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Foreword

The Seventh International Conference on Advances in Signal, Image and Video Processing
(SIGNAL 2022), held between May 22 – 26, 2022, continued the inaugural event considering the
challenges mentioned above. Having these motivations in mind, the goal of this conference was to bring
together researchers and industry and form a forum for fruitful discussions, networking, and ideas.

Signal, video and image processing constitutes the basis of communications systems. With the
proliferation of portable/implantable devices, embedded signal processing became widely used, despite
that most of the common users are not aware of this issue. New signal, image and video processing
algorithms and methods, in the context of a growing-wide range of domains (communications,
medicine, finance, education, etc.) have been proposed, developed and deployed. Moreover, since the
implementation platforms experience an exponential growth in terms of their performance, many signal
processing techniques are reconsidered and adapted in the framework of new applications. Having
these motivations in mind, the goal of this conference was to bring together researchers and industry
and form a forum for fruitful discussions, networking, and ideas.

We take here the opportunity to warmly thank all the members of the SIGNAL 2022 Technical
Program Committee, as well as the numerous reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to SIGNAL 2022. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the SIGNAL 2022 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that SIGNAL 2022 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of signal
processing.

We are convinced that the participants found the event useful and communications very open.
We also hope that Venice provided a pleasant environment during the conference and everyone saved
some time for exploring this beautiful city
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Cleaning Outdoor Activity Logs using Deep
Learning

Davide Sbetti
Free University of Bozen–Bolzano
Email: davide.sbetti@gmail.com

Sergio Tessaris
Free University of Bozen–Bolzano

Email: tessaris@inf.unibz.it

Abstract—Nowadays, position recording personal tracking de-
vices are ubiquitous and used by both athletes and outdoor
enthusiasts to track and analyse their activities. These devices rely
on Global Navigation Satellite Systems to obtain the position in
real time. Although the nominal precisions of the different GNSS
are high enough for analysis, there are several environmental
factors that affect the precision of such devices. Most of the
commercial services providing analysis of outdoor activities use
techniques to “clean” the user-uploaded data (tracklogs). Most
of these techniques require and exploit the huge amount of data
that they collect and analyse, but the resulting logs still manifest
outliers and recording errors. In this paper, we present a deep
learning based technique to identify part of tracklogs that might
be influenced by recording errors, in such a way that can be
corrected using standard techniques. Our approach does not
require geographical or crowdsourced data, and can be also used
on low powered devices.

Index Terms—Data Cleaning, GPS Traces, Trajectory repair-
ing, recurrent neural networks

I. INTRODUCTION

Location tracking devices based on Global Navigation Satel-
lite Systems (GNSS) are widely used by outdoor enthusiasts
and athletes to track their activities for both analysis and social
sharing purposes. Although the precision of GNSS-based
geolocation is within a few metres under optimal conditions,
there are several environmental and receiver-related factors
that may introduce substantial errors [1].

Most commercial providers of services related to the anal-
ysis and sharing of outdoor activities employ techniques to
correct imprecisions in the data provided by users (e.g. [2]).
However, the results are not always satisfactory, even by
exploiting the large amount of data collected by the big players
in the field (see, e.g., Figure 1).

In our work, we focus on two types of error that are often
present in recorded activity logs, which are demonstrated in
Figure 1. Those are the errors that can be easily identified
by users and appear in most outdoor activity recordings. Both
these segments are extracted from the web interface of one of
the biggest commercial service provider, after any correction
that might have been applied to the raw data. The first segment
shows a pause that has not been detected by the recording
device (some devices feature pause detection algorithms, but
often they do not provide a reliable outcome), while the second
shows that some recorded points do not reflect the actual
position of the receiver. Note that the nature of the two types
of errors are different, since the behaviour of the first case

is due to the intrinsic imprecision of the position pinpointing
while the second is mostly due to environmental conditions,
as rock formations. It might be argued that part of the tracking
of the first case is due to inevitable small movements of the
receiver; however, even in this case, it would be desirable to
remove these segments from the recording.

(a) (b)

Fig. 1. Examples of recording errors

In our research, we explore the use of Deep Learning [3]
(DL) techniques to improve the quality of recorded activities
without resorting to big data techniques (e.g., heat maps) or
background knowledge (e.g., network of roads and paths). The
reason is twofold, from one side we would like to be able to
apply our technique at the level of edge computing also on low
powered devices; on the other hand, there are several outdoor
activities that are not constrained by the network of paths or
roads (e.g., ski touring or kayaking). We are also interested
to develop techniques not relying on the behaviour of specific
receivers or activities. In this way, it could be applied to data
coming from different sources, or even when the information
on the recording device or activity type has been stripped from
the data.

The contributions of this work are as follows.
• Collection of an annotated dataset of outdoor activities

for data repair.
• Evaluation of different DL architectures for GNSS data

classification.
• Development and evaluation of a DL model for classify-

ing GNSS receiver errors in activity logs.
• Evaluation and development of algorithms for repairing

activity logs.
The next section will introduce the main concepts and

related works, because of space restrictions we assume that
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the reader is familiar with Deep Learning techniques and
architectures (otherwise the reader is referred to the relevant
bibliographic entries). Section III describes the development
and evaluation of the classifier, while Section IV describes the
repair techniques. A more detailed description of this work is
available in the M.Sc. thesis [4].

II. BACKGROUNDS AND RELATED WORK

Modern tracking devices use combinations of different
GNSS to identify the current location; moreover, some devices
integrate data from other sensors – e.g., barometer, gyroscope,
compass – to compensate for possible reception errors. In this
paper, we focus on the Global Positioning System (GPS), but
similar considerations apply also to the other systems [5].

GPS uses 24 satellites on different orbits to enable the
reception of at least four of them, regardless of the location
of the receiver. In addition, there are control stations that
precisely monitor the position of each satellite and share
this information using a common registry. To calculate its
position, the receiver listens to the electromagnetic waves of
four different satellites. It then monitors the time taken by the
signal to reach the device starting from the satellites and, since
it knows the exact position of each satellite, is able to calculate
its position with respect to them. Four different satellites are
required to measure the three different coordinates (latitude,
longitude, and altitude), while the fourth signal is used to
synchronise the internal clock of the device [6].

According to a study conducted in 2015 [7], the positioning
error of a smartphone using GPS is within 5m when there
are no obstacles. However, the GPS signal can be influenced
by the surrounding environment. In particular, the signal can
be reflected by some surfaces resulting in what is known as
multipath reception [1], depicted in Figure 2.

Fig. 2. Multipath effect. Reproduced from [1]

The reflected signal takes longer than the correct direct
path, introducing a delay that could result in a potential error
in the calculation of the position. Moreover, given that the
satellites are constantly moving, the effect of multipath at a
certain location changes over time, depending on the position
of the satellites. Experiments have shown that the multipath
effect can introduce an additional average of 8m error in the
derived position [1]. This effect may occur in nature due to,
for example, mountains, resulting in what is widely known as
canyon effect. This effect is also occurring in urban contexts,
where tall buildings substitute rock walls (urban canyons) [8].

Figure 3 shows the effects of the rocky environment on a
recorded activity.

Fig. 3. Canyon effect on an activity log recorded during a via ferrata

In this paper, we use the term tracklog to denote a sequential
record of geographic coordinates with associated timestamps
(the location points or simply points) collected by a GNSS
receiver. Timestamps are essential for most activity analysis
tasks, and tracklogs are also referred as GNSS traces or
trajectories in the literature. A tracklog repair is an editing
of the sequence by removing or changing the geographic
coordinates of some points. We assume the correctness of the
timestamps; in particular, the relevant detail is the time interval
between timestamps.

The task of cleaning GPS data, and as a more general
case time series, has been widely studied in the literature. We
identified six groups of related works based on the techniques
they employ.

Smoothing-based techniques Moving average approaches
or autoregressive algorithms are often used to smooth time
series [9]. Kalman filters [9], which combine the observation
and a prediction, based on the relation of the various com-
ponents with external factors, were also applied, updating the
external influence [10] or weighting the observations using
the variance [11]. Smoothing techniques generally modify the
entire time series, which may also lead to adjusting the correct
points.

Data-driven techniques In [12], past observations are used
to extract the main routes and areas in a region to correct the
points falling into them. Predetermined trajectories, known a
priori, were used to correct GPS readings [13]. Furthermore,
in [14] the authors employed the detection of outlying sub-
trajectories, considering the distance of their characteristics.
Data driven techniques heavily rely on the regional availability
of data, generally lacking generalisation.

Constraint-based techniques Ordered, or sequential, re-
lations are also often employed; such as speed constraints
to identify outliers [9]. However, their definition can be
problematic for dynamic activities.

Statistics-based techniques Markov Models have been
used to predict and then compare observations as a cleaning
strategy [9]. Dynamic probabilistic models, such as STPM,
were used to calculate the conditional probabilities of at-
tributes, applying a threshold based cleaning [9]. Moreover,
in [15], using available data, the corrected sequence is cal-
culated as close as possible to the original using the largest
likelihood in terms of speed change between consecutive
points.

2Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-970-6
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Anomaly detection techniques In [16], the authors parti-
tioned the original trajectories using significant direction or
speed changes, and then they apply a consistency model to
the partitions in order to identify anomalies. Thresholds have
also been employed, for example in [17], to the reachability
speed between points to remove outliers, then applying the
underlying geographic information to adjust their positions,
or in [8] using the altitude and distance between consecutive
points. Smoothing techniques, e.g., a Gaussian kernel, are
applied to the points. However, identifying the right thresholds
can be challenging for dynamic activities.

Machine learning techniques Clustering algorithms were
used to merge directly reachable clusters of points [9], using
DL models adopted to perform anomaly detection [9]. In [18],
decision trees and the SVM were combined to classify the GPS
points into different categories. In [19], a neural network is
used to predict the destination of taxi trips among selected
destinations, which are discovered applying a mean shift
algorithm on the training trajectories. Furthermore, in [20] a
regression model, trained on points collected by smartphones,
is employed to identify a radius used to restrict candidates for
the correct position within a circle centred on the point to be
corrected.

III. BUILDING AND TRAINING THE CLASSIF IER

The first problem we faced is the lack of (annotated)
datasets to develop and train a classification model. Therefore,
we built a publicly accessible web application that allows
anonymous upload and annotation of logs. The description
of the application is outside the scope of this paper, but its
source is available on [21].

The annotation app enables graphical annotation by se-
lecting (ranges of) points and assigning one of the available
classes: pause, outlier, correct. We decided to include the
correct class in order to mitigate the fact that the majority
of points are not annotated, so the dataset would be heavily
unbalanced if we were considering all the not annotated points
as correct. The correct class enables the annotator to specify
points that they consider to be placed correctly. The annotator
has the possibility of including additional metadata, such as
the type of activity and the recording device, but this is not
required.

