality or even deceptive service providers will vanish
from the market after some time, which again pays off for
all customers. Existing reputation systems used by eBay or

49Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            59 / 82



Amazon, for example, do not explicitly consider ratings for
composed services. Other reputation systems, such as those
to rate trips or hotels, often ask the user to evaluate different
aspects. However, single services cannot be combined with
each other as flexibly as needed on the OTF market. Thus,
a reputation system for composed services is still an open
challenge.

The contribution of this paper covers the identification of
requirements for a reputation system for markets of composed
services such as OTF Computing. Furthermore, it covers the
conceptual design of our proposed solution in terms of a
flexible reputation system. Technical details and intermediate
results of a prototypical implementation are not part of the
contribution and are consequently beyond the scope of this
paper. We are, however, currently working on an exemplary
realization in order to analyze the influence and demonstrate
the benefit of the incorporation of reputation information into
the OTF Computing process. The contribution of this paper is
not necessarily restricted to OTF Computing alone. Results of
our work can also be adopted to other areas in which reputation
of combinable products play a role.

To the best of our knowledge, there are currently no
existing reputation system approaches that can be directly ap-
plied in OTF Computing. There are indeed reputation systems
which cover the requirement of privacy protection. However,
either those systems entail a high overhead and are thus
impractical (as covered in related work) and too inflexible to
be used in such a complex scenario as in OTF Computing, or
privacy is only a “property” which is said to be achieved—but
not enforced cryptographically. We rather pursue a privacy-
by-design approach for our proposed reputation system in
OTF Computing. Related to our idea of flexibility, reputation
provided and requested depending on specific circumstances
has been studied in multi-agent systems [5][6]. Furthermore,
reputation has already been considered in the area of service
composition: A survey is presented by Mármol et al. [7].
However, privacy protection is not considered by already
existing approaches. Each of the existing approaches only deals
with a subset of the requirements we identified.

This paper is organized as follows. Section II introduces
OTF Computing while mainly focusing on those aspects that
are relevant for the work at hand. Furthermore, it motivates
the significance of reputation in OTF Computing. Section III
gives a detailed problem description by subsequently intro-
ducing crucial requirements for a reputation system in OTF
Computing. Section IV presents our conceptional solution in
terms of a flexible reputation system that covers all identified
requirements. Existing approaches that only partially cover
these requirements are discussed in Section V. Section VI
points out remaining research challenges. Finally, the paper
concludes with Section VII.

II. ON-THE-FLY COMPUTING

A major goal of OTF Computing is automated composition
of flexibly combinable services that are traded on markets. A
user’s request for an individual software solution should be
resolved by automatically composing a solution on demand.
OTF Computing addresses the entire process, starting with fun-
damental concepts for organizing large-scale service markets

up to the final execution of a composed service. Embedding
automatic service composition into service markets is one key
challenge for realizing OTF Computing.

A. Automatic Service Composition

In general, we interpret automatic service composition as
the sequential application of composition steps. A composition
step may, for example, correspond to selecting a service in
order to realize a placeholder within a workflow [8]. Regarding
our initial example in terms of image processing services,
a placeholder could correspond to a class of services which
provide similar functionality (such as smoothing filters). For
execution, a specific service (e.g., Gaussian smoothing) must
then to be selected. A composition step, however, may also cor-
respond to a single step within a composition algorithm based
on Artificial Intelligence (AI) planning approaches [9][10].

For simplicity, let us assume that a workflow is available
and that a service composition step corresponds to selecting
a service. We divide a single composition step into two
separate processes which subsequently reduce the amount of
qualified service candidates. First of all, a Service Matching
process determines to what extent a particular service fulfills
a placeholder’s functional (e.g., signatures and behavior) as
well as non-functional requirements (e.g., quality properties
such as response time or reliability) [11][12]. Based on the
matching result, services that provide significantly different
functionality or that violate important non-functional restric-
tions can be discarded directly. Subsequent to the matching
process, a Service Recommendation process identifies (and
ranks) the best service candidate(s) out of the set of remaining
services. During the recommendation process, explicitly given
non-functional objectives regarding the final composed ser-
vice (e.g., maximizing the performance while simultaneously
minimizing the costs) as well as implicit knowledge from
previous composition processes (e.g., a certain service is more
qualified in a particular context than others) are incorporated.
The incorporation of knowledge from previous composition
processes is realized by means of Reinforcement Learning [13]
and requires feedback about the quality of the execution
result [14].

B. Market Infrastructure Perspective

Figure 1 shows the transactional view on the entire OTF
Computing process, reduced to those processes that are rele-
vant for the work at hand. OTF Provider Selection and Service
Provider Selection are decision-making processes regarding
transactions within the market. Three different classes of
market participants are involved in the overall process: users,

OTF Provider

Service 
Composition

Service 
RecommendationUser Rating

1) Request

2) Response3) Execution

OTF Provider
Selection

Service 
Provider 
Selection

Service
Matching

Service Provider

4) Rating

User

Figure 1: Overall On-The-Fly Computing process.

50Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            60 / 82



OTF providers, and service providers. A user formulates a
request for an individual software solution and sends it to an
OTF provider of his choice (Step 1). The selected OTF provider
processes the request and automatically composes a solution
based on elementary services that are supplied by independent
service providers.

For each composition step, an OTF provider asks a se-
lected subset of service providers for elementary services. The
previously mentioned matching process is part of the OTF
architecture and takes place before an OTF provider receives
answers about appropriate elementary services. The matching
process operates as a filter ensuring that only services that
fulfill the desired requirements to a certain extent are returned.
The recommendation process, in turn, is part of the OTF
provider-specific composition process and highly depends on
the context of the request.

As soon as a composed service is created, it is passed on to
the user (Step 2), who subsequently executes it (Step 3). After
execution, the user rates his degree of satisfaction regarding
the quality of the execution result (Step 4). In the current
setting, the value of the user rating is immediately returned to
the associated OTF provider. By transforming the value into a
reward and incorporating it into the Reinforcement Learning
process within the recommendation system, the OTF provider
improves his internal composition strategy (recommendation
process) for future user requests [15].

C. Reputation as Signal for Quality

In a dynamic market of software services, information
about quality (e.g., service quality or the quality of OTF
providers) is essential. A user may resort only to OTF
providers of a certain quality (e.g., with respect to customer
support), while simultaneously accepting only composed ser-
vices of a certain quality level (e.g., composed services with
high reliability and trustworthiness). OTF providers, in turn,
have to build composed services consisting of elementary
services with a quality level according to a user’s request. In-
formation about quality, however, is either difficult to estimate
before a transaction actually took place, or cannot be simply
trusted if the quality information is provided by the associated
market participant itself (e.g., when a service provider specifies
the quality of his own services). Our solution to overcome
these issues is to replace the previously mentioned and fairly
simple user rating procedure (cf. Figure 1) with a flexible
reputation system, which aggregates user ratings into single
reputation values and provides them to market participants.
Reputation can then be incorporated as an estimation of quality
into the different decision-making processes.

III. PROBLEM DESCRIPTION AND REQUIREMENTS

Our goal is to explicitly incorporate reputation information
as an estimation of quality into the OTF Computing process.
Using goal-oriented requirements engineering [16], we system-
atize our reputation information requirements by investigating
the role of reputation from different perspectives.

A. Reputation Information Within the On-The-Fly Process

As shown in Figure 1, the OTF Computing process is
initiated by a user’s request. To enable users to choose an OTF

provider they want to establish a business relationship with,
i.e., to buy a composed service from, reputation information
about OTF providers must be available.

(R1) OTF Provider Reputation: The reputation system
must provide reputation information about OTF
providers.

The selected OTF provider has to ensure that the requested
composed service satisfies the user’s requirements regarding
reputation. For this purpose, the reputation of service providers
and the reputation of their supplied elementary services has
to be considered during the composition process. In order to
enable OTF providers to select service providers they want to
retrieve elementary services from, reputation information about
service providers must be available.

(R2) Service Provider Reputation: The reputation system
must provide reputation information about service
providers.

Reputation of elementary services influences the reputation of
composed services. For example, if a composed image pro-
cessing service uses a well-known, reputable implementation
of a specific image filter, it can be assumed, that the composed
service’s reputation will be higher, than the reputation of
a composed service made of unknown elementary services.
Thus, the service matching processes (cf. Figure 1) as well
as the service recommendation process have to consider the
reputation of elementary services. While the matching process
has to determine to what extent an elementary service fulfills
certain requirements considering reputation, the recommen-
dation process has to determine the best composition steps
including reputation. Reputation information, however, cannot
be simply extrapolated from service providers to elementary
services, since a service provider may supply services of vary-
ing quality. Therefore, reputation information about elementary
services must be available, too.

(R3) Service Reputation: The reputation system must
provide reputation information about elementary
services that have been consumed as a part of a
composed service.

The recommendation process additionally rates alternative
composition steps based on experience gained from previous
composition processes. Reputation information about previ-
ously composed services is needed as feedback for the recom-
mendation process in order to adapt its recommendation strat-
egy by means of Reinforcement Learning. An OTF provider’s
experience, however, can be considered a business secret that
must not be revealed to other market participants.

(R4) Composed Service Reputation: The reputation sys-
tem must provide reputation information about com-
posed services without revealing business secrets of
OTF providers.

Users only interact with OTF providers and not with service
providers directly (cf. Figure 1). As a consequence, a user’s
feedback mainly contains information about OTF providers
and their composed services. Only once in a while may a user
be able to additionally rate elementary services. For example,
when using a composed service for an image processing task,

51Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            61 / 82



users may not be aware of all elementary services, e.g., of the
filter service that reduces image noise. However, they may be
able to rate an elementary service that implements an image
compression algorithm, since the way the algorithm effects the
execution result can be directly observed in terms of the size
and quality of the generated image or video.

(R5) Incomplete User Rating: The reputation system has
to consider that a user is most often only able to rate
OTF providers and their composed services, while
a user is only sometimes able to rate elementary
services and never able to rate service providers.

B. Technical Requirements

The reputation system needs to provide access to the dif-
ferent reputation values mentioned in the previous section for
the different parties illustrated in Figure 1. Those parties have
diverse and variable needs for reputation value computations
and access as well as interaction preferences. For the service
recommendation process, recent ratings are more important to
accelerate the learning process and therefore reputation values
that put a higher weight on those ratings are desired (e.g.,
rather a geometric mean than an average with equal weights).
In contrast, for a user, it might be preferable that a certain
composed service has a very low failure rate and thus, during
the provider selection process, reputation values that include
historic values to a sufficient extent and put a higher weight on
negative ratings have to be considered. The reputation system’s
functionality to process user feedback and to provide it as
reputation information has to satisfy the diverse needs of the
requesting parties.

(R6) Flexible Feedback Processing: The reputation sys-
tem must support flexible processing of user feed-
back.

Certain restrictions may be applied: Concerning requirement
(R4), reputation information about composed services shall be
retrievable only by the OTF provider that originally accom-
plished the service composition process.

(R7) Access Control: The reputation system must imple-
ment access control to reputation values.

Furthermore, the reputation system shall support different
interaction models. Parties, such as the OTF provider’s service
recommendation component, need new reputation information
as soon as it is available. New reputation information has to
be automatically forwarded by the reputation system without
explicitly asking for it. Other processes that rarely need to
retrieve reputation information, such as users or the service
matching component, shall be able to access those data actively
on demand to reduce the data traffic.

(R8) Interaction: The reputation system must support
alternative interaction concepts. Reputation informa-
tion must either be provided on demand triggered by
a request event, or actively sent to a party as soon
as new reputation information is available.

Furthermore, security and privacy protection are crucial
issues—as we have already investigated more generally for
the OTF Computing as well [2]. If users could arbitrarily rate

any services (without having used them), the reputation system
would not constitute any benefit. If any party would be able
to manipulate the reputation values, users could not trust the
provided values and thus the reputation system’s benefit would
be lost as well.

(R9) Rating Authorization: Only authorized users, i.e.,
users that performed a transaction with an OTF
provider, are allowed to rate that transaction.

(R10) Correctness: The computed reputation value pro-
vided by the reputation system must be correct, i.e.,
it must not be possible for any party to manipulate
the reputation value (computation).

Depending on the traded services on the market, users might
only be willing to rate transactions if they can stay anony-
mous. They do not want to (publicly) reveal which services
were consumed by them. It has been shown in the past that
designing a reputation system that provides user anonymity is
a challenging task [17].

(R11) Anonymity of Rating User: No party shall be able
to relate (individual) ratings to users.

(R12) Unlinkability of User Rating to Transaction: The
OTF provider must not be able to relate a rating
to a transaction (previously executed with a certain
user)—in order to achieve user anonymity.

