
SOFTENG 2015

The First International Conference on Advances and Trends in Software

Engineering

ISBN: 978-1-61208-449-7

April 19 - 24, 2015

Barcelona, Spain

SOFTENG 2015 Editors

Felipe Silva Ferraz, CIN/UFPE / CESAR, Brazil

Jameleddine Hassine, KFUPM, Saudi Arabia

 1 / 129

SOFTENG 2015

Foreword

The First International Conference on Advances and Trends in Software Engineering (SOFTENG
2015), held between April 19th-24th, 2015 in Barcelona, Spain focuses on challenging aspects for
software development and deployment, across the whole life-cycle.

Software engineering exhibits challenging dimensions in the light of new applications, devices
and services. Mobility, user-centric development, smart-devices, e-services, ambient environments, e-
health and wearable/implantable devices pose specific challenges for specifying software requirements
and developing reliable and safe software. Specific software interfaces, agile organization and software
dependability require particular approaches for software security, maintainability, and sustainability.

We take here the opportunity to warmly thank all the members of the SOFTENG 2015 Technical
Program Committee, as well as the numerous reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to SOFTENG 2015. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the SOFTENG 2015 organizing
committee for their help in handling the logistics and for their work to make this professional meeting a
success.

We hope that SOFTENG 2015 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of software
engineering.

We are convinced that the participants found the event useful and communications very open.
We hope Barcelona provided a pleasant environment during the conference and everyone saved some
time for exploring this beautiful city.

SOFTENG 2015 Advisory Chairs:

Alain Abran, University of Québec, Canada
Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Paolo Maresca, Amadeus IT Group, France
Patricia McQuaid, California Polytechnic State University, USA

SOFTENG Research Liaison Committee
Veena Mendiratta, Bell Labs, Alcatel-Lucent, USA
Michael Perscheid, SAP Innovation Center Potsdam, Germany
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea
Fergal Mc Caffery, Dundalk Institute of Technology, Ireland
Ron Watro, BBN Technologies, USA

 2 / 129

SOFTENG Industrial Liaison Committee
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Janne Järvinen, F-Secure Corporation - Helsinki, Finland

 3 / 129

SOFTENG 2015

Committee

SOFTENG Advisory Committee

Alain Abran, University of Québec, Canada
Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Paolo Maresca, Amadeus IT Group, France
Patricia McQuaid, California Polytechnic State University, USA

SOFTENG Research Liaison Committee

Veena Mendiratta, Bell Labs, Alcatel-Lucent, USA
Michael Perscheid, SAP Innovation Center Potsdam, Germany
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea
Fergal Mc Caffery, Dundalk Institute of Technology, Ireland
Ron Watro, BBN Technologies, USA

SOFTENG Industrial Liaison Committee

Tomas Schweigert, SQS Software Quality Systems AG, Germany
Janne Järvinen, F-Secure Corporation - Helsinki, Finland

SOFTENG 2015 Technical Program Committee

Haider Abbas, Center of Excellence in Information Assurance - King Saud University, Saudi Arabia
Alain Abran, University of Québec, Canada
Magnus Almgren, Chalmers University of Technology, Sweden
Étienne André, Université Paris 13, France
Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea
Alessandra Bagnato, SOFTEAM R&D Department, France
Byoungju Choi, Ewha Women’s University, South Korea
Sunita Devnani Chulani, Cisco Systems, USA
Paolo Ciancarini, University of Bologna, Italy
Christof Ebert, Vector Consulting Services GmbH, Germany
Mahmoud O. Elish, King Fahd University of Petroleum and Minerals, Saudi Arabia
Anita Finnegan, Dundalk Institute of Technology, Ireland
Francesco Flammini, Ansaldo STS, Italy
Sibylle Fröschle, OFFIS & University of Oldenburg, Germany
Barbara Gallina, Mälardalen University, Sweden
Alessia Garofalo, University of Naples "Parthenope", Italy
Ibrahim Habli, University of York, UK
Qiang (Nathan) He, Swinburne University of Technology, Australia

 4 / 129

Andreas Hoffmann, Fraunhofer Institute for Open Communication Systems (FOKUS), Germany
Jang Eui Hong, Chungbuk National University, South Korea
Fu-Hau Hsu, National Central University, Taiwan
Shinji Inoue, Tottori University, Japan
Janne Järvinen, F-Secure Corporation, Finland
P. K. Kapur, Amity University, India
David Kaeli, Northeastern University, USA
Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, USA
Raghudeep Kannavara, Intel Corp., USA
Abdelmajid Khelil, Bosch Software Innovations, Germany
Kenji Kono, Keio University, Japan
Herbert Kuchen, Westfälische Wilhelms-Universität Münster, Germany
Claire Ingram, Newcastle University, UK
Dieter Landes, University of Applied Sciences Coburg, Germany
Jeff (Yu) Lei, University of Texas at Arlington, USA
Yanfu Li, École Centrale Paris, France
Chu-Ti Lin, National Chiayi University, Taiwan
Risto Nevalainen, FiSMA Association, Finland
Aniket Malatpure, Microsoft Corporation, USA
Paolo Maresca, Amadeus IT Group, France
Assaf Marron, Weizmann Institute of Science, Israel
Fergal Mc Caffery, Dundalk Institute of Technology, Ireland
Patricia McQuaid, California Polytechnic State University, USA
Daniel Sadoc Menasche, Federal University of Rio de Janeiro, Brazil
Veena Mendiratta, Bell Labs, Alcatel-Lucent, USA
Andréa Mendonça, Instituto Federal do Amazonas (IFAM), Brazil
Bao Nguyen, VMware, USA
Cu Duy Nguyen, SnT Centre - University of Luxembourg, Luxembourg
Nicole Novielli, University of Bari “A. Moro”, Italy
Antonio Pecchia, Federico II University of Naples, Italy
Michael Perscheid, SAP Innovation Center Potsdam, Germany
Pasqualina Potena, University of Alcalá, Spain
Wolfgang Reif, Institute for Software & Systems Engineering - University of Augsburg, Germany
Alejandra Ruiz, TECNALIA, Spain
Gunter Saake, Otto-von-Guericke-University of Magdeburg, Germany
Kazi Muheymin Sakib, University of Dhaka, Bangladesh
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Gunther Spork, Magna Powertrain AG & Co KG, Austria
Miroslaw Staron, University of Gothenburg, Sweden
Kumiko Tadano, NEC Corporation, Japan
Kunal Taneja, Accenture Technology Labs, San Jose, USA
Nguyen Anh Tuan, Boston Global Forum, USA
Tugkan Tuglular, Izmir Institute of Technology, Turkey
Sylvain Vauttier, LGI2P - Ecole des Mines d'Alès, France
Gursimran S. Walia, North Dakota State University, USA
Hironori Washizaki, Waseda University, Japan
Gera Weiss, Ben-Gurion University of the Negev, Israel
Ralf Wimmer, Institute of Computer Science - Albert-Ludwigs-University, Germany

 5 / 129

Guowei Yang, Texas State University, USA
Cemal Yilmaz, Sabanci University, Turkey
Mansooreh Zahedi, IT University of Copenhagen, Denmark

 6 / 129

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 129

Table of Contents

A Change Impact Analysis Approach to GRL Models
Jameleddine Hassine

1

Information Security in Smart Cities
Felipe Silva Ferraz, Carlos Candido Barros Sampaio, and Carlos Andre Guimaraes Ferraz

7

Early & Quick Function Point Method - An Empirical Validation Experiment
Roberto Meli

14

Software Component Allocation on Heterogeneous Embedded Systems Using Coloured Petri Nets
Issam Al-Azzoni

23

Feature Mining for Product Line Construction
Yutian Tang and Hareton Leung

29

Detecting Disruption Periods on TCP Servers with Passive Packet Traffic Analysis
Iria Prieto, Mikel Izal, Eduardo Magana, and Daniel Morato

34

NumEquaRes - Web Application for Numerical Analysis of Equations
Stepan Orlov and Nikolay Shabrov

41

A Catalogue of Thresholds for Object-Oriented Software Metrics
Tarcisio G. S. Filo, Mariza A. S. Bigonha, and Kecia A. M. Ferreira

48

Hybrid Mockup-driven Development: An Agile Model-driven Approach for Web Applications
Gurkan Alpaslan and Oya Kalipsiz

56

Critical Issues in SPI Programs: A Holistic View
Cristiane Ramos, Kathia Oliveira, and Ana Regina Rocha

60

Data Verification of Telecommunication Projects for Risk Assessment Models
Ayse Buharali Olcaysoy and Oya Kalipsiz

67

A Lightweight Approach to the Early Detection and Resolution of Feature Interactions
Carlo Montangero and Laura Semini

72

Developing a Repository for Component-based Energy-Efficient Software Development
Doohwan Kim and Jang-Eui Hong

78

Automatic Generation of Sequence Diagrams and Updating Domain Model from Use Cases 85

 1 / 2 8 / 129

Fabio Souza and Fernando Giorno

Framework for Developing Scientific Applications: Solving 1D and 2D Schrodinger Equation by using Discrete
Variable Representation Method
Bojana Koteska, Anastas Mishev, and Ljupco Pejov

93

Exploring Test Composition: Towards Reusability in Combinatorial Test Design
Anna Zamansky and Eitan Farchi

100

Smart City Applications TestBed
Felipe Ferraz, Danilo Silva, and Carlos Ferraz

104

Towards A Smart-City Security Architecture Proposal and Analysis of Impact of Major Smart-City Security
Issues
Felipe Ferraz, Carlos Sampaio, and Carlos Ferraz

108

Towards an Automatic Test Case Decomposition by Means of System Decomposition
Marcel Ibe and Andreas Rausch

115

Powered by TCPDF (www.tcpdf.org)

 2 / 2 9 / 129

A Change Impact Analysis Approach to GRL Models

Jameleddine Hassine
Department of Information and Computer Science

King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
Email: jhassine@kfupm.edu.sa

Abstract—Goal models represent interests, intentions, and
strategies of different stakeholders in early requirements elici-
tation process. In a socio-technical context, goal models evolve
quickly to accommodate the rapid changes of stakeholders’ needs,
technologies, and business environments. In order to control
and minimize the risks brought by requirements changes, it is
important to analyze the effects of modifications in goal models.
Given a proposed modification, Change Impact Analysis (CIA)
allows for the identification of software artifacts that will be
impacted and for the estimation of the effort required to imple-
ment the proposed changes. This paper describes an approach to
analyze the propagation of changes in goal models specified using
the Goal-oriented Requirements Language (GRL). Dependencies
in the GRL model are first extracted and illustrated using a
GRL Model Dependency Graph (GMDG), describing inter- and
intra- actor dependencies. In order to identify model constructs
that are impacted by a proposed change, we apply the well-
known technique of program slicing to the GMDG model. We
illustrate our approach by applying it to a goal model describing
undergraduate students’ involvement in research activities.

Keywords-Goal models; requirements; Change Impact Analysis;
Goal-oriented language(GRL); GRL Model Dependency Graph
(GMDG); slicing;

I. INTRODUCTION

Evolving customer needs is one of the driving factors in
software development. Requirements models are the first avail-
able artifacts during the software development process. They
undergo many changes caused by changing user requirements
and business goals or induced by changes in implementation
technologies. Hence, there is a need to analyze the impact of
requirements changes in order to help detect and solve possible
conflicts between stakeholders and to assess the different
design alternatives influenced by these changes. Localizing
the impact of changes is one of the most efficient strategies
for a successful evolution. Change Impact Analysis (CIA) [1]
aims at identifying the potential consequences of a change,
and estimating what needs to be modified to accomplish a
change [1]. Hence, change impact analysis is required for
constantly evolving systems to support the comprehension,
implementation, and evolution of changes. Change impact
analysis has been applied to analyze source code, formal mod-
els (architectural and requirements models), or other artifacts
(e.g., documents, data sources, configuration files) [2].

Goal models have been introduced as a means to ensure
that stakeholders’ interests and expectations are met in the
early requirements engineering stages. As goal models gain in
complexity (e.g., large systems involving many stakeholders
and many dependencies), they become difficult to comprehend

and to maintain. The main motivation of this research is
to manage the complexity of goal models with respect to
maintenance tasks. In particular, we are interested in applying
change impact analysis techniques to Goal-oriented Require-
ment Language (GRL) [3]. This paper aims to:

• Provide a GRL-based approach to change impact anal-
ysis. The proposed approach allows requirements engi-
neers and projects leaders to ask “what if ...?” questions,
and to reason about alternative scenarios with respect to
maintain GRL models.

• Provide an insight into how changes propagate within an
actor or how they spread across many actors. In fact,
dependencies that are embedded within the GRL model
are extracted and described as a GRL Model Dependency
Graph (GMDG). Dependencies between intentional ele-
ments that are within one GRL actor are referred to as
intra-actor dependencies, while dependencies involving
different actors are referred to as inter-actor dependen-
cies. In case of a modification of the GRL model, it is
important to identify whether the changes strech across
the actor boundary. This would allow to choosing the cor-
rect validation approach (e.g., mediation process or a less
formal discussions between the intervening stakeholders).

• Extend the use of the well-known technique of program
slicing [4] to goal models. In contrast to traditional
program slicing, we apply slicing to GMDG graphs. As
a result, the GRL artifacts that are impacted by a given
change are identified.

The remainder of this paper is organized as follows. In
the following section, we provide a brief introduction to the
GRL [3] language. Our proposed change impact analysis
approach is presented in Section III. In Section IV, we apply
our proposed approach to a GRL model describing the involve-
ment of undergraduate students and professors in research
activities. A comparison with related work is provided in
Section V. Finally, conclusions and future work are presented
in Section VI.

II. GOAL-ORIENTED REQUIREMENTS LANGUAGE (GRL)

GRL [3] is a visual notation used to model stakeholders’
intentions, business goals, and non-functional requirements
(NFR).

The basic notational elements of GRL are summarized in
Figure 1. Actors (see Figure 1(a)) are holders of intentions;
they are the active entities in the system or its environment

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 10 / 129

who want goals to be achieved, tasks to be performed, re-
sources to be available, and softgoals to be satisfied. Actor
definitions are often used to represent stakeholders as well
as systems. A GRL actor may contain intentional elements
describing its intentions and capabilities. Figure 1(b) illus-
trates the GRL intentional elements (i.e., goal, task, softgoal,
resource and belief) that optionally reside within an actor.

 Alternative presentation
for an actor reference

Actor with boundary Collapsed Actor

(a) GRL actors

(b) GRL intentional elements

Contribution Correlation Belief link Dependency Decomposition

(c) GRL links

Make Help SomePositive Unknown SomeNegative Break Hurt

(d) GRL qualitative contribution types

Fig. 1. GRL notational elements

Figure 1(c) illustrates the various kinds of links in a goal
model. Decomposition links allow an intentional element to
be decomposed into sub-elements (using AND, OR, or XOR).
Beliefs, used to represent rationales from model creators, are
connected to GRL intentional elements using belief links.
Contribution links indicate desired impacts of one intentional
element on another element. A contribution link has a qual-
itative contribution type (see Figure 1(d)) and/or a quantita-
tive contribution (an integer value between -100 and 100 in
standard GRL). Correlation links are similar to contribution
links but describe side effects rather than desired impacts.
Finally, dependency links model relationships between actors
and between intentional elements (within the same actor). In
addition, GRL defines indicators as containable elements used
to analyze GRL models based on real-world measurements.
Since, indicators are used only in converting real-world values
into satisfaction levels, they are out of the scope of this
research. For a detailed description of the GRL language, the
reader is invited to consult the URN standard [3].

III. GRL CHANGE IMPACT ANALYSIS APPROACH

In what follows, we present our GRL-based change impact
analysis approach.

A. Dependencies in GRL Models

Goal-oriented models describe the actors within a com-
plex socio-technical system, dependencies between system
elements, and organizational goals. Dependencies enable rea-
soning about how actors/elements depend on each other to
achieve the planned goals. Dependencies in GRL models can
be classified as explicit or implicit [5]. Explicit dependencies
are modeled as dependency links , while implicit depen-
dencies are modeled using contributions

, correlations ,
and decompositions [5]. For instance, in Figure 2(a), the
satisfaction of Goal1 depends on the satisfaction of Goal2
and the type of the contribution ContributionG2G1. A change
to the satisfaction level of Goal2 or to the contribution’s
qualitative/quantitative type/level, will have a direct impact
on the satisfaction of Goal1. Explicit dependency links can
be used in many types of configurations according to the
required level of detail [3]. GRL actors (described as collapsed
actors) can be used as source and/or destination of an explicit
dependency link. Intentional elements inside actor definitions
can be used as source and/or destination of a dependency link.
Collapsed actors (see Figure 1(a)) are used when an actor is
the source/destination of an explicit dependency. In addition,
actors cannot be used as source or destination of a contribution,
a correlation, or a decomposition link. We further classify
dependencies as:

• Intra-actor dependencies: describes a dependency (ex-
plicit or implicit) having its source and target within the
same actor boundary.

• Inter-actor dependencies: describes a dependency (ex-
plicit or implicit) having its source and target bound to
different actor definitions.

It is worth noting that GRL syntax does not allow actors to
overlap (i.e., share common GRL elements).

B. GRL Model Dependency Graph (GMDG)

Before we define the GMDG graph, we define formally
GRL models.

Definition 1 (GRL Model): We assume that a GRL model
GRLM is denoted by a 3-tuple (or a triple): (Actors, Elements,
Links), where:

• Actors is the set of actors in the GRL model. It contains
a set of actor references and a set of collapsed actors,
denoted by CollapsedActors.

• Elements is the set of intentional elements (i.e., tasks,
goals, softgoals, resources, and beliefs) in the GRL
model.

• Links is the set of links in the model. A GRL link is
defined as a triple (type, src, dest), where type is the
link type (of type LinkTypes = {contribution, correlation,

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 11 / 129

dependency, decomposition}), src and dest are the source
and destination of the link, respectively (they are either
part of Elements or CollapsedActors).

Definition 2 (Links Access Functions): We define the fol-
lowing access functions over the set of links (i.e., Links):

• TypeLink: Links → LinkTypes, returns the type of the link.
• Source: Links → Elements ∪ CollapsedActors, returns the

intentional element/actor source of the link.
• Destination: Links → Elements ∪ CollapsedActors, re-

turns the intentional element/actor destination of the link.

For example, given a contribution C=(contribution, Goal2,
Goal1) (see Figure 2(a)), then TypeLink(C)= contribution,
Source(C)= Goal2, and Destination(C)= Goal1.

Using the dependency definitions given above, we can now
define the GRL Model Dependency Graph (GMDG).

Definition 3 (GRL Model Dependency Graph (GMDG)):
A GRL Model Dependency Graph (GMDG) is a directed,
connected graph defined as GMDG=(N, E), consisting of:

• N is a set of nodes. Each GRL intentional element (i.e.,
of type Elements), each link (i.e., of type LinkTypes), and
each collapsed actor is mapped to a node n∈N.

• E is a set of edges. An edge e∈E represents a dependency
link (intra- or inter- actor dependency).

C. Constructing the GMDG Graph

In a GMDG graph, intra-actor dependencies are illustrated
as solid arrows (see Figure 2(b)), while inter-actor depen-
dencies are illustrated as dashed arrows (see Figure 4(b)).
Figure 2(b) illustrates the GMDG corresponding to a single
contribution link (Figure 2(a)). GMDG nodes are created for
Goal1, Goal2, and the contribution link ContributionG2G1.
Two intra-actor dependency links are created from node Goal1
to both Goal2 and ContributionG2G1 nodes.

ContributionG2G1

(a) Contribution link

Goal1

Goal2 ContributionG2G1

(b) GMDG for the contribution
link

Fig. 2. Contribution relationship and its Associated GMDG

In case of a decomposition relationship (see Figure 3(a)),
each intentional element is mapped to a GMDG node (i.e.,
Softgoal1, Goal1, Goal2). The decomposition is mapped
to one single node (i.e., DecompositionSG1G1G2). Intra-
actor dependencies are created between Softgoal1 and Goal1,
Goal2, and DecompositionSG1G1G2 (see Figure 3(b)).

DecompositionSG1G1G2

(a) Decomposition Relationship

Softgoal1

Goal1

DecompositionSG1G1G2

Goal2

(b) GMDG for the De-
composition Relationship

Fig. 3. Decomposition relationship and its associated GMDG

Figure 4(a) illustrates a GRL having two actors (i.e., Actor1
and Actor2) and two inter-actor dependencies (i.e., Depen-
dencyG1G2 and ContributionT1G1). Explicit dependencies are
mapped to GMDG nodes as follows: nodes are created to map
the depender (e.g., Goal1), the dependee (e.g., Goal2), and
the dependency link (e.g., DependencyG1G2). Two inter-actor
dependency links are created from node Goal1 to Goal2 and
DependencyG1G2 nodes. The contribution link is mapped to
two inter-actor dependencies, one between Goal1 and Task1,
and the other between Goal1 and ContributionT1G1 as shown
in Figure 4(b).

DependencyG1G2

ContributionT1G1

(a) Inter-actor Dependencies

Goal1

Task1

ContributionT1G1

Goal2

DependencyG1G2

(b) GMDG with Inter-actor De-
pendencies

Fig. 4. Inter-actor dependencies and their associated GMDG

It is worth noting that beliefs are always associated with one
single intentional element. Consequently, we don’t create a
separate GMDG node for representing a belief. The algorithm
in Figure 5 is used to construct the GMDG graph.

D. Slicing the GRL Model Dependency Graph

The notion of program slicing was originated in the seminal
paper by Weiser [4]. Weiser defined a slice S as a reduced
independent program guaranteed to faithfully represent the
original program within the domain of the specified subset of
behavior. Informally, a static program slice consists of those
parts of a program that potentially could affect/affected by

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 12 / 129

Input : A GRL Model
Output: A GMDG Graph
foreach element e ∈ Elements ∪ CollapsedActors do CreateNode(e);
foreach link l ∈ Links do

if (TypeLink(l)=contribution or TypeLink(l)=correlation or
TypeLink(l)=dependency then

CreateNode(l);
if (Source(l) and Destination(l) are within the same actor)
then

Create an intra-actor dependency link from Destination(l)
to Source(l);
Create an intra-actor dependency link from Destination(l)
to l;

else
Create an inter-actor dependency link from Destination(l)
to Source(l);
Create an inter-actor dependency link from Destination(l)
to l;

end
end
if (TypeLink(l)=decomposition) then

if (no node is created for l) then
CreateNode(l);

end
if (Source(l) and Destination(l) are within the same actor)
then

Create an intra-actor dependency link from Destination(l)
to Source(l);

else
Create an inter-actor dependency link from Destination(l)
to Source(l);

end
end

end

Fig. 5. Constructing the GMDG graph

the value of a variable V at a point of interest, called the
slicing criterion. The application of slicing has been extended
to other software artifacts such as requirements and design
models, formal specifications, software architectures, etc. In
what follows, we extend the application of slicing to GRL
models. In our CIA approach, we are interested in obtaining
the GRL elements that are impacted by a given modification
represented by the slicing criterion.

Definition 4 (GRL Slicing Criterion): Given a GRL model,
a slicing criterion may be either a GRL intentional element, a
GRL link, or a collapsed actor.

The proposed slicing algorithm (see Figure 6) is based
on a backward traversal of the GMDG. It starts with the
localization of the node corresponding to the slicing criteria.
Next, it follows all incoming links and marks all encountered
nodes. The procedure stops when all reached nodes have no
incoming edges. Encountering inter-actor dependency links is
an indication that the proposed change would affect other
actors.

The GMDG marked nodes are then mapped back to the
original GRL model, representing all GRL constructs impacted
by the proposed change.

Input : A GMDG + a slicing criterion (SC)
Output: A set of marked GMDG nodes + whether the impact is spread

to other actors (ImpactingOtherActors)
Locate SC;
Mark node SC;
currentNode= SC;
ImpactingOtherActors = false;
forall the incoming links to SC do

if (incoming link is inter-actor) then
ImpactingOtherActors = true;

end
Follow the link;
Mark the reached node;
currentNode ←− reached node;
recursively call the algorithm with GMDG and currentNode as
input

end

Fig. 6. GMDG Slicing Algorithm

IV. CASE STUDY: UNDERGRADUATE STUDENT
INVOLVEMENT IN RESEARCH ACTIVITIES

In this section, we apply our proposed CIA approach to
a GRL model describing undergraduate student involvement
in research activities (see Figure 7). The model involves two
actors (Professor and Undergraduate Student) and describes
one explicit dependency stating that “In order to achieve stu-
dent satisfaction with their participation in university research
projects, undergraduate students depend on professors to en-
sure active involvement of students in their research projects”.
Research opportunities may take one of the following two
forms: (1) programming duties and (2) experiments and data
collection. These duties are described as two professor tasks
(i.e., “Assign programming duties to undergraduate students”
and “Assign experiments and data collection to undergraduate
students”) contributing positively (i.e., using two GRL help
contributions) to the softgoal “Active involvement of under-
graduate students in research projects”. The latter softgoal
hurts (i.e., using the hurt contribution type) the completion
of critical projects having tight deadlines. Student satisfac-
tion with research activities is modeled as a softgoal “Stu-
dents satisfied with their participation in university research
projects” and it is subject to getting an academic credit for
their performed tasks (i.e., goal “Receive academic credits for
research activities”) and getting a financial compensation (i.e.,
goal “Receive financial compensation for research activities”)
from professors.

Figure 8 illustrates three changes to be implemented in the
original GRL model:

1) Change1: Addition of a new task “Assign mechanical
and electrical assembly tasks to undergraduate students”
contributing positively (i.e., SomePositive type) to the
softgoal “Active involvement of undergraduate students
in research projects”.

2) Change2: Replace the And by an Or decomposition.
3) Change3: Deletion of task “Assign programming duties

to undergraduate students” and its corresponding help
contribution.

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 13 / 129

Fig. 7. GRL model describing undergraduate student involvement in research activities

+

(a) Change1: Add a new task and a
new help contribution

Or

(b) Change2: Replace the And by an OR decom-
position

(c) Change3: Delete a task and
its corresponding contribution

Fig. 8. Three planned changes to the GRL model

Active involvement of
undergraduate students

in research activities

Assign programming
duties to undergraduate

students

Help contribution-
Programming duties

Assign experiments and
data collection to

undergraduate students

Help contribution-
Experiments and data

collection

Students satisfied with their
participation in university research

projects

AND decomposition

Dependency
UndergraduateStudent Professor

Completion of critical projects
having tight deadlines

Hurt
contribution

Receive academic
credits for research

activities

Receive financial
compensation for
research activities

Intra-actor dependency
Inter-actor dependency

Impacted GRL elements by change1
Impacted GRL elements by change2
Impacted GRL elements by change3

Fig. 9. GRL Model Dependency Graph corresponding to the GRL model in Figure 7

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 14 / 129

Figure 9 illustrates the marked GMDG corresponding to
the GRL model in Figure 7 and the three proposed changes
of Figure 8.

V. COMPARISON WITH RELATED WORK

There have been a number of studies on goal models that
establish traceability links between the requirements and the
system design. Lamsweerde [6] has proposed an approach to
derive software architectures from a system goal model using
heuristics. The approach assigns responsibilities for achieving
goals to their corresponding components and establish con-
nections among them. Yu et al. [7] have proposed a technique
for generating a highly versatile software design from goal
models. Their technique transforms goals into components and
determines component connections from AND/OR-refinement
links. Lee et al. [8] have proposed a change impact analysis
approach using a goal-driven traceability-based technique. The
authors have used traces among goals and use cases to analyze
requirements changes. Goals and use case are connected via
three different traceability relations (evolution, dependency,
and satisfaction), which are stored in a design structure matrix.
Impacted entities can then be determined by applying a reacha-
bility analysis on the matrix. While these approaches establish
traceability with other artifacts, our proposed approach focus
on the impact of changes in the goal model itself. Furthermore,
our approach can be combined with approaches like the ones
presented in [6] [7] [8] by adding traceability links from the
GRL elements to other artifacts.

Some studies have proposed ways to support developers in
making requirements changes in goal models. Ernst et al. [9]
have introduced the notion of a Requirements Engineering
Knowledge Base (REKB) for maintaining a requirements
model. The authors explore the case where unanticipated
changes occur to the requirements of an operational system,
such as a new law coming into effect, or adding new features
suggested by the marketing team. Our proposed approach
is different from this respect as we conduct change impact
analysis on goal models once requirements changes have
been identified. Cleland-Huang et al. [10] have introduced
a probabilistic approach to manage traceability links for
non-functional requirements. Non-functional requirements and
their dependencies are modeled with a Softgoal Interdepen-
dency Graph (SIG). Designers can then analyze the impact
of changes by retrieving links between classes affected by
changes in a softgoal interdependency graph. While Cleland-
Huang et al. use the interdependence of non-functional re-
quirements, our proposed approach is based on the intrinsic
structure of the goal model and does not consider the type
of requirements. Nakagawa et al. [11] proposed a process of
elaboration for goal models, expressed in KAOS [12], that
extracts a set of control loops from the requirements descrip-
tions. These control loops are considered to be independent
components, hence, preventing the impact of a change from
spreading outside them. Our proposed approach allows for the
identification of effects spreading between GRL actors.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an approach to change impact analysis
that allows requirements engineers to assess the possible
impact of early changes in goal-oriented models. The proposed
approach identifies whether the proposed changes are propa-
gated to external actors. Furthermore, we have extended the
use of the well-known technique of program slicing to GRL
Model Dependency Graphs, that are derived from GRL models
to describe model dependencies. As a future work, we plan
to combine our approach with existing GRL goal satisfaction
evaluation strategies, in order to have a precise assessment of
the magnitude of a given change.

REFERENCES

[1] R. S. Arnold, Software Change Impact Analysis. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1996.

[2] S. Lehnert, “A taxonomy for software change impact analysis,”
in Proceedings of the 12th International Workshop on Principles
of Software Evolution and the 7th Annual ERCIM Workshop
on Software Evolution, ser. IWPSE-EVOL ’11. New York,
NY, USA: ACM, 2011, pp. 41–50. [Online]. Available:
http://doi.acm.org/10.1145/2024445.2024454

[3] ITU-T, “Recommendation Z.151 (10/12), User Requirements Notation
(URN) language definition, Geneva, Switzerland,” Genève,Switzerland,
2012. [Online]. Available: http://www.itu.int/rec/T-REC-Z.151/en

[4] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ser. ICSE ’81. Piscataway,
NJ, USA: IEEE Press, 1981, pp. 439–449. [Online]. Available:
http://dl.acm.org/citation.cfm?id=800078.802557

[5] J. Hassine and M. Alshayeb, “Measurement of actor external
dependencies in GRL models,” in Proceedings of the Seventh
International i* Workshop co-located with the 26th International
Conference on Advanced Information Systems Engineering (CAiSE
2014), Thessaloniki, Greece, June 16-17, 2014., ser. CEUR Workshop
Proceedings, F. Dalpiaz and J. Horkoff, Eds., vol. 1157. CEUR-WS.org,
2014. [Online]. Available: http://ceur-ws.org/Vol-1157/paper22.pdf

[6] A. van Lamsweerde, “From system goals to software architecture,”
in Formal Methods for Software Architectures, ser. Lecture Notes in
Computer Science, M. Bernardo and P. Inverardi, Eds. Springer Berlin
Heidelberg, 2003, vol. 2804, pp. 25–43.

[7] Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and J. C. S. P. Leite,
“From goals to high-variability software design,” in Proceedings of the
17th International Conference on Foundations of Intelligent Systems,
ser. ISMIS’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 1–16.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1786474.1786476

[8] W.-T. Lee, W.-Y. Deng, J. Lee, and S.-J. Lee, “Change impact analysis
with a goal-driven traceability-based approach,” International Journal
of Intelligent Systems, vol. 25, no. 8, 2010, pp. 878–908. [Online].
Available: http://dx.doi.org/10.1002/int.20443

[9] N. Ernst, A. Borgida, and I. Jureta, “Finding incremental solutions
for evolving requirements,” in 19th IEEE International Requirements
Engineering Conference (RE), Aug 2011, pp. 15–24.

[10] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya,
and S. Christina, “Goal-centric traceability for managing non-
functional requirements,” in Proceedings of the 27th International
Conference on Software Engineering, ser. ICSE ’05. New
York, NY, USA: ACM, 2005, pp. 362–371. [Online]. Available:
http://doi.acm.org/10.1145/1062455.1062525

[11] H. Nakagawa, A. Ohsuga, and S. Honiden, “A goal model elaboration for
localizing changes in software evolution,” in Requirements Engineering
Conference (RE), 2013 21st IEEE International, July 2013, pp. 155–164.

[12] A. van Lamsweerde, “Requirements engineering: from craft to disci-
pline,” in Proceedings of the 16th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE 2008), Atlanta,
Georgia, USA, 2008, pp. 238–249.

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 15 / 129

Information Security in Smart Cities

Using OpenID, SAML and OAuth to increase security in urban environment

Felipe Silva Ferraz1,2, Carlos Candido Barros Sampaio1,2, Carlos André Guimarães Ferraz1

1Informatics Center
Federal University of Pernambuco

Recife, Brazil
emails: {fsf3, ccbs, cagf }@cin.ufpe.br

2CESAR
Recife Center for Advanced Studies and Systems

Recife, Brazil
emails: {fsf, ccbs}@cesar.org.br

Abstract — As the population living in cities and
metropolis grows, the need for the transformation of a
city into a Smart City grows, too. The Smart City
concept refers to a broad range of definitions and
technologies; among those it is possible to identify
topics such as Internet of Things, ubiquity,
empowering citizens, interoperability of
services/systems, green systems, and open data.
Whatever is the explored concept, all of them try to
reach a single goal, namely, turn the city into a better
place to live through the use of Information
Technology. In this context, more specifically,
interoperable environments play an important role as
it provides means to connect different services by
creating new systems that are able to provide a bigger
variety of information to its users. In this matter, a
new range of challenge rises; among those challenges,
information security is one of the most important to be
discussed. This paper presents a group of security
issues that raises a dangerous concern in Smart City
solutions, discusses how identity standards, such as
OpenID, SAML and OAuth, impact on those issues.

Keywords — Smart City; Information Security;
Security Standards.

I. INTRODUCTION

The evolution of cities has been taking a toll both on
the environment, as well as on the shape of human
population. Its needs have been increasing, and so the
pressure on the ecosystem of systems has been constantly
escalating.

In the modern world [1], sustainability is a major
issue; if we keep on exploiting resources and services
without any thought about the following generations, the
future of human race may no longer have enough
resources to survive. But also, industrial development is
as important as environmental issues; safety is as
important as saving time; continuous availability of
resources is as important as not exploiting them, and so on
[2]–[4].

To match this kind of situation, the citizens of major
cities around the world must become more informed,
responsible and efficient, in order to gain and provide
faster and more continuous access to information
[3][5][6]. Every structure, whether its intended use relates
to resources, health, government, transportation,
education, or public safety systems was designed, built

and maintained with advanced, integrated materials,
sensors, electronics, and networks to provide those
citizens with the means to attend those needs [7]–[9].

In this area, new solutions are absolutely necessary not
only to improve the quality of daily-life with innovative,
sustainable, long term and efficient protocols but also in
terms of security/reliability. Security and/or reliability are
important paths mostly because the solutions will be
exposed to an extensive range of attacks. Internal and
external parties are not trusted, and privacy, integrity and
availability will be a vital prerequisite for the approval of
the citizens. In addition to it, since the assumptions and
requirements for smart critical infrastructures are very
different, implying that networks for smart cities should
be engineered quite differently, it also raises a problem of
integration or interoperability [10].

With cities progressing towards smarter societies,
worldwide Information and Communication Technologies
(ICT), a class of software is also advancing and ushering
itself to the IT sector, nowadays, called ‘green software’
or ‘smart software’ [11]. The primary role of a smart
software is to enable the functioning of the devices,
running them in such a way that the device is eco-friendly
and aids the smart behavior of a city [9][12]. For a smart
software to increase the functioning and sustainability of a
Smart City as a whole, the devices with smart software
must contribute to the entire system. As software systems
are vulnerable to threats, the Smart City should be
prepared for such attacks and breaches of security [11].

Web-based protocols, for instance, protocols as OAuth
[13], Security Assertion Markup Language (SAML) [14],
and OpenID [15], play an important role in web and cloud
platforms [16]. They present means to guarantee access to
specific services in order to provide authorized access to
its private data to the users. Furthermore, they present a
major contribution to single signing needs.

This paper presents an analysis on 9 security issues
proposed in previous works [14][15], facing three
different security standards. This paper is divided as
follows: after a brief Introduction, Section II will
introduce the concepts of Smart Cities, followed by
Section III dealing with security analysis on smart cities;
Section IV will depict 9 security issues in the role of smart
cities solutions. Section V will explore differences and
strengths on OpenID, SAML and OAuth. Finally,
Sections VI and VII will finish this paper analyzing the
impact of the mentioned standards and presenting some
conclusions, respectively.

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 16 / 129

II. SMART CITIES

A long and exhausting talk has been taking part in
research areas – solutions of Smart Cities, studies and
implementation play an important role in solving a visible
problem. How to deal with the unprecedented level of
citizens living in cities? Differently from other ages, large
cities have now most part of the world population and an
increasingly share of the world's most skilled, educated,
talented, creative and entrepreneurial personalities. For
the first time in human history, more than 50 percent of
the population of the world now lives in large cities, and
what is more alarming is that, according to the United
Nations, this number will increase to 70 percent in less
than 50 fifty years [19]. This city growth or emerging of
urban life is taking the city infrastructure to a stress level
that has never been seen before, since the demand for
basic services increased and are exponentially overloaded
[7].

According to a research called Smarter Cities and
Their Innovation Challenges [20], there is an urgent need
for urban scenarios and cities to be smarter in the
management of their infrastructure resources and
interactions [20]. The urban performance must not rely
only on its hardware infrastructure, or the physical
concepts of infrastructure, but it must start taking into
account the social interactions and a faster deployment of
information and services.

Cities are becoming increasingly technologically
empowered as their core systems; e.g., Education, Public
Safety, Transportation, Energy and Water, Healthcare and
Services are instrumented and interconnected, enabling
new ways to deal with massive, parallel and concurrent
usage. In the same pace, new challenges in the field of
information security rise and must be properly addressed.

III. SMART CITIES SECURITY ANALYSIS

Despite the number of studies and protocols related to
information security, the amount of vulnerabilities in
connected applications has increased in the past few years.
In this matter, Smart Cities systems will demand a
specific treatment in order to address its specific security
challenges information.

According to [9][21]–[23], Smart cities solutions rely
on a high degree on connectivity, so that their systems
(such as Education, Government, Traffic, Security,
Resources and Health) can create an interoperable
network, providing more powerful, accurate and unique
services to the citizens. For this reason, one of the biggest
challenges facing Smart City development is related to
Information Security of Interoperable Systems [1].
Information security is a critical issue due to the
increasing potential of cyber attacks and incidents against
critical sectors in a Smart City. Information Security must
address not only deliberated attacks, such as from
disgruntled employees, industrial espionage, and
terrorists, but also inadvertent compromises of the
information infrastructure due to the user errors,
equipment failures, and natural disasters. Vulnerabilities
might allow an attacker to penetrate a network, gain
access to control the software and alter load conditions to
destabilize the system in unpredictable ways. To protect
the Smart City in a proper way, a number of security

problems have to be faced according to a specific
design/plan.

It would be too simplistic, and probably a lapse, to
believe that traditional security approach based only on
privacy and authorization concepts can simply be added
into a critical infrastructure of a city to make it safer as
much as it becomes smarter. New architectures are
necessary not only to improve the security services, but
the interoperability and the security in general.

This class of services is fundamental to the success of
the future city, and represents a topic of such complexity
that it is beyond the scope of this paper to cover in details.
As an illustration, let us explore the design of identity
services for the future city – which is required to maintain
privacy while maintaining security.

The integration of the identity of the citizen across
multiple systems and services and the ability to provide a
joined-up response to life events needs, comprises the
goal of allowing the citizens to manage their own identity
and what information is released about them to who or
when, while anonymous, aggregate data is made more
widely available.

So, Identity Management is an essential key for future
cities. A unified identity system, one that can integrate
itself with multiple identity providers and different forms
of authentication and identification, is needed to handle
the extensively wired nature of the city and the density of
data transactions, systems and diversity of solutions.

Citizens or entities will use their identities to get
access to services and systems, and through that the
benefits offered by those. This way, to integrate several
solutions (systems and services), entities and services will
eventually repeat their identification artifact in different
moments and situations.

Ideally, every citizen and/or entity shall have a number
of identities, each is made of a number of attributes,
which are either exposed, or used to validate a request
without exposing the information. The use of multiple
identities limits the exposure of truly important
credentials, minimizing risk of abuse and identity steal,
while allowing the exposure of less critical information
that is helpful for participants in the city ecosystem such
as retailers, building operators, service providers, and
governments.

Not only the citizens will be in charge of their
identities, but also the information that constitutes them,
and when this information can be exposed. The proposed
solution is proposed to build a trustworthy relationship
between the city, the services/systems and citizens,
allowing the acquisition and flow of information that is
helpful to all participants without compromising their
identities.

IV. SECURITY ISSUES IN THE ROLE OF A SMART CITY

Based on previous studies [14][15], which brought to
attention the need to make further improvements, related
to information security on Smart Cities environment, this
session will depict a set of 9 Security issues that an urban
system and a city may be under the risk of.

It is important to complement that, even though the
technical solutions applied in those environments handle
with matters, such as Code Injection [24], Cross Site

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 17 / 129

Scripting [24], Cross Site Request Forgery [24] and
Buffer Overflow [24], and others, the issues presented in
this work explore concepts related to the nature of a Smart
City system. Our proposal is to present a set of issues that,
regardless of the technical solution applied, may be a
threat to urban cities (or a Smart City system) in a
different level.

Figure 1 presents an overview of this difference.

Figure 1. Security issues overview

Urban Systems are composed by Citizens using
Solutions, which could be Platforms, Frameworks and
Applications; All of those built on Technologies to receive
and use Data. Urban System Security Issues or Security
Issues in the role of a Smart City are situations that can be
put as problems to the infrastructure as a whole.

In the following section, those issues will be depicted,
in order to illustrate the impact on OAuth [13], Security
SAML [14], and OpenID [15].

A. Access to information from applications

According to Sen et al. [25], packet transfer must be
addressed, in order to apply efforts to add security
improving data privacy and integrity. Looking from a
network and access perspective, devices have the
meanings to access a packet, or a set of packets, in
different ways and locations and with different efforts. For
instance, to reduce latencies during data transfer, local
copies or cache values of those packets could be created.

Let us assume that a sensor connects to a server to
identify and authenticate user A and retrieves its
permissions. During this process, a user B could intercept
the packet, in different points of the network or of the
device, and gain a set of information from user A and the
service it is accessing.

B. Information Tracking

It is important to have an interoperable and
interconnected environment for systems to interact with
one another, as in [5][11]–[15]. It is also extremely
important that, for instance, the information used by
system B and, that are originally created by system A,
cannot be tracked back to its origin; it means that even
though system A has provided a set of information to B, a
user from system B should not realize that this
information is from another part.

As an example, let us assume that system A provides
information to a solution B.

Let us supposed that A is a system of criminal reports
B is another solution that uses those criminal reports to
define the most suitable place to open a new commercial
building, based on criminal records. The information used
by B, which was provided by A, must not be unveiled.
This situation could destroy the anonymity in A and
compromise witnesses and citizens victims of crimes, for
example.

C. Citizen Tracking

Solutions for smart cities use different sensors
(physical or social), those sensors are used to collect data
from several city systems, and, based on this, it is possible
for urban systems to have a better city management.

In order to avoid further problems, such sensors must
be under the control of a responsible entity in order to
preserve its functionality and generated data.

Among the possible problems raised by this topic, it
can be appropriate: Unauthorized citizen tracking,
discovery of movement patterns and flood of directional
advertisement/ merchandising.

D. User/Citizen data loss

This issue deals with the concept that applications are
saving precious data in the device and, if are not well
treated, those data could be lost or compromised creating
significant problems to the citizen.

This could be achieved by adding mechanisms related
to client cryptographic storage [7][22], system isolation
and even solutions related to authorization and
authentication mechanisms.

E. Crossed access to information in data centers

For this scenario, we deal with situations related to
unauthorized access to information by exploiting flaws on
the server side.

For example, when accessing information related to
students educational systems, a given entity (application)
can recover criminal records, from a non-specific
connection, related to this citizen even though the solution
should only be using Educational Services. This situation
may occur since both systems share a common area or
permissions that must be respected in order to avoid this
kind of behavior.

F. Crossed access in client side

Description #E, Crossed access to information in data
centers, details a situation related to unauthorized access
in server side.

Issue #F, this current topic, brings forth a subject
related to unauthorized access on the client side, for
instance, in a mobile device that holds sensitive
information.

Different from issue #D, which the concern is about
every information saved and that are NOT properly stored,
and liable to undesired access within the context of a
device.

If, for instance, system A saves in a device values
related to paid fees, and system B uses the same
mechanism to store information regarding the user
financial account. If the device does not provide A and B

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 18 / 129

with the correct isolation, it is possible that through A an
attacker gains access to values presented in B, and even
more, it is possible that a malicious third part system may
be installed and, then, gains access to both systems
information [28].

G. Lack of Security in Depth

According to OWASP TOP 10, one of the Top Ten
risks to WEB application is related to code injection. Also
according to OWASP, sanitize inputted values and
remove undesired texts is one of the measures to avoid
that and other security flaws [24].

This flaw, #G, is related to systems that do not
validate data in different layers, and are compromised in
any level, by data originated from other services.

In other words, if system A provides a rich UI
environment to the user and has several validations and
sanitization in this part, if the back-end structure does not
apply the same criteria, whenever a system C sends data
to system A, system A may use this data. It means that, if
C has a malicious code inputted, it might be transferred to
A once A misses defense in depth concepts.

H. Viral effect in urban environment

A Smart City uses an interoperable environment to
provide solutions with the opportunity to interact with
other system, exchanging data and creating more value to
its citizens [2].

If the border of these relations is not well defined, the
systems may face a scenario where a value is changed in
system A and when system B uses this changed value, it
may corrupt the information used in system B.

In issue #G, our main concern is with the lack of
protection in every layer, and how this could be a problem
that an urban scenario is highly connected. In the present
issue, our concern is with the consequences of issues like
issue #G, if the system is highly connected and lacks
protections in several parts, the consequences of an attack
can be exponentially increased, infecting the entire
solution through the infection of a small part.

I. Infection traceability and recovery

The amount of data used and stored by a Smart City
has reached unprecedented levels. Moreover, the
connection between systems has created a System of
Systems structure that provides those solutions with data
coming from different services.

Issue #H presents a viral threat related to a set of data
that can share or provide another service with different
data, creating, at some level, a self-sustained system.
From that point of view, this issue presents a consequence
for issue #I. Due to the amount of data and interconnected
system, it is possible for an infection to maintain its origin
undetected and beyond data recovery.

Using as an example, System A, with terabytes of
data, exchanging values with a System B, that feeds
Systems C and D with updated and new values, processed
from A data. D, on the other hand, keeps passing some
fine-grained data back to System A. If A suffers an
infection having its data compromised, B will be fed with
infected data, spreading the infection to other systems,

like C and D. As soon as the infection could be detected,
recovery processes may not be an option since the amount
of data compromised is too big to be restored to a
previous form. In addition, due to the relation between
systems, the infection source may not be detectable.

V. EXPLORING OAUTH, SAML AND OPENID

To address some issues mentioned on the previous
section, identification management will play an important
role [28]; therefore, this section will present architectural
solutions that addresses security issues, specially related
to identification, authorization and authentication across
an interoperable environment. This section will depict
three different approaches that offer a set of
functionalities that could aid mitigating previous issues.

According to approaches related to, or making use of,
OAuth 2.0 [27][28], SAML [29][30] and OpenID
[31][32], it appears as the bigger responsible for security
assurance in interoperable environments. For this reason,
OAuth, SAML and OpenID will be depicted in the
following section, and compared with the mentioned
issues in order to understand if there are positive impacts
on a Smart City environment.

A. OAuth

Open Authorization (OAuth) is an authentication
standard used by service providers to store protected
resources in a way that a resource owner do not have to
hand out their credentials to gain access to the protected
assets. It means that through OAuth is possible to
authorize another website, with access to the user
information stored within another service provider,
without the need to share their access permissions.

The basic structure of OAuth is composed by a
Resource Owner, that is an entity responsible for storing
protected assets and is capable of granting access to the
assets under its control, an Authorization Server is
responsible for handling authentication and authorization
of different entities involved and a Resource Server that is
a server that hosts the client asset [27][28][33].

Figure 2 shows the basic flow of an OAuth structure:

Figure 2. OAuth basic flow

(A) In the first step, a client requests an authorization

from the resource owner.  

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 19 / 129

(B) The resource owner, replies to the client and

redirects the request to authorization server.  
(C) The client requests an authorization grant from the

authorization  server by presenting the client

credentials.  
(D) The authorization server validates the client

credentials and the  authorization grant, and if valid

issues an access token.  
(E) The client requests the protected resource from the
resource server and authenticates by presenting the

access token.  
(F) The resource server validates the access token, and

if valid, serves  the request.  

B. SAML

Security Assertion Markup Language (SAML) defines
an XML based framework used to describe and exchange
information related to security between secure web-based
entities [1][34]–[37].

SAML is a reference standard that implements identity
provider that has the capability to address several security
scenarios and technologies. The main strength of a SAML
based system is that it can create a trust relationship using
entities that relies on different security mechanism.
Different from other security systems SAML approach is
to express assertions about an entity that other application
within the same network or environment can trust

Figure 3. SAML basic flow

(A) A client tries to access an asset in resource server.
(B) The resource server, redirects the request to the

authorization server.  

(C) The client informs login and password.  
(D) Once the authentication is made, the authorization
server redirects the SAML token to the resource

server.  

(E) The asset access is granted to the client.  

C. OpenID

OpenID is a distributed open standard technology,
used to identify users with URL typed ID. Any type of
system can use an OpenID protocol without any kind of
fee.

The final user also does not need to depend on a
specific site or domain to keep their ID controlled. It
means that they do not need to enter any of its personal
information such as email, name, address or other
identifiers to have an ID and password for every site,
instead all that is necessary is to lot in using their OpenID
in a site that adopts and OpenID system [21]. Due to this

property, a user do not need to have a separate ID and
Password for each site further OpenID creates the effect
of a outsourced user authentication service.

OpenID basic flow is composed of a Client, which
represents and entity using the OpenID system, Relying
Party (RP) that is the service provider and the OpenID
Provider that holds the logic related to IDs and Passwords
[29][38], as presented in Figure 3.

Figure 4. OpenID basic flow

(A) The client informs the OpenID to a RP.  
(B) The RP normalizes the clients OpenID, identify the
OpenID and redirects it to the client.
(C) The client informs credentials for the ID.
(D) After authentication, access is granted.

 

VI. TOWARDS ISSUES ANALYSIS

In this section, the impact of OAuth, SAML and
OpenID, under the vision of the security issues mentioned
in Section III, will be analyzed.

The three-depicted protocols have a direct relation
with both creation and maintenance of identifiers and with
authorization and authentication in an interoperable
environment.

A. Access to information from applications

Once the token is generated, and somehow stored
within the client, only the OpenID presents means to
avoid this threat, due to its characteristic of asking for a
password once the ID is presented. This way even if the
ID is compromised, the attacker needs to have extra
security information about the ID. OAuth and SAML, on
the other hand, it does not request other verification after
the token is created.

B. Information Tracking

This issue is related to the concept of an information
source not being able to be discovered. About this idea,
the three mentioned protocols have no ways to avoid the
issue if the correct authorization attribution is not made.
In other words, the protocol can address the problem, but
if not well used, or by any human misconfiguration it can
still be explored.

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 20 / 129

C. Citizen tracking

Considering that the token generated by OAuth and
SAML are compromised, it is possible to track
information from different systems. To both mentioned
protocols, even if it is possible to explore the flaw, it also
is unlikely that every system used by the citizen could be
reachable by the same token. In OpenID relies the trust
that, even though the ID is compromised, the user needs
to achieve also the password of the citizen.

D. User/Citizen data loss

Since the main focus of the studied protocols are related
to the interoperability of systems, it has no direct relation
with protection regarding the client side. That way OAuth,
OpenID and SAML are marked with no positive impacts
with issue number #4.

E. Crossed access to information in data centers

Similar to issue number #2, this issue is partially
addressed by OpenID, SAML and OAuth, because they
have the strengths to solve this kind of scenario, but due
to incorrect use of the protocols or by human mistakes,
when adding the permissions and authorizations, data
could be compromised even in the server side.

F. Crossed access in client side

Similar to issue #4, issue #6 deals with the concept of
client side been compromised, the difference in this case
is about the notion that a data in application A could be
wrongly accessed from another application B, causing
data leakage from one app to another, whereas for issue
#4 it is related to data loss on the client side by any other
means, for example, week client storage. The same
explanation for issue #4 is applied for #6 and the three
protocols have no impact on this scenario.

G. Lack of Security in Depth

As previously mentioned, Security in Depth is a
concept that suggests adding several layers of protection
within a system scope. OAuth, SAML and OpenID, deals
with the concept of providing few tokens to every user
making it simpler to log and gain access to the proper
asset. Due to that fact it is feasible to realize that the three
protocols make the use of a set of services easier, but lose
some security by repeating the same checks for different
services.

H. Viral effect in urban environment

Issue #8 is potentially solved by the three protocols
since they present means to avoid actions coming from
unauthorized parts. Even though they are susceptible to
human flaws, it is still highly unlikely that for every
system using the protocols, they present bad settings or
operational flaws.

I. Infection traceability and recovery

Finally, issue number #9 deals with the idea that if some
point of a broad system is compromised, it is improbable
to identify where the infection or the flaw was first
initialized and also to recover the state of the system to a
previous version. Since OAuth, SAML and OpenID, deal

with a single ID for a set of systems, this will make it
impossible to track which system the flaw came from.

Table I uses the following subtitle, to summarize the
impacts of each one of the three protocols: for no
positive impacts, / partially address the scenario.
directly addresses the situation.

TABLE I. OAuth, SAML AND OpenID IMPACTS
AGAINST ISSUES

VII. CONCLUSION AND FUTURE WORK

For the first time in human history, humanity is facing
a unique situation where more than 50% of the population
lives in big cities. To work it out, there is an urgent need
to evolve information technology systems to solutions that
provide the citizens more and detailed information about
different subjects of its daily usage.

At the same time that new solutions rise, new
challenges are also developed. Among those, information
security plays an important role, and not only due to the
privacy issues of the citizens; it is a subject that may go
beyond citizens and impact the entire system.

Solutions like OpenID, SAML and OAuth are
fundamental to guarantee the safety of the single sign on
users. Unfortunately, all the expectations rely on one of
those 3 standards and it may not address and solve all the
problems. Most of this concern is related to the fact that
those standards are under authentication and authorization
purposes, which, based on previously described issues are
not enough. As a future work, is expected to go deeper in
the analyses of the impact of OpenID, SAML and OAuth
and to proposes and extension to those technologies to
focuses more in smart cities identification management.

REFERENCES

[1] F. Gil-Castineira, E. Costa-Montenegro, F. Gonzalez-
Castano, C. López-Bravo, T. Ojala, and R. Bose,
“Experiences inside the Ubiquitous Oulu Smart City,”
Computer (Long. Beach. Calif)., vol. 44, no. 6, pp. 48–55,
Jun. 2011.

[2] A. Bartoli, M. Soriano, J. Hernandez-Serrano, M. Dohler,

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 21 / 129

A. Kountouris, D. Barthel, Security and Privacy in your
Smart City , in Proceedings of Barcelona Smart Cities
Congress 2011, 29-2 December 2011, Barcelona (Spain).

[3] M. Batty, K. W. Axhausen, F. Giannotti, a. Pozdnoukhov,
a. Bazzani, M. Wachowicz, G. Ouzounis, and Y. Portugali,
“Smart cities of the future,” Eur. Phys. J. Spec. Top., vol.
214, no. 1, pp. 481–518, Dec. 2012.

[4] J. Bélissent and S. Analyst, “What’s new in Smart
Cities ?,” pp. 1–20, 2011.

[5] O. Haubensak, “Smart cities and internet of things,” Bus.
Asp. Internet Things, Semin. pp. 33–39, 2011.

[6] A. Frost, “Moving Citizens in the Smarter City — Using a
Framework Approach to Plan Intelligent Transportation
Systems Strategies and Implement Solutions.”

[7] F. Ferraz, C. Sampaio, and C. Ferraz, “Towards a Smart
City Security Model Exploring Smart Cities Elements
Based on Nowadays Solutions,” ICSEA 2013, pp. 546–
550, 2013.

[8] D. Washburn, U. Sindhu, and S. Balaouras, “Helping CIOs
Understand ‘Smart City’ Initiatives,” Growth, 2009.

[9] W. M. da Silva, A. Alvaro, G. H. R. P. Tomas, R. a.
Afonso, K. L. Dias, and V. C. Garcia, “Smart cities
software architectures,” in Proceedings of the 28th Annual
ACM Symposium on Applied Computing - SAC ’13, 2013,
p. 1722.

[10] J. Ko, N. Tsiftes, S. Dawson-haggerty, and M. Durvy,
“Industry : Beyond Interoperability – Pushing the
Performance of Sensor Network IP Stacks,” pp. 1–11.

[11] M. Sen, A. Dutt, S. Agarwal, and A. Nath, “Issues of
Privacy and Security in the Role of Software in Smart
Cities,” 2013 Int. Conf. Commun. Syst. Netw. Technol., pp.
518–523, Apr. 2013.

[12] M. Chen, “Towards smart city: M2M communications
with software agent intelligence,” Multimed. Tools Appl.,
vol. 67, no. 1, pp. 167–178, Feb. 2012.

[13] OAuth, “OAuth 2.0.” [Online]. Available: www.oauth.net.
[14] F. Nie, F. Xu, and R. Qi, “SAML-Based Single Sign-On

for Legacy System,” no. August, pp. 470–473, 2012.
[15] J.-H. You and M.-S. Jun, “A Mechanism to Prevent RP

Phishing in OpenID System,” 2010 IEEE/ACIS 9th Int.
Conf. Comput. Inf. Sci., pp. 876–880, Aug. 2010.

[16] J. Sendor, Y. Lehmann, G. Serme, and A. Santana de
Oliveira, “Platform-level Support for Authorization in
Cloud Services with OAuth 2,” 2014 IEEE Int. Conf.
Cloud Eng., pp. 458–465, Mar. 2014.

[17] F. S. Ferraz and C. A. G. Ferraz, “More Than Meets the
Eye In Smart City Information Security: Exploring
security issues far beyond privacy concerns,” in IEEE
computer science, UFirst-UIC 2014, 2014.

[18] F. S. Ferraz and C. A. G. Ferraz, “Smart City Security
Issues: Depicting Information Security Issues in the Role
of an Urban Environment,” in 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing,
2014, pp. 842–847.

[19] S. Dirks and M. Keeling, “A vision of smarter cities: How
cities can lead the way into a prosperous and sustainable
future,” IBM Inst. Bus. Value. June, 2009.

[20] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and
R. Morris, “Smarter Cities and Their Innovation
Challenges,” Computer (Long. Beach. Calif)., vol. 44, no.
6, pp. 32–39, Jun. 2011.

[21] C. Harrison, B. Eckman, R. Hamilton, P. Hartswick, J.
Kalagnanam, J. Paraszczak, and P. Williams, “Foundations
for Smarter Cities,” IBM J. Res. Dev., vol. 54, no. 4, pp. 1–
16, Jul. 2010.

[22] C. Balakrishna, “Enabling Technologies for Smart City
Services and Applications,” 2012 Sixth Int. Conf. Next

Gener. Mob. Appl. Serv. Technol., pp. 223–227, Sep.
2012.

[23] N. Mitton, S. Papavassiliou, A. Puliafito, and K. S.
Trivedi, “Combining Cloud and sensors in a smart city
environment,” EURASIP J. Wirel. Commun. Netw., vol.
2012, no. 1, p. 247, 2012.

[24] OWASP, “OWASP Top 10 - 2013 : The the most critical
web application security risks,” 2013.

[25] M. Sen, A. Dutt, S. Agarwal, and A. Nath, “Issues of
Privacy and Security in the Role of Software in Smart
Cities,” in 2013 International Conference on
Communication Systems and Network Technologies,
2013, pp. 518–523.

[26] O. Garcia-Morchon, S. L. Keoh, S. Kumar, P. Moreno-
Sanchez, F. Vidal-Meca, and J. H. Ziegeldorf, “Securing
the IP-based internet of things with HIP and DTLS,” Proc.
sixth ACM Conf. Secur. Priv. Wirel. Mob. networks -
WiSec ’13, p. 119, 2013.

[27] I. Verbauwhede, “Efficient and secure hardware,”
Datenschutz und Datensicherheit - DuD, vol. 36, no. 12,
pp. 872–875, Nov. 2012.

[28] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F.
Buschmann, and P. Sommerlad, Security Patterns :
Integrating Security and Systems Engineering (Wiley
Software Patterns Series). John Wiley & Sons, 2006.

[29] M. Noureddine and R. Bashroush, “A provisioning model
towards OAuth 2.0 performance optimization,” 2011 IEEE
10th Int. Conf. Cybern. Intell. Syst., pp. 76–80, Sep. 2011.

[30] B. Leiba and H. Technologies, “OAuth Web Authorization
Protocol,” pp. 0–3, 2012.

[31] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “Security
and Cloud Computing: InterCloud Identity Management
Infrastructure,” 2010 19th IEEE Int. Work. Enabling
Technol. Infrastructures Collab. Enterp., pp. 263–265,
2010.

[32] H. Wang, C. Fan, S. Yang, J. Zou, and X. Zhang, “A New
Secure OpenID Authentication Mechanism Using One-
Time Password (OTP),” in 2011 7th International
Conference on Wireless Communications, Networking and
Mobile Computing, 2011, pp. 1–4.

[33] F. Yang and S. Manoharan, “A security analysis of the
OAuth protocol,” 2013 IEEE Pacific Rim Conf. Commun.
Comput. Signal Process., pp. 271–276, Aug. 2013.

[34] T. T. A. Dinh, W. Wenqiang, and A. Datta, “City on the
Sky: Extending XACML for Flexible, Secure Data
Sharing on the Cloud,” J. Grid Comput., vol. 10, no. 1, pp.
151–172, Mar. 2012.

[35] S. Dirks and M. Keeling, “A vision of smarter cities,” IBM
Inst. Bus. Value, 2009.

[36] M. Al-Hader, A. Rodzi, A. R. Sharif, and N. Ahmad,
“SOA of Smart City Geospatial Management,” 2009 Third
UKSim Eur. Symp. Comput. Model. Simul., pp. 6–10,
2009.

[37] A. Aldama-Nalda, H. Chourabi, T. a. Pardo, J. R. Gil-
Garcia, S. Mellouli, H. J. Scholl, S. Alawadhi, T. Nam,
and S. Walker, “Smart cities and service integration
initiatives in North American cities,” Proc. 13th Annu. Int.
Conf. Digit. Gov. Res. - dg.o ’12, p. 289, 2012.