Over 5 months, we collected 61 logs distributed among 7
types of activities, and most of them were hiking, walking,
and ski mountaineering (they correspond to 80% of the logs).
The number of distinct logs is important to ensure diversity,
but the dataset should be understood in terms of location
points and annotations. The total number of points is 232, 238
with 13, 514 (0.06%) annotations; of those, the majority –
more than 77% – are marked as correct, followed by pauses
(15%) and outliers (8%). The majority of the collected logs
are located in the Trentino - South Tyrol Italian region, while
more in general we could observe how all of them were in the
northern Italy.

The fact that a point is identified as not correct does not
depend on its location and timestamp, but on the variation w.r.t.

preceding and following points. In fact, several techniques
in the literature just rely on identifying wrong points on the
basis of their variation w.r.t. neighbours (see, e.g., [16], [17]).
Because of this, we normalise the dataset, transforming each
point into a tuple representing the variation of location and
time from the previous point (the deltas). Each delta represents
the variation of the coordinates on the three spatial axes and
the time elapsed between each pair of consecutive points
(Figure 4).

t0

t1 t2

t3

t1-t0
t2-t1 t3-t2

Fig. 4. Location points to deltas.

To simplify the computations of deltas, we convert the
original location points encoded in longitude, latitude, and
altitude into the Earth-Centred Earth-Fixed Coordinate System
(ECEF) [22]. The latter being a Cartesian system, the deltas are
just the difference between values of the corresponding axes,
and their values do not depend on the actual geodetic position.
Moreover, given the initial location and timestamp, the original
sequence of geodetic coordinates can be reconstructed without
data loss. In the rest of the paper, we will use the term points
to refer to the deltas rather than the geographical coordinates.

Before committing to a specific deep learning architecture,
we performed a set of preliminary experiments in order to
identify the one that would be best suited to identify properties
of GNSS logs. Our hypothesis was that Recurrent Neural
Networks are well suited for this task, being widely adopted
for sequence labelling, in particular focusing on Long Short
Term Memory (LSTM) networks [23]. However, we decided
to compare it with two other different architectures used to
classify and repair GNSS data: Multi-Layer Perceptron [24],
and Convolutional [25]. Since we were still collecting our data,
we decided to evaluate these architectures on a simple activity
recognition task (that is, identifying the type of sport activity
from the recorded task) using 150 publicly available tracklogs
of walking, hiking, and running (downloaded from Wikiloc and
Garmin Connect sites with the consent of users). Our prelimi-
nary experiments confirmed that LSTM networks provided the
best performance among the selected architectures.

In [26] different variations of the LSTM architecture have
been evaluated and shown that “forget gate and the output
activation function to be its most critical components”, re-
inforcing our choice of adopting recurrent neural networks
based on this cell type, considering also how some possible
variations, tested in [26], did not show particular advantages
in terms of accuracy. To select the right network topology and
hyper-parameters we compared a common vanilla LSTM as
baseline, with a three-layers LSTM architecture used in [27] to
evaluate driving style, and our proposed architecture coupling
three LSTM layers with dropout layers (see Figure 5). In our
proposed architecture, the first (bidirectional) LSTM layers

3Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-970-6
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outline the nonlinear temporal relations between the data;
while the remaining layers gradually reduce the number of
nodes before the target output to avoid overfitting.

(a) vanilla

Activation function

R = ReLU
S = Softmax
T = Hyperbolic tangent

(b) driving style

(c) our

Fig. 5. The evaluated LSTM architectures

For all selected LSTM architectures, the input layer is a
sequence of contiguous points (4-tuples) of a given fixed
size (the window), while the output layer is composed of
a sequence (the same size as the input) with an array of
units, each corresponding to one of the classification classes,
activated using softmax. Each array of units provide the
classification of the corresponding input point.

To classify the points of a tracklog, we employ a sliding
window approach where sequences are created by moving a
fixed size window over the original tracklog, by a given sliding
step (Fig. 6).

VeqXence 1

VeqXence 2
VeqXence 3

Fig. 6. Sliding window approach to segmenting (size 4, step 2)

When the classifier is used on a given tracklog, each point is
classified multiple times (depending on the size of the window
and sliding step), for selecting the class we decided to use a
majority selection. This is used in the evaluation for training
the network and in its deployment for cleaning new logs.

To select the best parameters we focused on the window size
(3, 5, 10, 15), step size (1, 2, 3, 5), and number of training
epochs (10, 20, 30, 40, 50). We performed a grid search
on those combinations using a standard K-fold technique (3
folds). For the grid search, we used a subset of the final dataset
(66% of the tracklogs), and the dataset was composed of all
the sequences generated by the sliding-window approach over
the (padded) annotated points. We ensured that training and
testing folds did not share common points due to intersecting
windows. Table I shows the best three combination across
the different architectures. The driving architecture does not
appear in the table because the best accuracy obtained among
the different combinations of parameters was 0.83.

We performed a final evaluation of the selected architecture
and parameters using the same k-fold procedure. The results

TABLE I
TOP THREE COMBINATIONS

Epochs Window Step Accuracy LSTM Architecture
30 15 2 0.864243 our
40 15 2 0.860122 vanilla
10 15 2 0.859688 vanilla

are summarised using the confusion matrices of the folds in
Figure 7. Finally, we trained the network on the entire dataset,
generating the model to be deployed to classify the points in
tracklogs.

Fig. 7. Confusion matrices for model evaluation

Our goal is to be able to deploy the data repair on low-
powered devices, so it is paramount to maximise the efficiency
and minimise the resource consumption of the classifier. The
standard TensorFlow library and models are not suitable for
edge computing; however, TensorFlow Lite [28] is tailored for
deployment on mobile, embedded, and IoT devices. Standard
TensorFlow models cannot be used with the “lite” version
of the library and need to be converted. Since the original
model is not very large, we decided to convert it without
any further optimisation; therefore, the properties of the “lite”
model are the same as the original. This has been confirmed
by comparing the results of the original and “lite” models over
the entire training data set.

The code used for our experiments is available in [29].

IV. REPAIRING TRACKLOGS

The process we envisage for cleaning the activity logs
is composed by two stages: in the first, location points are
classified using the trained model; after, one of the various
techniques presented in the literature can be applied to the
points identified as non-correct.

As introduced in Section III the classification of points
in a tracklog is performed by first converting them into a
sequence deltas and then classifying them by majority vote
using a sliding window to obtain multiple classifications for
each point.

After the classification process, the correction focuses on
the points assigned to either pause or outlier classes. The first
kind of points are easy to deal with, since they represent a
situation in which the device should have been stationary, so
they should be all referring to the same position. Therefore, a
sequence of “pause” points can be removed or replaced with
a single point by averaging their data. In fact, there might
be actual small movements, but they are irrelevant, or even
misleading, for activity analysis purposes.

To correct “outliers” we considered different techniques
applied in the relevant literature. Most techniques that do

4Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-970-6
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not exploit crowd-sourced data are based on the idea of
“smoothing” segments in which points diverge w.r.t. a set of
predefined parameters. The smoothing can be performed using
linear or splines [30] interpolation. Kalman filters [31] have
also been used to improve the quality of GNSS data [9]. This
family of transformations join together the observed value and
the predicted one to obtain the final observation.

We compared linear and spline interpolation (Figure 8) with
Kalman filters (Fig 9) and we observed that the latter provided
the best results. Note that the quality of the result is based on
the visual inspection of the corrected tracklog; we reckon that
more objective measures should be investigated, but to the
best of our knowledge, there is no consensus in the research
community on how to evaluate the quality of a tracklog.

(a) linear (b) spline

Fig. 8. Example of interpolation (in red the changes)

There are different ways to apply the filter; we excluded
the common approach of applying it to all data points because
our classifier enables us to focus on only the points that are
considered “outliers”. We apply filtering only to the segments
that include “outliers”. We also noticed that the application
of the filter along the direction of the timestamps introduces
an unnatural joining of the corrected segment with the rest of
the tracklog due to an “inertial” effect of the filter (it tends to
maintain the current direction of the movement). To mitigate
this effect, we applied the filter in both forward and backward
directions, averaging their changes to the points (Figure 9).

(a) unidirectional (b) bidirectional

Fig. 9. Example of Kalman filter (in red the changes)

The code we used for our repair experiments is available
in [32].

V. CONCLUSIONS

In this paper, we described a Deep Learning approach
to identify parts of the recorded activity logs that could be
affected by GNSS receiver errors. We identified two types
of error, namely those deriving from the so-called “canyon
effect” (outliers) and those deriving from a stationary receiver
(pauses). Moreover, we show how different techniques can be
applied to modify the identified errors, and suggest the ones
that provide good quality results. Note that the modularity of

our approach enables the use of different techniques and/or
preferences (e.g., pause segments might be left as they are).

Our empirical evaluation shows that an LSTM architecture
is well suited to identify points affected by receiver errors, and
the classifier can also be used on low-powered (edge) devices.
Our work is also showing that the identification of errors can
also be performed without a prior knowledge about the type
of device and activity. The training process does not require a
large amount of computational resources, so individual users
could adapt the model to their kind of specific activities or
devices.

Moreover, we developed a web application to enable the
collection and annotation of tracklogs, and used it to create a
dataset for our experiments. Clearly, the quality of the dataset
is paramount to ensure the accuracy of the predictions. In the
future we plan to extend the dataset, in particular w.r.t. the
geographical area.

Another problem we identified is the evaluation of the qual-
ity of tracklog repairs. In this work, we adopted a subjective
approach based on the appearance of the resulting tracklog, but
we think that identifying a proper quality measure is an open
and relevant problem which does not seem to be addressed in
any of the works we reviewed. An approach could be to collect
a “golden standard” dataset in a controlled environment; but
it is difficult to cover the variety of outdoor activities and the
environments in which they occur.
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Abstract—Semi-tensor product (STP) is developed into a neural 

network in this paper and applied to image compressive sensing 

(CS). Large matrix computation for fully connected layers 

results in a large number of weight coefficients that need long 

training times. Instead of using an M×N measurement matrix, 

according to the theory of STP a smaller measurement matrix of 

size M/t×N/t can be applied, where t is a shrinkage factor. STP 

only needs N/t elements of the original signal for one 

measurement and the measurement matrix is shrunk to 1/t2 that 

of traditional CS. The shrinkage factor t is adjustable. To 

demonstrate the effectiveness of the STP-based neural network, 

we apply it to image reconstruction. The goal is to sample and 

recover larger images, without partitioning into smaller blocks 

that introduces block artifacts, and provide good initial 

reconstruction for subsequent networks. 

Keywords-compressive sensing; convolutional neural network; 

semi-tensor product; image reconstruction. 

