
SOFTENG 2016

The Second International Conference on Advances and Trends in Software

Engineering

ISBN: 978-1-61208-458-9

February 21 - 25, 2016

Lisbon, Portugal

SOFTENG 2016 Editors

Hermann Kaindl, Vienna University of Technology, Austria

Roberto Meli, DPO Srl, Italy

 1 / 154

SOFTENG 2016

Forward

The Second International Conference on Advances and Trends in Software Engineering
(SOFTENG 2016), held between February 21-25, 2016 in Lisbon, Portugal, continues a series of
events focusing on challenging aspects for software development and deployment, across the
whole life-cycle.

Software engineering exhibits challenging dimensions in the light of new applications,
devices and services. Mobility, user-centric development, smart-devices, e-services, ambient
environments, eHealth and wearable/implantable devices pose specific challenges for
specifying software requirements and developing reliable and safe software. Specific software
interfaces, agile organization and software dependability require particular approaches for
software security, maintainability, and sustainability.

The conference had the following tracks:

 Software design and production

 Maintenance and life-cycle management

 Software requirements

 Software reuse

 Software testing and validation

We take here the opportunity to warmly thank all the members of the SOFTENG 2016
technical program committee, as well as all the reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly
thank all the authors that dedicated much of their time and effort to contribute to SOFTENG
2016. We truly believe that, thanks to all these efforts, the final conference program consisted
of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the SOFTENG 2016
organizing committee for their help in handling the logistics and for their work that made this
professional meeting a success.

We hope that SOFTENG 2016 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the field of
software engineering. We also hope that Lisbon, Portugal provided a pleasant environment
during the conference and everyone saved some time to enjoy the beauty of the city.

SOFTENG 2016 Advisory Committee
Alain Abran, University of Québec, Canada
Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Paolo Maresca, VERISIGN, Switzerland
Patricia McQuaid, California Polytechnic State University, USA

 2 / 154

SOFTENG 2016 Research Liaison Committee
Veena Mendiratta, Bell Labs, Alcatel-Lucent, USA
Michael Perscheid, SAP Innovation Center Potsdam, Germany
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea
Fergal Mc Caffery, Dundalk Institute of Technology, Ireland
Ron Watro, BBN Technologies, USA

SOFTENG 2016 Industrial Liaison Committee
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Janne Järvinen, F-Secure Corporation - Helsinki, Finland

 3 / 154

SOFTENG 2016

Committee

SOFTENG 2016 Advisory Committee

Alain Abran, University of Québec, Canada
Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Paolo Maresca, VERISIGN, Switzerland
Patricia McQuaid, California Polytechnic State University, USA

SOFTENG 2016 Research Liaison Committee

Veena Mendiratta, Bell Labs, Alcatel-Lucent, USA
Michael Perscheid, SAP Innovation Center Potsdam, Germany
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea
Fergal Mc Caffery, Dundalk Institute of Technology, Ireland
Ron Watro, BBN Technologies, USA

SOFTENG 2016 Industrial Liaison Committee

Tomas Schweigert, SQS Software Quality Systems AG, Germany
Janne Järvinen, F-Secure Corporation - Helsinki, Finland

SOFTENG 2016 Technical Program Committee

Haider Abbas, Center of Excellence in Information Assurance - King Saud University, Saudi
Arabia
Alain Abran, University of Québec, Canada
İbrahim Akman, Atilim University, Turkey
Issam Al-Azzoni, King Saud University, Riyadh, Saudi Arabia
Magnus Almgren, Chalmers University of Technology, Sweden
Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea
Alessandra Bagnato, SOFTEAM R&D Department, France
Boyan Bontchev, Sofia University "St Kl. Ohridski", Bulgaria
Leonardo Bottaci, University of Hull, UK
Thomas Buchmann, Universität Bayreuth, Germany
Matthias Buechler, Technische Universität München, Germany
Azahara Camacho, Universidad Complutense de Madrid, Spain
Pablo Cerro Cañizares, Universidad Complutense de Madrid, Spain