[38] T. Tran and C. Wietfeld, “Approaches for optimizing the
performance of a mobile SAML-based emergency
response system,” 2009 13th Enterp. Distrib. Object
Comput. Conf. Work., pp. 148–156, Sep. 2009.

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 22 / 129

Early & Quick Function Point Method
An empirical validation experiment

Roberto Meli
Data Processing Organization Srl

Rome, Italy
email: roberto.meli@dpo.it

Abstract— The “Early & Quick Function Points Approach
(E&QFPA)” is a mean to approximate the results of some
standard Functional Size Measurement Methods like IFPUG,
SiFP or COSMIC. E&QFPA is a set of concepts and
procedures that, even when applied to non-detailed functional
specifications of a software system, maintains the overall
structure and the essential principles of standard functional
size measurement methods. The E&QFPA combines different
estimation approaches in order to provide better
approximations of a software system functional size: it makes
use of both analogical and analytical classification of function
types (transactions and data). Moreover, it allows the use of
different levels of detail for different branches of the system
(multilevel approach). This paper illustrates the basic concepts
of the method which is mature and well established in the
Italian market, as well as the results of an empirical validation
experiment conducted on a real business data set of IFPUG
function point measures. The usage of such a method may
contribute to the rapid quantification of user requirements
very early in the production life cycle.

Keywords: function; point; estimation; approximation.

I. INTRODUCTION
A Functional Software Measurement Method (FSMM) is

a mean to measure Functional User Requirements (FUR) of a
software application according to the rules of an international
ISO/IEC standard [1]. The measurement process required by
the most diffused FSMM is often perceived by the ICT
personnel as excessively time consuming, expensive and
difficult to apply in business contexts where the details
needed for FSMM standard application are not always
available or stable enough. Therefore, several simplified
approximation processes have been proposed [3]-[7]. The
Early & Quick Function Points Approach is one of these.

The paper is structured as follows: Section II summarizes
the E&QFP method; Section III reports on the advantages in
using the method in business practices; Section IV presents
the criteria that were used to assess the accuracy of the
method at various levels of application; Section V presents
the conditions of the experiment and its results; Section VI
contains a “qualitative” comparison of several types of
approximation methods; Section VII states the conclusions.

II. BASIC CONCEPTS
This Section introduces the origin and the basic concepts

of the E&QFPM needed to understand the framework used
for the empirical experiment. The contents presented here
are not sufficient to allow an in dept comprehension of the
method in itself. The reader interested in mastering the
method should refer to the standard documentation [19].

The Early & Quick FP method was created in 1997 by
the author in order to facilitate the approximation (also
called estimation) of the IFPUG Function Points values
[8][1]. It was presented for the first time at the ESCOM 97
conference [10] and later at the IFPUG conference [11].
Since then, the original approach has evolved and its usage
is increased [14]-[18]. The method has been reported in
2009 as the best choice in approximating methods by the
CNIPA Italian Government Authority [12]. In 2000, the
approach was extended, experimentally, to the COSMIC
Functional Size Method [12]. In 2006, the Early & Quick
Function Points Method - E&QFPM (IFPUG version) - has
become a registered trademark but the method is available
in the public domain since it is managed as a “Publicly
Available Method”, subject to the Creative Commons
license, attribution-non derivative works. The E&QFP
development team has opened the doors to external
contributions and the technique evolves considering
feedbacks from actual users in the market. DPO continues to
support, improve and customize the method publishing a
new version any time it is needed by the technical
community. The method is not a commercial product. A
certification program has been created to guarantee that the
method is used consistently among different practitioners.
After 15 years from the initial formulation, the latest
evolution of the method, identified as version 3.1 [19] was
released in April 2012 integrating the new Simple Function
Point FSMM [20]-[22].

The Early & Quick Function Points Approach
(E&QFPA) is a set of concepts and procedures that, even
when applied to non-detailed functional specifications of a
software system, maintains the overall structure and satisfies
the essential principles of standard functional size
measurement methods. It may be applied to approximate
different types of Functional Size Measurement Methods
(FSMM).

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 23 / 129

The E&QFPA combines different estimating techniques
in order to provide better approximations of a software
system functional size: it makes use of both analogical and
analytical classification of function types (logical
transactions and data). Moreover, it allows the use of
different levels of detail for different branches of the system
(multilevel approach): the overall global uncertainty level in
the estimate (which is a range of values, i.e., a set of
minimum, most likely, and maximum values) is the
weighted sum of the individual components’ uncertainty
levels. The “core driver” of the approach is an analytically
and statistically originated table of FP (Function Points)
values to be used in making functional size estimation.

The E&QFPA is based on the fundamental principles

reported in TABLE I.

TABLE I - E&QFP FUNDAMENTAL PRINCIPLES

Principle Explanation
Classification by
analogy

Similarity in the overall functionality
between new and existing known
software objects.

Structured aggregation Grouping of a certain number of
lower level software logical objects in
one higher level logical object.

Estimation flexibility Data and transactional components
are assessed autonomously. No
predefined and fixed function/data
ratio is assumed.

Multilevel approach No discard of existent details, if
available – no need of “invented”
details, if unavailable.

Use of a derivation
table

Each software object at each detail
level is assigned a size value, based
on an analytically / statistically
derived table.

From now on we will restrict our interest in the IFPUG

variant of the approach that we will simply call Early &
Quick Function Points Method - E&QFPM.

The values in the derivation table for the IFPUG

approximation model were originally stated by expert
judgment and later on by the ISBSG data set analysis [23].
Once the values are determined for any specific version of
the method they are not changed anymore in order to use the
method in a consistent way across practitioners,
environments, organizations etc. Local calibration of the
E&QFPM is always possible in order to better the results for
a specific context but it should be clearly reported by the
practitioners as a variation of the standard version.

Figure 1 shows the estimation process starting with the

Functional User Requirements interpretation and ending
with the FP estimation.

Figure 1. Early & Quick FP Estimation Process

The starting point of the process is the logical product
breakdown structure of the system being estimated, and the
mapping of FURs on the E&QFP elements. The basic
E&QFP elementary components are the following software
objects:

• logical data groups, and
• elementary functional processes,

that is, the same Base Functional Components (BFC)

types of the IFPUG measurement method. Further
aggregations, as depicted in Figure 2, are provided:

• data BFC can be grouped into general data
groups;

• transactional BFC can be grouped into
“general” logical processes;

• general processes can be grouped into “macro”
logical processes.

Figure 2. Functional hierarchy in the E&Q estimation method (for sake of
simplicity, only one instance of macro process and one instance of general

data group are shown)

Each “software logical object” is assigned a set of FP

values (minimum, most likely, maximum) based on an
analytical/statistical table, then the values are summed up to
provide the overall estimation result (minimum, most likely,
maximum). To obtain the estimated size of the software
application being considered, a “structured” list of its
processes and data groups is the only required item, even
comprising non-homogeneous levels of detail. Knowledge
of similar software objects will make it easier to assign the
right level of classification to each element on the list, and
therefore to derive its contribution to the overall size.

Application

Macro Process …

General process General process

 BFC
Transactional

 BFC
Transactional

BFC
Transactional

BFC
Transactional

…

BFC Data

General data
group

 BFC
Transactional

BFC Data

BFC Data

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 24 / 129

Obviously, if any particular object in the functional tree is
estimated assigning directly an FP value then no contained
object (i.e., in a “father”-“son” relationship) must be
considered to contribute directly to the grand total: as a
matter of fact, all the “son’s” values are already included
into the “father’s” values and must not be added to it. The
estimation uncertainty (represented by the minimum-
maximum range) is dependent on the level of object in the
hierarchy and will be greater for higher levels of software
objects aggregation, due to the higher lack of details.

Estimation using E&QFP technique may be done at
three levels of detail depending on the granularity of the
components used for estimation: summary, intermediate and
detailed.

III. ADVANTAGES IN USING E&QFPM
E&QFPM is an approximation method which is:

• Fast
• Cheap
• Adaptable
• Reliable
• Documentable
• Easy to learn

Fast: the empirical study described in Section V showed
a productivity from 1.9 to 6.3 times better than a standard
measurement. This result is aligned with informal
experience derived by daily use of the method by
practitioners in several Italian organizations. The reason is
that much less elements should be identified and evaluated
in the User Requirements documentation than for the
IFPUG measurement.

Cheap: because it is fast and does not involve more
specialized people than a standard measurement.

Adaptable: because it is applicable either when the
standard technique is not a possible choice - due to missing
detailed information –either when the details are available.

Reliable: when we consider the “technical accuracy”
(see later).

Documentable: since the approximation is based on
elements extracted from the FUR that may be described,
discussed, shared and tracked by the practitioners. Direct
estimation techniques are only based on personal intuition.

Easy to learn: because the rules are much simpler than
the ones in the standard reference measurement manual.
This does not mean that the method is always easy to apply,
actually, since when the FUR are not enough detailed to
identify BFC (Base Functional Component – the smallest
measurable part of FUR – see [2]), a strong experience is
needed to practice the analogy, which is essential for a good
estimation.

Of course, any estimation method (and E&QFPM is not

different) has a unavoidable uncertainty in its usage that
makes it incomparable with a measurement method in terms
of accuracy but we must accept that if we use an estimation

method it is because we are not able (due to missing
information) or do not want (due to missing measurement
resources) to use a measurement method and the cost of
doing that is a higher potential error in sizing.

IV. EVALUATION RULES AND CRITERIA USED TO ASSESS
THE RELIABILITY OF THE E&QFP METHOD

In this Section, we will clarify the criteria used to
represent the outcomes of the E&QFP method when applied
to a real life sample of software applications, which was not
used to calibrate the method in itself.

First of all, we have to work out the meaning of the
quality attribute named “accuracy” of the method. By
“accuracy” we intend the absence of systematic and random
errors. According to [1] it is the “closeness of agreement
between a measured quantity value and a true quantity value
of a measurand”. In our case the “true quantity value” is the
IFPUG FP value for a software application and the E&Q
value for the same measurand is the “measured quantity
value” (measured with approximation, of course) that we
want to analyse. In addition, we use the term “measurement
error” or simply “error” to intend the “measured quantity
value minus a reference quantity value” whereas the
“relative error” is the “error divided by the reference
quantity value”. Again, in our case, the measured quantity
value is the E&QFP value determined for a software
application and the reference quantity value is the IFPUG
FP value for the same application.

Estimation is a human intensive process which involves
personal capabilities in addition to technical tools and rules.
In evaluating the accuracy of an approximation method (its
capability to predict exact values) we should be able to
separate the judgement on the human capabilities from the
judgement of the method itself. This is usually not easy to
do since methods are used by human beings: their
knowledge of the software requirements, of the application
domain and of the method itself are directly related to the
final accuracy of results, in real specific situations.
Nevertheless, for FP approximation, we believe it is
possible to assess separately the “technical accuracy” and
the “operational accuracy”.

As we have seen, the E&QFP method is based, mainly,
on the classification of logical requirements with respect to
a standard or customized assignment table provided by the
method itself. If we apply the estimation method on an
already built application we have the capability to construct
the exact hierarchy of logical objects to be used in the
estimation at various levels of detail. Furthermore, since we
have all the detailed information, we are able to assign each
aggregated object exactly in the right class of the table. For
example, if we aggregate some detailed requirements into a
general requirement and we identify it as a General Process
we are able to count exactly how many BFCs are grouped
into the GP and we may exactly classify it as a small,
medium or large GP, as required by the E&QFPM.

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 25 / 129

In this way, we may not be wrong with classifications
and the final accuracy will be purified by the human
classification errors. The residual error is given by the
difference between the actual measurement of the BFCs
included in the GP and the weight that the method assigns to
it: this is what we call “technical accuracy”. In real life,
estimators will not experience this simplified situation since
the requirements will not be generally known at the most
detailed level and in addition to the eventual “technical”
error it is possible to have a classification error which leads
to an “operational” error which we expect to be greater than
the “technical” one, unless underestimations compensate
overestimation in the overall exercise. In addition to this
aspect, it is also essential to understand that the method may
be used at three different levels of detail each of one
characterized by a different technical accuracy, so that it is
impossible to assess the accuracy of the method, generally
speaking, but it is possible to assess the accuracy of the
method at a specific level of application.

Ignoring these essential aspects may lead to inconsistent
results and false conclusions on the reliability of the method
in itself as reported in [24], where the capability of freshly
and quickly trained practitioners was measured together
with the “technical accuracy” and estimation levels of detail
were mixed up comparing incomparable results and deriving
an overall accuracy for the method, which simply doesn’t
exist. If we want to draw conclusions on the accuracy of the
method and not on the capability of practitioners then we
have to depurate the experiment from the participant’s bias
using the approach outlined here. In real life contexts, the
quality of the operational estimation will depend on the
expertise of the estimator, on the available FUR details, on
the level of application of the method. If we do not fix all
these parameters in an experimental situation it is
impossible to conduct adequate empirical observations.

Before introducing the indicators that we used to assess
the “technical accuracy” we want to state that in this paper
we assume that given a specific software application the
exact value of FP is the value measured using the standard
IFPUG rules by a certified FP Specialist (CFPS) and the
estimated values to be compared with the measured value
are those expressed by a certified E&QFP specialist for the
same application. The error is the difference between the
approximated value and the standard measured value, the
relative error is the difference between the approximated
value and the measured value all divided by the measured
value.

A. Portfolio error
This is the error derived for the entire sample conceived

as if it was a portfolio of applications, in other words a set
of software applications managed as a whole for business
reasons. In real cases, it is important to know what is the
general behaviour of the portfolio in addition to the
behaviour of single components. Economical resources are
distributed over individual software applications but it is

important to know if underestimations of portfolio
components might be compensated by overestimations of
other components or if the errors are of the same nature and
sum up to unacceptable levels. “Portfolio error” is
calculated adding up all the measurements and estimations
and calculating the difference between them as if the set of
applications was actually only one bigger application (its
measure is the sum of the individual measurements and its
approximation is the sum of the individual approximations).
This indicator is only a “business” indicator, useful when
associated to the other indicators like the following (more
traditional) ones.

B. Prediction at level X
This indicator – pred (X) - is simply the relative number

of estimations (%) that fall inside the range of “actual
value” +/- X%. Usually X is set at 25% for model’s
evaluation. Since the E&QFP method is a “good performer”
with respect to the technical accuracy, we decided to lower
this threshold to 10%.

C. Mean Relative Error / Mean Absolute Error
The mean relative error is the average of the relative

errors (with their sign). The mean absolute error is the
average of the absolute errors.

D. Median Relative Error / Median Absolute Error
The median is the value that is roughly in the middle of

the data set. If n is odd, the median is the single value in the
middle, namely the value with rank (n + 1)/2. If n is even,
there is not a single value in the middle, so the median is
defined to be the average of the two middle values, namely
the values with ranks n/2 and n/2 + 1. The median value is
less sensible to the influence of extreme values with respect
to the arithmetic mean. The median could be calculated over
the relative values or over the absolute values.

E. Reliability Indicator
The reliability indicator RI provides a numerical

evaluation of the accuracy of the estimation with respect to
the corresponding measurement method. This indicator does
not express the variability range, but rather the (a posteriori)
deviation between the actual measured size value M and the
estimation range (Smin, Sml and Smax) – where ml means most
likely. The indicator is defined for non-zero ranges
(Smin ≠ Smax) – for the estimation of a single system/project i
– by the following formula:

()

()minmax

minmax

SS
SMSS

RI ml
i −

−−−
= (1)

The indicator has the following features:

RIi has a threshold value for M equal to one of the range

extremis (the smallest value of the two);

17Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 26 / 129

RIi gets worse for M going externally of the estimation
range, and vice versa;

RIi gets better for smaller ranges (Smax - Smin);
RIi gets better for smaller differences between M and Sml

and yields the best value for M = Sml.

Figure 3 shows an example of the shape of RIi (y-

values), with fixed values Smin = 10 FP, Sml = 13 FP,
Smax = 20 FP and actual measured value M varying on that
range (x-values in Function Points). In the best case
(M = Sml), we find RIi = 1 (maximum); in the extremis
(M = Smin o M = Smax), we find the threshold RIi= 0.3
(=min(0,3;0,7)); for bad estimations (M external to the
range), RIi < 0.3. Hence, in this case the expected value of
the reliability indicator, for a satisfactory estimation
technique, is between 0.3 and 1. The closest to 1 is the RI
and the better is the estimation.

Figure 3. Shape of RIi with respect to the actual measured size M

The overall reliability indicator of the estimation method
is given by the average RI over N cases. Thus, the average
reliability indicator provides, for future estimations, an
evaluation of the associated “risk”.

V. A VALIDATION EMPIRICAL EXPERIMENT
A validation empirical experiment has been conducted in

order to assess the accuracy of the estimation results, using a
real life data set of 65 IFPUG FP measurements ranging
from 113 FP to 1601 FP (51 baselines; 7 new developments;
8 enhancements). The measurements were taken by
Certified Function Point Specialists of the organization
originating the data set.

This data set was not used to calibrate the version of the
model, it was used to test the “technical accuracy” of the
standard model on an independent data set. Details on the
data set are reported in the Supplemental Material Section.

A. Measurement and Approximation productivity
TABLE II shows the IFPUG average measurement

productivity registered for the 65 cases compared to the
approximation productivity of the three level of application
of the E&QFP method.

TABLE II - SIZING PRODUCTIVITY

avg(hours/FP)
ratio

45.2 85.7 177.0 284.2
1.0 1.9 3.9 6.3

Intermediate SummaryIFPUG Detailed

B. Universe description
The following TABLE III shows the universe

description.

TABLE III – UNIVERSE DESCRIPTION

Average 513.6
Median 403.0
Moda 170.0
Kurtosis 0.88179
Asymmetry 1.18710
Interval 1488
Minimum 113
Maximum 1601
Sum 33384
Count 65

Universe description

C. Portfolio error
The portfolio error is extremely low as it is shown by the

following TABLE IV. This means that using the estimation
technique at any level, the total portfolio is estimated in an
extremely precise way.

TABLE IV – PORTFOLIO ERRORS

IFPUG value Estimation Difference % Abs(%)
Detailed 33384 32466,5 ‐917,5 ‐3% 3%
Intermediate 33384 33821,7 437,7 1% 1%
Summary 33384 33732,2 348,2 1% 1%

D. Prediction at level X
The most part of the estimations are beneath the 10% of

absolute error as shown in TABLE V. We used an
improved version of the typical Pred(25%) due to the high
quality of estimations available.

TABLE V – PREDICTION AT LEVEL 10%

total <=10% Pred(10%)
Detailed 65 51 78%
Intermediate 65 55 85%
Summary 65 46 71%

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 27 / 129

E. Error magnitudes
In TABLE VI, we show the minimum, median, average,

maximum errors with their sign and as absolute values for
the three level of details.

TABLE VI – ERROR MAGNITUDES

error% abs(error%) error% abs(error%) error% abs(error%)
min ‐18% 0% ‐17% 0% ‐17% 0%
median ‐2% 4% ‐2% 5% ‐1% 6%
avg ‐3% 6% ‐1% 6% ‐1% 7%
max 20% 20% 27% 27% 24% 24%

Detailed Intermediate Summary

F. Average Reliability Indicator
The average RI indicator (shown in TABLE VII) is very

high in the case of intermediate and summary estimation
and low in the case of detailed estimation, due to the very
tight range of confidence interval for the detailed estimation.
In 15 cases out of 65, the RI was negative since the
measured FP value was outside the min-max estimation
range, but in none of those cases the absolute error was
higher than 20%.

TABLE VII - AVERAGE RELIABILITY INDICATOR

avg(RI)
Detailed 0,33
Intermediate 0,81
Summary 0,86

G. Scatterplot diagrams
Figure 4, 5 and 6 just report, for a visual check, the

IFPUG values plotted against the approximated values for
the same cases using the three different levels of application
of the method.

y = 0,9702x
R² = 0,9808

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000

De
ta
ile
d
E&

Q
FP

IFPUG FP

Figure 4. IFPUG FP vs Detailed E&QFP

y = 1,0102x
R² = 0,9829

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000

In
te
rm

ed
ia
te
 E&

Q
FP

IFPUG FP

Figure 5. IFPUG FP vs Intermediate E&QFP

y = 1,0066x
R² = 0,979

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000

Su
m
m
ar
y
E&

Q
FP

IFPUG FP

Figure 6. IFPUG FP vs Summary E&QFP

VI. COMPARISON WITH OTHER APPROXIMATION
METHODS

In [5], there is a classification of the approximation
methods useful to compare E&QFPM to other available
methods.

These methods, also known as Algorithmic Model
Methods, provide one or more transformation algorithms,
which produce a software size estimate as a function of a
number of variables, which in turn relate to software
attributes. Generally, these methods are correlated to a
decomposition process. By decomposing an application into
its major functions, estimation can be performed in a step-
by-step fashion. This category is further specialized into
three main subclasses: Technology Driven Methods, Logic
Driven Methods (also called Architecture Driven Methods)
and Hybrid Methods.

Technology Driven Methods - This term denotes the
derivation of the FP value, for a given software system,
from its technical elements, for example Lines of Code or
from the number of classes or objects (in an OO
environment), physical tables, screen forms, widgets and the
like. Using this kind of method, it is not necessary to

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 28 / 129

develop a logical model of the application in terms of
functionalities or data entities since the derivation algorithm
is a based on statistically derived ratios, i.e., it is based on a
statistically proven (hopefully) correlation between a
technical measure and a logical measure (the FP count).
This kind of method is not reliable due to the significant
differences between a physical model and a logical model of
software and to the modern programming technologies. An
additional problem is that the ratio between technical and
logical measures might be easily manipulated in order to
“drive” the final FP estimation in a pre-defined direction.

Logic Driven Methods - There are many Logic Driven
Methods for estimating FP size, mostly because of statistical
research on benchmarking data sets. Not every method is
quoted in technical literature, but many of them are widely
known in practice. The main characteristic of these methods
is that they are based on a “logical model” of the application
to be estimated. This means that the model is totally
compliant with the Functional Size Model of the IFPUG
method. One subset of Logic Driven Methods may be
called Extrapolative Counts: this kind of methods assumes
that we count only one or two FP components (typically the
number of Logical Files) of the application, and derive the
rest of the count on a statistical or theoretical basis. All of
these models should be carefully analyzed, in order to
understand their applicability in a particular domain. Very
often this method may be customized to reflect the FP
distribution of a particular environment instead of a global
public available database. This method is simple to use but
quite error prone, since a “missing” object may involve a lot
of derived FP to be disregarded and the vice versa. As a
final consideration, this method needs a very accurate
identification of the estimation driver (i.e., ILFs), which is
not usually possible at a moment in time when the
requirements are still uncertain, vague, approximate and
instable. A second type of Logic Driven Methods may be
called Sampled Counts: using this method, the IFPUG
standard count of a part of the entire system is carried out
and from this partial count, the rest of the system can be
estimated. While in the previous situation the whole system
is investigated with respect to some FP components (EI,
EO, EQ, ILF or EIF), using the Sampled Count method only
a portion of the system is investigated with respect to all the
FP components. This method is simple as the previous one
but it could be even more error prone since the assumptions
about the proportion of the known part over the rest of the
system are not really reliable. In addition, there is still the
problem of obtaining very detailed information on the
“known” part to be counted using the standard procedures
and rules in situations where these data might be
unavailable. A third type of Logic Driven Methods may be
called Average Complexity Estimation: this type of
method consists in identifying all the IFPUG Base
Functional Components – BFC (EI, EO, EQ, ILF, EIF) and
assuming an average or most likely complexity for each one
of them. This is often a quite precise method but it needs a

detailed insight in the software logical requirements as if it
was a standard count.

Hybrid Methods – These methods merge technical
driven aspects with logical modelling and might accelerate
the estimation process but further research is needed to
demonstrate their value.

The E&QFPM is the most flexible method, since it is
based on a mix of approaches including Sampled Counts,
Average Complexity Estimation but introduces analogy and
multilevel approach. Any of the quoted methods may be
considered as specific cases of use of the E&QFPM.

VII. CONCLUSIONS
The analysis of the empirical experiment has confirmed

and improved results shown by other studies and current
practice. The Early & Quick FP estimation technique is a
competitive mean to approximate IFPUG FP values in such
a precise way that in many organizations it is used as a
primary way to evaluate assets and projects. The effect of
expert analogy and domain experience (a potential source of
errors in the field) becomes less important as much as the
technique is used at the intermediate and detailed level. In
these cases, the technical accuracy becomes very close to
the operational accuracy. It is important to highlight that the
eventuality of committing a large error, in using the E&Q
method at a low level of detail of requirements, is largely
compensated by the fact that no other approximation
technique may be used on summary requirements which are
missing the needed details.

ACKNOWLEDGMENT
The experimental data set (IFPUG measures) has been

supplied by an Italian public agency and the estimations
were made by Luciano Luciani (DPO) IFPUG Certified
Function Point Specialist (CFPS) and Certified Early &
Quick Function Point Specialist (CEQ-FPS).

REFERENCES
[1] JCGM, JCGM 200:2008 - International vocabulary of

metrology — Basic and general concepts and associated terms
(VIM),
http://www.iso.org/sites/JCGM/VIM/JCGM_200e.html,
[retrieved: March, 2015]

[2] ISO/IEC, "14143-1:1998 'Information technology - Software
measurement - Functional size measurement - Part 1:
Definition of Concepts'", JTC 1 / SC 7, ISO/IEC, 1998.

[3] R. Meli and L. Santillo, "Function Point Estimation Methods:
a Comparative Overview", FESMA '99 Conference
proceedings, Amsterdam, October 1999.

[4] H. van Heeringen, E. van Gorp, and T. Prins, "Functional size
measurement - Accuracy versus costs - Is it really worth it?",
SMEF 2009, Rome, Italy, May 2009.

[5] R. Meli, “Functional size approximation: why bother with
details ?”, IWSM Metrikon MENSURA, Amsterdam, The
Netherlands, 2009.

[6] C. Jones, "A new business model for Function Point metrics",
August 2009.

[7] L. Lavazza and G. Liu, “An Empirical Evaluation of
Simplified Function Point Measurement Processes”, Int.

20Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 29 / 129

Journal On Advances in Software, vol. 6, n.1/2, pp. 1–13,
2013.

[8] International Function Point Users Group, “Function Point
Counting Practices Manual - Release 4.3.1”, January 2010.

[9] ISO/IEC 20926: 2003, “Software engineering – IFPUG 4.1
Unadjusted functional size measurement method – Counting
Practices Manual”, Geneva, 2003.

[10] R. Meli, "Early Function Points : a new estimation method for
software projects" - ESCOM 97 - May 1997 - Berlin
(Germany).

[11] R. Meli, "Early and Extended Function Point: a new method
for Function Points estimation" - IFPUG - Fall Conference -
15-19 September 1997 - Scottsdale, Arizona USA.

[12] CNIPA, Linee guida sulla qualità dei beni e dei servizi ICT
per la definizione ed il governo dei contratti della Pubblica
Amministrazione - Strategie di Acquisizione delle Forniture
ICT v3.4, pp. 205/249, 2005.

[13] R. Meli, A. Abran, V. T. Ho, and S. Oligny, “On the
applicability of COSMIC-FFP for measuring software
throughout its life cycle”, ESCOM-SCOPE 2000, Munich,
April 18-20, 2000.

[14] R. Meli, "Early and Quick Function Point Analysis from
Summary User Requirements to Project Management",
IFPUG, "IT Measurement - Practical Advice from the
Experts", Chapter 26, pp. 417-440, Addison-Wesley, 2002.

[15] M. Conte, T. Iorio, R. Meli, and L. Santillo, "E&Q: An Early
& Quick Approach to Functional Size Measurement
Methods", SMEF2004, Roma, Italia, January 2004.

[16] L. Santillo, M. Conte, and R. Meli, "Early & Quick Function
Point: Sizing More with Less" , 11th IEEE International
Software Metrics Symposium, 19-22 September, 2005 Como,
Italy.

[17] R. Ellafi and R. Meli, "A Source Code Analysis Function
Point Estimation Method Integrated with a Logic Driven
Estimation Method", SMEF2006, Roma, Italy, May 2006.

[18] T. Iorio, R. Meli, and F. Perna, "Early & Quick Function
Points® v3.0: enhancements for a Publicly Available
Method", SMEF2007, Italy, May 2007.

[19] DPO, Early & Quick FP Reference Manual,
http://www.dpo.it/en/eqfp/risorse.htm, [retrieved: March,
2015].

[20] R. Meli, "Simple Function Point: a new Functional Size
Measurement Method fully compliant with IFPUG 4.x",
SMEF2011, Roma.

[21] R. Meli, "Simple Function Point! A new method for
functional size measurement fully compatible with the IFPUG
method 4.x", UK Software Metrics Association & COSMIC
International Conference on Software Metrics and Estimating,
London , October 2011, London.

[22] SiFPA, "Simple Function Point Functional Size Measurement
Method - Reference Manual SiFP-01.00-RM-EN-01.01",
http://www.sifpa.org/en/index.htm, [retrieved: March, 2015].

[23] International Software Benchmarking Standards Group,
Worldwide Software Development: The Benchmark, (from
rel 5, 1999 to rel 12, 2013).

[24] K. Almakadmeh and A. Abran, “Experimental Evaluation of
an Industrial Technique for the Approximation of Software
Functional Size”, International Journal Of Computers &
Technology Vol 10, No 3, 2013.

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 30 / 129

SUPPLEMENTAL MATERIAL : THE EXPERIMENTAL DATA SET

IFPUG

N Type
STD Min ML Max Min ML Max Min ML Max

1 Baseline 577 525.3 552.5 578.3 466.9 571.1 676.4 378.2 509.5 640.3
2 Baseline 1601 1614 1695 1778 1445 1735 2032 1255.2 1702 2148
3 Baseline 755 733.1 766.4 805.7 702 788.6 882.4 588.6 812.7 1037
4 Development 375 334.5 351 367.7 303.9 344.8 387.7 272.1 372.1 472.1
5 Baseline 1225 1027 1080 1133 950.3 1165 1383 895.1 1198 1501
6 Baseline 1241 1188 1242 1304 888.8 1237 1586 888.8 1237 1586
7 Baseline 322 286.1 300.1 315.1 265 306.1 348.9 242.2 325.7 409.1
8 Baseline 634 500.3 524.9 550.9 497.7 591 686.6 490.5 661.7 832.9
9 Baseline 301 295 309.3 324.3 279 328.5 379.1 252.8 342.3 431.8
10 Baseline 212 197.9 206.6 217.2 189.9 209.9 232.6 152.5 213.8 275.1
11 Baseline 241 246.2 257.9 270.9 236.8 272.6 309.9 172.4 230.2 288
12 Baseline 1066 980.8 1028 1080 942 1101 1266 802.8 1066 1330
13 Baseline 256 256.9 269.2 282.9 242.6 277.4 313.3 216.2 275.2 333.8
14 Baseline 955 888.5 931 978 845.6 982.4 1125 693.6 942.3 1191
15 Baseline 1166 1092 1144 1202 1092 1144 1202 933 1179 1425
16 Baseline 370 360.2 376.7 395.8 338.2 381.4 427.8 313 427.3 541.5
17 Baseline 281 269 276.6 284.2 254.5 277.7 301.6 226.1 294.2 362.9
18 Baseline 682 664 685.7 711.5 610.6 698.4 791.8 528 688.1 849.7
19 Baseline 449 424.8 443.9 466.1 414.1 458.6 507.9 329.4 454.9 580.3
20 Baseline 578 580.6 610.4 639.7 519.5 636.6 755.7 480.6 648.5 816.3
21 Baseline 243 215.3 225.2 236.5 221 248.8 279.3 202.9 278.7 354.6
22 Baseline 324 305.2 318.8 335.1 290.9 324.1 360.6 228.5 309.7 391.1
23 Baseline 153 148.9 155.8 163.1 144.8 174.7 205.2 130.6 169.8 209
24 Baseline 170 160.8 167.8 176.6 158.2 172.4 188.7 107.6 148.7 189.8
25 Baseline 290 286.1 298.2 314 284.4 303.1 325.8 204.9 288.7 372.5
26 Baseline 982 895.1 938.7 983.9 864.7 1018 1174 819.9 1103 1385
27 Baseline 315 273.5 286.3 299.9 245.3 288.2 332.8 208.3 271 334.1
28 Baseline 124 102.5 107.6 112.9 106.5 128.3 150.5 91.8 125.5 159.1
29 Baseline 494 480.7 505.5 529.2 404.8 493.4 583.4 360.9 483 604.9
30 Baseline 170 154.2 161.9 169.7 149.3 179.3 210.2 129.9 171.7 213.7
31 Baseline 469 392.9 412.6 432.3 364.1 445.9 529.6 333.3 439.1 545.3
32 Baseline 530 494.2 519.5 543.7 435.6 525.3 616.6 412.2 547 681.4
33 Baseline 454 426.8 448.1 469.5 388.5 455.5 524.6 343.9 469 594.1
34 Baseline 277 245.5 257.6 270.5 226.4 266.3 307.7 210.7 276.5 342.6
35 Baseline 719 695.8 730.7 766.1 626.5 733.5 842.9 481.8 642.4 802.9
36 Baseline 871 842.1 884.5 927.3 855.7 1023 1193 758.8 996.5 1234
37 Baseline 1242 1035 1088 1139 924.9 1107 1292 811.5 1067 1322
38 Baseline 397 378.2 396.9 415.8 355.7 418.7 484 328.3 432.8 537.6
39 Baseline 167 167 176.2 183.8 141 183.2 225.2 141 183.2 225.2
40 Baseline 912 728.6 768 802.3 652.6 797.7 945.1 600.3 804.3 1008
41 Baseline 128 116.9 122.6 128.5 104.2 119.8 136.3 87 114.5 142.2
42 Baseline 194 186 195.1 204.9 154.6 191.7 229.7 138 187.1 236.2
43 Baseline 752 666.9 700.1 733.4 623.2 779.4 938.1 588.4 785.8 983.6
44 Baseline 516 482.5 503.4 525.9 417.7 506.2 595.8 375.1 487.1 598.6
45 Baseline 532 465 488.6 511.8 426.4 508.7 593.2 389 495 601.7
46 Baseline 321 253.4 264 271.8 255.5 316 376.5 236.3 320.3 404.3
47 Baseline 113 112.2 117.4 123.3 97.7 135.5 173.3 97.7 135.5 173.3
48 Baseline 184 175.2 183.6 193.1 124.8 145.2 166.9 107.6 148.7 189.8
49 Baseline 389 380.7 398.7 418.5 351.2 406.4 464.1 327.7 425.1 523.1
50 Baseline 315 332.7 349.2 365.2 290.4 341.4 394 241.4 311.2 380.8
51 Baseline 159 133.9 139.8 147 127 147.5 169.3 107.6 148.7 189.8
52 Development 1158 988.7 1036 1088 917 1091 1272 798.4 1075 1352
53 Development 886 880 921.1 967.6 842.1 957.1 1079 717.5 941.9 1167
54 Development 691 693 726.1 761.8 655 745.5 841.8 579 750.9 923.9
55 Development 552 534 560 587.8 501.1 586.1 673.7 463.3 597.2 731.2
56 Development 522 597.1 626.5 657.9 525.2 624.8 727.8 468.4 621.1 773.8
57 Enhancement 499 539.4 566.5 594.8 478.4 559.7 643.9 449.2 554.5 661.4
58 Development 498 451 473.1 496.2 401.6 479 558.7 349.4 472.4 595.3
59 Enhancement 474 368.1 386.4 405.1 350.3 431.5 513 338.5 426.1 513.8
60 Enhancement 403 374.1 390.8 410.8 382.3 420.8 463.1 297.9 394 490.4
61 Enhancement 365 329.5 347.1 362.9 293 386.4 479.8 287.4 384 480.5
62 Enhancement 333 306.8 321.8 338 271 316 361.6 231.6 314.4 397
63 Enhancement 321 259.3 272.3 285.7 236.5 307.6 378.9 238.9 313.1 387.3
64 Enhancement 219 192 202.1 211.7 191.7 252.4 313.3 189.9 254.6 319.3
65 Enhancement 270 263.4 276.6 290.1 229.7 271.6 314.6 214 286.1 358.1

33384 32467 33822 33732

Summary
E&QFP

IntermediateDetailed

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 31 / 129

Software Component Allocation on Heterogeneous Embedded Systems
Using Coloured Petri Nets

Issam Al-Azzoni

Department of Software Engineering
College of Computer and Information Sciences

King Saud University
Riyadh, Saudi Arabia

Email: ialazzoni@ksu.edu.sa

Abstract—In this paper, we present a new approach to component
allocation in heterogeneous embedded systems using Coloured
Petri Nets (CPNs). While several techniques in optimization exist
to solve the component allocation problem, this is the first paper
to develop a corresponding CPN model and outline a technique to
find an optimal and feasible allocation. The CPN model represents
an advancement towards a model-driven engineering view of the
problem allowing to subject the model to other types of non-
functional analysis. We also exploit the use of CPN Tools, a well-
known tool for analyzing CPNs, in generating the state spaces
and finding optimal allocations.

Keywords–Component allocation; Coloured Petri Nets; Model-
driven engineering; Embedded systems; Heterogeneous systems.

I. INTRODUCTION

Embedded systems have recently become ubiquitous.
These systems contain multiple integrated software compo-
nents and hardware computational units. An embedded system
is a computer system, and its associated software, built into
some piece of equipment [1]. There are numerous exam-
ples where embedded systems are being exploited, including
telecommunication systems, household appliances, robots, au-
tomobiles, and airlines. These systems are also becoming more
heterogeneous with the advent of several types of processors
including Central Processing units (CPUs), Graphical Pro-
cessing Units (GPUs), and Field Programmable Gate Arrays
(FPGAs).

This heterogeneity has created new challenges for soft-
ware architects and designers who decide the placement of
the different software components on top of the hardware
computational units. While there are many ways to place the
components while meeting the functional requirements, the
problem becomes much more complex when considering the
non-functional (quality) aspects of the placement. For example,
a particular mapping of the components may result in better
performance than other mappings. The component allocation
problem aims to find an allocation (mapping) of the software
components such that a certain cost function is optimized.
Strategies to solve the problem provide software architects
with the necessary tools to make decisions on the allocation
of components for heterogeneous embedded systems.

Model-driven engineering (MDE) advocates the use of
models in systems analysis and design [2]. The use of models
permits various types of analysis to be performed on the
models before the actual system is implemented. This can

be done at a high level of abstraction and in an automated
fashion. While there exist several techniques for solving the
component allocation as an optimization problem, this pa-
per presents a new model-based approach for modeling and
solving the component allocation problem. The new approach
uses Coloured Petri Nets (CPNs) as the modeling language.
CPNs have a very rich set of supporting theory and automated
tools for model analysis [3]. By modeling the component
allocation problem in CPNs, we not only can find an optimal
allocation that optimizes a cost function, but also can subject
the optimal allocation for other types of non-functional anal-
ysis including security and dependability analysis. CPNs have
been applied extensively in analyzing non-functional aspects
of systems [4][5]. In addition, different approaches exist to
transfer other standard software modeling language models
into Petri Net models (see the work of [6]).

The contributions of the paper are summarized as follows:

1) We describe a new approach to model the component
allocation problem in CPNs.

2) We describe the use of CPN Tools [7] in analyzing
the CPN model and solving the component allocation
problem.

The organization of the paper is as follows. In Section II,
we define the component allocation problem more formally.
We illustrate our approach in Section III. In Section IV,
we evaluate our CPN based approach using a realistic case
study. The related work is discussed in Section V. Section VI
concludes the paper and outlines future work.

II. PROBLEM DEFINITION

Consider a software system consisting of n components.
Every component needs to be assigned to a computational unit
on a hardware platform consisting of m computational units.
The computational units offer a number of resources l (for
example, computation, memory, and energy resources).

The Component Resource Consumption Matrix T =
[tijk](n×m×l) defines the amount of resources each component
requires. The element tijk represents the necessary amount of
the k−th resource required by the i−th software component
when allocated on the j−th computational unit.

The Computational Unit Resource Capacity Matrix R =
[rjk](m×l) defines the amount of resources that each computa-
tional unit can provide. The element rjk represents the k−th
resource capacity of a j−th computational unit.

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 32 / 129

An allocation of the components maps each software
component to one of the m computational units. Two or more
components can be allocated on the same computational unit.
From a mathematical viewpoint, an allocation represents a
permutation with repetition which assigns one computational
unit for each software component. Note that there are mn

possible allocations which implies that the search space in-
creases exponentially with the number of components and
computational units.

The component allocation problem is to find an allocation
(p1, · · · , pn), where component i is assigned to computational
unit pi, such that it is both feasible and optimal. A feasible
allocation means that the resources consumed by the software
components allocated on any computational unit do not exceed
the resource capacities that the computational unit provides.
Thus, the feasibility condition can be stated as follows: given
an allocation (p1, · · · , pn), for any computational unit j:∑

i,pi=j

(tipik) ≤ rjk (1)

for all resources k.

In addition to satisfying (1), we might consider additional
constraints that need to be satisfied by a feasible allocation.
In this paper, we consider the system architectural constraint
that in a feasible allocation a particular component should be
(or should not) be allocated on a particular computational unit.
There could be several of such architectural constraints that a
feasible allocation needs to satisfy.

Given an allocation (p1, · · · , pn), its cost can be computed
using the following cost function:

w =

l∑
k=1

fk

n∑
i=1

tipik (2)

Here, fk represents a trade-off factor whose purpose is to
specify the weights of each resource in the cost function. This
allows to differentiate the importance of different resources.
An optimal allocation has the smallest w (greater than 0).
The component allocation problem is to find an optimal
and feasible allocation. Thus, the chosen allocation needs to
satisfy (1) (in addition to possibly additional constraints) and
has the smallest cost w (greater than 0) which is defined by (2).

The component allocation problem can be formulated as
a 0-1 integer linear programming problem which is NP-
complete [8]. For exact solutions and small problem sizes (the
problem size is based on the number of components and com-
putational units), one can use traditional integer programming
techniques. However, for large problem sizes, one needs to
resort to heuristics which find good approximations through
large space search methods.

III. APPROACH

In this section, we apply the CPN based approach to
solve a component allocation problem using parameters of
a realistic system borrowed from [9]. Section III-A gives a
brief description of the system. In Section III-B, we develop a
CPN model of the system and in Section III-C we describe the
generation and analysis of the state space using CPN Tools.

10 90 90 55
50 20 20 72
30 20 20 72
10 40 40 72
20 40 40 72
20 50 50 55
90 20 20 15
20 10 10 70
20 10 10 70
20 15 15 70
90 10 10 33

(a)

48 256 256 128
128 256 256 148
64 256 256 148
48 168 168 148
64 168 168 148
64 168 168 64
168 128 128 64
148 96 96 148
48 32 32 148
48 32 32 148
168 64 64 96

(b)

2 18 18 11
10 4 4 14
6 4 4 14
2 8 8 14
4 8 8 14
4 10 10 11
18 4 4 3
4 2 2 14
4 2 2 14
4 3 3 14
18 2 2 7

(c)

Figure 1. The component resource consumptions.

A. Case Study

To demonstrate our approach, we borrow the same parame-
ters used to develop a component allocation problem from [9].
The system considered is a software system that handles and
interprets vision data on an autonomous underwater vehicle
(AUV) while simultaneously interacting with them in real
time. That system is being developed as a part of RALF3
project [10].

The system consists of n = 11 components. These are:
1-UI User Interface, 2-CH Communication Handler, 3-MP
Message Parser, 4-MD Manual Drive, 5-MM Mission Man-
ager, 6-MC Movement Control, 7-V Vision, 8-AC Actuator
Control, 9-SI Sensors Layer 1, 10-S2 Sensors Layer 2, and
11-SF Stream Filtering components. The hardware platform
consists of m = 4 computational units. These are: 1-mCPU
Mulicore CPU, 2-FPGA FPGA I, 3-FPGA FPGA II, and 4-
GPU GPU. There are l = 3 resources: average execution time
(measured in milliseconds), memory (measured in megabytes),
and average energy consumption (measured in milliamperes
per hour).

Figure 1 shows the component resource consumptions (i.e.,
the elements of the matrix T). Since T is three-dimensional
(components, computational units, resources), we use three
matrices to display three different resources (i.e., the third
dimension): (a) average execution time, (b) memory, and (c)
average energy consumption. The computational unit resource
capacity matrix is given by:

R =

 100 256 50
150 640 25
150 640 25
100 256 15

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 33 / 129

Components

Component

1`1++1`2++1`3++1`4++1`5
++1`6++1`7++1`8++1`9++1`10
++1`11

CompUnits

CompUnit

1`(1,100,256,50)++1`(2,150,640,25)++
1`(3,150,640,25)++1`(4,100,256,15)

ResConsumptions ResCons

1`(1,1,10,48,2)++1`(1,2,90,256,18)++1`(1,3,90,256,18)++1`(1,4,55,128,11)++
1`(2,1,50,128,10)++1`(2,2,20,256,4)++1`(2,3,20,256,4)++1`(2,4,72,148,14)++
1`(3,1,30,64,6)++1`(3,2,20,256,4)++1`(3,3,20,256,4)++1`(3,4,72,148,14)++
1`(4,1,10,48,2)++1`(4,2,40,168,8)++1`(4,3,40,168,8)++1`(4,4,72,148,14)++
1`(5,1,20,64,4)++1`(5,2,40,168,8)++1`(5,3,40,168,8)++1`(5,4,72,148,14)++
1`(6,1,20,64,4)++1`(6,2,50,168,10)++1`(6,3,50,168,10)++1`(6,4,55,64,11)++
1`(7,1,90,168,18)++1`(7,2,20,128,4)++1`(7,3,20,128,4)++1`(7,4,15,64,3)++
1`(8,1,20,148,4)++1`(8,2,10,96,2)++1`(8,3,10,96,2)++1`(8,4,70,148,14)++
1`(9,1,20,48,4)++1`(9,2,10,32,2)++1`(9,3,10,32,2)++1`(9,4,70,148,14)++
1`(10,1,20,48,4)++1`(10,2,15,32,3)++1`(10,3,15,32,3)++1`(10,4,70,148,14)++
1`(11,1,90,168,18)++1`(11,2,10,64,2)++1`(11,3,10,64,2)++1`(11,4,33,96,7)

Allocations

Allocation
Cost

REAL

1`0.0

NextSend

INT1`1

allocate

[a_cpu>=r_cpu andalso a_mem>=r_mem andalso a_pwr>=r_pwr
andalso (not (c=7) orelse cu=4) andalso not(c=4 andalso cu=1)]

c

(cu,a_cpu,a_mem,a_pwr)

(c,cu)

(c,cu,r_cpu,r_mem,r_pwr)

(cu,a_cpu-r_cpu,a_mem-r_mem,a_pwr-r_pwr)

co

co+0.1557*(Real.fromInt r_cpu)+
0.0856*(Real.fromInt r_mem)+
0.7095*(Real.fromInt r_pwr)

c

c+1

Figure 2. The CPN model for the system of the case study.

To compute the cost of an allocation in (2), we use the
trade-off vector:

F = [0.1557 0.0856 0.7095]

Here, the k-th element in vector F represents the trade-off
factor fk. The trade-off factors are computed using Analytic
Hierarchy Process (AHP) [11]. The details are given in [9].

We will consider two additional constraints:

• Constraint I: Component 7-V should be allocated on
4-GPU.

• Constraint II: Component 4-MD should not be allo-
cated on 1-mCPU.

B. The CPN Model
The CPN model is shown in Figure 2. The CPN contains

six places. The place Components holds tokens which rep-
resent the components. The place CompUnits holds tokens

representing the computational units. Each token records the
available resources that the corresponding computational unit
currently has. The place ResConsumptions holds tokens
which encode the component resource consumption matrix
T . The place Allocations holds tokens which represent the
allocations of components to computational units. The place
NextSend is used to control which component is to be
allocated next. The place Cost holds a single token which
records the total cost of the allocated components. There is
only one transition in the CPN. Firing the transition allocate
corresponds to assigning a component to one of the computa-
tional units.

The colour sets are defined as follows:
colset UNIT = unit;
colset INT = int;
colset REAL = real;
colset BOOL = bool;
colset STRING = string;

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 34 / 129

val max_val: real = 2000.0;

fun tot_cost n =
let
val accCostsToken = Mark.model'Cost 1 n;
in
hd(accCostsToken)
end;

fun DesiredTerminal1 n = (Mark.model'Components 1 n == empty);
val x = SearchNodes(EntireGraph, DesiredTerminal1, NoLimit, tot_cost, max_val, Real.min);
fun DesiredTerminal2 n = DesiredTerminal1(n) andalso (Mark.model'Cost 1 n == 1`x);
val y = SearchNodes(EntireGraph, DesiredTerminal2, NoLimit, fn n => n,[],op ::);

CalculateOccGraph();

Figure 3. The CPN ML queries used to generate and search through the state space for the CPN model of Figure 2.

colset Component = int;
colset CompUnit = product INT * INT * INT *

INT;
colset Allocation = product INT * INT;
colset ResCons = product INT * INT * INT * INT

* INT;

The variables are declared as follows:
var c,cu: INT;
var co:REAL;
var a_cpu,a_mem,a_pwr: INT;
var r_cpu,r_mem,r_pwr: INT;

The place NextSend is used to reduce the state space by
allocating the components in order of their numbers. This is
valid since the order of assigning components to computational
units does not matter with respect to the feasibility condition
(see (1)).

The constraints are included in the CPN model by using
the guard of transition allocate. For example, in Constraint
I, Component 7-V should be allocated on 4-GPU. Thus, a
feasible allocation of components should satisfy the condition
that (c = 7) → (cu = 4) which is logically equivalent to
¬(c = 7) ∨ (cu = 4). For Constraint II, Component 4-MD
should not be allocated on 1-mCPU. Thus, a feasible allocation
of components should also satisfy the condition that ¬((c =
4) ∧ (cu = 1)). Both conditions are added to the guard of
transition allocate.

When a component is allocated to a computational unit,
the corresponding cost needs to be added to the total cost (the
colour of the token in place Cost). This is modeled by using
the arc from transition allocate to place Cost. Note the trade-
off factors fk in the arc expression.

C. State Space Generation and Analysis
We use the state space tool of CPN Tools Version 4.0

to find an optimal and feasible component allocation. CPN
Tools Version 4.0 adds the support for real colorsets. Figure 3

shows the query functions used to generate and search through
the state space. These queries are written in the CPN ML
programming language (presented in Chapter 3 in [3]). For a
given marking represented by n, the function tot cost returns
the total cost of the assigned components which is equal to
the value (colour) of the token in place Cost.

To find the optimal allocations, we use the CPN ML
defined function SearchNodes twice. First, we use it to
find the minimum value for the total allocation cost over all
markings which satisfy the predicate DesiredTerminal1. The
predicate DesiredTerminal1 returns true if and only if the
marking represented by n satisfies the condition that there is
no token in place Components (hence, all components have
been assigned). Thus, the variable x stores the minimum total
component allocation cost. The constant max val is a large
real number useful in the start of applying the combination
function Real.min of SearchNodes. The constant max val
can be set to any large real number, but one should ensure that
it is larger than the cost of a single allocation chosen at random.
Second, we use SearchNodes to find the markings which sat-
isfy DesiredTerminal2. The predicate DesiredTerminal2
returns true if and only if the marking represented by n satisfies
DesiredTerminal1 and that the total allocation cost is equal
to x. Thus, the output of the second SearchNodes (stored
in variable y) is the list of all markings corresponding to the
optimal allocations. The optimal allocations are determined by
examining the tokens in place Allocations in any of such
markings.

IV. EVALUATION

In this section, we show results of applying our approach
on the case study presented in Section III-A. We use CPN
Tools to create the corresponding CPN model as developed in
Section III-B and analyze the generated state space as outlined
in Section III-C.

Table I shows the evaluation results. The table includes the
cost of an optimal and feasible component allocation computed
by an exhaustive search. In addition, the table shows the
optimal and feasible component allocation computed using the

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 35 / 129

CPN based approach, its cost w, and the time (in seconds)
it took CPN Tools to generate the state space. Note that the
state space generation was done on a Dell desktop computer
equipped with a 3.00GHz dual-core processor and 2GB RAM.
The table validates the CPN approach in the case study since
the returned component allocation is optimal (its cost is equal
to that of the optimal allocation returned by the exhaustive
search) and feasible.

Table II shows the evaluation results for the same com-
ponent model, but excluding Constraint II. To exclude this
constraint, we remove the corresponding condition from the
guard of transition allocate. The optimal cost found by the
CPN approach is equal to that found by the exhaustive search.
Note that the state space search time is almost three times
worse than the previous result. This is explained by the
increase in the size of the state space due to the exclusion
of the constraint.

V. RELATED WORK

The authors of [9] apply a genetic algorithm to find feasi-
ble, optimal solutions to the component allocation problem.
Our model that defines the component allocation problem
is based on the model presented in [9]. However, we do
not consider communication costs between components. The
authors also apply analytical hierarchical process to deal with
the problem of different measurement units in calculating
the trade-off factors. Genetic algorithms usually find good
solutions; however, generally speaking there is no guarantee
that these solutions are the optimal solutions. Compared to the
CPN based approach presented in the paper, genetic algorithms
scale well for large systems.

Another method for solving the component allocation prob-
lem is presented in [12]. The method uses branch-and-bound
and forward checking mechanism. The method was imple-
mented in the Automatic Integration of Reusable Embedded
Software (AIRS) toolkit [13].

A generic framework aimed at finding the most appropriate
deployment architecture (mapping of software components
onto hardware resources) for a distributed software system
is presented in [14]. The framework formally defines the
allocation problem and provides a set of applicable algorithms
for solving the problem. In addition, a tool suite is developed
to enable the use of the proposed framework. The component
allocation problem presented in this paper can be though of
as a particular instantiation of the framework. In addition, the
CPN based approach can supplement the solution algorithms
presented in [14].

The authors of [15] present a formal model for allocation
optimization of embedded systems which contains a mix of
CPU and GPU processing nodes. The authors use mixed-
integer nonlinear programming as the optimization model. In
addition, the authors translate the model into a solver using
a standard format called MPS (Mathematical Programming
System) that can be interpreted using most solvers. The
authors make the observation that the mixed-integer nonlinear
programming solvers do not scale well for medium and large
size problems.

Several approaches exist for component allocation in real-
time embedded systems [16][17]. In real-time embedded sys-
tems, components (tasks) have additional attributes such that

TABLE I. EVALUATION RESULTS.

Optimal Cost - Exhaustive Search 141.01

Optimal and Feasible Allocation - CPN Approach (1,3,1,2,1,1,4,3,3,2,3)

Optimal Cost - CPN Approach 141.01

Number of Seconds - CPN Approach 44

TABLE II. EVALUATION RESULTS EXCLUDING
CONSTRAINT II.

Optimal Cost - Exhaustive Search 132.23

Optimal and Feasible Allocation - CPN Approach (1,3,1,1,1,4,4,2,2,2,3)

Optimal Cost - CPN Approach 132.23

Number of Seconds - CPN Approach 128

completion time, period, and deadline. The allocation problem
for real-time embedded systems needs to ensure that tasks
complete before their deadlines. Our CPN based approach uses
a different component model which does not take these timing
properties into account.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a new approach to component
allocation using CPNs and CPN Tools. One potential limitation
that needs to be considered in the future work is the exponen-
tial increase in the generated state space for larger systems.
Techniques to scale the applicability of the CPN approach are
needed. One approach is to determine an upper bound on the
cost and only generate states having cost less than this upper
bound. The upper bound can be guessed or can be determined
using other optimization methods including genetic algorithms.
Also, part of our future work should concentrate on automated
methods for model transformation to/from other modeling lan-
guages, including the UML Profile for Modeling and Analysis
of Real-Time and Embedded systems (MARTE) [18]. Finally,
the CPN models need to be analyzed in terms of other non-
functional properties such as security and dependability. Future
work should apply the new approach and its techniques on
several realistic case studies.

REFERENCES

[1] J. Carlson, J. Feljan, J. Mäki-Turja, and M. Sjödin, “Deployment
modelling and synthesis in a component model for distributed embedded
systems,” in Proceedings of the Conference on Software Engineering
and Advanced Applications, 2010, pp. 74–82.

[2] B. Selic, “Model-driven development: Its essence and opportunities,”
in Proceedings of The Symposium on Object and Component-Oriented
Real-Time Distributed Computing, 2006, pp. 313–319.

[3] K. Jensen and L. M. Kristensen, Coloured Petri Nets - Modelling and
Validation of Concurrent Systems. Springer, 2009.

[4] I. Al-Azzoni, D. G. Down, and R. Khedri, “Modeling and verification
of cryptographic protocols using coloured petri nets and Design/CPN,”
Nordic Journal of Computing, vol. 12, no. 3, 2005, pp. 201–228.

[5] L. Wells, “Performance analysis using Coloured Petri Nets,” in Pro-
ceedings of the Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems, 2002, pp. 217–221.

[6] S. Distefano, M. Scarpa, and A. Puliafito, “From UML to Petri
Nets: The PCM-based methodology,” IEEE Transactions on Software
Engineering, vol. 37, no. 1, 2011, pp. 65–79.

[7] CPN Tools. http://cpntools.org/ [Accessed December 2014].

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 36 / 129

[8] R. M. Karp, “Reducibility among combinatorial problems,” in Proceed-
ings of the Symposium on the Complexity of Computer Computations,
1972, pp. 85–103.

[9] I. Švogor, I. Crnković, and N. Vrček, “An extended model for multi-
criteria software component allocation on a heterogeneous embedded
platform,” Journal of Computing and Information Technology, vol. 21,
no. 4, 2013, pp. 211–222.

[10] RALF3 Project Web. http://www.mrtc.mdh.se/projects/ralf3/ [Accessed
Aug 2014].

[11] T. L. Saaty, Fundamentals of Decision Making and Priority Theory with
the Analytic Hierarchy Process. RWS Publications, 1994.

[12] S. Wang, J. R. Merrick, and K. G. Shin, “Component allocation with
multiple resource constraints for large embedded real-time software
design,” in Proceedings of the Real-Time and Embedded Technology
and Applications Symposium, 2004, pp. 219–226.

[13] AIRES. http://kabru.eecs.umich.edu/bin/view/Main/AIRES [Accessed
December 2014].

[14] S. Malek, N. Medvidović, and M. Mikic-Rakic, “An extensible frame-
work for improving a distributed software system’s deployment archi-
tecture,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
2012, pp. 73–100.

[15] G. Campeanu, J. Carlson, and S. Sentilles, “Component allocation
optimization for heterogeneous CPU-GPU embedded systems,” in Pro-
ceedings of the Conference on Software Engineering and Advanced
Applications, 2014, pp. 229–236.

[16] J. Fredriksson, K. Sandström, and M. Åkerholm, “Optimizing resource
usage in component-based real-time systems,” in Proceedings of the
Symposium on Component-based software engineering, 2005, pp. 49–
65.

[17] I. Bate and P. Emberson, “Incorporating scenarios and heuristics to im-
prove flexibility in real-time embedded systems,” in Proceedings of the
Real-Time and Embedded Technology and Applications Symposium,
2006, pp. 221–230.

[18] OMG, UML Profile for MARTE: Modeling and Analysis of Real-Time
and Embedded Systems, version 1.1, formal/11-06-02; June 2011.

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 37 / 129

Feature Mining for Product Line Construction

Yutian Tang
and Hareton Leung

Department of Computing
The Hong Kong Polytechnic University

Hong Kong SAR, China
Email: {csytang,cshleng}@comp.polyu.edu.hk

Abstract—Software product line engineering is a promising ap-
proach to generate software assets with systematic reuse property
resulting in a significant decrease in development cost. Numerous
studies and practical work have proved the reliability, reusability,
productivity and the reduced R&D cost attributes of product
line engineering. Whereas, the adoption rate of the product
line is still relatively low considering the complexity and risk
of the task given. It is crucial to have effective approaches to
migrate legacy software into product line by mining features in
the legacy. Nevertheless, common approaches in feature mining
are mainly designed for general systems instead of product line.
Therefore, in this paper, we firstly highlight characteristics that
a well-designed feature-mining algorithm should contain and
pinpoint the shortcomings of existing methods. To enhance the
performance of existing approaches for product line, we proposed
two feasible directions of research in terms of feature mining for
product line.

Keywords–Software product line; Feature mining; Feature lo-
cation; Reference checking.

I. INTRODUCTION

Software Product Lines (SPL) [1] provides tailored soft-
ware artifacts with reusable property to stakeholders with
minimal R&D effort, considering their general process allows
common assets to be shared rather than developing individ-
ual systems separately. Among all approaches in generating
software product lines, a promising low cost approach should
be migrating and refactoring legacy software into a product
line, since many fundamentals of legacy could be reused. For
the migration, the legacy software has to be reorganized by
feature base and then adjusted to a certain pattern to fit the
product line. In software product line, variant is a proprietary
term for feature and it is designed and specified by domain
experts or developers to be either mandatory or otherwise.
It assists normalizing the product lines feature model. For
instance, in a database product line, a transaction feature
should be mandatory for all sub-systems in the product line;
however, each sub-system may have its own definition of
ranking approach (ranking feature) to process data items.

As reported that successful adoption of the software prod-
uct line will greatly reduce the cost of generating software
products, provide timely service and products to market with
reusable characteristics, and decrease the effort for quality
assurance. Despite the benefit brought by SPL, the adop-
tion still stays at a low level when compared to other new
techniques, including Service Oriented Architecture, Aspect
Oriented Programming, and so forth. The underlying reason
could be the initial investment, including constructing variants

and common assets, in the product line is relative high, and it
also costs a lot for developers/software suppliers in terms of
risk and complexity [2]. To simplify this process, the variants
and common assets could be built by transferring legacy
software to product line. The main challenge for migrating
is that features in a product line could range from coarse
to fine granularity with common and unique purposes like
generating various products for different users. For example,
in the MobileMedia product line, the feature play video is
embedded in 24 classes in the system [3]. Therefore, the first
and essential step in migrating legacy software into a product
line should be locating features and extracting the source code
related to the feature concerned given the condition that the
code fragments implementing a feature could be scattered in
the system instead of concentrating in a single component or
file.

In this paper, we will review several existing approaches
in feature mining and pinpoint the potential research gaps and
the main challenges. Later, we will discuss the lessons learned
from our work and other researchers. To focus the research
work in feature mining, we will propose two potential direc-
tions to consider and investigate with underlying motivations.
The contribution of this paper includes following aspects: (1)
presenting prospective research gaps in feature mining and
shortcomings of current approaches; and (2) proposing some
feasible directions for further research.

The rest of this paper is organized as follows: in Section
II, we present the essential parts that should be considered
in providing feature mining work in product line. Several
potential research directions will be presented in Section III.
The conclusion will be covered in the last section.

II. FEATURE MINING

Generally, a feature could be represented/defined by a set
of code segments, which implement functions of the feature,
and assist interaction with other modules (conjunction part).
For example, the feature transaction in a bank product line
cope with a business transaction, which could be a billing or a
transfer. Functions belonging to this feature could be pay bill,
and generate receipt. In addition, the conjunction part could
be functions in charge of acquiring customers bank account
information.