I. INTRODUCTION 

Compressive sensing (CS) has become a significant 
research field in analog information processing, image 
compression, machine learning and so on [1]–[3]. The 
fundamental issue in CS is to reconstruct a sparse signal from 
few measurements. Since natural images are intrinsically 
sparse in some domain, they can be restored efficiently from 
CS measurements. Sparse signal reconstruction is an inverse 
problem that can be solved by techniques like basis pursuit 
(BP) [4], matching pursuit (MP) [5], orthogonal matching 
pursuit (OMP) [6], approximate message passing (AMP) [7], 
and least absolute shrinkage and selection operator (LASSO) 
[8], to name a few, but these tend to be time-consuming. 

CS acquires signals that are sparse in a certain basis in a 
compressed form. The sparsifying basis and the measurement 
matrix should be incoherent [3]. According to CS theory, a 
high dimension sparse signal x is sampled by a measurement 
matrix Φ resulting in a low dimension measurement y as 

 y = Φx (1) 

where x is an N×1 vector, y is an M×1 vector and Φ is an M×N 

matrix (M<<N). The measurement matrix should satisfy the 

restricted isometry property (RIP) [9]. 
Each measurement yi is the linear combination of the 

elements in x through a row of Φ as 

 𝑦𝑖 = 𝜙𝑖,1𝑥1 + ⋯ + 𝜙𝑖,𝑗𝑥𝑗 + ⋯ + 𝜙𝑖,𝑁𝑥𝑁 (2) 

where xj, yi, and 𝜙𝑖,𝑗 are elements of x, y, and Φ. In (2), all N 

elements in x are used to obtain one measurement yi, which 

causes large computational cost when x is long since the 

measurement matrix Φ will be large. 
There are numerous data reconstruction approaches for 

compressive sensing. In [10][11], STP is adopted and an 
iterative optimization approach used for image CS 
reconstruction. While the approach in [10][11] produces good 
results at a high measurement rate, it is time consuming, needs 
many iterations, and a wavelet transform is used before CS and 
an inverse wavelet transform after CS reconstruction. 

In this paper, we propose developing the Semi-Tensor 
product into a neural network (NN). Such a network uses 
fewer parameters to train and provides theoretical foundation 
for a layer to be designed. The proposed NN needs fewer 
layers and less training time for efficient measurement and a 
good initial reconstruction compared to others, performing 
better than other full convolutional NN systems. Given the 
efficiency, the developed NN is used for whole image CS 
reconstruction using no block partitioning. 

The rest of this paper is organized as follows. Section II is 
an overview of previously proposed CS reconstruction 
methods. Section III describes the measurement and the initial 
reconstruction of CS based on STP. Section IV gives a detailed 
description of STP-Net. Our experiments are set up to 
demonstrate the outstanding performance of STP-Net in 
Section V. Finally, we conclude with a discussion of our 
findings in Section VI. 

II. RELATED WORK 

Many NN algorithms have been studied for CS 
measurement reconstruction, such as [12]–[18]. Among them, 
[12] develops a good framework for sensing and recovering 
structured signals, but a few full connection layers make it less 
efficient. [13] and [14] use convolutional layers or residual 
blocks to refine the initial reconstruction of every image block. 
After that, they use block-matching and 3-D filtering (BM3D) 
[15] to remove block artifacts, which is an image denoising 
strategy based on an enhanced sparse representation in the 
transform domain. [16][17] give novel methods that measure 
an image using convolutional layers. However, our 
experiments show that when the sampling rate is 1% the 
reconstructed image is affected by block artifacts, especially 
at the edges of the image, even with a residual network 
(ResNet) after initial reconstruction as they did to improve 
performance. [18] introduces an interpretable optimization-
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inspired deep network for image compressive sensing. They 
cast the iterative shrinkage-threshold algorithm (ISTA) into a 
deep network that produces good performance. 

To overcome the limitation of GPU memory, existing 
methods usually divide an image into blocks and vectorize the 
blocks before measurement. Then, the image is reconstructed 
block-by-block, making block artifacts inevitable [16] and 
requiring denoising to remove block artifacts. 

Our method is different from others since we process an 
image as a whole rather than block-by-block, which avoids the 
block artifacts because the structure information of an image 
is preserved. Normally, operating on the full image would be 
computationally costly but the proposed STP-Net helps reduce 
that computational cost. 

III. STP APPROACH FOR CS 

STP approach can be applied for CS measurement and its 
initial reconstruction of 1D and 2D signal. 

A. Measurement 

According to the theory of Semi-Tensor product [19], a 
smaller measurement matrix Φ(𝑡)  can be obtained with 
dimensions 𝑀/𝑡 × 𝑁/𝑡. Here, t is a shrinkage factor which is 
a common divisor of M and N. (𝑀, 𝑁, 𝑡, 𝑀/𝑡 and 𝑁/𝑡 are all 
positive integers) [11]. Only 𝑁/𝑡 elements of the signal are 
needed for one measurement. The dimension of the 
measurement matrix is shrunk by 1/t2 of that for traditional CS. 
Using the left product operator ⋉ for STP, (1) is rewritten as 

𝑦 = Φ(𝑡) ⋉ 𝑥.         (3) 
For clarity, the signal 𝑥 and its measurements 𝑦 can be 

segmented into groups and every group only has 𝑡 points. So, 
𝑥 is divided into 𝑁/𝑡 fragments and 𝑦 is divided into 𝑀/𝑡 
fragments. Reshaping the vectors 𝑥 ∈ ℝ𝑁×1 and 𝑦 ∈ ℝ𝑀×1 

into matrix form 𝑋 ∈ ℝ𝑡×
𝑁

𝑡  and 𝑌 ∈ ℝ𝑡×
𝑀

𝑡 , we rewrite (3) to 
maintain column-wise order as 

𝑌 = 𝑋 ∙ Φ(𝑡)𝑇.         (4) 

Considering 𝑋  as an image, this means an image can be 

sampled directly by matrix multiplication.  
For our work, 𝑡 is set to the number of rows the image. 

Our method takes an image as a whole without dividing it into 
blocks or vectorizing the image. 

B. Initial Reconstruction 

Typically, the rows of the measurement matrix Φ  are 
chosen to be orthonormal and the least-squares solution 
(minimum energy reconstruction) as the initial estimate for x 
[20]. Let Φ be an M×N matrix and let y be a vector in RM. 
The least-squares solution of Φx = y is the solution of ΦTΦx 
= ΦTy [21]. If Φ has orthonormal rows, ΦΦT is an M×M 
identity matrix. Using Φ𝑇𝑦  is a common initial 
reconstruction. 

STP maintains the above-mentioned property [11]. If 
Φ(𝑡) is a matrix with orthonormal rows and 𝑦 = Φ(𝑡) ⋉ 𝑥, 
the least-squares solution for x is the solution of [Φ(𝑡)]𝑇 ⋉
𝑦 = [Φ(𝑡)]𝑇 ⋉ Φ(𝑡) ⋉ 𝑥 . Since Φ(𝑡) ⋉ [Φ(𝑡)]𝑇 =
Φ(𝑡)[Φ(𝑡)]𝑇 = 𝐼 , �̃� = [Φ(𝑡)]𝑇 ⋉ 𝑦  is an initial estimate. 

The result can be written in matrix form as �̃� = 𝑌 ⋅ Φ(𝑡). 

C. 2D Compressive Sensing 

According to compressive sensing theory [1]–[3], a signal 
that is sparse in a certain domain can be sampled at a rate less 
than the Nyquist sampling rate. In Fig. 1, (a) is an image with 
size 256 × 256. Usually, a natural image is sparse in the 
frequency domain, as in Fig. 1(b) where a 2D discrete cosine 
transform (DCT) has been applied using matrix D. Most 
energy is concentrated on top-left corner. If measurement 
matrix Φ(𝑡) = 𝑃, where P is a random matrix, then the image 
measured by (4) produces Fig. 1(c) with smaller size. 

Since t is set to the number of rows, the measurement 
matrix has effectively measured each column separately. As 
shown in Fig. 1(d), the measurement results are still sparse 
with the right choice of sparsifying basis D; most energy 
concentrates in the top area. Following CS theory, the 
measurements can be sampled and compressed again using 

𝑌 = Φ1(𝑡) ∙ 𝑋 ∙ Φ2(𝑡)𝑇.              (5) 
In Fig. 1, since the image is square, we suppose Φ1(𝑡) =

Φ2(𝑡) = 𝑃 , where P is a random matrix. Let us now map 
image 𝑋 and its measurements 𝑌 into vectors 𝑥 and 𝑦 by 
column ordering, it is equivalent to (1) when Φ = Φ1(𝑡) ⊗
Φ2(𝑡) where ⊗ is the Kronecker product. In this case, the 
1D operation of (1) is expressed as the separable 2D operation 
that reduces the computational complexity [22]. 

It has been shown that a sparse matrix �̂� (i.e, �̂� = 𝐷𝑋𝐷𝑇) 

can be recovered from its matrix sketching 𝑌 = Φ1 ∙ �̂� ∙ Φ2
𝑇  

[23][24][25]. Here, we assume 𝑋  has size 𝑡 × 𝑡  where 
𝑡2 = 𝑁 . The dimension of 𝑌  is 𝑚 × 𝑚  with 𝑚 = 𝑀/𝑡 
and 𝑚 ≪ 𝑡. Φ1  and Φ2  are two 𝑚 × 𝑡 matrices that can 
be seen as measurement matrices. It is equivalent to 𝑦 =
(Φ1 ⊗ Φ2) ⋅ 𝑥. The initial estimate of the image can then be 

�̃� = Φ1
𝑇 ∙ 𝑌 ∙ Φ2. 

As shown in the dashed box of Fig. 2, an image is 
effectively measured and compressed twice and its initial 
reconstruction uses two corresponding steps. 

IV. STP-NET: NEURAL NETWORK LAYER 

Inspired by the flexibility of STP, we build a neural 
network layer to implement it. The sampling and initial 
recovery process of the proposed STP neural network (STP-
Net) for compressive sensing can be implemented by building 
layers of an NN in two ways. One is defining a custom deep 
learning layer with learnable parameters in forward and 
backward propagation [26], and the other is by means of 
ready-made convolutional layers, like in MATLAB, 

 
Figure 1.  Image measurements and sparsity: (a) original image, (b) 

1D sparsifying basis D applied along rows and columns, (c) 

measurement of (a) using random matrix P, (d) result showing 
measurement is still sparse, and (e) image sampled along rows and 

columns. Sampling rate = (81/256)2  10%. 
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TensorFlow, or PyTorch, followed by a custom reshape layer. 

A. Defining a Custom Deep Learning Layer 

A custom STP layer has a forward pass, a backward pass, 
and learnable parameters including weights and biases. It can 
be used as a measurement matrix by setting the biases to zero 
and the learning rates to zero so that the set weights remain 
static. It also can be used in initial reconstruction through a 
least-squares like solution. 