 4 / 154

Byoungju Choi, Ewha Women’s University, South Korea
Sunita Devnani Chulani, Cisco Systems, USA
Paolo Ciancarini, University of Bologna, Italy
Cesario Di Sarno, University of Naples Parthenope, Italy
Christof Ebert, Vector Consulting Services GmbH, Germany
Sigrid Eldh, Ericsson AB, Sweden
Mahmoud O. Elish, King Fahd University of Petroleum and Minerals, Saudi Arabia
Anita Finnegan, Dundalk Institute of Technology, Ireland
Francesco Flammini, Ansaldo STS, Italy
Sibylle Fröschle, OFFIS & University of Oldenburg, Germany
Barbara Gallina, Mälardalen University, Sweden
Alessia Garofalo, COSIRE Group, Aversa, Italy
Vincenzo Gulisano, Chalmers University of Technology, Sweden
Ibrahim Habli, University of York, UK
Qiang (Nathan) He, Swinburne University of Technology, Australia
Andreas Hoffmann, Fraunhofer Institute for Open Communication Systems (FOKUS), Germany
Helena Holmström Olsson, Malmö University, Sweden
Jang Eui Hong, Chungbuk National University, South Korea
Fu-Hau Hsu, National Central University, Taiwan
Shinji Inoue, Tottori University, Japan
Janne Järvinen, F-Secure Corporation, Finland
P. K. Kapur, Amity University, India
David Kaeli, Northeastern University, USA
Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, USA
Raghudeep Kannavara, Intel Corp., USA
Abdelmajid Khelil, Bosch Software Innovations, Germany
Kenji Kono, Keio University, Japan
Herbert Kuchen, Westfälische Wilhelms-Universität Münster, Germany
Claire Ingram, Newcastle University, UK
Dieter Landes, University of Applied Sciences Coburg, Germany
Jeff (Yu) Lei, University of Texas at Arlington, USA
Yanfu Li, École Centrale Paris, France
Horst Lichter, RWTH Aachen University, Germany
Chu-Ti Lin, National Chiayi University, Taiwan
Francesca Lonetti, ISTI-CNR, Italy
Aniket Malatpure, Microsoft Corporation, USA
Ivano Malavolta, Gran Sasso Science Institute, Italy
Eda Marchetti, ISTI-CNR, Italy
Paolo Maresca, VERISIGN, Switzerland
Assaf Marron, Weizmann Institute of Science, Israel
Fergal Mc Caffery, Dundalk Institute of Technology, Ireland
Patricia McQuaid, California Polytechnic State University, USA
Roberto Meli, DPO s.r.l., Italy
Daniel Sadoc Menasche, Federal University of Rio de Janeiro, Brazil

 5 / 154

Veena Mendiratta, Bell Labs, Alcatel-Lucent, USA
Andréa Mendonça, Instituto Federal do Amazonas (IFAM), Brazil
Akbar Siami Namin, Texas Tech University, USA
Erika Nazaruka (Asnina), Riga Technical University, Latvia
Risto Nevalainen, FiSMA Association, Finland
Cu Duy Nguyen, SnT Centre - University of Luxembourg, Luxembourg
Nicole Novielli, University of Bari “A. Moro”, Italy
Antonio Pecchia, Federico II University of Naples, Italy
Michael Perscheid, SAP Innovation Center Potsdam, Germany
Pasqualina Potena, Fondazione Bruno Kessler, Italy
Wolfgang Reif, Institute for Software & Systems Engineering - University of Augsburg, Germany

Ella Roubtsova, Open University of the Netherlands, Netherlands
Alejandra Ruiz, TECNALIA, Spain
Gunter Saake, Otto-von-Guericke-University of Magdeburg, Germany
Kazi Muheymin Sakib, University of Dhaka, Bangladesh
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Laura Semini, Università di Pisa, Italy
Michel S. Soares, Federal University of Sergipe, Brazil
Gunther Spork, Magna Powertrain AG & Co KG, Austria
Miroslaw Staron, University of Gothenburg, Sweden
Vinitha Hannah Subburaj, Baldwin Wallace University, Berea - Ohio, USA
Kumiko Tadano, NEC Corporation, Japan
Kunal Taneja, Accenture Technology Labs, San Jose, USA
Nguyen Anh Tuan, Boston Global Forum, USA
Tugkan Tuglular, Izmir Institute of Technology, Turkey
Sylvain Vauttier, LGI2P - Ecole des Mines d'Alès, France
Miroslav Velev, Aries Design Automation, USA
Gursimran S. Walia, North Dakota State University, USA
Hironori Washizaki, Waseda University, Japan
Gera Weiss, Ben-Gurion University of the Negev, Israel
Stephan Weissleder, Thales Transportation Systems, Germany
Ralf Wimmer, Institute of Computer Science - Albert-Ludwigs-University, Germany
Guowei Yang, Texas State University, USA
Cemal Yilmaz, Sabanci University, Turkey
Mansooreh Zahedi, IT University of Copenhagen, Denmark
Peter Zimmerer, Siemens AG, Germany
Alejandro Zunino, Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