Feature mining in product line engineering is highly related
to feature location, concern location, and other related fields,
within the specific context and constraints in a product line.
Developing a feature mining approach for product line is

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 38 / 129

different from designing one for general software products,
given the particular circumstance and restriction in product
line. Here, we identify several conditions and constraints that
will restrict the algorithmic design:

1) Fine granularity design: one significant distinction is
that, in product line engineering, a follow-up step
is to reconstruct and rewrite legacy code annotated
by features into variants for reuse purpose instead
of investing on an individual feature. With this con-
straint, approaches for traditional software products
may not be suitable for product line use, as they are
designed at the coarse granularity rather than a fine
granularity level. Furthermore, the coarse granularity
cannot guarantee the consistency of code segments
extracted and is not fully adaptable for reconstruction
of a product line;

2) Type checking: as reported in [4], type errors are
more prone to occur in product lines rather than tra-
ditional software. If a product line is ill typed, it may
introduce several potential errors during compilation
and runtime. These errors include [4]:

a) Method invocation: If a function in class A
invokes another function in class B and the
invoked method in B is annotated as a variant,
deletion of class B (removes a variant from a
product line, which is allowed in the product
line context) will incur undeclared invocation
in class A as shown in Figure 1;

class Painter{
void setPainter(Painter pt,Color col,

Background bacg){
canuvs.set(pt,col,bacg.getCurrScope());

}
}
class Canuvs{
#ifdef CANUVS_SET
boolean set(Painter pt,Color col,Scope scope)

{....}
#endif
}

Figure 1. An example of method invocation type error.

b) Referencing types: Similarly, in referencing-
type error, if a class is referenced as a return
type or a customized type, when the class
is annotated and serves as a variant, the ref-
erencing object still remains to be resolved,
since the dangling class object will point to
null. For the case depicted in Figure 2, if
class Background is annotated and removed,
the object bacg will incur a compilation error,
since it refers to null;

c) Parameters: Similar to prior case referencing
types, if an object, which refers to the an-
notated class, is also annotated, this variant
will still fail, since removing this referring
object will leave a missing part in the original
code slot, which will lead to a compilation
error. As shown in Figure 3, in method set,

class Painter{
void setPainter(Painter pt,Color col,

Background bacg){
canuvs.set(pt,col,bacg.getCurrScope());

}
}
#ifdef BACKGROUND
class Background{....}
#endif
}

Figure 2. An example of referencing type error.

the object bacg is also annotated as part
of variant BACKGROUND, and if variant
BACKGROUND is removed from the prod-
uct line, object bacg should be removed as
well, which will lead to insufficient param-
eters for method set (three instead of two).

class Painter{
void setPainter(Painter pt,Color col,#ifdef

BACKGROUND Background bacg #endif){
canuvs.set(pt,col,bacg.getCurrScope());

}
}
class Canuvs{
boolean set(Painter pt,Color col,Scope scope

){...}
}

Figure 3. Parameter type error.

d) Feature interaction:In general, there are mul-
tiple features embedded in a product line. In
addition, the connections between features in
the feature model show how features can in-
teract and conjunct. Further, in product line,
feature dependency will show how features
are used and organized. As explained in[5],
a practical example of feature dependency is
that feature A can be selected if and only
if feature B or C is selected without feature
D, which shows the dependency relation be-
tween feature A, B, C and D in the feature
model.

Next, we will introduce the lessons learned from our study
and other related studies. By investigating previous studies
in feature mining in a product line, our previous research
in feature mining and other approaches in feature location
(non product line use) [6], [7], we find following important
considerations have been overlooked when preparing a well-
defined approach for feature mining:

1) Attention should be given to analyze variability and
feature model: Traditional approaches focusing on
feature location merely extract features and code
segments attached to these features without sufficient
effort on feature interaction detection. As known, fea-
tures do not just interact with each other. Therefore,

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 39 / 129

detecting interdependencies and interactions from
legacy software is still a pending challenge requiring
additional work, as most feature location technique
neglects this aspect, which is critical for product line
engineering. Here, by detecting feature interaction,
we mean exploring the interaction from source legacy
automatically rather than just defining it in a feature
model.

2) Quality assurance: In migrating legacy software into
product line, focuses are often on the procedure of
migrating without considering the change of quality
in this continuous process. Therefore, we believe
providing a set of quality metrics to measure the
change in quality, such as reusability, reliability, and
readability will assist the practitioners in evaluating
the results of feature mining.

III. PROPOSED DIRECTIONS OF FURTHER STUDY

As presented above, several conditions and constraints must
be considered when developing feature-mining approaches in
product line engineering. We identify two possible directions,
reference detection and data mining approach, to cope with
feature mining in the context of product line engineering. The
reason we recommend these directions are twofold: firstly,
both could explore and mine features at a fine granularity; and
secondly, these approaches are currently not well investigated
for this context. The essential idea of these methods is to
construct a standard graph to represent the system. Further-
more, the problem needed to be solved, namely, finding code
segments for feature concerned, could be altered to discovery
a set of nodes in the graph. Reference detection applies a
searching strategy to the graph, whereas data mining groups
programming elements using the concept of similarity.

Prior to providing concrete description of two potential
research directions, we will first present the general procedure
of feature mining, which is the infrastructure of all feature-
mining approaches on legacy code. The general process of
feature mining should consist:

• Defining and describing the features concerned and
relationship among them in a model;

• A domain export or developer should identify seeds
as starting point for each feature. Seed should be a
single or a set of representative programming elements
(methods, variables) that stand for the feature;

• For a single feature, the seed chosen along with the
feature-mining approach will iteratively inspect related
code segments and mark the code segments, which
belonging to the same feature, with the same label;

• In the last step, the developers or tools will reorganize
or rewrite the code fragments to variants.

In this paper, our work only focuses on the third step, which
is providing competitive frameworks to cope with feature-
mining task.

A. Reference detection
Reference detection is originally motivated by a simple

type of relation in a program named define-use, which rep-
resents a link between a definition of an instance variable
and its later reference to the object [8]. For instance, in a
normal object-oriented (OO) language, a single variable could

be defined by a statement ”Timer localtimer = new Timer()”,
which defines a new instance localtimer under class Timer. A
reference statement could be ”this.launch(localtimer)”, which
sets the object localtimer as a parameter of launch method.
For this scenario, a link should be built between the define-
statement and reference-statement in the program. A statement
could be set as an attribute with two possible values:def, and
ref. To simplify this procedure, we treat a program as a set
of values and operations upon them. Next, we will introduce
different types of variables and associated information that
should be detected besides the reference relation.

1) Local variable reference:A local variable could be de-
clared inside a method or as an argument of a method.
For this kind of variable, it could be referenced by
other programming elements inside the method and
also reference other programming elements inside
and outside the method. Specifically, some local
variables even have smaller valid boundaries. For
example, if a local variable is defined inside a for
statement block, its valid scope will be within this
for statement. By checking the location, at which
a variable is defined/declared, and the context, it is
feasible to obtain the valid scope of the variable.

2) Instance variable reference:Instance variables nor-
mally hold all attributes of classes and employed
as local variables or fields for the class. There are
two issues related to the scope concern: the first
is the location that this type of instance variable
is declared, and the second is whether hierarchical
relations exist, which means for a certain class or
interface, its super-class, interface, and sub-classes,
should also be extracted if any.

3) Class variable reference: Class variable is global for
all instances of the class and generally its life cycle
will finish when the class is destroyed. For a class
variable, we should consider the same issues as those
of instance variable.

4) Class/interface field reference:Fields are the inherent
attributes of a class or interface, and are allocated
memory when the class/interface is created. The
following information should be collected to build the
def-use link when inspecting a class/interface field:
(1) detect the scope of current reference, since a field
of a class could be used outside the class/interface in
which the field is declared; (2) explore the location
where the original class/interface and the field are
declared; and (3) build the link between this field
reference and instance variable declaration.

5) Reference variable reference:When a variable is as-
signed directly to another variable, these two vari-
ables share the same memory location. Thereby, we
can use a joint node with two identifiers to represent
these two variables, and all reference links to any of
them will be redirected to this joint node instead.

After all def-use relations are extracted from the source
code, we can re-construct and re-build the original program
into a standard graph, in which programming elements under
reference or defined relations are connected. A simplified
example is shown in Figure 4 with some critical information
hidden, such as, location information, type information and so
forth. After constructing this infrastructure, the original code

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 40 / 129

segments are annotated with the reference/define information.
Then, numerous algorithms could be proposed based on this
framework by checking the fan-in, fan-out, graph topology
structure, ranking connected items by granularity and so forth.
This framework offers the following advantages: both fine and
coarse-granulated programming elements are encapsulated in
the graph and only fine granularity information is required.
The rational for keeping both fine and coarse granularity
information is to ensure completeness of the program and ease
to locate a specific programming element. We propose two
approaches to resolve this. One is separating the graph into
sub graphs by granularity; and another is setting searching
conditions, for instance, statement, expression, variable and so
forth, when searching related programming elements in the
graph. That is, Abstract Syntax Tree (AST) node could be
adapted to work as the node in this framework and the type
of AST node could be used to search nodes under a specific
granularity.

Figure 4. An example of referencing model

Determining the feature boundary under reference
detection. Technically, features could be connected by a
reference link (e.g. call a function), or physically embedded
in the same compiling unit from the code base perspective.
Specifically, the reference link could be any type listed above.
For this case, algorithm referenceTrack can be employed to
assist in finding the boundary of a feature:

Algorithm 1 referenceTrack(threshold)

for single seeds s do
create Ps = {p|p references s}

end for
for p ∈ P do

compute uniqueness value uvp by uvp =(
links p refereces s
all p reference links −

links s references p
all s reference links

)
∗ g(p)

end for
Rank elements in P , according to uvp, and if the max uvt >
threshold, it will be annotated into the feature.
The definition statement dt of t will be annotated.Then set
dt as s.And recall this algorithm with dt.

Specifically, ”# links p references s” represents the number
of links from p to s; ”# p reference links” shows the number
of links p reference others. g(p) shows the granularity of p
and its value is designed for showing the interference from
the granularity aspect. The algorithm referenceTrack will stop
in STEP 3, if uvt is below the threshold assigned.

B. Data mining based approach

Apart from the program analysis techniques, machine
learning techniques, especially data mining approaches are
also recommended for feature mining. Inspiration of using
data mining for feature mining comes from the common trait
that both attempt to group items into distinct clusters. One
basic idea in data mining is to measure the distance between
different items to show their ”closeness”, which is applied to
indicate their similarity. In feature mining, this idea should
be adjusted to grouping programming elements into different
clusters, and each cluster could represent a unique feature.
Here, we provide several potential relations that could be used
to detect the distance among programming elements:

1) textitReference distance(call graph based):In our
model, the reference distance is defined as the number
of jumps from one programming element to another
and all links connecting intermediate elements are
reference relation links.

2) textitControl distance(control graph based):Control
graph could be extracted from a program to indicate
its control structure. Control distance, in our model,
is defined as the jump in a control graph from one
programming element to another with the restriction
that the distance between two programming elements
in the same control branch should be 1.

3) textitText comparsion:Similarity could also be de-
tected from the textual aspect with the assistance of
text comparison algorithms[9]. Using different text
comparison algorithms, the text distance could be
described using the value computed by the token
frequency, common strings and so forth.

On the contrary to def-use model, the data mining based
approach determines closeness from various aspects by build-
ing different types of graphs, including call graph and control
graph. By utilizing these potential relations, the similarity
among programming elements can be determined. Finally,
programming elements could be classified into different clus-
ters with each cluster representing a unique feature. In this
framework, the seeds selected are used to represent distinct
features and other related programming elements are explored
iteratively. Here the seed merely serves as the trigger of the
algorithm, and is used to detect other potential programming
elements.

Determining feature boundary under data-mining ap-
proach.Different from reference detection, the mining process
for a single feature will stop when one of following stopping
criteria is met:

1) For a single node in the graph, if all neighbors
(data or control) of this node are annotated by other
features, the mining process for this node will stop;

2) A threshold could be set to restrict the selection of
programming elements and could be used to stop the
mining process for the current node. That is, if and
only if the distance computed higher than the set
threshold, it will be considered to be added to this
feature. If scores of all neighbors (data or control)
of the current node are lower than the threshold, the
mining procedure for this node will stop.

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 41 / 129

IV. CONCLUSION

Despite many research works have investigated feature
location and variability detection in product lines, the task
of feature mining still poses great challenges, considering the
particular circumstance of software product line, complexity of
the task, and other special constraints as discussed previously.
Mostly, current approaches are insufficient to cope with the
fine granularity concern in product line and further detection is
required to guarantee feature-mining work flows [8] in legacy
software migration. Based on our previous work and other
studies in feature mining, we identify key traits that a well-
defined product line feature mining approach should contain.
The conditions mentioned are highly recommended prior to
proposing a well-performing algorithm. With the research gap
identified, we proposed two feasible directions to investigate
the feature mining. We strongly believe that with general rules
and constraints specified in the product line engineering, new
approaches can be defined for feature mining in product line
and will lead to reduction of risk and effort in transferring
legacy software into the product line.

REFERENCES
[1] K. Pohl, G. Bockle, and F. v. d. Linden, “Software product line engi-

neering foundations, principles, and techniques,” 2005.
[2] C. Catal, “Barriers to the adoption of software product line engineering,”

ACM SIGSOFT Software Engineering Notes, vol. 34, no. 6, 2009, pp.
1–4.

[3] E. Figueiredo, N. Cacho, Sant, C. Anna, M. Monteiro, U. Kulesza,
A. Garcia, S. Soares, F. Ferrari, S. Khan, F. C. Filho, and F. Dantas,
“Evolving software product lines with aspects,” pp. 261–270, 2008.

[4] amp, C. stner, S. Apel, Th, T. m, and G. Saake, “Type checking
annotation-based product lines,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 21, no. 3, 2012, pp. 1–39.

[5] M. Mendonca, A. Wsowski, and K. Czarnecki, “Sat-based analysis
of feature models is easy,” in Proceedings of the 13th International
Software Product Line Conference. Carnegie Mellon University, 2009,
Conference Proceedings, pp. 231–240.

[6] M. A. Laguna and Y. Crespo, “A systematic mapping study on software
product line evolution: From legacy system reengineering to product line
refactoring,” Sci. Comput. Program., vol. 78, no. 8, 2013, pp. 1010–1034.

[7] C. Kastner, A. Dreiling, and K. Ostermann, “Variability mining: Consis-
tent semi-automatic detection of product-line features,” Software Engi-
neering, IEEE Transactions on, vol. 40, no. 1, 2014, pp. 67–82.

[8] E. Sderberg, T. Ekman, G. Hedin, and E. Magnusson, “Extensible
intraprocedural flow analysis at the abstract syntax tree level,” Science
of Computer Programming, vol. 78, no. 10, 2013, pp. 1809–1827.

[9] B. Cleary, C. Exton, J. Buckley, and M. English, “An empirical analysis
of information retrieval based concept location techniques in software
comprehension,” An International Journal, vol. 14, no. 1, 2009, pp. 93–
130.

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 42 / 129

Detecting Disruption Periods on TCP Servers with Passive Packet Traffic Analysis

Iria Prieto,

Mikel Izal,

Eduardo Magaña

and Daniel Morato

Public University of Navarre

Navarre, Spain

Email: iria.prieto, mikel.izal, eduardo.magana, daniel.morato @unavarra.com

Abstract—This paper presents a simple passive algorithm to mon-
itor service availability. The algorithm is based on packet counting
over a passive traffic trace of a population of clients accessing
servers of interest. The major advantage of the algorithm is that it
is passive and thus not invasive while usual monitor systems that
can be found on Internet are active probing agents. The proposed
system does not communicates to actual servers. It is easy to
build as an online monitoring system with no big constraints in
software or hardware. It does not relay on a distributed number
of network placements for probing agents but works on a single
network observing point near network edge. Initial proof of work
of the algorithm is presented by analyzing unavailability problems
for popular servers at an academic network at Public University
of Navarre.

Keywords–Availability service; network; traffic

I. INTRODUCTION

As networks constantly evolve, network application servers
are improved in software and hardware in order to cope
with the growth of client’s demand. In spite of this rapid
development, sometimes, clients can not gain access to the
servers due to communication problems or server saturation,
due to flash crowd demands, human errors, updates, routing
failures, etc.

Nowadays, even few minutes unavailability can be critical.
For an enterprise offering products to clients through a web
server, an interruption of this service means loss sales. Another
example which shows the threat of service interruption is the
use of an antivirus update server. In case of banks, or other
organization where security is a priority, an interruption of the
update server entails possible infection problems.

In order to detect when the clients of a network are not
being able to successfully use a server application, a wide
range of monitoring clients, such as Nagios [1], Zabbix [2],
Cacti [3], Munin [4], have been developed. These systems
warn the network administrator that a given server of interest
is unavailable. These kind of systems work based on active
probes, such as ICMP (Internet Control Message Protocol)
ping or automatically requesting a server web page in case of
monitoring HTTP (Hypertext Transfer Protocol) server. They
are required to be installed and configured in monitoring client
machines or at the server.

In cases where problems need to be detected at different
client networks, at least one client has to be installed on each
network. Otherwise, some problems will not be detected, like

cases of routing problems in the path from clients to the servers
of interest, if the monitoring client may use other route to reach
the server.

As it is shown by Liu et al. [5] depending of the location
of the system resources the application will achieve more
effectiveness. Therefore, depending on where our monitoring
clients will be located we would have only the vision of this
location. Also, checking the configuration of these monitoring
clients can be a problem for multi-tier system where the
number of them will be high. In the literature, some papers
explore how to face up testing the configuration in these
scenarios, [6]. Another problem of taking active measurement
across an entire network is that for wide networks it will not
be scalable and some paths should be chosen and the rest of
statistics inferred through predictive algorithms [7].

On the other hand, active probing can be a problem in high
loaded systems or when monitoring third party servers which
may not react well to external continuous requests. Nowadays,
more and more enterprises rely on public services on Internet
that would need to be monitored. In these cases, firewalls and
intrusion detectors may deny probes or even ban future normal
requests as response to continuous monitoring.

Configuring and using these kinds of distributed monitoring
systems is not trivial as shown by different studies on how to
approach the problem of monitoring for distributed programs,
[8]–[14].

Another disadvantage of active availability monitoring
comes from cases where the clients access servers through
proxy-caches. In that case, the monitoring client may be
requesting a webpage from the server and receiving a response
just because it is cached at the proxy system even if the final
server is unreachable or has some problem. Thus, the active
measurement does not actually check for server availability
and other clients in different networks or served by different
proxies may be experiencing access problems for the same
server. In these cases the system would not detect the problem
until the timeout of the cached object. This situation can
be addressed by proxy configuration (may not be an option
depending on proxy ownership) or crafting requests so they
are not cached.

In some cases, due to misconfiguration or network issues,
the monitoring client may experience problems to reach the
server while actual client access is working, thus giving rise
to false positive alerts to the network administrator. The cause

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 43 / 129

of this failures may be things as memory problems or CPU or
network overload of the monitoring client. This is often due
to the fact that the same agent is probing a large number of
servers. Therefore the dimensioning of these clients has to be
considered carefully.

Another issue to consider is the reaction time of the
monitoring system. The minimum and maximum acceptable
time for problem detection has to be decided. Longer times
imply slower reaction, smaller times may generate higher
overhead and interference to normal clients.

Currently the majority of cloud services available on the
Internet offer services over TCP protocol for communications
with clients [15], [16]. It has been observed that some servers,
due to overload, start refusing new TCP connections by
answering with RST packets to clients for some time. In many
cases the observed time of these kind of events is on the order
of seconds, but usually less than half a minute. After this event
the server recovers its normal behaviour and accept again new
clients. As stated before, even if it only lasts for seconds this
problem may be critical for some businesses, causing user
complaints and bad server reputation.

There have been proposals to cope with the downsides
of active monitoring. Schatzmann et al. [17] proposed a
method to detect temporary unreachability based on flow-level
analysis by capturing traces from different routes. Although
their method was able to work online the main disadvantage
was the need to monitor in different points of a network.
Besides, it should be taken into account that the setup of these
kinds of measurements is not an easy task [18].

The goal in this work is the development of a simple online
disruption detection method for TCP servers. This method
avoids active measurement and work just by passive observing
network traffic. The proposed method is based on simple
packet level counting such as the number of RST and data
packet received. It does not require large amounts of memory
or CPU power and it is able to detect problems for clients
in different networks and for different services without using
distributed agents. It will be shown that it is able to detect
micro-access-failures with a configurable granularity in the
reaction time.

The paper is organized as follows. First of all, the algo-
rithm and configuration parameters are introduced. Section III
describes the network scenario used to check the proposed
algorithm. Section IV presents the results, comparing it to
active detection of popular public services. Finally Sections
V and VI present conclusions and future work.

II. PROPOSED ALGORITHM

As stated in the introduction, the method is based on
passive traffic capture. By capturing traffic close to the clients
in a given network it will detect when some services will
not be available to this community (in this work, the sample
community will be the clients at Public University of Navarre
network). The main target of the proposed algorithm is to
find when a service disruption event has occurred, that means
that the clients on the monitored network can not successfully
use the service. The server may be down or may just be
unreachable from this point due to network or some other
problem. In any case this local unavailability is what the
network administrator wants to detect more than the global

server state. The objective is to detect availability problems,
including the case where clients are able to reach the servers
but not to use their services. To achieve this, a simple algorithm
has been proposed which does not require big hardware or
software constraints.

The flow of traffic from the clients to the servers of interest
is captured and some simple counters are evaluated every
fixed time interval. The counters used are the number of data
packets and reset packets sent by the full group of clients
and target servers seen during a given (i.e 5 seconds) time
interval. Reset packets are TCP protocol packets with RST flag
activated. They are used by a TCP endpoint to reject incoming
connections and also whenever an abnormal packet is received
by a TCP endpoint, to signal to the other side that it should
abort the connection. The algorithm bases on the fact that a
server sending just TCP RST packets and not any other valid
packet to a group of clients during even a small period of
time is an indicator of unavailability. Although sometimes it
has been observed that the servers finish their connections in an
unexpected way such as, sending RST packets to the clients
after a client has sent a Fin packet, the algorithm will not
show false positives since it will have a high probability that
another client will be sending or receiving data packets in the
same period. The mechanism consists on dividing time in fixed
sized intervals. On every interval the number of packets seen
from clients and servers are considered and related to previous
interval. When a client sends packets to servers which do not
send anything back to it, a server issue is suspected.

If in subsequent seconds the servers keep silent but send
reset packets the servers are confirmed as not working. Also,
if the client keep sending packets and the servers keep silent
it is confirmed as not working. The previous identification
idea is built with two simple filter for every interval. On
each time interval, counters for clients and servers are updated
in order to describe the situations explained before. On the
side of the client the counter is the number of packets sent
to the servers, regardless if they are data packets or not,
packet cli. On the other hand, on the side of the server, two
counters are taken into account: The number of data bytes sent,
bytes servers, and the number of packets with the reset flag
activated, reset packets.

If during a given interval the counters show the client was
sending packets but the servers did not send any data packet
(even they may send reset packets) the result of the first filter
for that time slot is 1. Also the result is 1 when there are
no packet sent by the client and the server only sends RST
packets. That indicates the server is not answering requests.
The second filter would be 1 whenever the result of the first
filter of the interval being analazying is 1 and the result of the
first filter of the previous interval was also 1. The process can
be easily explained through two membership functions, like
the ones used in fuzzy logic [19], which are applied in each
period. Firstly the used variables are defined:

• x= Number of client packets sent in an interval

• y= Server Bytes sent by the servers in an interval

• z= Number of RST packets sent by the servers in an
interval

• i = ith Interval to be analazyed.

• ψi(x, y, z)= First pass of the compound filter applied
in each interval i.

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 44 / 129

• ϕi(ψi, ψi−1)= Second pass of the compound filter
applied in each interval i, it takes into account the
result of the first pass.

The two membership functions are described in the equa-
tion 1.

ψi(x, y, z) =

1 if ((x > 0) and (y = 0)) or
((x = 0) and (y = 0) and
(z > 0))

0 Otherwise

ϕi(ψi, ψi−1) =

{

1 if (ψi = 1) and (ψi−1 = 1)
0 Otherwise

(1)
Each period is labeled with the result of applying the two
membership functions, (ψi(x, y, z), ϕi(ψi, ψi−1)). When both
results are 1 an availability problem is considered for the
duration of both intervals. We define the unavailability period
since the first second of the interval labeled as (1, 1) until the
next interval labeled as (0, 0). An example of the algorithm
operation is shown in Table I

In the second interval of Table I, there was one packet
sent by a client but there was no data sent to him by servers
so the first flag is 1 and the second one is 0 because it was
the first suspected interval. After this first interval, the servers,
which belong to Hotmail service, sent 8 packets being all of
them TCP RST packets. As there were only reset packet we
label this second interval as (1, 1). During the next 5 seconds
the servers seem to have recovered because data packets from
servers are seen again.

The example is a real case disruption interval detected for
Hotmail server at the scenario. During that interval only reset
packets where captured from servers and the packet trace was
examined to show that servers were closing connections that
had been inactive for more than 30 seconds.

These resets were not a response to any observed packet so
it seems reasonable that the server was experiencing problems
and thus this is the kind of event the algorithm addresses. The
main parameter of the algorithm is the time interval duration,
that can be chosen by the network administrator depending
on the desired reaction time. Smaller values will increase
resolution and will detect microfailures but will also increase
false positives.

From our experience, values between 5 and 15 seconds are
recommended.

III. NETWORK SCENARIO

The algorithm has been developed and tested, detecting
availability problems of public internet servers for clients
at Public University of Navarre. Captured data comes from
author’s research group infrastructure who has access to a
sniffer with its own software between university main access
and academic internet provider (Rediris) as seen on Figure 1.
The group has an ongoing packet trace collection campaign
since 2004 providing 1Gbps traces from the access of an
academic community.

In this work, results are presented from captured data of the
week of November 7th to 11th, 2013, checking the availability
of popular servers at this community such as Facebook, Yahoo,

Figure 1. Traffic capturing from a University link

BBC and Hotmail. In order to compare the algorithm against
an active monitor (like Nagios [1]), a very basic probing
system is implemented. The active monitor tests the availability
of selected servers by requesting the site favicon.ico file.
This file provides an icon to be displayed at browser window
and is widely used by web servers. The program requests
the favicon file every 5 seconds for every service considered
in the experiment and thus provides a ground truth value of
availability for comparison purposes.

The active requests are performed from a desktop computer
at the university network. The number of servers probed is
not very large so the probing computer is not loaded and
no request failures can be attributed to machine overloading.
The proposed passive algorithm operates on traces obtained
at network edge as seen above. It is evaluated offline for the
results of this work, but may be easily programmed as an
online system.

As servers used are very popular, there are other sources
of availability information that were considered. Several web
pages provide down times and real time user complaints of
public servers but usually this information has not enough time
granularity to test less than ten minute disruption events.

IV. RESULTS

In this section results of unavailability detection with a
week trace of traffic are presented (November 7th to 11th,
2013). Public servers addressed are: “Yahoo”, “Facebook”,
“BBC”, “Hotmail” and also a local newspaper “Diario de
Navarra” which are frequently visited by users at the Uni-
versity. Those servers, except the local newspaper, are also
used by a large mass of users around the world and they are
served by a pool of different IP addresses. They are probably
distributed over large server farms or content distribution
networks.

But even if those farms are probably designed to balance
load and support peaks of demand, sometimes, the clients of
the University are not able to reach these services.

Experiments with the basic active monitor that request
favicon.ico file show the results in Table II for the servers
under analysis. Figure 2 shows the events of unavailability with
time. The service with more suspected intervals detected was
Hotmail.

To test the proposed algorithm the packet trace of a full
day is processed and the algorithm is applied on the traffic.
The rest of the results are for day 08/11/2013 although other
days are similar.

First, the network traffic is filtered to select packets from
the probing agent and selected servers of interest. Although
this is not the target of this work, addresses of these servers

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 45 / 129

TABLE I. EXAMPLE OF THE DOUBLE CHECK ALGORITHM DEVELOPED FOR A INTERVAL OF THE DAY 2013/11/8 AND HOTMAIL SERVERS

Start End Bytes Serv (x) RST Serv (z) Packet Cli (y) ψ ϕ

9:24:55 9:25:00 7016 0 14473 0 0

9:25:00 9:25:05 0 0 1 1 0

9:25:05 9:25:10 0 8 0 1 1

9:25:10 9:25:15 1699 1 3288 0 0

U
na

va
ila

bl
e

se
rv

ic
e

00:00h
07-11

00:00h
08-11

00:00h
09-11

00:00h
10-11

00:00h
11-11

00:00h
12-11

00:00h
13-11

00:00h
14-11

00:00h
15-11

00:00h
16-11

Facebook
Yahoo

Hotmail

Figure 2. Events of time where the favicon was not be obtained

TABLE II. UNAVAILABLE SERVICE INTERVALS DETECTED BY

REQUESTING THE FAVICON

Start End Day Service

0:15:49 00:16:58 07/11/2013 Facebook

3:10:01 03:10:06 07/11/2013 Facebook

13:36:35 13:36:51 08/11/2013 Hotmail

16:08:12 16:25:40 11/11/2013 Facebook

10:34:59 10:35:21 11/11/2013 Hotmail

10:10:23 10:10:29 13/11/2013 Yahoo

23:08:21 23:08:27 13/11/2013 Yahoo

11:08:54 11:09:06 14/11/2013 Hotmail

11:39:18 11:39:36 14/11/2013 Hotmail

22:43:00 22:43:05 14/11/2013 Hotmail

8:40:31 08:40:44 15/11/2013 Facebook

20:30:03 20:30:13 15/11/2013 Hotmail

4:22:29 04:22:34 15/11/2013 Facebook

have first to be identified. To solve this, the payload of packets
is examined to search for these server names in HTTP requests.

Both methods active and proposed algorithm show some
unavailability issues for the Hotmail service, see Figure 3.
The plot shows the volume of traffic from client machine
to Hotmail as well as the time events identified by the
passive algorithm and active favicon requester. Both algorithms
identified the same event. Packet level examination of the event
showed a single connection which suffered an unexpected reset
from the server. The comparison also revealed that the time
difference is due to the monitor client which was not NTP
synchronized as the passive sniffer is. This shows a point to
take into account in a distributed monitoring system when
monitor clients are distributed time synchronization plays a
critical role. The passive sniffer has a unique clock source so
the problem of synchronization is simplified.

Packet level analysis of previous event showed the dialog
of the packets below. The x.x.x.x represents the IP of the client
and the y.y.y.y the IP of a Hotmail server. After the connection
is established, the client sent the request through a push packet

0

5k

10k

15k

20k
13:30h 13:32h 13:34h 13:36h 13:38h 13:40h

U
na

va
ila

bl
e

Se
rv

ic
e

B
ps

Bps Upstream

Passive measurement

Simple active probing
(Getting favicon.ico)

5k

10k

15k

20k

B
ps

Bps Downstream

Figure 3. Intervals of time in which the monitoring client had problems for
day Nov 8th

of 176 bytes. Usually, after this packet was sent by the client
the server answered with the favicon.ico. However, in
this case the server sent an ACK packet without data and after
some seconds, around 11, closed the connection sending a reset
packet. This kind of behaviour is unexpected and during these
seconds the client would have noticed a malfunction using the
service.

13:36:02 IP x.x.x.x.59133 > y.y.y.y.http: S

13:36:02 IP y.y.y.y.http > x.x.x.x.59133: S

13:36:02 IP x.x.x.x.59133 > y.y.y.y.http: . ack 1

13:36:02 IP x.x.x.x.59133 > y.y.y.y.http: P 176

13:36:02 IP y.y.y.y.http > x.x.x.x.59133: . ack 177

13:36:13 IP y.y.y.y.http > x.x.x.x.59133: R 1 ack 177

Others cases of non-typical reset packets were also ob-
served in the intervals of unavailability studied. In many cases,
before a server went down it did not answer to the clients,
and after some time it started to send them reset packets to
clients since they did not reconignize the previous established
connections.

A. Comparison between active probing vs passive analysis
unavailability detection method

The total traffic from all the clients using services that
previously have been identified to have unavailability periods
is analyzed. The objective is to distinguish the periods of time
where all the users experience service access problems of the
periods of time of isolated problems for individual clients.

To achieve this for each service, all the requested servers
are joined together to study if in some period the clients
were active but the servers were not working properly. The
proposed algorithm is applied to the aggregated network traffic.
The algorithm is configured using the IP addresses of all the
servers as an unique service to be monitored and a time interval
duration of 5 seconds. The unavailability events detected are
shown in Figure 4. Interestingly there are more unavailable

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 46 / 129

TABLE III. UNAVAILABLE HOTMAIL SERVICE INTERVALS

Start End

09:25:05 09:25:15

10:50:00 10:50:10

14:22:40 14:22:50

14:59:40 14:59:50

15:35:00 15:35:10

15:47:15 15:47:25

16:22:05 16:22:15

17:21:10 17:21:30

19:06:50 19:07:00

19:07:20 19:07:35

19:13:35 19:14:05

19:16:10 19:16:30

periods detected that way than the issues detected by using
the favicon requester alone.

U
na

va
ila

bl
e

00:00h 04:00h 09:00h 14:00h 19:00h 00:00h

Simple active probing (Getting favicon.ico)
Passive Measurement by a known PC

Passive Measurement by all clients

Figure 4. Comparison of the events of unavailable Hotmail service detected
from request client for day Nov 8th

The previous event which was observed through the fav-
icon.ico requests and observing the traffic for a single client
who requests the favicon.ico, Figure 3, now is not labeled as
problematic because at the same time other clients were able
to use Hotmail. This interval was a problem of one server
giving service to an individual client but it was not a problem
of availability for the observed server since other clients were
using the same service (other IP addresses of the same service).
Thus this is revealed as a false positive warning that shows the
risk of using only the monitoring client as a method to detect
service failures.

But this experiment show other more important fact. By
using the service as an aggregation of individual IP address of
servers we are able to identify some unavailability intervals of
a few seconds where the clients were suffering access problems
but were not detected by active monitoring clients.These
periods were not observed by the monitoring client because
the favicon.ico was served by a proxy cache. Table III shows
all the final disruption events detected.

These periods correspond to the sending of unexpected
resets by the severs to the clients. The study of the traffic
did not reveal any previously wrong behaviour of the clients
which could provoke the send of resets packets by the server.
During this seconds, suddenly one or more servers decide to
abort the established connections with one or more different
clients. As the duration of the intervals were short, these were

not actually critical disruptions since the next connections were
established. In case that this kind of periods had to be ignored
it may be done by just increasing the time interval duration
for example to 10 seconds.

TABLE IV. UNAVAILABLE HOTMAIL SERVICE INTERVALS

Start End

15:34:50 15:35:10

19:13:40 19:14:10

Table IV shows events detected from the same traffic by
using an interval duration of 10 seconds. Two cases detected
correspond to two intervals of 20 and 30 seconds. During
this time there were only reset packets sent from the servers
to clients, which have previously completed a connection
establishment. Other intervals of 10 seconds are not detected
since as the service recovered faster the reset packets sent in
order to abort client connections felt inside the same interval
as the data packets sent by the servers once that they had
recovered. Also, the intervals may not coincide exactly due to
interval and event synchronization. The maximum error will
be given by the minimum interval of time considered. For
example, in the examples presented in this paper, the time
of the disruption would be more or less 5 seconds since the
interval is said, or 10 seconds when this is the used time
interval.

We have checked also the rest of services whose some
intervals were detected as unavailable by the monitoring client.
The study of the traffic did not reveal any period with pro-
blems, there were not any interval of time where the server
did not answer to the clients. The periods showed by the
monitoring client were due to problems of the own client with
the proxy cache or a particular server but not with the service.

B. Traffic profiling of the requested services

As a sanity check the full volume of traffic from the scenery
network to the servers is observed to check that the amount
of traffic was significant. Traffic for the 8th of November
to Hotmail service is shown in Figure 5. Hotmail is shown
since it is the service with more disruption events detected by
the algorithms. The intervals of unavailability detected by the
algorithm are drawn also. The first plot shows a full day of
traffic and the second one zooms to 1 hour around the previous
discussed event.

It can be seen that the amount of traffic suggest the service
is working and the gap around 15:35:10 is clearly visible. After
these period without traffic the service seem to reestablish
normally, creating a traffic peak after the detected problem
that reaches almost 5 MBps.

V. CONCLUSIONS

In this paper a simple algorithm to detect periods of
unavailability services has been presented. It is based only on
passive capture of traffic.

Although there are more service monitoring software avail-
able, to the authors best knowledge, they are based on active
probing systems. Active monitoring presents some disadvan-
tages which may discourage network administrators of its use
in scenarios where the impact of the monitoring needs to be
minimized. First, because it requires to check if a service

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 47 / 129

1M

2M

3M

4M

5M

6M
15:00h 15:10h 15:20h 15:30h 15:40h 15:50h 16:00h

U
na

va
ila

bl
e

Se
rv

ic
e

B
ps

Bps Upstream
Unavailable interval detected

0

1M

2M

3M

4M

5M

6M

B
ps

Bps Downstream

Figure 5. Bps for the use of Hotmail service by the university community

is available it would imply to make periodically requests to
different servers. In some scenarios, like high loaded servers
or monitoring third party services it is not be possible to
make these requests as frequently as needed, in order to avoid
overhead or security alarms. Apart from that, the probing
requests should be chosen carefully in order to avoid problems
with proxy caches which could give the impression that the
service is working properly while other clients would not be
able to use the service. Another problem is the difficulty to
select a location for monitoring clients in multiple subnet
scenarios. In these cases, at least a pair of clients should be
placed in each subnet in order to detect possible problems
inside. Moreover, every client should be clock synchronized
in order to report coherent times with the rest of monitoring
clients.

As the proposed model is passive and based only on the
study of packet counts between servers and clients it will
not interfere with the traffic on the network. Therefore, any
problem of interference, monitoring client overload, network
problems with measured server availability is avoided.

Another advantage of using the proposed model is that
it is based in a single location. That means the measure is
not dependent on the location of multiple monitoring agents.
The network administrator have just to select an appropriate
passive observing location, where it can see the traffic between
the population of clients to monitor and the servers of interest.
This is a much simpler decision that can be typically solved
by placing the sniffer at organization’s network’s edge.

VI. FUTURE WORK

Currently, we are working to extend the algorithm to detect
service failures without focusing on specific servers, just by
analyzing sniffed traffic and applying the current algorithm to
every connection seen. In this manner the algorithm can work
as an service anomaly detection system that warns adminis-
trator of service issues. This is useful in large organizations
that may not have a clear list of services accessed by users but
nevertheless need to react to service unavailability problems.

An improvement that can be implemented in order to
reduce the number of false positives, is to use the two mem-
bership functions described in the algorithm to apply some
method of fuzzy logic.

ACKNOWLEDGMENT

This work was supported by the Spanish Ministry of Sci-
ence and Innovation through the research project INSTINCT
(TEC-2010-21178-C02-01). Also, the authors want to thank
Public University of Navarra for funding through PIF grant

REFERENCES

[1] “NAGIOS, a commercial-grade network flow data analysis solution,”
2009-2015. [Online]. Available: http://www.nagios.com/ [accessed:
2015-01-30]

[2] “ZABBIX, the ultimate enterprise-level software designed for
monitoring availability and performance of it infrastructure
components,” 2001-2014. [Online]. Available: http://www.zabbix.com
[accessed: 2015-02-02]

[3] “CACTI, a complete network graphing solution.” 2004-2012. [Online].
Available: http://www.cacti.net/ [accessed: 2014-12-29]

[4] “MUNIN, networked resource monitoring tool,” 2003-2013. [Online].
Available: http://munin-monitoring.org/ [accessed: 2015-01-15]

[5] X. Liu, J. Heo, L. Sha, and X. Zhu, “Adaptive control of multi-tiered
web applications using queueing predictor,” in Network Operations and
Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, 2006,
pp. 106–114.

[6] D.-J. Lan, P. N. Liu, J. Hou, M. Ye, and L. Liu, “Service-enabled
automatic framework for testing and tuning multi-tier system,” in e-
Business Engineering, 2008. ICEBE ’08. IEEE International Conference
on, 2008, pp. 79–86.

[7] D. Chua, E. Kolaczyk, and M. Crovella, “Efficient monitoring of end-
to-end network properties,” in INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, vol. 3, 2005, pp. 1701–1711.

[8] Y. Park, “Systems monitoring using petri nets,” in Systems, Man, and
Cybernetics, 1997. Computational Cybernetics and Simulation., 1997
IEEE International Conference on, vol. 4, 1997, pp. 3245–3248.

[9] C. H. Choi, M. G. Choi, and S. D. Kim, “CSMonitor: a visual clien-
t/server monitor for corba-based distributed applications,” in Software
Engineering Conference, 1998. Proceedings. 1998 Asia Pacific, 1998,
pp. 338–345.

[10] C. Steigner, J. Wilke, and I. Wulff, “Integrated performance monitoring
of client/server software,” in Universal Multiservice Networks, 2000.
ECUMN 2000. 1st European Conference on, 2000, pp. 395–402.

[11] G. Song, “The study and design of network traffic monitoring based
on socket,” in Computational and Information Sciences (ICCIS), 2012
Fourth International Conference on, 2012, pp. 845–848.

[12] G. Fang, Z. Deng, and H. Ma, “Network traffic monitoring based on
mining frequent patterns,” in Fuzzy Systems and Knowledge Discovery,
2009. FSKD ’09. Sixth International Conference on, vol. 7, 2009, pp.
571–575.

[13] A. Tachibana, S. Ano, and M. Tsuru, “Selecting measurement paths
for efficient network monitoring and diagnosis under operational con-
straints,” in Intelligent Networking and Collaborative Systems (INCoS),
2011 Third International Conference on, 2011, pp. 621–626.

[14] Y. Bejerano and R. Rastogi, “Robust monitoring of link delays and
faults in IP networks,” in INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications. IEEE
Societies, vol. 1, 2003, pp. 134–144.

[15] K. Claffy, G. Miller, and K. Thompson, “The nature of the beast: Recent
traffic measurements from an Internet backbone,” in International Net-
working Conference (INET) ’98. Geneva, Switzerland: The Internet
Society, Jul 1998, pp. 1–1.

[16] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP congestion
avoidance algorithm identification,” in Proceedings of the 2011
31st International Conference on Distributed Computing Systems, ser.
ICDCS ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
310–321. [Online]. Available: http://dx.doi.org/10.1109/ICDCS.2011.27

[17] D. Schatzmann, S. Leinen, J. Kgel, and W. Mhlbauer, “FACT: Flow-
based approach for connectivity tracking,” in Passive and Active Mea-
surement, ser. Lecture Notes in Computer Science, N. Spring and
G. Riley, Eds. Springer Berlin Heidelberg, 2011, vol. 6579, pp. 214–
223.

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 48 / 129

[18] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix,” vol. PP, no. 99, 2014, pp. 1–1.

[19] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic. Prentice Hall New
Jersey, 1995, vol. 4.

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 49 / 129

NumEquaRes — Web Application for Numerical Analysis of Equations

Stepan Orlov and Nikolay Shabrov

Computer Technologies in Endineering dept.
St. Petersburg State Polytechnical University

St. Petersburg, Russia
Email: majorsteve@mail.ru, shabrov@rwwws.ru

Abstract—A new Web application for numerical simulations,
NumEquaRes, is presented. Its design and architecture are
motivated and discussed. Key features of NumEquaRes are
the ability to describe data flows in simulations, ease of use,
good data processing performance, and extensibility. Technical
challenges specific to Web applications for simulations, related to
performance and security, are discussed. In conclusion, current
results are summarized and future work is outlined.

Keywords–Simulation; Web application; Ordinary differential
equations.

I. INTRODUCTION

In this work we present a new Web application, NumE-
quaRes [1] (the name means “Numerical Equation Research”).
It is a general tool for numerical simulations available online.
Currently, we are targeting small systems of ordinary differen-
tial equations (ODE) or finite difference equations arising in
the education process, but that might change in the near future
— see Section IX.

The reasons for developing yet another simulation software
have emerged as follows. Students were given tasks to deduce
the equations of motions of mechanical systems — for exam-
ple, a disk rolling on the horizontal plane without slip [2],
or a classical double pendulum [3], — and to try further
investigating these equations. While in some cases such an
investigation can more or less easily be done with MATLAB,
SciLab, or other existing software, in other cases the situation
is like there is no (freely available) software that would allow
one to formulate the task for numerical investigation in a
straightforward and natural way.

For example, the double pendulum system exhibits quasi-
periodic or chaotic behavior [3], depending on the initial state.
To determine which kind of motion corresponds to certain
initial state, one needs the Poincaré map [4] — the intersection
of phase trajectory with a hyperplane. Of course, there are
ODE solvers in MATLAB that produce phase trajectories. We
can obtain these trajectories as piecewise-linear functions and
then compute intersections with the hyperplane. But what if we
want 104–105 points in the Poincaré map? How many points
do we need in the phase trajectory? Maybe 107 or more?
Obviously, the simplest approach described above would be
waste of resources. A better approach would look at trajectory
points one by one, test for intersections with hyperplane,
and forget points that are no longer needed. But there is no
straightforward way to have simulation process like this in
MATLAB.

Of course, there is software (even free software) that can
compute Poincaré maps. For example, the XPP (X-Window

PhasePlane) tool [5] can do that. But what we have learned
from our examples is that we need certain set of features that
we could not find in any existing software. These features are
as follows:

• ability to explicitly specify how data flows in a simu-
lation should be organized;

• reasonable computational performance;
• ease of use by everyone, at least for certain use cases;
• extensibility by everyone who needs a new feature.

The first of these features is very important, but it is missing
in all existing tools we tried (see Section VII). It seems
that developers of these tools and authors of this paper have
different understanding of what a computer simulation can be.
Common understanding is that the goal of any simulation is to
reproduce the behavior of system being investigated. Numeri-
cal simulations therefore most often perform time integration
of equations given by a mathematical model of the system.
In this paper, we give the term simulation a more general
meaning: it is data processing. Given that meaning, we do not
think the term is misused, because time integration of model
equations often remains the central part of the entire process.
Importantly, researcher might need to organize the execution
of that part differently, e.g., run initial value problem many
times for different initial states or parameters, do intermediate
processing on consecutive system states produced by time
integrator, and so on.

Given the above general concept of numerical simulation,
our goal is to provide a framework that supports the creation
of data processing algorithms in a simple and straightforward
manner, avoiding any coding except to specify model equa-
tions.

Next sections describe design decisions and technologies
chosen for the NumEquaRes system (Section II); simula-
tion specification (Section III) and workflow semantics (Sec-
tion IV); performance, extensibility, and ease of use (Sec-
tion V); examples of simulations (Section VI); comparison
with existing tools (Section VII); technical challenges condi-
tioned by system design (Section VIII). Section IX summa-
rizes current results and presents a roadmap for future work.

II. DESIGN DECISIONS AND CHOICE OF TECHNOLOGIES

Keeping in mind the primary goals formulated above, we
started our work. Traditionally, simulation software have been
designed as desktop applications or high performance com-
puting (HPC) applications with desktop front-ends. Nowadays,
there are strong reasons to consider Web applications instead

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 50 / 129

of desktop ones, because on the one hand, main limitations
for doing so in the past are now vanishing, and, on the other
hand, there are many well-known advantages of Web apps. For
example, our “ease of use” goal benefits if we have a Web app,
because this means “no need for user to install any additional
software”.

Thus we have decided that our software has to be a Web
application, available directly in user’s Web browser.

Now, the “extensibility by everyone” goal means that our
project must be free software, so the GNU Affero GPL v3
license has been chosen. That should enforce the usefulness
of software for anyone who could potentially extend it.

The “Reasonable performance” goal has determined the
choice of programming language for software core compo-
nents. Preliminary measurements have shown that for a typical
simulation, native code compiled from C++ runs approx.
100 times faster than similar code in MATLAB, SciLab, or
JavaScript (as of JavaScript, we tested QtScript from Qt4; with
other implementations, results might be different). Therefore,
we decided that the simulation core has to be written in C++.
The core is a console application that runs on the server
and interacts with the outer world through its command line
parameters and standard input and output streams. It can also
generate files (e.g., text or images).

JavaScript has been chosen as the language for simulation
description and controlling the core application. However, this
does not mean that any part of running simulation is executing
JavaScript code.

The decision to use the Qt library has been made, because
it provides a rich set of platform-independent abstractions for
working with operating system resources, and also because it
supports JavaScript (QtScript) out of the box.

Other parts of the applications are the Web server, the
database engine, and components running on the client side.
For the server, we preferred Node.js over other technologies
because we believe its design is really suitable for Web
applications — first of all, due to the asynchronous request
processing. For example, it is easy to use HTML5 Server
Sent Events [6] with Node.js, which is not the case with
LAMP/WAMP [7].

The MongoDB database engine has been picked among
others, because, on the one hand, its concept of storing JSON-
like documents in collections is suitable for us, and, on the
other hand, we do not really need SQL, and, finally, it is a
popular choice for Node.js applications.

As of the client code running in the browser, the com-
ponents used so far are jQuery and jQueryUI (which is no
surprise), the d3 library [8] for interactive visualization of
simulation schemes, the marked [9] and MathJax [10] libraries
to format markdown pages with TEX formulas. In the future,
we are planning to add 3D visualization using WebGL.

III. SIMULATION SPECIFICATION

The very primary requirement for NumEquaRes is to pro-
vide user with the ability to explicitly specify how data flows
are organized in a simulation. This determines how simulations
are described. This is done similarly to, e.g., the description of
a scheme in the Visualization Toolkit (VTK) [11], employing
the “pipes and filters” design pattern. The basic idea is that

simulation is a data processing system defined by a scheme
consisting of boxes (filters) with input ports and output ports
that can be connected by links (pipes). Output ports may have
many connections; input ports are allowed to have at most
one connection. Simulation data travels from output ports to
input ports along the links, and from input ports to output
ports inside boxes. Inside each box, the data undergoes certain
transformation determined by the box type.

Typically boxes have input and output ports, so they are
data transformers. Boxes without input ports are data sources,
and boxes without output ports are data storage.

Simulation data is considered to be a sequence of frames.
Each frame can consist of a scalar real value or one-
dimensional or multi-dimensional array of scalar real values.
The list of sizes of that array in all its dimensions is called
frame format. For example, format {1} describes frames of
scalar values, and format {500,400} describes frames of two-
dimensional arrays, each having size 500 × 400. The format
of each port is assumed to be fixed during simulation.

Links between box ports are logical data channels, they
cannot modify data frames in any way. This means that data
format has to be the same at ports connected by a link. Some
ports define data format, while some do not; instead, such a
port takes format of port connected with it by a link. Thus,
data format propagates along links. Furthermore, data format
can also propagate through boxes. This allows to provide quite
flexible design to fit the demands of various simulations.

IV. SIMULATION WORKFLOW

This section explains how simulation runs, i.e., how the
core application processes data frames generated by boxes.

Further, the main routine that controls the data processing
is called runner.

A. Activation notifications

When a box generates a data frame and sends it to an
output port, it actually does two things:

• makes the new data frame available in its output port;

• activates all links connected to the output port. This
step can also be called output port activation.

Each link connects an output port to an input port, and its
activation means sending notification to input port owner box.
The notification just says that a new data frame is available at
that input port.

When a box receives such a notification, it is free to do
whatever it wants to. In some cases, these notifications are
ignored; in other cases, they cause box to start processing data
and generate output data frames, which leads to link activation
again, and the data processing goes one level deeper. For ex-
ample, the Pendulum box has two input ports, parameters
and state. When a data frame comes to parameters, the
activation notification is ignored (but next time the box will
be able to read parameters from that port). When a data frame
comes to state, the activation is not ignored. Instead, the
box computes ODE right hand side and sends it to the output
port oderhs.

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 51 / 129

B. Cancellation of data processing
Link activation notification is actually a function call, and

the box being notified returns a value indicating success or
failure. If link activation fails, the data processing is canceled.
This can happen when some box cannot obtain all data it needs
from input ports. For example, the Pendulum box can process
the activation of link connected to port state only if there
are some parameters available in port parameters. If it is
so, the activation succeeds. Otherwise, the activation fails, and
the processing is canceled.

If a box sends a data frame to its output port, and the
activation of that output port fails, the box always cancels the
data processing. Notice that this is always done by returning
a value indicating activation failure, because the box can only
do something within an activation notification.

C. Data source box activation
Each simulation must have at least one data source box

— a box having output ports but no input ports. There can be
more than one data source in a simulation.

Data sources can be passive sources or generators. A
generator is a box that can be notified just as a link can be. A
passive data source cannot be notified.

A passive data source produces one data frame (per output
port) during the entire simulation. The data frame is available
on its output port from the very beginning of the simulation.

D. Initialization of the queue of notifications
When the runner starts data processing, it first considers

all data sources and builds the initial state of the queue of
notifications. For each generator, its notification is enqueued.
For each passive data source, the notification of each of its
links is enqueued.

E. Processing of the queue of notifications
Then the queue is processed by sending the activation

notifications (i. e., calling notification functions) one by one,
from the beginning to the end. If a notification call succeeds,
the notification is removed from the queue. Otherwise, if the
notification call fails (i.e., the data processing gets canceled),
the notification is moved to the end of the queue, and the
process continues.

The runner processes its queue of notifications until it
becomes empty, or maximum number of activation notification
failures (currently 100) is exceeded. In the latter case, the entire
simulation fails.

F. Post-processing
When the queue of notifications becomes empty, the runner

can enqueue post-processors before it stops the data process-
ing. The only example of a post-processor is the Pause box.
Post-processors, like generators, are boxes that can receive
activation notifications.

G. User input events
The above process normally takes place during the sim-

ulation. In addition, there could be events that break the
processing of the queue of notifications. These events are
caused by interactive user input. Once a user input event
occurs, an exception is thrown, which leads to the unwinding

of any nested link activation calls and the change of the
queue of notifications. Besides, each box gets notified about
simulation restart.

The queue of notifications is changed as follows when user
input occurs. First, the queue is cleared. Then one of two things
happens.

• If the box that threw the exception specifies which
box should be activated after restart, the notifications
for that box are enqueued (if the box is a generator,
its activation notification is enqueued; otherwise, the
activation notifications of all links connected to its
output ports are enqueued). An input box can only
specify itself as the next box to activate, or specify
nothing.

• If the box that threw the exception specifies no box
to be activated after restart, the standard initialization
of the notification queue is done.

After that, the processing of notification queue continues.
There is an important issue that must be taken care of.

Simulation can potentially be defined in such a way that its
execution leads to an infinite loop of recursive invocation of
activation notifications. This normally causes program to crash
due to stack overflow. In our system, however, some boxes (not
all, but only those activating outputs in response to more than
one input notification) are required to implement counters for
recursive call depth. When such a counter reaches 2, simulation
is considered to be invalid and is terminated. This allows to do
some kind of runtime validation against recursion at the cost
of managing call depth counters.

V. PERFORMANCE, EXTENSIBILITY, AND EASE OF USE

As stated in Section I, computational performance and
functional extensibility are considered important design fea-
tures of the NumEquaRes system. This section provides tech-
nical details on what has been done to achieve performance and
support extensibility. Last subsection highlights design features
that make system easier to use.

A. Performance
To achieve reasonable performance, it is not enough to

just use C++. Some additional design decisions should be
made. Most important of them are already described above.
The ability to organize simulation workflow arbitrarily allows
to achieve efficient memory usage, which is illustrated by
an example in Section I. A number of specific decisions
made in the design of NumEquaRes core are targeted to high
throughput. They are driven by the following rules.

• Perform simulation in a single thread. While this is a
serious performance limitation for a single simulation,
we have made this decision because the simulation
runs on the Web server, and parallelization inside a
single simulation is likely to impact the performance
of server, as it might run multiple simulations simulta-
neously. And, on the other hand, single thread means
no synchronization overhead.

• No frequent operations involving interaction with op-
erating system. Each box is responsible for that. For
example, data storage boxes should not write output
data to files or check for user input frequently. The

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 52 / 129

performance might drop even if the time is measured
using QTime::elapsed() too frequently.

• No memory management for data frames within ac-
tivation calls. In fact, almost 100% of simulation
time is spent in just one activation call made by
runner (during that call, in turn, other activation calls
are made). Therefore, memory management outside
activation calls (e.g., the allocation of an element of
the queue of notifications) is not a problem. Still some
memory allocation happens when a box writes its
output data, but this is not a problem as well, since
such operations are not frequent.

• No movement of data frames in memory. If a box
produces an output frame and makes it available in
its output port, all connected boxes read the data
directly from memory it was originally written to. This
item and the previous one both imply that there are
nothing like queues of data frames, and each frame is
processed immediately after it is produced.

• No virtual function calls within activation calls. In-
stead, calls by function pointer are preferred.

A simple architecture of classes has been developed to comply
with the rules listed above and, in the same time, to encapsulate
the concepts of box, port, link, and others. These classes
are split into ones for use at the initialization stage, when
simulation is loaded, and others for use at simulation run
time. First set of classes may rely on Qt object management
system to support their lifetime and the exposure of parameters
as JavaScript object properties. Classes of the second set are
more lightweight; their implementations are inlined whenever
possible and appropriate, in order to reduce function call
overhead.

Although NumEquaRes core performance has been opti-
mized in many aspects, it seems impossible to combine speed
and flexibility. Our experience with some examples indicates
that hand-coded algorithms run several times faster than those
prepared in our system.

B. Extensibility
The functionality of NumEquaRes mostly resides in boxes.

To add a new feature, one thus can write code for a new
box. Boxes are completely independent. Therefore, adding a
new one to the core simply boils down to adding one header
file and one source file and recompiling. The core will be
aware of the presence of the new box through its box factory
mechanism. Next steps are to support the new box on server
by adding some meta-information related to it (including user
documentation page) and some client code reproducing the
semantics of port format propagation through the box. The
checklist can be found in the online documentation.

Some extensions, however, cannot be done by adding
boxes. For example, to add 3D visualization, one needs to
change the client-side JavaScript code. We are planning to sim-
plify extensions of this kind; however, this requires refactoring
of current client code.

C. Ease of use
First of all, NumEquaRes is an online system, so user does

not have to download and install any software, provided user

already has a Web browser. All user interaction with the system
is done through the browser.

To formulate a simulation as a data processing algorithm,
user composes a scheme consisting of boxes and links, and
there is no need to code.

Online help system contains a detailed documentation
page for each box; it also explains simulation workflow, user
interface, and other things; there is one step-by-step tutorial.

To prepare a simulation, user can find a similar one in
the database, then clone it and modify. User can decide to
make his/her simulation public or private; public simulations
can be viewed, run, and cloned by everyone. To share a
simulation with a colleague, one shares a hyperlink to it;
besides, simulations can be downloaded and uploaded.

Currently, user might have to specify part of simulation,
such as ODE right hand side evaluation, in the form of C++
code. We understand this might be difficult for people not
familiar with C++. To mitigate this problem, there are two
features. Firstly, each box that needs C++ code input provides
a simple working example that can be copied and modified.
Secondly, NumEquaRes supports the concept of code snippets.
Each piece of C++ input can be given a documentation page
and added to the list of code snippets. These snippets can easily
be reused by everyone.

VI. EXAMPLES OF SIMULATIONS

This section lists several examples of simulations.
Figure 1 shows one of the simplest simulations — the one

that plots a single phase trajectory for a simple pendulum. The
ODE system is provided by the ode box. NumEquaRes has a
number of options for user to supply equations. In particular,
it is possible to provide C++ code that computes ODE right
hand side. Such code compiles and runs on the server, if it
passes a security check. The ODE right hand side depends
on the state variables and the vector of parameters. They
are supplied through input ports. Parameters are specified in
the odeParam box. State variables come from the solver
box. The solver performs numerical integration of the initial
value problem, starting from the user-specified initial state (the
initState box). The solver can be configured to perform a
fixed number of time steps or to run until interrupted by a data
frame at its stop port. Each time the solver obtains a new
system state vector, it sends the vector to its nextState
port. Once the solver finishes, it activates the finish port
to let others know about it. In this simulation, consecutive
system states are projected to the phase plane (the proj box)
and then rasterized by the canvas box. Finally, the data
comes to the bitmap box that generates the output image file.
Notice that this simulation has three data sources, odeParam,
solverParam, and initState.

Figure 1. Single phase trajectory

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 53 / 129

From this simplest example one can see how to construct
simulation scheme from boxes and links that computes what
user needs. Other examples are more complex, but they ba-
sically contain boxes of the same types, plus probably some
more. So far, there are 40 different box types in NumEquaRes,
and it is beyond the scope of this article to describe them all.
Further, we will just focus on some of them to show how
simulations work.

Figure 2. Interactive phase portrait

An important aspect of a simulation is its ability to interact
with the user. There are a few boxes that transform various
kinds of interactive user input (clicking, moving sliders, ro-
tating mouse wheel, etc.) into numerical values. These boxes
usually act as simple filters of data frames; they replace
some components of data frames with values obtained from
user. Figure 2 shows an example of interactive simulation: it
generates phase trajectories going through points on plane —
the ones user has clicked with the mouse. The box isInput is
responsible for that kind of input. Each generated phase curve
has two parts: blue in the time-positive direction (with resp.
to the clicked point) and red in the time-negative direction.

Figure 3. Double pendulum, Poincaré map (50000 points, 28.5 s)

Figure 3 shows the Poincaré map for the classical double
pendulum system. Importantly, there is no need to store phase
trajectory or individual points of intersection of the trajectory
with the plane during simulation. The entire processing cycle
(test for intersection; projection; rasterization) is done as soon
as a new point of the trajectory is obtained. After that, we need
to store just one last point from the trajectory. Simulations like
this are what we could not do easily in MATLAB or SciLab,
and they have inspired us to develop NumEquaRes.

Figure 4. Ince-Strutt stability diagram (500× 500 points, 6.3 s)

Figure 4 shows a simple simulation that allows one to
obtain a stability diagram of a linear ODE system with periodic
coefficients on the plane of parameters. Here the picture on the
right is the Ince–Strutt diagram for the Mathieu equation [12].
People who have experience with it know how difficult it is
to build such kind of diagrams analytically, even to find the
boundaries of stability region near the horizontal axis. What
we suggest here is the brute force approach — it is fast enough,
general enough, and it is done easily. The idea is to split the
rectangle of parameters into pixels and analyze the stability in
the bottom-left corner of each pixel (by computing eigenvalues
of the monodromy matrix [4]), then assign pixel color to black
or white depending on the result. In this simulation, important
new boxes are odeParamGrid and stabilityChecker.
The former one provides a way to generate points on a multi-
dimensional grid, and the latter one analyzes the stability of a
linear ODE system with periodic coefficients.

Figure 5. Strange attractor for forced Duffing equation (interactive
simulation)

Figure 5 shows another application of the Poincaré map,
now in the visualization of the strange attractor arising in
the forced Duffing equation [13]. User can change parameters
interactively and see how the picture changes. This simulation
is simpler than the one shown in Figure 3, because to obtain a
new point on canvas, one just needs to apply time integration
over known time period of system excitation.

Figure 6 shows an interactive simulation of the Mandelbrot
set [14]. User can pan and zoom the picture using the mouse.
Importantly, we did not have to develop any new box types
in order to describe the logic of convergence analysis for
sequences of complex numbers generated by the system. This

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 54 / 129

Figure 6. Colored Mandelbrot set (interactive simulation)

is done with general purpose boxes d (computes differences of
subsequent data frames), dn (computes vector norm), and tdn
(detects if a scalar value exceeds some threshold). Pixel colors
depend on how many iterations passed (box c is a counter, its
output value is joined with pixel coordinates at box j and sent
to canvas).