Reconstruction of a signal is a regression problem, so the 
output layer is a regression layer. The loss function of the 
regression layer is the half-mean-square-error (HMSE) [27] 

 𝐿 =
1

2𝑆
∑ ∑

(𝑡𝑖𝑗−𝑦𝑖𝑗)2

𝑅

𝑅
𝑗=1

𝑆
𝑖=1  (6) 

where 𝑆 is the number of observations in a mini-batch, 𝑅 is 

the number of responses, 𝑡𝑖𝑗 is the target output, and 𝑦𝑖𝑗  is 

the network’s prediction for the response variable 

corresponding to observation 𝑖. 
For a semi-tensor product layer, the derivative of the loss 

function with respect to the input data of the custom layer are 

 
𝜕𝐿

𝜕𝑥𝑖,𝑗
= ∑

𝜕𝐿

𝜕𝑦𝑖,𝑎
𝜙𝑎,𝑗

𝑀/𝑡
𝑎=1  (7) 

where 𝑖 = 1, , 𝑡, 𝑎 = 1, , 𝑀/𝑡, and 𝑗 = 1, , 𝑁/𝑡. 
The derivatives of the loss with respect to the weights are  

 
𝜕𝐿

𝜕𝜙𝑎,𝑗
= ∑

𝜕𝐿

𝜕𝑦𝑖,𝑎
𝑥𝑖,𝑗

𝑡
𝑖=1  (8) 

where 𝑖 = 1, , 𝑡, 𝑎 = 1, , 𝑀/𝑡, and 𝑗 = 1, , 𝑁/𝑡. 
For better performance, it could have biases 𝐵 added to 

the STP layer. Since 𝑌 = 𝑋 ∙ Φ(𝑡)𝑇 + 𝐵, the derivatives of 
the loss with respect to the biases 𝐵 have the same size with 
output 𝑌 and the values are 

 
𝜕𝐿

𝜕𝐵𝑖𝑗
=

𝜕𝐿

𝜕𝑦𝑖𝑗
 (9) 

where 𝐵𝑖𝑗  and 𝑦𝑖𝑗 are the elements of 𝐵  and 𝑌  ( 𝑖 =

1, , 𝑡 and 𝑗 = 1, , 𝑀/𝑡). 
Obtaining the derivative of the loss with respect to the 

measurement matrix and the biases, the learnable parameters 
are updated with 

  𝜙𝑎,𝑏
𝑘 = 𝜙𝑎,𝑏

𝑘−1 − 𝜂
𝜕𝐿

𝜕𝜙𝑎,𝑏
 (10) 

 𝐵𝑖𝑗
𝑘 = 𝐵𝑖𝑗

𝑘−1 − 𝜂
𝜕𝐿

𝜕𝐵𝑖𝑗
 (11) 

where 𝑘 is the iteration number, 𝜂 is the learning rate, 𝑎 =
1, , 𝑀/𝑡, 𝑏 = 1, , 𝑁/𝑡, 𝑖 = 1, , 𝑡 and 𝑗 = 1, , 𝑀/𝑡. 

The initial reconstruction would be �̃� = 𝑌 ∙ Φ(𝑡) + 𝐵 . 
The traditional compressive sensing measurement paradigm 
applies fixed linear measurement [12], which is easy to 
implement in practical applications. Biases are not added with 
the measurement results, but they are added during initial 
reconstruction to have better results.  

B. Ready-made Convolutional Layer 

The CS measurement process based on STP is similar to 
dilated convolution (also known as “à trous” convolution). 
STP can be implemented by means of a dilated convolutional 
layer with factor t used to increase the receptive field (the area 
of the input signal which the layer can detect) of the layer 
without increasing the number of parameters and computation 
[28]. Since the number of rows of the measurement matrix 
correspond to the number of neurons in the convolutional layer 
and every filter produces one channel output, this layer should 
be followed by a reshaping, which makes the measurements in 
the same channel. 

V. EXPERIMENTS 

In this section, we conduct a series of experiments to test 
the measurement and reconstruction performance of STP-Net. 

A. Implementation Details 

The experiments are conducted on MATLAB R2019a. The 
computer is equipped with Intel i7-8700K, GeForce GTX 
1080 CPU with frequency of 3.7 GHz and 16 GB RAM. 
Natural images from the ILSVRC2014 ImageNet dataset are 
adopted. Here, 20k images are chosen: 14k (70%) for training, 
3k (15%) for validation, and 3k (15%) for testing. We 
extracted the central 256×256 part of each image and 
converted them to 8-bit grayscale. Training used stochastic 
gradient descent with momentum, minibatch size of 64, 
maximum epoch of 40, learning rate of 2e-03, drop factor of 
0.10, and drop period of 15. For comparison, we also utilize 
the widely used benchmark dataset Set11 [13] during testing. 

Data In STP-Mea1 STP-Mea2 STP-Rec1 STP-Rec2 U-Net Data Out 

256×256       256×26        26×26        256×26       256×256      256×256 

STP-Net 

Figure 2.  STP-Net connected with U-Net for deblurring (Sampling rate:1%). 
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B. Measurement Matrix Based on STP 

Every image has 65536 pixels. A sampling rate of 1% will 
produce 655 measurements. The size of such a measurement 
matrix is 655×65536, which needs more than 300 MB of 
memory to store the measurement matrix (with double 
precision matrix elements). According to the STP method, if 
the parameter t is 256, then a measurement matrix with size 
equal to ceiling(256×1%)×256 can be used that satisfies RIP 
[9]. It needs 6 kB of memory and is much smaller than the full 
measurement matrix. Too small of a measurement matrix 
leads to excessive information loss, so we implement CS 
measurement in two steps. As mentioned in Section III, we can 
use two 1D projections for the 2D image, which can be done 
by applying STP twice. For a target of 1%, one option is that 
the first pass compresses the signal by 10% and the second 
pass compresses by another 10%. The size of measurement 
matrix would be ceiling(256×10%)×256 with t equal to 256. 

C. Proposed Structure 

Fig. 2 shows the structure of the neural network. STP-Net 
samples the image and provides initial reconstruction that can 
be passed to subsequent networks. U-Net [29] has proved to 
work well with semantic segmentation, which motivates us to 
apply it for reconstruction as a deblurring step. To set up an 
image regression network, we remove the last two layers (soft 

max and segmentation layers) of a U-Net with an encoder-
decoder depth of 3 and add a regression layer. In Fig. 4, STP-
Net is connected with ISTA-Net and STP layers are used 
repeatedly as measurement and reconstruction for each 
iteration. Our experiments adopt five ISTA iterations (phases) 
and every convolutional layer uses 16 kernels.  

D. Experimental Results 

For the sampling process, we applied different sampling 
rate combinations (20%+5%, 10%+10% and 5%+20%) in the 
two measurement layers to reach total measurement rate of 1%. 
The mean peak signal-to-noise ratio (PSNR) of the 3000 test 
images with these sampling rate combinations are 20.55, 21.50 
and 20.64 dB, respectively, without U-Net. It seems that the 
square root (10%+10%) of the total measurement rate could 
be a better choice. Tables I to III show that the proposed 
method has better performance than other methods and has 
higher PSNR and structural similarity measure (SSIM). 

From Fig. 3, we see that other methods have block artifacts. 
For DR2-Net [14], the image is measured block-by-block and 
reconstructed with 4 residual blocks. Then, they use BM3D 
[15] to remove the artifacts caused by block-wise processing. 
We modified the process by composing an intermediate 
reconstructed image with their initial reconstruction and then 
using the 4 residual blocks to remove block artifacts. It has 
better performance than their original method even without 

 

Figure 3.  Reconstruction results for parrot and pepper from noiseless CS measurements at measurement rate of 1%. It is evident that STP based 

method restores more visually appealing images than the competitors. 

Parrot

Original

Pepper

Original

Modi-DR2

SSIM:0.5197, PSNR:19.18dB

FCMN

SSIM:0.6494, PSNR:20.12dB

FC-Res

SSIM:0.6537, PSNR:21.42dB

STP

SSIM:0.7145, PSNR:22.17dB

STP-Unet

SSIM:0.7512, PSNR:22.96dB

SSIM:0.4059, PSNR:17.24dB SSIM:0.5206, PSNR:19.07dB SSIM:0.5344, PSNR:19.45dB SSIM:0.5540, PSNR:20.48dB SSIM:0.6242, PSNR:21.28dB

Output0                   0   Output1                                  0  Outputk 

  
𝐹1 �̃�1 

𝑆𝑜𝑓𝑡(∙, 𝜃1) 

∙∙∙ 
  

𝐹k �̃�k 

𝑆𝑜𝑓𝑡(∙, 𝜃𝑘) 

  

∙∙∙ 

𝑋    𝑌    𝑋0   𝑌0   𝑅1                𝑋1            𝑋𝑘−1  𝑌𝑘−1  𝑅𝑘                𝑋𝑘 

1
st
 Phase                                           k-th Phase 

− 

− 

− 

− 

STP   STP      STP   STP                                                         STP   STP 

STP-Net STP-Net STP-Net 

ISTA-Net 

Figure 4.  Connect STP-Net with ISTA-Net and use STP layers for measurement and reconstruction in every phase. 
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BM3D. Full convolutional measurement network (FCMN) has 
block artifacts too, especially at the four edges of a 
reconstructed image. We apply one residual block after it as 
the authors did in [16]. The block artifacts are alleviated, but 
the four corners of restored image are darker. From Tables I to 
IV, it shows that STP-Net provides an attractive initial 
reconstruction quality for another network. Table III shows 
that STP-Net works well in less time. In Table IV, ISTA-Net 
and ISTA-Net+ adopt nine ISTA iterations with every 
convolutional layer having 32 kernels. STP-Net provides 
ISTA-Net with information-rich measurements and 
reasonable initial reconstruction, that enable it to simplify its 
structure with fewer ISTA iterations and kernels to have better 
performance. 

VI. CONCLUSION 

We have presented an STP-based neural network to the 
problem of CS image reconstruction. The measurement and 
initial reconstruction process are efficiently implemented 
through STP without dividing the image into blocks and 
vectorizing. At different measurement rates, our algorithm 
yields superior quality reconstructions than other methods. 
The method does not have block artifacts that many people try 
to solve. It makes the sampling process convenient and 
provides good initial reconstruction for subsequent network, 
such as U-Net or ISTA-Net. In future work, we are going to 
apply it in deep equilibrium architecture to develop an efficient, 
high performance fixed-point iteration layer [30]. 