IV. A FLEXIBLE REPUTATION SYSTEM

This section introduces the conceptual design of our pro-
posed solution in terms of a flexible reputation system. First,
the system’s internal processes as well as its interaction ca-
pabilities are described. Afterwards, we illustrate in particular
how the system meets each requirement listed in Section III.
An overview of our proposed solution is given in Figure 2. It
shows the internal structure of our flexible reputation system
as well as the interactions with the OTF Computing process.
Both is further explained in the following.

OTF Provider

Service 
Composition

Service 
Recommendation

1) Request

2a) Response, id3) Execution

OTF Provider
Selection

Service 
Provider 
Selection

Service
Matching

Service Provider

4) Rating, id

User

     Reputation System

Aggregation System

Composed Services

OTF Providers

Accumulated Ratings

Aggregation

Aggregation

Aggregation

Aggregation

Reputation Values

Services1

Composed Services3

OTF Providers4

Service Providers2

134 2

Services

Decomposition of 
User Ratings

2b) Composition 
Information, id

Figure 2: Proposed OTF Computing Reputation System. Internal structure and
interactions with the OTF Computing process are depicted.

52Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            62 / 82



A. Basic Internal Structure

The reputation system is modeled as a stand-alone and
independent component within the OTF Computing environ-
ment. The reputation values are derived by processing user rat-
ings of services, composed services, as well as OTF providers.
The internal structure can be divided into three main sections.

The Accumulated Ratings section provides functionality for
accumulating raw values of incoming user ratings over time.
To increase robustness, these values can be stored by means
of a distributed storage system. The number of values to be
stored is not necessarily restricted. However, depending on the
available storage space and the amount of incoming values,
outdated values may either be discarded or at least consolidated
into a lower amount of values in the long run.

The Aggregation System provides functionality for process-
ing a set of raw values in order to generate an aggregated
representation. However, one can flexibly choose the set of
raw values to be incorporated into the process, the actual
aggregation function to be applied (e.g., arithmetic/geometric
averaging, identifying the maximum or approximating the
future trend by time series analysis) and the final representation
(e.g., single scalars such as mean or median, or density
functions in terms of their statistical parameters).

The Reputation Values section finally provides the inter-
faces for accessing the different reputation values of services,
service providers, composed services, and OTF providers.
When accessing reputation values, the set of raw user ratings
to be considered, the actual aggregation function as well as the
final representation can be flexibly specified. Reputation values
are not stored within the system, but always computed on
demand dependent on the previously mentioned specifications.
This flexibility allows requests for reputation information to
adapt to more complex reputation requirements imposed by
users. For example, a user may want an image processing
service with a reputation value higher than 4 based on at least
20 user ratings that are not older than 6 months. Another user
may want an image processing service which has an average
reputation value of 4, while no elementary service should have
a reputation value less than 2.

B. Integration into the On-The-Fly Computing Process

Reputation values are consumed by the Service Matching,
the Service Recommendation, the Service Provider Selection,
and the OTF Provider Selection processes within the overall
OTF Computing process. Beside flexibility regarding how a
reputation value is internally computed, our proposed reputa-
tion system also provides flexible interaction capabilities. On
the one hand, reputation values can be accessed by a pull
approach whenever they are needed. Following this approach,
the requester inherits the active role by asking for reputation
data if and only if it is necessary. This solution is efficient
when reputation information is needed less frequently (e.g.,
when a user wants to choose an OTF provider). On the other
hand, a push approach shifts the active role to the reputation
system. Reputation information is sent to a party as soon as
new data is available. This approach also allows for creating
a local cache of the latest reputation values without flooding
the reputation system with redundant requests for possibly new
information.

Aggregation
System

Reputation
SystemInterface

Matcher

aggregate
using f

Rating
Storage

getReputation(“ImagePro1“,f_id)

(3,4,3,5,5)

getRatings(“ImagePro“)

4

compare aggr. rep.
with request

“match
successful“

4

getReputation(“ImagePro1“,f_id)

Request = “I want an image 
processing service with a 
reputation ≥ 4“

Provided Service = image 
processing service with the id 
“ImagePro1“

match(
   Request,
   ProvidedService)

select f based
on f_id

Figure 3: Simplified example interaction with the reputation system.

Figure 3 shows the interaction with the proposed reputation
system using the example of the service matching process
(matcher). During the OTF Computing process, the matcher
is called for each elementary service that possibly satisfies
an OTF provider’s request (cf. Section II-B). In this context,
Figure 3 illustrates the access of reputation information for
exactly one elementary service by a pull approach.

The reputation matching process is initiated by providing
the request information and the description of an elemen-
tary service and by calling the match operation. For the
sake of simplicity, the request in the depicted example only
shows an extract: An image processing service should have
a minimum reputation value of 4. This request shall now be
matched against an elementary service with id ImagePro1.
The matcher asks the reputation system for a reputation value
of service ImagePro1 aggregated by means of an aggregation
function with id f_id. Hence, the aggregation system fetches
the relevant user rating values (3,4,3,5,5) from the storage, se-
lects the corresponding aggregation function (here, arithmetic
averaging), and computes an aggregated reputation value of
4. Based on this result, the matcher decides that the service
matches to the request.

After a composed service was executed (Step 3 in Figure 2),
users are encouraged to provide feedback on their transactions.
They are asked to rate composed services, OTF providers, and
single services. The feedback in terms of user ratings is the
foundation for generating reputation information within the
reputation system. To be able to identify which composed
service a rating belongs to, OTF providers attach an id to
their response (Step 2a in Figure 2). This id corresponds to
the particular structure of a composed service, meaning that
identical composed services have identical ids. During the
rating process for a composed service, this id is forwarded
to the reputation system (Step 4 in Figure 2).

Elementary services that are consumed as a part of a
composed service cannot always be rated separately by the
user. In fact, due to complex user requests, we expect that this
is rarely possible. Thus, in order to still be able to provide rep-
utation values for elementary services and to benefit from all
information available, our reputation system decomposes user
ratings of composed services. To enable this decomposition,
the id the OTF provider sends with his response (cf. Figure 2)
is reused: Simultaneously with his response to the user (Step
2a in Figure 2), the OTF provider sends the same id together
with composition information to the reputation system (Step

53Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            63 / 82



2b in Figure 2).

As pointed out above, our reputation system for the OTF
Computing shall provide flexibility, which also means that
different implementations for the components are supported.
We have already shown that such an implementation of a
reputation system for the OTF Computing can be done in
a secure and privacy-preserving way—respecting the require-
ments stated in Section III [18]. In contrast to related work,
as covered in Section V, this approach only requires a single
reputation provider, which is in line with the requirements of
OTF Computing, and does not need any other components
(such as a bulletin board). The approach is based on the
Paillier cryptosystem [19] to provide a reputation value as
an aggregation of individual user ratings without revealing
anything about the individual ratings to any party.

C. Satisfying On-The-Fly Computing Requirements

Our proposed solution in terms of a flexible reputation
system fulfills all requirements listed in Section III. This
section points out how the reputation system fulfills each of
these requirements in particular.

The proposed reputation system enables users to rate OTF
providers, composed services, and—if possible—elementary
services. Assured by the transfered id, in this context, only
users that are involved in a particular transaction taking place
on the OTF market, i.e., users that have requested, received
and executed a particular composed service, are allowed to
participate in the rating process. This ensures ratings by
authorized users (R9). How to realize the rating process in
particular (i.e., what kind of questions have to be asked and
how a user rating value is represented) is beyond the scope of
this paper.

Correctness of the provided reputation values is ensured
by design. Reputation values are computed on demand by
the system itself based on a pre-defined set of aggregation
functions. Furthermore, the entire system is an independent
component within the OTF Computing environment. As a
consequence, manipulations of the computation process by
other participants are eliminated (R10).

Anonymity of users (R11) as well as unlinkability of user
ratings to transactions (R12) is ensured by the accumulation
and aggregation functionality. For reasons of privacy pro-
tection, i.e., in order to not reveal individual user ratings,
the reputation system always collects individual ratings and
aggregates them. Although the single user ratings are stored
within the reputation system, they are not accessible to market
participants so that individual ratings are not traceable. In
this context, it is important that the amount of accumulated
user ratings is high enough and that the aggregation operation
sufficiently condenses the user ratings such that it can be
guaranteed that no information on individual ratings can be
recovered. If not enough user ratings are included in the
aggregation process (e.g., when not enough user ratings are
available yet, or if a request explicitly specifies to only consider
just a few user ratings), the reputation system will not provide
a value but will raise an exception.

All processes that need reputation information within the
entire OTF Computing process have access to the reputation

system. The flexibility of our proposed solution enables each
market participant to freely choose an interaction approach
(push or pull) that is most appropriate with respect to the
market participant’s internal processes (R8). Furthermore, the
process of generating reputation values can be adjusted by
each market participant individually by specifying the set of
user ratings to be considered, the actual aggregation function
to be applied, and the final representation of the aggregated
value (R6).

Reputation information about OTF providers (R1) is pro-
vided by the reputation system in a straight-forward manner.
Users rate their satisfaction regarding the transaction with an
OTF provider. These ratings are accumulated and aggregated
by the reputation system and can be accessed by other users.
The process of generating reputation information about com-
posed services (R4) is similar. Users rate their satisfaction
regarding the execution process and the execution result of
a composed service. These ratings, again, are accumulated
and aggregated by the reputation system. In comparison to the
reputation of OTF providers, however, reputation information
about composed services is OTF provider-related. In order
to preserve business secrets, OTF providers can only access
anonymized user ratings of composed services they originally
sold (R7).

Besides being directly rated by users, ratings of elementary
services also have to be derived from ratings for composed
services (R3). For this purpose, OTF providers send informa-
tion about their composed service to the reputation system.
In order to not reveal their business secrets, this composition
information, however, only consists of abstract, structural
information. Only the set of elementary services included in
a composed service is exposed, but not, for example, when
and how often a particular service is called. This way, the
provider’s business secrets are protected, while it also allows
for a mapping of the rating for a composed service to single
services (R5).

Since users only interact with OTF providers, user ratings
for service providers cannot be provided to the reputation
system (R5). To overcome this problem, the aggregation sys-
tem extrapolates from reputation information about elementary
services to information about the associated service providers
during the aggregation process (R2).

While composing services, reputation information about
elementary services have most likely to be aggregated in
order to choose composed services not only based on their
(aggregated) non-functional properties, but also based on their
overall reputation. How to determine this overall reputation,
however, depends on the user requirements and the com-
position strategy of the respective OTF provider. If a user
requires, e.g., all elementary services to satisfy a minimal
reputation value, an OTF provider has to check the reputation
value of each services individually. Another user might be
satisfied with an average reputation value above a specific
threshold. In this case, an OTF provider has to determine
the average reputation value by aggregating all single values.
Subsequently, the aggregated value and the threshold value
have to be compared. In either case, aggregation of reputation
values is not part of the reputation system itself. For that
reason, a further investigation of how to appropriately integrate
reputation information into service composition in addition to

54Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            64 / 82



common non-functional properties is beyond the scope of this
paper.

V. RELATED WORK

There is a lot of literature on reputation, both in economics
and computer science. Our interpretation of reputation is
used for instance by Shapiro [20] or as well by Bar-Isaac
and Tadelis [21], who summarize the economic literature on
reputation. Design aspects related to mathematically modeling
a reputation system and challenges that arise with online trans-
actions, are explicitly discussed by Friedman et al. [22] and
Dellarocas [23], for example. More closely related, we identify
three involved fields, Reputation Systems, Privacy-Preserving
Systems and Service Composition, and their overlappings with
each other as shown in Figure 4. In the following, we present
related work which has been done within these overlappings
in more detail.

x

Privacy-
Preserving

Systems

Reputation
Systems

Service
Composition

[24]

[25] [26]
[27]

Figure 4: Overview of related work.

A. Reputation Systems and Privacy-Preserving Systems

Researchers have come up with privacy-preserving repu-
tation systems in the past. Kerschbaum et al. [24] present a
system which requires two centralized mutually mistrusting
reputation providers in order to achieve anonymous user rat-
ings. Users encrypt their ratings and send them to the first
reputation provider which collects a number of ratings and
then publishes them to a bulletin board. The second reputation
provider retrieves the ratings from the bulletin board to decrypt
and aggregate them before providing a (computed) reputation
value. The approach is based on the Paillier cryptosystem [19].
However, the approach is too inflexible and complex to be used
in our OTF Computing setting. We want to keep a lean OTF
infrastructure with only one reputation provider and no other
additional components, such as a bulletin board, used only by
the reputation system.

B. Reputation Systems and Service Composition

Motallebi et al. [25] integrate Component Reputation and
Component Trust in order to derive the reputation of a com-
posed service from trust values for single services. They do
this by taking into account the frequency of invocations of
these services. However, this approach covers only some of
our requirements for a reputation system in On-The-Fly Com-
puting. For example, neither service providers are considered,
nor is privacy or security a topic within their publication.