VII. COMPARISON WITH OTHER TOOLS

Direct comparison between NumEquaRes and other exist-
ing tools is problematic because all of them (at least, those
that we have found) do not provide an easy way for user to
describe the data processing algorithm. In some systems, the
algorithm can be available as a predefined analysis type; in
others, user would have to code the algorithm; also, there are
systems that need to be complemented with external analysis
algorithms.

Let us consider example simulations shown in Figures 3,
4, 5, and try to solve them using different free tools; for
commercial software, try to find out how to do it from the
documentation. Further in this section, figure number refers to
the example problem.

TABLE I. COMPARISON OF NUMEQUARES WITH OTHER TOOLS

Name Free Web Can solve Fast
Mathematica no yes 3, 4, 5; needs coding n/a
Maple no no 3, 4, 5; needs coding n/a
MATLAB no no 3, 4, 5; needs even more coding no
SciLab yes no no
OpenModelica yes no none could be
XPP yes no 3, 5 yes
InsightMaker yes yes none n/a

In Table I, commercial proprietary software is limited to
most popular tools — Mathematica, Maple, and MATLAB. In
many cases, purchasing a tool might be not what a user (e.g.,
a student) is likely to do.

All of the three example simulations are solvable with
commercial tools Mathematica, Maple, and MATLAB.

In Mathematica, it is possible to solve problems like
3, 5 using standard time-stepping algorithms since version 9
(released 24 years later than version 1) due to the WhenEvent
functionality. Problem 4 can also be solved. All algorithms
have to be coded. Notice that Wolfram Alpha [15] (freely
available Web interface to Mathematica) cannot be used for
these problems.

Maple has the DEtools[Poincare] subpackage that
makes it possible to solve problem 3 and others with Hamil-
tonian equations; problems 4, 5 can be solved by coding their
algorithms.

With MATLAB or SciLab, one can code algorithms for
problems 4, 5 using standard time-stepping algorithms. For
problem 3, one needs either to implement time-stepping
algorithm separately or to obtain Poincaré map points by
finding intersections of long parts of phase trajectory with the
hyperplane. Both approaches are more difficult than those in
Mathematica and Maple. And, even if implemented, simula-
tions are much slower than with NumEquaRes.

OpenModelica [16] is a tool that helps user formulate the
equations for a system to be simulated; however, it is currently
limited to only one type of analysis — the solution of initial
value problem. Therefore, to solve problems like 3, 4, 5, one
has to code their algorithms (e.g., in C or C++, because the
code for evaluating equations can be exported as C code).

XPP [5] provides all functionality necessary to solve prob-
lems 3, 5. It contains many algorithms for solving equations
(while NumEquaRes does not) and is a powerful research tool.
Yet it does not allow user to define a simulation algorithm, and
we have no idea how to use it for solving problem 4.

Among other simulation tools we would like to mention
InsightMaker [17]. It is a free Web application for simulations.
It has many common points with NumEquaRes, although its
set of algorithms is fixed and limited. Therefore, problems 3,
4, 5 cannot be solved with InsightMaker.

VIII. TECHNICAL CHALLENGES

The design of NumEquaRes governs technical challenges
specific to Web applications for simulations. They are related
to performance and security, and are discussed in this section.

A. Server CPU resources

Currently, all simulations run on the server side. Some of
them can be computationally intensive and consume consider-
able amount of CPU time. For example, there are simulations
that consume 100% of single CPU core time for as long as
user wishes. This is a problem if the number of users grows.
Of course, we do not expect millions of users simultaneously
running their simulations, but still there is a scalability prob-
lem.

The problem can be addressed in a number of ways. Firstly,
the server can be an SMP computer, so it will be able to run
as many simulations as the number of CPU cores, without
any loss of performance. Secondly, it is technically possible
to have a cluster of such computers and map its nodes to
user sessions. Obviously, this approach requires the growth
of server hardware to provide sufficient server performance.

A different approach is to move running simulations to
the client side. In this case, the server loading problem will
disappear. But how is it possible to offer user’s browser to
run something? Actually, today the only choice seems to be
JavaScript. We will have to compile simulations into it, or to
the asm.js subset of JavaScript. This approach is quite possible
for some simulations, but is problematic for other ones that can
make use of some large libraries like LAPACK.

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 55 / 129

B. User code security
NumEquaRes web server accepts C++ code as part of

simulation description provided by user. This is the direct
consequence of our wish to provide good computational perfor-
mance of simulations. Such pieces of code typically describe
how to compute the right hand side of an ODE system, or
how to compute another transformation of input data frames
into the output data frames. The server compiles that code into
dynamic library to be loaded and executed by core application
that performs the simulation. Potentially, we have serious risk
of direct execution of malicious code.

Currently, this problem is solved as follows. Once user
code is compiled into a library (shared object on UNIX or
dynamically linked library on Windows), it is checked for the
absence of any external or weak symbols that are not found
in a predefined white list (the list contains symbol names for
mathematical functions and a few more). Due to this, user code
is not able to make any system calls. For example, it cannot
open file /etc/passwd and send it to the user because it
cannot open files at all. If the security check on the compiled
library fails, no attempt to load it is done, and the user gets
notified about the reason of check failure.

On the other hand, malicious code could potentially exploit
such things as buffer overrun and inline assembly. It is an open
problem now how to ensure nothing harmful will happen to the
server due to that. However, the ban on any non-white-listed
calls seems to be strong enough. Probably, one more level of
protection could be achieved with a utility like chroot.

A better approach to provide security is to disallow any
C++ code provided by user. But this would imply giving the
user a good alternative to C++ allowing to describe his/her
algorithms equally efficiently. For example, there could be
a compiler of formulas into C++ code. Nothing like this is
implemented at the moment, but can be done in the future. In
this case, the user code security problem will vanish.

IX. CONCLUSION AND FUTURE WORK

A new tool for numerical simulations, NumEquaRes, has
been developed and implemented as a Web application. The
core of the system is implemented in C++ in order to de-
liver good computational performance. It is free software
and thus everyone can contribute into its development. The
tool already provides functionality suitable for solving many
numerical problems, including the visualization of Poincaré
maps, stability diagrams, fractals, and more. Simulations run
on server; besides, they may contain C++ code provided by
user. This creates two challenges — potential problems of
server performance and security. The security problem has
been addressed in our work; the performance problem is not
currently taken into account.

The algorithm of simulation runner implies that the order
of activation calls it makes is not important, i.e., does not affect
simulation results. While this is true for typical simulations,
counter-examples can be invented. Further work is to make it
possible to distinguish such simulations from regular ones and
render them invalid.

NumEquaRes is a new project, and the current state of its
source code corresponds more to the proof-of-concept stage
than the production-ready stage, because human resources
assigned to the project are very limited. To improve the source

code, it is necessary to add developer documentation, add unit
tests, and deeply refactor both client and server parts of the
Web interface.

Further plans of NumEquaRes development include new
features that would significantly extend its field of application.
One of them is an engine helping user to formulate mathemat-
ical model equations — for example, for mechanical mod-
eling of multibody systems. To simulate these models, more
advanced time-stepping algorithms should be implemented.

Another set of planned features aims to enhance the level of
presentation of simulation results (currently, it is quite modest).
Among them is 3D visualization and animation.

Last but not least, an important usability improvement can
be achieved with a feature that visualizes simulation data flows;
its role is similar to debugger’s.

REFERENCES
[1] “Numequares — an online system for numerical analysis of equations,”

URL: http://equares.ctmech.ru/ [accessed: 2015-02-21].
[2] E. J. Routh, The Advanced Part of a Treatise on the Dynamics of a

System of Rigid Bodies, 6th ed. Macmillan, London, 1905, reprinted
by Dover Publications, New York, 1955.

[3] L. Meirovitch, Elements of vibration analysis. New York: McGraw-
Hill, 1986.

[4] G. Teschl, Ordinary Differential Equations and Dynamical Systems,
ser. Graduate studies in mathematics. American Mathematical Soc.,
URL: http://books.google.ru/books?id=FSObYfuWceMC [accessed:
2015-02-21].

[5] B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Sys-
tems: A Guide to XPPAUT for Researchers and Students, ser. Software,
Environments and Tools. Society for Industrial and Applied Math-
ematics, 2002, URL: http://books.google.ru/books?id=Qg8ubxrA060C
[accessed: 2015-02-21].

[6] “Using server-sent events,” URL: https://developer.mozilla.org/en-
US/docs/Server-sent events [accessed: 2015-02-18].

[7] “Lamp (software bundle),” URL:
http://en.wikipedia.org/wiki/LAMP (software bundle)
[accessed: 2015-02-21].

[8] “D3.js — data-driven documents,” URL: http://d3js.org/
[accessed: 2015-02-21].

[9] “A full-featured markdown parser and compiler, written in javascript,”
URL: https://github.com/chjj/marked [accessed: 2015-02-21].

[10] “Mathjax — beautiful math in all browsers,” URL:
http://www.mathjax.org/ [accessed: 2015-02-21].

[11] VTK user’s guide. Kitware, Inc., 2010, 11th ed.
[12] M. Abramowitz and I. Stegun, Mathieu Functions, 10th ed. Dover

Publications, 1972, chapter 20, pp. 721–750, in Abramowitz,
M. and Stegun, I., Handbook of Mathematical Functions, URL:
http://www.nr.com/aands [accessed: 2015-02-22].

[13] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods
for Scientists and Engineers I: Asymptotic Methods and Perturbation
Theory. Springer, 1999, pp. 545–551.

[14] J. W. Milnor, Dynamics in One Complex Variable, 3rd ed., ser. Annals
of Mathematics Studies. Princeton University Press, 2006, vol. 160.

[15] “Wolframalpha — computational knowledge engine,” URL:
http://www.wolframalpha.com/ [accessed: 2015-02-26].

[16] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. Wiley-IEEE Computer Society Pr, 2003.

[17] S. Fortmann-Roe, “Insight maker: A general-purpose tool for
web-based modeling & simulation,” Simulation Modelling
Practice and Theory, vol. 47, no. 0, 2014, pp. 28 – 45, URL:
http://www.sciencedirect.com/science/article/pii/S1569190X14000513
[accessed: 2015-02-21].

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 56 / 129

A Catalogue of Thresholds for Object-Oriented Software Metrics

Tarcísio G. S. Filó and Mariza A. S. Bigonha

Department of Computer Science (DCC)
Federal University of Minas Gerais (UFMG)

Belo Horizonte, Minas Gerais, Brazil
e-mail: {tfilo,mariza}@dcc.ufmg.br

Kecia A. M. Ferreira

Department of Computing (DECOM)
Federal Center for Technological Education (CEFET-MG)

Belo Horizonte, Minas Gerais, Brazil
e-mail: kecia@decom.cefetmg.br

Abstract—Thresholds for the majority of software metrics are
still not known. This might be the reason why a measurement
method that should be part of a software quality assessment
process is not yet present in object-oriented software industry.
In this work, we applied an empirical method to 111 system
dataset, identifying thresholds for 17 object-oriented software
metrics. Furthermore, we propose some improvements in this
employed method. Differently from previous work, we have
developed a catalogue of thresholds that gathers a greater amount
of object-oriented software metrics, allowing the assessment of
methods, classes and packages. Our approach suggests three
ranges in the thresholds: Good/Common, Regular/Casual and
Bad/Uncommon. Although they do not necessarily express the
best practices in Software Engineering, they reflect a quality
standard followed by most of the evaluated software. To evaluate
our catalogue, we present a case study which shows its application
in the evaluation of a proprietary software, in contrast with the
developers consensus about its internal quality. Results show that
our thresholds are capable of indicating the real panorama of the
evaluated software.

Keywords–Software Engineering; Object-oriented program-
ming; Quality analysis and evaluation; Metrics/Measurement.

I. INTRODUCTION

Measurement is considered a fundamental part of any
engineering discipline, and Software Engineering disciplines
are not exceptions. In this context, software metrics refer to
measurements that can be applied to check the indicators of
processes, projects and software products. Evaluating software
quality through measurements allows to define quantitatively
the success or failure of a particular attribute, identifying the
need of improvement. Managing software quality may allow
to achieve a low number of defects and reliable standards of
maintainability, reliability, and portability [1].

Despite the importance of metrics in object-oriented soft-
ware quality management, they have not been effectively used
in software industry [2][3]. One possible reason is the fact
that for the majority of metrics, thresholds are not defined.
Knowing these values is essential because they may allow
the metrics to be used to the assessment of software quality.
Moreover, without the knowledge of these thresholds, we
cannot answer simple questions like “Which classes in the
system have a large number of methods?” or “Which methods
in the system have a large number of parameters?”.

In the current scenario of Software Engineering, the in-
ternal quality of software is usually evaluated by means of
qualitative inspections, which takes time and generates high
costs. The use of metrics in conjunction with a catalogue

of thresholds empirically derived may provide an efficient
approach to assess the software quality in an automated way.

Our major contribution is a catalogue of thresholds for
17 object-oriented software metrics, which covers a larger
amount of metrics, providing the assessment of methods,
classes and packages. Even though previous researches have
proposed different techniques to derive thresholds for software
metrics, most of them cover only few metrics [3]–[6]. In
such a scenario, we do not aim to propose a new method to
derive thresholds. Instead, we employed the empirical method
proposed by Ferreira et al. [3], which is based on the analysis
of the statistical distribution of the measures found in practice.
Moreover, we introduce some improvements in this method.
When we compare the contributions of this paper with the
results presented by Ferreira et al. [3] and other previous
studies, we can spot three majors differences. (1) We provide
thresholds for a large number of software metrics. (2) The
proposed thresholds aim to provide a benchmark for the quan-
titative evaluation of the internal quality of software systems,
considering not only classes, but also methods and packages.
(3) Differently from previous work, we evaluate our catalogue
of thresholds in a proprietary software, of considerable size,
supported by the qualitative definitions about the aspects of
its internal quality reported by the developers themselves,
extending the thresholds evaluation to outside of the open-
source universe.

The remaining of this paper is organized as follows: Section
II presents the data collection, a set of systems, as well
as the preparation of this data to be used in the proposed
thresholds. Section III describes the employed method to
extract thresholds, followed by illustrative examples presented
in Section IV. Section V presents the results of this research,
showing a catalogue of the identified thresholds. Section 6
relates a case study conduct in a proprietary software to verify
the effectiveness of applying our catalogue in software quality
management. In Section VII, we discuss how our work is
related with existing efforts in the literature. Section VIII
discusses threats to validity. Section IX presents possible future
directions of this research and makes final remarks.

II. DATA COLLECTION

This section describes Qualitas.class Corpus [7], which is
the set of systems used in this research, as well as the data
preparation and the generation of statistical data on metrics
necessary to the development of this work. Qualitas.class
Corpus [7] provides compiled Eclipse Java projects for the 111
systems included in Qualitas Corpus, provided by Tempero et

48Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 57 / 129

al. [8]. Qualitas.class Corpus relied on Metrics 1.3.8 [9], which
contains implementation details about the metrics, to compute
their values, providing XML files with values of 17 metrics:

Basic Metrics: no. of classes (NOC), no. of methods (NOM),
no. of fields (NOF), no. of overriden methods (NORM), no.
of parameters (PAR), no. of static methods (NSM) and no. of
static fields (NSF).

Complexity metrics: method lines of code (MLOC), special-
ization index (SIX), McCabe cyclomatic complexity (VG) and
nested block depth (NBD).

CK metrics: weighted methods per class (WMC), depth of
inheritance tree (DIT), no. of children (NSC) and lack of
cohesion in methods (LCOM).

Coupling metrics: afferent/efferent coupling (CA/CE).

To read the available XML files at Qualitas.class Corpus,
it was developed a tool that generates text files containing all
the measurements for each metric. We relied on R [10], a tool
for statistical computing, to generate the cumulative relative
frequency graph, which gives the summary of the frequency
below a given level, as well as on the histogram in logarithmic
scale, which plots the histogram in double logarithm scale. We
also used this tool to generate an statistical dataset on object-
oriented software metrics [11], intending to help researchers
in their work on software metrics.

III. METHOD TO IDENTIFY THRESHOLDS

An important problem in statistics is how to obtain infor-
mation about the form of the population from which a sample
is drawn. For this purpose, it is used EasyFit [12] to perform
the selection of the appropriate distribution that has a best fit
for a dataset. Besides that, EasyFit plots the pdf (probability
density function) graph which describes the probability of a
variable assuming a value x: f(x) = p(X = x). The purpose
of this step is to set the appropriate distribution for each
software metric studied. Exploring the distributions of software
metric values is crucial to improve the understanding of the
internal structures of software [13]. From the distribution, it
is possible to understand its characteristics, for example, if
its average value is representative for the analysis or if the
distribution is heavy-tailed or skewed-right [3][14].

Given the graphical views and the knowledge of the charac-
teristics of the probability distributions which are best fitted to
the measures, it is possible to derive thresholds for the metrics.
In the approach of Ferreira et al. [3], when the metric has a
distribution with a representative average value, like the Pois-
son distribution, this value is taken as typical for this metric,
otherwise, the authors worked with three ranges for the metric
values: Good, Regular and Bad. The good range corresponds
to values with high frequency. The authors argue this is the
most common values of the metric in practice, and nevertheless
these values do not necessarily express the best practices in
Software Engineering, they expose the pattern of most software
systems. The bad range corresponds to values with quite low
frequency, and the regular range corresponds to values that
are not too frequent neither have very low frequency. The
visual analysis of the graphical views allows establishing the
thresholds. It is important to notice that Ferreira et al. applied
this method to all set of software systems, and also group
them by application domain, size and type, but they did not

Figure 1. Flow diagram to the thresholds identification.

find relevant differences in the suggest thresholds among these
approaches. So, in accordance with these results, we applied
the method to the entire set of systems, expecting that the
suggested thresholds are useful for all systems, regardless of
the of application domain, size and type.

This paper also presents the proposed improvements to
the original method of Ferreira et al. [3]. First, we modify
the ranges names to: Good/Common, Regular/Casual and
Bad/Uncommon, which we believe will express better the
importance of frequency concept in the suggested thresholds.
Secondly, we established, rather than the values directly,
two percentiles, based on a visual analysis of the graphical
views and on the frequency concept in the thresholds. These
percentiles are capable to separate the dataset in the three
ranges of values mentioned. Although the visual analysis is not
dispensed, the use of predefined percentiles brings a relevant
improvement to the method, it allows to obtain the values
directly from the dataset, making the application of the method
more reproducible. Figure 1 summarizes the method to identify
thresholds in a flow diagram.

IV. ILLUSTRATIVE EXAMPLES

This section describes the data analysis of Number of
Methods (NOM) and Depth of Inheritance Tree (DIT).

A. Number of Methods
The Cumulative Relative Frequency Graph showed in

Figure 2a suggests a heavy-tail distribution, because the ap-
proximation of 100% of cumulative relative frequency along
the x axis (metric values) occurs in a drastically faster way,
i.e., there is a nearly instantaneous approximation of 100%
of the measures. This means that the systems under analysis
possess several classes with few methods and a small number
of classes with many methods. Figure 2b shows that the dataset
of NOM is best fitted to Weibull distribution, with parameters

49Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 58 / 129

(a) (b) (c)
Figure 2. NOM: (a) Cumulative Relative Frequency Graph (b) pdf fitted to the Weibull (c) Histogram log-log scale.

α = 0, 852 and β = 5, 879. As the shape parameter α is
less than one, Weibull is a heavy-tailed distribution. If this
is the case, the sample mean and variance cannot be used as
estimators of the population because the central limit theorem
does not apply, which would mean that basing any conclusions
on sample means without fully understanding the distribution
would be questionable at best [13]. So, the mean value is not
representative. Figure 2c exhibits the dataset in log-log scale.
In this graph, it is noticed a straight leaning to the left, a
power law feature [3][13]. This pattern enhances the features
already mentioned, the majority of classes has few methods
and the mean is not representative. As this metric does not
have a value which may be taken as typical, we identified
the values representing the 70 ◦ and 90 ◦ percentiles of the
dataset, which correspond to the values 6 and 14. The 70 ◦

and 90 ◦ percentiles were chosen by a visual analysis of the
Cumulative Relative Frequency Graph showed in Figure 2a.
The points marked with green color/square shape and red
color/diamond shape represent the regions identified in this
analysis. Furthermore, the choice of these percentiles is also
based on the concepts of Good/Common, Regular/Casual and
Bad/Uncommon ranges. Thus: (1) based on visual analysis, (2)
the established concept for the ranges, and (3) inspired by the
work of Alves et al. [5] — who used percentiles to statistically
part quality metric profiles in thresholds identification — we
tried to apply the 70 ◦ and 90 ◦ percentiles in most of the
metrics in order to identify the measures able to separate
the three suggested ranges. We found up there are variations
that go in accordance with the distribution curve features,
when they are taller or flattened, or depending on a higher
or lower metric value (x axis) to reach a greater cumulative
frequency, in which the 70 ◦ and 90 ◦ percentiles do not have
significance. In such cases, we relied mainly on the visual
analysis and distribution features to identify the regions that
are able to separate the three suggested ranges. The values
6 and 14 allow us to separate number of methods metric in
three ranges: Good/Common (NOM ≤ 6), Regular/Casual
(6 < NOM ≤ 14) and Bad/Uncommon (NOM > 14).

B. Depth of Inheritance Tree
The data of DIT do not suggest a heavy-tailed distribution,

but a right-skewed one, as showed by the Cumulative Relative

Frequency Graph in Figure 3a. According to Figure 3b, the
dataset is best fitted to the Gumbel Max distribution, with
parameters α = 2.170 and β = 1, 469. By the adjustment
line of the data to the distribution, it is possible to identify the
right-skewed feature. In this kind of distribution, the mean
value is not representative. Figure 3c shows the dataset in
a log-log scale. In this graph, it is not noticed a straight
leaning to the left, which does not suggest a power law. We
have identified the values that represent the 70 ◦ and 90 ◦

percentiles of the dataset, which correspond to the values 2
and 4. The 70 ◦ and 90 ◦ percentiles were identified by a visual
analysis of the Cumulative Relative Frequency Graph showed
in Figure 3a. So, the identified threshold for this metric is:
Good/Common (DIT ≤ 2), Regular/Casual (2 < DIT ≤ 4)
and Bad/Uncommon (DIT > 4).

V. RESULTS

Table I presents the identified thresholds for each metric
analysed. Table II shows the best fitted distributions for each
metric, with their parameters. Our catalogue of thresholds
reflects a pattern followed by most of the software systems in
Qualitas.class Corpus, which may be useful in some scenarios
of Software Engineering.

TABLE I. IDENTIFIED THRESHOLDS.
Metric Good/Common Regular/Casual Bad/Uncommon
CA m ≤ 7 7 < m ≤ 39 m > 39
CE m ≤ 6 6 < m ≤ 16 m > 16
DIT m ≤ 2 2 < m ≤ 4 m > 4
LCOM m ≤ 0, 167 0, 167 < m ≤ 0, 725 m > 0, 725
MLOC m ≤ 10 10 < m ≤ 30 m > 30
NBD m ≤ 1 1 < m ≤ 3 m > 3
NOC m ≤ 11 11 < m ≤ 28 m > 28
NOF m ≤ 3 3 < m ≤ 8 m > 8
NOM m ≤ 6 6 < m ≤ 14 m > 14
NORM m ≤ 2 2 < m ≤ 4 m > 4
NSC m ≤ 1 1 < m ≤ 3 m > 3
NSF m ≤ 1 1 < m ≤ 5 m > 5
NSM m ≤ 1 1 < m ≤ 3 m > 3
PAR m ≤ 2 2 < m ≤ 4 m > 4
SIX m ≤ 0, 019 0, 019 < m ≤ 1, 333 m > 1, 333
VG m ≤ 2 2 < m ≤ 4 m > 4
WMC m ≤ 11 11 < m ≤ 34 m > 34

The identification of anomalous measurements is seen as a
part of the measurement process that may be part of a software

50Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 59 / 129

(a) (b) (c)
Figure 3. DIT: (a) Cumulative Relative Frequency Graph (b) pdf fitted to the Gumbel Max (c) Histogram log-log scale.

TABLE II. BEST FITTED DISTRIBUTIONS FOR THE METRICS.
Metric Distributition Parameters
CA Gen. Extreme Value k = 0.797, σ = 4.303, µ = 1.775
CE Gen. Extreme Value k = 0.527, σ = 2.834, µ = 2.397
DIT Log-Logistic α = 2.170, β = 1, 469
LCOM Beta α1 = 0.043, α2 = 6.777, b = 8.290
MLOC Pareto 2 α = 1.226, β = 3.051
NBD Gumbel Max σ = 0.858, µ = 0.931
NOC Log-Logistic α = 1.452, β = 5.520
NOF Beta α1 = 0.059, α2 = 64.580, b = 2026.446
NOM Weibull α = 0.852, β = 5.879
NORM Power Function α = 0.006, a = 0, b = 235.200
NSC Beta α1 = 0.001, α2 = 9.467, b = 25465.529
NSF Beta α1 = 0.018, α2 = 18.284, b = 4130.615
NSM Beta α1 = 0.017, α2 = 27.961, b = 1646.287
PAR Gumbel Max σ = 0.973, µ = 0.399
SIX Power Function α = 0.031, a = 0, b = 24.578
VG Chi-Squared ν = 1.000, γ = 1.000
WMC Log-Logistic α = 1.142, β = 4.687, γ = 0.000

quality assessment. After the measurements have been made,
developers should compare them with previous ones, looking
for unusually high values [1]. The identified thresholds may
be useful in this identification, as they provide a way to do
this comparison with the quality that is common in software
development. But, an anomalous measure does not necessarily
mean a problem, it suggests that there might be problems. Once
the artifacts are quantitatively identified, one must inspect them
to decide if the anomalous metric measures mean that the
software quality is compromised [1]. Other scenario is the
application of the thresholds in a filtering mechanism to reduce
the dataset in a bad smell detection strategy [15].

VI. EVALUATION

For the evaluation of our catalogue, we conducted a case
study which evaluated a proprietary software from a public
organization with a deteriorated internal quality, in order to
verify the ability of the proposed thresholds in indicating this
panorama. For privacy reasons, we call it XYZ. This study
was divided into 3 parts, aiming to evaluate, respectively, the
metrics of methods and classes, and the correlation of bad
smells occurrence with our thresholds evaluation. At the end
of this section, we present a qualitative analysis of the utility
of the identified thresholds for the metrics which were not
applied in the evaluation of XYZ.

XYZ is considered a successful software by its users and
stakeholders. However, there is consensus on the team that led
its development and now leads the maintenance and evolution
that, actually, it has a bad internal quality. XYZ has 54,297
TLOC, 2,532 methods, 603 classes and 139 packages.

From its deployment in 2009, there was no execution of
preventive maintenance, neither refactorings to improve its
internal quality. During the last years, XYZ has been suffering
constant maintenance, such as: fixing runtime errors or system
requirements, adding new features or modifying the existing
ones, improving the processing speed of its functionalities and
adjusting the code to changes in the environment.

As XYZ is constantly changing, it is natural that their inter-
nal structures become more complex [16]. Aiming to compare
the information about the aspects involving the maintenance
and evolution of XYZ with the view of the programmers, we
collected opinions of four members of the development team
about its internal quality and the reasons why they think the
software is in this situation. There were no forms or specific
directions, we chose to let opinions to flow naturally in order
to characterize the software quality from their qualitative view.
Analysing the reports, we noticed a consensus that XYZ has
a deteriorated internal quality. The factors cited as the root
of this problem are: the lack of adoption of methodologies
to systematize maintenance, lack of a software architect and
ineffective requirements.

A. Part 1 - Evaluation of Methods
The purpose of Part 1 is to check if XYZ has relatively

more methods classified as Bad/Uncommon and less methods
classified as Good/Common than most existing software of the
sample, Qualitas.class Corpus, what would be in conformance
to the qualitative consensus of its low quality.

To do that, we measured the percentage of methods clas-
sified as Good/Common, Regular/Casual and Bad/Uncommon
by the metrics of methods of 111 system of Qualitas.class
Corpus, i.e., one of the software in the dataset, hsqldb, has
73.55% of its methods classified as Good/Common, 17.69%
as Regular/Casual and 8.76% as Bad/Uncommon by MLOC
metric. Subsequently, the systems were ordered as follows: in
ascending order by the percentage of methods classified as

51Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 60 / 129

Bad/Uncommon and in descending order by the percentage
of methods classified as Good/Common. Then, we got the
positions of XYZ in the obtained rankings. A low position
at the first ranking means that, relatively, XYZ shows a higher
proportion of methods classified as Bad/Uncommon than most
of the analysed software. A low position at the second ranking
suggests that few methods of XYZ are well evaluated by the
suggested thresholds than other software in the sample. As
the software has poor quality, this would suggest a correct
evaluation, i.e., the software is notoriously bad and its methods
were evaluated as Bad/Uncommon. The evaluated metrics
were:

Method Lines of Code (MLOC): in the first proposed
ranking, XYZ was at 100 ◦ position. So, it was no worse than
12 of the 111 systems dataset. By the second one, XYZ was
at 104 ◦ position, not being worse than 8 other systems.

Nested Block Depth (NBD): in the first ranking, XYZ was at
92 ◦ position. In the second one at 101 ◦ position.

Number of Parameters (PAR): in the first one, XYZ was at
107 ◦ position. In the second one, at 105 ◦ position.

McCabe cyclomatic complexity (VG): in both rankings, XYZ
was at 103 ◦, not worse than just 9 other systems.

1) Conclusion: The data show that XYZ has, relatively,
fewer methods evaluated as Good/Common than the vast ma-
jority of the systems present in the Qualitas.class Corpus. This
is in agreement with the established qualitative scenario about
the low quality of this system, i.e., the proposed thresholds for
method metrics were able to reflect, quantitatively, the scenario
of low quality of this system. In contrast, XYZ has, relatively,
a high number of methods evaluated as Bad/Uncommon than
other software in the dataset. This result suggests that the
proposed thresholds to metrics that evaluate methods will not
show quality where there are problems.

B. Part 2 - Evaluation of Classes
In this part of the case study, we evaluated a sample

of low quality classes defined by the development team of
XYZ with respect to the obtained classifications with the
identified thresholds for metrics of classes. Table III presents
the sample of classes, with fictitious names, and the obtained
classifications, where +1 means Good/Common, −1 means
Bad/Uncommon and 0 means Regular/Casual. Next we analyze
the results of each metric.

TABLE III. SAMPLE OF LOW QUALITY CLASSES OF XYZ.
NOF DIT WMC NSC NORM LCOM NOM SIX

LSI +1 +1 -1 +1 +1 -1 -1 +1
NSI +1 +1 -1 +1 +1 -1 -1 +1
RSI +1 +1 -1 +1 +1 -1 -1 +1
NB -1 0 -1 +1 -1 -1 -1 -1

NTB -1 +1 -1 +1 +1 -1 -1 +1
RB -1 +1 -1 +1 +1 -1 -1 +1
ND +1 0 -1 +1 +1 +1 -1 +1
LD +1 0 -1 +1 +1 +1 -1 +1

Number of Fields (NOF): the NOF column of Table III
shows that 5 classes were well evaluated and 3 classes were
poorly evaluated by the threshold of NOF. As these classes are
defined qualitatively as problematic, they were inspected in or-
der to identify their features across to the received quantitative
evaluation. LSI, NSI and RSI are service classes (fictitious

class names). According to Fowler [17], an anemic domain
model occurs when the business logic is not put in the domain
objects. Instead, there are a number of service objects that
capture this logic. When pulling behaviors into services, they
become Transaction Scripts, which organize the business logic
by procedures that treat requests from the view layer. These
services are at the top of the domain model and use the model
as a data repository. Then, the domain objects become “bags of
getters and setters”, not encapsulating the logic for the data.
The services are a grouping of procedural functions related
to domain data. Thus, anemic objects do not have behaviors
and services are grouping of procedural functions. Therefore,
these classes were classified as Good/Common by the identified
threshold for NOF, not because they have a reasonable amount
of fields, but for not having fields at all. Therefore, by using
only NOF, these classes would be well evaluated, despite being
problematic within the project, providing potential errors in the
quantitative evaluation. NDAO and LDAO are objects of type
DAO (Data Access Object), which encapsulate all data access
logic within an application. These are classes that, by their goal
within the system architecture, have few attributes, without
characterizing an architectural violation or a bad programming
practice, as occurs with the anemic domain model. These
classes are problematic because of their size and complexity,
and not by their number of fields. Thus, the classes were
correctly well evaluated in relation to the NOF threshold.
NB, NTB and RB are objects of type managed bean, which
were poorly evaluated by the identified threshold for NOF.
This type of class is typical in JavaServer Faces applications,
where each managed bean should be associated to one or
more components of a web-page [18]. These classes are large
and complex because they are not being componentized in
managed beans more cohesive, which meet a specific purpose
within the web-page. So, the qualitative assessment of these
classes match the result of applying the identified threshold
for NOF, both suggesting that the classes show poor quality.

Depth of Inheritance in Tree (DIT): the DIT column
of Table III shows that three classes were evaluated as
Regular/Casual and the rest of them were evaluated as
Good/Common. Inheritance is a resource rarely used in this
system, mainly because of the anemic domain model. Thus,
the vast majority of classes do not use this resource and,
consequently, do not have a deep inheritance tree. Therefore,
they were evaluated as Good/Common by the DIT threshold.
In fact, there are no problems in these classes related to the
depth of inheritance tree. So, these cases are not considered
incorrect evaluations, on the contrary, the identified threshold
of DIT correctly evaluated these classes as Good/Common. It is
necessary to understand correctly what is being evaluated with
the metric to perform a correct interpretation of the obtained
results. We must remember that a positive rating by the DIT
threshold in most classes of the system does not mean that the
design is making an appropriate use of inheritance, because
inheritance can not even being used. The classes that were
evaluated as Regular/Casual, ND and LD have an inheritance
hierarchy imposed by the used persistence framework. In a
qualitative evaluation, it was concluded that the DIT threshold
evaluated these classes correctly, as they are not impossible to
be understood neither are of easy understanding.

Weighted Methods per Class (WMC): by WMC column
of Table III, we observe that all classes were evaluated as

52Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 61 / 129

Bad/Uncommon by the identified threshold. WMC is a measure
of the class complexity and taking into account the character-
istics of XYZ and its evolutionary process, our threshold is
capable of showing the natural increase of complexity related
by Lehman [16] in a quantitative way. These classes are really
complex and they assumed many responsibilities throughout
the software evolution, becoming hard to understand and
maintain.

Number of Children (NSC): the NSC column of Table III
shows that all classes were evaluated as Good/Common by
the NSC threshold. Indeed, these are classes that do not have
children, not showing problems related to the evaluated aspects
of this metric.

Number of Overriden Methods (NORM): the NORM
column of Table III shows that all classes were well evaluated
by the identified threshold, except for NB class. Indeed, by
the low utilization of inheritance resource shown by the results
of DIT and the qualitative analysis of the software, this result
was expected, after all, the classes have no problems related to
excessive overwriting of methods and, therefore, were correctly
evaluated well. For the NB class, which is poorly evaluated,
we can see that this class was one of the three classes that were
classified as Regular/Casual by the DIT threshold, indicating
a depth of inheritance tree outside the ideal and the next to be
considered inappropriate. NB overwrites 7 methods, an amount
considered high by the threshold. The major problem of this
quantity of overwritten methods is that the class becomes diffi-
cult to understand. This problem is aggravated when combined
with an improper inheritance hierarchy, because the class may
override many methods due the fact that the parent class is not
appropriate. So, the negative evaluation is consistent with the
qualitative evaluation, as well as the positive evaluations were
considered correct.

Lack of Cohesion in Methods (LCOM): the LCOM column
of Table III shows that 6 of the 8 classes have low cohesion.
Classes of service type do not have cohesion between their
methods since they have no fields. Therefore, the inspected ser-
vices classes have a consistent poorly evaluation by the LCOM
threshold. As the managed beans are poorly componentized,
they have low cohesion. If they were better componentized,
cohesion would increase naturally, after all, the methods would
have higher similarity. On the other hand, DAO objects have
cohesion by the fact that their methods use fields inherited
from the parent classes related to the framework, performing
correlated operations in the database. Therefore, the positive
evaluations were correct.

Number of Methods (NOM): the NOM column shows that
all classes were poorly evaluated by NOM threshold, which is
in accordance with the assessments made by WMC threshold.
According to Lehman [16], the functionalities offered by a
system must be continuously incremented in order to maintain
user satisfaction. If this growth is done in an uncontrolled way,
classes will grow more and more by adding methods and fields
that meet the growing expectations of the user. Failure to do
this growing in a designed way will deteriorate the software
quality, since the classes become large and complex, as in the
case of the classes analysed.

Specialization Index (SIX): the SIX column of Table III
shows that 7 classes were well evaluated and the remaining one

was poorly evaluated by the SIX threshold. This metric aims
to assess how much a particular class overrides the behavior
of its superclasses. As expected, due the relation of SIX with
NORM and DIT, NB was poorly evaluated by SIX, as was
poorly evaluated by NORM and not well evaluated by DIT.
The other classes do not exceed normal levels of specialization
index suggested by SIX threshold and, in fact, they do no
overwrite the behavior of their superclasses in an excessive
way.

1) Conclusion: For this part of the study case, it was
established with the programmers of XYZ a set of 8 poor-
quality classes, with the aim of study the evaluations obtained
by applying the proposed thresholds. All classes had at least 3
classifications out of range Good/Common. This suggests that
if our catalogue of thresholds were applied in the management
of internal quality of software systems, all the classes of
the sample would be defined as objects of inspection in a
measurement process, for presenting unusually high values.
However, we also concluded that a single metric of our
catalogue should not be used to define the quality of a class.
For example, if only NOF was used to evaluate the 8 classes,
only two would be considered as poor-quality. This conclusion
is consistent with the work of Rosenberg et al. [4], which
suggests that a single metric should not be used to evaluate a
class. So, the results suggest that our catalogue is an efficient
way to evaluate the classes effectively.

C. Part 3 - Bad Smells Correlation
We applied JDeodorant [19], a plugin for Eclipse that

identifies bad smells, in order to identify long methods and
god classes in XYZ. After that, we evaluated all the methods
and classes of this system with some metrics of our catalogue
related to these bad smells concepts. With these data available,
we crossed the information of two qualitative variables: the
presence or absence of the bad smell and the classification or
no classification as Good/Common by the threshold. So, we
obtained the number of methods or classes that have or not
the bad smell against the amount of classified and unclassi-
fied methods or classes as Good/Common by the thresholds.
This type of information is called contingency table of two
qualitative variables. Furthermore, we raised the following null
hypothesis about the bad smell occurrence and the evaluation
obtained by the method or class with m threshold, Hnull

m : the
bad smell occurrence is independent of the method or class
not be classified by the metric m in Good/Common range.

To evaluate this hypothesis, we used a statistical test that
evaluates the dependency between the qualitative variables,
called Chi-Square Test for Independence, which determines
whether there is a significant association between the two
established variables. The input of this test is the 2 × 2
contingency table, and the output is the p-value, which is
the probability of obtaining an statistic test equal or more
extreme than the one observed in the sample about. If the p-
value is greater than 5%, we do not reject the null hypothesis.
Otherwise, we can reject it, which would suggests that there
is a relationship between the presence of the bad smells and
the method or class not be classified as Good/Common by
the threshold. The test was applied using the R tool [20]
for the WMC, NOM, NOF and LCOM thresholds with the
identified god classes and the evaluation obtained by the
MLOC, NBD and VG with the identified long methods. For

53Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 62 / 129

all of these tests, we obtained p-values less than 1%, rejecting
the null hypothesis at 99% of confidence level. Therefore, it
was possible to check that there is a statistical dependency
between: (1) the class be evaluated as Good/Common by the
thresholds of WMC, NOM, LCOM and NOF and do not have
the bad smell god class and (2) the method be evaluated as
Good/Common by the thresholds of MLOC, NBD and VG and
do not have the bad smell long method. These situations testify
in favour of the correctness of the evaluations performed by
our thresholds.

D. Other Metrics

Number of Classes (NOC): a package is a collection of
related types providing access protection and name space
management [21]. As much as classes are added to a given
package, group of classes tend to be less interrelated, sug-
gesting a possible re-division into smaller packages to create
new groups which reflect a better defined domain. The NOC
threshold may be used to identify packages with a large
number of classes, in order to evaluate possible adjustments.

Afferent Coupling (CA): CA measures the number of external
classes to a specific package that depend on their inner classes
[22]. The higher the CA value, the greater the responsibility of
that package and the higher its relevance within the software.
A package with many external dependencies becomes a risk
artifact, knowing that a change on it may impact directly
and indirectly in many classes. In this sense, the identified
thresholds are useful in order to say what is a high CA
value, based on the standards of software quality that has been
developed. Therefore, knowing what is a high value of CA may
aid to identify the need for re-distribution of responsibilities of
a too influential package in a set of packages more cohesive.

Efferent Coupling (CE): CE is the number of internal classes
in a package that depend on external classes of this package
[22]. A high value of CE means that the package strongly
depends on other classes of other packages, making it a more
unstable artifact, given the high degree of dependent classes.
Keeping a low degree of CE means getting a package with
greater independence. The identified thresholds show that most
packages in OO software have been developed with up to 6
dependent classes, occasionally they have 7 to 16 dependent
classes and rarely more than 16.

Number of Static Methods (NSM): a static method belongs
to the class, rather than to an instance of the class [21]. Despite
this mechanism breaks the object-oriented programming con-
cept, it has practical utility in the context of object-oriented
software development in the Java Platform [23]. However,
they make the software less flexible because they cannot be
overridden. Therefore, the NSM threshold allows to identify
high values of static methods.

Number of Static Fields (NSF): a static field creates an
attribute that belongs to the class rather than being associated
with an instance of that class [21]. All class instances share
the static field, which is in a fixed location in memory. Any
change in an static field value will reflect in all instances
of the class. Static fields are extremely useful in the object-
oriented software developed in Java platform [23]. An example
is the implementation of the design pattern Singleton, which
guarantees the existence of only one instance of a particular

class, providing global access to that object. However, classes
that excessively use this feature and also static methods
have acquired a bad reputation because it prevents developers
to think in terms of objects [23]. The identified thresholds
indicate what is a high value for NSF, allowing the system
developer to identify classes in the design that are using this
feature excessively.

VII. RELATED WORK

In this section, we discuss related work that has been done
in order to identify thresholds for object-oriented software
related metrics. Rosenberg et al. [4] identified thresholds of
metrics with the goal of applying these metrics to assess
the reliability of software systems at NASA. The research
was conducted in more than 20,000 classes distributed over
15 projects. The goal was to identify thresholds capable of
discriminating weak code from solid code by statistical studies.
This study presents thresholds for six software metrics at class
level. As the analysis was done in the context of software
development at NASA, the results not necessarily can be
applied to other application domains. Moreover, as the dataset
is not open and the method is not described in details, the
results of the research are not reproducible.

Shatnawi et al. [24] presented a study of the relationship
between object-oriented metrics and error-severity categories,
identifying thresholds values that separate no-error classes
from classes that had high-impact errors. This study presents
thresholds for five metrics at class level. Moreover, the method
was applied in a limited size and domain sample, being a threat
to use these thresholds for software in general.

Alves et al. [5] designed a method that determines metric
thresholds empirically from a statistical analysis of a bench-
mark of software systems, which are derived by choosing the
70%, 80% and 90% percentiles from these data. The authors
focus on the method description, presenting thresholds for 3
metrics at method level and 2 metrics at class level. Besides
that, fixed percentiles not necessarily work for all metrics. Due
to this limitation, in the present work we carried out the data
analysis by understanding the distribution curve of the values
to establish these percentiles.

Oliveira et al. [6] proposed the concept of relative thresh-
olds for evaluating metrics data that follow a heavy-tailed
distribution. The thresholds are called relative because they
assume that metric thresholds should be followed by most
sources code entities, but that is also natural to have a number
of entities in the “long-tail” that do not follow the defined
limits. So, absolute thresholds should be complemented by the
percentage of entities that the upper limit should be applied
to. This work has focused on the method description, deriving
thresholds for seven metrics at class level.

Our work presents 17 object-oriented software metrics de-
rived by the same method, that is a large amount of thresholds
compared with previous studies. Besides that, our catalogue
does not cover only metrics at class level, but also metrics
at method and package level. The used approach is easily
reproducible and does not bring much statistical complexity.
Moreover, the proposed thresholds are based on analysis of
a large amount of software, of various sizes and domains,
making the results more reliable in terms of representativeness
of software generally.

54Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 63 / 129

VIII. THREATS TO VALIDITY

Software metric tools can measure different values for the
same metric. The identified thresholds may classify artifacts as
worse than they in fact are. So, like Qualitas.class Corpus [7]
relied on Metrics Plugin for Eclipse to collect the measures, we
cannot assure that the identified thresholds will be applicable
when using tools that collect metrics with an implementation
different from Metrics. The sample of applications used in
this research may also be a threat to the validity of this
study, because of its size and representativeness for software
in general. However, Qualitas.class Corpus has at least equal
software samples than other analysed studies and is composed
of various types and domains of software systems. Another
threat to validity is that this approach assumes that the metrics
are unidirectional in the sense of having a clear good and bad
orientation. So, if all classes show, for example, DIT = 0,
they would be classified as Good/Common by the suggested
thresholds, although the design is suboptimal, it does not
use inheritance. However, none of our suggested thresholds
contemplate the evaluation of the global quality of the software
systems and DIT = 0 is the most frequent value found in
practice. This triggers an alarm about the misuse of our cat-
alogue and misinterpretation of its results, being fundamental
to evaluate the scenario in which it will be applied.

IX. CONCLUSION AND FUTURE WORK

The knowledge of the thresholds is of fundamental impor-
tance in the promotion of the effective use of software metrics
regarding the management of internal quality of software
systems. In this research, we employed the method proposed
by Ferreira et al. [3] to propose a catalogue of 17 thresholds
for object-oriented software metrics, covering the quantitative
evaluation of methods, classes and packages. The method
is based on the analysis of the statistical distributions of
measures found in practice. It was observed that the metrics
fit a heavy-tailed or a skewed-right distribution. So, three
ranges of values were taken as the metric thresholds. The
range names were modified to Good/Common, Regular/Casual
and Bad/Uncommon, which express better the importance of
frequency concept in the thresholds. Although they do not
necessarily express the best design principles established for
Software Engineering, they reflect a quality standard followed
by most of the software evaluated.

The evaluation of the proposed thresholds in a proprietary
software showed the effectiveness of our catalogue of the
thresholds in indicating the real panorama of the internal
quality of software systems, that is, the evaluation do not show
quality where there is not. For metrics that do not participate
in the evaluation conducted in a proprietary software, we
presented a qualitative analysis which describes their appliance
in the identification of possible problems in object-oriented
software systems. So, we presented at least one analysis for
each one of our suggested thresholds. With our catalogue of
thresholds, we presented a contribution in the promotion of
software metrics as an effective instrument to manage the
internal quality of software systems.

As future work, we intend to continue evaluating the
identified thresholds through more case studies, aiming to
continue the investigation if the range in which the metric falls
reflects the real situation of the assessed artifact. Furthermore,
we intend to conduct the development of a tool that performs

a strategy composition of metrics to identify software entities
to be refactored, by applying metric thresholds.

REFERENCES
[1] I. Sommerville, Software Engineering, 9th ed. Harlow, England:

Addison-Wesley, 2010.
[2] M. Riaz, E. Mendes, and E. D. Tempero, “A systematic review of

software maintainability prediction and metrics,” in ESEM, 2009, pp.
367–377.

[3] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes, and H. C.
Almeida, “Identifying thresholds for object-oriented software metrics,”
Journal of Systems and Software, vol. 85, no. 2, Feb. 2012, pp. 244–
257.

[4] L. Rosenberg, S. Ruth, and A. Gallo, “Risk-based Object Oriented
Testing,” in Proceedings of the 24 th annual S.E. Workshop, NASA,
S.E.Lab, 1999, pp. 1–6.

[5] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds from
benchmark data.” in ICSM. IEEE Computer Society, 2010, pp. 1–10.

[6] P. Oliveira, M. T. Valente, and F. P. Lima, “Extracting relative thresholds
for source code metrics,” in CSMR-WCRE, Software Evolution Week
- IEEE Conference on, Feb 2014, pp. 254–263.

[7] R. Terra, L. F. Miranda, M. T. Valente, and R. S. Bigonha, “Qual-
itas.class Corpus: A compiled version of the Qualitas Corpus,” Sof.
Eng. Notes, vol. 38, no. 5, 2013, pp. 1–4.

[8] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “Qualitas corpus: A curated collection of java code for
empirical studies,” in APSEC2010, Dec. 2010, pp. 336–345.

[9] “Eclipse metrics plugin 1.3.8,” 2014, URL: http://metrics2.sourceforge.
net [accessed: 2014-12-30].

[10] R, “R project for statistical computing,” 2014, URL: http://www.
r-project.org/ [accessed: 2014-12-30].

[11] T. G. Filó, M. A. Bigonha, and K. A. Ferreira, “Statistical dataset on
software metrics in object- oriented systems,” Sof. Eng. Notes, vol. 39,
no. 5, 2014, pp. 1–6.

[12] “Easyfit,” 2014, URL: http://www.mathwave.com/products/easyfit.html
[accessed: 2014-12-30].

[13] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser,
H. Melton, and E. Tempero, “Understanding the shape of java software,”
in OOPSLA, New York, NY, USA, 2006, pp. 397–412.

[14] L. Doane, David & Seward, “Measuring Skewness: A Forgotten Statis-
tic?” J. of Statistics Education, 2011, pp. 1–18.

[15] M. Lanza, S. Ducasse, and R. Marinescu, Object-Oriented Metrics
in Practice: Using Software Metrics to Characterize, Evaluate, and
Improve the Design of Object-Oriented Systems. Springer, 2007.

[16] M. M. Lehman, “Programs, cities, students, limits to growth?” Pro-
gramming Methodology, 1978, pp. 42–62, inaugural Lecture.

[17] M. Fowler, “Anemic domain model,” 2014, URL: http://www.
martinfowler.com/bliki/AnemicDomainModel.html [accessed: 2014-12-
30].

[18] Oracle, “The java ee 6 tutorial,” http://docs.oracle.com/javaee/6/tutorial/
doc/bnaqm.html, 2014.

[19] “Jdeodorant,” 2014, URL: http://www.jdeodorant.com/ [accessed: 2014-
12-30].

[20] “Chi-squared Test of Independence,” 2014, URL: http://www.r-tutor.
com/elementary-statistics/goodness-fit/chi-squared-test-independence
[accessed: 2014-12-30].

[21] Oracle, “Java se technical documentation,” 2014, URL: http://docs.
oracle.com/javase/ [accessed: 2014-12-30].

[22] R. Martin, “OO design quality metrics - an analysis of dependencies,”
in Workshop Pragmatic and Theoretical Directions in O.O. Software
Metrics. OOPSLA, 1994, pp. 1–6.

[23] J. Bloch, Effective Java, 2nd Edition, The Java Series. NJ, USA:
Prentice Hall PTR, 2008.

[24] R. Shatnawi, W. Li, J. Swain, and T. Newman, “Finding software
metrics threshold values using ROC curves,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 22, no. 1, 2010,
pp. 1–16.

55Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 64 / 129

Hybrid Mockup-driven Development: An Agile Model-driven Approach for Web

Applications

Gürkan Alpaslan and Oya Kalıpsız

Department of Computer Engineering

Yıldız Technical University

İstanbul, Turkey

e-mail: gurkan89@hotmail.de, oya@ce.yildiz.edu.tr

Abstract— Model-driven development is an effective way

thanks to the automated code generation, documentation and

creating a prototype of the project. Agile principles target to

improve software developing pace and customer satisfaction

with iterative approach and agile principles. By considering

these two approaches, their inefficiencies are avoided and their

advantages are combined. In this paper, we combine these two

approaches for web applications; for this purpose, we choose

the hybrid MDD method as skeleton, which is an agile model-

driven approach. We target with this approach to create a

more efficient software method for web applications.

Keywords-Agile model-driven development; Hybrid model;

Mockup-driven development model

I. INTRODUCTION

Model-driven software development (MDD) is based on
the approach that “everything is model” [1]. Models are the
abstract representation of the system elements [2]. MDD’s
basic goal is to develop software on a higher abstraction
level than programming languages. Models are produced
before writing source codes and the software is developed
using these models. This way also provides software
documentation.

An agile development method [3] is an approach which
has values, principles and practices. Agile methods propose
the iterative software development. With every iteration, a
piece of software is produced, and, by the end of the last
iteration, total software emerges. In agile methods, customers
are the part of the software life cycle and all stakeholders are
working together.

The main goal of combining agile methods and MDD is
to benefit from both approaches. The method of that is to
implement MDD principles to agile methods by using agile
architecture as the skeleton. For this purpose, there are
different approaches in the literature [4]. The first method is
the Agile Model-Driven Development (AMDD) high level
life cycle [5][6][7]. This structure divides the software life
cycle into two parts, namely, the initial part and development
part. In initial part, the system scope is determined and initial
models are produced. The development part is the section
where the iterations are implemented. The more improved
structure is the Hybrid model [8]. Hybrid model has also two
parts, but in this approach, different teams are defined. This
approach is defined for general projects, not for the

customized platforms, with limitations lightweight project
constraint.

This paper’s goal is to customize the Hybrid model for
web applications by adding new suggestions for improving
productivity and software quality. For this purpose, Mockup-
driven development approach [9] and Hybrid model are
combined. Mockup-driven development is a model-driven
development for web applications. Mockups are the
structures that produce models for web applications that are
used as the prototypes of web applications [10]. Mockup-
driven development propose to develop web applications
from mockups which are more visual than diagrams. By
automated code generation, produced mockups can convert
to Hyper Text Markup Language (HTML), Cascading Style
Sheets (CSS) and JavaScript codes.

In the following section, we describe the agile model-
driven basics. Then, we describe the mockup-driven
development approach in Section 3. After that, we describe
our approach, hybrid mockup-driven development, in
Section 4. An ongoing case study is described in Section 5.
Finally, we conclude our experience and future work are
described.

II. AGILE MODEL-DRIVEN DEVELOPMENT

Agile model-driven development proposes an iterative
and incremental approach that supports all model-driven
benefits like documentation and automated code generation
[11][12]. In this approach, all models are produced by the
agile models. Agile models [13] are the structures which are
developed by implementing agile principles. Some of the
agile core principles [14] are:

 Assume Simplicity

 Embrace Change

 Incremental Change

 Maximize Stakeholder Investment

 Rapid Feedback

 Working Software is Your Primary Goal

 Travel Light
 To develop models properly with these principles is an
important part of the approach. In AMDD, the total
requirement list is divided into portions and the portions are
implemented consecutively.
 Generally, AMDD proposes to develop the software by
test-driven development method. Test-driven development

56Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 65 / 129

[15][16] proposes to produce the software test units before
writing the source codes. After the source code is produced,
the code is tested and the results are evaluated. Three results
are possible: passed, failed and refactor. Passed means the
code has passed the test succesfully, failed means that code
cannot work or fulfill the requirements and refactor means
code works but should be improved.

III. MOCKUP-DRIVEN DEVELOPMENT

In web application development, HTML, CSS and
JavaScript codes are used for designing both visual interface
and system logic run. Mockups provide these elements by
the automated code generation with supporting mockup
tools. For this purpose, they are proper and simple to use in
web applications. It provides to decrease error possibility and
development time.

Mockups can define as the models of web applications
[9]. Mockup tools provide an design interface which has
items using in web systems. Developer can design the
attributes of web items and make to connection with other
items.

In our projects, we plan to use Axure [17] mockup tool.
An example of mockup is shown in Figure 1.

Figure 1. An example mockup design [18]

 In Figure 1, an example website is designed by mockup

items. Information writings and graphics are used in

example. The graphic on the right up of the page in Figure 1

can change with the clicking little four circles. Bottom

design of the page in example can also change with the

clicking buttons that named as overview, feature, design and

spaces. This level is the model part of the process. After the

model developing is completed, this model transforms to

real websites.

IV. HYBRID MOCKUP-DRIVEN DEVELOPMENT APPROACH

In our approach, we combine the hybrid method and
mockup-driven development approach by adding some new
parts and customize the hybrid method for web applications

by using mockups. The reason of customizing for web
application is that the mockup-driven development method is
suitable for web applications. Mockups are more visual than
diagrams and easier to understand for all stakeholders who
have no knowledge about software engineering. This
advantage makes it easier to analyze the requirements and
working with mockups.

The approach can be used for small or medium size
projects. The reason of that is the challenges of remodeling
when lots of iteration occur.

A. The Steps of the Approach

The hybrid mockup-driven development is an iterative
approach where three interconnected teams work in parallel.
Figure 2 shows the processes of the approach. In the figure,
the numbers near the processes represent the teams that work
on the process. These teams are the business analyst team,
the model-driven development team and the agile
development team. The business analyst team is responsible
for communication with customers and prepare the
requirements. The MDD team is responsible for preparing
the mockup environment and the generated codes, which are
produced by mockup tools with automated code generation.
The agile development team is responsible for hand-crafted
codes and integrating them with generated codes. The team
is also responsible for preparing the test units and testing the
iteration software.

In the agile method, all the teams work together with
high interaction. In the approach, these teams work together
with support each other in every step. Teams use a common
sharing area and all team member has information what the
other teams have done. Also, before the iteration begin, all
teams meet together and discuss that what and how they will
do next iteration.

The steps in the approach are listed below.

 The business analyst team gets the requirements
from customers.

 The business analyst team and MDD team produce
the mockups. In this part, using pair development
and a customer representative are working together
for mockups.

 The agile team prepare the test environment and test
code units for mockups.

 The MDD team prepare the mockup tools and mdd
environment.

 Produced mockups transform to HTML, CSS,
JavaScript codes with automated code generation by
MDD team.

 The automated produced codes are shared with the
agile team and by the agile team, this codes are
completed with hand-crafted codes. Final code parts
are implemented to test units.

 Finally, developers have a software part and they
present it to customers.

 They get the feedbacks, document the reviews and
pass to the next iteration.

 With every iteration, this period repeats until the
total software has been produced.

57Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 66 / 129

Figure 2. Hybrid mockup-driven development

 The model storming part is a transition part for all teams

to be prepared for next iteration. In this part, all teams meet

together and firstly evaluate the completed iterations

reviews. After that, they prepare the next iteration activity

plan.

 System test is done with the method of test-driven

development approach, which described in Section 2. Test

plans designed by agile development team. Black box test

can be used for this type of small size web projects and the

systems which has supported with automated code

generation. A benefit of MDD is decreasing the error

possibility. Test cycle is a sequential activity. When every

iteration is done, the iteration’s test is implemented. Test

results are documentated like the method described in

Section 2 and proper updates are implemented.

B. Evaluation of the Approach

Hybrid mockup-driven development propose an iterative

approach with paralel working different teams. So, it divides

the workload into small portions. With paralel working

teams, waiting time of the other teams is decreased. Also, it

provides to intermediate changing on any problem or fixing

part while the development process.

 The basis of the approach is the agile princibles which

are described in Section 2. All parts of process run with

supporting agile princibles, so it takes the advantage of agile

architecture. Mockups are used, so more visual development

is provided.

 Generally, the basic benefits of the approach are software

development pace, flexibility, error detection easiness, and

simplicity.

C. The comparison of the processes

 The approach is compared to hybrid model and AMDD

high level life cycle. The comparison is done on these

criteria: main objective, main contribution, and usage areas.

In main objective part, the basis attributes of processes are

described. In main contribution part, the basis contribution

of software industry is described. In usage area part,

customized platform of processes are described. Table 1

shows the basic differences.

TABLE I. THE COMPARISON OF THE PROCESSES

Process
name

Main objective Main
contribution

Usage
areas

AMDD
High level
life cycle

An iterative and
test-driven

approach with
MDD princibles

usage

First method that
combining agile

and MDD
princibles

General
projects

Hybrid
MDD

method

Development on
models with

difference teams
iterative and
incremental

The difference
teams and work

sharing describing
on AMDD life

cycle

General
projects

Hybrid
mockup-

driven
method

Development on
mockups with

difference teams
iterative and
incremental

Mockup usage
with Hybrid
approach

Web
app.

 AMDD high level life cycle is the first approach that

shows that is possible to combine agile methods with

model-driven methods. A hybrid process improves that

model with adding different teams approach and new life

cycle diagram. In our approach, we target to improve the

hybrid method by using mockup and to demonstrate that

mockup-driven development approach can use with hybrid

method.

V. CASE STUDY

We gave this approach to a few student project teams in
‘Software Engineering’ class of our university and requested
them to develop their projects with this approach. Also, we
requested another teams to develop their project with the
traditional method. So, we target to compare our approach
and the traditional method.

This is an ongoing project; currently, the student project
teams are in the development phase. We selected two teams
developing the different projects for better analyzing the
approach. One of the teams includes five students developing
an online “Cinema Ticket System”. Another team includes
four students developing an online “Language Course
Registration System”. We described the approach to the
teams and decided to use Axure mockup tool [17]. They

58Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 67 / 129

firstly splitted the three specialized team as MDD team, agile
development team and business analyst team. After that, we
requested them to split their project into iteration modules.
Currently, they are working on first iteration; we plan to
complete the entire project in three months.

VI. CONCLUSION AND FUTURE WORK

Developing software with mockups by producing
prototype is an efficient way thanks to their visual interface.
By this visual interface, customer requirements are realized
more properly and the time for analyst part can be reduced.
Paralel working teams can provide faster development and
more communication. Thanks to the automated code
generation, reducing the development time and amount of
software errors are targeted.

Howewer, integrating automated generated codes and
hand-crafted codes can cause some problems in large scale
projects. In the forward iterations, rebuilding of previous
iteration model is an challenge for the projects have lots of
iterations. For this purpose, limited the approach for small or
medium size projects can be more proper.

In future work, we get the analyst results of the case
study work described in Section 5. We report the
development challenges of the approach by the feedback of
teams. We identified the evaluation criteria. They are
flexibility, rapidity, learning, cost effectiveness, metadata
management, tool support, problem domain analyst,
simplicity and maintainence. Also, we compare the approach
with the traditional method and other agile model-driven
methods by the analyst results.

REFERENCES

[1] S. Vale and S. Hammoudi, “Context-aware model driven
development by parameterized transformation”, Proceedings
of MDISIS, pp. 167-180, 2008.

[2] T. Stahl and M. Volter, Model-Driven Software
Development, John Wiley & Sons, 2006.

[3] T. Dyba and T. Dingsory, “What Do We Know about Agile
Software Development?”, IEEE Software, pp. 6-9, 2009.

[4] R. Matinnejad, “Agile Model Driven Development: An
Intelligent Compromise”, Software Engineering Research,
Management and Applications (SERA), 2011 9th Internation-
al Conference on, pp. 197-202.

[5] S.W. Ambler, “Agile Model Driven Development” , XOOTIC
Magazine, 2007.

[6] Agile Model Driven Development,
http://agilemodeling.com/essays/amdd.htm, retrieved:
03.2015.