 6 / 154

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 154

Table of Contents

Using the Event-B Formal Method for Disciplined Agile Delivery of Safety-critical Systems
Andrew Edmunds, Marta Olszewska, and Marina Walden

1

Unifying Modeling and Programming with ALF
Thomas Buchmann and Alexander Rimer

10

A Systematic Approach to Assist Designers in Security Pattern Integration
Loukmen Regainia, Cedric Bouhours, and Sebastien Salva

16

Function Point Analysis with Model Driven Architecture Applied on Frameworks of Partial Code Generation
Rodrigo Salvador Monteiro, Roque Pinel, Geraldo Zimbrao, and Jano Moreira de Souza

23

Developing Software for Mobile Devices: How to Do That Best
Hermann Kaindl, Roberto Meli, Andreas Kurtz, Bernhard Bauer, and Petre Dini

29

Developing a Quality Report for Software Maintainability Assessment: An Exploratory Survey
Pascal Giessler, Manuel Gerster, Michael Gebhart, Roland Steinegger, and Sebastian Abeck

36

A Tree-Based Approach to Support Refactoring in Multi-Language Software Applications
Hagen Schink, David Broneske, Reimar Schroter, and Wolfram Fenske

44

Collecting Product Usage Data Using a Transparent Logging Component
Thorvaldur Gautsson, Jacob Larsson, and Miroslaw Staron

50

The ICT Measurement System Definition, Components and a Maturity Evaluation Approach
Roberto Meli

56

Distributed Asynchronous Focus Group Interviews
Ulrike Hammerschall

65

Applying Privacy by Design in Software Engineering - An European Perspective
Karin Bernsmed

69

End User in Charge - Social Framework for Open Source Development
Kwabena Ebo Bennin, Mohammed Alqadhi, Shahid Hussain, Arif Ali Khan, Solomon Mensah, and Ernest Pobee

77

Sequence Data Mining Approach for Detecting Type-3 Clones
Yoshihisa Udagawa and Mitsuyoshi Kitamura

82

A Multi-Agent System for Expertise Localization in Software Development 89

 1 / 2 8 / 154

Jose Ramon Martinez Garcia, Ramon Rene Palacio Cinco, Joel Antonio Trejo Sanchez, Luis Felipe Rodriguez,
and Joaquin Cortez

Exploring the Scala Macro System for Compile Time Model-Based Generation of Statically Type-Safe REST
Services
Filipe R. R. Oliveira, Hugo Sereno Ferreira, and Tiago Boldt Sousa

95

Migration from Annotation-Based to Composition-Based Product Lines: Towards a Tool-Driven Process
Fabian Benduhn, Reimar Schroter, Andy Kenner, Christopher Kruczek, Thomas Leich, and Gunter Saake

102

Executable Testing based on an Agnostic-Platform Modeling Language
Concepcion Sanz, Alejandro Salas, Miguel de Miguel, Alejandro Alonso, and Juan Antonio de la Puente

110

Software Based Test Automation Approach Using Integrated Signal Simulation
Andreas Kurtz, Bernhard Bauer, and Marcel Koeberl

117

Mobile Medical Apps Data Security Overview
Ceara Treacy and Fergal Mc Caffery

123

Reachability Games Revisited
Imran Khaliq and Gulshad Imran

129

Dynamic Symbolic Execution with Interpolation Based Path Merging
Andreas Ibing

133

Verification of Architectural Constraints on Interaction Protocols Among Modules
Stuart Siroky, Rodion Podorozhny, and Guowei Yang

140

Powered by TCPDF (www.tcpdf.org)