TABLE I.  PSNR VALUES IN DB ON SET11 WITH DIFFERENT ALGORITHMS AT 1% MEASUREMENT RATE 

Image Name 
ReconNet 

+BM3D [13] 

DR2-Net 

[14] 

DR2+BM3D 

[14] 

Modified 

DR2-Net [14] 

FCMN 

[16] 

FC-Res 

[16] 
STP-Net STP-UNet 

Barbara 19.08 18.65 19.10 19.02 20.38 20.97 21.83 22.10 

Boat 18.83 18.67 18.95 18.82 19.96 20.57 21.46 22.23 

Cameraman 17.49 17.08 17.34 17.72 19.16 19.68 20.14 21.25 

Fingerprint 14.88 14.73 14.95 14.92 15.56 15.83 16.16 16.16 

Flintstones 14.08 14.01 14.18 13.29 14.46 14.77 15.28 15.37 

Foreman 20.33 20.59 21.08 22.54 21.08 23.72 27.15 27.00 

House 19.52 19.61 19.99 20.61 20.93 22.38 23.16 24.47 

Lena 18.05 17.97 18.40 18.51 20.49 21.15 21.95 22.72 

Monarch 15.49 15.33 15.50 15.52 17.20 17.58 18.28 18.79 

Parrot 18.30 18.01 18.41 19.18 20.12 21.42 22.17 22.96 

Pepper 16.96 16.90 17.11 17.24 19.07 19.45 20.48 21.28 

(For ReconNet, we use the results reported in [13]. For DR2-Net and DR2+BM3D, we use the results reported in [14]. For the other algorithms, the 

experiments use MATLAB with networks trained from the same dataset with the same images.) 

 

TABLE II.  SSIM VALUE FOR 11 EXTRA IMAGES 

Image Name ReconNet [13] 
Modified DR2-

Net [14] 
FCMN [16] FC-Res [16] STP-Net STP-UNet 

Barbara 0.3730 0.3578 0.4555 0.4575 0.5024 0.5271 

Boat 0.4140 0.3838 0.4729 0.4771 0.4950 0.5587 

Cameraman 0.4517 0.4391 0.4998 0.5389 0.5503 0.6565 

Fingerprint 0.1641 0.0708 0.0853 0.0858 0.0884 0.0886 

Flintstones 0.2733 0.1789 0.2386 0.2429 0.2580 0.2871 

Foreman 0.5647 0.6078 0.6680 0.6849 0.7536 0.7869 

House 0.5278 0.5282 0.5809 0.5948 0.6291 0.7056 

Lena 0.4418 0.4344 0.5364 0.5489 0.5765 0.6324 

Monarch 0.3802 0.3427 0.4683 0.4816 0.5003 0.5578 

Parrot 0.5329 0.5197 0.6494 0.6537 0.7145 0.7512 

Pepper 0.4002 0.4059 0.5206 0.5344 0.5540 0.6242 

Mean SSIM 0.4112 0.3881 0.4705 0.4819 0.5111 0.5615 
(For ReconNet, we calculate the values of SSIM from the images the authors provide.) 

 

TABLE III.  RESULTS OF 3000 TEST IMAGES 

Evaluation index  Modified DR2-Net [14] FCMN [16] FC-Res [16] STP-Net STP-UNet 

Mean SSIM 0.3696 0.4347 0.4563 0.4911 0.5301 

Mean PSNR 18.72 19.26 20.45 21.50 22.06 

Elapsed Time(s) 56.62 10.70 22.02 9.36 41.33 

(The number in the table are the mean of 10 times experiments.) 
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TABLE IV.  AVERAGE PSNR (DB) PERFORMANCE COMPARISONS ON SET11 WITH DIFFERENT CS RATIOS 

Sampling 

rate 

ReconNet 

+BM3D 

[13] 

DR2-Net 

[14] 

DR2+BM3D 

[14] 

FCMN 

[16] 

FC-Res 

[16] 

ISTA-Net 

[18] 

ISTA-

Net+ 

[18] 

STP-Net 
STP-

ISTA-Net 

1% 17.55 17.44 17.73 18.95 19.77 17.30 17.34 20.65 21.30 

4% 20.44 20.80 21.29 23.14 24.22 21.23 21.31 23.39 24.92 

10% 23.23 24.32 24.71 25.36 27.30 25.80 26.64 26.02 28.65 

25% 25.92 28.66 29.06 28.69 31.15 31.53 32.57 30.06 33.54 

 (The best performance is labeled in bold.) 
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Abstract—This paper proposes a motion biomarker for alcohol 

detection using a deep learning approach that processes 

inertial signals recorded with a smartphone. The deep learning 

architecture is composed of a Convolutional Neural Network, 

including three convolutional layers for learning features from 

the inertial signal spectrum, and several fully connected layers 

to perform classification and regression tasks. The motion 

biomarker is computed in two steps. Firstly, the inertial signals 

are segmented in short sub-windows (3-6 seconds) and the 

system generates a score for each sub-window. Secondly, the 

scores in consecutive sub-windows are combined to provide a 

motion biomarker over in longer periods of time (30 seconds). 

This paper compares the proposed approach to previous works 

using the same experimental dataset and setup: Bar Crawl 

Detecting Heavy Drinking Data Set, K-fold cross-validation 

methodology and two tasks (classification and regression). The 

proposed deep learning approach overperformed previous 

reported results: the accuracy increased 4 % (absolute) when 

classifying between intoxicated and sober participants and the 

Mean Squared Error relatively decreased 9 % when estimating 

the Transdermal Alcohol Content of the participants by 

averaging the scores from consecutive sub-windows. 

Keywords-Alcohol Detection; Motion Wearable Sensors; 

Convolutional Neural Networks; Sub-windows Combination. 

I.  INTRODUCTION 

High-frequency alcohol consumption could become a 
serious threat for people’s health. In fact, physicians and 
social workers are interested in reducing the alcohol 
consumption in young adults. For example, measuring the 
Transdermal Alcohol Content (TAC) is useful to recommend 
the person to stop drinking in real time. In addition, wearable 
technology could be used for developing an alcohol 
detection system based on inertial signals from 
accelerometers included in smartphones. 

This paper evaluates a strategy to combine sub-windows 
information for an alcohol detection system based on 
wearable technology and deep learning, obtaining important 
improvements for long windows (over 10 seconds). This 
study was performed over the public dataset Bar Crawl: 
Detecting Heavy Drinking Data Set. It contains acceleration 
recordings from 13 subjects during a university event and 
measurements from a TAC sensor. The results significantly 
outperform the performance reported in previous works over 
the same dataset. 

This paper is organized as follows. Section 2 reviews the 
related work. Section 3 describes the material and methods, 

including the dataset, the signal processing and deep learning 
modules. Section 4 details the evaluation metrics and the 
experiments performed in this work. Finally, Section 5 
summarizes the main conclusions of this work. 

II. RELATED WORK 

Alcohol detection through mobile sensing has gained 
popularity in the last years. Researchers have combined 
different sources of information from smartphones and 
wearable devices, such as acceleration signals, location, 
keystroke speed, or sent/received calls to predict intoxication 
levels of alcohol consumers. Moreover, inertial signals from 
wearables and smart devices have been used for motion 
modelling in other areas, like activity classification [1][2] or 
biometrics [3]. This section describes several previous works 
on alcohol detection based on mobile sensing. 

Kao et al. [4] developed controlled laboratory 
experiments to classify alcohol intoxication through 
smartphone accelerometer signals. Arnold et al. [5] 
compared several machine learning algorithms (Naïve 
Bayes, Decision Tree, Support Vector Machines and 
Random Forest) using acceleration data from the smartphone 
to classify alcohol intoxication levels through the number of 
drinks consumed by a user. They proved that Random Forest 
was the most accurate classifier, reaching 56% and 70% 
accuracy on the training and validation sets, respectively, 
classifying the number of drinks into ranges of 0-2 drinks 
(sober), 3-6 drinks (tipsy) or >6 drinks (drunk). This work 
reached encouraging results, but they used potentially biased 
self-reports to measure ground-truth intoxication levels, 
which could limit the reliability of the results. 

Santani et al. [6] characterized youth drinking behavior 
using smartphones involving 241 participants during a 
weekend night using a Random Forest classification 
algorithm to infer whether an individual consumed alcohol 
(over a threshold). This work also used self-reports on 
individual alcoholic drinks consumed on Friday and 
Saturday nights over a three-month period. They concluded 
that accelerometer data was the most informative single 
signal, reaching an accuracy of 75.8%.  

McAfee et al. [7] used drunk busters goggles to distort 
vision and simulate the effects of alcohol consumption on the 
body and rate at four BAC levels [0.00-0.08), [0.08-0.15), 
[0.15-0.25), [0.25+). They used accelerometer and gyroscope 
features from smartphone, height, weight, and gender 
reached to classify 33 subjects into these BAC levels. This 
previous work used 5-second segments and reached 89.45% 
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of accuracy when detecting the BAC level using a decision 
tree classifier when using 99% as training data and 1% as 
testing data and 73.74% using a Random Forest algorithm 
when using a 10-fold cross-validation setup. 

Killian et al. [8] measured accelerometer signals with a 
smartphone and TAC data during a drinking event in a non-
intrusively way. This work used 10-second windows of 
acceleration recordings and the authors randomized the data 
using 75% for training and 25% for testing. They compared 
machine and deep learning algorithms, concluding that 
Random Forest approach outperformed the classification 
between sober (TAC < 0.08) and intoxicated (TAC >= 0.08) 
participants and with a 77.48% of accuracy. Another 
previous work [9] used the same dataset and performed both 
classification and regression task using a K-fold cross-
validation strategy. They used a Convolutional Neural 
Network (CNN) architecture and obtained an accuracy of 
80.43 ± 0.21 % using 2-second windows for the 
classification task and a MSE of alcohol content estimation 
of 0.001559 ± 0.000011 g/dl for the regression task. 

In addition, a previous work [10] analyzed the effect 
performance saturation in activity recognition when 
increasing the analysis window size. They proposed several 
strategies to combine the information from consecutive sub-
windows, obtaining significant improvements compared to 
directly using long windows. This paper combines several 
sub-windows at the end of a CNN architecture, obtaining 
significant improvements compared to previous works using 
the same dataset. 

III. MATERIAL AND METHODS 

This section describes the dataset used for the 
experiments, the signal processing, the CNN, and the post-
processing module for combining the scores from sub-
windows. 

A. Dataset 

We used the Bar Crawl: Detecting Heavy Drinking Data 
Set” [8]. It includes recordings from 13 undergraduate 
students in a drinking event. The dataset includes 
acceleration signals from a sensor embedded in smartphones 
sampled at 40 Hz and TAC measurements collected with an 
ankle bracelet. A TAC=0.08 g/dl was used as the level to 
discriminate between intoxicated participants (TAC >= 0.08) 
and sober participants (TAC < 0.08). Participants joined in 
drinking activities without any instruction. For the 
classification task, we considered two classes: intoxicated 
and sober participants. For the regression task, our target was 
to estimate the TAC. The total duration of the dataset is 77 
hours approximately. The acceleration values mostly vary 
between -4 and 4g, and Table 1 summarizes the acceleration 
and TAC signals statistics. 