[7] S.W. Ambler, The Object Primer 3rd Edition: Agile Model
Driven Development with UML 2.0 New York: Cambridge
University Press, 2004.

[8] G. Guta, W. Schreiner, and D. Draheim “A Lightweight
MDSD Process Applied in Small Projects”, In Proceedings of
the 35th Euromicro Conference on Software Engineering and
Advanced Applications, pp. 255-258, 2009.

[9] E. Benson, “Mockup Driven Web Development”, 22nd
Intenational World Wide Web Conference, pp. 337-342,
2013.

[10] F. Basso, M. Pillat, F.R. Frantz, and R.Z. Frantz, “Study on
Combining Model-Driven Engineering and Scrum to Produce
Web Information Systems”, 16th International Conference
Enterprise Information Systems, pp. 137-144, 2014.

[11] G. Alpaslan and O. Kalıpsız, “Model driven development
with agile process”, Elektrik - Elektronik, Bilgisayar ve
Biyomedikal Mühendisliği Sempozyumu , 2014.

[12] G. Alpaslan and O. Kalıpsız, “Researching of the agile model
driven processes”, Ulusal Yazılım Mimarisi Sempozyumu,
2014.

[13] A. Cockburn, Agile Software Development, Addison-Wesley,

December 2001.

[14] V.C. Nguyen and X. Qafmolla, “Agile Development of
Platform Independent Model in Model driven Architecture”,
3th International Conference on Information and Computing,
pp. 344-347, 2010.

[15] D. Astels, “Test Driven Development: A Practical Guide”,

Prentice Hall, 2003.

[16] S. Tilley, “Test-Driven Development and Software
Maintenance”, Proceedings of the 20th IEEE International
Conference on Software Maintenance , pp. 488-491, 2004.

[17] Interactive Wireframe Software & Mockup Tool, http://
http://www.axure.com/, retrieved: 03.2015.

[18] Creating Your First Mockup | Balsamiq, http://
http://support.balsamiq.com/customer/portal/articles/871902-
creating-your-first-mockup, retrieved 03.2015.

59Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 68 / 129

Critical Issues in SPI Programs: A Holistic View

Cristiane Soares Ramos, Ana Regina Rocha
COPPE/UFRJ

Federal University of Brazil
Rio de Janeiro, RJ, Brasil

email: cristianesramos@unb.br, darocha@cos.ufrj.br

Káthia Marçal de Oliveira
LAMIH, UMR CNRS 8201
Université de Valenciennes

Valenciennes, France
email: kathia.oliveira@univ-valenciennes.fr

Abstract - With the competitive market in the domain of
Information Technology (IT), companies are forced to
expand their field to offer not only the service of software
development, as well as direct customer services (e.g., help
desk) or specialist technology services (e.g., testing and
quality certification of systems). In this context, to apply
software process improvement (SPI) requires addressing
different needs and, therefore, the use of different models
and standards. In this paper, we propose to use a holistic
view to look at the whole company in planning a SPI
program. This is done by defining that which we call critical
issues, as elicited from stakeholders on the strategic, tactical
and operational levels of the company. Critical issues are
those which the stakeholders consider very important to
have in the company in terms of software process but that
they perceive the company does not have or is deficient in.
Critical issues support SPI planning as well as a return on
investment (ROI) evaluation, in a complete strategy for SPI
institutionalization. Preliminary results obtained show that
the critical issues are useful to steer the planning effort in
the SPI program so to deal with that which is critical for the
company.

Keywords - Software Process; Improvement; multimodel;
benefits; ROI.

I. INTRODUCTION

It is a fact well known that software process
improvement (SPI) programs should be in line with the
business goals of the organization [1][2]. This is
particularly difficult when a company has a wide field of
expertise, in services ranging from software development
to direct customer service. Moreover, to define SPI
programs, companies have several standards (e.g., ISO
9000 [3], ISO 29110 [4]) at hand along with quality
models (e.g., CMMI [5[-[7], and MPS.Br [8][9]). The
solutions proposed for SPI programs rarely include
different standards and models in the same program nor
consider the legacy of models already implemented in the
organization.

This situation contributes to uncoordinated efforts and
consequently concurrent improvement actions on different
hierarchical levels or different areas of the company that
choose a suitable model for their own needs, without
taking into account other company initiatives [10]. To
address this problem, we argue that it is essential to have a
holistic view for the planning and evaluation of the
benefits from SPI programs.

As defined in the Cambridge dictionary, holistic view
means, ‘dealing with or treating the whole of something or
someone and not just a part’. We proposed, therefore, to
take into account the expectation of benefits of the
stakeholders from different levels of the IT Company
(strategic, tactical, and operational) to plan the SPI
program. To that end, we argue that we should identify
critical issues to plan the SPI program in a way that it
could later be used to evaluate the ROI with the
institutionalization of the SPI program.

Critical issues are prioritized based on the company’s
business goals. They guide the goals of the SPI program
and support the selection of one or more models/standards
that best fit company needs. That means we consider the
use of a multimodel approach in the definition of a SPI
program.

This paper describes the work done to support the
identification of such critical issues and also how to use
them in the planning of a SPI program, using a real
industry case.

The next section briefly introduces the idea of a
multimodel approach for SPI. Then, Section 3 shows our
approach to plan a multimodel program for SPI, using
critical issues. Section 4 shows how to apply and use this
approach in practice. Section 5 points at the advantages,
limitations, and ongoing work avenues of this research

II. MULTIMODEL APPROACH FOR SPI

With the wide diversity of SPI standards, one of the
biggest difficulties faced by organizations is the
identification of the best-suited model to support them in
achieving their business goal. In Brazil, a study on the
evolution of software quality [11] showed a large adoption
of the MPS-SW [8] and CMMI-DEV [5] models. Their
use has brought benefits, such as higher customer
satisfaction, increased productivity, and cost reduction.
These and other benefits are often found in the literature as
return on investment from these models (see, for example,
[12-13]).

However, companies that have business features that
go beyond the scope of improvement of these models
require the implementation of other models. We can
mention: (i) companies that develop software products and
have a help desk or desk-service to meet the demands of
their customers and (ii) companies that outsource the
development of some lifecycle activities of their products.

60Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 69 / 129

In the first case, CMMI-SVC [7] and MPS-SV [9] can be
used; in the second one, CMMI-ACQ [6]. Multinational
companies also need to implement specific models, as
required for contracts in different countries (e.g., the
Brazilian model is being required in several contracts with
Brazilian Government).

One can also find several other models/standards
required and used in a smaller scale, such as ISO 9000 [3],
MoProSoft [14], ISO 29110 [4], MPT.Br [15] (a Brazilian
model for software testing).

A joint implementation of these models simultaneously
allows treating different points of improvement in the
organization in a more appropriate way. However, it is
necessary to determine when the joint implementation is
needed, which models are relevant, on which levels of
maturity/capability they should be deployed, and how the
improvement program should be structured towards a
feasible implementation in the company, without
generating unnecessary costs, wasted resources, rework
and looking for the best ROI.

With this scenario in mind, the concept of multimodel
environment emerged [16] as a result of the effort of
companies to integrate models and international standards
to achieve process improvement. Its use, however, requires
an understanding and an interpretation of how different
models co-relate, which makes an implementation of
multimodel improvement a complex task. Thus, the use of
a strategy to harmonize and match these models is a
critical success factor [17].

The harmonization implies defining solutions to
support the company [10]: (1) determine and understand
which models will help it accomplish its corporate goal;
(2) understand both the differentiating and the overlapping
features of these models; (3) create an organizational
process focused on the company’s mission and
incorporating the features and contents of all models of
choice.

In this context, Mirna et. al. [16] propose a method that
focuses on the business goal and selects the standards and
models that best fit the company, indicating what should
be done to achieve such goals. PRIME (Process
Improvement in Multimodel Environments) [18] proposes
the alignment between business and improvement goals.
Models are selected and categorized according to their
type of contribution to company goals, and the points of
intersection between models are determined. Both studies
measure the results, evaluating the achievement of the
organizational goals. Other examples of multimodel
approaches can be found in [19].

Several benefits justify an investment in multimodel
approaches, such as [18]: focus on the business rather than
focusing on the model; cultural change in relation to the
establishment of the processes in the company;
measurement system; robustness and effectiveness of the
organizational approach in the long run. However, a
multimodel approach also presents some challenges
[20][21]: getting the commitment from senior
management; determining the organization's strategy,
integrating and coordinating training; integrating measures

so that they do not target the adopted models; knowing the
differences and similarities regarding the various models
adopted in the design of improvements.

We argue that, to support a multimodel approach, one
needs a holistic view of the company in a way that the
potential benefits achieved by the SPI program are visible
to all the stakeholders involved.

III. A HOLISTIC VIEW FOR SPI VIA THE
IDENTIFICATION OF CRITICAL ISSUES

Our proposal for process improvement is based on the
idea that a company that decides to carry out a SPI
program wishes to have some benefits that justify such
investment. Thus, the characterization and understanding
of the needs of the company should be made judiciously
and should guide both the definition of the improvement
goal and the selection of models to be implemented, to
enhance the possibility of getting a better return on the
investment. By applying a holistic view we assume to look
at the company as a whole and, therefore, to look for
benefits for all the stakeholders involved in the SPI
program.

To support this idea we propose to identify critical
issues in the company. Critical issues are what all
stakeholders or their representatives, on the different
organizational levels (strategic, tactical, and operational)
consider very important to have in the company in terms
of process but sense the company does not have or has in a
deficient manner. By identifying these critical issues, the
company can better define a SPI Program plan and later
evaluate the benefits attained, to start a new cycle of
improvement, institutionalizing a continuous process for
improvement.

As shown in Figure 1, the core of a holistic view is the
identification of critical issues that can address different
stakeholder needs. Based on these critical issues the
continuous streamlining of the SPI is done as follows: (1)
Characterizing the company: understanding the
characteristics of the company as related to its field of
expertise (software development, software maintenance,
software testing, service desk, product marketing,
acquisitions, etc.), the improvement program initiatives
already undertaken, and its types of customers
(government, national, and international).

At this point the Critical Issues (CI) are identified
with the different stakeholders from the strategic, tactical
and operational levels; (2) Defining a SPI Program Plan –
defining the SPI plan, including improvement goals,
models/standards to be followed, resources, risk analysis
and mitigation, and an execution schedule; (3) Executing
the SPI Program Plan: Carrying out the plan, and
measuring results based on the critical issues identified;
and (4) Evaluating the Benefits of a SPI Program (4) –
evaluating the reach of the benefits with the stakeholders,
considering the critical issues they identified. These
benefits represent the ROI for the SPI program and if not
attained, they can be re-considered in the next
improvement cycle.

61Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 70 / 129

Figure 1. Continuous SPI with Holistic View

To support the identification of critical issues we
defined questionnaires based on a detailed research on the
benefits of SPI as shown in next subsection.

A. Supporting the Identification of Critical Issues for
SPI

To define the questionnaires for the identification of
critical issues we used a proposal that establishes the
implementation of theoretical procedures (theoretical
studies supporting the definition of the issues and their
semantic validation) and experimental procedures
(application of the questionnaire).

The theoretical procedures were supported by two
main sources: (1) a systematic mapping of literature [22],
where the benefits of Process Improvement Programs were
mapped (in brief, from 112 papers found in literature, 28
were considered pertinent, and of those 34 different
benefits for SPI were identified); and (2) the purpose of
the processes for quality models in the context of Software
(MPS-SW and CMMI-DEV models), Services (MPS-SV
and CMMI-SVC models) and Testing (MPT.Br model).
These models were picked due to their potential adoption
by Brazilian companies.

As shown in Figure 2 the statements (i.e., issues) of the
questionnaire were set in different categories: process
issues and issues about benefits in SPI. Process issues
were organized into common issues and specific issues, for
each of the process types (software, services, or testing).
Altogether there were 74 issues. This organization avoids
the repetition of issues, making the overlapping of the
process and help explicit in the definition of the SPI.

The definition of the questionnaire is based on [23] that
adapted SERVQUAL questionnaires [24]. This way, all
the issues are organized into two questionnaires: (i) one to
collect the Importance of the issue for the respondent, and
(ii) the second one to collect one’s Perception of each
issue in the company.

Figure 2. Categories of Issues in the Questionnaire

This way, each company stakeholder answers for each
issue to the extent one considers it important for the
organization according to one’s point-of-view (strategic,
tactical, or operational) and what one’s perception is of the
issue in the company. The issues are answered in a four-
point Likert scale.

Critical issues are the ones identified as very important
for the company but with a low level of perception by the
stakeholders. Figure 3 and 4 show respectively an example
of the issues presented in both questionnaires (to collect
the degree of Importance and degree of Perception).

Each one of the statements in the questionnaire (i.e.,
the issues) is associated to some quality model or quality
processes from a model, in a way that can further support
the identification of which model/process should be
addressed in the company. For instance, in Figures 3 and
4, the first statement from each questionnaire is related to
Project Planning/Work Planning; the second statement is
related to the Supplier Agreement Management from these
models; the third to Configuration Management and the
fourth to Process and Product Quality Assurance.

Two experts in Software Engineering, specifically on
software process improvement, reviewed all the statements
defined to ensure compliance with the following criteria:
clearness (intelligible even for less experienced
respondents) and simplicity (expressing a single idea).
Once the questionnaires were reviewed, two semantic
validations with the participation of industry professionals
were done.

Figure 3. Some statements of the questionnaire of Importance

Figure 4. Some statements of the questionnaire of Perception

62Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 71 / 129

TABLE I – CRITERIA FOR QUESTIONNAIRE ADAPTATION

Nature of work in
companies

Common issues Specific issues
SW,

SV, T
SW,
SV

SW,
T

SW SV T

Soft. Develop. or
maintenance

X X X X - -

Service-desk X X - - X -
Software testing X - X - - X

SW=Software; SV=Service; T=testing

The application of the full questionnaire depends on
the nature of the work done by the companies as shown in
Table I. Issues not pertinent are eliminated from the
questionnaire before it is applied.

B. Supporting the SPI Program Plan

Critical issues are used to support the planning of the
SPI Program. In order to reduce the degree of subjectivity
in this planning a need was seen to adopt a method that
would aid the company to grasp what processes deal with
the more critical issues and, when needed, prioritise and
set the order of the processes to be implemented in the
different improvement cycles.

QFD (Quality Function Deployment) aims at relating
product requirements to those of the clients, seeking to
identify how the product requirements are used to build a
product that meets client requirements [25]. The strategy
put forward in this work does not aim at the building of a
product but rather the planning of a SPI Program that
addresses the critical issues identified by the company.

Thus, the QFD was adjusted to relate the critical issues
(client requirements) with the software processes (product
requirements) so to prioritise the software processes that
will be used in the definition of a plan for the improvement
program. The main output product is the relative
importance (RI) index of the processes which will guide
the prioritisation of the processes in the planning of cycles
for the improvement of the software process.

IV. OUR APPROACH IN PRACTICE: AN
INDUSTRY CASE

In this section we show how the questionnaires
described in the section above were applied and used to
define the SPI program plan in a very small Brazilian
company.

A. Characterizing the Company and Identifying Critical
Issues

The company has customers in Brazil and overseas. It
does not hire services and/or software development from
other companies and it does not have the Brazilian
Government as a client. It works with software
development and maintenance by demand, develops and
sells final software products (components, COTS). It also
has a help-desk service for its customers. Currently, one of
its projects is to work as a software testing factory. As
regards its history of process improvements, the company
was rated as first level in the 2009 Brazilian model (MPS-
SW), although the processes are only partially followed
nowadays.

TABLE II – CRITICAL ISSUES IDENTIFIED AS PER CATEGORY

Common Issues Specific Issues
SW, SV, T* SW, SV SW, T SW SV T

2 10 2 0 7 8
7% 34% 7% 0% 24% 28%

Accumulated (Common + Specific) 48% 66% 41%
*SW=Software, SV=Service, T=testing

The questionnaires were answered by all company
employees (stakeholders). As a result, 29 critical issues in
the processes and 13 critical issues in the benefits of SPI
issues were identified. Table II shows the number of
critical issues as per category (see Figure 2). The majority
of critical issues are related to services (66%), followed by
software (48%), and Testing (41%). We also found that
48% are common issues in service, software and testing
quality models.

We should like to point that, in defining improvement
actions that address critical issues, the processes to be
implemented should consider the overlap between models
and also the characteristics that differentiate them. The
critical issues are discussed below from the perspective of
the respondents’ profiles: (a) Technical team - operational
level; (b) Project manager - tactical level; and (c) Senior
manager - strategic level.

1. Critical Issues in Processes
For the technical team the critical issues are more

concentrated in the realm of testing: control of test
environment incidents; standardization of test results in
projects; quantitative assessment of quality objectives;
identification and elimination of root causes of defects;
and implementation of peer review. As regards services,
the critical issues are about the control of the
implementation of changes and the ability to monitor
performance requirements. There are expectations about
improvements in risk management and knowledge sharing
amongst the employees. It is interesting to note that there
are no common critical issues between the technical team
and the project manager.

From the perspective of the project manager, the
critical issues are related to: the use of estimation
techniques (C01); management of the projects and services
portfolio: planning of the services portfolio based on
strategic planning (C15); feasibility assessment for project
continuation against the strategic goals of the company
(C06). It is expected that the achievement of the business
goals of the company are evaluated by measurements
(C07). The critical issues specific to the services area refer
to the definition of mechanisms for the development of
new services; compliance with Service Level Agreements;
control of budget and accounting services; information
security and communication of information on services.

As regards testing, the critical issues for the project
manager are: managing the completion of testing
activities; automated source code assessment; re-use of
work products previously developed in other projects and
control of the use of new tools to support the testing
process. Finally, the critical issues for senior managers
concern supplier management agreements; use of

63Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 72 / 129

estimation techniques (C01); management of the projects
and services’ portfolio (C05, C06, C15); knowledge
sharing amongst employees; implementation of peer
reviews; automated assessment of the source code; use of
criteria for making important decisions; use of measures to
evaluate the achievement of company goals (C07); and
control of budget and accounting services.

As expected, no common critical issue was found in
the three profiles. The expected benefits vary according to
the responsibilities and activities performed by the
respondents. This reinforces the importance of involving
different stakeholders on different hierarchical levels in the
definition of the critical issues.

2. Critical Issues in SPI Benefits
Critical issues in SPI benefits are expectations of

benefits that are results of the entire SPI program, but
some of them may be associated with specific processes
(e.g., B01, B04, B08, B22, and B24).

For the technical team, the critical issues concern the
monitoring of projects (B24), reduction of re-work, and
the quality of the work life. Compliance projects schedules
(B22) are the only common critical issue of the technical
team with the project managers. The critical issues raised
by the project manager refer to expectations of
improvements related to the accuracy of estimates (B04);
prompt answer to market demands; and a greater market
share. Critical issues for senior management relate to
company growth in terms of number of projects and
clients in Brazil and overseas; ensuring that the cost of
projects and services are kept as planned (if there is no
change in requirements) (B08); better understanding of the
tasks and responsibilities by the project teams (B01); and
greater market share.

B. Defining a SPI Program Plan

The analysis of the critical issues identified in the
company indicates the need of a multimodel approach with
improvement actions for software, services and testing. As
the company aims at increasing the number of projects and
customers abroad, the use of quality models with
international recognition is advisable; in this case the
CMMI-DEV and CMMI-SVC. However, the MPT.Br and
MPS-SW/MPS-SV models should be used for some
specific issues related to testing and knowledge
management, as there are no CMMI processes that address
these issues.

To define the SPI Program Plan we should analyze all
critical issues, bearing in mind that they should be
addressed in several improvement cycles. Deciding which
questions to address in the first place is no trivial task and
should be done with caution. A bad start places the entire
improvement program at risk. Thus, it is recommended
that the critical issues identified be evaluated by senior
management (strategic level), based on different criteria.
The first one is the alignment with the business goals of
the company. Once this aspect is ensured, it should also
take into consideration company size, its legacy as regards
SPI, target budget for SPI and the natural dependence
between processes (i.e., processes presented on a high

maturity level depend on the implementation of other
processes, and therefore are hardly possible at first).

As shown in Table II, the company identified many
critical issues to tackle and most of them relate to services
(66%). However, the main company business is software
development and maintenance and as a result of that senior
management chose to first face the critical issues in the
domain of software (48%). In spite of that, many of such
issues are common to the services and testing areas.

The QFD approach was applied, considering, as client
requirements, the critical issues mapped in the Software
context. Having established the correlations between the
critical issues and the processes, in the end the Relative
Importance (RI) Index was found for the processes. Table
III shows the four highest RI processes and the CI
associated to such processes.

The processes with highest RI index are prioritised for
implementation. Based on this, 4 processes were chosen to
be implemented in the first SPI cycle: PP, PMC, M&A and
PFM, as they had already been implemented in the
company (PP and PMC) and are the basis for others. We
chose also REQM (requirements management) because it
has many correlation with other processes. The process
M&A is so important for the analyses of benefits of the
SPI program. For the second SPI cycle were selected the
engineering process Verification and Validation, because
of the high interest in the improvement to the quality of the
product and the business goal of answer the market
demand software testing projects.

The idea is to implement these processes in a
capability level 2 (of CMMI) in the first cycle and to
improve continuously in each new cycle of improvement.
Considering the process to be implemented in the first and
second cycles (six months each one), they cover software,
service and testing quality models. Therefore, the
definition of the process specific for the company should
ensure the incorporation of all the required features for
each model. Each cycle will be

At the end of each improvement cycle the perception
questionnaire will be reapplied to measure if the level of
perception of the critical issues are improving, which may
influence in the prioritization of critical issues for the next
improvement cycles. Moreover, to execute the SPI
Program Plan a set of measures is proposed for each
process to allow the evaluation of improvement actions
and a return of the investment.

TABLE III – TOP FOUR RI INDEX FOR THE PROCESSES

Process RI CI
PP - Project Planning 13,67% C01, B01,

B04, B22,
B24

PMC - Project Monitoring and
Control

10,73%

M&A - Measurement and Analysis 7,17% C07

PFM - Portfolio Management 7,12%
C05, C06,
C15

(*) B – Benefit in SPI, C-common to between quality models

64Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 73 / 129

V. CONCLUSION

This paper presents an approach to support the
implementation of SPI program based on a multimodel
environment and on the eliciting of CI considering the
whole company. CI are prioritised according to business
goals of the company and guide the objectives, scope and
planning of the SPI Program. We point as an advantage of
this approach the participation of stakeholders from the
different levels and profiles in the identification of critical
issues; and, the idea of promoting the visibility of benefits
achieved by the improvement actions considering the
scope of the initial expectations of the stakeholders.

The holistic view occurs in two different dimensions:
the horizontal and the vertical. The horizontal dimension
goes through many lines of business. The vertical
dimension goes through only one line of business
considering the views of various hierarchical levels. The
ability to cover these two dimensions depends on the
structure of the company and their own desire to address
them.

It is necessary to do a better systematisation of the final
meeting, to support the alignment of the business goals
with the prioritisation of critical issues and the definition
of the number of SPI cycles. The general
recommendations we made were essential for the decision
making process, although the experience and certainty of
top management were key factors for the definition of the
SPI plan.

We are currently working on this weakness,
investigating the pick chart technique as proposed by
Lean [26] and QFD, to construct a House of Quality for
the critical issues and the processes. Other ongoing works
include the definition of a catalogue of measures for all CI
and their related process to allow an evaluation of the ROI
through the analysis of the benefits reaped; to support the
company, presented in this paper in the execution of its
SPI Program plan; and, to apply this approach to other
companies.

REFERENCES

.[1] J. Guzmán, H. Mitre, A. Amescua, and M. Velasco,
"Integration of strategic management, process improvement
and quantitative measurement for managing the
competitiveness of software engineering organizations,"
Software Quality Journal, vol. 18, pp. 341-359, 2010.

[2] T. Birkholzer, C. Dickmann, and J. Vaupel, "A Framework
for Systematic Evaluation of Process Improvement
Priorities," in Software Engineering and Advanced
Applications (SEAA), 2011 37th EUROMICRO
Conference on, 2011, pp. 294-301.

[3] ISO 9000:2005, "ISO/IEC 9000:2005 Quality systems -
Fundamentals and vocabulary". International Organization for
Standardization, 2005.

[4] ISO 29110, "ISO/IEC 29110-4-1: Software engineering --
Lifecycle profiles for Very Small Entities (VSEs)-- Part 4-1:
Profile specifications: Generic profile group" International
Organization for Standardization, 2011.

[5] SEI, "CMMI for Development, Version 1.3," Carnegie
Mellon University.2010. Available:
http://cmmiinstitute.com/resources/cmmi-development-
version-13 [retrieved: March, 2015]

[6] SEI, "CMMI® for Acquisition, Version 1.3," Carnegie
Mellon University. CMU/SEI-2010-TR-032, 2010.
Available:http://cmmiinstitute.com/resources/cmmi-
acquisition-version-13 [retrieved: March, 2015]

[7] SEI, "CMMI® for Services, Version 1.3," Carnegie Mellon
University,2010.
Available:http://cmmiinstitute.com/resources/cmmi-
services-version-13[retrieved: March, 2015]

[8] SOFTEX, MPS.BR - MPS General Software Guide:
Associação para Promoção da Excelência do Software
Brasileiro, 2012. Available:http://www.softex.br/wp-
content/uploads/2013/07/MPS.BR_Guia_Geral_Software_
2012-c-ISBN-1.pdf [retrieved: March, 2015]

[9] SOFTEX, MPS.BR - MPS General Service Guide:
Associação para Promoção da Excelência do Software
Brasileiro, 2012. Available:http://www.softex.br/wp-
content/uploads/2013/07/MPS.BR_Guia_Geral_Servicos_2
012..pdf [retrieved: March, 2015]

[10] J. Siviy, P. Kirwan, L. Marino, and J. Morley. (2008,
March). The value of harmonizing multiple improvement
technologies: a process improvement professional's view.
Available: http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=29159 [retrieved: March, 2015]

[11] P. Neto, G. Abib, M. Gomel, J. Pécora, A. Junglos, F. Ishi,
and G. Braga, "Software quality evolution in Brazil from
1994-2010 based on research and projects of PBQP
Software", Ministério da Ciência, Tecnologia e Inovação,
Brasília, 2011.

[12] G. Travassos and M. Kalinowski, iMPS 2011Performance
results of the companies that adopted the MPS model 2008-
2011: Softex, 2012. Available: http://www.softex.br/wp-
content/uploads/2013/08/iMPS-2011-Resultados-de-
Desempenho-das-Empresas-que-Adotaram-o-Modelo-
MPS-de-2008-a-2011.pdf [retrieved: March, 2015]

[13] M. Unterkalmsteiner, T. Gorschek, A. Islam, C. Cheng, R.
Permadi, and R. Feldt, "Evaluation and measurement of
software process improvement-A systematic literature
review," IEEE Transactions on Software Engineering, vol.
38, pp. 398-424, 2012.

[14] H. Okbata, Modelo de Processo para la industria del
Software MoProSoft, Versión 1.3, 2005.

[15] SOFTEX-RECIFE, MPT.Br Reference Guide Model:
SOFTEX Recife, 2011. Available:
http://mpt.org.br/mpt/wp-
content/uploads/2013/05/MPT_Guia_de_referencia.pdf
[retrieved: March, 2015]

[16] M. Mirna, M. Jezreel, C. Jose, S. Tomas, and A. Giner,
"Advantages of using a multi-model environment in
software process improvement," in Electronics, Robotics
and Automotive Mechanics Conference (CERMA), 2011
IEEE, 2011, pp. 397-402.

[17] C. Pardo, F. Pino, F. Garcia, M. Piattini, and M.
Baldassarre, "An ontology for the harmonization of
multiple standards and models," Computer Standards &
Interfaces, vol. 34, p. 12, 2012.

[18] J. Siviy, P. Kirwan, J. Morley, and L. Marino. (2008,
March). Maximizing your process improvement ROI
through harmonization. Available:
http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=28907 [retrieved: March, 2015]

[19] C. Pardo, F. Pino, F. García, M. Piattini, and M.
Baldassarre, "Trends in harmonization of multiple
reference models," in evaluation of novel approaches to
software engineering. vol. 230, L. Maciaszek and P.
Loucopoulos, Eds., ed: Springer Berlin Heidelberg, 2011,
pp. 61-73.

65Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 74 / 129

[20] L. Ibrahim, "A process improvement commentary,"
Crosstalk: The Journal of Defense Software Engineering,
vol. 21, p. 4, 2008.

[21] U. Andelfinger, A. Heijstek, and P. Kirwan. (2006). A
unified process improvement approach for multi-model
improvement environments. Available:
http://www.sei.cmu.edu/library/abstracts/news-at-
sei/feature1200604.cfm [retrivied: March, 2015]

[22] C. Ramos, K.. Oliveira, and A. Rocha, "Towards a strategy
for analysing benefits of software process improvement
programs," in The 25th International Conference on
Software Engineering & Knowledge Engineering, Boston,
2013, p. 6.

[23] J. Xexéo, "Sistema de informação como instrumento de
programas de qualidade," Doutorado, COPPE, Programa de
Engenharia de Sistemas e Computação, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, 2001.

[24] A. Parasuraman, V. Zeithaml, and L. Berry, "SERVQUAL
- A multiple-item for scale for measuring consumer
perceptions of service quality," Journal of Retailing, vol.
66, pp. 12-40, 1988.

[25] F. Franceschini, Advanced quality function deployment:
CRC Press LLC, 2002.

[26] G. Mike, D. Rowlands, and B. Castle, What is Lean Six
Sigma?: McGraw-Hill, 2004.

66Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 75 / 129

Data Verification of Telecommunication Projects for Risk Assessment Models

Ayşe Buharali Olcaysoy
Yildiz Technical University & Turkcell Technology

Istanbul, Turkey
ayse.buharali@turkcell.com.tr

Oya Kalipsiz
Yildiz Technical University

Istanbul, Turkey
kalipsiz@yildiz.edu.tr

Abstract—Every project is important and has some risks.
However, the definition of risk needs to be clarified, since risk
is usually mixed with other project concepts such as constraint
and problem. Risk represents future uncertain events with a
probability of occurrence and a potential for loss. It is possible
to reduce or even eliminate this negative impact with risk
management methods. In risk management, risk models are
created to discover possible project risks in early stages of the
project. Risk models can also be used to predict the success of a
project in the very beginning. In order to create a predictive
risk model, a large dataset is required. In this work, we created
a risk dataset containing 357 projects of a telecommunication
company using their records spanning two years between 2010
and 2012.

Keywords-Software Project Management; Software Risk
Management.

I. INTRODUCTION

Each year Standish Group publishes CHAOS manifesto,
which shows percentage of successfully completed software
projects in global companies. According to CHAOS
manifesto, only 39% of the projects were completed
successfully (delivered on time, on budget, with required
features and functions) in 2012. This ratio is still very low,
even though it is increasing compared to previous years [1].
Risk management plays an important role in raising this
ratio. Increasing the number of academic studies on different
aspects of risk management also shows the awareness of the
importance of risk management. Verna et al. [2] conducted a
survey to investigate risk and risk mitigation strategies in
global software development in 2013. In this survey, authors
investigated 37 papers reporting 24 unique global software
development projects. They also reported that the number of
studies on risk management on global software development
is increasing every year.

Risk assessment is an important part of risk management.
Risk assessment enables a project manager to evaluate the
possible risks in the early phases of project life cycle. In risk
assessment, a model is constructed to discover possible risks
or to evaluate the effects of risks on the progress of the
project [3]. Our aim is to create a predictive risk model to

discover and analyze risks of a software project in the early
phases. In order to create such, a model a large dataset is
required. However, to our best knowledge, there is no such
dataset.

In this study, we collected a risk dataset related to
internal projects of a company, which is operating in the
Turkish telecommunication market. In order to create a clean
dataset, several preprocessing and feature selection methods
were performed. Consistency of the created risk dataset is
verified through clustering and statistical distribution.

The remainder of this paper is organized as follows;
Section II summarizes the existing work on risk analysis and
assessment. In Sections III and IV, we give information on
our proposed risk assessment model and detailed information
about data preprocessing, feature selection and verification
steps. We conclude this paper with Section V.

II. RELATED WORK

Many risk management studies refer to the studies of
Pretty and Briand [4]. They developed a tool, namely
METRIX, for software risk analysis and management. The
tool employs a modeling technique that is based on the
Optimal Set Reduction algorithm [4].

Foo and Muruganantham have developed SRAM
(Software Risk Assessment Model). SRAM is determined
based on the results of the survey on the outcomes of past
projects. The quality of the project in SRAM, time and cost
of the criteria identified nine critical elements of risk
relationship [5]. This value is determined only according to
the risks associated with the internal dynamics.

In 2006, Jiamthubthugsin and Sutivong proposed a risk
assessment model [6], which is based on an assumption that
evolutionary cycles can be modeled by Weibull’s family
distribution. The factors used in the model are requirement
volatility, staff productivity, software complexity and
development time.

The study published in 2008 by Gupta and Sadik,
provided a software risk assessment and forecasting model,
SRAEM (Software Risk Assessment and Estimation Model)
[7]. Using this model, a near-success of software project with

67Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 76 / 129

accuracy can be estimated. This model not only performs a
risk assessment, but also estimates the risks of software
project.

Risk management also plays an important role in
software architecture decisions. Vliet and Poort
demonstrated how risk and cost affect making a decision
about the software architect by their model RCDA (The Risk
and Cost Driven Architecture) [8].

III. RISK ASSESSMENT MODEL FOR SOFTWARE PROJECTS

Several methods, including Monte Carlo simulation
[9][10][11], COCOMO (Constructive Cost Model) [12][13]
and data mining techniques [14][15], have been proposed to
create a risk assessment model. In our future work, we are
planning to create a new risk assessment model that is able to
predict possible risks of a given project in the early stages.
Using this model, we also plan to predict whether a given
project will succeed or fail.

In order to create this model, we plan to use a
classification algorithm that is able to dig out the most
similar projects from a given project pool. Naïve Bayes
classifier [16] and K-Means classification algorithms [17]
are possible candidates for our model. We prefer The Naïve
Bayes classifier because it is among the most effective at
learning algorithms known and its accuracy is higher than
the other learning algorithms [16]. The vectors in the K-
Means classification algorithm can be replaced during the
procedure and it always sets an algorithm that converges to a
local optimum. The K-Means algorithm is faster and
effective for most applications as the K-Means procedure is
easily programmed [17].

A large dataset that contains a company’s past projects is
needed in order to create such a risk assessment model.
However, such a dataset might contain irrelevant features
and missing information. In this study, we collected a real
life dataset from a telecommunication company and applied
several preprocessing steps. Then, we validated this dataset
using statistical features and clustering algorithms.

IV. EXPERIMENT AND RESULT

In this study, we used software projects, which were
developed between 2010 and 2012 by a company operating
in the Turkish telecommunication sector. Unutulmaz, Cingiz,
and Kalipsiz worked on the same company’s project data to
examine the risk factors of the projects before the initiation
phase [18][19]. This study discussed the whole risks during
the project life-cycle are discussed. Risk data included the
technical feasibility studies and the software projects that
were developed according to the Waterfall methodology
[20]. Data features of the risks involved in the project
management database are shown in Table I.

TABLE I. RISK DATA

Feature Name Description Type

Risk No Number generated by the system Integer

Risk Status Last status of risk
Multiple
Choice

Project
Project name to which risk was
belonged

Text

Assigned To Responsible name of the risk
Multiple
Choice

Risk Level Risk level
Multiple
Choice

Created By
Who created the risk record in
the system

Multiple
Choice

Created On Risk created date Date

Date Identified Risk identified date Date

Description Description of the risk Text

Probability Risk probability
Multiple
Choice

Risk Category Risk category
Multiple
Choice

Last Updated
The date of the risk register was
last updated

Date

Detailed
Description

Detailed description of the risk Text

Action Plan Plan for preventing the risk Text

Closure Criteria Risk criteria for closing Text

Inform To
Person shall be informed in case
of realization of the risk

Multiple
Choice

Negative Impact
The magnitude of the impact of
the risk

Multiple
Choice

Phase Identified
Phase of the project when the
risk is identified

Multiple
Choice

Response Action taken to risk Text

Risk Factors Risk factors affecting
Multiple
Choice

A. Feature Selection

Dataset acquired from the company includes 19 features.
Features which had test type were removed from the dataset
as free text format information could not be formalized in an
assessment model.

Features related to date (“Created On”, “Date Identified”,
“Last Updated”) and person name (“Assigned To”, “Created
By”,”Inform To”) were also removed from the dataset since
this information is not useful for assessment risks.

However, “Risk Factors” and “Risk Category” will be
used in our future risk assessment model. These features are
not used in this study because they can not be used for

68Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 77 / 129

verification of the dataset (which is the target of this study).
As a result, the following four data variables, shown in Table
II, were chosen to be used in this study.

TABLE II. VALUES OF RISK FEATURES

Feature Name Values

Risk Level Critical, High, Normal, Low

Probability Very High, High, Medium, Low, Very Low

Negative Impact High, Very High, Tolerable ,Very Low, Low

Phase Identified
Test, Deployment, Planning, Analysis,
Development, Closing

B. Preprocessing and Statistical Distribution

1658 risk records were extracted from the company’s
software projects between 2010 and 2012. Records that had
any value were cleaned from the dataset; so, 434 records are
remaining.

The statistical distribution of risk data according to the
phases of software development life cycle is given in Figure
1. The number of risk records reduction from the analysis
phase is to be expected. If this reduction will begin from the
planning phase, our risk assessment model will reach the
goal in the future because the risks will be estimated from
the first phase of the project.

Figure 1. Risk Distribution according to the Project’s Phases

The statistical distribution of the risk data according to
the risk level is shown in Figure 2. This distribution will be
used to compare with the results of the K-Means Clustering
of the dataset in Part C.

Figure 2. Statistical Distribution of Risks According to the Risk Levels

We examined the distribution of risk probability
according to the risk level. This distribution didn’t show any
non-normal result, as shown in Figure 2. For example, the
probability of high level risks is critical or high. If there will
be a low risk level in this very high probability class, this
result must be investigated.

Figure 3. Statistical Distribution of Probability According to the Risk
Levels

The relation between the negative impact of risk and
level of risk was also examined in our study. The distribution
of 58 records that had very high negative impact seems
normal because the risk level of these records is critical, high
or normal.

69Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 78 / 129

Figure 4. Statistical Distribution of Negative Impact According to the
Risk Levels

C. Preliminary Validation Analysis on the Data Set

The dataset was formed by the project managers. There
was not any automatic calculation or any information
received directly from the project management process.
Therefore, the data were open to human error. For this
purpose, the risk probability and the negative impact,
according to the four levels of risk, were tried to be
considered by using the K-Means Clustering method. Table
III showing the result of 434 records was obtained by
applying K-Means Clustering to “probability” and “negative
impact” features.

TABLE III. THE POSSIBILITY OF NEGATIVE EFFECTS, ACCORDING TO

THE K-MEAN DISTRIBUTION

Total
Data

Cluster
0

Cluster
1

Cluster
2

Cluster
3

Number of
Record

434 99 232 53 50

Features

Probability Medium Medium Medium High Medium

Negative
Impact

High
Very
High

High Tolerable Tolerable

Table IV shows the results of the risk levels clustering.
The critical risks were assigned to the cluster 0. This result
seems to make sense. However, the low level risks were
assigned to the cluster 2 instead of the cluster 3. This result is
needed to be investigated.

TABLE IV. THE LEVEL OF RISK ACCORDING TO THE DISTRIBUTION OF

THE CLUSTERS

Original
Risk
Level

Cluster 0
(CRITICAL)

Clsuter 1
(HIGH)

Cluster 2
(LOW)

Cluster 3
(NORMAL)

Critical 27 16 4 1

High 33 129 29 15

Normal 26 82 16 33

Low 13 5 4 1

Risks, according to the only negative impact obtained
clustering results, are in Table V; the results obtained by the
level of risk we ran are shown in Table VI.

TABLE V. CLUSTERING RESULTS BY NEGATIVE EFFECTS

Total
Data

Cluster
0

Cluster
1

Cluster
2

Cluster
3

Number of
Record

434 70 232 94 38

Negative
Impact

High
Very
High

High Tolerable Low

TABLE VI. THE LEVEL OF RISK ACCORDING TO THE DISTRIBUTION OF

THE CLASS – THE NEGATIVE IMPACT

Original
Risk
Level

Cluster 0
(CRITICAL)

Cluster 1
(HIGH)

Cluster 2
(LOW)

Cluster 3
(NORMAL)

Hıgh 27 129 39 11

Normal 15 82 46 14

Critical 27 16 4 1

Low 1 5 5 12

Table VII shows the clustering results using the method
only distributed by probability. Table VIII shows the
distribution of the risk level is much more accurate.

TABLE VII. CLUSTERING RESULTS BY PROBABILITY

Total
Data

Cluster
0

Cluster
1

Cluster
2

Cluster
3

Number of
Record

434 39 49 154 192

Probability Medium
Very
High

Low High Medium

TABLE VIII. THE LEVEL OF RISK ACCORDING TO THE DISTRIBUTION OF

THE CLASS –PROBABILITY

Original
Risk
Level

Cluster 0
(CRITICAL)

Clsuter 1
(LOW)

cluster 2
(HIGH)

cluster 3
(NORMAL)

High 14 13 111 68

Normal 3 20 21 113

Critical 19 0 12 8

Low 3 16 1 12

70Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 79 / 129

When we obtained all these results in Table IX, we
recognize that it will be more useful to use the results by the
K-Means Clustering according to two features (negative
impact and probability) in our future risk assessment model.

TABLE IX. THE RISK LEVEL DISTRIBUTION

CRITICAL HIGH NORMAL LOW

Original
Data

48 206 157 23

Results by
K-Means
Clustering

with 2
Feature

99 232 50 53

Results by
K-Means
Clustering

with
Negative
Impact
Feature

70 232 94 38

Results by
K-Means
Clustering

with
Probability

Feature

39 154 201 49

V. CONCLUSION AND FUTURE WORK

The statistical distribution of the risk dataset and K-
Means Clustering’s results proved that our risk dataset is
appropriate for our risk assessment model.

In the next stage of our study, we decide to create a
predictive risk model to discover and analyze risks of a
software project by using fuzzy logic methods [21] and
other intelligent methods [16][22]. Inspired by the study on
risk assessment model in 2010 [23], we decided to use fuzzy
logic. In this study, they created the software project risk
assessment model was based on fuzzy theory, then the
domain experts used fuzzy language to evaluate and
calculate the probability and impact of risks [23]. We will
use these methods to improve the relationships between risk
and other project features in our model. For this purpose, we
will collect other project features data such as "project
category", "project size" or even "the experience of project
managers". We also see that the project manager’s
experience is needed to be taken into account in our model.

ACKNOWLEDGEMENT

Thanks to Turkcell Technology for allowing us to use the

data in our study in accordance with their information

security policy.

REFERENCES

[1] The Standish Group. Chaos Manifesto 2013 Report. The Standish
Group International, Inc., 2013.

[2] J.M. Verner, O.P. Brereton, B.A., Kitchenham, M. Turner, and M.
Niazi, “Risks and Risk Mitigation in Global Software Development:
A Tertiary Study”, Information and Software Technology, vol. 56,
2014, pp. 54–78.

[3] C. Ravindranath Pandian, “Applied Software Risk Management – A
Guide for Software Project Managers”, Auerbach Publications, 2007,
p. 128.

[4] B.E. Gayet and L.C. Briand, “METRIX: A Tool for Software-Risk
Analysis and Management”, Annual Reliability and Maintainability
Symposium, 1994, pp. 310–314.

[5] S.W. Foo and A. Muruganantham, “Software Risk Assessment
Model”, IEEE International Conference on Management of
Innovation and Technology (ICMIT), IEEE Press, vol. 2, 2000, pp.
536-544, doi: 10.1109/ICMIT.2000.916747

[6] W. Jiamthubthugsin and D. Sutivong, “Resource Decisions in
Software Development Using Risk Assessment Model”, Proceedings
of the 39th Hawaii International Conference on System Sciences,
2006.

[7] D. Gupta and M. Sadiq, “Software Risk Assessment and Estimation
Model”, International Conference on Computer Science and
Information Technology, 2008.

[8] E.R. Poort and H. Vliet, “RCDA: ‘Architecting As A Risk- And Cost
Management Discipline”, The Journal of Systems and Software, vol.
85, 2012, pp. 1995-2013.

[9] G.S. Fishman, “Monte Carlo Concepts, Algorithms, and
Applications”, 3rd ed, Springer, 1999, p. 1.

[10] Electronic Publication: http://www.oracle.com/us/products/
applications/crystalball/risk-analysis-overview-404902.pdf,
[retrieved: February, 2015].

[11] Electronic Publication: http://www.palisade.com/risk/
monte_carlo_simulation.asp, [retrieved: February, 2015].

[12] B.W. Boehm, Software Engineering Economics, Prentice-Hall Inc.,
1981, pp. 329-342.

[13] R. Fairley, “Risk Management for Software Projects”, IEEE
Software, vol. 11, May 1994, pp. 536-544.

[14] J. Han and M. Kamber, Data Mining: Concepts and Techniques,
Morgan Kaufmann. 2006, p. 5.

[15] H. Jiang, C.K. Chang, J. Xia, and S. Cheng, “A History-Based
Automatic Scheduling Model for Personnel Risk Management”,
Computer Software and Applications Conference, COMPSAC 2007,
31st Annual International, IEEE Press, vol. 2, July 2007, pp. 361-366,
doi:10.1109/COMPSAC.2007.25.

[16] T.M. Mitchell, Machine Learning, McGraww-Hill Science, 1997, pp.
177-178.

[17] J.B. MacQueen, “Some Methods for Classification and Analysis of
Multivariate Observations”, Proceedings of 5th Berkeley Symposium
on Mathematical Statistics and Probability 1. University of California
Press, 1967, pp. 281–297.

[18] A. Unudulmaz, O. Kalıpsız, and M.Ö. Cingiz, “Risk Faktörleri ve
Risk Değerlendirme Modellerinin Farklı Veri Setleri Üzerinde
Gerçeklenmesi”. UYMS, 2013.

[19] M.Ö. Cingiz, A. Unudulmaz A., and O. Kalıpsız, “Yazılım
Projelerindeki Problem Etkilerinin Yazılım Mimarisi ile
İlişkilendirilmesi”, UYMK, 2012.

[20] W.W. Royce, “Managing The Development of Large Software
Systems”, Proceedings of IEEE WESCON 26 (August), 1970, pp. 1–
9.

[21] F.M. McNeill and E. Thro, Fuzzy Logic a Practical Approach, AP
Professional, 1994, pp. 13–14.

[22] W. Elmenreich, “Intelligent Methods for Embedded Systems”,
Proceedings of 1st Workshop on Intelligent Solutions in Embedded
Systems(WISES03), June 2003, pp. 3–5.

[23] A. Tang and R. Wang, “Software Project Risk Assessment Model
Based on Fuzzy Theory”, International Conference on Computer and
Communication Technologies in Agriculture Engineering, 2010, pp.
328–330

71Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 80 / 129

A Lightweight Approach to the Early Detection and Resolution of Feature Interactions

Carlo Montangero

Dipartimento di Informatica
Università di Pisa, Pisa, Italy

Email: monta@di.unipi.it

Laura Semini

Dipartimento di Informatica
Università di Pisa, Pisa, Italy

Email: semini@di.unipi.it

Abstract—The feature interaction problem has been recognized
as a general problem of software engineering, whenever one
wants to reap the advantages of incremental development. In
this context, a feature is a unit of change to be integrated in a
new version of the system under development, and the problem
is that new features may interact with the others in unexpected
ways. We introduce a common abstract model, to be built during
early requirement analysis in a feature oriented development.
The model is common, since all the features share it, and is
an abstraction of the behavioural model retaining only what is
needed to characterize each feature with respect to their possible
interactions. The basic constituents are the abstract resources
that the features access in their operations, the access mode (read
or write), and the reason of each access. Given the model, the
interactions between the features are automatically detected, and
the goal oriented characterization of the features provides the
developers with valuable suggestions on how to qualify them
as synergies or conflicts (good and bad interactions), and on
how to resolve conflicts. We provide evidence of the feasibility
of the approach with an extended example from the Smart
Home domain. The main contribution is a lightweight state-based
technique to support the developers in the early detection and
resolution of the conflicts between features.

Keywords–Feature interactions; State-based interaction detec-
tion; Conflict resolution.

I. INTRODUCTION

The feature interaction problem has been recognized as
a general problem of software engineering [1] [2] [3] [4],
whenever an incremental development approach is taken. In
this broader context, the term feature, originally used to
identify a call processing capability in telecommunications
systems, identifies a unit of change to be integrated in a new
version of the system under development. The advantages of
such an approach lay in the possibility of frequent deliveries
and parallel development, in the agile spirit. The feature based
development is now becoming more and more popular in new
important software domains, like automotive and domotics.
So, it is worthwhile to take a new look at the main problem
with feature based development: a newly added feature may
interact with the others in unexpected, most often undesirable,
ways. Indeed, the combination of features may result in new
behaviours, in general: the behaviours of the combined features
may differ from those of the two features in isolation. This is
not a negative fact, per se, since a new behaviour may be good,
from an opportunistic point of view; however, most often the
interaction is disruptive, as some requirements are no longer
fulfilled. For instance, consider the following requirements,
from the Smart Home domain:

Intruder alarm (IA) Send an alarm when the main
door is unlocked.

Main door opening (MDO) Allow the occupants to unlock
the main door by an interior
switch.

Danger prevention (DP) Unlock the main door when
gas/smoke is sensed.

Assuming a feature per requirement, it is easily seen that
combining Intruder alarm and Danger prevention leads to an
interaction, since the latter changes the state so that the former
raises an alarm. However, an alarm in case of gas leak or a
fire is likely to be seen as a desirable side effect, so that we
can live with such an interaction. Also, the combination of the
first two features leads to an interaction: an alarm is raised,
whenever the occupants decide to open the main door from
inside. However, this is likely to be seen as an undesirable
behaviour, since the occupants want to leave home quietly.

In general, the process of resolving conflicts in feature
driven development has the same cyclic nature: look for
interactions in the current specification, identify the conflicts,
resolve them updating the specification, cycle until satisfaction.

Many techniques have been proposed to automate (parts of)
this process. The search for interactions by manual inspection,
as we did above, is obviously unfeasible in practice, due to
the number of requirements in current practice. It is also the
step with the greatest opportunity for automation. The other
steps need human intervention since, at the current state of
the art, they cannot be automatized. However, as discussed in
Section IV, what is still lacking, in our opinion, is the ability to
detect the interactions, identify the conflicts and resolve them
by working on a simple model, as it may be available at the
beginning of requirements analysis, before any major effort in
the development of requirements.

We introduce a technique to support the detection and
resolution of feature interactions in the early phases of require-
ments analysis. The approach is based on a common abstract
model of the state of the system, which i) is simple enough
to induce a definition of interaction which can be checked by
a simple algorithm, and ii) can be modified, together with the
feature specification, taking care only of few, essential facets
of the system.

The model is abstract, since it is an abstraction of the
behavioural model retaining only what is needed to charac-
terize each feature with respect to the possible interactions:
the constituents of the model are resources, that is, pieces of
the state of the system that the features access during their
operations. To keep the model, and the analysis, simple, the

72Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 81 / 129

Figure 1. Activities of the lightweight approach.

operations on the resources are abstracted to consider only
their access mode, namely read or write. This way, however,
we do not loose in generality since the essential cause of an
interaction is a pair of conflicting accesses to a shared resource.
In this respect we were inspired by notion of conflict between
build tasks introduced by the CBN software build model [5].

The work required to build the abstract feature model can
be amortized in two ways. The shared state models can be
defined in a reusable and generic manner so that, for a given
domain, they can be exploited in many different development
efforts, as it happens in Software Product Lines; moreover, the
model can be fleshed-out as requirements analysis proceeds.

In the following, we use the Smart Home domain described
in [6] as a running example. The features are intended to
automate the control of a house, managing the home entertain-
ments, providing surveillance and access control, regulating
heating, air conditioning, lighting, etc.

The next section describes the approach. Section III as-
sess the correctness and completeness of the approach, and
Section IV discusses related work. Finally, we draw some
conclusions and discuss future work.

II. APPROACH

The lightweight approach to the detection and resolution
of feature interaction consists in the activities presented in
Figure 1 and elaborated in the next subsections.

Note that, from the point of view of the development
process, there is no constraint on how the abstract feature
model is built: in other words, domain model building and
feature specification can be performed in sequence, as well as
arm in arm as suggested in Figure 1. All the other activities
are each dependent on the outcomes of the previous one in the
list.

A. Domain model building
The description of the domain is an integral part of the

abstract feature model. Its purpose is to provide a definition
of the accessible resources, i.e., of the shared state that the
features access and modify, detailed enough to allow describ-
ing the features precisely. There are no special requirements
on the notation to express the model. In this paper, we use
UML2.0 class diagrams for their wide acceptance.

Figure 2 shows the class diagram of part of the Smart Home
design domain. The shared state is made up of the states of
the all the resources, which may structured, like MainDoor,
which owns a Lock.

The structure shown is not final, as new resources can be
added by the analyst if he needs them, not only to introduce
new features, but also to resolve conflicts, as it happens with
refinement (Section II-E5).

Figure 2. Smart Home Domain.

TABLE I. FEATURE SPECIFICATION TEMPLATE.

〈name〉 〈acronym〉 read write
〈feature goal〉 〈label〉 〈resource〉 〈label〉 〈resource〉

〈access reason〉 〈access reason〉

B. Feature specification
We model a feature defining: its goal; the resources in the

domain model it accesses (r/w); the reason for each access.
To make references short, we provide an acronym to each
feature, and an integer label to each resource access. We
introduce a template (Table I), which lists the feature name, its
goal, and the involved resources, grouped in two sets (read or
written) together with the reason for reading or writing each
resource. The three features introduced in the previous section
are represented in Table II.

Note that the accesses are numbered only for reference: no
sequencing is implied, as the order of the accesses is abstracted
away, as part of the simplicity of the model.

C. Interaction detection
Our definition of feature interaction is based on the access

mode (read or write) to the resources that make up the shared
state of the system. The features access the resources in read
mode to assess the state of the system, and in write mode to
update it. By definition,

there is an interaction whenever two features are
composed in the same system, and at least one of
them accesses in write mode at least a resource
accessed also by the other, in any mode.

Let us reconsider the features defined above and the
discussion in the previous section that led to detect some

TABLE II. FEATURE SPECIFICATION: IA, MDO, DP.

Intruder Alarm (IA) read write
To raise an alarm when
the main door is un-
locked.

(1) main door lock (2) alarm
To know when to To raise the alarm
raise an alarm

Main door opening
(MDO)

read write

To manually unlock the
door.

(1) InteriorSwitch (2) MainDoor.Lock
To receive the command To unlock

Danger prevention
(DP)

read write

To automatically unlock
the door in case of dan-
ger

(1) GasSensor (3) MainDoor.Lock
(2) SmokeSensor
To know when there is an
alert

To unlock

73Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 82 / 129

Figure 3. Interaction detection matrix.

TABLE III. INTERACTING ACCESS TO MAINDOOR.LOCK.

Feature Feature Goal Mode Access Reason

IA To raise an alarm when
the main door is un-
locked.

r To know if it has been
unlocked

MDO To manually unlock the
door.

r To unlock

interactions. We can rephrase it in term of resource accesses.
For instance, consider the main door lock: accessing it in read
mode allows knowing its current state, that is, if the door is
locked or unlocked; accessing it in write mode allows locking
or unlocking the door. Both IA and MDO access the door lock,
in read and write mode, respectively. By definition, we have
an interaction. Similarly, also IA and DP interact, since they
access the same resource in the same way.

We are now ready to see how interaction detection can be
automated: we build a matrix with a row per feature and a
column per resource, and put r (w) in cell (Fi, Ri) when Fi

accesses Ri in read (write) mode. The matrix is completed
to take into account the composited resources of the domain.
Indeed, potentially, the access to the field of a resource is an
access to the resource itself and vice versa. We put /r or /w in
a cell when the design domain entails that potentially there is
a derived resource access. As an example, Figure 3 shows the
matrix for IA, MDO, and DP.

In the interaction detection matrix, it is possible to identify
all the pairs of interacting features: any pair of non empty
entries in the same column with at least a w (or /w) denote an
interaction of the features in the selected rows. In the example,
from the first column, we have (IA, MDO), (IA, DP), and
(MDO, DP).

As an example where derived accesses are essential, let us
assume a different version of DP: open the main door when
gas/smoke is sensed. In order to find the interaction between
the write on the main door (to open it) and the read on the
door lock of feature IA, we need the derived read of IA on
the main door.

The superclass relation (an example is given in the ex-
tended case study in Figure 4) is dealt with in a similar way:
the access to a superclass is also an access to its subclasses.

D. Conflict and synergy identification
For each detected interaction a summarizing table is built,

with the information on the goals of the interacting features
and on the reasons for the interacting accesses.

As an example, table III captures the interaction (IA, MDO)
on the main door lock.

Such a table will help the expert in the classification of
the interaction and its resolution. At this point the expert

Figure 4. Extended Smart Home Domain.

can state if the interaction is a conflict, as clearly in this
case, since we do not want the alarm to be sent when the
opening is authorized, or a synergy. Instead, sending the alarm
is useful when some danger sensor is triggered. Hence, there
is a synergy between Intruder Alarm and Danger Prevention.
Finally, also the interaction between Main Door Opening and
Danger Prevention is a synergy. Indeed, the two features
pursue the same goal, that is to open the door.

E. Conflict resolution

Once an interaction is recognized as a conflict in the
analysis phase, we can take some actions to resolve it. In order
to discuss them, we need to extend the working example. In
addition to IA, MDO, DP we consider also a few more features,
namely:

Air change (AC) At 10:00 a.m. open the win-
dows, at 10:30 a.m. close the
windows.

Close window with rain (CW) Close the windows when the
rain sensor is triggered.

Video surveillance (VS) Surveillance cameras are
watched remotely via wifi.

Wifi switch-off (WSO) Switch off the wifi at night.

The extended domain model is in Figure 4, and the
specification of the new features is in Table IV.

Various routes to resolution have been proposed in the
literature (see [7] [8] [9] for interesting surveys):

1) Restriction: Avoid tout-court that the conflicting fea-
tures are ever applied in the same system. This is the resolution
strategy to be taken when the two features have incompatible
goals. In other cases, it is an option the expert can choose.
In the running example, we could prevent Video surveillance
(VS) and Wifi switch-off (WSO) from being applied in the same
house.

2) Priority between the features: A weaker form of restric-
tion is to guarantee that conflicting features are never applied
at the same time. This behaviour can be obtained by defining
priorities. Then, in the case two features are both enabled,
only the one with higher priority is executed. In our example,
priority can be likely used between Air Change (AC) and Close
window with rain (CW). Both features write on the resource
window. In the case of rain at 10:00 a.m., we do not want the
windows to be open.

74Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 83 / 129

3) Sequencing: This technique applies when the conflict
is caused by a bad order of application of features that are
triggered at the same time. In this case, to solve the conflict it
is sufficient to force the features to be applied in the correct
order.

4) Integration: According to this resolution strategy, the
two interacting features are combined in a new one whose
goal encompasses the goals of the two original ones.

VS and WSO can be integrated in a unique feature to
switch off the wifi at night, and switch it on if an intruder
is sensed, so that surveillance cameras can be watched from a
remote machine.

5) Refinement: In any approach based on a shared state,
we can apply another resolution strategy, considering if it is
possible to add a new resource and make the two conflicting
accesses insist on two distinct resources. Since two features
conflict only because they access the same resource, this
refinement solves the problem, by definition.

Think again of the conflict between Intruder Alarm and
Main door opening. We might specify a new IA feature
excluding the case where the door was unlocked using the
interior switch. In some sense, we distinguish between the
electrical and mechanical commands to the lock.

It is obvious that, after each resolution step, features are
to be checked again to detect if the changes have solved the
conflicts without introducing new ones.

The first three strategies do not change the features, but
extend the model adding relations between them. A new struc-
ture is introduced that records mutual exclusions, priorities,
and sequencing between features, as done, e.g., in [10]: This
structure is used in the detection phase to disregard the pairs
that might interact but will not, since incompatibilities have
already been solved by the introduced relations.

III. DISCUSSION

A discussion is needed on the soundness and completeness
of our detection method with respect to existing ones. We
restrict to design-time techniques, since we are interested in

TABLE IV. MORE SMART HOME FEATURES

Air Change (AC) read write
To ventilate the house (1) Clock (2) Window

To know when to
open/close

To open/close

Close window with rain
(CW)

read write

To close windows
in case of rain

(1) RainSensor (2) Window
To know when to
close

To close

Video surveillance
(VS)

read write

To remotely control the
house

(1) VideoCamera
To read the record-
ed data
(2) Wifi
To access the camera

Wifi switch-off (WSO) read write
To switch off the wifi
when not used

(1) Clock (2) Wifi
To know when to
switch-off

To switch-off

early detection. The most common way to define a feature
interaction is based on behaviours [2]:

A feature interaction occurs when the behavior of
one feature is affected by the presence of another
feature.

Soundness depends on the expert competence: the rough
detection based on the shared resources access model can
indeed render false positives, e.g., synergies. These will have
to be discarded during the subsequent analysis. However, also
the approaches analyzing the concrete behaviour cannot auto-
matically distinguish between conflicts and synergies and some
human intervention is still needed to complete the analysis.

On the other side, the completeness problem can be stated
as: is it possible that the behaviour of two features interfere
even if they do not access any shared resource? Consider the
following example dealing with air conditioning (AC):

Natural AC (NAC) If the room temperature is above 27
degrees and the temperature outside is
below 25, open the windows.

AC switch-on (ACS) If the room temperature is above 27
degrees switch-on the air conditioner.

These two features read the same resource, and act dif-
ferently under identical conditions, but they do not interfere
according to our definition. Do they interfere according to the
behaviour based definition? The answer is no, the behaviour
of each feature is not affected by the other one. Indeed, the
conflict between the actions of opening the windows and
switching on air conditioning can be stated only by an expert.
Similarly, in our case, a relation between open windows and
air conditioning can be recognized during domain description,
permitting the conflict to be detected.

Sometimes features interactions are defined in an even
more abstract way:

Features interactions are conflicts between the inter-
ests of the involved people.

We express the personal interests in the feature goals, and
base the analysis on it. Hence, we are compliant with respect
to this notion. Understanding if the persons involved have
conflicting interests is a different problem.

IV. RELATED WORK

A. Programming features
Bruns proposed to address the problem at the programming

language level, by introducing features as first class objects [1].
Our view is that such an approach is worth pursuing, but
needs be complemented by introducing features for features
in the early stages of the development process, namely in
requirements analysis.

B. Requirements interaction
Taxonomies of feature interaction causes have been pre-

sented in the literature [3] [11]. Among the possible causes,
there are interactions between feature requirements. We ad-
dress here a special case of the general problem of require-
ments interaction. A taxonomy of the field is offered in [12].
It is structured in four levels, and identifies 24 types of
interaction collected in 17 categories. It assumes that the
requirements specification is structured in system invariants,

75Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 84 / 129

behavioural requirements, and external resources description.
Their analysis is much finer grained than ours. Should the two
analysis be performed in sequence, our own should prevent the
appearance of some interaction types in the second one, like
those of the non-determinism type.