 2 / 2 9 / 154

Using the Event-B Formal Method
for Disciplined Agile Delivery

of Safety-critical Systems

Andrew Edmunds∗, Marta Olszewska† and Marina Waldén‡
Distributed Systems Lab.
Abo Akademi University,

Turku, Finland
Email: ∗aedmunds@abo.fi, †mplaska@abo.fi, ‡mwalden@abo.fi

Abstract—In order to improve the development process of high-
integrity systems, using formal methods, we consider how agile
techniques may influence the Event-B formal method, and how
Event-B may be used in a development that uses an agile
approach. To examine the crossover between Event-B and agile
methods we review the Disciplined Agile Delivery approach
(DAD). The DAD approach is inspired by many state-of-the-art
agile techniques, and we use it as a meta-analysis of current best-
practice. In this paper, we propose an agile process for using
Event-B and examine how agile techniques might influence the
use of Event-B. We identify a number of areas in which Event-
B could be improved and suggest that a different view of agile
practices may be needed for an agile project involving formal
development.

Keywords–Agile; Formal Methods; Event-B; Critical Systems

I. INTRODUCTION

As part of the ADVICeS project [1], we have been inves-
tigating the crossover between agile and formal methods [2],
[3]. In particular, we are focussing on the Event-B method [4]
and DAD [5]. Event-B is a formal approach for the rigorous
specification of safety-critical systems, based on set-theory
and predicate logic. In contrast, DAD is a pragmatic, flexible
approach to agile development, which seeks to guide teams
towards a solution, rather than prescribe a list of tasks that
should be adhered to. DAD’s creators are experienced agile
practitioners, taking inspiration from the many agile methods
they have encountered during their careers, including XP [6],
Scrum [7] and Lean approaches [8]. Since the DAD approach
is so wide ranging, we use it for a meta-analysis, to assess
how DAD and Event-B could be used together. The result
provides an insight into the most relevant issues. We believe
that this may be of interest to others in the formal methods
community, since the questions we raise, and seek to answer,
may apply to other methods. In Section II, we introduce Event-
B. In Section III, we look at DAD and how it relates to Event-
B. In Section IV, we examine how Event-B features may be
used in a DAD project. In Section V, we discuss process goals.
In Section VI, we discuss related work, and in Section VII, we
summarize and reflect, asking the question “What’s stopping
Event-B from being used in an agile development?”

II. EVENT-B
Event-B is a specification language and methodology with

tool support called Rodin [4], [9], [10]. Event-B has received

context C0
sets S . . .
constants

c . . .
axioms

c ∈ S

Figure 1. Example Event-B Context

interest from industry, for the development of railway, automo-
tive, and other safety-critical systems [11]. In Event-B, system
properties are specified using set-theory and predicate logic;
proof and refinement are used to show that the properties hold
as the development proceeds. It is recommended that develop-
ers add detail to the specification in a series of refinement
steps. Proof obligations are automatically generated by the
Rodin tool; the automatic prover is able to discharge many
of them. Event-B is designed to reduce the amount of inter-
active proof needed, during the specification and refinement
steps [12]. Complex systems can be handled using methods of
composition and decomposition [13].

A. Event-B’s Core Technology
The core Event-B modelling artefacts are Machines and

Contexts. Contexts describe the static elements of a system,
using sets, constants and axioms. Machines describe the dy-
namic elements of a system; a machine can see contexts, and
is made of variables, invariants, and guarded events. A simple
context is shown in Figure 1. The context C0 declares a carrier
set S, and a constant c, which is typed in the axioms as a
member of S. Axioms can be used to type constants and specify
assumptions. There are a number of built-in types such as Z
and BOOL, and new types and operators can be added [14].

In Figure 2, we have a machine M0, which sees the context
C0. In this way, M0 gains access to the sets and constants
declared within C0. The machine’s variables are typed in the
invariants clause, which may also contain the description of
other system properties.