C. Service Composition and Privacy-Preserving Systems

Tbahriti et al. [26] identify privacy preservation as one of
the most challenging problems in Data-as-a-Service (DaaS)
services composition. DaaS is about combining web services
for data publishing and sharing. In their proposed approach,
privacy policies specify how collected data is treated and pri-
vacy requirements specify how the service-consuming services
are expected to treat the provided data. Similarly, Costante et
al. [27] come up with a solution for web service selection and
composition that takes privacy into account. Users are able to
specify their privacy preferences which are checked against
the service providers’ privacy policies. Only in the case of a
successful match are the service providers’ services selected
and used for composition. Both approaches do not take into
account reputation of elementary or composed services.

In contrast to related work, we pursue a privacy-by-design
approach that builds privacy protection into the reputation
system for OTF Computing. This allows us to prove that
privacy is achieved rather than to rely on guarantees made
by the participants.

D. Conclusion: Related Work

It is noteworthy that no work—to the best of our
knowledge— that includes all the different fields mentioned
above (the overlapping marked “x” in Figure 4) has been done.
This is where we contribute with this paper: We are the first to
present the requirements for such a system, describe a flexible
solution, and point out further interesting research challenges
that still need to be solved in the future.

VI. RESEARCH CHALLENGES

The introduction of a reputation system in the OTF Com-
puting in Section IV is conceptual and provides flexibility
for further specifications. As research challenges, we highlight
some of the trade-offs that result from the requirements im-
posed in Section III. A more detailed investigation of each of
the research challenges is beyond the scope of this conceptual
contribution and is planned to be considered in future work.

Efficiency in Learning versus Privacy Protection: The
reinforcement learning approach, which is used to improve the
service composition process, needs direct feedback after each
composition. If the feedback is absent, the learning process
is hampered. However, for reasons of privacy protection, no
direct feedback is given to any party. Only an aggregated value
of the accumulation of several individual ratings (feedback)
is provided, as described in Section IV. Thus, a research
challenge is to investigate the trade-off between privacy pro-
tection and learning efficiency. It has to be investigated how a
delayed feedback after several service composition processes
(accumulation) in an aggregated form affects the convergence
behavior of the learning process.

Benefit of Privacy Protection: As discussed in this paper,
the design of a privacy-preserving solution entails a multitude
of trade-offs that need to be taken into account, e.g., the
trade-off between privacy and learning mechanism efficiency.
Thus, it needs to be investigated whether market participants
are interested in implementing a privacy-preserving solution
at all. We need to prove that privacy protection is a benefit

55Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            65 / 82



of OTF Computing and that users rather use such a market
than any other which does not provide such strong privacy
guarantees. Concerning the introduced reputation system, we
want to examine whether users are more willingly providing
ratings when their privacy is protected—which is not the case
in any other state-of-the-art reputation system in use today.

Manipulation Resistance versus Privacy Protection: An
important further issue is to obtain truthful user feedback.
Ratings may be dishonest or randomly chosen [22]. So far we
assumed that users have no incentives to strategically manip-
ulate their feedback and moreover we supposed that feedback
on a transaction is always provided. Truthful rating behavior is
induced by incentive compatible reputation mechanisms [28]
(and the references mentioned therein). To ensure privacy pro-
tection, several ratings need to be accumulated and aggregated.
It has already been analyzed how the aggregation of ratings
impacts the efficiency of a reputation mechanism [29] and how
it influences incentives for truthful rating behavior [30]. An
important next step now is to further understand the interplay
of incentive compatibility and privacy protection. Therefore,
a challenging question is whether and how it is possible to
design reputation systems that induce truthful feedback and
respect privacy protection.

Fuzzy Matching of Reputation Values: Another open issue
is how reputation should be matched. Since the reputation of
a service is not an objective measure, such as signatures or
protocols, uncertainty might be introduced into the matching
process. For example, as noted in our fuzzy matching sur-
vey [12], the user stating the request might tolerate variations
(e.g., “I want a service with approximately five stars”), or the
request might include requirements for which the correspond-
ing information on the provider side do not exist yet (e.g.,
there has not been much feedback yet because the service is
new on the market and thus the reputation is unclear). We are
going to analyze how a fuzzy reputation matching can cope
with such challenges.

Context-Specific Reputation: In our current system, we
focus on the overall reputation of (composed) services and
providers. However, in reality, reputation is rather context-
specific [31]. For example, an image processing service could
have a good reputation regarding the response time but a
bad reputation regarding security. Thus, the reputation system
should maintain vectors instead of single values for ratings
and reputation. However, this also increases the complexity
of the different components that access the reputation system.
For example, matching could become much more detailed, but
also less efficient in terms of performance.

Trust and Reputation: Another open issue is to distinguish
between trust and reputation. Trust can be understood as a
private reputation value in contrast to the public reputation
value [32]. It needs to be analyzed whether reputation systems
should distinguish between these concepts and how the whole
scenario could benefit from it.

VII. CONCLUSION

In the context of OTF Computing, we use a reputation
system to collect information about experiences users make
with composed services in transactions. From an economic
perspective, the buying decision of a user and the future sale

opportunity of an OTF provider crucially depend on the current
reputation value. Our contribution in this paper comprises the
collection of requirements and the proposal of a conceptual
solution for a flexible reputation system in OTF Computing.
To fulfill the posed requirements, we identified necessary
operations as well as additional properties and described their
interaction. We analyzed the influence of reputation infor-
mation on the processes and proposed the integration of a
reputation system in the OTF Computing infrastructure. In
our work, we put a special focus on composed services as
well as on privacy. As part of our contribution, we combined
approaches from the literature on reputation systems, service
composition, and privacy protection. Finally, we presented
research challenges that arise from conflicting objectives and
deserve further investigations.

ACKNOWLEDGMENT

This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Centre
“On-The-Fly Computing” (SFB 901).

REFERENCES

[1] M. Happe, F. M. auf der Heide, P. Kling, M. Platzner, and C. Plessl,
“On-the-fly computing: A novel paradigm for individualized it services,”
in Proceedings of the Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems (SEUS). IEEE, 2013.

[2] R. Petrlic, A. Jungmann, M. C. Platenius, W. Schäfer, and C. Sorge, “Se-
curity and Privacy Challenges in On-The-Fly Computing,” in Tagungs-
band der 4. Konferenz Software-Technologien und -Prozesse (STeP
2014), 2014, to appear.

[3] “Collaborative Research Center 901 - On-The-Fly Computing,” 2014,
URL: http://sfb901.uni-paderborn.de [accessed: 2014-03-15].

[4] “Instagram,” 2014, URL: http://www.instagram.com [accessed: 2014-
03-15].

[5] V. T. Silva, R. Hermoso, and R. Centeno, “A Hybrid Reputation Model
Based on the Use of Organizations,” in Coordination, Organizations,
Institutions and Norms in Agent Systems IV. Springer, 2009, pp. 111–
125.

[6] J. S.P. Guedes, V. Torres da Silva, and C. Lucena, “A Reputation
Model Based on Testimonies,” in Agent-Oriented Information Systems
IV. Springer, 2008, pp. 37–52.

[7] F. G. Mármol and M. Q. Kuhnen, “Reputation-based Web service
orchestration in cloud computing: A survey,” Concurrency and Compu-
tation: Practice and Experience, 2013.

[8] N. Hiratsuka, F. Ishikawa, and S. Honiden, “Service Selection with
Combinational Use of Functionally-Equivalent Services,” in Proceed-
ings of the 18th IEEE International Conference on Web Services
(ICWS), 2011, pp. 97–104.

[9] P. Bartalos and M. Bielikova, “Semantic Web Service Composition
Framework Based on Parallel Processing,” in Proceedings of the 11th
IEEE Conference on Commerce and Enterprise Computing (CEC),
2009, pp. 495–498.

[10] M. Aiello, E. el Khoury, A. Lazovik, and P. Ratelband, “Optimal QoS-
Aware Web Service Composition,” in Proceedings of the 11th IEEE
Conference on Commerce and Enterprise Computing (CEC), 2009, pp.
491–494.

[11] M. C. Platenius, “Fuzzy Service Matching in On-The-Fly Computing,”
in Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE). ACM, 2013, pp. 715–718.

[12] M. C. Platenius, M. von Detten, S. Becker, W. Schäfer, and G. Engels,
“A Survey of Fuzzy Service Matching Approaches in the Context
of On-the-fly Computing,” in Proceedings of the 16th International
ACM Sigsoft Symposium on Component-based Software Engineering
(CBSE). ACM, 2013, pp. 143–152.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

56Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            66 / 82



[14] A. Jungmann and B. Kleinjohann, “Learning Recommendation System
for Automated Service Composition,” in Proceedings of the 10th IEEE
International Conference on Services Computing (SCC), 2013, pp. 97–
104.

[15] A. Jungmann, B. Kleinjohann, and L. Kleinjohann, “Learning service
recommendations,” Int. J. Business Process Integration and Manage-
ment, vol. 6, no. 4, 2013, pp. 284–297.

[16] A. Van Lamsweerde, “Goal-oriented requirements engineering: A
guided tour,” in Proceedings of the Fifth IEEE International Symposium
on Requirements Engineering (RE), 2001, pp. 249–262.

[17] A. Narayanan and V. Shmatikov, “Robust De-anonymization of Large
Sparse Datasets,” in Proceedings of the IEEE Symposium on Security
and Privacy (SP), 2008, pp. 111–125.

[18] R. Petrlic, S. Lutters, and C. Sorge, “Privacy-Preserving Reputation
Management,” in Proceedings of the 29th Symposium On Applied
Computing. ACM, 2014.

[19] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proceedings of the 17th international conference on
Theory and application of cryptographic techniques. Springer, 1999,
pp. 223–238.

[20] C. Shapiro, “Premiums for High Quality Products as Returns to Repu-
tations,” The Quarterly Journal of Economics, vol. 98, no. 4, 1983, pp.
659–680.

[21] H. Bar-Isaac and S. Tadelis, “Seller Reputation,” Foundations and
Trends in Microeconomics, vol. 4, no. 4, 2008, pp. 273–351.

[22] E. Friedman, P. Resnick, and R. Sami, “Manipulation-Resistant Repu-
tation Systems,” in Algorithmic Game Theory, Chapter 27. Cambridge
University Press, 2007.

[23] C. Dellarocas, “Reputation Mechanism Design in Online Trading En-
vironments with Pure Moral Hazard.” Information Systems Research,
vol. 16, no. 2, 2005, pp. 209–230.

[24] F. Kerschbaum, “A verifiable, centralized, coercion-free reputation
system,” in Proceedings of the 8th ACM workshop on Privacy in the
electronic society (WPES), 2009, pp. 61–70.

[25] M. R. Motallebi, F. Ishikawa, and S. Honiden, “Component Trust for
Web Service Compositions,” in AAAI Spring Symposium Series, 2012.

[26] S.-E. Tbahriti, M. Mrissa, B. Medjahed, C. Ghedira, M. Barhamgi, and
J. Fayn, “Privacy-Aware DaaS Services Composition,” in Database and
Expert Systems Applications, 2011, pp. 202–216.

[27] E. Costante, F. Paci, and N. Zannone, “Privacy-Aware Web Service
Composition and Ranking,” in Proceedings of the 20th IEEE Interna-
tional Conference on Web Services (ICWS), 2013, pp. 131–138.

[28] S. Phoomvuthisarn, “A Survey Study on Reputation-based Trust Mech-
anisms in Service-Oriented Computing,” Journal of Information Science
and Technology, vol. 2, no. 2, 2011, pp. 1–12.

[29] C. Dellarocas, “How Often Should Reputation Mechanisms Update a
Trader’s Reputation Profile?” Information Systems Research, vol. 17,
no. 3, 2006, pp. 271–285.

[30] C. Aperjis and R. Johari, “Optimal Windows for Aggregating Ratings
in Electronic Marketplaces,” Management Science, vol. 56, no. 5, 2010,
pp. 864–880.

[31] Y. Wang and J. Vassileva, “A Review on Trust and Reputation for
Web Service Selection,” in 27th International Conference on Distributed
Computing Systems Workshops (ICDCSW), 2007, pp. 25–25.

[32] R. Kiefhaber, G. Anders, F. Siefert, T. Ungerer, and W. Reif, “Confi-
dence as a Means to Assess the Accuracy of Trust Values,” in 11th IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), 2012, pp. 690–697.

57Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            67 / 82



Performance Evaluation of OM4SPACE’s Activity Service 
 

Irina Astrova                        Arne Koschel,                             
Alexander Olbricht, Matthias Popp 

Marc Schaaf,                     
Stella Gatziu Grivas 

Institute of Cybernetics Faculty IV, Department for Computer Science  Institute for Information Systems 
Tallinn University of Technology University of Applied Sciences and Arts 

Hannover  
University of Applied Sciences 

Northwestern Switzerland 
Tallinn, Estonia  Hannover, Germany                                                                     Olten, Switzerland 
irina@cs.ioc.ee akoschel@acm.org marc.schaaf@fhnw.ch 

 
 

Abstract—OM4SPACE provides cloud-based event notification 
middleware. This middleware delivers a foundation for the 
development of scalable complex event processing applications. 
The middleware decouples the event notification from the 
applications themselves, by encapsulating this functionality 
into a component called Activity Service. This paper presents 
preliminary results of the performance evaluation for the 
Activity Service. 

Keywords—OM4SPACE; Activity Service; WebLogic JMS; 
Amazon SQS; Event-Driven Architecture (EDA); Service-
Oriented Architecture (SOA); Complex Event Processing (CEP); 
cloud computing. 

I.  INTRODUCTION  
 In 2010, the University of Applied Sciences 

Northwestern Switzerland in cooperation with the University 
of Applied Sciences and Arts Hannover Germany started a 
project called OM4SPACE [1]-[6]. The idea behind 
OM4SPACE was to merge Event-Driven Architecture 
(EDA), Service-Oriented Architecture (SOA), Complex 
Event Processing (CEP) and cloud computing together to 
provide cloud-based event notification middleware for 
decoupled communication between CEP application 
components on all the layers of a cloud stack, including 
infrastructures, platforms, components, business processes 
and presentations (see Figure 1). By decoupled, we mean 
that events are posted to the middleware without knowing if 
and how they are processed later. 

 

 
 

Figure 1. Cloud stack [3]. 

Performance is typically one of the top evaluation criteria 
for middleware products in general and OM4SPACE in 
particular. Since OM4SPACE is still relatively new, users 
expect that it will continue over time to improve its 
functionality, usability and reliability. However, users 
typically do want to get the best performance possible. Since 
the user’s level satisfaction with OM4SPACE is largely 
determined by its performance, in this paper we evaluate the 
performance of OM4SPACE’s Activity Service.   

The rest of the paper is organized as follows. Section II 
presents the architecture of OM4SPACE. Section III 
describes the performance tests run against OM4SPACE. 
Section IV summarizes the results obtained during the 
performance tests and outlines future directions in the 
development of OM4SPACE. 

II. ARCHITECTURE 
Figure 2 gives an overview of the architecture of 

OM4SPACE, which includes the following components: 
Event Producers (also called Event Sources), Event 
Consumers and Activity Service. 
 

 
 

Figure 2. Architecture of OM4SPACE [3]. 

58Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            68 / 82



The Activity Service itself includes the following 
components: 

• Event Service: This component receives events from 
Event Producers, pre-processes the events and 
delivers them to Event Consumers subscribed for 
those events. The Event Service contains a registry. 
Event Consumers look up events in the registry. If 
an Event Consumer finds an event of interest, it 
subscribes to that event. 

• Complex Event Detector: This component receives 
events from the Event Service and derives from 
them new complex events, which are fed back into 
the Event Service for further processing. 

• Rule Execution Service: This component receives 
events from the Event Service, evaluates them 
against CEP rules and triggers the rules into 
execution, which results in the execution of external 
action handlers that are provided by other third-party 
components. 

The communication between all the components in the 
architecture is done through events, where an event is any 
kind of information sent as a notification from one 
component to another. 

III. PERFORMANCE EVALUATION 
One of the main advantages offered by OM4SPACE is 

its independence of channel service providers such as 
WebLogic, Amazon and Google because the Activity 
Service enables the transparent use of different transport 
technologies. 

 

 
 

Figure 3. Transport technologies used by Activity Service. 
 
In the current version of OM4SPACE, the Activity 

Service supports the following transport technologies: 
• WebLogic JMS, which serves as an example of a 

topic service. 
• Amazon SQS, which serves as an example of a 

queue service. 
Once an Event Producer has sent events to the channel, 

the Activity Service located in a public cloud will forward 
the events to the channel of an Event Consumer that is 
subscribed for those events (see Figure 3). A decision on 
which channel to use for sending events is left solely to the 
Event Producer. Similarly, a decision on which channel to 
use for receiving events is left solely to the Event Consumer. 

For example, the Event Producer can select a JMS topic 
because it is not chargeable, whereas the Event Consumer 
can select an SQS queue because it is highly available (i.e., 
the availability of an SQS queue is not affected if the cloud 
instance fails). 

A. Tests 
We conducted the performance evaluation to answer the 

following questions: 
• Will the Activity Service (sitting between the Event 

Producer and the Event Consumer) affect the time 
needed for events to reach their destination? 

• If it does, will the performance still be good? 
The answers to these questions were important because 

the application areas for OM4SPACE include smart grids [6] 
that need to address the challenges related to the constantly 
increasing number of events and near real-time reaction on 
those events. 

To answer the questions above, we performed the 
following tests: 

• T1: The Activity Service was not used. Events were 
sent via a JMS topic and received via the same topic. 

• T2: The Activity Service was used. Events were sent 
via a JMS topic and received via another JMS topic. 

• T3: The Activity Service was not used. Events were 
sent via an SQS queue and received via the same 
queue. 

• T4: The Activity Service was used. Events were sent 
via an SQS queue and received via another SQS 
queue. 

• T5: The Activity Service was used. Events were sent 
via a JMS topic but received via an SQS queue. 

• T6: The Activity Service was used. Events were sent 
via an SQS queue but received via a JMS topic. 

These tests were intended to prove or disprove the 
following hypotheses: 

• H1: JMS alone can achieve better performance than 
JMS interconnected with the Activity Service. 

• H2: SQS alone can achieve better performance than 
SQS interconnected with the Activity Service. 

• H3: There can be a difference in the performance of 
JMS alone and SQS alone. 

• H4: There can be a difference in the performance of 
JMS interconnected with the Activity Service and 
SQS interconnected with the Activity Service. This 
difference can be the same as above. 

• H5: The number of events can affect the 
performance of JMS alone. 

• H6: The number of events can affect the 
performance of SQS alone. 

• H7: The number of events can affect the 
performance of JMS interconnected with the 
Activity Service. 

• H8: The number of events can affect the 
performance of SQS interconnected with the 
Activity Service. 

We performed the tests in the following way: 

59Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            69 / 82



• Each test was executed with a different number of 
events (100, 500 and 1000) to see how the event 
number affects the performance. 

• Each test was executed ten times to calculate the 
average where outliers were still visible. 

• In each test, the time from sending the first event to 
receiving the last one was measured using a Java 
method System.currentTimeMillis (which 
returns the current time in msecs). 

• Depending on the test, either all the components (the 
Event Producer, the Activity Service and the Event 
Consumer) were running on the same cloud instance 
or each component was running on its own cloud 
instance. Because of the decision to use SQS, 
Amazon EC2 was used as the cloud. Generally, 
Event Producers and Event Consumers are not 
limited to the components of a public cloud where 
the Activity Service is located. Rather, they can be 
located in private clouds or in some other public 
clouds (see Figure 6). 

The measurements were made with two Ubuntu Linux 
9.10 systems, which both used Sun Java 1.6.0. The machine, 
which hosted the Event Producer, the Activity Service and 
the Event Consumer, was a dual core system with 4GB 
memory. The machine for the cloud was a quad core system 
with 8GB memory. The two machines were interconnected 
with a gigabit Ethernet. 

B. Test Results 
The test results proved H1, H2, H3, H5, H6, H7 and H8, 

but disproved to some degree H4. 
Figure 4 summarizes the test results for T1 and T2. What 

attracts our attention is a very good performance that JMS 
demonstrated in all the tests. For example, sending and 
receiving 100 events via JMS interconnected with the 
Activity Service took only 1286 msecs. But as one could 
expect, this time was longer than without the Activity 
Service. 

 

 
 

Figure 4. Sending and receiving 100, 500 and 1000 events: JMS alone vs. 
JMS interconnected to Activity Service. 

 
One could expect that the time would increase with an 

increase of the number of events. Indeed, for sending and 
receiving 500 events, JMS interconnected with the Activity 
Service needed 3184 msecs more than for sending and 
receiving 100 events. However, of peculiar interest is the fact 
that for sending and receiving 1000 events, JMS 
interconnected with the Activity Service needed only 305 
msecs more than for sending and receiving 500 events. In 

both cases, the average time was about 4500 msecs. 
Therefore, we suggest that extra time needed for sending and 
receiving 100 events was the time that the Activity Service 
needed for initialization. 

The left column in Table I shows the time needed for 
JMS to send and receive 500 events without the Activity 
Service, whereas the right column with the Activity Service. 
What attracts our attention is the sharp deviation in the ten 
test runs in both cases. For example, the time needed for 
sending and receiving 500 events via JMS interconnected 
with the Activity Service was between 3332 and 6300 msecs 
(i.e., the test results differed in almost two times). 

TABLE I.  SENDING AND RECEIVING 500 EVENTS:             
JMS ALONE VS. JMS INTERCONNECTED TO ACTIVITY SERVICE 

JMS JMS OM4 
851 6300 
836 3942 

3956 3484 
3895 4247 
1525 3323 
713 4522 

3865 3360 
3835 5247 
4023 4168 
887 4258 

2439 4285 
 
Figure 5 summarizes the test results for T3 and T4. What 

attracts our attention is that SQS alone was much slower than 
JMS alone – in fact, it was even slower than JMS 
interconnected with the Activity Service. For example, 
sending and receiving 100 events via SQS already took 
13,412 msecs. With the Activity Service interconnected, that 
time was even longer (viz., 373,678 msecs). However, as one 
could expect, the time increased with an increase of the 
number of events but quickly, especially when SQS was 
interconnected with the Activity Service. 

 

 
 

Figure 5. Sending and receiving 100, 500 and 1000 events: SQS alone vs. 
SQS interconnected to Activity Service. 

 
Our tests showed that SQS alone was up to 36 times 

slower than JMS alone. One could expect that the same 
would keep true if the Activity Service were used. In fact, 
SQS interconnected with the Activity Service was up to 120 
times slower than JMS interconnected with the Activity 
Service. Therefore, we suggest that the Activity Service 
greatly affected the performance, when SQS was used as the 
transport technology. 

The left column in Table II shows the time needed for 
SQS to send and receive 500 events without the Activity 
Service, whereas the right column with the Activity Service. 

60Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            70 / 82



Although the time was extremely long, it was almost 
constant for all the ten test runs (viz., between 262,867 and 
270,603 msecs for sending and receiving 500 events) when 
SQS was interconnected with the Activity Service. 

TABLE II.  SENDING AND RECEIVING 500 EVENTS:             
SQS ALONE VS. SQS INTERCONNECTED TO ACTIVITY SERVICE 

SQS SQS OM4 
65206 265602 
65489 264818 
66067 270338 
64678 264498 
67736 264092 
65099 270603 
64350 266591 
65396 266645 
65240 268499 
64476 262867 
65374 266455 

 
While executing the tests, we noticed that the Activity 

Service demonstrated the worst performance when events 
were sent via an SQS queue and received via another SQS 
queue (T4). The performance improved when events were 
sent via a JMS topic but received via an SQS queue (T5). 
The performance became even better when events were sent 
via an SQS queue but received via a JMS topic (T6). 
Therefore, we suggest that sending events via an SQS queue 
does not take extra time but receiving events does. That is, 
the problem is that when the Activity Service deposits events 
to an SQS queue, the Event Consumer receives them with a 
big delay. Therefore, the performance problem might be 
resolved by optimizing the way the Activity Service works 
or with better implementation of the source code (which is 
written in Java). 

IV. CONCLUSION AND FUTURE WORK 
The performance of the Activity Service was evaluated. 

Our tests showed that sending and receiving events via JMS 
interconnected with the Activity Service took up to three 
times longer than without the Activity Service. However, 
that time was still short and increased slowly with an 
increase of the number of events. Therefore, we consider the 
performance to be very good, when JMS is used as the 
transport technology. 

By contrast, the use of SQS could cause a performance 
bottleneck. Our tests showed that SQS itself was up to 36 
times slower than JMS. (This was probably due to the 
distributed nature of an SQS queue). But with the Activity 

Service interconnected, the time for sending and receiving 
events increased up to 20 times more, resulting in almost 
330,000 msecs delay. 

Since OM4SPACE is relatively new, it will continue 
over time to improve its performance. In addition, 
OM4SPACE seeks to support more transport technologies, 
including Google App Engine and WS Notification. 
Therefore, in the future, we intend to execute more 
performance tests in order to obtain new test results. 

ACKNOWLEDGMENT 
Irina Astrova’s work was supported by the Estonian 

Centre of Excellence in Computer Science (EXCS) funded 
mainly by the European Regional Development Fund 
(ERDF). Irina Astrova’s work was also supported by the 
Estonian Ministry of Education and Research target-financed 
research theme no. 0140007s12. 