Nakamura et al. proposed a lightweight algorithm to screen
out some irrelevant feature combinations before the actual
interaction detection, on the ground that the latter may be
very expensive [13]. They first build a configuration matrix
that represents concisely all possible feature combinations,
and is therefore similar in scope to our interaction matrix.
However, it is very different in contents, since it is derived
from feature requirements specifications in terms of Use Case
Maps, which give a very detailed behavioural description of
the features. The automatic analysis of the matrix lends to three
possible outcomes per pair of features: conflict, no interaction,
or interaction prone. In our approach, the automatic analysis
gives only two outcomes: no interaction or interaction prone,
as one might expect, given the simpler model.

Another similar approach is Identifying Requirements In-
teractions using Semi-formal methods (IRIS) [6]. Both meth-
ods are of general application, and require the construction of
a model of the software-to-be. In IRIS the model is given in
terms of policies, but the formality is limited to prescribing a
tabular/graphical structure to the model. Both methods leave
large responsibility to the engineers in the analysis. However,
larger effort is required, and larger discretion is left to them in
IRIS: in our approach, interaction detection is automatized, and
the engineer can focus on conflict identification and resolution.
Finally, the IRIS model is much more detailed than ours, so
that resolving the identified conflicts may entail much rework,
while resolution in our case provides new hints to requirements
specification. The last consideration applies as well to the two
previous approaches.

C. Design and run-time techniques
As another example of the ubiquity of the feature interac-

tion problem, Weiss et al. show how it appears also in web-
services [14]. The approach to design-time conflict detection
entails the construction of a goal model where interactions are
first identified by inspection, and the subsequent analysis is
then conducted on a process algebraic refined formal model.
Also in this case, our model is more abstract, and the two
techniques may be used synergically.

In a visionary paper, Huang foresees a runtime monitoring
module that collects information on running compositions of
web-services, and feeds it to an intelligent program that, in
turn, detects and resolves conflicts [15].

Several run-time techniques to monitor the actual behaviour
of the system and detect conflicts and possibly apply corrective
actions, are reported in the literature, as surveyed in [9]: for in-
stance, [16] tackle the problem with SIP based distributed VoIP
services; in [17] policies are expressed as safety conditions in
Interval Temporal Logic, and they can be checked at run-time
by the simulation tool Tempura. These techniques should be
seen as complementary to the design-time ones, like ours: the
combined use of both approaches can provide the developers
with very high confidence in the quality of their product, as
suggested also by [8], which discusses the need for both static
and dynamic conflict detection and resolution.

D. Aspect oriented techniques
A related topic is that of interactions between aspect-

oriented scenarios. A scenario is an actual or expected execu-
tion trace of a system under development. The work described
in [18] is similar to ours, in so far as they place it in the
phase of requirements analysis, propose a lightweight semantic
interpretation of model elements. The technique relies on a
set of annotations for each aspect domain, together with a
model of how annotations from different domains influence
each other. The latter allows the automatic analysis of inter-
domain interactions. It is likely that, if feature and aspect
orientation are combined in the same development, the two
techniques could be integrated.

E. Formal methods
A recent trend of design-time conflict detection exploits the

current advances in formal static analysis by theorem proving
and model checking. The need for experimentation along this
line has been recognized by Layouni et al. in [19], where they
exploit the model checker Alloy [20] for automated conflict
detection. In [21], we show how to express APPEL [22] policies
in UML state machines, and exploit the UMC [23] model
checker to detect conflicts. In [24], we automate the translation
from APPEL to the UMC input language, and address the
discovery and handling of conflicts arising from deployment-
within the same parallel application-of independently devel-
oped management policies.

A feature interaction detection method close to model
checking is presented in [25]: a model of the features is built
using finite state automata, and the properties to be satisfied
are expressed in the temporal logic Lustre. The environment
of the feature is described in terms of the (logical) properties
it guarantees, and a simulation of its behaviour is randomly
generated by the Lutess tool; the advantage is that such an
approach helps avoiding state explosion.

F. Abstract Interpretation
We remark a difference with the usual way of performing

abstract interpretation [26], where the starting point is a
detailed model, which is simplified, by abstracting away the
information that is not needed for the intended analysis. What
is proposed here is to start with an abstract view in terms of
feature goals and resource accesses, and to perform conflict
analysis and resolution up-front.

G. Interactions affecting performance
Recently, work has been done on detecting and resolving

interactions that, thought not disrupting the behaviour, impact
on the overall performance of the system. The approach
described in [27] is based on a simple black box model: in-
teractions are detected using direct performance measurements
designed according to few heuristics. It would be interesting to
assess whether our technique may supplement advantageously
the heuristics to the point of balancing the cost of the required
domain model.

V. CONCLUSIONS

We present a state based approach to the early detection,
analysis and resolution of interactions in feature oriented soft-
ware development. Starting with a light model of the state that
the features abstractly share, the main steps of our approach

76Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 85 / 129

are the generation of an interaction matrix, the assessment of
each interaction (conflict or synergy), and the update of the
model to resolve conflicts. The abstraction is such that only
the mode (read or write) of an access to the shared state is
considered; each access is characterized by its contribution to
the overall goal of the feature it pertains to.

We provide a proof of concept of how interactions can be
detected automatically, as well as of how the developers can get
support in their assessment of the interactions and resolution of
the conflicts, looking at the well known Smart Home domain.

An interesting development will be to evaluate whether
to formalize the goal model, and how, in view of a (partial)
automatic support to the developers’ analysis tasks. Another
line of development of the approach would be to supplement
each resource in the shared space with a standard access
protocol, to prevent conflicting interactions. Inspiration in this
direction may come from well established practices, like access
control schemes and concurrency control.

ACKNOWLEDGMENTS

The work was partly supported by the Italian MIUR PRIN
project “Security Horizons”.

REFERENCES

[1] G. Bruns, “Foundations for Features,” in Feature Interactions in
Telecommunications and Software Systems VIII, S. Reiff-Marganiec
and M. Ryan, Eds. IOS Press (Amsterdam), June 2005, pp. 3–11.

[2] S. Apel, J. M. Atlee, L. Baresi, and P. Zave, “Feature interactions: The
next generation (dagstuhl seminar 14281),” vol. 4, no. 7. Dagstuhl, Ger-
many: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014, pp. 1–
24, URL: http://drops.dagstuhl.de/opus/volltexte/2014/4783/ [retrieved:
Feb, 2015].

[3] A. Nhlabatsi, R. Laney, and B. Nuseibeh, “Feature interaction: the
security threat from within software systems,” Progress in Informatics,
no. 5, 2008, pp. 75–89.

[4] V. Editors, “Feature Interactions in Software and Communication Sys-
tems,” ser. Int. Conference series.

[5] D. Coetzee, A. Bhaskar, and G. Necula, “A model and
framework for reliable build systems,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-
2012-27 arxiv.org/pdf/1203.2704.pdf, Feb 2012, URL:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-27.html
[retrieved: Feb, 2015].

[6] M. Shehata, A. Eberlein, and A. Fapojuwo, “Using semi-formal meth-
ods for detecting interactions among smart homes policies,” Science of
Computer Programming, vol. 67, no. 2-3, 2007, pp. 125–161.

[7] D. O. Keck and P. J. Kuehn, “The feature and service interaction
problem in telecommunications systems: A survey,” IEEE Transactions
on Software Engineering, vol. 24, no. 10, Oct. 1998, pp. 779–796.

[8] N. Dunlop, J. Indulska, and K. Raymond, “Methods for conflict reso-
lution in policy-based management systems,” in Enterprise Distributed
Object Computing Conference. IEEE Computer Society, 2002, pp.
15–26.

[9] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Fea-
ture interaction: A critical review and considered forecast,” Computer
Networks, vol. 41, 2001, pp. 115–141.

[10] P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi, “A compositional
framework to derive product line behavioural descriptions,” in 5th Int.
Symp. on Leveraging Applications of Formal Methods, Verification and
Validation, ser. LNCS, vol. 7609. Heraklion, Crete: Springer, 2012,
pp. 146–161.

[11] S. Reiff-Marganiec and K. J. Turner, “Feature interaction in policies,”
Comput. Networks, vol. 45, no. 5, 2004, pp. 569–584.

[12] M. Shehata, A. Eberlein, and A. Fapojuwo, “A taxonomy for identifying
requirement interactions in software systems,” Computer Networks,
vol. 51, no. 2, 2007, pp. 398–425.

[13] M. Nakamura, T. Kikuno, J. Hassine, and L. Logrippo, “Feature
interaction filtering with use case maps at requirements stage,” in [28],
May 2000, pp. 163–178.

[14] B. E. M. Weiss, A. Oreshkin, “Method for detecting functional feature
interactions of web services,” Journal of Computer Systems Science
and Engineering, vol. 21, no. 4, 2006, pp. 273–284.

[15] Q. Zhao, J. Huang, X. Chen, and G. Huang, “Feature interaction
problems in web-based service composition,” in Feature Interactions
in Software and Communication System X, S. Reiff-Marganiec and
M. Nakamura, Eds. IOS Press, 2009, pp. 234–241.

[16] M. Kolberg and E. Magill, “Managing feature interactions between
distributed sip call control services,” Computer Network, vol. 51, no. 2,
Feb. 2007, pp. 536–557.

[17] F. Siewe, A. Cau, and H. Zedan, “A compositional framework for
access control policies enforcement,” in Proceedings of the 2003 ACM
workshop on Formal Methods in Security Engineering. NY, NY, USA:
ACM Press, 2003, pp. 32–42.

[18] G. Mussbacher, J. Whittle, and D. Amyot, “Modeling and detecting
semantic-based interactions in aspect-oriented scenarios,” Requirements
Engineering, vol. 15, 2010, pp. 197–214.

[19] A. Layouni, L. Logrippo, and K. Turner, “Conflict detection in call
control using first-order logic model checking,” in Proc. 9th Int. Conf.
on Feature Interactions in Software and Communications Systems, L. du
Bousquet and J.-L. Richier, Eds. France: IMAG Laboratory, University
of Grenoble, 2007, pp. 77–92.

[20] Alloy Community, URL: alloy.mit.edu/community/ [retrieved: Feb,
2015].

[21] M. ter Beek, S. Gnesi, C. Montangero, and L. Semini, “Detecting policy
conflicts by model checking uml state machines,” in Feature Interactions
in Software and Communication Systems X, International Conference
on Feature Interactions in Software and Communication Systems, ICFI
2009, 11-12 June, 2009, Lisbon, Portugal. IOS Press, 2009, pp. 59–74.

[22] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray, P. Perry,
and J. Ireland, “Policy support for call control,” Computer Standards
and Interfaces, vol. 28, no. 6, 2006, pp. 635–649.

[23] M. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti, “A state/event-
based model-checking approach for the analysis of abstract system
properties,” Sci. Comput. Program., vol. 76, no. 2, 2011, pp. 119–135.

[24] M. Danelutto, P. Kilpatrick, C. Montangero, and L. Semini, “Model
checking support for conflict resolution in multiple non-functional
concern management,” in Euro-Par 2011 Parallel Processing Workshop
Proc., ser. LNCS, M. A. et al., Ed., vol. 7155. Bordeaux: Springer,
2012, pp. 128–138.

[25] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and NicolasZuanon,
“Feature interaction detection using a synchronous approach and test-
ing,” Computer Networks, vol. 32, no. 4, 2000, pp. 419–431.

[26] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints,” in Proc. 4th ACM Symp. Principles of Programming
Languages, 1977, pp. 238–252.

[27] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. S. Batory,
M. Rosenmüller, and G. Saake, “Predicting performance via automated
feature-interaction detection,” in 34th International Conference on Soft-
ware Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,
2012, pp. 167–177.

[28] M. Calder and E. Magill, Eds., Feature Interactions in Telecommunica-
tions and Software Systems VI. IOS Press (Amsterdam), May 2000.

77Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 86 / 129

Developing a Repository for Component-Based
Energy-Efficient Software Development

Doohwan Kim Jang-Eui Hong
Dept. of Computer Science

Chungbuk National University
Cheongju, Rep. of Korea

email: dhkim@selab.cbnu.ac.kr, jehong@chungbuk.ac.kr

Abstract— Software components are one reusable asset which
can contain other kinds of software assets like requirement
specifications, design patterns, source codes, documents, and so
on. It can be used for designing software architecture or
implementing a software system as an element like a building
block. Therefore, software can be developed easily and quickly
by assembling those building blocks. Focused on this nature of
component-based development, energy-efficient software
development can also be achieved with reusable software
components. In particular, low-energy software has become a
critical component for embedded and mobile software systems.
Therefore, we have to consider energy efficiency to develop
embedded software when developing the software based on
reusable components. This paper, firstly, proposes how to
represent the energy characteristics of the components and
how to select a component for energy-efficient software
development. We developed a component repository, ECoReS
to support the selection of low-energy software components.

Keywords-reusable software assets; component repository;
energy-efficient software; component selection.

I. INTRODUCTION
Software reuse has become one of the general processes

to develop software systems because reuse can provide huge
benefits of error prevention, cost and time reduction, and
even quality improvement [1]. The representative paradigm
based on the reuse approach is known as CBSD
(Component-based Software Development). CBSD can
effectively support embedded software development because
this kind of software frequently includes the same functions
as other embedded software, which are in the product family.
Therefore, the software can be developed faster and more
reliable than developing it from scratch [2].

To elevate the benefits of software reuse, a repository
that manages reusable assets on an organizational level is
required. The purpose of a software component repository is
to support the reuse of the components that have been
acquired at the organization level. The repository also has to
provide the functions of component registration, component
retrieval, and component selection to software engineers for
systematic reuse [3]. Therefore, many component repository
systems have been developed that focus on managing and
retrieving components to satisfy the functional requirements
of developing software. However, embedded software

development has to consider not only the functional
requirements, but also various non-functional requirements
because of limited resources and operational environments
[4]. Therefore, these limitations must be considered as one of
the characteristics, also known as the quality factors, of the
software through the entire development process [5][6][7].
Low-energy consumption, as one of the characteristics of
embedded software, has become a very important quality
factor in portable or mobile systems like smart phones, MP3
players, and tablet PCs, because those systems are powered
from limited energy sources such as a battery. However,
there are just a few studies on the development of
component-based low-energy software.

The major profits of component-based energy analysis
can be considered from two sides: the first one is the
reduction of feedback costs by early-phase estimation of
energy consumption, and the second is the provision of high
reliability of the estimation result. The higher abstraction
level tends to lead to less accurate or coarse-grained analysis
results [8]. However, reusable components have their own
developed code which is managed in a component repository.
Because the components can be used as the computational
units of software architectural components, they make
possible architecture-level analysis for requirements
verification, which is a high abstraction level of software.
Moreover, the component code will improve the accuracy of
the analysis result. Therefore, if there is any method to
support the energy analysis based on components in
embedded software development, we can take the two
advantages which conflict with each other, i.e., early phase
estimation and its high reliable result. For these reasons, a
component repository supporting low-energy software can
be considered as one of the important infrastructures in the
CBSD paradigm. Therefore, we developed a component
repository, named Energy-based Component Retrieval
System (ECoReS), which manages software components
with their energy characteristics. The ECoReS can support
fast and efficient embedded software development from the
perspective of low-energy consumption, by providing the
component selection based on energy characteristics.

The rest of this paper is organized as follows: the
analysis of related work is explained in Section 2. The
strategies to develop an energy-considered component
repository will be discussed in Section 3. Section 4 describes

78Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 87 / 129

the implementation of our proposed component repository,
ECoReS. Section 5 describes conclusions and future research.

II. RELATED WORK
Each components repository can have different features

according to policies of organization, application domain,
and engineering environments [9]. The existing repositories
have been providing various retrieval methods to find
appropriate components. Therefore, each repository has its
own distinct features, and specific structure of the repository.
There are many repositories that are successfully supporting
component reuse in the CBSD process [10][11][12]. Among
them, we investigated recently proposed component
repositories.

Z. Hai-mei et al. [10] emphasized the importance of
component compositions as the issue to be managed by the
component library. The authors designed a component
library information model to improve reuse rate of managed
components. Schema of that model included basic properties,
classification information, and composition information. The
key information of this research was the composition to
enhance the reuse rate of stored and managed components in
the library. However, the information model of the
component library did not consider any information related
to non-functional properties.

The research of C. Li et al. [11] focused on semantic-
based component retrieval. They proposed an ontology-
based component repository. Therefore, a software engineer
who wants to develop component software can easily find
software component using the ontology. However, the
ontology did not include the terms of non-functional
properties of software.

X. Shoukun et al. [12] developed a component library
based on a component specification language named UCDL
(Universal Component Description Language). By using the
UCDL, the library manages the component information with
the categories of basic information, classification
information, interface specification, and feedback mark.
However, this component library does not support the
information of non-functional properties of components
either.

The above studies implemented their repositories with
different structures, and they provided distinct functions to
maximize the reuse of components. However, these
repositories can cause mistakes in the selection of suitable
software components when the software engineer has to
consider one or more non-functional requirements. Because
the missing non-functional properties can lead to the re-
development of large parts of the software [5], the engineer
must consider the properties at the first step of component
selection. Therefore, absence of the information of those
properties can lead to inappropriate selection of software
components. This incorrect selection can involve large re-
developing costs, or even critical failure of the software.

Even though these component repositories provided
convenient functions and they are well designed to support
the reuse of components, they should be able to manage and
provide information about the non-functional properties of
the software components. Because the energy efficiency of

software has become one of the most important non-
functional properties of embedded systems, the perspective
of low-energy must be considered in component-based
software development. However, the previous studies and
their repositories did not provide the distinguishing functions
to support energy characteristics of the managed components.
Our component repository provides the distinguishing
functions for managing the energy characteristics of software
components and supporting energy-efficient component
selection.

III. STRATEGIES FOR LOW-ENERGY SOFTWARE
DEVELOPMENT

As mentioned above, the component repository has to
support low-energy software development by providing the
reusable components. To support systematic reuse, we
consider and define some strategies for describing energy
characteristics of components, and for selecting a suitable
component from our component repository.

A. Desiarable Useage Overview
Like general component repositories, the ECoReS also

provides general features for component management and
reuse. Additionally, certain distinguishing features are also
provided by the ECoReS to support energy-efficient
component selection. These features are reflected in the
functions for component registration and component
searching. When an engineer of an organization enrolls a
new component in the ECoReS, it requests additional
information that is related to the energy characteristics of the
component. This information will be referred to by the
software engineer who has to develop energy-efficient
software. The availability of searching for the component
characteristics in the ECoReS is also a different feature
compared to other existing repositories. Because the
functional requirement must be satisfied first when selecting
a reusable component, the ECoReS also provides this
functional requirements-based search. After that search, the
software engineer can get a set of components which have
the same functionality. We refer to these as “candidate
components”. Given the main purpose of the ECoReS,
energy-considered component selection will be done at the
next step. The ECoReS provides the energy-comparing
feature for actual selection from candidate components.
Figure 1 shows an overview of the ECoReS including these
features.

There are four specialized features in our repository,
which are represented by the colored boxes in Figure 1. We
also designed a feature, the “Function-based Search”, to
provide easier search than just a general one. However, this
feature is not colored because it is not the main concern of
this research. As shown in the figure, the features of “add
Component”, “Delete Component” and “Edit Component”
are provided to manage components. Among them, “Add
Component” has a specialized function that specifies the
energy information. After using the “Function-based
Search,” other specialized features will be supported. The
software engineer will select the candidate components that
have the same functionality to compare their energy

79Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 88 / 129

efficiency. If the sequential order of searching based on
function requirements, selecting candidates, and comparing
candidate components were changed, the selection works
will be meaningless. The feature, “Select the most suitable
component” means the selection of a component that
satisfies both functional requirements and energy-efficiency.

Figure 1. Usage overview for the ECoReS

B. Manage Energy Characateristics by Interface
A component can have several interfaces as the initiating

entries of component behaviors. Those interfaces are the
only way to request services of the components. Thus, those
interfaces are identical to the basic units of the behavioral set
that can be provided from components. This is a very critical
notion that must be considered to manage the energy
characteristics of reusable software components, because
software never consumes energy by itself, but it consumes
energy by controlling hardware devices when it is executed
[13]. Therefore, the energy characteristics of components
have to be defined by interface, and then have to be used to
select components within the component repository.

C. Consider the Effects of Interface Parameters
Energy consumption of an interface can be changed by

circumstances such as system conditions and given
conditions of parameters. System conditions affect energy
consumption on a small scale, while parameters can make a
huge difference. For example, a specific parameter can be
used as a flag variable which decides the branch of an inside
interface. In other cases, some interfaces show exactly the
same behaviors repeatedly when a parameter is given as a
data stream or a similar one for iterative processing.

Because of these effects from the interference parameters,
energy consumption of each interface can be variable. This is
the reason why we have to define the energy characteristics
of the components with the unit of interface. Moreover, the
energy characteristics of components sometimes cannot be
expressed as simple scalar values only, but certain ones have
to be represented with a regression model. To define the
energy model, the following recommendations are delineated.

• Thoroughly investigate the parameters of interfaces to

determine if they can affect energy consumption, and
how they may affect the energy consumption. The

types of those effects are not the same for all possible
cases. Therefore, this kind of investigation has to be
done first to get an energy model.

• Collect sufficient data for the possible specific
conditions of the interface parameters (for example,
input data size, data value, etc.) to define an energy
model. As mentioned above, the system condition is
also a reason for the variance. Only a huge amount of
sampling data can include this kind of variation.
Therefore, we can define a proper energy model from
a regression analysis using the large data set. This
kind of model is already defined and used in the
research of T. K. Tan et al. [8].

D. Retrieve Components based on Facets
It is difficult to find a suitable component from the

repository that has many similar components functionally. In
particular, if software developers would like to consider non-
functional requirements as well as functional ones in
component retrievals, finding a specific component that
satisfies both requirements might be difficult.

Therefore, a component repository has to fulfill the needs
of component retrieval with featured methods. In order to
realize the methods, we provide a multi-dimensional facet-
based retrieval technique to the ECoReS repository. Our
repository provides two facets; the first is the domain facet
which is the target domain of the software being developed,
and the other is the functional facet which is responsible to
the functionality to develop the software. The facets act like
filters to show the list of components that could be selected.
Although facet-based retrieval is not the main concern of this
research, it is designed and implemented to help find a
proper component by making a set of candidate components
which have the same functionality before actual selection,
focused on energy efficiency. Software engineers can limit
the boundary of component retrieval by using these facets.
Also, how many facets will be used to find a component can
be determined with the trade-off analysis for an exact search
and plentiful candidates.

E. Compare Energy Characteristics
With the facet-based retrieval, software engineers can

find the components that are suitable for the functional
requirements. However, there is still the remaining problem
of selecting a proper component that is suitable for energy
efficiency too. Because the result of facet-based retrieval can
provide just a list of candidate components from the
repository, software engineers have to compare the energy
characteristics of the candidates.

Candidate components mean the components that are
exchangeable with each other, according to Definition 1.

[Definition 1] Candidate Components: let CS be a set of
components, and CC be a set of paired components. Then Cx
and Cy are candidate components when satisfying;

CS = {C1, C2, C3, …, Cn}, (1)
 CC = {Cx ∈ CS, Cy ∈ CS | Pre(Cx) = Pre(Cy) ∧

 Post(Cx) = Post(Cy)}, (2)

80Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 89 / 129

Where, the Pre(Cx) means the pre-conditions (the input
of the component) of Cx and the Post(Cx) means the post-
conditions (the output of the component) of Cx. Also, 1 ≤ x ≤
n, 1 ≤ y ≤ n, and x ≠ y.

The identification of candidate components means
finding a set of components that satisfy the required
functionalities. After that, the repository has to recommend a
lower energy-consuming component among those candidate
components, because the major purpose of our repository is
selecting the most suitable component, satisfying not only
functionality but also energy efficiency.

We considered this problem with the comparison of
energy characteristics based on the interfaces, their energy
models, and their parameters. Figure 2 shows the energy
consuming patterns between two components when they are
compared.

Figure 2. Energy consumption patterns between two components

Let us consider two components "Component A” and
“Component B” that have the same function. However, they
have different energy models for that function. For example,
the energy model of the “Component A” is 2x+7, while the
model of the “Component B” is 3x+2. As shown in the
figure, the energy graphs of two components can be
classified into three types like (a), (b) and (c), where all of
energy models are linear regression models. In the case of (a)
or (b), determining the more energy-efficient component
between them is very easy. However, there is no component
that is absolutely energy-efficient on the graph (c) in Figure
2.

In this case of the graph (c), “Component A” is more
efficient in energy consumption until the input data size of A
is less than the size of the crossing point. However,
“Component B” is more efficient after exceeding the
crossing point. The comparison of energy characteristics
between candidate components from the perspectives of the
energy models and input data size makes it possible to select
a low-energy component, and also possible to develop
component-based energy-efficient software.

IV. DESIGN AND IMPLEMENTION OF ECORES
Reusable software components must be managed and

maintained on an organizational level by using a component
repository or library [3]. The component repository provides
several traditional functions such as the registration of
components along with retrieval and selection of components
to support the CBSD paradigm. The functions are basic and
intrinsic for general component repositories.

However, our component repository, called ECoReS,
provides not only the basic functions of general component
repositories, but also the functions related to the energy
efficiency of components. Those functions have to be
considered and designed in a well-organized UI structure and
seamless usage flow.

 In this section, we explain how we considered the
strategies for low-energy software development, what
development environments were used to implement our
component repository, and which functions are provided in
our repository.

A. Information for Component Specification
Specifying a component to support easy reuse requires a

lot of useful information for the components. However, there
is a set of commonly required information such as the name,
the usage, the list of interfaces, and the platform of a
component for the specification [9][10][11][12]. This set of
information is too general to examine further in component
specification. Thus we only focus on the information that is
required to describe the energy characteristics of components.

In the previous section, we discussed the energy models
that describe the energy characteristics of component
interfaces and interface parameters. However, some more
information is required to describe the energy characteristics
of components. This information is related to the platform in
which the component is deployed. As mentioned above,
software consumes energy by controlling the actions of
hardware devices. Thus, the platform information must be
covered in the component specification. These are the
important platform specifications related to the energy
characteristics:

1) Hardware resources: Hardware resources are actual

energy consuming objects. Therefore, the information of the
target (expected) platform of the component should be
itemized in the specification. Among many of hardware
resources, CPU clock speed and memory size are key
information for energy characteristics [14][15].

2) Operating System (OS): Almost no application
software can be activated without an operating system. The
main purpose of OS is to control hardware resources (e.g.,
CPU, memory, etc.) and to provide system services to the
application software like a middle layer broker. Therefore,
the actual running environments of application software are
controlled by the OS based on its scheduling policy, memory
management policy, IO control, and so on. These policies
can affect the energy consumption of software [15] and can
be differently applied to its types (Android, IOS or
something else) and versions.

81Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 90 / 129

3) Compiler: There are a number of available compilers.
Even if the external behaviors of compiled codes (i.e.,
executable binary) for different source codes are the same,
the compilers may have different optimization policies. An
optimization policy can be differently applied during the
code compilation process by setting different options even
though the same compiler was used. Because the different
optimization policy can generate different internal behaviors,
the energy consumption of software is also different based
on the different policies [16]. Therefore, we add the
information of the compiler to specify the energy
characteristics.

In addition to the energy models of component interfaces,

the above information should be managed together. However,
we can consider different tactics to manage that information
because each part of the information represents different
parts of a system. For example, the information of the
platform for software is not changed during the lifetime of
the software. Therefore, the influence of the platform on
energy consumption will be decided at compile time. On the
other hand, the information related to the real behaviors of
the software can be decided at run time, i.e., which interface
is called and how parameters are passed. The information
can always change during real operation of the software
depending on the requested user service.

We classified the information affecting the energy
consumption into two types of factors: Indirect factors that
are not changed during software operation, and direct factors
that can be changed during the software operation. In the
specification of component information, it is sufficient to
describe the indirect factors of the component only once,
since the factors have an equal effect every time on any
interface and on any parameter. Unlike indirect factors, the
direct factors (such as interfaces and their parameters) must
be described multiple times in the specification, because they
are differently affect to energy consumption based on which
interface is called and how parameter is configured. TABLE
I. shows these factors that affect energy consumption.

TABLE I. FACTORS AFFECTING ENERGY CONSUMPTION

Factors Factor Types Effecting Range

Hardware

Indirect factors Whole component OS

Compiler

Interface
Direct factors Each interface

Parameter

B. Development Environments
The ECoReS is developed to manage and retrieve

software components with consideration of energy
consumption. Ultimately, the goal of the ECoReS is to
support component-based and energy-efficient software
development. In the design of our repository, we separate it
into DB-side and client-side because it can define N:M
relationships.

Only one component repository is desirable in an
organization to support various software projects because the
centralized repository is easy to maintain and also easy to
provide consistency for stored components, while multiple
repositories are also valuable in distributed and collaborative
development environments to elevate the flexibility and the
variability of component-based development. The decision
for the operational configuration of a component repository
is dependent on the organization policy.

The client is developed by using JAVA with eclipse Rich
Client Platform (RCP), Eclipse Modeling Framework (EMF),
Java Data Base Connectivity (JDBC), as shown in TABLE II.
Therefore, our repository system is possible to operate and
use on any kinds of platforms.

TABLE II. DEVELOPING ENVIRONMENTS OF ECORES

OS MS Windows 7, 32bit
Language JAVA(JDK 1.5)
Developing Tool Eclipse 3.5(Galileo)
Platform Eclipse Rich Client Platform
Plug-in JDBC, EMF, etc.
DB MySQL Server 5.5

C. Implementation of the Strategies
The common functional features of our repository are

similar to other conventional component repository systems.
However, the ECoReS has distinguishing features to support
the strategies for energy-based component management,
which are explained in Section III. This section is
responsible for the implementation of those strategies.

The registration of components is a common and general
function of component repositories except that the
information of energy characteristics is also required. The
component registration of the ECoReS provides a different
widget to store the information about energy characteristics
as shown in Figure 3.

Figure 3. A Screen for energy characteristics of a component

The UI widget has the fields of “INTERFACES,”
“DESCRIPTION,” and “ENERGY MODELS,” which
should be filled in the “Add New Component Wizard”
function. Because the indirect factors can be also identified

82Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 91 / 129

as the commonly required information, we focused more on
the energy model for each interface. Figure 3 shows an
example of the “interface information” step of the
component registration.

The facet-based retrieval is implemented with the
composition of lists. Although the number of facets can be
determined according to the domain hierarchy of the
organizational business area, we define three facets such as
domains, functions, and components level in our repository,
as shown in Figure 4. This facet-based retrieval approach
provides a quick and easy search to find a proper component
in a functional manner and also helps software engineers
think in top-down and systematic ways. Moreover, this
approach can use the ontological concept to organize the
facet structure.

Figure 4. A screen for facet-based component retrieval

After searching for candidate components that satisfy the
functional requirements of the target software, then the
software engineer can select a proper component based on
energy efficiency. To compare energy efficiency, software
engineers can simply set the check-box to compare the
energy consumption with other components in the
“properties” tab of a candidate component, as shown in
Figure 5.

Figure 5. Selecting it as a candiate component

Comparing energy characteristics is the core feature of
the ECoReS for selecting energy-efficient components. The
comparison result of the energy characteristics between
candidate components will be shown to help select the most
suitable component for the software engineers. This result is
shown in graph form to distinguish their energy efficiencies.

Selecting the specific interfaces of the components can
be done when the comparison is activated. For example,
there are two reusable components that are responsible for
providing search algorithms. Even though the functions of
two components are the same, their internal behaviors can
differ. Therefore, the ECoReS will compare their energy
efficiency based on component interfaces. Figure 6 shows
the energy consumption graph of two components,

“BinSearch” and “LinearSearch,” which implemented a
binary search algorithm and linear search algorithm,
respectively.

In Figure 6, the “binSearch” consumes more energy than
the “LinearSearch” at the first starting point. However, if the
input parameter is bigger than 500 bytes, the “binSearch” is
rather more energy-efficient than the “LinearSearch”.

Figure 6. Energy consumption graph for two components

Due to this situation, software engineers who want to
find an energy-efficient component have to consider the
expected input data that was intended for processing by the
component. In some cases in the above example, if we select
to reuse the “binSearch” component when the input data size
is always under 500 bytes, the selection will involve a worse
result when the software is operated. The component always
consumes more energy than the other component.

Therefore, we have to carefully predict and analyze the
characteristics of the target system, to maximize the
correctness of low-energy component selection.

V. CONCLUSION
CBSD has been broadly accepted as a reasonable and

systematic paradigm to develop embedded software systems
because embedded systems tend to be developed based on
the product family approach [17]. The approach of reuse-
based software development gives excellent benefits of time
and cost reduction, and accuracy and reliability improvement
as long as the approach applies well, and its infrastructure
also runs well.

In this paper, we presented the design and
implementation of a component repository, named ECoReS,
which is a major infrastructure for the CBSD approach. Our
repository specifically has focused on supporting
component-based low-energy software development.
Therefore, our proposed repository manages not only the
general information of stored components, but also the
energy characteristics of the components. It also provides
functions like facets-based component retrieval, energy
model management based on component interface, and
energy consumption comparison.

83Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 92 / 129

We expect our component repository to be valuable in
industrial and practical application development when a
policy of energy-efficient software development is needed on
an organizational level, or even on the subcontracting level.

In closing consideration, if any organization wants to
combine or replace their existing component repository with
the ECoReS, we expect that there will be three kinds of costs.
For the first cost, the build or rebuild cost of repository will
be needed. As mentioned, almost all component repositories
have different structures. Even though the repository of the
organization has a very similar structure with the ECoReS,
minimum changes or re-builds for the structure are
unavoidable. The second kind of cost deals with migration.
After a total change of repository structure, migration must
be followed. However, that migration can be omitted when
the ECoReS is simply adapted to as-is system. The last cost
is related to energy modeling. Because other repositories do
not support the information about energy-efficiency, the
energy modeling of the managed components should be done.
Moreover, adaptation of the ECoReS without energy
modeling is meaningless. We expect the cost related with
energy modeling will be the largest of all.

For future studies, we are planning to upgrade the facet-
based retrieval function with a powerful ontological scheme,
and to establish the process and techniques for an
architecture-based energy analysis framework, which
cooperates with the ECoReS.

ACKNOWLEDGMENT
This research was supported by Basic Science Research

Program through the NRF of Korea funded by the Ministry
of Education (NRF-2014R1A1A4A01005566) and Next-
Generation Information Computing Development Program
through the NRF funded by the Ministry of Science, ICT &
Future Planning (NRF-2014M3C4A7030503).

REFERENCES
[1] S. S. Yau, “Embedded Software in Real-time Pervasive

Computing Environments,” in Proceedings of the 28th Annual
International Computer Software and Applications
Conference, pp. 406-407, 2004.

[2] X. Cai, M. R. Lyu, and K. Wong, “Component-Based
Software Engineering: Technologies, Development
Frameworks, and Quality Assurance Schemes,” in
Proceedings of the 7th APSEC, pp. 372-379, 2000.

[3] J. Guo and Luqui, “A Survey of Software Reuse
Repositories”, 7th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems,
pp. 92-100, 2000.

[4] M. Daneva, M. Kassab, M. L. Ponisio, R. J. Wieringa, and O.
Ormandjieva, “Exploiting a Goal-Decomposition Technique

to Prioritize Non-functional Requirements,” In Proc. Of WER
2007, 10th International Workshop on Requirements
Engineering, pp. 190-196, 2007.

[5] N. Siegmund, M. Kuhlemann, M. Pukall, and S. Apel,
“Optimizing Non-functional Properties of Software Product
Lines by means of Refactorings,” in Proc. Fourth
International Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS'10), Vol. 37 (27-29
January 2010), pp. 115-122, 2010.

[6] M. Marzolla, “Simulation-based Performance Modeling of
UML Software Architecture,” Ph.D Thesis, Ca’Foscari
University, Italy, 2004.

[7] D. Kim, J. Kim and J. Hong, “A Power Consumption
Analysis Technique Using UML-Based Design Models in
Embedded Software Development”, Lecture Notes in
Computer Science Volume 6543, pp. 320-331, 2011.

[8] T. K. Tan, A. Raghunathan, G. Lakshminarayana, and N. K.
Jha, “ High-Level Energy Macromodeling of Embedded
Software”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 21, No. 9, pp. 1937-
1050, Sep. 2002.

[9] G. Jones and R. Prieto-Diaz, “Building and Managing
Software Libraries,” in Proc. on COMSAC 1988, pp. 228-236,
1998.

[10] Z. Hai-mei and G. Min, “A Component Library Information
Model Supporting Component Composition”, in Porc, 2012
IEEE International Conference on Mechatronics and
Automation, pp. 475-479, 2012.

[11] C. Li, X. Liu, and J. Kennedy, “Semantics-Based Component
Repository: Current State Of Art and a CalCuation Rating
Factor-based Framework,” in Proc. 32nd Annual IEEE
International Computer Softare and Applications(COMSAC
2008), pp. 751-756, 2008.

[12] X. Shoukun, C. Xiaomei, and M. Zhenghua, “A Study of
Local Component Library Based on UCDL,” in Proc.
ICCSE ’09, pp. 904-907, 2009.

[13] K. Naik and D. S. L. Wei, "Software Implementation
Strategies for Power-Conscious Systems", Mobile Networks
and Applications, Vol. 6, Issue 3, pp. 291-305, 2001.

[14] C. L. Su, C. Y. Tsui, and A. M. Despain, “Low Power
architecture design and compilation techniques for
highperformance processors,” in Proceeding on IEEE
COMPCON’04, pp. 489-498, 1994.

[15] D. Sarta, D. Trifone, and G. Ascia, “A Data Dependent
Approach to Instruction Level Power Estimation,” IEEE
Alessandro Volta Memorial Workshop on Low Power Design,
pp. 182-190, 1999.

[16] M. E. A. Ibrahim, M Rupp, and S. E.-D. Habib, “Compiler-
based optimizations impact on embedded software power
consumption,” in Proceedings of the Conference NEWCAS,
pp. 1-4, 2009.

[17] K. C. Kang, J. Lee, and P. Donohoe, "Feature-Oriented
Product Line Engineering", IEEE Software, vol.19, no. 4, pp.
58-65, July/August 2002.

84Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 93 / 129

Automatic Generation of Sequence Diagrams and Updating Domain Model from
Use Cases

Fabio Cardoso de Souza, Fernando Antonio de Castro Giorno
Master’s Program in Software Engineering
Institute for Technological Research (IPT)

São Paulo, Brazil
e-mail: souzafc@yahoo.com, giorno@pucsp.br

Abstract—Software modeling allows for problem
decomposition in a way that facilitates analysis and
communication of the solution to developers and other
interested parties. Models are widely used in engineering in
general, but in Software Engineering modeling has often been
left out due to the pressures to improve deadlines. A method
and a tool that reduce the duration of this phase could help
furthering the modeling phase. Use Cases are commonly
utilized for functional specifications in Object-Oriented
paradigm and the use of markups in Use Cases allow an
automatic partial generation of Analysis Models, reducing the
time of the modeling phase in this paradigm. This paper
proposes a combination of rules for marking up Use Cases and
one procedure for generating partial Sequence Diagrams with
analysis classes (one Sequence Diagram for each Use Case) and
the updating of the Domain Model with operations. A tool was
built to prove the concept and two experiments were carried
out.

Keywords-Analysis Model; Use Case; Sequence Diagram;
Model Driven Architecture.

I. INTRODUCTION

Software modeling permits the analyst to break the
problem to be solved into parts which can be better analyzed.
It also allows the formal communication of a functional and
technical solution based on the demanded requirements.
Model is a formal specification of the structure or function of
a system [1]. A graphic representation can be used to provide
a visual body for the model.

Despite being widely used in many areas of engineering,
modeling has been left out in Software Engineering.
According Rosenberg and Stephens [2], in practice, there
never seems to be enough time to do modeling, analysis and
design and there is always pressure from management to
jump to code prematurely because progress on software
projects tends to get measured by how much code exists,
leading to problems in the quality of software.

Use Cases are commonly used for functional
specification in Object-Oriented developments. According to
Sommerville [3], Use Cases are an effective technique for
eliciting requirements and they are increasingly used since
the Unified Modeling Language (UML) became a standard
for Object-Oriented modeling. Yet according to Rosenberg
and Stephens [2], the Use Cases are created over a Domain
Model since this offers the use of a common vocabulary. The

utilization of markups in Use Cases can allow for the
automatic partial generation of the Analysis Model, as
demonstrated in the Mason and Supsrisupachai [20] work,
where marked up Use Cases are automatic transformed into
Sequence Diagrams.

The automatic partial generation could reduce the
duration of the modeling phase, thus stimulating the adoption
of this phase in Object-Oriented development projects, as
suggested by a qualitative research [23] carried out with
requirements analysts, system analysts and project managers.
In this qualitative research, the majority of the interviewees
agreed that software modeling improves the quality of the
final product and most of them believe that the automatic
generation of the partial Analysis Model can help the
adoption of the modeling phase in software development
projects. Due to space limitation, details of this research are
omitted.

This paper presents a set of rules for marking up Use
Cases and a transformation procedure that permits deriving
Sequence Diagrams with analysis classes from the marked-
up Use Cases. It also permits the updating of the Domain
Model with operations identified in the Sequence Diagrams,
leading to the Class Diagram. Class Diagram and Sequence
Diagrams are the main diagrams in an Object-Oriented
analysis model. The diagrams generated do not take into
consideration details of a possible implementation, which
must be done during the design phase. According to Booch
et al. [4], the analysis must yield a statement of what the
system does, not how. This research also presents a tool
which implements the proposed procedure and with which
the experiments were realized.

The rest of this paper is organized as follows. Section 2
presents concepts on which this research is based. This
section also presents the State of the Art in the topics Model
Driven Architecture and transformation of Use Cases into
Sequence Diagrams. Section 3 presents a proposal for
marking up Use Cases and a transformation procedure.
Section 4 presents the tool and two experiments. The fifth
and final section presents the conclusion and suggestions for
future researches.

85Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 94 / 129

II. CONCEPTS AND STATE OF THE ART

This section starts presenting concepts related with Use
Cases, Software Modeling and transforming requirements
into software models approaches, and ends with state of the
art on transformation subject.

A. Requirements Specification with Use Cases

Requirements Engineering provides appropriate
mechanisms for [5]: understanding what the client wants;
analysis of her/his needs; evaluation of feasibility;
negotiation of a reasonable solution; specification of
requirements in a unambiguous manner; validation of the
specification and management of the requirements to be
implemented.

Use Cases serves as functional specifications of
requirements in Object-Oriented paradigm and the Analysis
Model is created based on them. Use Cases provide the
external behavior expected by the system with respect to the
vocabulary in a Domain Model. Rosenberg [2] states that
Use Cases describes a way by which the users interacts with
the system and how the system responds. Pressman [5] notes
that Use Cases does not tell how a system should realize the
functionality. This emphasizes the importance of modeling.

According to Larman [6], Use Cases can be essential or
concrete. Essential Use Cases do not consider mechanism
details (like User Interfaces), while Concrete Use Cases
consider them. In this paper, only Concrete Use Cases are
contemplated.

Yet, according to Rosenberg [2], Use Cases should be
written in the objects model context, referencing domain
classes and boundary classes by their names. This
recommendation is the base for this work as the objects
constituents of the Analysis Model are the objects referenced
in the Use Cases and existing in the Domain Model.

Use Cases makes explicit not only the objects involved in
the system boundary but also the actors participating in the
functionality and their actions. An actor is any entity that
communicates with the system and is external to it, and may
be a device, a system or a person. A main actor is that which
interacts with the system in order to produce the result while
secondary actors only support the system [5].

B. Analysis Model

Modeling is generally done in two levels of abstraction:
Analysis Model and Design.

The Analysis Model - or Software Architectural Design -
is used to identify, in a high level of abstraction, the
components of the software, describing how the software is
decomposed and organized into components [7]. In the case
of Object-Oriented software, these components are Analysis
Classes with their attributes and operations. In this paper, a
partial Analysis Model is the expected result of the
application of the proposed method.

The Class Diagram is the most important diagram of the
Analysis Model and it describes the static vision of the
system in terms of classes and relationships between them.

Jacobson [8] distinguishes the following types of classes
used to give structure to Object-Oriented software: boundary,

control and entity. According to him, boundary classes
respond to information and behaviors related to system
boundary; entity classes respond to information that are
stored in the system and to behaviors surrounding these
information; and control classes respond to behaviors which
are not naturally incorporated into entities. These definitions
are complemented by Bruegge and Dutoit [9], for whom,
boundary classes represents interfaces between systems and
actors, and control classes are in charge of realizing Use
Cases.

The boundary and control classes, as well as their
behaviors (their operations) are evident during analysis, in
Analysis Model.

In this paper, these three types of objects are adopted in a
way through which the Sequence Diagram can represent the
software model with these three layers (boundary, control
and entities).

Sequence Diagram is the second most important diagram
of an Analysis Model and it is used to illustrate how objects
interact with one another through messages, demonstrating
the internal behavior of one system functionality (one Use
Case).

The sequence of messages in a Sequence Diagram can
use a pattern of communication between the objects, how,
for example, the pattern presented by Heinemann and
Denham [10], where messages should follow the flow
“boundary �� control �� entity”. This pattern is adopted
in this work.

C. MDD and MDA

Model Driven Development (MDD) refers to the
approaches based on models as the main products of a
development [11]. According to Milicev [12], MDD raises
the level of abstraction in a development.

Model Driven Architecture (MDA) is a MDD approach
proposed by the Object Management Group (OMG) whose
objective is to alleviate the problem of ruptures between
design and code due to system migration from one platform
to another [11].

MDA advocates four layers of model: Computation
Independent Model (CIM), Platform Independent Model
(PIM), Platform Specific Model (PSM) and Implementation
Specific Model (ISM) as shown in Figure 1.

In the CIM layer there lies the process models and
requirements that are independent of computing. In the PIM
layer there lies the Analysis Model which is in the
computing field, therefore totally independent of platform. In
the PSM layer there lies the lower level models, which takes
into consideration the platform where the system would be
introduced. Finally, the ISM layer is the layer where the code
is generated. The development focuses, on the MDA
approach, is at a high level of abstraction, that is, in the CIM
and PIM layers.

86Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 95 / 129

Figure 1. Layers of MDA.

D. Related Work

In [13] a process for generating a model on the CIM layer
from the requirements written in natural language was
proposed. The requirements should be represented in
Language Extended Lexicon (LEL) and in a scenario Model.
LEL is a structure that permits representation of significant
symbols in the universe of discourse, their synonyms and
their behavior. The symbols can be: People, Objects, States,
Events, among others. The process consists of a series of
transformation rules over texts written in natural language
contained in the LEL and in the scenarios.

In [14] a use case modeling approach was proposed in a
way that elements of the Use Case are inserted into specific
fields of a template, but there are no fields for components of
the steps (sender object for example). Under this proposal,
the steps should be restricted by a combination of grammar
rules and rules for key words utilization. Based on this, the
same authors [15] proposed a tool named aToucan
(Automated Transformation of Use Case Model into
Analysis Model). The tool aToucan reads the restricted steps
of Use Cases and realizes the processing of natural language
written in steps in order to obtain classes and relationships
for the Analysis Model. The result is a generation of an
intermediate Unified Modeling Language (UML) meta-
model that is then transformed into a final Analysis Model.
Only Class Models are mentioned in the obtained results.

In [16][17], it was proposed a set of marking-up rules and
a set of syntactic structures in a manner an analyzer can
extract the elements in order to generate a Sequence
Diagram. The marking-up rules aim to permit the analyst to
mark up occurrences of links, conditions and parallelism.
The author names the marked-up Use Case with syntactic
restrictions by Normalized Use Case.

The analyzer utilizes a dictionary to localize and store the
elements in a catalogue applying syntactic rules. The
catalogue is then used to obtain, in each message, the object
sender, object receiver, operations and arguments that are
registered in a file. There is no diagram generation.
According to the author, the results needs to be refined by
the analyst due to the confusion the analyzer can do while
extracting concepts. The Use Case should be written in
English natural language.

In [18] a set of transformation rules and a syntactic
structure of the steps were also proposed. The steps should
be written in this syntactic structure: “Who does What for
Who”, being that the first ‘Who’ denotes the actor that starts
the communication, the ‘What’ denotes the message to be
transmitted, and the second ‘Who’ denotes the receiver of the
message. The proposal contemplated a tool for editing Use

Case and for generating the Sequence Diagram. The authors
consider the method and the tool only as an instrument for
learning.

In [19], it was proposed a tool for generation of Sequence
Diagrams from Use Cases written in English. The tool uses a
pre-existing component (Stanford Parser) to generate parts
of speech tagged sentences and type dependencies. It then
applies a proposed sentence structure rules and
transformation rules to identify elements to generate the
Sequence Diagram. The approach works only for the Simple
Sentences in English.

In [20], Mason and Supsrisupachai proposed markups to
indicate the primitives in a Use Case that derive elements to
the respective Sequence Diagram. Only main scenarios of
Use Cases are analyzed and each step of a Use Case needs to
be marked up with an event type. A data dictionary is
utilized as a reference of the Use Case elements. The
marking up is made at each step of the Use Case on the
elements: object sender, message, object receiver, actions
and event timer. A tool was built for editing and marking up
Use Cases and for generating the corresponding Sequence
Diagram.

E. Consideration on State of the Art

In the MDA field, a lack of an official meta-model
defined by the OMG for specification of Use Cases resulted
in the presented proposals not fitting exactly into the MDA
philosophy, which advocates, among other things, the use of
UML and its meta-models as the origin and targets for
transformations.

In direct Use Cases transformation into Sequence
Diagrams, The Mason and Supsrisupachai [20] work offers a
greater precision in the generation of a partial Analysis
Model because the analyst previously identifies the elements
in the Use Cases, as long as, he understands the problem and
can deal with the imprecision of the natural language in an
appropriate manner.

III. RULES FOR MARKING UP USE CASES AND THE

TRANSFORMATION PROCEDURE

Mason and Supsrisupachai [20] work served as an
inspiration for this proposal. As was previously mentioned,
the use of markups in Use Cases is an efficient approach for
partial automatic generation of Sequence Diagrams with
analysis classes.

Some important differences in this work compared to the
Mason and Supsrisupachai [20] work are:

This work proposes the updating of Domain Model with
the operations identified during the method execution. It uses
stereotypes to represent the types of classes according to
their layers (boundary, control and entity). They also present
a transformation procedure from Use Cases into Analysis
Model and, finally, they define markups for actor, interface
and guard condition. The set of markups was defined to
allow, following the method, the generation of sequence
diagrams considering stereotypes, actors (primary and
secondary) and messages with condition guards. Even
though this automatic generation is not enough for the
analyst to start lower level design or code, it can be useful to

87Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 96 / 129

the analyst since he does not need to start the modeling from
scratch, thus reducing the duration of this phase. The mark-
up process is considered to be made, by the analyst, against
the Domain Model and trying to use, as much as possible, all
the markups. For example, if in a specified step, the interface
is not specified, and considering that there is a markup for
interfaces, the professional must verify the possibility to
explicit an interface in this step.

A. Marking up Rules

Table I below presents a set of markups proposed in this
paper.

TABLE I. USE CASE MARKUPS

Markup Markup target Markup format

sdr Sender object [sdr Sender]

rcv Receiver object
[rcv Receiver] or
[rcv Receiver: name on
Domain Model]

msg Message
[msg Message] or
[msg Message: label]

act
Internal action of the object
(recursive message)

[act Message]

a1 Main actor [a1 Actor]

a2 Secondary actor [a2 Actor]

ifc
Human–machine or machine-
machine interface

[ifc Interface]

grd Guard condition [grd condition]

The ‘msg’ markup allows an optional format with the use

of a second argument (an optional label) which denotes that
the label should be used on the diagram in the place of first
argument (the event).

In the same way, “rcv” markup permits an optional
format to specify the name of the receiver object when the
name used in the step does not reflect the name in the
Domain Model.

B. Transformation Process

According to Rosenberg and Stephens [2], Use Cases
must be written in the context of the Domain Model,
referencing the domain classes and boundary classes by their
names. They recommend yet that the steps should be written
with the structure: object – verb – object. Sequence
Diagrams are behavioral models that illustrate how the
objects interact with each other. These interactions are
considered, initially (on the partial Sequence Diagram), a
representation of the verbs specified on the Use Cases.

As mentioned above, the proposed procedure considers
the types of object (boundary, control and entity), the actors
and the messages between them with optional condition
guard, in order to produce a partial Analysis Model. The
following premises are considered in order to identify these
elements in the Use Case text:

1. A Use Case step should contain only one message.
2. A step should be in one of the following

configurations:

2.1. “Xxx [a1 name] xxx [msg name] xxx [ifc name]
xxx.”

2.2. “Xxx [sdr System] xxx [msg name] xxx [ifc
name] xxx.”

2.3. “Xxx [sdr System] xxx [act name] xxx.”
2.4. “Xxx [sdr System] xxx [msg name] xxx [a2

name].”
2.5. “Xxx [sdr System] xxx [msg name] xxx [rcv

name] xxx.”
Where ‘xxx’ represents free and non-obligatory texts and

‘name’ represents the name of an actor, object or message. A
guard condition is optional and may occur in any of the
above configurations.

Below is presented the procedure for transforming Use
Cases into Sequence Diagrams and for updating the Domain
Model with operations.

1. For each Use Case document:
1.1. Is created a Sequence Diagram with the same

name as the Use Case.
1.2. Is added, into the diagram, the main actor, the

«boundary» classes from ‘ifc’ markups without
repetition, a «control» class with the same name
as the Use Case, «entity» classes in the same
sequence which they occur in the Use Case
without repetition, and the secondary actors.
«entity» classes are the other objects in Use
Case which are neither actors, nor interface nor
System.

1.3. For each step in one expected configuration, the
specific rules for messages creation must be
observed. In any expected configuration, there
may be a guard condition.

1.3.1. “Xxx [a1 name] xxx [msg name] xxx [ifc
name] xxx.”:

1.3.1.1. One message is created from the
main actor to the interface specified
in the step.

1.3.1.2. The focus is placed at the interface
specified in the step in manner that
the next message originates from it.

1.3.2. “Xxx [sdr System] xxx [msg name] xxx
[ifc name] xxx.”:

1.3.2.1. If the control object has the focus:
1.3.2.1.1. One message is created from the

control object to the interface
specified in the step.

1.3.2.1.2. The focus is placed at the
interface specified in the step in
a way that the next message
originates from it, unless there is
a guard condition, because in
this case, the guard condition
may not occur, so the control
object continues originating
messages.

1.3.2.2. If an interface has the focus:
1.3.2.2.1. One message is created from the

interface that has the focus to
the interface specified in the

88Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 97 / 129

step. This represents a hyperlink
from the first interface to the
second, and such type of
operation does not need to pass
through the control object.

1.3.2.2.2. The focus is placed at the
interface specified in the step in
a manner that the next message
originates from it, unless there is
a guard condition, because in
this case, the guard condition
may not occur, so the first
interface continues originating
messages.

1.3.3. “Xxx [sdr System] xxx [act name] xxx.”:
1.3.3.1. If the control object has the focus:

1.3.3.1.1. One recursive message is created
in the control object.

1.3.3.1.2. The focus remains at the control
object.

1.3.3.2. If an interface has the focus:
1.3.3.2.1. One message is created from the

interface that has the focus to
the control object.

1.3.3.2.2. One recursive message is created
in the control object.

1.3.3.2.3. The focus is placed at the control
object.

1.3.4. “Xxx [sdr System] xxx [msg name] xxx
[a2 name] xxx.”:

1.3.4.1. If the control object has the focus:
1.3.4.1.1. One message is created from the

control object to the secondary
actor.

1.3.4.1.2. The focus remains on the control
object because it is not expected
that a secondary actor can
originate a message on the next
step (secondary actors only
supports the system and any
activity that it can do is outside
of the functionality scope).

1.3.4.2. If an interface has the focus:
1.3.4.2.1. One message is created from the

interface that has the focus to
the control object.

1.3.4.2.2. Other message is created from
the control object to the
secondary actor.

1.3.4.2.3. The focus is placed at the control
object because it is not expected
that a secondary actor can
originate a message on the next
step (secondary actors only
support the system and any
activity that it can do is outside
of the functionality scope) and
the control object originated the
last message.

1.3.5. “Xxx [sdr System] xxx [msg name] xxx
[rcv name] xxx.”:

1.3.5.1. If the control object has the focus:
1.3.5.1.1. One message is created from the

control object to the receiver
object.

1.3.5.1.2. The focus remains on the control
object because it is not expected
that a receiver object (an entity
by exclusion) can originates a
message on the next step (Use
Case do not explain the internal
behavior of the functionality).

1.3.5.2. If an interface has the focus:
1.3.5.2.1. One message is created from the

interface that has the focus to
the control object.

1.3.5.2.2. Other message is created from
the control object to the receiver
object.

1.3.5.2.3. The focus is placed on the
control object because it is not
expected that a receiver object
(an entity by exclusion) can
originate a message on the next
step (Use Case do not explain
the internal behavior of the
functionality) and the control
object originated the last
message.

2. The Domain Model is updated with operations
identified in «entity» objects.

C. Limitations

The set of marking-up rules and the transformation
procedure has the following limitations:

• Only main scenarios of Use Cases are considered;
• There is not treatment for inclusion and extension

relationships at Use Cases;
• Only synchronous messages are considered;
• Message parameters are not considered;
• Loops and parallelism (concurrent processes) are not

considered;
• Only Concrete Use Case is considered.

These limitations imply needs for adjustments and
complements at the Analysis Model generated by the tool
that implements the procedure, in order for the model to be
useful for the next phases of the project (design phase and
coding).

IV. TOOL AND EXPERIMENTS

Below, we present the tool that implements the proposed
procedure and two experiments.

A. Tool

A tool that automates the proposed procedure was
developed using Java language and the Netbeans Integrated
Development Environment (IDE). The tool is executed as a

89Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 98 / 129

Netbeans plug-in and it is presented as a tab on it, where the
path to the Use Cases and Domain Model to be processed
should be informed. Furthermore in this paper, file formats
expected by the tool are presented. Figure 2 shows an
overview of the transformation process.

Figure 2. Transformation process overview.

Figure 3 presents an example of a marked-up part Use
Case. For each generated diagram by the tool, a new tab is
opened in the Netbeans IDE, containing the image of the
diagram, as shown in Figures 4 and 5.

Figure 3. Example of a marked-up part Use Case.

Figure 4. Class Diagram tab (partial view).

Figure 5. Sequence Diagram tab (partial view).

B. PlantUML component and configurations

The tool uses a pre-existing component known as
PlantUML that permits generation of diagrams from stored
commands in text formats. The tool creates PlantUML
command files for each Sequence Diagrams to be generated
from marked-up Use Cases and update with operations the
PlantUML file related to the Domain Model. For this, the
tool handles files with the following extensions:

• Files with “ucs” extension: File to be read and that
contains a marked-up Use Case.

• File with “domm” extension: File to be read and
updated and that contains PlantUML commands for
Domain Model diagram generation.

• File with “seqm” extension: File to be created and
that contains PlantUML commands for Sequence
Diagram generation corresponding to Use Case
with the same file name.

As soon as one file with PlantUML commands is
generated or updated by the tool, immediately, the
PlantUML component is activated for creating the respective
diagram in the “png” format.

The tool, when in execution, alerts the analyst on cases of
unidentified classes in the Domain Model, which however do
not hinder generation of diagrams. The tool also alerts
identified operations in Use Cases that already exists in the
Domain Model. In this case, the tool does not include the
operation in the Domain Model again.

The tool also transforms the names of objects in a
manner by which words that compose it have their initials
unified and transformed into capital letters. This pattern is
known as “Camel Case”.

C. Experiments

The experiments were designed to verify if the
application of the markups, associated with an automated
method, could generate sequence diagrams with a reasonable
margin of correctness, so that the adjustments to be made on

Use Case: Rent a Car.

Description: This Use Case describes the steps to make a car
reservation on the Vehicle Rental web page.

Main Actor: [a1 Client]

Main Scenario:
1)The [a1 Client] [msg request a reservation: doReservation] at the
[ifc VehicleRentalPage].
2)The [sdr System] [msg request identification number] at the [ifc
VehicleRentalPage].
3)The [a1 Client] [msg inform the identification number :
inputIdentificationNumber] at the [ifc VehicleRentalPage].
...

90Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 99 / 129

the model, after its generation, would not cost more than it
would if the Analysis Model was made from scratch.

For the experiments, one looked for materials containing
Use Cases with the respective Sequence Diagram and Class
Diagram or Domain Models. The first material is a tutorial
[21] about analysis with Use Cases. The second material is a
training example [22] about Analysis Model.

One problem found during the experiments is that the
Use Cases of both materials did not explicitly specify the
interfaces, and this would lead to a poor initial Analysis
Model. To try and solve this problem, we define the
interfaces in the steps during the markup process.

The evaluation of the results was done by looking for
missing messages and objects in the diagrams generated by
the tool/method (generated diagrams) compared to the
diagrams presented in the materials (original diagrams).
During the evaluation, other types of differences are
detected, and they are listed in the Table II with their
respective quantity of occurrences. One important difference
that occurs in both experiments is that an operation, in the
control object, gets an inadequate name when the focus is on
an interface and a system realizes two or more subsequent
steps. In this case, the name given to the operation, in the
control object, is the name related to the first step of
subsequent steps, and then, it does not reflect the meaning of
all messages involved. This type of problem should be
corrected after the diagram is generated, because the
method/tool does not possess the mechanism to label, in an
adequate manner and in this situation, control object
operations.

One threat to external validity is about the skill of the
analysts to specify the Use Cases considering the markups.
This job must be done in a manner that the Use Cases
represent, as complete as possible, all important objects and
interfaces that must be present in the partial Sequence
Diagrams. If this does not occur, the generated diagrams will
be poor. We consider that it is an important concern and it
can be mitigated by training the analysts on the markups
elements orienting them to try to use the markups as much as
possible on the Use Cases. A future research could evaluate
this supposition accordingly.

Other threat to external validity is about the lack of
Domain Model during the Use Cases specification, possibly
leading to ambiguous objects while writing Use Cases and
precluding part of the method (the update of the Domain
Model with operations). We consider that the method need to
have their use restricted to cases where de Domain Model is
available during the requirements specification. One future
research could evaluate the impact of the absence of the
Domain Model during the Use Case specification using this
method.

TABLE II. TYPES OF DIFFERENCES BETWEEN ORIGINAL DIAGRAMS
AND GENERATED DIAGRAMS BY THE TOOL AND QUANTITY OF

OCCURRENCES IN EXPERIMENTS

Type Description of difference Exp.#1 Exp.#2

1

The behavior allocation (the object
where an operation is placed) in the
original diagram is different from what
was explicited in the step, and so, is
different from the alocation in the
generated diagram. This difference
configures a modeling decision of the
analyst and cannot be inferred by the
tool, so needs to be adjusted in the
generated diagram after generation.

3 0

2

There are behavior details in original
diagrams that does not appear in the
generated diagram. This difference is
acceptable because is part of an
analysis work to go beyond the
interaction between the actor and the
System and the generated diagram is
only partial.