B. Signal Processing 

We divided the accelerometer signals into non-
overlapped consecutive sub-windows using a Hanning 
function (other functions were evaluated like Hamming or 
Blackman without significant differences). In this paper, the  

TABLE I.  ACCELERATION AND TAC SIGNALS STATISTICS 

Signal Units Min Mean Max 

X g -43.335 -0.009 39.23 

Y g -33.475 0.001 27.311 

Z g -49.023 0.056 42.313 

TAC g/dl 0 0.065 0.443 

 
system provided a consumption score per sub-window, and 
we integrated consecutive scores to evaluate longer periods. 

For each sub-window, we computed the Fast Fourier 
Transform (FFT). For example, in case of using 3-second 
sub-windows, we used 60 bins in the frequency domain per 
example as inputs to the CNN corresponding to the FFT 
magnitude from 0 to 20 Hz. As in previous works using this 
dataset, we only considered temporal windows whose 
estimated energy was higher than zero at 2 Hz (average 
human walking activity frequency). We used GNU Octave 
for the signal processing step (windowing and computing the 
FFT). 

C. Deep Learning Architecture 

We used a deep learning approach composed of a feature 
learning subnet and a classification subnet. Figure 1 
represents the architecture that models and classifies 
participants between intoxicated (TAC >= 0.08) and sober 
(TAC < 0.08) using 3-second sub-windows. The first part of 
the structure learns features from the spectra using three 
convolutional layers and one intermediate max-pooling 
layer. The second part of architecture contains fully 
connected layers that classify the sub-windows as intoxicated 
or sober subjects. The last layer has one neuron and uses the 
sigmoid activation function, and the binary cross-entropy 
loss metric for classification problem. In case of regression 
problem, this last layer has a linear activation function and 
uses the mean squared error loss metric. In intermediate 
layers, ReLU is used as activation function to reduce the 
impact of gradient vanishing effect. Both tasks used the root-
mean-square propagation optimizer [11], with learning rates 
of 0.001 and 0.00005 for classification and regression tasks, 
respectively. It was discovered that to achieve better results 
on the regression task, a lower learning rate was required. 
Before reporting testing results, the validation subset (10 % 
of training subset) was used to tune the number of epochs 
(10) and the batch size (200) of the architecture. Each This 
architecture, which uses 3-second sub-windows, has 137,665 
parameters. We used Python distribution with Tensorflow 
and Keras libraries to create the deep neural network 
architecture. 

D. Post-processing Decision Module 

Combining the information along several consecutive 
sub-windows allows increasing the decision robustness, by  
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Figure 1.  Deep learning architecture including convolutional and fully 

connected layers for classification. This is the deep learning module which 

obtains a score sub-window by sub-window. 

evaluating long periods of time that keep a uniform behavior. 
The mean filtering approach used in this work consisted of 
running a non-overlapped filter through a specific signal and 
computing the mean of N sub-windows. In this sense, this 
mean filtering was used as a post-processing technique that 
allowed the integration of information from consecutive 
windows using the final scores of the CNN output. After 
computing the mean score of N consecutive windows, we 
obtained a single value which integrates the information 
along these windows. When the prediction is completely 
filtered, the final number of examples would be divided by 
N. We used N=1, 2, 4, 5, 6, 8, 10, 12, and 14, being N=1 the 
lack of filtering. Figure 2 shows an example of mean 
filtering of final prediction using N=4 with 3-second sub-
windows, where the prediction (between 0 and 1) is modified 
after applying the filtering technique and integrating more 
time (12 s) and some isolated errors are corrected through 
this integration of temporal information. 

IV. EXPERIMENTS AND DISCUSSION 

This section defines the evaluation metrics used in this 
work and shows the results in the experiments. 

A. Evaluation Metrics and Validation 

This paper performs two tasks: TAC classification and 
regression. For the classification task, we used accuracy: the 
ratio between the number of correctly classified examples 
and the number of total examples. In our case, every analysis 
window is considered as an example. This metric is 
presented with confidence intervals of 95%, obtained with 
(1), given M examples (windows) and a specific value of 
accuracy. Two results are considered significantly different 
when there is no overlap in these confidence intervals. We 
also used the Area Under the Curve (AUC) to evaluate this 
binary classification problem. 

acc (95%) = acc ± 1.96*√((acc(100-acc))/M)        () 

Regarding regression task, Mean Square Error (MSE) 
was considered as the average squared difference between 
the estimated values and the actual values. This error is 
presented with confidence intervals of 95%, obtained with 
(2), given M examples (windows) and an error standard 
deviation s. We also used the Pearson correlation coefficient 
between the estimated and the actual TAC measurements to 
evaluate the regression problem. 

 

Figure 2.  Mean filtering of predictions using N=4 and 3-second sub-

windows. 

MSE (95%) = MSE ± 1.96*s/√M                      () 

In this work, we used K-fold cross-validation for 
comparison to previous works: data is divided into K folds 
(13 in this work) to divide data in training, validation, and 
testing subsets. A different fold is used for testing in each 
iteration, with the remaining folds used for training (10 % of 
training subset was used for validation). This methodology 
allows to evaluate the system over all available data using 
different data distributions. The reported results are the 
average along all iterations. For example, in case of using 3-
second sub-windows, a total of 92,000 examples 
approximately are considered. For each fold, 7,000 examples 
for testing and 85,000 examples for training (8,500 for 
validation) approximately. Training the model with a 90% of 
data, guarantees a well-trained model: reducing this amount 
could have a negative impact over the performance. We 
observed these classification and regression tasks are high-
user dependent, so a leave-one-out approach is considered as 
future work.  

B. Experiments 

We analyzed the influence of the window size and the 
combining information technique averaging the predictions 
from sub-windows after the deep learning architecture over 
the classification and regression tasks. As baseline system 
[9], we performed lack of combination experiments using 
long windows directly to observe the performance saturation 
when increasing the analysis window length. After that, we 
compared these results to our approach: averaging the scores 
from sub-windows after the CNN. 

Related work section mentioned previous works [8] [9] 
that obtained 77.48 % and 80.43 ± 0.21 %  of accuracy for 
the classification task and a MSE of alcohol content 
estimation of 0.001559 ± 0.000011 g/dl for the regression 
task. 

Figure 3 and Figure 4 show the test accuracy and AUC, 
respectively, using the baseline approach (lack of 
combination), 3-second sub-windows, and 6-second sub-
windows combination for the alcohol classification task. 
Figure 5 and Figure 6 show the test MSE and correlation,  
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Figure 3.  Accuracy evolution including the baseline results and the 
performance results obtained when integrating 3-second and 6-second sub-

windows for the alcohol classification task. 

 

Figure 4.  AUC evolution including the baseline results and the 

performance results obtained when integrating 3-second and 6-second sub-

windows for the alcohol classification task. 

 

Figure 5.  MSE evolution including the baseline results and the 

performance results obtained when integrating 1-second and 2-second sub-

windows for the alcohol estimation task. 

 

Figure 6.  Correlation evolution including the baseline results and the 

performance results obtained when integrating 1-second and 2-second sub-

windows for the alcohol estimation task. 

respectively, using the baseline approach (lack of 
combination), 1-second sub-windows, and 2-second sub-
windows combination for the alcohol estimation task. These 
figures show that the baseline approach achieves a 
performance saturation when increasing the analysis window 
length because we raise the number of parameters to be 
trained in the CNN and the spectral resolution, that increases 
the overfitting risk. However, integrating the scores after the 
CNN allows to boost the classification and regression 
performances, reaching a maximum in accuracy (84.47 ± 
0.74 %) and AUC (91.82 %) evaluation metrics for 30 s 
evaluation using 3-second sub-windows. In the case of 
alcohol content estimation, the best result was an MSE of 
0.00142 ± 0.00002 and a correlation of 0.7, obtained when 
combining four 1-second sub-windows. 

V. CONCLUSION AND FUTURE WORK 

Detecting alcohol consumption through wearable 
technology and deep learning is very interesting to avoid 
health risks in the future. This paper contributes to the 
supervision of alcohol consumption from acceleration 
signals by proposing a method to evaluate long periods of 
time. The system leverages that alcohol content is quite 
stable in time to integrate information from short sub-
windows and boost the classification and regression 
performances. Using these short sub-windows, it is possible 
to decrease the number of parameters to be trained in the 
CNN and reduce the overfitting risk that occurs when 
increasing the spectral resolution. This work used the Bar 
Crawl: Detecting Heavy Drinking Data Set, obtaining better 
performance than previous works that used the same dataset. 

As future work, it would be interesting to leverage the 
sequential information from sub-windows using Long Short-
Term Memory (LSTM) layers to analyze the evolution of the 
alcohol content. In addition, we observed that the current 
approach has the limitation of generalizing to unseen 
subjects, so it would be useful to apply adaptation techniques 
and focus on specific characteristics of subjects in a Leave-
One-Subject-Out CV scenario. 
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Abstract—The event time-series can accurately describe the
behavior of many dynamic systems. The challenge is that the
events are categorical variables, so they cannot be analyzed by
the existing statistical methods developed for numerical time-
series. In order to infer the causally related events, in this paper,
it is proposed to assume the empirical conditional probabilities of
nearly certain and nearly uncertain events. Moreover, since the
event ordering is usually locally irrelevant, the event sequences
can be transformed into the event sets or multi-sets with ap-
propriately defined distance metrics. The event sequences having
a zero distance can be then assumed to be causally equivalent.
The distance metrics are also used in matrix profile analysis of
event time-series. Numerical examples are studied for chemical
reaction events generated in stochastic simulations of biochemical
molecular systems. Even though the proposed framework for
discovering the causally related event sequences can be readily
fully automated, they still need to be properly interpreted in the
context of relevant domain knowledge.

Keywords—causal; dynamic system; event; matrix profile; state-
space; time-series

I. INTRODUCTION

Traditional signal processing and machine learning mainly

exploit statistical associations within data. However, it is

well known that a strong association is neither necessary nor

sufficient for causality, for example, due to confounding. At

the same time, a weak association cannot rule out the causality.

Recently, there has been a great interest in developing data

models and processing methods, which are interpretable [1].

The cause and effect are central to scientific hypotheses

testing, experiment design, and to generate the prescriptive

analytics of engineering systems. It is possible to only consider

whether the cause-effect exists without determining its direc-

tion or strength. The causal relationships can be represented as

Structural Causal Models (SCM) [2]. The SCM can be created

from a prior knowledge, or inferred by performing statistical

independence tests on the data. An important question is

whether the SCM can be determined from the observed data,

and whether such a SCM is unique. The SCM can be converted

into a Bayesian network using do-calculus [2].