REFERENCES 
[1] M. Schaaf, A. Koschel, and S. G. Grivas, “Event processing 

in the cloud environment with well-defined semantics,” The 
1st International Conference on Cloud Computing and 
Services Science (CLOSER 2011), May 2011, pp. 176-179. 

[2] A. Koschel, M. Schaaf, S. G. Grivas, and I. Astrova, “An 
ADBMS-style Activity Service for cloud environments,” The 
1st International Conference on Cloud Computing, GRIDs 
and Virtualization (CLOUD COMPUTING 2010) IARIA, 
Nov. 2010, pp. 80-85. 

[3] R. Sauter, A. Stratz, S. G. Grivas, M. Schaaf, and A. Koschel, 
“Defining events as a foundation of an event notification 
middleware for the cloud ecosystem,” The 15th International 
Conference on Knowledge-Based and Intelligent Information 
and Engineering Systems (KES 2011), Sep. 2011, LNCS, vol. 
6882, pp. 275-284, doi:10.1007/978-3-642-23863-5_28. 

[4] M. Schaaf, A. Koschel, and S. G. Grivas, “Towards a 
semantic definition for a cloud-based event notification 
service,” The 3rd International Conference on Cloud 
Computing and Services Science (CLOSER 2013), May 
2013, pp. 345-349. 

[5] I. Astrova, A. Koschel, L. Renners, T. Rossow, and M. 
Schaaf, “Integrating structured peer-to-peer networks into 
OM4SPACE project,” The 27th IEEE International 
Conference on Advanced Information Networking and 
Applications Workshops (WAINA 2013), Mar. 2013, pp. 
1211-1216, doi:10.1109/WAINA.2013.88. 

[6] A. Koschel, A. Hödicke, M. Schaaf, and S. G. Grivas, 
“Supporting smart grids with a cloud-enabled Activity 
Service,” The 27th International Conference on Informatics 
for Environmental Protection (EnviroInfo 2013), Sep. 2013, 
pp. 205-213. 

 

 
 

Figure 6. Distribution of OM4SPACE components [2]. 

61Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            71 / 82



Evaluating the Data Quality and the Uncertainty in Electroencephalogram Signals 
for a Neuromarketing Service which Computes Attentional Engagement 

Wuon-Shik Kim, Sang-Tae Lee 
Korea Research Institute of Standards and Science 

Daejeon, Republic of Korea 
wskim@kriss.re.kr, stlee@kriss.re.kr 

Yaeeun Kim, Hyoung-Min Choi 
PHYSIONICS Co., Ltd. 

Daejeon, Republic of Korea 
rosacalla@kaist.ac.kr, Hmchoi78@gmail.com  

 
 

Abstract— Objective and quantitative data, which indicate 
when and how much moviegoers are engaged with movies is 
important for movie makers when creating a film. However, 
with the traditional method of a review questionnaire, it is 
difficult to determine precisely the degree to which moviegoers 
were engaged and when this occurred. To evaluate the 
Attentional Engagement (AE) precisely, we used 
electroencephalogram (EEG) on Japanese students who were 
watching the American movie Iron Man. We found a 
significant decrease in the EEG power in the low-alpha-
frequency band while the participants watched film content 
evoking subjective higher attention. To use our results as 
reference data for a neuromarketing service, we suggest a 
procedure with criteria evaluating the quality level of data. 
According to this procedure, the EEG power values of AE for 
the movie Iron Man can serve as standard reference data with 
quality level of validated. 

Keywords-neuromarketing service; electroencephalogram; 
data quality; uncertainty; attentional engagement. 

I.  INTRODUCTION  
Immersion, like flow, has been used to describe the 

degree of an experience of feeling deeply engaged with types 
of media such as novels, movies, computer games, and 
virtual reality. To enter engagement, the first stage of 
immersion, users (e.g., gamers, moviegoers, etc.) have to 
invest time, effort, and attention [1][2]. Objective and 
quantitative measurements are important for media makers to 
determine when and how much media users are engaged 
with media. Standard marketing techniques employed for 
movies thus far have involved the use of interviews and 
questionnaires after participants view a movie. While useful, 
it is difficult with these methods to determine precisely the 
degree to which they were engaged or when they became 
engaged. If technology, which can measure variations in 
media users’ levels of engagement is developed, it would 
help media makers when designing media content to induce 
the intended level of engagement. Currently, the focusing of 
attention can be monitored by measuring associated changes 
in brain electrical activity by means of electroencephalogram 
(EEG) [3][4]. Thus, in principle, EEG measures have the 
potential to provide a more direct and objective method for 
gauging the intensity and nature of moviegoer engagement 
[5][6].  

Recently, with neuromarketing technology, defined as 
the application of neuroscientific methods to analyze and 
understand human behavior in relation to markets and 
marketing exchanges, marketing-relevant human behaviour 

can be understood [7][8][9][10][11]. However, it is difficult 
to measure physiological signals compared to the ease with 
which subjective review questions can be given. Therefore, 
many researchers want to share physiological signal data. 
Hence, a neuromarketing service, which computes the 
Attentional Engagement (AE) of moviegoers by measuring 
physiological signals is necessary and important in film 
production.  In addition, to ensure the reliability of the 
service, it is also important to evaluate the quality of the data. 
The issues and practices with regard to a data evaluation 
include accessibility in data collection, reproducibility of 
basic evaluations, consistency in relational analyses, and 
predictability in modelling [12]. The purpose of a 
measurement is to determine the value of the measurand, that 
is, the value of the particular quantity to be measured. In 
general, the result of a measurement is only an 
approximation or estimate of the value of the measurand and 
thus is complete only when accompanied by a statement of 
the uncertainty of that estimate. The uncertainty in the result 
of a measurement generally consists of several components 
which may be grouped into two categories according to the 
way in which their numerical value is estimated. These are A) 
those which are evaluated by statistical methods, and B) 
those which are evaluated by other means [13].  

In the present study, to serve as a reference data for  
neuromarketing in film industry, we measured the AE of 
participants as they watched movies. To validate the 
reliability of the reference data, we suggested a procedure 
with criteria, which evaluates the quality level of reference 
data. Finally, we applied the procedure to the present 
reference data. The remainder of this paper is organized as 
following. Section II describes the experimental method 
including participants, movie and audio-video system as 
stimulus, experimental procedure, questionnaire, EEG 
recording, statistical analysis, and evaluating the data quality. 
Section III describes the results including self-report measure, 
the EEG response, evaluating the uncertainty, and 
accrediting the level of data quality. Conclusion and future 
work are discussed in Section IV.  

II. METHOD 

A. Participants 
The participants recruited were 12 right-handed students 

from the University of Tsukuba (UT) in Japan. Potential 
participants were excluded if they reported any history of 
neurological problems, took within 6 hours caffeine or any 
drug related to arousal, and had already seen the movie Iron 

62Copyright (c) The Government of South Korea, 2014. Used by permission to IARIA.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            72 / 82



Man. Due to the approximate time of two hours required for 
the long experiment, measurement device errors (n=1), 
drowsiness (n=1) and severe eye blink noise (n=2) caused 
the data for some of the participants and related measures to 
be unavailable for use here. Therefore, only eight 
participants (7 females; mean age: 22.3 years, range 20-28 
years) were analyzed to evaluate AE. 

B. Stimulus 
To avoid previous movie experience by the Japanese 

participants as much as possible, we played the American 
movie Iron Man (manufacturer: Marvel, year produced: 
2008, running time: 2 hours 50 seconds), which was 
considered to be a typical American ‘superhero’ movie. It 
was played using a PC-based beam projector system (Epson 
EB series) with a 5.1 surround-sound system (Cambridge 
DTT-3500). The main story and the time information for 
Film segment 1 and 9 are shown in Table I, and the typical 
scenes are in Fig. 1 (refer to “D. Self-report measures”). 

TABLE I. CONTENT STORY OF IRON MAN 

Film 
IDa Main story of each film content segment Start 

(s) 
End 
(s) 

1 
Tony Stark (the main character in the film) 
and his colleagues were telling indecent 
jokes. 

50 147 

9 
Tony Stark was flying through the night sky 
with the successfully completed Iron Man 
suit. 

3,598 3,720 

a. Film ID is the segment number of film content 
 

Film segment 1 Film segment 9 

  
Figure 1. Typical scenes selected from Iron Man.  

C. Experimental Procedure 
Upon arrival, the participants were fully informed of the 

purpose of the experiment and its procedure, and all signed a 
consent form that was approved by the Institutional Review 
Board (IRB) of UT. They were then led to a small sound-
attenuated room equipped with a 150-inch  wide screen. The 
procedure of the experiment consisted of three sessions. The 
first session (baseline session) was done to measure the 
physiological signals of the participants during a five-minute 
baseline state. The second session (movie session) sought to 
measure physiological signals from participants while they 
watched the movie, and this session took approximately two 
hours. The third session (questionnaire session), which took 
place after the movie, evaluated how the participants felt 
while watching the movie.  

D.  Self-report measures 
With the help of movie narrative and storytelling experts, 

11 film-content segments were selected as relatively 
meaningful parts of the story from the full movie. After 
watching Iron Man, the participants took part in a 

questionnaire session. For each of the 11 film-content 
segments, the participants were asked to rate the affection 
and AE that they felt while watching the movie on a Likert 
scale ranging from 1 to 9. The subjective questionnaire for 
affection was prepared by adapting a questionnaire from the 
model devised by Russel [14]. Finally, we selected two film-
content segments, one with the highest score and one with 
the lowest score, on subjective AE. 

E. EEG recording and data analysis 
Two-channel EEG signals (Fp1 and Fp2 according to the 

10-20 system) for each of the three participants were 
recorded during the movie session using an MP150 system 
and AcqKnowledge software version 4.2 (Biopac, USA). To 
synchronize the physiological signals with the corresponding 
scene, we measured the changes in the luminance in the 
scenes with a photometer. By measuring the rapid changes in 
the levels of luminance, 35 s from the beginning of Iron Man 
was determined as the reference time at which to 
synchronize with the starting point of the EEG. We collected 
the EEG activity with a personal computer at a sampling rate 
of 1,000 Hz. The EEG traces were analyzed in one-second 
intervals with a step of 0.5 s (50% overlapped). The fast 
Fourier transform was then computed on 50%-overlapped 
groups of 1,000-sample  Hanning windows for all artifact-
reduced data segments to obtain the Power Spectral Density 
(PSD) for each segment in the approximately two-hour film. 
Next, the EEG power in the low-beta-frequency band (13-20 
Hz) was calculated from the PSD for each one-second 
segment. EEG signals were analyzed for two film-content 
segments, i.e., those with the highest and lowest AE scores 
as determined from self-reports. To examine the changes in 
the EEG signals while the participants watched these two 
film-content segments, we selected two intervals in each 
film-content segment. The duration of each interval was set 
to 60 s. The mean values of each EEG signals were 
calculated over two 30-second overlapped 60-second-long 
intervals for the two film-content segments separately. To 
analyze the EEG signals, MATLAB S/W version 7 was used. 

F. Statistical Analysis 
For the two film-content segments selected 

corresponding to the highest and the lowest subjective AE 
scores, a paired-samples t-test was carried out for the self-
report ratings (AE and affection). The EEG data were 
subjected to a two-way analysis of variance, with Film 
Content (the content segments with the lowest AE and the 
highest AE) and Interval (Interval 1: 0–60 s and Interval 2: 
30–90 s from the beginning of each film-content segment) as 
repeated-measures factors. The eta-squared statistic (η2), 
indicating the proportion between the variance explained by 
one experimental factor and the total variance, is reported. 
Statistical analysis was carried out using SPSS ver. 21. 

G. Evaluating Data Quality 
To ensure the reliability of the physiological data, which 

will be serviced for neuromarketing in movie industry, we 
established a procedure evaluating the credibility of the data 
(Table II).  

63Copyright (c) The Government of South Korea, 2014. Used by permission to IARIA.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            73 / 82



TABLE II.  PROCEDURE USED TO EVALUATE THE DATA QUALITY  

Standard Reference Data as validated (1 ~ 8) 

1. Specification of quantity to be measured 

Stimulus, Target users (Participants), Physiological signals, Measurand  

2. Measurement method and  procedure 

Measurement method, Measurement procedure, Measurement index 

3. Theoretical basis of the measurement index 

4. Control of factor influencing to measurement 

5. Uncertainty of measurement method 

6. Uncertainty of values measured 

7. Reproducibility 

8. Consistency 

Standard Reference Data as verified (9) 

9. Predictability based on modelling 

Standard Reference Data as Certified (10) 

10. Overall evaluation by two specialists 

 
This procedure includes multiple acceptance categories with 
differing acceptance criteria. If the data satisfy criteria items 
from 1 to 8, then it is qualified as Standard Reference Data 
(SRD) of validated: satisfy from 1 to 9, then qualified as 
SRD of verified: satisfy from 1 to 10, then qualified as 
certified. 