3 1

3

Non-utilization, in original diagrams, of
the boundary-control-entity pattern.
This difference is acceptable because
the tool applies this flow pattern and
the difference does not necessarily
configure mistake.

1 1

4

Message omission in original diagrams.
This difference is not a problem but a
omission of the analyst in the original
diagram.

0 1

5

Inadequate name of an operation in
crontrol object. This occurs when the
focus is on an interface and the System
perform two or more operations. In this
case, the first message will give the
name of the operation in the control
object, but it will not reflect the
meaning of the operation that does
more things than the first message
suggest.

1 1

Considering only the types of differences that deserve

adjustments (types 1 and 5), we have 5 differences in both
generated diagrams compared to the original diagrams.
Considering yet that the two generated diagrams have 30
messages, there is 83 percent of similarities between original
and generated diagrams. Therefore, generated Analysis
Model should be revised by the analyst after generation for
behavior allocations and for operation’s name on the control
object. Beyond this, the generated Analysis Model should be
complemented, given that the generation is only partial and
because of the limitations of the method, cited above.

V. CONCLUSION

This paper presented a set of markups for Use Cases and

a transformation procedure for automatic partial generation
of an Analysis Model. The Mason and Supsrisupachai [20]
work was the basis for this work once it defined some
markups for primitives in a Use Case in order to originate a
Sequence Diagram. This work defines some more markups
(markups for guard-condition, actors and interface) and
defines a procedure to create a partial Sequence Diagram

91Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 100 / 129

with Analysis Classes, as well as complementing the Domain
Model with the operations identified during the method
execution.

The generated Analysis Model is composed of a partial
Class Diagram and partial Sequence Diagrams (one per Use
Case). The Class Diagram is the pre-existing Domain Model
updated with the operations identified during the Sequence
diagrams generation.

A tool was constructed based on the set of markups and
the procedure in order to automate the generation of a partial
Analysis Model.

The realized experiment demonstrated that the
method/tool generates partial models with 83% of
correctness, excluding differences that are not worth of
adjustment. Considering this percentage, we believe that the
implemented method could be used as a starting point for the
Analysis Model since some improvements of the proposal
can be made, as suggested below.

As a proposal to improve the tool, the model could be
generated in XMI format, in a way that could be opened in a
UML tool.

Another proposal to improve the tool is the creation of a
tab for writing the marked-up Use Cases with an option for
presenting texts with or without the markups, facilitating
reading Use Cases when markups are hidden.

As a suggestion for future research, the procedure and the
set of markups could consider alternative scenarios which
will be transformed into fragments in the Sequence
Diagrams. Extensions and Inclusions of Use Cases could
also be considered.

Also, as a suggestion for future research, the
transformation procedure and the set of markups could be
extended to consider business rules written in Use Cases. A
rule could be incorporated as an operation description when
associated to a specific step or be incorporated as a note in
the generated diagram when associated with Use Case as a
whole.

REFERENCES

[1] J. T. Grose, G. D. Doney, and A. A. Brodsky, “Model Driven

Architecture (MDA) and XMI,” in Mastering XMI. [S.l]:
John Wiley & Sons, 2002, p. 329.

[2] D. Rosenberg and M. Stephens, “Introduction to ICONIX
Process,” in Use Case Driven Object Modeling with UML:
Theory and Practice. [S.l.]: Apress, 2007.

[3] I. Sommerville, Software Engineering, 9th ed.. [S.l.]:
Addison-Wesley, 2011, p. 108.

[4] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J.
Conallen and K. A. Houston, Object-Oriented Analysis and
Design with Applications, 3th ed.. Boston, MA: Addison-
Wesley, 2007, p.274.

[5] R. Pressman, “Requirements Engineering (RE) Tasks,” in
Software Engineering: A Practitioner’s Approach, 6th ed..
[S.l.]: McGraw-Hill, 2004, p. 118.

[6] C. Larman, Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Iterative
Development, 3th ed.. Upper Saddle River, NJ: Addison-
Wesley, 2004, p. 145-146.

[7] IEEE. “Software Design,” in Guide to the Software
Engineering Body of Knowledge. Los Alamitos, CA: [S.n.],
2004, p. 53.

[8] I. Jacobson, M. Christerson, P. Jonsson and G. Overgaard,
Object-Oriented Software Engineering: A Use Case Driven
Approach, 1st ed.. Edimburgh, UK: Addison-Wesley, 1992.

[9] B. Bruegge and A. H. Dutoit, “Analysis,” in Object-Oriented
Software Engineering Using UML, Patterns and Java. Upper
Saddle River, NJ: Pearson Prentice Hall, 2004, p. 177.

[10] G. Heineman and J. Denham, “Entity, Boudary, Control as
Modularity Force Multiplier,” in Proc. 3rd Workshop on
Assessment of Contemporary Modularization Techniques
(ACoM.09), Orlando, FL, 2009, p. 42-47.

[11] L. Favre, Model Driven Architecture for Reverse Engineering
Technologies: Strategic Directions and System Evolution, 1st
ed.. Hershey, PA: IGI Global, 2010.

[12] D. Milicev, Model-Driven Development with Executable
UML, 1st ed.. Indianapolis, IN: Wiley Publishing, 2009.

[13] N. Debnath, M. C. Leonard, M. V. Mauco, G. Montejano and
D. Riesco, “Improving Model Driven Architecture with
Requirements Models,” in Proc. 5th International Conference
on Information Technology: New Generations (ITNG 2008),
Las Vegas, NV, 2008, p. 21-26.

[14] T. Yue, L. C. Briand and Y. Labiche, “A Use Case Modeling
Approache to Facilitate the Transition Towards Analysis
Model: Concepts and Empirical Evaluation,” in Proc. Model
Driven Engineering Languages and Systems (MoDELS
2009), Denver, CO, 2009, p. 484-498.

[15] T. Yue, L. C. Briand and Y. Labiche, “Automatically
Deriving a UML Analysis Model from a Use Case Model,”
Simula Research Laboratory, Oslo, Norway, Tech. Rep. 2010-
15, Oct. 2010.

[16] L. Liwu, “A Semi-Automatic Approach to Translating Use
Cases to Sequence Diagrams,” in Proc. Technology of Object-
Oriented Languages and Systems (TOOLS’99), Nancy,
France, 1999, p. 184-193.

[17] L. Liwu, “Translating Use Cases to Sequence Diagrams,” in
Proc. 15th IEEE Int. Conf. on Automated Software
Engineering (ASE’00), Grenoble, France, 2000, p. 293-296.

[18] L. Mendez, R. Romero and Y. P. Herrara, “UML Sequence
Diagram Generator System from Use Case Description Using
Natural Language,” in Proc. 4th Electronics, Robotics and
Automotive Mechanics Conf. (CERMA’07), Cuernavaca,
Mexico, 2007, p. 360-363.

[19] J. S. Thakur, A. Gupta, “Automatic Generation of Sequence
Diagram from Use Case Specification,” in Proc. 7th India
Software Engineering Conference (ISEC '14), 2014, Chennai,
India.

[20] P. A. J. Mason and S. Supsrisupachai, “Paraphrasing use case
descriptions and Sequence Diagrams: An approach with tool
support,” in Proc. 6th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON 2009), 2009, Pataya,
Thailand, p. 722-725.

[21] G. Evans. “Getting from use cases to code, Part-1: Use Case
Analysis.” Internet:
http://www.ibm.com/developerworks/rational/library/content/
RationalEdge/jul04/TheRationalEdge_July2004.pdf, Jul. 13,
2004 [Feb. 22, 2015].

[22] J. White. “The Forgotten Step – Use Case Realization.”
Internet: http://www.intertech.com/Blog/post/The-Forgotten-
Step-Use-Case-Realization.aspx, Jan. 25, 2010 [Feb. 22,
2015].

[23] F. C. Souza. “Geração Automática de Diagramas de
Sequência e Atualização do Modelo de Domínio a partir de
Casos de Uso.” M.S. thesis, Institute for Technological
Research, São Paulo, Brazil, 2011.

92Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 101 / 129

Framework for Developing Scientific Applications: Solving 1D and 2D
Schrödinger Equation by using Discrete Variable Representation Method

Bojana Koteska and Anastas Mishev

Faculty of Computer Science and Engineering,
1000 Skopje, Republic of Macedonia

e-mails: {bojana.koteska,anastas.mishev}@finki.ukim.mk

Ljupco Pejov

Faculty of Natural Science and Mathematics,
1000 Skopje, Republic of Macedonia

e-mail: ljupcop@iunona.pmf.ukim.edu.mk

Abstract—The absence of software engineering practices while
developing scientific applications has negative impact on the
quality of the applications. As a result, the probability for finding
bugs in the application is higher, testing is more difficult and
further code optimization and paralelization become an issue.
In order to improve the developing process, in this paper, we
propose a framework for developing scientific applications. The
framework helps scientists to understand some of the basic
concepts of software engineering and to change their current
habits for developing scientific applications. Our goal is to adapt
and modify some of the software engineering practices in every
phase of the application development process. Aiming to use
this framework in practice, we apply the recommendations for
all phases while developing application for solving 1D and 2D
Schrödinger equation by using the Discrete Variable Representa-
tion method (DVR). Using the framework resulted in better code
organization, linked execution of the application modules for 1D
and 2D equations, defining requirements and designing tests. As
a final product we have an application organized in modules,
documentation for each developing phase, comments in the code
and executable tests.

Keywords–Scientific application; Software Engineering; Frame-
work; Schrödinger equation; Software quality.

I. INTRODUCTION

A scientific application is a software application that sim-
ulates activities from the real world and turns objects into
mathematical models [1]. Scientific applications are designed
to perform numerical simulations of natural phenomena in
different scientific fields: computational chemistry and physics,
informatics, mathematics, bioinformatics, etc. The execution
of such applications that perform simulation of scientific
experiments with large amount of data requires powerful super-
computers, high performance computing and Grid computing
[2].

According to the Institute of Electrical and Electronics
Engineers standard (IEEE Std) 610.12-1990, software engi-
neering is defined as an application of a systematic, disciplined,
quantifiable approach to the development, operation and main-
tenance of software, that is, the application of engineering to
software [3]. The main problem related to the development
of scientific applications is the current development practice.
In our previous paper [4], we conducted a survey among
scientists - participants in the High Performance - South East
Europe (HP-SEE) project and we found out that they do not
use software engineering practices in the scientific application
development process.

Scientific applications development differs from the devel-
opment of commercial applications, especially in the stage of
testing. Scientific applications are developed by the scientists
themselves and used in the scientific research group which
means that software can not be tested based on users’ re-
quirements, but the results can be compared to the results
obtained from the real experiments or they are based on
theory. High performance computing applications, such as
scientific applications, can basically be the same with any kind
of application, but only small number of additional changes
in terms of planning, requirements elicitation, testing and
development approaches are required [5]. It means that the
same development practices cannot be fully applied, but there
is a possibility to modify the practices and to make some
adaptations.

The goal of this paper is to propose a development
framework that will help scientists to change the current
development practices and to show that software engineering
can be included in the development process of scientific
applications. The development framework provides basis for
a complete scientific software development process and it also
gives some quality recommendations that can be applied in
the development process. The framework is generic which
means that steps for developing can be used for different
scientific applications. It provides a set of rules, recommen-
dations and software engineering development practices. The
main contribution of this paper is the description of the full
development process of the scientific applications which tries
to adapt and modify the existing software engineering practices
for developing commercial applications.

The possibility of inclusion of the development practices
proposed in the framework is validated with the development
of an application for solving 1D and 2D Schrödinger equations
by using the DVR numerical method. The application is
developed by following the suggested development stages and
recommendations which means that requirements are written,
architecture is designed, code is organized in modules and
optimized, testing is automated, etc.

The paper is organized as follows: related work is presented
in the Section 2. Section 3 describes the current development
practices used in scientific application development process.
The framework is specified in the Section 4. The development
process that includes the development stages proposed in the
framework which are used for programming the application for
solving 1D and 2D Schrödinger equations by using the DVR

93Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 102 / 129

numerical method is given in Section 5. The conclusion and
future work are provided in the Section 6.

II. RELATED WORK

There are several papers that emphasize the need of soft-
ware engineering when developing scientific applications, but
no paper describes the full development process. In [6], the
author presents the most modern software engineering prac-
tices relevant to scientific computing. He gives an overview of
some software development models, choice of programming
language, static analysis tools, dynamic testing procedures,
version control systems, software quality and reliability. Here,
there are some useful software engineering practices in the sci-
entific applications development [7]: identification of resources
required to develop the application; developing plan and sched-
ule for completion of tasks and responsibilities; managing
requirements, documenting them and constant control; making
test plans and documentation; managing changes; managing
the risks that may arise during development; constant quality
control.

The quality of scientific applications can be improved by
using generic programming, domain modeling and component
based programming. For example, the creation of a meta
model with established rules assists in the process of defining
the application model needed to solve problems specific to
that domain [8]. Software engineers can help scientists to
realize the benefits of reusing by providing to them software
frameworks. The framework will reduce the effort and time
required for development, especially if scientists already have
some knowledge about the used technologies, e.g., Message
Passing Interface (MPI) [9]. Open Community Engagement
Process is a model for software development which brings the
software engineers and scientists together. The model define
four steps: design, develop, refine, publish. This process is
iterative and it follows incremental development approach and
agile principles [10]. There is also a project for creating
software infrastructure for scientific computing (ACTS) that
provides a lot of free software tools which are divided into
four categories: numerical calculations, code development,
code execution and development libraries. These tools provide
support for solving linear systems, optimization, obtaining
analytical solutions, visualization, etc. [11]. Some practices
that can improve the scientists’ productivity and reliability of
scientific applications are recommended in [12]. The survey
we presented in [4], helped us to find some shortcomings in
the development process of the scientific applications. Based
on it, we proposed some practices for increasing the quality
of the applications.

III. SCIENTISTS’ DEVELOPMENT PRACTICES

Scientists usually learn programming independently or they
are taught by other scientists. They believe that the process
of software development is only the process of coding. The
applications they are developing are intended for their scientific
group or closer scientific community. The most important thing
for scientists is to get scientifically correct results [9][13]. If
the output results are correct, they are not very interested in
making additional optimizations or parallizations. They are
often guided by the thought that if a hypothesis is proven once,
there is no need for reprogramming that section [5].

The scientists write codes in small teams without previous

formal training [6]. The reason for the poor quality of high-
performance computing applications lies in the lack of used
software engineering formal methods and practices [9][14] . It
may result in a larger number of errors, difficult understanding
of the code written by the other scientists in the community,
using additional unnecessary resources, problems with refac-
toring and optimizations later, etc. [13].

Scientists do not practice writing requirements or any kind
of documents and they believe that requirements should only
be discussed, but not written [13]. Later, when the testing is
performed, there is no information what is done and what have
to be done more. When the process of verification starts, scien-
tists primarily give importance to the quality of the algorithm
rather than its realization [9]. Usually the scientific problems
have no precise solution and numerical methods are used to
perform an approximation. Often, the verification means com-
parison with experimental results [6]. The software verification
is based on professional judgment, such as comparison of the
model output with other model outputs (benchmark) which
will not always provide a consistent comparison and visual
comparison between two pictures [15]. A primarily goal for
scientists is to test the implemented theory, not the algorithm
implementation. The testing is not the most important thing
until an error that affect the correctness of scientific results
appears [14].

The scientists in the HP-SEE project that participated in
the survey [4] said that testing is a very important process, but
mostly only the original developer is responsible for testing.
Also, they are aware of their application errors, but they test
manually, which means that they do not use any testing tools.
Scientists think that writing testing documentation is very
important process, but they describe the test cases freely. They
answered that the biggest barrier for testing is time. Scientists
are interested in graphs and/or reports that outline the state of
system testing.

Taking into account all the problems mentioned above
(difficult testing, no documentation, poor code comments,
problems with optimization, etc.), we decided to propose a
framework that will guide the scientists through the develop-
ment process of the scientific applications.

IV. FRAMEWORK FOR DEVELOPING SCIENTIFIC
APPLICATIONS

This section describes the stages for developing scientific
applications. We propose the incremental software develop-
ment model which is elaborated in Software Engineering: 9th
edition by Ian Sommerville [16]. We made small modifications
of the model because there are two main differences between
standard software development and scientific applications:
The results from the scientific applications are verified by
comparison to the results obtained from physical experiments;
There are no customers that can evaluate the application since
applications are developed only for the scientific community.
We adapt this model by making changes in the process of
evaluation, in test-driven design and short reports after each
iteration.

This development process is characterized by fast delivery
of increments and their evaluation which helps the cost of
changing requirements to be reduced. Each increment of the
development process contains 9 phases: planning, require-
ments definition, system design, test cases design, coding,

94Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 103 / 129

testing, evaluation, writing short report. It is shown in
Figure 1.

Figure 1. Scientific application development process

A. Planning
Each increment begins with the planning phase. The plan

is a non-formal document which contains a list of activities
that should be performed in the next iteration. For example,
scientists should think about what parts (modules) have to be
coded in that iteration, how they will be tested and evaluated.
If there are more scientists who develop the application, the
tasks should be assigned appropriately.

B. Requirements Specification
This is the development phase where requirements should

be written formally. The document containing formal require-
ment specification is needed for better evidence of completed
and future activities. We divide the requirements in two
categories: functional requirements and nonfunctional require-
ments.

A functional requirement is a requirement that describes
an application functionality (also inputs and outputs of a
function). A nonfunctional requirement is a requirement that
specifies the system behavior (constraints).

Each requirement should be consisted of the following
fields: Id - unique requirement identifier; Name - short name
that describes the requirement; Requirement type - functional
or nonfunctional requirement; Version - current version of the
requirement (as a number); Description - description of the
functionality that needs to be realized (if functional) or descrip-
tion of tests and evaluation of the application functionalities
or any hardware and software requirement; History of changes
in each version of the requirement which is needed because
of frequent requirements’ changes, especially when solution
goes in the wrong direction. The requirement specification
will provide a better overview of the features that need to

be tested, and less problems, such as delayed tasks realization,
no working plan, late and incomplete testing, errors, etc.

C. System design
System design is the part where the hardware and software

systems requirements are specified in order to establish a
system architecture (for example, if the application needs
multicore processor, Grid, high-performance computing to be
run or some libraries that provide parallel execution). In
this section, compilers, integrated development environments
(IDEs), platforms and operating systems should be also spec-
ified.

D. Test cases design
Test cases designs are mostly related to functional re-

quirements which means that well specified requirements can
contribute to better design of test cases. Test cases need to be
defined by using standardized forms. Also, boundary values
and source code analysis could be considered as a relevant
information. Test cases where the correct value cannot be
specified should contain a range of values.

Each test case description should include the following
fields: Id - a unique test case identifier; Name - name of
the test case; Requirement id - specific id of the requirement
tested with this test case; Goal - a description of the goals of
the test case; Preconditions - conditions that must be met in
order to perform the test case (results from other tests or some
additional conditions); Execution environment of the test case;
Expected results; Actual results; Test case status (pass or fail);
History of the changes in each test case version. Code and
branches coverage techniques could be useful for generating
test cases.

E. Coding
The best approach is to define more independent modules

because they can be used as generic functions in many other
applications from the same or similar scientific domain. If any
part of the code is repeated it definitely should be written as
a separate function. The declaration and definition of unused
variables should be avoided. Also, release of the memory
should be performed always when possible. Comments must be
written through the code and, if possible, some optimizations
can be done. Parallelization can be performed by using some
libraries (for example, OpenMPI [17], if the code is written in
C).

F. Testing
When test cases are created and code is written it is time

to make and run tests. There are various methods that can
be used to provide assurance that the software is error free.
White-box testing includes tests designed to check the source
code. If possible, tests should be created before the software is
developed. Only non redundant test cases should be selected,
the other should be eliminated. The following criteria are
good indicators that testing process is completed: all tests are
performed successfully without errors, the criteria for source
code coverage and test models are satisfied and validation by
analytic solutions is achieved.

Tests automation and tools that provide source code test-
ing or functional testing are very important and can greatly
improve and speed up the process of testing. To improve the

95Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 104 / 129

quality of applications, the current practice of manual testing
should be changed. There are many frameworks for creating
and running tests (for example, frameworks for C code: Check,
CUnit, AceUnit, CuTest, etc.).

We recommend white box testing for each module, and
then integration testing to check the interconnection between
the modules and functionality of a system as a complete
product. The possible conflicts with the already created tests
must be resolved by changing the tests.

G. Evaluation
The results can be evaluated only by a limited number of

users (usually scientists themselves) because the accuracy of
the results is often based on theory and experiments. Scientists
who have developed applications that solve similar problems
can help to find errors. Developing experience and learning
techniques for guessing or past errors can help a lot in the test
design. Found errors should be sorted by priority, for example,
if the error affects the further development or it is a critical
error, it should be marked as error with higher priority and
corrected as soon as possible.

H. Writing Short Report
A short report is document that describes the finished tasks

in the current iteration. The tasks done in each phase should
be listed. This is very important when a new member joins
the team because he/she will know what is done and what
have to be done. Scientists do not have practice for generating
documents, but creation of documents can help to further
improving and upgrading the application.

V. SOLVING 1D AND 2D SCHORÖDINGER EQUATIONS BY
USING DISCRETE VARIABLE REPRESENTATION METHOD

Discrete Variable Representation methods are widely used
in different scientific domains, such as chemical physics,
molecular quantum dynamics, etc. DVR’s are described as
a representation whose basis functions are localized about
discrete values of the variables. DVR’s are also approximations
of coordinate operators by their values at the DVR points
which are assumed diagonal. DVR methods are acceptable
for many problems because they simplify the calculation of
the kinetic energy matrix elements of the Hamiltonian matrix
and also potential matrix elements which are the value of
the potential of the DVR. DVR’s provide efficient numerical
solutions to quantum dynamical problems. When the DVR’s
product in multi-dimensional systems is calculated, operation
of the Hamiltonian on a vector is fast and the Hamiltonian
matrix is sparse (with many 0’s) [18].

Schrödinger equation is a partial differential equation that
describes the dynamics of system at atomic and molecular
level. A time independent equation is represented with the
following formula:

H ∗Ψ = E ∗Ψ (1)

where H is the Hamiltionian operator, Ψ is the wave function
of the quantum system and E is the energy of the state Ψ. A
time dependent Schrödinger equation has the form:

i ∗ h̄∂Ψ

∂t
= H ∗Ψ (2)

where H is the Hamiltionian operator, Ψ is the wave
function of the quantum system, h̄ is the Planck Constant
divided by 2Π and ∂

∂t is a partial derivative with respect to
time t.

We have to develop scientific application for solving 1D
and 2D Schrödinger equation. We will organize the develop-
ment process in increments. There are already some codes for
solving 1D and 2D Schrödinger equation in Mathematica, but
we want to use C language because our goal is to use this
module as an independent part in more complex application
written in C. Detailed descriptions of the requirements and
modules are given in the following subsection.

A. Increment 1
1) Planning:

• define the inputs and outputs of the module for solving
1D and 2D Schrödinger equation

• define developing environment, software and hardware
needed for developing and execution of the application

• split the algorithm in modules
• define inputs and outputs for each module
• create tests for modules by choosing any tool for test

automation
• develop all submodules needed for the module for

solving 1D and 2D Schrödinger equation
• perform tests and evaluate the results
• correct errors if any

2) Requirement Specification: In this subsection, we will
provide only the list the requirements with their IDs, but they
also have to be specified as described above.

Functional requirements:
1) Module for multiplication of two 2D arrays (input

- two 2D arrays of type double and number of
rows/columns of the array (matrices are quadratic) of
type integer, output - one 2D array of type double).

2) Module for making a diagonal 2D array(input - 1D
array of type double and number of rows/columns of
the array of type integer, output - diagonal 2D array
of type double).

3) Module for multiplication of a scalar and a 2D array
(input - 2D array, scalar and number of rows/columns
of the array, output - 2D array).

4) Module for making an identity 2D array (input -
the number of rows/columns of the array, output 2D
array).

5) Module for addition of two 2D arrays (input-two
2D arrays and number of rows/columns of the array
(matrices are quadratic), output - one 2D array).

6) Module for making a transposed 2D array (input -
the number of rows/columns of the array, output 2D
array).

7) Structure for a file row which contains three double
numbers.

8) Structure for a file which contains array of elements
of type ”structure for a file row” and number of rows
of the file (integer).

9) Module for reading data from file (input - char
array(file path), output- element of type ”structure for
a file”.

96Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 105 / 129

10) Module for sorting rows in file (input - element of
the type ”structure for a file”, output - element of the
type ”structure for a file”).

11) Module for calculating eigenvalues (input - 2D array
of type double and number of rows/columns of the
array(integer), output- 1D array of type double).

12) Module thcheby for calculating array of x-values,
y-values(2D), transformation matrices for x and y
values in finite basis representation (FBR) (input -
number of points for x values- integer, number of
points for y values - integer, minumim and maximum
values for x and y-double, output - 1D array for x
points of type double, 1D array for y points of type
double, 1D array of x points in FBR of type double,
1D array of y points in FBR of type double, 2D array
for transforming x points from FBR to DVR of type
double, 2D array for transforming y points from FBR
to DVR of type double. y-values are only needed for
solving 2D Schrödinger equation.

Nonfunctional requirements:
1) Algorithm for array sorting should have complexity

smaller then O(n2).
2) Application should be scalable (for example, when

input data size increases, dynamic memory allocation
must be used).

3) Memory used by the objects should be released when
they are not used anymore.

3) System Design: The application for solving 1D and
2D Schrödinger equation can be run on a single processor
machine. A C compiler is needed for a code compailing. A
code editor should be installed also. The application can be
run on any operating system. The results are provided to the
standard output. In order to perform the testing, the CuTest
framework for testing C codes should be installed also [19].

If the user wants to solve 1D or 2D Schrödinger equation,
he/she has to provide only the input parameters to the module
for solving these equations and file path.

4) Test Cases Design: In order to test the system for
each specified functional requirement, we defined test case, as
specified in the Section 4. Writing test cases before writing the
code will help us to identify the needed input, predicted results
and conditions. This is the part where only text document is
written and later in the testing phase we will use the CuTest
framework to write and run the unit tests. For example, the test
case for the 12-th functional requirement (thcheby module)
specified above, has the following conditions:

1) deltax is the difference between the maximum(xmax)
and minumum value of x(xmin);

2) deltay is the difference between the maximum(ymax)
and minumum value of y(ymin);

3) nx1 is the number of x points increased by 1;
4) nxy is the number of y points increased by 1;
5) The i-th member of the array of x values (ptsx) has

the value ((i+ 1) ∗ deltax ∗ 1.0)/nx1 + xmin
6) The i-th member of the array of y values (ptsy) has

the value ((i+ 1) ∗ deltay ∗ 1.0)/ny1 + ymin
7) The i-th member of the array of x values in FBR

(fbrtx) has the value (((i+ 1) ∗Π)/deltax)2;
8) The i-th member of the array of y values in FBR

(fbrty) has the value (((i+ 1) ∗Π)/deltay)2;

9) The element at the position (i, j) of the transforma-
tion matrix for x values (Tx) has the following value√

2.0/nx1 ∗ sin((i+ 1) ∗ (j + 1) ∗Π/nx1)
10) The element at the position (i, j) of the transforma-

tion matrix for y values (Ty) has the following value√
2.0/ny1 ∗ sin((i+ 1) ∗ (j + 1) ∗Π/ny1)

For each condition a status should be written also
(PASSED/FAILED).

5) Coding: The code is organized in modules. The coding
of a module is performed after the specification of the test
case for that module. Arrays are defined by using pointers
and memory is released always when possible. The calculation
of eigenvalues is performed by using the GNU Scientific
Library(GSL) library. The complexity of the algorithm is
O(n2). Sorting was implemented by using the quick sort
method.

One of the most important things that scientists do not prac-
tice is writing comments through the code. We add comments
for describing the modules, variables, cycles and statements.
Another useful thing in programming is the concise naming of
the variables and methods.

6) Testing: Testing was performed by using the CuTest
system which is designed for writing, administering, and
running unit tests in C [19]. A test case is passed if all
conditions for that test case are satisfied. In order to check
the correctness of the code, assertions must be added. For
example, in order to check the correctness of the test case
for the 14-th functional requirement, we have to write several
test functions and to call them in the main function. In Figure
2, function for testing the members of the array of x values
in FBR (fbrtx) is shown, where i-th member has the value
(((i + 1) ∗ Π)/deltax)2;, as described in the subsection test
cases above.

void TestFbrtxMembers(CuTest *tc)
{
struct return_objects result=
thcheby(10, 1, 5, 10, 2, 6);
double *ac=result.fbrtx; //actual result
int i;
double *ex=
malloc(10*sizeof(double));//expected result
for(i=0;i<10;i++)
{
ex[i]=square(((i+1)*M_PI)/(5-1));
CuAssertTrue(tc,abs(ex[i]-ac[i])<0.00001);
}

Figure 2. Descriptive Caption Text

7) Evaluation: Evaluation was performed by comparing
the results from our application to results from the provided
code in Mathematica by the Upssala University. When compar-
ing experimental results, another way to test this application to
test the convergence of the results with increasing the density
of grid points which is equivalent to increasing the number of
basis functions. Several errors in the modules were found and
they were corrected.

8) Writing Short Report: In the first increment, all modules
specified in the requirements section needed for calculating

97Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 106 / 129

were written and tested. The errors were corrected and all tests
passed successfully. Also, all nonfunctional requirements were
taken into consideration.

B. Increment 2
1) Planning:

• adapt the input for 1D and 2D equation
• integrate all modules into one module for solving 1D

and 2D Schrödinger equation
• create tests for the module for solving 1D and 2D

Schrödinger equation
• perform tests and evaluate the results
• correct errors, if any

2) Requirement Specification: Functional Requirements

• Module for making the interpolation function (PES)
and energy list (pel)

• Module for calculating 1D and 2D Schrödinger equa-
tion: Input - Potential energy values computed on 2D
grid of points (E, x, y) or 1D grid (E,x) read from
a separate file, the number of DVR points, minimum
and maximum values of x(1D) and x, y(2D), inter-
polation function and mass; Output - Frequencies of
various vibrational transitions (n,m)− > (l, k) to be
compared with experiment, but also the convergence
with respect to computation-related parameters to be
tested, - Vibrational wavefunctions on 2D grid of
points (ψ, x, y) or the square-modulus of ψ on 2D
grid of points (|ψ|2, x, y), i.e. ((ψ ∗ ψ), x, y).

3) System Design: Same as specified in Increment 1.
4) Test Cases Design: Two test cases were created. The

conditions included in the test case for the first module in
this increment are for interpolation function which should
be implemented by using the Hermite interpolation method
and some details about making the pel array. The second
test case only checks the output results because all modules
that are called in this module are checked in the previous
increment. The only important thing here is the proper modules
integration.

5) Coding: In this increment, only the developed modules
were called in proper order in the module for calculating
1D and 2D Schrödinger equation. The module for calculat-
ing the 2D Schrödinger equation was developed. Also, this
module is appropriate for solving 1D Schrödinger equation
by eliminating the calculations which include the second
coordinate y. The most convincing part here was programming
of the interpolation method which is an integrated function in
Mathematica.

6) Testing: Testing was also made by using the CuTest
framework. Two tests were created and run.

7) Evaluation: The results were compared to the results
from the program written in Mathematica.

8) Writing Short Report: Time needed for this increment
was shorter because all modules were tested and programmed
in the previous increment. An algorithm for Hermite interpo-
lation was programmed and some errors that were found in
the integration function were corrected.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework for developing
scientific applications. The framework describes the phases
of the development process. In order to prove the developing
model, an application for calculating 1D and 2D Schrödinger
equation was developed. The results show that the framework
is suitable for developing this application because at the end
we have understandable code organized in modules, docu-
mentation and generated tests which are shortly described in
the Section 5. The existing solutions for this problem do not
have comments through the code or any documentation and
it is very hard to understand the code. There are no proposed
developing stages for scientific applications which will guide
scientists to write documents and to plan the development
process. This framework will help scientists to change the
current development practices and will provide better overview
of the application for the scientists who will join the project
later. The framework is a guide for developing scientific
applications because it explains the developing steps in details.
The independent modules or complete program as a module
can be used also in other scientific applications. Although
there are many scientific libraries, usually a scientific research
group needs modules with specific input, output and parallel
programming methodologies which are originally developed
by the group. Our goal is to test the framework of the large
scientific applications and to check if this development process
can be applied for different scientific applications. Also, we
want to provide a set of documented modules written in C that
are used in many different scientific applications which will
be available for the scientists to use in their applications. Our
future work is oriented to developing more complex high per-
formance computing (HPC) scientific application which will
require powerful distributed computing resources. If needed,
some modifications of the existing model will be made in the
future.

REFERENCES

[1] PCMag. Definition of scientific application. [Online]. Available: http:
//www.pcmag.com/encyclopedia/term/50872/scientific-application [re-
trieved: Mar., 2015]

[2] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud
computing: A view of scientific applications,” in Pervasive Systems,
Algorithms, and Networks (ISPAN), 2009 10th International
Symposium on, Dec 2009, pp. 4–16. [Online]. Available:
http://dx.doi.org/10.1109/I-SPAN.2009.150

[3] IEEE standard glossary of software engineering terminology. The
Institute of Electrical and Electronics Ehgineers, New York, NY, USA.
[Online]. Available: http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-
glossary-610.12-1990.pdf. [retrieved: Mar., 2015]

[4] B. Koteska and A. Mishev, “Software engineering practices and
principles to increase quality of scientific applications,” in ICT
Innovations 2012, ser. Advances in Intelligent Systems and Computing,
S. Markovski and M. Gusev, Eds., vol. 207. Springer Berlin
Heidelberg, 2013, pp. 245–254. [Online]. Available: http://dx.doi.org/
10.1007/978-3-642-37169-1 24

[5] R. Baxter, “Software engineering is software engineering,” in
Proceedings of the First International Workshop on Software
Engineering for High Performance Computing System Application.
Edinburgh, Scotland, United Kingdom: IEE, 2004, pp. 14–18. [Online].
Available: http://dx.doi.org/10.1049/ic:20040411

[6] C. Roy, “Practical software engineering strategies for scientific
computing,” in Proceedings of the 19th AIAA Computational Fluid
Dynamics Conference. Red Hook, NY, USA: Curran Associates, Inc,
2009, pp. 1473–1485. [Online]. Available: http://dx.doi.org/10.2514/6.
2009-3997

98Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 107 / 129

[7] D. E. Post and R. P. Kendall, “Software project management and quality
engineering practices for complex, coupled multiphysics, massively
parallel computational simulations: Lessons learned from asci,”
International Journal of High Performance Computing Applications,
vol. 18, no. 4, 2004, pp. 399–416. [Online]. Available: http:
//dx.doi.org/10.1177/1094342004048534

[8] F. Hernández, P. Bangalore, and K. Reilly, “Automating the
development of scientific applications using domain-specific modeling,”
in Proceedings of the second international workshop on Software
engineering for high performance computing system applications.
New York, NY, USA: ACM, 2005, pp. 50–54. [Online]. Available:
http://dx.doi.org/10.1145/1145319.1145334

[9] V. R. Basili et al., “Understanding the high performance computing
community: A software engineer’s perspective,” IEEE Software,
vol. 25, no. 4, 2008, pp. 29–36. [Online]. Available: http:
//dx.doi.org/10.1109/MS.2008.103

[10] L. Christopherson, R. Idaszak, and S. Ahalt. Developing Scientific
Software through the Open Community Engagement Process
. [Online]. Available: http://dx.doi.org/10.6084/m9.figshare.790723
[retrieved: Mar., 2015]

[11] O. Marques and T. Drummond, “Building a software infrastructure
for computational science applications: lessons and solutions,” in
Proceedings of the second international workshop on Software
engineering for high performance computing system applications.
New York, NY, USA: ACM, 2005, pp. 40–44. [Online]. Available:
http://dx.doi.org/10.1145/1145319.1145332

[12] G. Wilson et al. Best Practices for Scientific Computing. [Online].
Available: http://arxiv.org/abs/1210.0530 [retrieved: Mar., 2015]

[13] J. Segal. Models of scientific software development. [Online].
Available: http://oro.open.ac.uk/17673/1/SegalICSE08R.pdf [retrieved:
Mar., 2015]

[14] ——, “Scientists and software engineers: A tale of two cultures,”
in Proceedings of the Psychology of Programming Interest Group.
UK: University of Lancaster, 2008, pp. 44–51. [Online]. Available:
http://www.ppig.org/papers/20th-segal.pdf

[15] R. Sanders and D. Kelly, “The Challenge of Testing
Scientific Software,” in Proceedings of the Conference for
the Association for Software Testing, July 2008, pp. 30–36.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.464.7432&rep=rep1&type=pdf

[16] I. Sommerville, Software Engineering, 9th ed. Harlow, England:
Addison-Wesley, 2010.

[17] OpenMPI. Open MPI: Open source high performance computing.
[Online]. Available: http://www.open-mpi.org/ [retrieved: Mar., 2015]

[18] J. C. Light and T. Carrington Jr, “Discrete-variable representations
and their utilization,” Advances in Chemical Physics, vol. 114,
2000, pp. 263–310. [Online]. Available: http://dx.doi.org/10.1002/
9780470141731.ch4

[19] Cutest: C unit testing framework. [Online]. Available: http://cutest.
sourceforge.net/ [retrieved: Mar., 2015]

99Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 108 / 129

Exploring Test Composition: Towards Reusability in Combinatorial Test Design

Anna Zamansky
University of Haifa

Haifa, Israel
Email: annazam@is.haifa.ac.il

Eitan Farchi
IBM Research
Haifa, Israel

Email: farchi@il.ibm.com

Abstract—Combinatorial test design (CTD) is an effective test
planning technique that reveals faulty feature interaction in a
given system. CTD takes a systematic approach to formally model
the system to be tested, aiming to minimize the number of test
cases while ensuring coverage of given conditions or interactions
between parameters. Since the system model and its test space
in real-life cases are usually enormous, the process of creation of
new tests is very expensive. This naturally leads to the need for
exploring ways in which reuse methodologies can be incorporated
into CTD practices. In this paper, we extend the standard CTD
framework to a reuse-oriented setting by incorporating the notion
of test composition. This notion arises naturally in sequential
testing scenarios, where the output of one test is used as the
input of the next test. Based on the proposed framework, we
propose a reuse-oriented reformulation for the CTD problem,
with the composability of test plan being the main consideration.

Keywords–combinatorial test design; pairwise testing

I. INTRODUCTION

As software systems become increasingly complex, ver-
ifying their correctness is even more challenging. Formal
verification approaches are highly sensitive to the size of
complexity of software, and might require extremely expensive
resources. Functional testing, on the other hand, is prone to
omissions, as it always involves a selection of what to test
from a potentially enormous space of scenarios, configurations
or conditions that is typically exponential in nature.

The process of test planning refers to the design and selec-
tion of tests out of a test space aiming at reducing the risk of
bugs while minimizing redundancy of tests. Combinatorial Test
Design (CTD) ([1], [2]) is an effective test planning technique,
in which the space to be tested, called a combinatorial model,
is represented by a set of parameters, their respective values
and restrictions on the value combinations [3]. The approach of
CTD can be applied at different phases and scopes of testing,
including end-to-end and system-level testing and feature-,
service- and application program interface-level testing.

The standard general formulation of the CTD problem
consists of finding a small (and ideally minimal) set of test
cases (a subset of the space to be tested), which ensures
coverage of given conditions, or interactions between variables
(such as pairs, three-way, etc.) The most common special
case of the CTD problem is pairwise testing, in which the
interaction of every pair of parameters must be covered. This
is justified by experiments showing that a test set that covers all
possible pairs of parameter values can typically detect between
50 to 75 percent of the bugs in a program [4].

The process of building combinatorial models for CTD is a
laborious and error-prone task, which involves finding a set of
parameters and values that define the test space and correctly
identifying all valid value combinations. One potential pitfall
of this process is omissions, i.e., failing to include an important
parameter, value or combination of parameter values in the
test space. Another pitfall is failing to correctly define the
restrictions so that they capture the intended cobminations.
Providing support for the test space definition process is a
crucial factor in a successful application of CTD techniques to
a wide range of testing domains. IBM’s tool FoCuS [5] aims to
automatically assist the tester in the solution of CTD problems
by constructing the test space efficiently, while considerably
reducing the risk of omissions. In [3] recurring patterns in
CTD models were studied. These patterns capture cases that
often repeat in different CTD models of different types and
from different domains. Solutions for how to translate them
into parameters, values and restrictions already exist, and thus
can fascilitate model reuse.

In this paper, we address another type of reuse in CTD,
namely test reuse. Addressing this problem is important, as
the test space in real-life cases is usually enormous, creating
new tests is very expensive. In this work-in-progress we
explore the idea of reuse-oriented CTD based on the notion
of composition of test plans. We propose a formal framework
in which composition of test plans can be defined. This leads
to a natural notion of the design space, which is the inductive
closure of test plans under composition. Based on the proposed
framework, we propose a reuse-oriented reformulation for the
CTD problem, with the composability of test plan being the
main consideration.

II. THE CTD FRAMEWORK

CTD is a powerful technique for functional testing. The
most well-known versions of this approach aim at testing all
value combinations of a given size t of the system’s parameters.
This problem of finding a minimal set of tests that cover all
combinations of size t can be reduced to the mathematically
equivalent problem of finding a covering array of strength t
[6].

In this paper, we take a more general approach along
the lines of [7], where the CTD problem is considered as a
subset selection problem. Below we provide a generalization
of the basic definitions of the framework, in which we make
a separation between the input and output parameters of a test
plan. This will be instrumental in what follows for defining
the notion of composition.

100Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 109 / 129

We assume a finite set of system parameters Par =
{A1, . . . ,An}. We treat a parameter as a finite set of its
possible values. For any value a ∈ Ai, we say that a has
type Ai, denoted by type(a) = Ai. Subsets of parameters are
called p-collections and are denoted by A,B, ...,.
We start by defining the notion of an (unordered) test, which
is basically a collection of values the combination of which
needs to be tested:

Definition 1: Let A = {A1, . . . ,Am} be a p-collection.

1) A selection for A is an element S ∈ P(
⋃m

1 Ai) such
that for distinct a, b ∈ S , type(a) 6= type(b). Write
SelectionsA for the set of all selections for A.

2) Call a selection S for A an unordered test when
for every A ∈ A, there is some a ∈ S , such that
type(a) = A (so that |S| = |A|). Write TestsA for
the set of all unordered tests for A.

Example 1: A = {FileOps,PathName,OS} be a p-
collection (taken out of a larger superset of parameters), where

FileOps = {open, close, read, write}

PathName = {relative, absolute}

OS = {unix,windows}

Then S1 = {open, relative, unix} and S2 =
{close, windows} are selections for A, while the former is
also an unordered test.

Using sets of selections, we can easily capture various
interaction modes, such as pairwise testing (as well as others):

Example 2: For a p-collection A = {A1, . . . ,Am}, de-
note by 2Pair(A) the set of all selections for A of size 2.

Thus we think of tests just as sets, specifying which values
interact with which. However, when actually running tests,
other types of information become important. One of them is
a separation between the input and output parameters, which
defines possible orders of execution of tests as sequences of
consecutive test runs. Another issue is the order of parameter
appearance. Thus, when defining the notion of executable test
set, i.e., those tests that can actually be run in the system, we
incorporate the above types of information as well:

Definition 2: Let A = {A1, . . . ,Am},B =
{B1, . . . ,Bk} be p-collections.

• For e = (a1, . . . , ar) ∈ (A1 × . . . × Am) × (B1 ×
. . .×Bk) (where r = m+ k), we define the collapse
of e by col(e) = {a1, . . . , ar}.

• An element e ∈ (A1× . . .×Am)×(B1× . . .×Bk) is
called an ordered test if col(e) is an unordered test.

• An executable test set from A to B, denoted by E :
A → B, is a set of ordered tests.

Definition 3: Let A,B, C be p-collections.

• A pre-test plan from A to B, denoted by P : A → B
is a triple P = (E ,R,T) where:
◦ E : A → B is an executable test set.
◦ R is a set of selections for A ∪ B called

coverage requirements,

◦ T is a set of selections for A ∪ B, such that
T ⊆ col(E),

A test plan from A to B is a pre-test plan P =
(E ,R,T) which satisfies that for every R ∈ R, there
is some T ∈ T, such that R ⊆ T (in words: every
coverage requirement R in R is ‘covered’ by some
test T in T.)

Example 3: Let A be the p-collection from Example 1.
Let B = {PackageSize,AckRequired} be a p-collection, where

PackageSize = {1KB, 2KB, 3KB}

AckRequired = {yes, no}

Let C = {Mode,Protocol} be a p-collection, where

Mode = {on, off}

Protocol = {UDP, TCP}

We can define, e.g., the following test plans P1 : A → B
and P2 : B → C: P1 = (E1,R1,T1), where:

E1 = (FileOps×PathName×OS)×(PackageSize×AckRequired)

R1 = {{relative, unix, yes}}

T1 = {{open, relative, unix, 2KB, yes}}

P2 = (E2,R2,T2), where:

E2 = (PackageSize× AckRequired)× (Mode× Protocol)

R2 = {{yes, TCP}}

T2 = {{3KB, yes, on, TCP}}

We are now ready to state the standard formulation of the
CTD problem in terms of our framework: given the set of
executable tests E : A → B and coverage requirements R, find
a set of tests T, such that P = (E ,R,T) is a valid test plan.
In the case of pairwise testing, e.g., we set R = 2Pair(A∪B),
where the latter is taken from Example 2.

Many algorithms and tools exist for solving various in-
stances of the CTD problem ([8]). They can be classified into
three categories ([9]):

• algebraic: providing a solution by a mathematical
construction. These approaches usually lead to optimal
results, but are however highly inefficient in practice
(see, e.g., [10]).

• greedy: applying some search heuristic to incremen-
tally build the solution. An efficient algorithm of such
kind based on Binary Decision Diagrams [11] is given
in [7], other examples are [12], [13].

• meta-heuristic: applying genetic or other bio-inspired
search techniques (see, e.g., [14], [15]).

101Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 110 / 129

III. INTRODUCING COMPOSITION

The intuition behind composition of test plans is very
simple. Suppose a user has designed tests plans for several
parts of the system. Now, he may want to test several parts
sequentially, running one after the other and using the output
of one as input for the other. Instead of constructing tests
from scratch, he can reuse existing tests for the system parts
via composition. To define in precise terms the notion of
composition of test plans, we start by defining a composition
of each of their parts: executable test sets and selections (and
so also of tests).

Definition 4: Let A = {A1, . . . ,Am} and B =
{B1, . . . ,Bk}. Let SA,SB be selections for A and B respec-
tively. Let E1 : A → B and E2 : B → C be executable test
plans.

• Define E2 ◦E1 = {(a, c) | ∃b ∈ B1× . . .×Bk.(a, b) ∈
E1 ∧ (b, c) ∈ E2}.

• If for every a ∈
⋃

1≤i≤m Ai∪
⋃

1≤i≤k Bi it holds that
type(a) ∈ A ∩ B implies a ∈ SA ∩ SB , we say that
SA ◦SB is well-defined and equals to SA∪SB \SA∩
SB .

• Define SA ◦ SB = {SA ◦ SB | SA ◦
SB is well defined,SA ∈ SA,SB ∈ SB}.

The above definition captures both compositions of cov-
erage requirements and of tests (as both of them are sets
of selections). Note also that composition of 2-pair coverage
requirements leads to 2-pair coverage requirements:

Proposition 1: Let A,B, C be p-collections. Then

2Pair(A ∪ B) ◦ 2Pair(B ∪ C) = 2Pair(A ∪ C)

We can now define the following natural notion of compo-
sition of test plans:

Definition 5: Let P1 = 〈E1,T1,R1〉 : A → B and P2 =
〈E2,T2,R2〉 : B → C be test plans. The composition of P1

and P2 is defined by the pre-test plan

P2 ◦ P1 = 〈E2 ◦ E1,T2 ◦T1,R2 ◦R1〉

To capture the set of all possible runs of sequences of tests
for which the output of one test is used as the input of the
next test, we can now define the notion of the design space,
which contains pre-test plans:

Definition 6: Let P1 : A1 → B1, . . . , Pn : An → Bn
be test plans from Ai to Bi respectively. For i ≥ 0, define
the sets DSi(P1, . . . , Pn) of pre-test plans as the smallest sets
satisfying:

• P1, . . . , Pn ∈ DS0(P1, . . . , Pn).

• If Pi, Pj ∈ DSk(P1, . . . , Pn) and Bi = Aj , then Pi ◦
Pj ∈ DSk+1(P1, . . . , Pn).

We denote
⋃

i≥0 DSi by DS.

IV. REUSE-ORIENTED TEST DESIGN

Given existing test plans, e.g., for A → B,B → C,B → D,
one can compose them to obtain new test plans for A → C
and A → D. The challenge is, however, dealing with the fact
that composing valid test plans does not necessarily lead to
valid test plans. Indeed, the operation of composition does
not preserve validity of test plans, as demonstrated by the
following example:

Example 4: Consider again the test plans P1 and P2 from
Example 3. Their composition is the pre-test plan P2 ◦ P1 =
(E ,T,R), where:

E = (FileOps× PathName× OS)× (Mode× Protocol)

T = ∅

R = {{relative, unix, TCP}}

This pre-test plan is obviously not a test plan, as there is
no test meeting the requirement in R.

We now come to the key idea of reuse-oriented CTD
problem based on composition: designing basic tests with
the aim of effectively composing them at later stages when
required.

Definition 7: Two test plans P1 = 〈E1,T1,R1〉 : A → B
and P2 = 〈E2,T2,R2〉 : B → C are composable if P2 ◦ P1 is
a valid test plan.

It is easy to see that for every pair of executable test
sets E1, E2 and coverage requirements for A → B and
B → C respectively, there always exist valid test plans
P1 = 〈E1,T1,R1〉 : A → B and P2 = 〈E2,T2,R2〉 : B → C,
which are composable.

The notion of composability can be naturally extended to
any number of test plans, as well as to the inductive closure
under composition DS of a given depth:

Definition 8: Let P1 : A1 → B1, . . . , Pn : An → Bn be
test plans from Ai to Bi respectively. The design space DS is
composable up to depth k if for every P ∈ DSi and P ′ ∈ DSj

for i, j ≤ k, such that Bi = Aj , Pi ◦ Pj is composable.

The notion of composability defined above gives rise to
new interesting formulations of reuse-oriented versions of
the CTD problem, such as the following: given executable
test sets E1, E2 coverage requirements and R1 and R2 for
A → B and B → C respectively, find T1,T2, such that
P1 = 〈E1,T1,R1〉 : A → B and P2 = 〈E2,T2,R2〉 : B → C
are composable test plans. This can also be extended to
composability of a design space of a fixed depth in a natural
way.

Similarly to the standard CTD problem, the above problems
may be solved using appropriate algebraic, greedy or meta-
heuristic algorithms.

V. SUMMARY AND FURTHER WORK

In this paper, we define a formal framework, in which
we formulate an algorithmic problem of reuse-oriented CTD
based on composition. Composition of tests naturally arises in
sequential testing scenarios, where the output of one test is

102Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 111 / 129

used as the input of the next test. An evaluation of our frame-
work is the next natural step. It will be done by implementing
a greedy algorithm for solving the composition-based CTD
problem defined in this paper, by extending the algorithm of
[7], based on Binary Decision Diagrams.

Natural operations on test plans other than composition can
be further considered for a systematic test reuse (e.g., the stan-
dard join operation from database theory). Another direction
for future research is investigating which data structures are
most suitable for providing efficient solutions to the type of
algorithmic problems formulated in this paper.

REFERENCES

[1] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys (CSUR), vol. 43, no. 2, 2011, p. 11.

[2] J. Zhang, Z. Zhang, and F. Ma, “Introduction to combinatorial testing,”
in Automatic Generation of Combinatorial Test Data. Springer, 2014,
pp. 1–16.

[3] I. Segall, R. Tzoref-Brill, and A. Zlotnick, “Common patterns in
combinatorial models,” in Proceedings of the IEEE Fifth International
Conference on Software Testing, Verification and Validation (ICST).
IEEE, 2012, pp. 624–629.

[4] S. R. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. M. Lott, G. C. Patton,
and B. M. Horowitz, “Model-based testing in practice,” in Proceedings
of the 21st International Conference on Software engineering. ACM,
1999, pp. 285–294.

[5] http://researcher.watson.ibm.com/researcher/view group.php?id=1871.
[6] A. Hartman and L. Raskin, “Problems and algorithms for covering

arrays,” Discrete Mathematics, vol. 284, no. 1, 2004, pp. 149–156.
[7] I. Segall, R. Tzoref-Brill, and E. Farchi, “Using binary decision di-

agrams for combinatorial test design,” in Proceedings of the 2011
International Symposium on Software Testing and Analysis. ACM,
2011, pp. 254–264.

[8] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies:
a survey,” Software Testing, Verification and Reliability, vol. 15, no. 3,
2005, pp. 167–199.

[9] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of highly-
configurable systems in the presence of constraints,” in Proceedings of
the 2007 International Symposium on Software testing and analysis.
ACM, 2007, pp. 129–139.

[10] N. Kobayashi, T. Tsuchiya, and T. Kikuno, “Non-specification-based
approaches to logic testing for software,” Information and Software
Technology, vol. 44, no. 2, 2002, pp. 113–121.

[11] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on Com-
puters, vol. 100, no. 6, 1978, pp. 509–516.

[12] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: An approach to testing based on combinatorial design,”
IEEE Transactions on Software Engineering, vol. 23, no. 7, 1997, pp.
437–444.

[13] K. Tai and Y. Lie, “A test generation strategy for pairwise testing,”
IEEE Transactions on Software Engineering, vol. 28, no. 1, 2002, pp.
109–111.

[14] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn,
“Constructing test suites for interaction testing,” in Proceedings of the
IEEE 25th International Conference on Software Engineering, 2003, pp.
38–48.

[15] K. J. Nurmela, “Upper bounds for covering arrays by tabu search,”
Discrete applied mathematics, vol. 138, no. 1, 2004, pp. 143–152.

103Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 112 / 129

Smart City Applications TestBed

Towards a service based TestBed for smart cities applications

Danilo Silva, Felipe Ferraz

CESAR – Recife Center for Advanced Studies and
Systems

Recife, Brazil
e-mail: {dls, fsf}@cesar.org.br

Felipe Ferraz, Carlos Ferraz
Informatics Center

Federal University of Pernambuco
Recife, Brazil

e-mail: {fsf3, cagf}@cin.ufpe.br

Abstract—Cities are facing a new challenge related to their
population; it is the first time in history that most part of
human population is now living in metropolis. Within this
scenario, a city needs to deploy new solutions, presenting
systems that answers to demands related to Security, Health,
Resources, Government, Education and other urban daily
systems to its citizens. In order to keep the creation of such
solutions, it is vital to present developers with means to
validate their projects. Focusing on this situation, this paper
proposes the creation of a configurable testbed, where web
services represent different systems of a smart city that could
be consumed by applications in order to validate its
implementation and features.

Keywords - Smart City; TestBed; Solutions; Platform;

I. INTRODUCTION
With the fast increase of global urban population, cities

now face risks in an unprecedented scale. Air pollution,
lacking transportation infrastructure, uncertain economic
landscapes, violence and unemployment – to name a few of
the referred risks- are issues that nowadays can be addressed
through the proper use of information and communication
technology (ICT) 0

Batty et al. [2] reinforce the notion that technology applied
to the concept of smart cities can help building a future in
which a city will be interconnected, and relations between
citizen and services and services to services will create an
environment with innovative possibilities. Dirks et al. [3]
stress the importance of software solutions that help society
interact more efficiently with essential systems of a city. The
“systems” of the city, in the context used by the referred
authors, are: water and energy supply, transportation,
security and healthcare [4][5].

Despite the fact that smart city applications can help
society interact more efficiently with the available systems in
the city, a great obstacle faced by developers, when creating
new smart city solutions, stem from the difficulty of
validating and testing their solutions [6][7]. This paper
proposes a solution as an environment that could help on the
construction of smart city solutions, with services and a data
generator.

This paper is presented as follows: Introduction describes
the problem. Section II depicts about smart cities and their
concepts; Section III presents differences between TestBed
and simulators, also describes related works; Section IV
explains the proposed solution; Section V has details of the

proposed TestBed platform architecture, and finally; section
VI, presents conclusions and future works.

II. SMART CITIES
Most concerns around the concept of smart cities arise

because cities have become home of more than 50% of the
population [3][4][6]. Even more, the cities being the home
of the largest part of the population, they are the center of
the modern economies [8].

Despite the many challenges that branch from the increase
of urban population, the amount of people that now live in
big urban centers is still rising [9][10]. In fact, since 2008,
for the first time in human history, the bigger part of the
global population is now living in big cities [11][13].

In a previous work [5], it was possible to represent a city
as an operational center that has a set of main services,
which are vital for the city maintenance. Those services are
categorized in the following way: Education, Security,
Transportation, Energy and Water Supply, Healthcare,
Government.

Following the same line of development, a smart city is a
representation of a system of systems. Such characteristic is
due to the interoperability present in the systems that build
the infrastructure and environment of the city. They tend to
cooperate in a way that new solutions for the daily urban life
are more possible and easier to follow.

III. TESTBED
A TestBed is a platform for experimentation of large

projects [14]. It allows testing applications with difficulty in
accessing inaccessible domains – such as the case with many
smart city applications [15]. Since smart city applications
depend on city data to operate, this ends up hindering many
efforts to create new solutions. Often city data is not readily
available, or, when they are available, they are not in a
format that is easily consumable by the applications [14]-
[16]. The objective of this paper is to create a testbed,
represented by different web services that represent city
systems that will aid developers to create and test smart city
applications in different urban landscapes [14][17].

A. Simulators vs. Testbeds
A simulator represents a special case of testbed. The

main difference is that simulators generate data in real time

104Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 113 / 129

while testbeds do not – in this case, data is pre-loaded in the
storage of the solution [7][15].

When a simulator is used as a data generator for a smart
city application, the simulator will generate city data during
runtime, which has the downside of unpredictability since
subsequent tests will yield different results. Using a testbed
has the advantage of allowing consistent ability of repeating
the tests since the data it provides for the smart city
application is not prone to change.

B. Related works
By relating tests environment with smart cities solutions,

it is possible to list some projects, such as: SmartGridLab
[17], I3ASensorBed [12] and SmartSantander [18]-[22]. The
following section presents a brief explanation about some of
those solutions:

 SmartSantander - is a project emerged after the
identification requirement for an experimental Internet of
Things (IOT) platform, which occurred during a Real World
Internet congress, in 2009 [20]. Based on those
requirements, a proposal to create a testbed in Europe
emerged. The objective was to support research and
experimentation of architectures, technologies, services and
applications for IOTs in the context of SmartCities [19].

 I3ASESORBED - The purpose of I3ASENSORBED is to
create an experimentation testbed for different types of
demographics -not only for universities but also for anyone
who intends to create applications or to improve
communication protocols for Smart Cities [12].

 NetworkedCITY– An initiative derived from inside the
IAAC –“Institute for Advanced Architeture of Catalonia”
that combines physical computation, data visualization, and
real time computing through interoperable devices,
applications and models [23].

 LOG-a-TEC – Conceived in JoJožef Stefan Institute in
Slovenia, the initiative is an IOT testbed for small cities in
Europe. Based on wireless sensor technology, its focus is in
infrastructure of energy management and services [24].

 Testbed for smart technologies in London – Intel, along
with Imperial College London and London College, with the
intent of promoting sustainable and connected cities, started
an initiative that would turn London into a testbed for smart
technologies [25].

IV. PROPOSED SOLUTION
The result of this work is a Smart City Testbed. A

solution composed by two main components, an API set and
a data generator.

The API set is composed of systems commonly found on
the environment of the cities. On the following list, we
detail the main objective of each of those systems [5].

 Education: It is composed by services responsible for
managing classes, grades and available courses [3][18]
those services can help citizens and the government deploy
or pay more attention to specific areas of expertise.

 Healthcare: Is composed by units of treatment, Medical
History of the patients with focus in providing a unique
point of medical registers and hospitals specialties [4][10].

 Transportation: Promotes improvements in mobility in
the urban environment. This system receives great attention
in vehicle traffic research [7], and proposes mechanisms
related to Traffic Light control and Traffic management.

 Government: Allows more transparency in the way the
City is managed, for example, how tax money is spent by its
politics [11].

 Resources: Provides a way that enables to control the
expenses of the city resources, such as water and energy
[17].

 Security: Related to public safety issues such as reporting
crime and tracking violent areas [16].

To choose and define the mentioned types, we followed
the approach proposed in a previous work [5], and back on
this proposal, we summarized the most common types of
solutions for smart cities. In addition, to determine the main
goal of each system on this paper, we summarized some
expectations and comments of related works.

Finally, Table I presents a compilation of the systems
mentioned before along with different areas and testbed
Services.

TABLE I. TYPES OF SYSTEMS AND LIST OF SERVICES
 System Type Area/Focus Testbed Services

Education
Unified Grades

Register Grades
View School Record
Register Absent Days

Courses Register Courses
View Courses

Healthcare

Medical
Records

New Entry
View Medical History of the
Patient
Assess Service

Hospitals
Add Hospital
Search for special treatment units
Rate Hospital

Transportation

Control Traffic
Lights

Open/Close Traffic Lights
Detect malfunctioning of Traffic
Lights

Traffic control Inform Traffic Jams
View Traffic

Government
Taxes Add Expenses

View Expense History
Registering of
Occurrences

Report Occurrence
Check Occurrence

Resources
Consumption

Register Consumption
Consumption per Individual
Consumption per Region

Interruption of
Service Turn Service Off/On

Security

Register
Occurrences of
Crime

Report Crime Occurrence
View History of Crime
Occurrences

Violence level
per Area

Add new Area
Areas by Crime Occurrence
Assign Police to Area

105Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 114 / 129

The model created for the testbed respects three different
levels, the first one, already presented, is represented by
systems; each system is divided accordingly to sub areas or
focus groups. The area represents level two, where one can
find some specific solutions. For instance, Educational
System presents unified Grades and Available courses.
Lastly, layer three presents services built in each area, for
example, Educational System, which has a unified grade
solution, that offers services related to: Register Grades,
View School records, and register absent days.

V. ARCHITECTURE
In this section, the testbed architecture will be described

with more details. In addition, the components that were
used as well as the reason for their adoption will be
explained.

A. Application server
Jetty [26] is the application server chosen because it

presents the advantage of being easy to set and integrate in
Eclipse IDE. Another advantage is the fact that it is possible
to embed Jetty inside of the application (inside of a main
class, opposed as being packaged in a .war file). The main
class is responsible for initializing the application server and
exporting RESTful endpoints (created using JAX-RS of
Apache CXF project).

B. Persistence Layer
On the persistence layer, the Java Persistence API (JPA)

[27] implemented by Hibernate ORM [28] was used.
HSQLSDB [29] is the database management system used
for the solution, it is the selected option because it allows
memory execution along with our solution, creating a fast
and flexible solution. It presents downsides related to its
simplest implementation, however, it is possible to change
the persistence layer and DataBase by changing a specific
layer.

However, the manual utilization of the persistence
framework generates a repetition of the code, which is
potentially dangerous due to the lack of appropriate
persistence session management and JDBC transactions
(Java’s database connectivity API).