Different approaches were adopted in the literature to obtain

causal models of time-series data [3]–[11]. Granger causality

decides whether the past values of a time-series can improve

the prediction of future values of another time-series. However,

this type of causality cannot be used for time-series with

instantaneous effects, or when sub-sampling of time-series

may mask the causal relationships. The intervention causality

enforces a change in the time-series value at a particular time

instant, and then the change can be evaluated as an Average

Causal Effect (ACE). In supervised and semi-supervised ma-

chine learning, the labels of data can be assumed to be a cause

of data features (i.e., the effects). It enables to automatically

label data as well as to repair incorrect labels. However, all

these methods normally assume numerical data.

In [12], the causality is induced by changes in the interaction

covariances. The methods for evaluating causal intervention of

non-randomized, small-size treatments are surveyed in [13].

A state-space SCM for causal inference in time-series data

was studied in [14]. A causal graph discovery over multiple

related datasets was proposed in [15]. The limitations of

convergent cross-mapping in performing the causal inference

were investigated in [16]. The temporal trends in data need

to be identified before performing the causal inference as

shown in [17]. The causal analysis of small sample sizes was

performed in [18] by studying state-space attractors of non-

linear dynamical systems. However, none of these works seem

to have considered the causal inference for categorical data.

In this paper, our goal is to discover causal relationships

within categorical time-series. Such series may represent the

events occurring in control and monitoring of dynamic sys-

tems. The events cannot be often directly detected, but must be

indirectly inferred except in computer simulations of dynamic

systems. The events usually incur changes in the system

internal states. It is extremely useful to understand what caused

these changes, and to make more robust predictions about

the anticipated future changes (effects). Moreover, the event

time-series can be partitioned into shorter sequences. The task

is then to determine the causality between the pairs of the

event sequences. In addition, since the event ordering is locally

irrelevant, it is proposed to transform the event sequences into

the event sets or multi-sets.

More importantly, the cause-effect relationship is newly de-

fined here assuming the conditional probability of nearly cer-

tain and nearly uncertain events. This probability is estimated

empirically as a relative frequency of occurrence of particular

event sequences. Even though such a notion of causality is

incomplete, as many event sequences are conditionally neither

certain nor uncertain, this approach has the advantage of

its implementation simplicity, and it can be fully automated.

Moreover, various distance measures [19]–[22] can be used

to define equivalences among the event sequences, which can

increase the number of these sequences classified as being

causally related by our definition of causality. The distance

metrics also enable the matrix profile analysis, a versatile

framework used for the pattern discovery in time-series data.
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Numerical examples are obtained for a biochemical reaction

network, where the events represent chemical reactions. The

history of chemical reactions are recorded by modifying the

downloaded open-source simulation. The event time-series

processing and visualization pipeline is implemented using a

C++ code and the custom scripts in Python and Bash.

The rest of this paper is organized as follows. Section II

describes a common model of dynamic systems with event-

driven changes of observations and internal states. The pro-

posed causal framework for analyzing the event time-series

is introduced in Section III. Numerical examples are briefly

presented in Section IV. The limitations of our work are

discussed and the paper is concluded in Section V.

II. SYSTEM MODEL

Consider a dynamic system described by transitions be-

tween the consecutive stationary states zzzt−1 ∈ Z and zzzt ∈ Z

due to periodically occurring events et ∈ E , i.e.,

zzzt = et(zzzt−1,zzzt−2, . . .)

where t denotes a discrete time index. The system observations

are defined by a generally non-linear function,

yyyt = O(zzzt ,zzzt−1, . . .)

of the current and the previous system states including any

intrinsic and extrinsic noises (the latter not shown explicitly).

The values yyyt may not be available for all indexes t due to

practical measurement constraints; this corresponds to uniform

or non-uniform sub-sampling of the observations yyyt .

In this paper, it is assumed that, (1) the system model is

memoryless, i.e., zzzt+1 = et(zzzt), and, yyyt = O(zzzt), and, (2) the

observations are perfect, i.e., yyyt = zzzt , and available for all

t. Such Markovian and noise-free observation assumptions

greatly simplify our reasoning, and they are satisfied for

the system studied in Section IV. Furthermore, the events

et are represented as categorical variables, such that, et ∈
{0,1,2, . . .}. Under these assumptions, the transitions between

the observations yyyt and the events eeet are depicted in Figure 1.

In particular, Figure 1 indicates that different events affect

different components in the observed vector, yyyt . However, the

practical constraints on the observations yyyt , for example, to

ensure that, yyyt ≥ 0 for ∀t, may enforce a dependency (i.e., a

memory) among the successive events et . Note also that both

the events and the observations are normally dependent on a

number of other parameters, which is not explicitly considered

in our model description.

The memoryless assumption implies the following property

of the event-based modeling of dynamic systems.

Theorem 1: Given the observation yyyt at time t, the ordering

of (m+1)> 0 events in the sequence, (et ,et+1, . . . ,et+m), does

not affect the observation yyyt+m at time (t + m).

Theorem 1 asserts that the same observation yyyt+m is produced

for any arbitrary ordering of a particular sequence of events.

However, this does not guarantee that all the event orderings

satisfy all the observation constraints; for instance, the natural

t t + 1
t

yt,1

yt,2

yt,i

yt,1

yt,2

yt,i

et

etet

yt,1

yt,i
i

0

0

ii

0

Figure 1. The changes in different components of observations yyyt affected
by different events et ∈ E .

eeet 7→ ssst

eeet+2 7→ ssst+2

et+2et+1et

eeet+1 7→ ssst+1

et+m+1 et+m+2

Figure 2. The sequences eeet of (m + 1) events mapped to (multi-) sets ssst .

constraints that the observations are always non-negative, or

do not exceed a certain value, may be temporarily violated.

Consequently, the sequences of events, eeet =
(et ,et+1, . . . ,et+m), can be assumed to be multi-sets (i.e., the

same events can appear multiple times, but their ordering

is irrelevant), or ordinary sets (the repeated elements are

removed). The corresponding (multi-) sets are denoted as, ssst ,

and they can be created by sliding-window partitioning of the

original event time-series as shown in Figure 2.

III. ANALYSIS OF EVENT TIME-SERIES

Recall that the events et are categorical variables, which can

be mapped to non-negative integers E . Since such a mapping

is rather arbitrary, and assumed purely for a representation

convenience, it cannot be used for evaluating statistical prop-

erties of the time-series, {et}t . Assuming instead the sequence

of (multi-) sets, ssst ∈ S , where S ⊆E ×·· ·×E = Em+1, we can

examine the probability mass function as well as define various

distance measures involving ssst . The former approach will be

used to identify the causal relationships between pairs of event

sequences. The latter approach enables a flexible matrix profile

analysis of the event time-series.

A. Causality Between Event Sequences

Our objective is to determine a possible causal relationship

between pairs of consecutive but non-overlapping event se-

quences. Thus, given eeei and eee j, j = i+m +1, i.e., eeei ∩ eee j = /0

(empty set), decide, whether the event sequence eeei causes

the event sequence eee j (causal learning), or whether the event

sequence eee j is an effect of the event sequence eeei (anti-causal

learning). One plausible and commonly used strategy is to

construct a SCM, and fit it to the data (the event sequences).
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The SCM analysis can be combined with interventions and

do-calculus to find the causes and effects of specific event

sequences. In this paper, we instead propose the following

strategy to identify some, but not all pairs of causally related

event sequences.

Definition 1: The event sequences eeei and eee j, j > i, have

a cause-effect relationship, provided that their conditional

probability,

Pr(eee j|eeei) → 1. (1)

In such a case, the event sequence eeei is said to be a cause of

eee j. Equivalently, the event sequence eee j is an effect of eeei.

The conditional probability (1) represents the likelihood of

the event sequence eeei, given the event sequence eee j. Thus, the

prior distribution of eeei is ignored in Definition 1, and so is

the joint distribution Pr(eeei,eee j). This can be justified by noting

that a cause-effect relationship is generally asymmetric. Even

though there are also cases where eeei causes eee j, and at the same

time, eee j causes eeei, in general, Pr(eee j|eeei) 6= Pr(eeei|eee j).

The reason for assuming the conditional probability in

Definition 1 to be nearly but not exactly equal to 1 is that

the equality is too restrictive and almost never achievable in

practice. Moreover, the conditional probability Pr(eee j|eeei) close

to 1 indicates that, given eeei, there are only a few possible event

sequences eee j following eeei (i.e., the number of such sequences

eee j is significantly smaller than the number of all possible event

sequences observed).

More importantly, the size of the event space, E , expressed

as the cardinality, |E |(m+1), is often much smaller than the

volume of the corresponding observations yyy in a (m + 1)-

dimensional Euclidean or some other space. This is the key

reason for analyzing the sequences of events for inferring

the causality rather than directly processing the sequences of

observations. Although in most practical scenarios, it is the

observations that are available, whereas the internal events can

only be inferred from these observations, which is prone to

decision errors. However, computer simulations are a notable

exception, and they will be utilized in Section IV.

The conditional probability of the event sequences in Defi-

nition 1 close to 1 is only one significant case, which can be

readily causally interpreted. The other such significant case

is represented by the conditional probability being close to 0.

This leads to the following definition of causality between two

event sequences.

Definition 2: The event sequences eeei and eee j, j > i, have

no cause-effect relationship, provided that their conditional

probability,

Pr(eee j|eeei) → 0 and Pr(eeei|eee j) → 0. (2)

The sequences eeei and eee j are then said to be causally unrelated.

Assuming both conditional probabilities in Definition 2 is

necessary in order to ensure that neither eeei nor eee j can be a

cause of the other. Moreover, unlike Definition 1, it is much

more likely to find the pairs of event sequences having very

small or even exactly zero conditional probabilities.

The conditional probabilities of event sequences may some-

times be available from the analysis of a Bayesian model

derived from the SCM. However, in many practical scenarios,

these probabilities must be empirically estimated from the

event time-series data. In such a case, the event sequences

eeet of N = (m+1) events are first created by a sliding-window

partitioning of the original event time-series. In order to enable

Definitions 1 and 2 of causality, the sequences eeet are further

subdivided into two disjoint sub-sequences (omitting the time

index for brevity), eeei and eee j of N1 and N2 events, respectively,

so that,

eeet = eeei ∪ eee j, eeei ∩ eee j = /0

and N = N1 + N2, N1 = |eeei|, N2 = |eee j|, and importantly, all

the events in eeei precede the events in eee j. The corresponding

(multi-) sets are denoted as sssi and sss j, and they are referred to

as the left and the right event (multi-) sets, respectively.