III. RESULTS AND DISCUSSIONS 

A. Self-report 
As Fig. 2 illustrates, the participants reported the highest 

AE for Film Content 9 (7.75±0.97) and the lowest AE for 
Film Content 1 (5.21±1.16). The self-report ratings for AE 
(t=-7.61, p<0.001), valence (t=-4.88, p<0.001), and arousal 
(t=-4.50, p<0.01) were significantly higher in Film Content 9 
compared to those in Film Content 1.  

 

 
Figure 2.  Self-report ratings of attentional engagement for 11 film-content 

segments in the movie Iron Man. 

B. EEG Responses 
To investigate the changes of the EEG signals while the 

participants watched Film Contents 1 and 9, we defined 
Interval 1 as being from 50 to 110 s for Film Content 1 and 
from 3,598 to 3,658 s for Film Content 9 and Interval 2 as 
being from 80 to 140 s for Film Content 1 and from 3,628 to 
3,688 s for Film Content 9. We defined an attention index 
(EEG-attention) as the sum of the EEG powers in the low-
beta-frequency band at Fp1 and at Fp2 because the low-beta-

frequency band is known to be activated during attention. 
For EEG-attention, the main effect of the Interval was 
significant (F (1, 11)=5.23, p<.05, η2=0.37), indicating that 
EEG-attention is higher in the second interval as compared 
to the first in the reaction to both Film Content 1 and Film 
Content 9. However, neither the main effect of the Film 
Content nor the Film Content by Interval interaction was 
significant. EEG-attention increased from 32.67±23.45 to 
36.96±23.75 [ms2] (t=-2.06, p=0.069), which was nearly 
significantly in the reaction to Film Content 9, and from 
31.36±20.58 to 31.54±19.53 [ms2] (t=-1.44, p>0.05) in the 
reaction to Film Content 1 (Fig. 3). 

 

 

Figure 3.  Attention index of the EEG (EEG-Attention). Dotted line 
denotes Film Content 1 and continuous line denotes Film content 9. 

C. EvaluatingUncertainty 
The Type A uncertainty of EEG power ()  for 

Interval 1 of Content segment 1 was calculated from (1). In 
the same way, the Type A uncertainty of EEG power () 
was calculated for each interval of Content segment 1 and 9, 
respectively, and summarized in Table III. The Type B 
uncertainty of EEG potential ()  is the sum of the 
uncertainty when amplifying the EEG potential using a 
voltage amplifier (2):  (), when digitalizing from the 
analog output of the EEG amplifier with a voltage range of 1 
mV and with the quantization resolution B being 16 (3): () , and when the fast Fourier transformation with a 
sampling frequency   of 1,000 (4): ()  [15]. The  () was calculated from the expanded uncertainty of 
voltage amplifier  (), 0.042 V, which was calibrated 
by Korean national standard. The Type B uncertainty of 
EEG potential () was calculated from (5). The Type B 
uncertainty of EEG power () for Interval 1 of Content 
segment 1 was calculated from (6). The combined standard 
uncertainty of EEG power () for Interval 1 of Content 
segment 1 was calculated from (7). In the same way, the 
Type B uncertainty of EEG power () and the combined 
standard uncertainty of EEG power () were calculated 
for each interval of Content segment 1 and 9, respectively, 
and summarized in Table IV. The expanded uncertainty ()  of EEG power with coverage factor k being 2 for 
Interval 1 of Content segment 1 was calculated from (8). In 
the same way, the expanded uncertainty () of EEG power 
was calculated for each interval of Content segment 1 and 9, 
respectively, and summarized in Table IV. Finally, the EEG 
power values with expanded uncertainty are summarized in 
Table V.   

64Copyright (c) The Government of South Korea, 2014. Used by permission to IARIA.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            74 / 82



													() = √ = 7.07	,				 = ∑ (̅)()           (1) 
 																					 () = . = 0.021	                      (2) 

                                           () = √3 =  × 22√3 																																							= 1	 × √ = 0.004	          (3) 
 												() =  =  . × 	= 9.84 × 10    (4) 												() =   +  +  = 0.021	         (5) 

 							() = ()       																						= 2 × 36.34	 × . 	.	 = 0.27		     (6) 
 														() = () + () = 7.08	            (7) 
 														() = 	() = 14.16	,  = 2             (8) 
 

TABLE III.  THE TYPE A UNCERTAINTY OF THE EEG POWER: () 
Participant ID 

EEG Power values and  
Type A uncertainty [μV2] 

Content segment 1 Content segment 9 

Interval 1 Interval 2 Interval 1 Interval 2 

1 42.82 42.49 50.32 51.81 
2 22.29 22.76 23.73 26.47 
3 59.39 65.36 62.71 59.55 
4 21.00 21.02 30.57 30.91 
5 13.13 17.57 17.13 19.35 
6 18.13 19.73 19.78 21.11 
7 63.06 58.54 76.99 87.91 
8 50.91 43.52 30.37 37.67 

Average 36.34 36.37 38.95 41.85 
Uncertainty 
Type A: () 7.07 6.64 7.75 8.29  

TABLE IV.  THE EXPANDED UNCERTAINTY OF THE EEG POWER: () 
Items Type B, combined, and expanded uncertainty 

for EEG power [μV2] 
Segments in 
Film-content Content segment 1 Content segment 9 

Intervals in 
Segments Interval 1 Interval 2 Interval 1 Interval 2 

Uncertainty 
Type B: () 0.27 0.27 0.27 0.27 

Uncertainty 
Combined: () 7.08 6.65 7.75 8.29 

Uncertainty 
Expanded: () 14.16 13.30 15.50 16.58 

 

TABLE V.  THE EEG POWER VALUES WITH EXPANDED UNCERTAINTY  

EEG Power value with uncertainty 
 for attentional engagement [] 

Content segment 1 Content segment 9 

Interval 1 Interval 2 Interval 1 Interval 2 

36.34 
 ± 14.16 

36.37 
± 13.30 

38.95 
 ± 15.50 

41.85 
 ± 16.58 

 

D. Accrediting the level of Data Quality 
To assure the quality of the data for neuromarketing 

service, we evaluated the level of the reliability according to 
the procedure evaluating data quality (Table I). Because the 
EEG power values with the uncertainty  from present study 
satisfy criteria items from 1 to 8 in Table VI, it can be served 
as SRD with quality level of validated. 

TABLE VI.  PROCEDURE USED TO EVALUATE THE QUALITY OF PRESENT 
DATA 

Standard Reference Data as Validated (1 ~ 8) 

1. Specification of quantity to be measured 

Stimulus 
- Genre/ Title: superhero film/ Iron Man  
- Producer/ Produced year: Marvel/ 2008 
- Running time: 2 hours 50 seconds 
Target users (Participants) 

- Nationality: Japan 
- Gender/ Age/ Number of samples: 1 male (age: 20 years), 7 females 
(mean age: 22.3 years, range: 20-28 years) 

Measurand observable: potential of EEG 

Measurand to know: power of EEG 

2. Specification of measurement method and procedure 
Measurement method: EEG at Fp1 and Fp2 in 10-20 system 
Measurement procedure: consists of three sessions (baseline session, 
movie session, questionnaire session) 
Measurement index: EEG power in low-beta-frequency band for 
attentional engagement 

3. Theoretical basis of the measurement index  
EEG power in low-beta-frequency band is known to be activated during 
attention. 

4. Control of factor influencing to measurement 
To reduce noise, the impedance between electrodes was kept below 5 kΩ. 

5. Traceability to national standard 
EEG amplifier was calibrated  by Korean national standard. 

6. Evaluating uncertainty 
Combined uncertainty of Type A and Type B was evaluated for EEG 
power. 

7. Reproducibility 
Reproducibility was satisfied during preliminary experiment. 

8. Consistency 
EEG index of attentional engagement consistent with the subjective self-report. 

Standard Reference Data as Verified (9) 
9. Predictability based on modelling 

Modelling will be carried out as future work. 

Standard Reference Data as Certified (10) 
10. Overall evaluation by two specialists 

Overall evaluation will be carried out as future work. 

65Copyright (c) The Government of South Korea, 2014. Used by permission to IARIA.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            75 / 82



 
In this study, we suggested an evaluation method with 

procedure to assure the reliability of the neuromarketing 
service data. As validated in credibility according to the 
procedure evaluating data quality, the present data as 
reference standard can be serviced to neuromarketing in 
movie industry. The data include as follows:  information of 
stimulus and participants, raw signals of EEG, and EEG 
power in low-beta-frequency band for AE with traceable 
uncertainty.  

IV. CONCLUSION AND FUTURE WORK 

The present study sought to suggest an evaluation 
method, which will be used to assure the reliability of a 
physiological data for neuromarketing service. In conclusion, 
the method evaluating the reliability of EEG data from 
participants while watching American movie Iron Man 
results in successful application. The EEG power values with 
the uncertainty, which is traceable to a Korean national 
standard can be used as validated SRD for a neuromarketing 
service. This  data can be serviced as reference standard to 
compute AE of moviegoers while watching the American 
movie Iron Man. 

In the future, to enhance the reliability level of present 
data for neuromarketing service, it will be necessary to 
construct a model, which predicts the AE of participants 
while watching movies. 

ACKNOWLEDGMENT 
The authors thank the students of the University of 

Tsukuba who participated and assisted in this study, and 
especially Prof. SeungHee Lee and her students in the 
Department of Science of Kansei Design. This research was 
supported by two projects. The one is ‘A Technical 
Development of the Global Code Based on the Story,’ 
sponsored by the Korea Creative Content Agency and the 
Ministry of Culture, Sports and Tourism. The other is ‘The 
Development and the Dissemination of National Standard 
Reference Data,’ sponsored by Korean Agency for 
Technology and Standards. 

 

REFERENCES 
[1] H. Qin, P. P. Rau, and G. Salvendy, “Measuring Player 

Immersion in the Computer Game Narrative,” International 
Journal of Human-Computer Interaction, vol. 25, 2009, pp. 
107-133. 

[2] J. Wang and B. J. Calder, “Media engagement and advertising: 
Transportation, matching, transference and intrusion,” Journal 
of Consumer Psychology, vol. 19, 2009, pp. 546-555. 

[3] P. A. Nussbaum, A. Herrera, R. Joshi, and R. Hargraves, 
“Analysis of Viewer EEG Data to Determine Categorization 
of Short Video Clip,” Procedia Computer Science, vol. 12,  
2012, pp. 158-163. 

[4] G. Vecchito, L. Astolfi, F. V. Fallani, F. Cincotti, D. Mattia, 
and et al., “Changes in brain activity during the observation of 
TV commercials by using EEG, GSR and HR measurements,” 
Brain Topogr, vol. 23, 2010, pp. 165-179. 

[5] T. A. Dennis and B. Solomon, “Frontal EEG and emotion 
regulation: Electrocortical activity in response to emotional 
film clips is associated with reduced mood induction and 
attention interference effects,” Biological Psychology, vol. 85,  
2010, pp. 456-464. 

[6] M. Gola, M. Magnuski, I. Szumska, and A. Wrobel, “EEG 
beta band activity is related to attention and attentional 
deficits in the visual performance of elderly subjects,” 
International Journal of Psychophysiology, vol. 89, 2013, 
334-341. 

[7] N. Lee, A. J. Broderick, and L. Chamberlain, “What is 
‘neuromarketing’? A discussion and agenda for future 
research,” Int J Psychophysiol, vol. 63, 2007, pp. 199-204. 

[8] C. Solnais, J. Andreu-Perez, J. Sanchez-Fernandez, and J. 
Andreu-Abela, “The contribution of neuroscience to 
consumer research: A conceptual framework and empirical 
review,” Journal of Economic Psychology, vol. 36, 2013, pp. 
68-81. 

[9] M. J. R. Butler, “Neuromarketing and the perception of 
knowledge,” Journal of Consumer Behaviour, vol. 7, 2008, pp. 
415-419. 

[10] R. N. Khushaba, C. Wise, S. Kodagoda, J. Louviere, B. E. 
Kahn, and C. Townsend, “Consumer neuroscience: Assessing 
the brain response to marketing stimuli using 
electroencephalogram (EEG) and eye tracking,” Expert 
Systems with Applications, vol. 40, 2013, pp. 3803-3812. 

[11] G. Vecchiato, F. V. Fallani, L. Astolfi, J. Toppi, F. Cincotti, 
and et al., “The issue of multiple univariate comparisons in 
the context of neuroelectric brain mapping: An application in 
a neuromarketing experiment,” Journal of Neuroscience 
Methods, vol. 191, 2010, pp. 283-289. 

[12] R. G. Munro, “Data Evaluation Theory and Practice for 
Materials Properties,” NIST Recommended Practice Guide, 
Special Publication 960-11, 2003, pp. 37-43.  