To overcome this code generation issue, we adopted the
Spring framework [30] due to its dependency injection,
persistence session management and JDBC transactions. By
using Spring it was possible to minimize the code
generation, speed up the development, reduce the amount of
errors, and raise the overall quality of the solution.

C. Architecture Overview
The way each individual component communicates with

one another is depicted in Figure 1. As it can be seen, the
proposed solution follows the 4+1 architecture [31] of
Philippe Kruchten.

Figure 1. Architectural components

D. Generation of Data
As briefly discussed in this section, a mechanism to

generate data was created. This mechanism allows the
creation of various scenarios based on input parameters.
The parameters that the data generator accepts are the
following:
• City spot - latitude and longitude: those values serve as

a reference to geographical locations of the city.
• City size: values 1, 2, and 3 define, respectively, small,

medium, and large cities. This parameter is used with the
city spot to determine the size of the radius, which helps
determining if a spot is part of the city.

• Amount of inhabitants: works as a parameter to
determine how many inhabitants the city possesses.

• Amount of accesses per inhabitant of urban systems:
a number that defines the amount of accesses that each
system receives by the citizens of the city.

• System rank index: the system (Resources, Security,
Education, Healthcare, etc.) receives values from 1 to 5
that ranks them from most to least accessed.
Table II serves as an example of input values, passed to

the generator in order to create a base scenario.

TABLE II. VALUES USED TO CREATE A BASE SCENARIO
Latitude and Longitude 52,15 and 0,18

City size 1
Inhabitants 100

Amount of accesses 100
Resources, Security, Education, Healthcare,

Transportation, and Government
1,2,3,1,2,3

In an early round of tests, Table II represents a city with a
central point near Cambridge, and its inhabitants will
perform 10.000 daily accesses to the services API.

To know how many accesses will be performed, one can
sum up the “system rank” indexes of the systems. In the
example previously presented, the result of the sum of
indexes is 12. It means that, for instance, the Resources

106Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 115 / 129

system will be responsible for 1/12 of the total amount of
accesses, whereas Government will be responsible for 3/12.

Table III represents the total amount of accesses received
by each service.

TABLE III. AMOUNT OF SIMULATED ACCESSES BY SYSTEM TYPE
Resources 834
Security 1.667
Education 2.500
Healthcare 834
Transportation 1.667
Government 2.500
Total 10.002

 The creation of a data generator able to create realistic
data was not the focus of this work. Because of that, it is
likely to have a scenario where a student enrolls in two
classes (courses) that happen at the same time. Likewise, it
is possible to report crimes in the middle of the ocean.

VI. CONCLUSION
Based on research pertaining testbeds and smart cities, it is

possible to notice that there is a great demand for testing
smart city solutions, and that most of the existing testing
strategies are based on the use of sensors and IOTs.

The advantage of the proposed solution is the possibility
to create testing scenarios where validation of ideas and
solutions for smart cities can be performed without having
to rely on sensors and IOTs.

As future works from this research, it is intended to
improve the data generator creating realistic scenarios and
to develop a feature that enables the re-execution of
previously created scenarios.

REFERENCES	
[1] T. Nam and T. a. Pardo, “Conceptualizing smart city with dimensions

of technology, people, and institutions,” Proc. 12th Annu. Int. Digit.
Gov. Res. Conf. Digit. Gov. Innov. Challenging Times - dg.o ’11,
2011, p. 282.

[2] M. Batty et al., “Smart cities of the future,” Eur. Phys. J. Spec. Top.,
vol. 214, no. 1, Dec. 2012, pp. 481–518.

[3] S. Dirks, C. Gurdgiev, and M. Keeling, “Smarter cities for smarter
growth: How cities can optimize their systems for the talent-based
economy”, IBM Inst. Bus. Value, 2010. Available:
http://public.dhe.ibm.com/common/ssi/ecm/en/gbe03348usen/GBE03
348USEN.PDF [Accessed: 15-Feb-2015].

[4] S. Dirks, M. Keeling, and J. Dencik, “How Smart is Your City?:
Helping Cities Measure Progress,” IBM Inst. Bus. Value, 2009.

[5] F. Ferraz et al., “Towards a Smart City Security Model Exploring
Smart Cities Elements Based on Nowadays Solutions.”, ICSEA 2013,
The Eighth International Conference on Software Engineering
Advances, pp. 546–550, 2013.

[6] W. M. da Silva, A. Alvaro, G. H. R. P. Tomas, R. a. Afonso, K. L.
Dias, and V. C. Garcia, “Smart cities software architectures: a survey,”
Proc. 28th Annu. ACM Symp. Appl. Comput. - SAC ’13, 2013, pp.
1722–1727.

[7] V. V. Filho, “RTSCUP  : Testbed For Multiagent Systems Evaluation”,
Thesis, Federal University of Pernambuco, 2008.

[8] J. M. Hernández-muñoz, J. B. Vercher, L. Muñoz, and J. A. Galache,
“Smart Cities at the Forefront of the Future Internet”, 2011, pp. 447–
462.

[9] S. Dirks and M. Keeling, “A vision of smarter cities: How cities can
lead the way into a prosperous and sustainable future,” IBM Inst. Bus.
Value. June, 2009.

[10] P. Hall, “Cities of tomorrow: An Intellectual History of Urban
Planning and Design in the Twentieth Century”, Oxford: Blackwell
Publishing, 3rd Edition, 2002.

[11] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris,
“Smarter Cities and Their Innovation Challenges,” Computer (Long.
Beach. Calif)., vol. 44, no. 6, Jun. 2011, pp. 32–39.

[12] T. Olivares, F. Royo, A. M. Ortiz, and I. Mines-telecom, “An
Experimental Testbed for Smart Cities Applications”, Proceedings of
the 11th ACM international symposium on Mobility management and
wireless access, 2013, pp. 115–118.

[13] A. Caragliu, C. Del Bo, and P. Nijkamp, “Smart Cities in Europe,” J.
Urban Technol., vol. 18, no. 2, Apr. 2011, pp. 65–82.

[14] E. Barreiros, A. Almeida, J. Saraiva, and S. Soares, “A Systematic
Mapping Study on Software Engineering Testbeds,” 2011 Int. Symp.
Empir. Softw. Eng. Meas., Sep. 2011, pp. 107–116.

[15] P. Hanks, S. Pollack, M. Cohen, “Benchmarks, Testbeds, Controlled
Experimentation and the Design of Agent Architectures,” AI Mag.
13(4), 1993.

[16] A. Hahn, A. Ashok, S. Sridhar, and M. Govindarasu, “Cyber-physical
security testbeds: architecture, application, and evaluation for smart
grid,” IEEE Trans. Smart Grid, vol. 4, no. 2, 2013, pp. 847–855.

[17] G. Lu and D. D. W. Song, “SmartGridLab  : A Laboratory-Based Smart
Grid Testbed,” no. I, 2010, pp. 143–148.

[18] L. Sanchez, V. Gutierrez, J. A. Galache, P. Sotres, J. R. Santana, and J.
Casanueva, “SmartSantander  : Experimentation and Service Provision
in the Smart City”, WPMC 2013 16th International Symposium on,
2013.

[19] “SmartSantander.” [Online]. Available: http://www.smartsantander.eu/.
[Accessed: 01-Apr-2015].

[20] “SmartSantanderRA: Santander Augmented Reality Application.”
[Online]. Available:
http://www.smartsantander.eu/index.php/blog/item/174-
smartsantanderra-santander-augmented-reality-application. [Accessed:
02-Apr-2015].

[21] [“Participatory Sensing Application.” [Online]. Available:
http://www.smartsantander.eu/index.php/blog/item/181-participatory-
sensing-application. [Accessed: 30-Mar-2015].

[22] “Smarter Travel.” [Online]. Available:
http://www.smartsantander.eu/index.php/smart-travel. [Accessed: 01-
Apr-2015].

[23] “NetworkedCITY.” [Online]. Available:
http://www.iaac.net/smart/?portfolio=networkedcity. [Accessed: 01-
Apr-2015].

[24] “LOG-a-TEX - A Smart City IoT testbed.” [Online]. Available:
http://www.livingbitsandthings.com/in-the-spot-light/8-technology/45-
log-a-tec-a-smart-city-iot-testbed#.UzhUeNxq5fM. [Accessed: 02-
Apr-2015].

[25] “Intel turns London into testbed for smart technologies.” [Online].
Available: http://news.techworld.com/green-it/3359881/intel-turns-
london-into-testbed-for-smart-technologies/. [Accessed: 30-Mar-2015].

[26] “Jetty.” [Online]. Available: http://www.eclipse.org/jetty/. [Accessed:
02-Apr-2015].

[27] “JPA - Java Persistence API.” [Online]. Available:
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-
140049.html. [Accessed: 30-Mar-2015].

[28] “Hibernate ORM.” [Online]. Available: http://hibernate.org/orm/.
[Accessed: 01-Apr-2015].

[29] “HSQLDB.” [Online]. Available: http://hsqldb.org/. [Accessed: 02-
Apr-2015].

[30] “Spring Framework.” [Online]. Available:
http://projects.spring.io/spring-framework/. [Accessed: 02-Apr-2015].

[31] P. Kruchten, “Architectural Blueprints — The ‘ 4 + 1 ’ View Model of
Software Architecture”, IEEE Software 12 (6), vol. 12, November,
1995, pp. 42–50.

107Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 116 / 129

Towards A Smart-City Security Architecture
Proposal and Analysis of Impact of Major Smart-City Security Issues

Felipe Silva Ferraz1,2,Carlos Candido Barros Sampaio1,2, Carlos André Guimarães Ferraz1

1Informatics Center
Federal University of Pernambuco

Recife, Brazil
{fsf3, ccbs, cagf }@cin.ufpe.br

2CESAR
Recife Center for Advanced Studies and Systems

Recife, Brazil
{fsf, ccbs }@cesar.org.br

Abstract—Concepts and solutions related to smart cities have
been the focus of related studies and improvements for several
years. Part of the motivation to the growing body of research in
this field comes from the eminent need for solutions to address
the present situation of urban environments. For the first time in
human history, more than 50% of the population now live in big
cities and not in the countryside. In this matter, computer
networks and systems have an important role towards the
construction of solutions that enable cities and citizens to
maintain a continuous and agile use of those environments. At
the same time that new solutions come forth offering readily
available, integrated, and reliable information to citizens, new
challenges related to information security arise. In this context,
this paper explores a set of information security issues in the
environment of a smart city and proposes a new approach (City
Security Layer) based on the use of different and unique
identifiers for each entity (citizen or sensor) involved in the
relations of a city to its systems.

Keywords—security; smart city; architecture; identification

I. INTRODUCTION
Beginning in the early 2000, a major proportion of the

human population started to move from small towns to live in
big cities [1]; this change in the world’s urban structures has
led to an unprecedented consumption of natural resources and
added an enormous load on city systems [1][2].

To attempt to address this situation, cities have started to
put efforts in creating more sustainable and green
environments [1][3][4], and to offer its citizens with more and
diverse services coming from existing systems of Education,
Health, Public Safety, Resources, Government, and Public
Transport [5]. To do so, investments in both time and money
have been made to increase IoT adoptions to provide the city
with more detailed and precise information [6][7][8] and
services interoperability, guaranteeing increasing systems
evolutions [5][9]. Combined with other definitions, such urban
environments that are now extremely connected and highly
technological are known as smart cities [10].

Pursuing interoperability in such a heterogeneous
environment, new challenges arise, such as performance in the
face of enormous amount of generated and transferred data
[6][11][12][13]. Another is services availability to assure both
citizens and the city with access every time they have a need
[14][15][16]. Information security also becomes a concern and
how to ensure that sensitive data like a patient’s medical
records, a driver or vehicle’s location or an engineer’s
structural plan, are dealt with appropriate and expected
confidentiality [17][18][19][20].

Information security is an important challenge yet to be
properly and fully addressed in the construction of smart
cities. At the same time that it is necessary to develop the
means to maintain data trafficked by such cities private,
integrated, and available upon access, it is also necessary to
provide the city systems with ways for the same data to be
shared and to be equally protected.

Furthermore, Sen et al. [17] states that there are
information security issues related to privacy in the role of a
smart city. Thus, it is vital to deal with this situation because
the data shared among a smart city environment is as sensitive
as the citizen itself, but affirming that privacy issues are the
main problem in terms of security would be over simplistic
[18][21]. There are other kinds of issues that may pose as a
threat to the entire urban system if they are not properly
addressed [22][23]. In this scenario, it is vital to develop
different architectures, protocols, and other policies that will
allow citizens to better manage and access their data [24][25].

Standards such as OpenID [26][27], OAuth [28][29], and
SAML [11][30] appear as good choices to provide cities with
the means to integrate its services in an environment, with
authorization and authentication capabilities. However, their
strength relies on offering a unique ID within an environment
that is responsible for sharing permission rather than them
offering tools to manage individual IDs as separate
information.

Rather than just providing an environment with
authentication and authorization, it is important to provide
citizens with the means to manage their own identity across a
heterogeneous system [9][25], without compromise; the
environment interoperability and the citizens’ privacy and
anonymity, ergo identity management, is a key enabler for
smart cities’ evolution and maintenance.

This paper presents a communication protocol, based on
identification management that aims to increase security in
smart cities’ environment, providing entities (citizens,
services, and sensors) with a mechanics to interact with
systems using unique IDs for each system. This paper is
divided as follows: Section II will briefly introduce the
concepts of smart cities, followed by Section III dealing with
security analyses on smart cities. Section IV will depict 9
security issues that may affect smart cities’ solutions, while
Section V will describe the CSL (City Security Layer).
Sections VI and VII will end this paper, analyzing the impact
of the proposed approach.

108Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 117 / 129

II. SMART CITIES
Today’s level of urbanization has reached an unprecedented

economical and social growth different from other ages; large
cities now have the most part of the world’s population and an
increasing share of the world’s most skilled, educated, creative,
and entrepreneurial women and men [1]. More than 50% of
people on the planet now live in large cities. According to the
United Nations, this number will increase to 70% in less than
50 years [1]. This so-called city growth or emerging of urban
life is driving the city infrastructure into a stress level never
before seen as the demand for basic services increases and is
exponentially overloaded [5].

Cities are becoming increasingly empowered
technologically as their core systems (i.e., Education, Public
Safety, Transportation, Energy and Water, Healthcare and
Services) are instrumented and interconnected, enabling new
ways to deal with massive, parallel, and concurrent usage. In
the same pace, new challenges in the field of information
security rises and must be properly addressed.

Tracing the genealogy of the word ‘smart’ in the label
‘smart city’ can contribute to an understanding of how the term
‘smart’ is being used in this field. In marketing language,
smartness is centered on user perspective. Because of the need
for appeal to a broader base of community members, ‘smart’
serves better than the more elitist term ‘intelligent’. Smart is
more user-friendly than intelligent, which is limited to having a
quick mind and being responsive to feedback. Smart city is
required to adapt itself to the user needs and to provide
customized interfaces [36]. In the urban planning field, this
defines smartness.

Figure 1. Smart city concept based on intelligence,

connection, and instrumentation

Another perspective, represented in Figure 1, points out

three main characteristics towards a smart city definition; it is
an environment that is instrumented, interconnected, and
intelligent [32].

 Each one has a meaning:
Instrumented: means a city covered by a set of sensors

that could be both physical and social. Through those sensors,

the cities’ core systems have access to real-time and reliable
information. This relates directly with the IoT concepts.

Interconnected: means a vast set of systems working
together to offer information from different points and sources.
A correct combination of interconnected and instrumented
systems creates a connection from the physical world to the
real world.

Intelligent: refers to an instrumented and interconnected
environment that makes the best use of information obtained
from different sensors and systems, to offer a better life to the
citizen.

Offering just one or any combination from those three
concepts creates a scenario where a vital part will be missing.
To illustrate, a system may have the means to extract the best
from a set of information, but it does not have data to analyze.
A system may also have the data to analyze but does not have
ways to pass through other points of the environment its
discoveries and information.

However, offering an environment so broadly constructed
could have the side effect of creating a different set of
scenarios where security information flaws could be created
and explored.

III. SMART CITIES’ SECURITY ANALYSES
Apart from the number of studies and protocols related to

information security, the amount of vulnerabilities in connected
applications has increased in the past few years [14]. In this
matter, smart-city systems will demand a specific treatment to
address its specific information security challenges [18].

According to [5][17][18][19][36], smart-city solutions
depend on a high degree of connectivity, so that their systems
(such as Education, Government, Traffic, Security, Resources,
and Health) can create an interoperable network, offering
citizens with more powerful, accurate, and innovative [35]
services. For this reason, one of the biggest challenges facing
smart-city development is associated to information security in
the scope of interoperable systems [1]. Information security is a
critical issue due to the increasing potential of cyber attacks
and incidents against critical sectors in a smart city.

Information security must address not only deliberate
attacks, such as from disgruntled employees, industrial
espionage, and terrorists, but also inadvertent compromises of
the information infrastructure due to user errors, equipment
failures, and natural disasters. Vulnerabilities might allow an
attacker to penetrate a network, gain access to control software,
and alter load conditions to destabilize the system in
unpredictable ways. To protect a smart city in a proper way, a
number of security problems have to be faced according to a
specific design/plan.

Believing that a traditional security approach based on
privacy keeping, authorization, and authentication concept can
simply be added into a city’s critical infrastructure to make it
safer as a city becomes smarter, is far from the real scenario.
To deal with new paradigms related to smart cities is necessary
to think about in terms of new architectures and not only to
improve services and current solutions [36].
 This class of services is fundamental to the success of the
future city, and represents a topic of such complexity that it is
beyond the scope of this paper to cover in detail. As an
illustration, let us explore the design of identity services for the

109Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 118 / 129

future city – which is required to maintain privacy while
maintaining security.
 The integration of the identity of the citizen across multiple
systems and services, and the ability to provide a joint-up
response to the needs of life events, comprises the goal of
allowing the citizen to manage their own identity. This also
includes what information is released about them to whom or
when, while anonymous, aggregate data are made more widely
available [25].
 Thus, identity management is a key enabler for future
cities. A unified identity system albeit one that can integrate
with multiple identity providers and different forms of
authentication and identification is needed to handle the
extensively ‘wired’ nature of the city and the density of data
transactions, systems, and solutions diversity [25].
 Citizens or entities will use their identities to gain access to
services and systems, and through benefits that they offer. This
is a way to integrate to several solutions (systems and services),
entities and service will eventually repeat their identification
artifact in different moments and situations.
 Ideally, every citizen and/or entity shall have a number of
identities, each of which is made up of a number of attributes,
which are either exposed, or used to validate a claim without
exposing the information. The use of multiple identities limits
exposure of truly important credentials, minimizing risk of
abuse and identity theft, while allowing for the exposure of less
critical information that is helpful for participants in the city
ecosystem such as retailers, building operators, service
providers, and governments [25].
 Not only will citizens be in charge of their identities, but
also the information that constitutes them, and when this
information could be exposed. The proposed solution is
intended to build a trusting relationship between the city, the
services/systems, and the citizens. This will allow the
acquisition and flow of information that are helpful to all
participants without compromising their identity.

IV. SECURITY ISSUES IN THE CONTEXT OF A SMART CITY
Previous studies brought into attention the need to make

further improvements related to information security on smart-
city environments [5][17][18][19][36]. Based on this need,
this section will describe a set of 9 security issues that an
urban system and a city may be under the risk of [22][23].

It is important to add to this train of thought that even
though the technical solutions applied in those environments
handle questions, such as Code Injection [37], Cross Site
Scripting [37], Cross Site Request Forgery [37], Buffer
Overflow [37], and so on, the issues posted in this work
explore concepts related to the nature of a smart-city system.
Our approach is to present a set of issues that, regardless of the
technical solution applied, may be a threat to urban cities (or a
smart-city system) in a different level.

Urban systems are composed by Citizens using Solutions,
which could be Platforms, Frameworks, and Applications; all
of those built on Technologies to receive and use Data. Urban
system security issues or security issues, in brief, in the
context of a smart city are situations that can pose as problems
to the entire infrastructure of a smart city [22][23].

In the following, 9 security issues will be described; the
focus will be the explanation of scenarios and situations that
could be a potential threat to an urban environment and its
systems.

A. Access to information from applications
According to Sen et al. [17], packet transfer must be

studied to apply efforts on adding security to improve data
privacy and integrity.

From a network and access perspective, devices have the
means to access a packet, or a set of packets, in different ways
and locations using different amounts of effort. For instance,
to reduce latencies during data transfer, local copies or cache
values of those packets could be created, and from there, the
mentioned data could be retrieved not only from the network
or during a transfer, but also from a local device.

To illustrate further, a sensor connects to a server to
identify and authenticate user A and retrieves its permissions.
During this process, user B could intercept the packet in
different points of the network or of the device, and gain a set
of information from user A and the service it is accessing.

B. Information tracking
It is important to have an interoperable and interconnected

environment for systems to interact with one another like in
[5][11]–[15]. It is also extremely important that, for instance,
the information used by system B and that are originally
created by system A, cannot be tracked back to its origin. This
means that even though system A has provided a set of
information to B, a user from system B should not realize that
this information is from another part or user.

As an example, let us assume that system A provides
information to a solution B.

Let us suppose that A is a system of criminal reports; B is
another solution that uses those criminal reports to define the
most suitable place to open a new commercial building, based
on criminal records. The information used by B, which was
provided by A, must not be unveiled or disclosed. This
situation could destroy the anonymity in A and compromise,
for instance, witnesses and victims of crimes.

C. Citizen tracking
Solutions for smart cities make use of different sensors

(physical or social); those sensors are used to collect data from
several city systems, and based on this, it is possible for urban
systems to have a better city management.

To avoid further problems, such sensors must be under the
control of a responsible entity to preserve the integrity of its
functionality and generated data.

Among the possible problems raised by this feature is that
it may be open or subject to unauthorized citizen tracking,
discovery of movement patterns, and may cause ‘flooding’ of
directional advertisement/merchandising.

D. User/Citizen data loss
Smart systems, within the context of smart cities, may use

devices, such as smart phones, tablets, and other gadgets to
gather a wide range of data and information. Depending on the

110Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 119 / 129

data type handled by such devices, it is possible to have
personal and sensitive data, such as messages, pictures,
appointments, bank account numbers, contacts details, and
others.

This issues deals with the concept that applications are
saving precious data in the device, and if are not well treated,
those data could be lost or compromised, creating significant
problems to the citizen.

This could be achieved by adding a mechanism related to
client cryptographic storage [5], system isolation, and even
solutions related to authorization and authentication
mechanics.

E. Crossed access to information in data centers
For this scenario, we deal with situations related to

unauthorized access to information by exploiting flaws on the
server side.

If by any means data security is violated, for instance,
while they are under storage, analysis, and management
procedures, the entire system may be compromised.

For example, when accessing information related to
students’ educational systems, a given entity (application) can
recover criminal records, from a non-specific connection
related to this citizen even though the solution should only be
using Educational Services. This situation may occur because
both systems share a common area or permissions that must be
respected to avoid this kind of behavior.

F. Crossed access at the client side
Description (E), Crossed access to information in data

centers, details a situation related to unauthorized access in the
server side.

Issue (F), in this current topic, brings forth a subject
related to unauthorized access at the client side, for instance in
a mobile that holds sensitive information.

This is different from issue (D), which is concerned about
every information saved and that is not properly stored, and is
liable to undesired access within the context of a device.

For instance, system A saves in a device values related to
paid fees, and system B uses the same mechanism to store
information regarding the user financial account. If the device
does not provide A and B with the correct isolation, it is
possible that through A, an attacker can gain access to values
presented in B, and even more, it is possible that a malicious
third part system may be installed, and then gain access to
both systems information [36].

G. Lack of in-depth security
According to OWASP TOP 10, one of the top-ten risks to

web application is related to code injection. Also according to
OWASP, sanitizing input values and removing undesired text
are measures that can be used to avoid this issue and other
security flaws [37].

This flaw, (G), relates to systems that do not validate data
in different layers, and are compromised in any level, by data
coming from other services.

 On the other hand, in-depth security relates to the concept
of adding several security measures in different layers of a
solution [38].

In an interconnected environment, like in an urban system,
if a system C does not provide the entered data with proper
sanitization, other solutions that do not use concepts of in-
depth security may also be affected.

In other words, if system A provides the user with a rich
UI environment, and has several validations and sanitization in
this part, if the back-end structure does not apply the same
criteria, whenever a system C sends data to system A, system
A may use this data. It means that if C has a malicious code
inputted, it might be transferred to A once A misses its
defense in terms of in-depth security check.

H. Viral effect in urban environment
A smart city uses an interoperable environment to provide

solutions with the opportunity to interact with other systems,
exchanging data, and creating more value to its citizens[36].

 If the border of these relations is not well defined, the
systems may face a scenario where a value is changed in
system A and when system B uses this changed value, it may
corrupt the information used in system B.

For instance, let us assume that this environment is made
of a set of systems (named A, B, C… Z), we can foresee a
situation where A provides B with an infected value while B
may provide or transfer to C, D ... Z systems the same infected
value. For an attacker to infect the entire environment, only a
small portion of the system needs to be infected and then the
contamination may spread throughout the entire system.

In issue (G), our main concern is with the lack of
protection in every layer, and how this could be a problem that
an urban scenario is highly connected. In the present issue, our
concern is with the consequences of issues like issue (G), if
the system is highly connected and lacks protections in several
parts, the consequences of an attack can be exponentially
increased, infecting the entire solution through the infection of
a small part.

I. Infection traceability and recovery
The amount of data used and stored by a smart city has

reached unprecedented levels. Moreover, the connection
between systems has created a system of systems structure that
provides those solutions with data coming from different
services.

Issue (H) presents a viral threat related to a set of data that
can share or provide another service with different data,
creating, at some level, a self-sustained system. From that
point of view, this issue presents a consequence for issue (I).
Due to the amount of data and interconnected system, it is
possible for an infection to maintain its origin undetected and
beyond data recovery.
 Using as an example, system A, with terabytes of data,
exchanging values with a System B, that feeds systems C and
D with updated and new values, processed from A data. D, on
other hand, keeps passing some fine-grained data back to
system A. If A suffers an infection having its data
compromised, B will be fed with infected data, spreading the

111Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 120 / 129

infection to other systems, like C and D. As soon as the
infection could be detected, recovery processes may not be an
option because the amount of data compromised is too big to
be restored to a previous form. In addition, due to the relation
between systems, the infection source may not be detectable.

V. SMART CITY SECURITY LAYER
OAuth, SAML, and OpenID are architectural solutions

focused on identification and assets protection. Those assets
could be any type of information or entities such as documents,
data, and photos, among others. Through its adoption, it is
feasible to create mechanisms in which it is possible to pass the
responsibility of security measures to a third party, that could
be a known server (Facebook, Google, and others), or to
implement the same approach in an in-company solution.

A. Objective
 Smart CSL’s main objective is to be a layer, where the
change of a sent identifier for another identifier is made. The
new identifier will be generated from the combination of an ID
and the accessed service.
 Through that mechanism, it will be possible to make an
entity keep its identity secret from a service and unique within
the whole environment. This can still be done even though the
same entity can access different sets of services, as the creation
of the ID is made from the combination of two other
identifiers; the resultant ID will be different for the different
service coming from the same entity.

B. General view
The City Security Layer (CSL) is a mechanism based on

the concept of change identifiers involved in a system relation.
The following are the basic components and flow of CSL.

Entity: which is a component that is requesting
information to a service; an Entity can be anything from a
citizen, to a sensor or a service that is interoperating with
another one.

Service: represents any service contacted from an entity.
Communication Layer: represents a contact point from

entity to service, responsible for changing the identifier sent
by the entity into the correct ID to be used within the service.

ID Service: is a component responsible for storing and
managing information to generate the correct ID.

Figure 2. CSL basic flow.

C. Comparing with related works
CSL’s main strengths rely on the fact that for each entity

using a specific service, a unique and new ID will be presented
to the service. For each system adopting this approach, the
identifier sent by the layer will be interpreted as a real
individual, protecting the real user through the protection of its
real ID. On other hand, CSL presents no other feature, like
OAuth, SAML, and OpenID, related to authentication and
authorization.

Finally, CSL has presented an interesting contribution
mostly due to the fact that it only relies on ID changing and
management, providing the environment with means to use
different IDs. However, it is also important to use an extra
layer or process to take care of authorization and authentication
under the scenario of an urban environment.

VI. ANALYSES OF ISSUES
 Analyzing through this scope, Table 1 shows a compilation
of CSL impacts when compared against the 9 issues previously
studied.

TABLE I. CSL COVERAGE

A. Access to information from applications

Assuming the behavior that each packet will be sent through
the net with different user IDs per system, even though an
‘eavesdropper’ can capture many of those packets, this issue
will be addressed; hence, the amount of senders will now be
considerably bigger, making it even harder try to understand
who is who.

B. Information tracking
For issue (B), the same toughness to identify each user will

isolate information, at the same pace, it will also influence
issue (C), isolating also the citizen, because information about
the entity will be protected, as a consequence, the entity will
also be untraceable.

112Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 121 / 129

C. Citizen tracking
Through the adoption of CSL, information will be hard to

track; ergo, the citizen will also be hard to track because their
data will be hard to track.

D. User/Citizen data loss
As mentioned in OAuth, OpenID, and SAML section, the

main strength in the three standards relies on interoperability
and authentication, and for that issue, they do not impact (D).
The same way goes to CSL, its concept proposes to change the
way identifiers are sent and used by systems; therefore, this
issue is not impacted by CSL.

E. Crossed access to information in data centers
Issue (E) is addressed by CSL from the point of view that

even though an attacker can compromise a system, and gather
information about citizen A and also access other systems, this
attacker will have the perception that the systems databases
are composed only of different entities, but in practice, for
each system/service, an entity will be presented differently.

F. Crossed access in client side
The consequence behind these issues is directly related to an

application A accessing information from application B in the
client side, without the authorization to do so. In CSL, this has
no impact because identifier changes are made not at the client
side.

G. Lack of in-depth security
CSL adoption will add an extra layer, responsible for

creating and maintaining different IDs for different users. If
citizens are to access a service, their IDs will pass for an
adaptation to retrieve the real ID. Even if the requesting party
is a service, retrieving information about a specific entity, it
will also be submitted to CSL approaches, enhancing security
in the environment as a single piece.

H. Viral effect in urban environment
The basic idea from issue (G) applies to issue (H); it will

be more difficult to explore breaches due to the existence of an
extra layer, but, issue (H) deals with a further consequence,
which is the creation of a viral effect. This effect could be
produced in different forms and with different types of data,
not only a citizen ID, and that said, issue (G) is only partially
addressed.

I. Infection traceability and recovery
The adoption of CSL will increase security, mostly because

it will add an extra security layer that will provide the city
systems with the means to keep its entities and citizens using
different IDs for different services. As a consequence, this will
promote systems isolation.

Even though they are isolated, they are not disconnected,
that said, issues (G) and (I) are addressed completely by the
CSL proposal. Issue (G) was presented with an extra layer; for
issue (I), better traceability of the origins of an infection will
be possible.

VII. CONCLUSION AND FUTURE WORK
For the first time in human history, humanity is facing a

unique situation where more than 50% of the population now
live in big cities. For that to work out, there is an urgent need to
evolve information technology systems to solutions that
provide citizens with more and detailed information about
different subjects of their daily use.

At the same time that new solutions rise, new challenges
also develop, and among those, information security plays an
important role, and not only due to citizens’ privacy issues, as
it is a subject that may go beyond citizens and impact entire
systems.

Solutions like OpenID, SAML, and OAuth play an
important part in guaranteeing user security and single sign on.
Unfortunately, lay all expectations in one of those 3 standards
may not address and solve all problems. In this scenario, this
paper proposed the creation of an architectural solution, called
city security layer, an architecture based on a cryptography that
proposes the creation of different and unique IDs for each
system relating to each citizen. This way, it is possible to
address more security issues than with the 3 mentioned
standards.

CSL still needs further studies and evolutions to be
considered as a final solution. In this matter, the next steps for
this project are to develop an environment to better validate the
proposed approach, and conduct some stress and performance
tests to CSL implementation to guarantee its reliability and
applicability.

REFERENCES

[1] S. Dirks and M. Keeling, “A vision of smarter cities: How cities can
lead the way into a prosperous and sustainable future,” IBM Inst. Bus.
Value. June, 2009.

[2] IBM. Ibm smarter healthcare. http://ibm.co/bCJpHX, 2012. ”[Online]
Available: 19-March-2015”.

[3] C. G. Kirwan, “Urban Media  : A Design Process for the Development
of Sustainable Applications for Ubiquitous Computing for Livable
Cities,” pp. 7–10.

[4] P. Jollivet, “Crowd sourced security, trust & cooperation for learning
digital megacities: valuing social intangible assets for competitive
advantage and harmonious development,” IET Int. Conf. Smart Sustain.
City (ICSSC 2011), pp. 52–55, 2011.

[5] F. Ferraz, C. Sampaio, and C. Ferraz, “Towards a Smart City Security
Model Exploring Smart Cities Elements Based on Nowadays
Solutions,” ICSEA 2013, pp. 546–550, 2013.

[6] R. van Kranenburg and A. Bassi, “IoT Challenges,” Commun. Mob.
Comput., vol. 1, no. 1, p. 9, 2012.

[7] M. Chen, “Towards smart city: M2M communications with software
agent intelligence,” Multimed. Tools Appl., vol. 67, no. 1, pp. 167–178,
Feb. 2012.

[8] M. Fazio, M. Paone, A. Puliafito, and M. Villari, “Heterogeneous
Sensors Become Homogeneous Things in Smart Cities,” 2012 Sixth Int.
Conf. Innov. Mob. Internet Serv. Ubiquitous Comput., pp. 775–780, Jul.
2012.

[9] Y. Wang and Y. Zhou, “Cloud architecture based on Near Field
Communication in the smart city,” in 2012 7th International
Conference on Computer Science & Education (ICCSE), 2012, no.
Iccse, pp. 231–234.

[10] T. Nam and T. A. Pardo, “Conceptualizing smart city with dimensions
of technology, people, and institutions,” Proc. 12th Annu. Int. Digit.
Gov. Res. Conf. Digit. Gov. Innov. Challenging Times - dg.o ’11, p.
282, 2011.

[11] T. Tran and C. Wietfeld, “Approaches for optimizing the performance
of a mobile SAML-based emergency response system,” 2009 13th
Enterp. Distrib. Object Comput. Conf. Work., pp. 148–156, Sep. 2009.

113Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 122 / 129

[12] I. B. M. Global, B. Services, and E. Report, “Smarter cities for smarter
growth, How cities can optimize their systems for the talent-based
economy.”

[13] Z. Fan, Q. Chen, G. Kalogridis, S. Tan, and D. Kaleshi, “The power of
data: Data analytics for M2M and smart grid,” 2012 3rd IEEE PES
Innov. Smart Grid Technol. Eur. (ISGT Eur., pp. 1–8, Oct. 2012.

[14] J. M. Gonçalves, “Privacy and Information Security in Brazil? Yes, We
Have It and We Do It!,” 2010 Seventh Int. Conf. Inf. Technol. New
Gener., pp. 702–707, 2010.

[15] R. Giaffreda, “Enabling Smart Cities through a Cognitive Management
Framework for the Internet of Things,” no. June, pp. 102–111, 2013.

[16] F. Hu, M. Qiu, J. Li, T. Grant, D. Tylor, S. Mccaleb, L. Butler, and R.
Hamner, “A Review on Cloud Computing  : Design Challenges in
Architecture and Security,” pp. 25–55, 2011.

[17] M. Sen, A. Dutt, S. Agarwal, and A. Nath, “Issues of Privacy and
Security in the Role of Software in Smart Cities,” 2013 Int. Conf.
Commun. Syst. Netw. Technol., pp. 518–523, Apr. 2013.

[18] A. Bartoli, J. Hernández-Serrano, and M. Soriano, “Security and
Privacy in your Smart City,” cttc.cat, pp. 1–6.

[19] W. M. da Silva, A. Alvaro, G. H. R. P. Tomas, R. a. Afonso, K. L.
Dias, and V. C. Garcia, “Smart cities software architectures,” in
Proceedings of the 28th Annual ACM Symposium on Applied
Computing - SAC ’13, 2013, p. 1722.

[20] Z. Chen, W. Fan, Z. Xiong, P. Zhang, and L. Luo, “Visual data security
and management for smart cities,” Front. Comput. Sci. China, vol. 4,
no. 3, pp. 386–393, Aug. 2010.

[21] S. Report, “Software Security Assurance,” 2007.
[22] F. S. Ferraz and C. A. G. Ferraz, “More Than Meets the Eye In Smart

City Information Security: Exploring security issues far beyond privacy
concerns,” in IEEE computer science, UFirst-UIC 2014, 2014.

[23] F. S. Ferraz and C. A. G. Ferraz, “Smart City Security Issues: Depicting
information security issues in the role of a urban environment,” in IEEE
Cloud Computing Initiative, UCC 2014, 2014.

[24] G. Suciu, A. Vulpe, S. Halunga, O. Fratu, G. Todoran, and V. Suciu,
“Smart Cities Built on Resilient Cloud Computing and Secure Internet
of Things,” 2013 19th Int. Conf. Control Syst. Comput. Sci., pp. 513–
518, May 2013.

[25] L. PlainIT, “Cities in the Cloud, a living planit introduction to future
cities technologies.”

[26] A.-V. Anttiroiko, P. Valkama, and S. J. Bailey, “Smart cities in the new
service economy: building platforms for smart services,” Ai Soc., Jun.
2013.

[27] M. Noureddine and R. Bashroush, “An authentication model towards
cloud federation in the enterprise,” J. Syst. Softw., vol. 86, no. 9, pp.
2269–2275, Sep. 2013.

[28] OAuth, “OAuth 2.0.” [Online]. Available: www.oauth.net.
[29] B. Leiba, “OAuth Web Authorization Protocol” pp. 1–3, 2012.
[30] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “Security and Cloud

Computing: InterCloud Identity Management Infrastructure,” 2010
19th IEEE Int. Work. Enabling Technol. Infrastructures Collab.
Enterp., pp. 263–265, 2010.

[31] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris,
“Smarter Cities and Their Innovation Challenges,” Computer (Long.
Beach. Calif)., vol. 44, no. 6, pp. 32–39, Jun. 2011.

[32] IBM. Ibm smarter healthcare. http://ibm.co/bCJpHX, 2012. ” [Online]
Available: 19-March-2015”

[33] C. Balakrishna, “Enabling Technologies for Smart City Services and
Applications,” 2012 Sixth Int. Conf. Next Gener. Mob. Appl. Serv.
Technol., pp. 223–227, Sep. 2012.

[34] N. Mitton, S. Papavassiliou, A. Puliafito, and K. S. Trivedi,
“Combining Cloud and sensors in a smart city environment,” EURASIP
J. Wirel. Commun. Netw., vol. 2012, no. 1, p. 247, 2012.

[35] M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani,
M. Wachowicz, G. Ouzounis, and Y. Portugali, “Smart cities of the
future,” Eur. Phys. J. Spec. Top. vol. 214, no. 1, pp. 481–518, Dec.
2012.

[36] I. Verbauwhede, “Efficient and secure hardware,” Datenschutz und
Datensicherheit - DuD, vol. 36, no. 12, pp. 872–875, Nov. 2012.

[37] OWASP, “OWASP Top 10 - 2013  : The most critical web application
security risks,”. https://www.owasp.org/index.php/Top_10_2013-
Top_10, 2013 "[Online] Available: 19-March-2015”

[38] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,
and P. Sommerlad, Security Patterns  : Integrating Security and Systems
Engineering (Wiley Software Patterns Series). John Wiley & Sons,
2006.

114Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 123 / 129

Towards an Automatic Test Case Decomposition by
Means of System Decomposition

Marcel Ibe and Andreas Rausch

Clausthal University of Technology
Email: marcel.ibe@tu-clausthal.de, andreas.rausch@tu-clausthal.de

Abstract—Quality assurance takes a huge effort during a software
development project. Especially the generation of test cases and
test data but also the execution, analysing the results and the
maintenance consumes a lot of resources. Model-based testing
tries to reduce the effort by automating several testing activities.
In this paper, an approach for test case decomposition by means
of system decomposition is introduced. The system’s structure
is described by composition structure diagrams, the systems
behaviour by state charts. By transferring structural decompo-
sition steps and use of the additional behavioural descriptions,
existing test cases can be adapted to the refined system description
automatically.

Keywords–Model-Based-Testing, Test-Case-Decomposition, Se-
quence Diagram

I. INTRODUCTION

Testing is one of the most widely used practices to ensure
high quality of software systems. At random the real behaviour
of a system or a component is compared with the desired one
by in advanced defined test cases. It takes up a very big share of
the effort of a software development project [1]. Model-Based
Testing (MBT) uses models to support testing activities, for
example, by generating test cases automatically. By means of
a test case specification a finite set of test cases (a test suite) is
selected, that will be executed on the system [2]. According to
the test case specification, the resulting test suite can contain
a very large number of test cases. Since the number of test
cases in a test suite is one of the factors that have a significant
influence on total testing costs [3], one would like this number
to be as small as possible. However, an afterward reduction of
the test suites size can be both a hard problem [4] [5], as well
as have an adverse effect on the quality of the test suite [6].
Several studies suggest that manually derived test cases provide
an alternative to automatically generated ones. For example,
Pretschner et al. [7] have found that not the size of a test suite
but rather the basis of the test case generation reveals about the
fault-finding ability. They observed that test suites containing
a much higher number of automatically generated test cases
detect only a few more errors than fewer, hand-crafted test
cases. Marques et al. [8] compared manual ad hoc tests with
automatically generated ones. They confirmed the observation,
that manually derived test suites are usually smaller but not less
effective in finding bugs. The study even gave evidence that
manually derived test suites could find more major bugs. This
suggests that a small test suite containing manually derived test
cases provides an alternative solution to automatic test case
generation. Although, the manual test case derivation has the
main disadvantage of higher effort, it is nevertheless feasible
in limited range of the software development process like user

acceptance testing. If the strong fault-finding ability with the
small test suite size could be transferred to other testing levels,
the total costs of testing could be reduced.

The contribution of this paper is to introduce an approach
that allows reusing manually derived test cases at different
testing levels by automatically decompose these test cases
analogously to the decomposition of the system under test
(SUT). In this way, test suites for component or unit testing
can be created that also have a strong fault-detection capability
but contain only a small number of test cases.

In this paper, we present an approach for decomposing test
cases by means of system decomposition to create new test
cases for testing the SUT at different levels of decomposition.
The next section introduces the overall approach, a running
example and specifies the requirements to test case decompo-
sition at the example. In Section 3, the test case decomposition
is described in detail. Section 4 gives an overview over related
work. In the last section, the results and plans for future work
are presented.

II. OVERALL APPROACH

In this section, we introduce our approach for decomposing
test cases. Figure 1 shows schematically how the test case
decomposition can be applied during a software development
project. Based on the requirements of the customer a first
specification of the system is created manually. At the same
time, test cases for user acceptance testing are derived. These
test cases are black box tests that do not consider the internal
structure but only the systems behaviour. During the develop-
ment, the specification is getting more and more detailed by
decomposing the system into components and describing the
behaviour of these new components. Now, instead of creating
new test cases for testing these components the already existing
test cases can be used by enriching them with the new informa-
tion about the internal structure and behaviour of the system.
For every decomposition step at the systems specification these
decompositions are transferred automatically to the test cases
and so they are adapted and able to test the new defined
system components. After starting implementing the specified
components of the system the decomposed test cases can be
used to test the components against the specification.

For applying our approach, a structural description of the
SUT and its internal structure consisting of components and
their ability to interact with each other is needed. We use an
adapted version of UML Composition Diagrams to describe
the internal structure of the systems and its components.
For the behavioural description of the SUT and its internal

115Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 124 / 129

Requirements
D

 e
 c

 o
 m

 p
 o

 s
 i

 t
 i

 o
 n

 C
 o

 m
 p

 o
 s

 i t i o
 n

…

derive derive

Figure 1. Schematic illustration of the test case decomposition approach applied during a software development process

components UML State Machines are used as graphical repre-
sentation. At last we use an adapted version of UML Sequence
Diagrams to describe the test cases.

In the next subsections, we introduce a running example
and explain the diagrams used for describing the system’s
structure, behaviour and test cases in detail.

A. Running Example
To illustrate our approach, we use a small example of a

central locking system (CLS) for cars which is inspired by
the example used by Krüger et al. [9] and is shown in Figure
2. The upper image of Figure 2 shows that the CLS defines
an interface with the four signals lock, unlock, locked and
unlocked which are used for the communication of the CLS
with its environment. The lower image of Figure 2 shows
the state-based behaviour of the CLS. There are the initial
state unlocked and the state locked. The CLS can switch
from unlocked to locked state when receiving the signal lock.
Additionally the signal locked is sent and vice versa when
receiving the signal unlock and sending the signal unlocked.

B. Structural Description
The graphical representation of the structural description

of the SUT and its internal components and subcomponents is
based on UML Composition Structure Diagrams [10] (CSD).
The structural decomposition of the CLS is shown in the left
image of Figure 3. The CLS consists of the parts control
and motors. The control part contains exactly one instance
of the control component and the motor part contains two
to five instances of the motor component. The parts can
communicate with each other via the MotorControl interface,
which is provided by the motor component and defines the

Components

Central Locking System

+lock
+unlock
+locked
+unlocked

Locking

Central Locking System

locked

unlocked

?unlock/
!unlocked

?lock/
!locked

Figure 2. Structural (upper) and behavioural (lower) description of the
central locking system

three signals up, down and ready. Furthermore, the control
part can communicate with the environment of the CLS via
the Locking interface, which is provided by the CLS itself
and defines the signals lock, unlock, locked and unlocked. The
motor and control components could be decomposed in the
same way.

C. Behavioural Description
The behavioural description of the SUT and the compo-

nents defined in the CSD is based on UML Statecharts [10]
(SC). In addition to the components, the signals to be used in
the SC are defined by the interfaces in the CSD.

The upper part of the right image of Figure 3 shows
the behaviour of the CLS, which was already explained in
Subsection II-A. In the lower part SCs, for control component

116Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 125 / 129

Motor

up

off

down

?up

?down
!ready

!ready

Central Locking System

locked unlocked

?unlock/!unlocked

?lock/!locked

Control

locked

unlocking

unlocked

locking

?unlock/!up

?ready[∀up]
/!unlocked

?lock/!down
 ?ready[∀down]
 /!locked

Central Locking System

+lock
+unlock
+locked
+unlocked

Locking

motors:Motor [2..5]

control:Control [1]

+up
+down
+ready

MotorControl

Figure 3. Structural (left) and behavioural (right) descriptions of the CLS
and its components

and motor component are shown. For control component the
four states unlocked, locking, locked and unlocking are defined.
The double framed states unlocked and locked are so-called
stable states. That means, the component may stay in this
state for an unlimited period of time. Unlocked state is the
initial state of this component. After receiving the signal
lock being in this initial state it sends the down signal and
switches to locking state. This state can only be left if every
receiver of the down signal responses with a ready signal.
Then this component switches to locked state after sending the
locked signal. Switching the states to unlocking and unlocked
states are performed analogous with the unlock, up, ready and
unlocked signals. For motor component there are three states
defined: The initial stable state off and up and down states.
After receiving up respectively down signal, motor component
switches to up respectively down state. Since, they are both
no stable state motor component has to leave them and switch
back to off state and consequently sends a ready signal.

The statecharts shown in Figure 3 describe the behaviour of
components at two different decomposition levels of the SUT:
The CLS at the top-most level and one level below control
and motor component. For tracing the refinement between two
levels a relation that assigns a set of states of the lower level
to every stable state of the upper level has to be defined. If
a SC of a lower level has both stable and not stable states
the assigned set of states must contain at least one state from
this SC. Else the relation to this lower level SC is optional.
This relation will be used later to ensure that the components
of a decomposed test case are in states that corresponds to a
state of the component which was tested by the former test
case. If there is no such relation for one or more SCs, the
final states of the components in the decomposed test case do
not have to be considered. In the CLS example locked state
from control component and off state from motor component
are assigned to locked state from CLS and unlocked state from
control component and off from motor component are assigned
to unlocked state from CLS.

D. Test Case Description

For describing the test cases, diagrams are used that are
based on UML Sequence Diagrams [10] (SD). Every test case
is described by one SD and consists of exactly one lifeline,
which represents an instance of the component to be tested by
this test case, and signals (messages) that are sent between the

:CLS

lock

unlocked

locked

Testcase CLS

unlocked

Figure 4. Graphical representation of a test case for CLS component

lifeline and its environment during this test case. This lifeline
also contains the states that the corresponding component is
in. The sent messages correspond to the signals that are sent
or received during the transitions in the SCs and can cause a
state change of the lifeline.

Figure 4 shows one test case for the CLS. Starting with the
CLS lifeline in unlocked state receiving the lock message from
its environment which causes sending the locked message and
a switch to locked state. Then receiving the unlock message
causes the CLS to send the unlocked message and a state
change back to unlocked state. This behaviour corresponds to
the SC for the CLS shown in Figure 2.

III. TEST CASE DECOMPOSITION

In this section, the test case decomposition is described
in detail and its application is shown at the running ex-
ample. The test case decomposition contains of two stages:
Test case extension and test case partition. During the first
stage, the test case is extended using the information of the
systems decomposition from the CSD and the SCs of the
new subcomponents. Hence, the test case is enriched with
information about the internal communication between the
subcomponents. Within the second stage the extended test case
is partitioned into several test cases that respectively test one
of the subcomponents of the component to test. These two
stages of the test case decomposition are described in detail
during the next subsections.

A. Test Cases Extension
In the first stage, a given initial test case is getting

extended. That means that the structural decomposition and
the new information about the behaviour of the decomposed
components are transferred to the initial test case. The initial
test case contains exactly one lifeline, which represents an
instance of the component to be tested, the messages that
are sent between the lifeline and its environment and the
lifelines states during the test case. At first the new structural
information is added to the initial test case by replacing the
initial lifeline by lifelines for all instances that compose the
initial component as describes in the CSD. After that the new
behavioural information are added. This is done by retaining
the initial messages from and to the environment and add the
new messages which are sent between the new lifelines. Figure
5 shows the test case extension as pseudocode.

Using the example test case illustrated in Figure 4 we
perform the test case extension. Figure 6 shows the test case
at several intermediate steps during and after its extension.
The algorithm gets as input the test case tc to be extended

117Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 126 / 129

Data: test case tc to be extended, lifeline ltc of component to
be tested by tc, list of messages M sent in tc

Result: extended test case tc
1 Replace ltc by lifelines Lext for subcomponents

List of free messages Mf := ∅
foreach m ∈ M do

2 if ltc receives m then
3 Mark m as free incoming Message
4 else
5 Mark m as free outgoing Message
6 M = M \m

Mf = Mf +m
7 while transition with ANY-Trigger available or Mf 6= ∅ do
8 while transition t with ANY-Trigger available do
9 fire transition t

Mn:= list of messages received due to fire t
Mf = Mn +Mf

update state of corresponding lifeline

10 if Mf 6= ∅ then
11 mi ∈ Mf first free incoming message

L:=set of lifelines, that can receive m
if L 6= ∅ then

12 foreach lifeline l ∈ L do
13 Create copy m′ of mi

Bind m′ to l and mark m′ as bound
Mn:= list of messages received due to m′

Update state of l
Mf = Mn +Mf

14 else
15 foreach free outgoing message mo ∈ M do
16 if mi == mo then
17 Bind mo to sending lifeline l of mi

Update state of l
Mf = Mf \mo

18 Delete mi from tc and Mf

Figure 5. Pseudocode for test case extension

containing the lifeline ltc and a list of messages M that are
sent between ltc and its environment. After its execution, the
algorithm returns the extended test case tc.
At the first step the algorithm replaces the lifeline ltc by a set
Lext with lifelines in their initial state for every instance of
a subcomponent as defined in the CSD of the component to
test. For variable multiplicities of a part in the CSD, the lowest
valid value greater zero is selected as number of instances.
After this step the test case is adapted to the new structural
information. Now, the empty list Mf is defined to collect
all free messages. Free messages are messages, that do not
have a sending (free outgoing message) or receiving (free
incoming message) lifeline. In the following loop (lines 3 - 9)
all messages in M are marked either as free incoming or free
outgoing message depending on whether they were received
or sent by lifeline ltc and added to the end of Mf . The former
order of the messages is retained. The current state of the
test case is shown in the upper left image of Figure 6. The
former lifeline :CLS was replaced by a control lifeline and
two motor lifelines as two is the lower bound of part motors
(see Figure 3). The lock and unlock messages were marked

as free incoming message so one of the available lifelines can
receive them. The locked and unlocked messages were marked
as free outgoing messages and a lifeline has to be found that
sends these messages.

The next loop (lines 10 - 31) is executed while there are
transitions left that can be fired, more precisely transitions
without a trigger (ANY-trigger) are available from the current
states of the lifelines in Lext or there are free messages
left. First, all transitions with ANY-Trigger are fired (lines
11 - 15). Thereafter, new messages that are received due to
firing these transitions are added at the top of Mf and the
states of the corresponding lifelines are updated. If there is no
transition with ANY-trigger left the first free incoming message
mi ∈ Mf is bound to suitable lifelines in Lext. Thereto, the
corresponding statecharts of the lifelines in Lext are searched
for transitions that have the current state of the lifeline as
source and mi as trigger. For every possible receiver lifeline
l ∈ Lext a copy m′ of mi is created and bound to l, i.e.,
l now receives the copy m′ and m′ is marked as bound (no
longer a free message). Due to firing a transition, new free
incoming messages Mn can be sent and are added at top
of the list Mf after updating the state of lifeline l. If there
are no possible receiving lifelines all remaining free outgoing
messages mo are compared to mi and if there is a mo with
the same signal as mi, mo is bound to the lifeline sending mi

and mo is removed from Mf . At the end the message mi is
deleted from the test case tc and the list Mf . In our example,
there are no possible transitions with ANY-trigger, but there
are free incoming messages. The first one that is chosen is
the lock message. A copy of this message can be bound to
the control lifeline because it is in unlocked state and there
is a transition from unlocked state with trigger lock in the
corresponding statechart. As a result of firing this transition,
the new free incoming message down is added at top of Mf

and control lifeline switches to locking state. Since, there are
no more possible receiver lifelines the lock message can be
deleted from the testcase. The upper central image of Figure
6 illustrates the current state of the test case.

The new down message can now be bound at the two motor
lifelines. So there are two copies of this message, which are
bound to these lifelines, causing them to switch to down state
and the original message can be deleted. The current state
of the test case is shown in upper right image of Figure 6.
Now, there are two ANY-trigger transitions available which
send the new free incoming ready messages and switch the
motor lifelines back to off states. After binding these two ready
messages to control lifeline it receives a new locked message
and switch the lifelines state to locked state which is shown
in the lower left image of Figure 6. Now, there is no possible
receiver lifeline for this message so the algorithm looks for an
equal free outgoing message. Since there is a free outgoing
locked message this free outgoing message can be bound to
control lifeline and delete the free incoming message locked.
Hence, control lifeline sends the new up message (Figure 6
lower image). The following steps are analogue to them after
adding the down message. After switching the control lifeline
back to unlocked state there are no possible transitions with
ANY-trigger and no free incoming messages left and the test
case extension has finished. To check, whether the extension
is correct it is checked if the final states of the lifelines of the
extended test case are in a state that is in the set related to the

118Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 127 / 129

:Control

lock

unlocked

locked

:Motor :Motor

unlock

unlocked

off off

locking

:Control

unlocked

locked

:Motor :Motor

unlock

unlocked

off off

locking

:Control

lock
unlocked

locked

:Motor :Motor

unlock

off off

down

down
down

down

locking

:Control

unlocked

locked

:Motor :Motor

unlock

unlocked

off off

down

down

down
ready

off
ready

off
locked

locked

locking

:Control

unlocked

:Motor :Motor

unlock

unlocked

off off

down

down

down
ready

off
ready

off
locked

locked

unlocking

up

unlocked

locking

:Control

unlocked

:Motor :Motor

unlock

unlocked

off off

down

down

down
ready

off
ready

off
locked

locked

unlocking

up

up
up

up
ready

off
ready

off
unlocked

Figure 6. Extension of the sample test case

final state of the initial test case.

B. Test Case Partition
The test case that was extended by the algorithm presented

in the last section has to be partitioned into several test cases
for the several subcomponents. First the test case is vertically
partitioned, i.e., for every lifeline only this one lifeline and only
these messages, which are sent or received by this lifeline are
considered. After this step there exists one test case for every
lifeline that occurs in the extended test case. Now, these test
cases can be partitioned horizontally at stable states, i.e., if
there is a stable state that is not the initial or final state of a
test case, this test case is split up there. The two new test cases
contain only these messages that are sent before respectively
after reaching the stable state. The stable state additionally
becomes the final state of the first and the initial state of the
last new test case. Since it is possible that several identical
test cases are created, duplicated test cases can be refused. In
our example the extended test case would be partitioned into
six new test cases; two for every lifeline with each horizontal
splitting at the middle stable state locked respectively off. The
left image of Figure 7 shows the partitioning as dotted lines.
Now, there are two times two identical test cases for the motor

locking

:Control

unlocked

:Motor :Motor

unlock

unlocked

off off

down

down

down
ready

off
ready

off
locked

locked

unlocking

up

up
up

up
ready

off
ready

off
unlocked

locking

:Control

lock

unlocked

down

ready
ready

locked

locked

unlocking

:Control

unlock

locked

up
up

ready
ready

unlocked

unlocked

:Motor

off

down
ready

off

:Motor

off

up
ready

off

Figure 7. Partition of the extended test case

119Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

 128 / 129

component so the duplicates can be removed and the four test
cases are left that are shown in the right image of Figure 7.

C. Tool Support

To apply the techniques for describing the structure and
the behaviour of the SUT as well as the test cases to test it
and apply the test case decomposition a tool support will be
provided. Currently the automatic test case extension based on
structural and behavioural descriptions is supported. Additional
graphical editors for creating the structural and behavioural
descriptions and the test cases will be provided. Furthermore
integration with tools for automatic test case execution and
analysis like JUnit is planned.

IV. RELATED WORK

Dias Neto et al. [11] give a survey of MBT approaches by
comparing more than 400 papers. Approaches that use state
based behaviour descriptions were developed amongst others
from Bernard et al. [12]. They generate abstract test cases from
state machines describing the behaviour of classes. Several
selection criteria can be chosen. The test cases are only suitable
to test classes but not components.

Another approach presented by Tretmans [13] uses labelled
transition systems and the ioco-testing theory. However, the
test case selection is still an open issue. The approach of
Xu et al. [14] generates test cases by two different strategies:
Structure-oriented and property-oriented generation. However,
they also do not cover different levels of decomposition with
their test cases.

The approaches of Elbaum et al [15] and Saff et al. [16]
generate unit tests from system tests. But it is necessary to
execute the system to get unit test. So they are not available
at implementation time.

Briand et al. [17] investigated the impact of changing
models on the generated test cases. They divided the test
cases into three categories: Obsolete, retestable and reusable.
However, they cannot update the test cases after changes, for
example decompositions, of a model.

V. CONCLUSION AND FUTURE WORK

We have presented an approach that enables an automatic
test case decomposition by using the decomposition of the
SUT. The test cases are extended with the systems or compo-
nents internal communication and partitioned into several test
cases that can be used to test the new components defined by
the systems decomposition.

Future work includes consideration of the sequencing of
existing and new messages during the test case extension as
well as variable initial states by allowing a history for the
behavioural description and the handling of indeterministic
state charts. Another important aspect is tracing and impact
analysis of changes of the initial test. Furthermore, the tool
support will be improved by providing customized graphical
editors for describing the systems structure and behaviour
and the test cases and the integration of functional testing
tools. After this, we plan to evaluate our approach at several
existing system to compare it with existing test case generation
approaches.

REFERENCES
[1] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools

Approach. Morgan Kaufmann, Jul. 2010.
[2] A. Pretschner and J. Philipps, “10 methodological issues in model-

based testing,” in Model-Based Testing of Reactive Systems, ser.
Lecture Notes in Computer Science, M. Broy, B. Jonsson, J.-P. Katoen,
M. Leucker, and A. Pretschner, Eds. Springer Berlin Heidelberg, Jan.
2005, no. 3472, pp. 281–291.

[3] G. J. Myers, T. Badgett, and C. Sandler, The art of software testing.
Hoboken, N.J.: John Wiley & Sons, 2004.

[4] S. Sprenkle, S. Sampath, E. Gibson, L. Pollock, and A. Souter, “An
empirical comparison of test suite reduction techniques for user-session-
based testing of web applications,” in Software Maintenance, 2005.
ICSM’05. Proceedings of the 21st IEEE International Conference on.
IEEE, 2005, pp. 587–596.

[5] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for
controlling the size of a test suite,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 2, no. 3, 1993, pp. 270–
285.

[6] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel, “On-demand Test
Suite Reduction,” in Proceedings of the 34th International Conference
on Software Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE
Press, 2012, pp. 738–748.

[7] A. Pretschner et al., “One evaluation of model-based testing and its
automation,” in Proceedings of the 27th international conference on
Software engineering, ser. ICSE ’05. New York, NY, USA: ACM,
2005, pp. 392–401.

[8] A. Marques, F. Ramalho, and W. L. Andrade, “Comparing model-
based testing with traditional testing strategies: An empirical study,”
in Software Testing, Verification and Validation Workshops (ICSTW),
2014 IEEE Seventh International Conference on. IEEE, 2014, pp.
264–273.

[9] I. Krger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to statecharts,”
in Distributed and Parallel Embedded Systems. Springer, 1999, pp.
61–71.

[10] C. Rupp, S. Queins, and B. Zengler, UML 2 glasklar: Praxiswissen fur
die UML-Modellierung. Munchen; Wien: Hanser, 2007.

[11] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos,
“A survey on model-based testing approaches: a systematic review,”
in Proceedings of the 1st ACM international workshop on Empirical
assessment of software engineering languages and technologies: held
in conjunction with the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE) 2007, ser. WEASELTech ’07.
New York, NY, USA: ACM, 2007, pp. 31–36.

[12] E. Bernard et al., “Model-based testing from UML models.” in GI
Jahrestagung (2), 2006, pp. 223–230.

[13] J. Tretmans, “Model based testing with labelled transition systems,” in
Formal methods and testing. Springer, 2008, pp. 1–38.

[14] D. Xu, O. El-Ariss, W. Xu, and L. Wang, “Testing aspect-oriented
programs with finite state machines,” Software Testing, Verification and
Reliability, vol. 22, no. 4, 2012, pp. 267–293.

[15] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving
Differential Unit Test Cases from System Test Cases,” in Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. SIGSOFT ’06/FSE-14. New York, NY,
USA: ACM, 2006, pp. 253–264.

[16] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic Test
Factoring for Java,” Tech. Rep. MIT-CSAIL-TR-2005-042, Jun. 2005.

[17] L. Briand, Y. Labiche, and G. Soccar, “Automating impact analysis
and regression test selection based on UML designs,” in International
Conference on Software Maintenance, 2002. Proceedings, 2002, pp.
252–261.

120Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Powered by TCPDF (www.tcpdf.org)

 129 / 129

http://www.tcpdf.org