Define a 2D counter (matrix), Ci, j, of the number of the

unique left and right sub-sequences, eeei and eee j, composing the

event sequences, eeet . The conditional probabilities (1) and (2)

can be then estimated as,

Pr(eee j|eeei) ≈Ci, j/Ki (3)

where Ki denotes the number of times a specific event sub-

sequence eeei was observed, i.e., Ki = ∑ j Ci, j.

There are, however, two issues with the causality in Defi-

nitions 1 and 2. The first problem is that the number of sub-

sequences eeei and eee j satisfying (2) and especially (1) can be

rather small in comparison to the total number of all observed

event sub-sequences. This leaves out most other pairs of event

sub-sequences eeei and eee j, for which their causal relationship

cannot be determined using Definitions 1 and 2, since their

conditional probability, 0< Pr(eee j|eeei)< 1. The second problem

is that identifying the rarely occurring, causally related sub-

sequences using the estimator (3) becomes less accurate,

unless sufficiently long event time-series are available.

In order to overcome these issues, we can exploit the

mapping of event sequences to event (multi-) sets, as discussed

in Section II. It allows us to define various notions of distances

between the event sequences eeei and eee j as follows. Let d0 be

the Hamming distance between eeei and eee j. Then, any of the

following expressions can be assumed as a distance metric

between the event sequences eeei and eee j.

d(eeei,eee j) = d0 −|sssi ∪ sss j| (4a)

d(eeei,eee j) = d0 −|sssi ∩ sss j| (4b)

d(eeei,eee j) = d0 − (|sssi|+ |sss j|) (4c)

d(eeei,eee j) = d0 −max(|sssi|, |sss j|) (4d)

d(eeei,eee j) = max(|sssi|, |sss j|)−min(|sssi|, |sss j|) (4e)

d(eeei,eee j) = min(|sssi \ sss j|, |sss j \ sssi|). (4f)

Thus, always, d(eeei,eee j)≥ 0, d(eeei,eee j) = d(eee j,eeei), and |sssi| ≤ |eeei|.
Furthermore, in order to increase the number of occurrences

of event sequences which are either causally related by Defi-

nition 1, or causally unrelated by Definition 2, we can assume
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any of the distance metrics (4a)-(4f) to introduce the following

notion of equivalent event sequences.

Definition 3: The event (sub-) sequences eeei and eee j are said

to be equivalent, provided that their distance, d(eeei,eee j) = 0.

It is clear that by discarding the event ordering and keeping

only the unique events in event sets as assumed in the

distance metrics (4a)-(4f), the number of equivalent event sub-

sequences can grow substantially, and so does the number

of event sub-sequence pairs satisfying either Definition 1 or

Definition 2.

The effect of assuming the equivalent event sub-sequence is

illustrated in Figure 3. In the first step, the unique event sub-

sequence pairs eeei and eee j are identified, and their multiplicities,

Ci, j, are counted. Using Definition 3, the equivalent event

sub-sequences can be identified among the right or the left

sub-sequences representing either the potential event causes,

potential event effects, or both. The equivalent event sub-

sequences are then merged (blue boxes in Figure 3), and the

counters Ci, j used in (3) are updated accordingly.

More specifically, let Iu, u = 1,2, . . ., be the sets of indices of

the equivalent left event sub-sequences eeei representing possible

causes, and Jv, v = 1,2, . . ., are similar such index sets for the

right event sub-sequences eee j, representing the possible effects.

The event sub-sequence counters in (3) are updated due to the

left and the right merges as,

C′
i, j = ∑

i∈Iu

Ci, j, C′
i, j = ∑

j∈Jv

Ci, j.

Consequently, it then becomes much more likely that some

pairs of the equivalent event sub-sequences have their con-

ditional probability close to 1 (as estimated by their relative

occurrences), so they can be assumed to be causally related by

Definition 1. On the other hand, merging the equivalent event

sub-sequences and aggregating the counters make it somewhat

less likely that the condition of non-causal relationship in

Definition 2 would be satisfied. These causal decisions are also

greatly affected by a specific choice of the distance metric.

B. Matrix Profile Analysis of Event Time-Series

The canonical matrix profile effectively shows the minimum

distances between constant length sequences, which are cre-

ated by a sliding-window partitioning of the original time-

series data. The distance calculations in the matrix profile are

greatly optimized to allow processing of very long sequences

of data. These calculations can be readily parallelized, for

example, using a MapReduce algorithm. The matrix profile

is mainly used to identify common patterns (motifs) as well

as rare patterns (discords), and also to identify time instances

when the distance-based sequence statistics have changed.

Even though the events are represented as categorical rather

than numerical variables, the distance metrics (4a)-(4f) can

be directly used in calculating the matrix profile of the event

time-series. The choice of the actual distance metric strongly

affects the resulting matrix profile, although less than one

might expect. However, it is still useful to compare the matrix

profiles for different values of the sequence lengths.
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Figure 3. A: Original pairs of the unique event sub-sequences. B: Left-mergers
of event sub-sequences as potential causes. C: Right-mergers of event sub-
sequences as potential effects.

More importantly, the original matrix profile only displays

the minimum distance values for each sliding-window sub-

sequence. However, other statistics may also be useful. For

example, the distribution of sub-sequence mutual distances

provides a more global view, whereas the multiplicity of the

smallest distances for each sub-sequence may be as informa-

tive in some applications as the actual smallest distance values.

IV. CASE STUDY: BIOCHEMICAL REACTION NETWORKS

Biochemical reaction networks represent dynamic systems

that undergo changes in copy counts (or, equivalently, concen-

trations) of chemical species due to chemical reaction events

[23]. The number of chemical reactions is often much larger

than the number of chemical species. The corresponding chem-

ical kinetics can be stochastically described using a Chemical

Master Equation (CME) [24]. The CME is usually solved by a

Monte Carlo simulation [25], which tracks the time-evolution

of the chemical species counts. More importantly, we assume

a so-called well-stirred system, i.e., the spatial distribution and

the diffusion of chemical molecules are ignored.

The models of chemical reaction systems may involve

chemical species containing multiple binding sites [26]. Enu-

merating all chemical reactions for every binding site is

impractical due to the combinatorial complexity of the result-

ing chemical reaction network. The network-free algorithms

exploit the reaction (meta-) rules to effectively describe the

groups of reactions without a need to enumerate all the

reactions explicitly [27].

A. Numerical Experiments

Numerical experiments were obtained for an antigen re-

ceptor signaling regulating the activity and fate of the B-

cells [28]. The corresponding model (referred to as BCR

model) consists of 32 molecule types, 158 reaction rules,

and 129 model parameters. The extracted full model contains

1,124 chemical species and 24,390 chemical reactions. The

model was simulated in BioNetGen software [29], [30].
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Figure 4. The estimated conditional probabilities Pj,i of N = (1 + 2) event
sub-sequences. Black: Pj,i < 0.1, Red: Pj,i < 0.9, Blue: Pj,i ≥ 0.9.

BioNetGen is an open source software offering its own model

description language to specify chemical reaction systems.

The model description file is processed by a Perl script in

order to generate the more complete system model given in

System Biology Markup Language (SBML). The SBML file

is then simulated in NFSim [31]; an open source software

written in C++ [32]. We have modified NFSim to enable

recording of the history of all reaction events in the course

of the simulations. The trajectories of chemical species counts

were simply discarded. The generated event time-series were

processed, and visualized by the custom-made scripts written

in Python. The overall process of performing the simulations,

processing the event time-series, and generating the plots was

fully automated mainly using the Bash scripts.

Simulating the BCR model over 100 simulation seconds

resulted in 3,634,390 reaction events involving 35 reaction

types. The reaction events can be naturally divided into 100

blocks over one second intervals. The sliding-window event

sub-sequences were then formed and processed. The distinct

frequencies of occurrence of the event N-tuples were observed,

and they allow their clustering into multiple distinct classes.

Due to space limitations, only the following three plots are

shown. Figure 4 visualizes the estimated reverse conditional

probabilities, Pr(eeei|eee j) for the first five blocks (i.e., for the

events eeei occurring before eee j), assuming |eee j| = 2 and |eeei| = 1,

i.e., N = 3. The reactions in each column in Figure 4 have

the same ordering to indicate that some event patterns can

be considered causal (according to our Definitions 1 and 2) in

some blocks, but not in other blocks. Furthermore, in Figure 4,

the right event sub-sequences were combined assuming the

sub-sequence equivalences with the distance metric (4a). The

line coloring is described in the caption of Figure 4.

Figure 5. A canonical matrix profile assuming the minimum distances (4a),
for sub-sequences of 4, 10 and 20 reaction events.

Figure 6. The matrix profile of the maximum distances (4f) (top-row) and
their multiplicity (bottom-row) for sub-sequences of 4, 10 and 20 events.

Figure 5 depicts a canonical matrix profile assuming sub-

sequences of 4, 10 and 20 events. The profile was calculated

using the Python module stumpy [33]. It can be seen that the

profile becomes more dense, and its mean moves away from

zero with the increasing sub-sequence length. Finally, Figure 6

shows the matrix profile assuming the maximum (instead of

minimum) values of the distance metric (4f) between any pair

of sub-sequences of 4, 10 and 20 events, respectively (top-

row), and the multiplicity of these maximum distance values

(bottom-row). This illustrates how the choice of the distance

metric greatly affects the shape of the matrix profile.
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V. DISCUSSION AND CONCLUSION

The sliding-window event sequences were split into the

left and the right event sub-sequences. The causality has

been defined here as the pairs of nearly certain or nearly

uncertain event sequences. The level of certainty can be eval-

uated empirically by measuring the corresponding conditional

probabilities. Since ordering of events is locally irrelevant, it is

useful to transform the event sub-sequences into event (multi-)

sets, for which various distance metrics can be defined.

The distance metrics can be utilized to obtain the ma-

trix profiles of event time-series. Our numerical experiments

demonstrate that matrix profile is a rather general and flexible

framework for analyzing numerical as well as categorical time-

series, and conveniently visualizing their statistics.

Even though this paper focuses on analyzing the short

sequences of consecutive events, the events neither have to

be consecutive, nor short. However, assuming non-consecutive

events make the pattern space to be combinatorially much

larger, and the longer the event sequences, the less likely it is to

identify those that can be considered to be statistically certain

or uncertain. The causality analysis may also involve both

the events and the observations. This can lead to explainable

Monte Carlo simulations, provided that causally related (or un-

related) sub-sequences are identified and properly interpreted

in a given domain [34], which can be challenging.

The simulation software adopted and the programming

scripts produced to analyze state-space models of biochem-

ical reaction networks allow fully automated processing of

the recorded event time-series. It allows generating a large

number of diverse plots for different models across different

numerical experiments, although automated interpretation of

the identified causal events may again be rather challenging.
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