[13] A. Urbano, C. Babiloni, F. Carducci, L. Fattorini, P. Onorati, 
and F. Babiloni, “Evaluation of measurement data - Guide to 
the expression of uncertainty in measurement,” BIPM, JCGM 
100:2008, 2010, pp. 4-27. 

[14] J. A. Russel, “A Circumflex Model of Affect,” J. Pers. Soc. 
Psychol., vol. 39, 1980, pp. 1161-1178. 

[15] G. Betta, C. Liguori, and A.Pietrosanto, “Propagation of 
uncertainty in a discrete Fourier transform algorithm,” 
Measurement, vol. 27, 2000, pp. 231-239. 

66Copyright (c) The Government of South Korea, 2014. Used by permission to IARIA.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            76 / 82



A Platform for Secure and Trustworthy Service Composition 

Michela D’Errico, Francesco Malmignati 

Selex ES S.p.A. 

Rome, Italy 

{michela.derrico, francesco.malmignati}@guests.selex-

es.com 

Giovanni Fausto Andreotti 

Italtel S.p.A. 

Milan, Italy 

fausto.andreotti@italtel.com

 
Abstract — The Future Internet is moving from today's static 

services to an environment in which service consumers will 

transparently mix and match service components depending 

on service availability, quality, price and security attributes.   

This fact poses some challenges in terms of security and 

trustworthiness that should be guaranteed to the final users. In 

this paper, we present a platform for secure service design and 

composition based on the Activiti open-source workflow engine 

and Business Process Model and Notation (BPMN) extensions 

for expressing security needs over service specifications. The 

platform, developed in the realm of the Aniketos FP7 funded 

project, offers the capability to service designers and service 

providers to establish and maintain trustworthiness and secure 

behavior in today's constantly changing service environments.  

In order to demonstrate the validity of this approach, the use 

of the platform is shown in a real application scenario in which 

a security requirement on trustworthiness specified by design 

needs to be monitored and guaranteed during service 

execution. 

Keywords-service composition; service design; service 

deployment; security requirements; trustworthiness.  

I.  INTRODUCTION  

A web service composition is needed when a desired 
functionality cannot be provided by a single web service. A 
service designer who wants to create a composite service has 
to specify the way the atomic web services have to be 
composed in order to fulfill his objectives. To this aim, 
service compositions can be modelled as business processes, 
namely, a set of activities that interoperate to perform a task. 
In this process-oriented approach, service composition is 
described using workflow languages and technologies.  

In this paper, we present part of the work carried out in 
the Aniketos funded project [1] that aims to establish and 
maintain trustworthiness and secure behavior in an Internet 
service environment. As a result, a platform has been 
developed in order to support the service designer in 
performing all the steps needed to create and to manage 
trustworthy and secure service compositions. 

Currently, many Web Service (WS-*) specifications 
address security concerns, but most of the focus is on secure 
message exchange [2], and current orchestration and 
choreography lack support for the specification and 
enforcement of the security process level requirements. 
These higher order interactions must become a part of 
composition. 

The Aniketos platform overcomes this by allowing a 
service designer to specify security needs during the 
modeling of the composite service and by supporting the 

service discovery and composition/adaptation based on 
security properties and not just on the functional descriptors. 

The notion of a trustworthy service at the most basic 
level can be taken as a service satisfying some minimum 
security requirements, most notably attestation and 
authorization of service endpoints, and the use of secure 
communication channels [3], but also involves a judgment 
about how likely that service is to perform as claimed. At 
present, a disconnection exists between the diverse 
mechanisms for managing trust. There is also a lack of 
solutions for availability and security aspects of dynamic 
binding (e.g. at runtime) of services. Although 
trustworthiness aspects can be defined for services, it’s a 
major challenge to define trustworthiness aspects for 
composite services. Some approaches take into account 
various factors such as reputations and qualities of the 
services [4] and confidentiality and integrity [5]. 

Aniketos offers a way of expressing different aspects of 
trustworthiness and provide design time and runtime 
modules for evaluating and monitoring the trust level 
between service providers/components.  

The present paper is organized as follows: Section II is 
dedicated to the background concepts that have been adopted 
and further developed to realize the platform. In Section III, 
an overview of the components of the Aniketos platform and 
the main features supported by a set of software packages is 
described. The application of the Aniketos design time tool-
chain and service runtime management is reported in Section 
IV. Section V shows how the Aniketos platform can be used  
to implement a real case study. Finally, Section VI deals with 
related works and concludes the paper.  

II. COMPOSITE SERVICE MODELING 

In this section, components and concepts adopted for the 
development of the platform are presented.  

A. BPMN language 

The platform for web service composition developed in 
Aniketos uses Business Process Model and Notation 
(BPMN) [6], a de facto standard for the process modeling, 
together with the Activiti engine [7], a process server able to 
execute BPMN business processes.  The Aniketos platform 
adds to the service composition the support for security and 
trustworthiness properties management by extending the 
BPMN standard language with proper security annotations. 

BPMN, being a flow chart based notation, facilitates the 
modelling of the workflow for the service composition. The 
resulting business process diagram is easily understandable 
by technical as well as business users.  

67Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            77 / 82



The Aniketos platform provides the service designer a set 
of features for the realization of runnable secure and 
trustworthy composite services. The whole design time 
specification process, along with runtime tools available for 
the management of the service execution, are detailed in the 
remainder of the paper. 

B. BPMN elements  

The BPMN specification contains a large set of object 
types, over 100, but a very small set of the constructs can be 
used to model a service composition with the Aniketos 
platform.  

Core BPMN elements are grouped into four categories: 
Flow objects, Connection objects, Swim lanes and Artifacts. 
Throughout the paper only the elements belonging to the first 
two categories will be used, specifically Event, Task and 
Gateway as Flow objects, Sequence Flow as Connection 
objects. In the following, a brief description of these 
elements is given: 

 Start event: represents the event that triggers the start 
of the service execution. 

 End event: represents the end of the process 
execution.  

 Task: represents part of the work to be done in the 
process  that cannot be further decomposed. 

 Gateway: is used to model forking and merging of 
paths. 

 Sequence Flow: is used to connect the Flow objects 
and to specify in which order the tasks must be 
executed.   

III. ANIKETOS PLATFORM  

An overview of the Aniketos platform is depicted in 
Figure 1.  

Design time support is available for service designers 
that use the platform in order to build secure and trustworthy 
service compositions. The capabilities offered in terms of 
analysis and composition of services are supported by the 
underlying components of the platform, although in this 
paper we will focus on the use of the front-end tools for the 
specification of secure and trustworthy service compositions.  

The runtime support is dedicated to the monitoring of 
service properties during execution and adaptation in case of 
violation of security specifications.  

The Aniketos platform [8] is composed by a number of 
components that have been grouped into four packages: 

 Socio-Technical Security Requirements 

 Secure Service Specification, Discovery & 
Deployment 

 Secure Service Validation & Verification 

 Security Monitoring & Notification. 

Software packages can be potentially targeted to a variety 
of application domains that need security and 
trustworthiness, thus, aiming to effective exploitation of 
Aniketos’ results. 

 

Figure 1: Aniketos platform overview. 

The packaging takes into account the components 
functionalities, their licensing scheme and their role in the 
composite service process lifecycle. 

The originality of this approach resides not only in the 
complete set of design time and runtime capabilities offered 
in an unique framework, but is also due to the possibility for 
the users to selectively adopt the features provided by the 
Aniketos packages according to their needs, thus, reducing 
the cost of the final realization. 

A. Socio-Technical Security Requirements 

This package offers a graphical tool [9] to model Socio-
Technical Systems (STSs) [10][11] that are complex systems 
in which social actors interact with one another and with 
technical components to fulfill their goals. In such systems, 
many security issues arise from the interaction between 
actors and from the manipulation of the exchanged 
information.  

A threat repository included in this package allows the 
designers to look for potential threats to be taken into 
account in the model and to acquire useful information on 
the threats and possible countermeasures in order to mitigate 
the associated risk. 

In the realm of Aniketos, the package can be used to 
model high level security and trustworthiness requirements 
of a holistic application and/or parts of it. Of particular 
interest is the possibility to model the security requirements 
for a composite service process, which has to be developed 
from scratch or already exists and needs to conform to 
specific requirements. 

B. Secure Service Specification, Discovery & Deployment 

This package is used to model the  composite service 
process with BPMN and to specify the security and 
trustworthiness requirements that the services taking part in 
the composition must fulfill. The BPMN is thus enriched 
with the consumer policies that represent the low level 
representation of the requirements expressed by the service 
designer through the Socio-Technical Security Requirements 
package. The package offers the possibility to publish 
Aniketos compliant services to the Aniketos Marketplace, an 
enriched service registry that supports discovery of atomic 
services and provision of security descriptors, also called 
agreement   templates. 

Finally, this package enables the deployment of the 
created service compositions to an application server for 
runtime execution.  

68Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            78 / 82



Currently, a set of security properties are supported, 
namely trustworthiness, separation and binding of duty, 
confidentiality, non-repudiation, integrity and need-to-know. 
In the remainder of the paper, the trustworthiness 
management will be described in detail. 

C. Secure Service Validation & Verification 

This package offers verification and validation checks 
during design, announcement and execution of secure 
services.  

This mechanism is built upon the matching between the 
consumer policies, representing the desired properties, and 
the services agreement templates, representing the properties 
that can be provided by the services. 

The service validation process can be invoked when a 
composite service has been designed and the service 
developer needs to ensure that the security features of the 
involved services comply with the service specification.  

The same check can be performed at runtime to validate 
that the offered security level of the composite service keeps 
complying with the consumer’s security policy. 

Furthermore, this package is used to perform a thorough 
security check on the properties declared by the components 
of a composite service. 

D. Security Monitoring & Notification 

 This package enables the monitoring of execution of 
composite services and the generation of alerts when any 
malfunction in the proper service operation is identified.  

Such malfunctions can refer to the violation of a service 
contract and/or the change in the trustworthiness level and/or 
detection of threat affecting the offered composite service. 

The package enables subscriptions to service monitoring 
modules in charge of capturing and analyzing specific type 
of events produced by the service execution environment and 
of generating alerts and notifications for potential breaches at 
the service layer.  

IV. SECURE SERVICE COMPOSITION FRAMEWORK 

The Service Composition Framework (SCF) is the design 
time tool for secure and trustworthy service composition and 
is based on Activiti designer [7]. The SCF includes the 
functionalities of the Secure Service Specification, Discovery 
& Deployment package and the Secure Service Validation & 
Verification  package, in order to offer an integrated and 
complete environment allowing the service designer to 
perform all the steps needed to create a composite web 
service. The design process starts with building the BPMN 
model of the composite service as a business process and 
ends with the deployment of the created composition plan as 
a web service. The deployment entails the announcement of 
the service to a Marketplace so that it can be made available 
and discovered by service providers.  

A. Business process modeling 

A composite service is a complex service made up of 
atomic services that can be connected in different ways, thus, 
providing different results based on how the services are 
combined.  

 

Figure 2: Service composition business process. 

A business process starts with a Start Event element and 
ends with an End Event element. A web service composition 
can be modeled by using a Start Event, a set of service tasks 
connected with gateways and connection elements and an 
End Event, as shown in Figure 2. The tasks used for the 
service composition are service tasks that identify a piece of 
the process that is executed by invoking a web service.  

The way the tasks are connected specifies how the final 
output of the composite service is built by using the output 
provided by the service tasks. The BPMN diagram is the 
graphical representation of the service composition. An 
example is shown in Figure 2. 

B. Binding and discovery of services 

In order to produce a runnable composition plan, each 
service task has to be bound to a web service. The binding 
has to be chosen to satisfy the functional requirements 
assigned to the service task. To this aim, for each service 
task, the Type parameter must be set to allow the discovery 
of well-suited web services. The value for the Type 
parameter is chosen from a service taxonomy agreed and 
shared by service designers and developers. The taxonomy is 
provided along with a vocabulary explaining what each 
service type means and entails in terms of the provided 
functionality.  

In order to help the service designer to set the service 
Type, the SCF provides in a pop-up a Type Cloud showing 
the set of the service types that are available in the 
Marketplace. 

Once specified the service Type for each service task the 
SCF is ready to execute the service discovery, which will 
return the set of operations provided by web services 
belonging to the service Type category specified. The SCF 
shows, for each operation, the input required and the output 
provided. For each service task, the service designer has to 
select one of the available web service operations and has to 
specify a valid input in terms of process variable or directly 
defining it with a plain value. 

Moreover, for each service task, the service designer has 
to create the variable that will contain the result of the task, 
that is the output provided by the selected web service 
operation. 

69Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            79 / 82



The set of process variables available for each service 
task contains the output variables of all the service tasks 
executed before in the process and the variables provided by 
the Start Event. The set of input added to the Start Event can 
be seen as global variables accessible by any task in the 
process. 

C. Security and trustworthiness requirements 

The binding of service tasks with web services has the 
aim to fulfill the functional requirements. The security and 
trustworthiness requirements can be specified once the 
binding has been completed. As for the properties 
specification at BPMN level, we will focus on 
confidentiality, integrity and trustworthiness.  

The service designer can add confidentiality property if 
data to be transmitted between service tasks have to be kept 
confidential and thus the use of an encryption algorithm is 
required. The service designer can also specify which data 
(input, output or both) are required to be enciphered. 

The integrity property can be added to specify that the 
service designer needs that a “sender” service has to apply a 
mechanism enabling the “receiver” service to detect whether 
data has been corrupted or modified by an attacker. In this 
way, the designer can specify the mechanism and the 
algorithm to be used by the “sender” service. 

The trustworthiness property is specified by setting a 
threshold value that is computed [12] by taking into account 
a set of parameters such as service provider’s  reputation and 
Quality of Service (QoS) [13]. 

The specified properties represent the consumer policy, 
namely the desired properties that have to be compared with 
the provided security properties to establish whether the web 
services selected during the discovery phase satisfy the 
security and trustworthiness requirements. The offered 
properties are encoded in ConSpec language [14] and written 
in a file called agreement template, associated to each web 
service in the Aniketos Marketplace.  

To enable the comparison, the consumer policies have to 
be encoded in ConSpec language as well by using an editor  
available in the SCF. In this operation, the SCF helps the 
service designer with a ConSpec editor that will use the 
properties specified in the previous step to automatically fill 
out the consumer properties files. 

D. Creation and validation of composition plans 

After binding service tasks with web services and 
specifying security requirements, the SCF is used to create a 
set of composition plans. The operation selected for service 
task Sk during the discovery phase can be offered by Nws(k) 
different web services, this means that Ncp composition plans 
can be created satisfying the functional requirements. The 
number Ncp of possible composition plans is given by the 
following formula: 

    ∏    ( )
 

 
 (1) 

where N is the number of service tasks in the 
composition and Nws(k) is the number of web services 

providing the web operation selected for the binding of the 
k

th
 service task. 
At this point, the service designer can use the SCF to 

start the security and trustworthiness verification of the 
composition plans. The result of this verification will be the 
set of composition plans having web services whose offered 
properties match the consumer policies. 

E. Rules definition and service deployment 

Then, the service designer has to select one of the 
composition plans and has to specify the rules for the 
management of events that can occur during runtime 
execution. A set of rules can be defined to handle specific 
events, such as a threat detection or a violation of the 
security and trustworthiness properties specified during 
design. For each rule, the service designer can specify the 
constraints for the event to fire the rule and the action to be 
performed once the rule is fired. For example, an action we 
introduce here is the recomposition, a mechanism that 
replaces the web service offering the operation selected 
during the binding. The result of this action will be a 
different runnable composition plan satisfying the same 
security and trustworthiness properties as the substituted web 
service. 

Having specified the rules, the designer can complete the 
design time process by deploying the composite service. The 
deployment entails the exposure of the composition as a web 
service and its announcement in the Aniketos Marketplace, 
thus, allowing other service designers to use it as part of 
other service compositions. 

F. Runtime support 

The platform includes a Service Runtime Environment 
(SRE) that is in charge of executing the services and 
enforcing the rules specified by the service designer. To this 
aim the SRE must interact with the modules that monitor the 
services security and trustworthiness. Specifically, based on 
the events specified in the rules, the SRE subscribes to the 
modules that are able to detect and notify about those 
specific events. This mechanism allows the SRE to trigger 
the action specified in the rule when the related event is 
received. 

Support for runtime management is provided by the 
Security Monitoring & Notification package. 

V. APPLICATION TO A REAL CASE STUDY 

In this section, we describe the application of the 
Aniketos design time and runtime support to a real example 
taken from an industrial case study [15]. The aim is to create 
a HotelBookingService that takes as input the user and hotel 
data and returns the reservation detail. The service will then  
be used to build a web application for hotel reservations. The 
process is split into the following main phases:  

a) Design time: the designer creates a composite 

service with a trustworthiness  security requirement. Before 

deploying the service the designer specifies that, if at 

runtime the requirement is not fulfilled, the service has to be 

70Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            80 / 82



recomposed. Then, the service is deployed and integrated 

into a web application that is available to the user. 

b) Runtime: the system performs a service adaptation 

(in this specific case a recomposition) of the service in case 

of security violations detected during service execution, in a 

manner that is totally transparent to the user. 

B. Scenario definition 

The service designer aims to create a hotel reservation 
service that takes in input user’s preferences and data that are 
necessary for booking the hotel and returns a web page with 
Points of Interest (POIs) related to the hotel location plus a 
confirmation mail. The scenario is depicted in Figure 3.  

 The composite service includes an atomic service that 
provides a map showing a set of locations. The designer 
selects the service offered by Service Provider A (SP-A) and 
the resulting composite service is deployed and integrated 
into a web application.  

An incident happens to the servers of the SP-A: this 
affects the reputation of the service provider and thus the 
trustworthiness associated to it. The final result is that the 
trustworthiness becomes lower than the threshold value set 
by the designer at design time implying that the service 
properties do not match anymore the consumer policies and 
thus a recomposition is needed. The result will be the 
substitution of the atomic service provided by SP-A with a 
similar service provided by another Service Provider (SP-B) 
matching the trustworthiness requirement. 

 

Figure 3: Application scenario. 

C. Creation of Composite Service  

This section aims to describe the use of the Aniketos 
front-end tools following the process described in Section IV 
for the design of a secure and trustworthy composite service 
in the application scenario. 

The process starts in Figure 4 with drawing the business 
process representing the composite service. Then, the 
following operations are performed in sequence: discovery, 
configuration and specification of the security and 
trustworthiness requirements over the services involved in 
the composition.  

The requirements that are needed in this case are: 
confidentiality, scope of usage and trustworthiness. 

 Confidentiality will be needed to transmit data 
related to user’s information in a secure manner.  

 Scope of usage (e.g., need-to-know) will guarantee 
that user’s data will be used only in the scope of the 
service and not for any other purposes.  

 Trustworthiness indicates that a (minimum) level of 
trustworthiness value for elementary services 
(BookingSrv and MapSrv) that belong to the 
composition is required. 

Since trustworthiness will be the only requirement to be 
monitored in this scenario, it’s worth to describe that in 
Aniketos the trustworthiness of the composite service is 
evaluated by using the weakest link principle. A specific 
module of the Aniketos platform (Trustworthiness module) 
evaluates the trustworthiness value for each service taking 
part in the composition [16]: the lowest value is returned as 
the trustworthiness value of the composite service. In 
Aniketos, the trustworthiness value is a combination of 
cognitive and non-cognitive measure of trust [17][18].  
 

  

Figure 4: Service Composition Framework. 

When the modeling process is complete, the composition 
plans are generated and validated in terms of trustworthiness.  

Finally, the service designer makes a selection and 
deploys a specific composition plan in order to make it 
available to other service providers through the Marketplace. 

D. Service-based application 

This section describes how the deployed service will be 
used in the final application.  

A web service is provided with a Web Service 
Description Language (WSDL) [19] that exposes the 
operations offered by the service and gives information on 
how the operations can be invoked by a client. This means 
that the service result cannot be taken as it is but has to be 
integrated, for instance, into an application. For the hotel 
reservation application, the service client is integrated in a 
web page. The input required by the service is asked through 
a form that is submitted by the user. Thus, the composite 
service execution is triggered and the result is presented in a 
new web page returned by the composite service.    

71Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

                            81 / 82



E. Security management at runtime 

This section shows the runtime execution of the 
composite service including the monitoring for detection of 
contract violations. In this scenario, when the level of 
trustworthiness is no longer guaranteed by an atomic service 
belonging to the composition, an event detecting this 
contract violation is sent to the runtime environment.  

According to the rule set at design time, a recomposition 
is triggered and leads to the substitution of the atomic service 
with another one matching the trustworthiness requirement. 
Figure 5 shows the application rendering when the atomic 
service that provides the map is replaced.   

 

Figure 5: Application rendering. 

 
This simple scenario demonstrates the effectiveness of 

the Aniketos approach that is to establish and maintain the 
security and trustworthiness properties of the service during 
service execution, in a totally transparent manner to the end-
user. 

VI. CONCLUSION AND FUTURE WORK 

A platform for designing and ensuring secure and 

trustworthy service compositions has been presented. This 

approach, developed in the realm of the Aniketos project, 

covers all the phases in the service development chain, 

ranging from modeling and specification of security needs 

to the actual operation of the delivered services. 
The Aniketos platform uses design time descriptions to 

establish trust and verify safe and secure service behaviour 
among several different service providers. Runtime 
monitoring and automatic adaptation of services are needed 
due to an evolving environment of threats and operating 
conditions. Down-time is costly; a composed service must be 
able to operate even during an attack (with possible 
limitations or change of behaviour), taking risks and 
adaptation costs into account. 

Further improvements are needed to make discovery and 
security verification more mature, and to express what the 
compositions should do in case of attacks. Although some 
existing security modelling and verification techniques allow 
the service composer to specify security properties, the 
number of services satisfying these requirements may be 
large. It will be therefore important to enhance the Aniketos 

platform and offer a scalable approach to service 
compositions based on security properties. 

Aniketos already delivers a functional service runtime 
environment that supports reception of warnings from a 
notification service and dynamically adapts the composition 
in a risk-reducing manner. However, further work is needed 
to enlarge the set of monitored security properties. 

ACKNOWLEDGMENT 

The research leading to these results has received funding 
from the European Union Seventh Framework Programme 
(FP7/2007-2013) under grant no. 257930 [1]. 

REFERENCES 

[1] Aniketos: Ensuring Trusworthiness and Security in Service 
Composition, http://www.aniketos.eu [retrieved: April, 2014]. 

[2] A. Charfi et al., "Reliable, Secure, and Transacted Web 
Service Compositions with AO4BPEL," in Proc. of the 
European Conference on Web Services, 2006, pp. 23-34. 

[3] Z. Jianwu et al., "On achieving trustworthy SOA-based Web 
Services," SAM'06, Las Vegas, NV, USA, 2006, pp. 341-347. 

[4] H. Elshaafi, J. McGibney and D. Botvich, "Trustworthiness 
monitoring and prediction of composite services", ISCC, 
2012, pp.580–587. 

[5] B. Zhou et al, "Secure service composition adaptation based 
on simulated annealing", ACSAC, 2012, pp. 49–55. 

[6] OMG, Business Process Model and Notation (BPMN), 2011, 
http://www.omg.org/spec/BPMN/2.0. 

[7] Activiti BPM Platform, http://www.activiti.org [retrieved: 
April, 2014]. 

[8] Aniketos Deliverable 5.3 “Final Aniketos Platform 
integration”,  March 2014. 

[9] Socio-Technical Security modeling language and tool, 
http://fmsweng.disi.unitn.it/sts [retrieved: April, 2014]. 

[10] F. E. Emery and E. L. Trist, “Socio-Technical Systems”, 
Management Sciences, Models and Techniques, editors 
Churchman, C. W. Pergamon, London, 1960. 

[11] F. Dalpiaz et al, “Security requirements engineering via 
commitments”,  IEEE STAST, 2011, pp. 1-8. 

[12] H. Elshaafi, and D. Botvich, “Aggregation of trustworthiness 
properties of BPMN-based composite services.”, IEEE 
CAMAD,  2012, pp. 383-387. 

[13] E. Maximilien and M. Singh, “Agent-based trust model 
involving multiple qualities”, Proc. 4th Int. Conf. on 
AAMAS, 2005. 

[14] I. Aktug and K. Naliuka, “ConSpec - A Formal Language for 
Policy Specification”, Electr. Notes Theor. Comput. Sci., 
(197) 1, 2008, pp. 45-58. 

[15] Aniketos Deliverable 6.1 “Initial analysis of the industrial 
case studies”, July 2011. 

[16] H. Elshaafi, J. McGibney, and D. Botvich, “Trustworthiness 
monitoring and prediction of composite services”, IEEE 
ISCC, 2012, pp. 580-587. 

[17] Aniketos Deliverable 2.1 “Models and methodologies for 
embedding and monitoring trust in services”, July 2011. 

[18] Aniketos Deliverable 2.4 “Models and methologies for 
integrated security and trust paradigm for service contracts”, 
June 2013. 

[19] E.Christensen, F. Curbera, G. Meredith, and S. Weerawarana, 
“Web Services Description Language (WSDL) 1.1”, World 
Wide Web Consortium (W3C), 2001.  

 

72Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

Powered by TCPDF (www.tcpdf.org)

                            82 / 82

http://www.tcpdf.org