Events describe atomic state updates; they are non-
deterministically scheduled, occurring only when the guards
(in the where clause) are true. The example shows a parameter
p1, which is typed as an integer. It has a guard, which states
that the updates can only occur when x < p1. In the action (the

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 10 / 154

machine M0
sees C0
variables x y b w. . .
invariants

x ∈ Z
y ∈ 0 .. 5
b ∈ BOOL
w ∈ S

. . .

event e1
any p1
where

p1 ∈ Z
x < p1

then
y :∈ 0 .. 5
b := TRUE
w := c

end

Figure 2. Example Event-B Machine

then clause) y is non-deterministically assigned a value in the
range 0 . . . 5. Variables b and w are assigned (deterministic
assignment) TRUE and c, respectively. All three assignment
actions take place simultaneously, in parallel.

Refinement is used to add detail to a model. A refining
machine is added to the development, then new variables and
events can be added; or abstract events can be refined by
strengthening the guards, and adding new actions. The new
actions can modify the newly introduced variables.

B. Extensions to the Core Functionality
The Rodin tool is based on Eclipse [15], an open, extensible

tool platform that allows plug-in developers to contribute
new tools. There are many Rodin plug-ins available [16], we
describe a few of them in this section.

One of the first steps in a project is to analyse the
requirements. In Event-B, requirements can be recorded using
ProR [17]. Elements in the Event-B model can be linked to
references in the requirements for traceability throughout the
development. Use case analysis can be done using a use-case
modelling plug-in [18].

The Theory extension provides a way to add new data
types, operators, inference and rewrite rules, and code gen-
eration translation rules [14], and theories can be reused in
different projects. There are several extensions that provide
diagrammatic representations with Event-B semantics, such
as state-machines [19], class-diagrams [20], and progress dia-
grams [21].

When modelling, it is recommended that the behaviour
of the model be explored using ProB [22], an animator and
model-checker for Event-B. ProB allows developers to make
sure that the expected behaviour, of a model, is observed. It can
also be used to interrogate a model’s state when proofs fail.
ProB’s model-checking facilities include a Linear Temporal
Logic feature. An SMT solver is available in a separate plug-
in [23]. Typically, ProB is used by technically-aware team
members. There are additional animation tools for the non-
technical stakeholders, to help them understand the system.
Two such tools are AnimB [24] and B-Motion Studio [25].
Both perform similar roles, where the underlying elements of
an Event-B model are linked to some graphical representations.
As events occur, the state changes, together with the visual
representation. This can be especially useful when validating
requirements, and when showing the development to non-
technical team members and stakeholders.

As models become more complex, decomposition tech-
niques can be used to make the model of the system more

tractable [13]. This also facilitates parallel development, since
the sub-models can be refined independently. It can be used to
introduce structure in the model, and ultimately, it provides a
means to refine into implementation structures. The composed
machine component provides the glue for linking the sub-
models. This can also be used to compose independently
produced components. Another approach is to use the modu-
larisation plug-in [26], which takes a different view. It uses
interfaces, and it introduces the concepts of operations, pre-
conditions, and post-conditions into Event-B.

As the development progresses, it may be useful to perform
simulations with a continuous representation of the environ-
ment, or with a continuous model of parts of the system.
This may be achieved with multi-simulation tools, such
as that based on the Functional Mock-up Interface (FMI),
for simulation of cyber-physical systems [27]. This approach
facilitates modelling, using a mix of continuous and dis-
crete models, which can provide more confidence that non-
functional requirements will be satisfied. A further step is to
generate code from the Event-B models, which can then be
included in an FMI simulation [28]. This simulation uses code
that is very close to the actual software that will run in the
system, and can easily be tailored for use in deployment. This
approach is an extension of the work introduced in [29], where
code generation tools use a scheduling language to describe
implementations for multi-tasking, embedded systems. The
target languages include Ada, Java and C. Another approach to
automatic code generation includes that of Rivera et al. [30],
who produce Java code, and Java Modelling Language (JML)
annotations for downstream verification. Whether or not the
code generator is certified, it can be desirable to perform
testing. There is a model-based testing tool available for
Event-B [31], which generates test-cases from the Event-B
models based on ProB.

III. DAD
The Agile Manifesto [32] was presented in 2001, bringing

together many new ideas that facilitate efficient, and timely,
software development, in an ever changing environment. A
number of concepts figured prominently. These include early
delivery of “useful” resources; iterative development; collab-
oration between customers, and the development team; and
collaboration within the development team itself. A number
of approaches were advocated, such as XP [6], Scrum [7]
and Lean [8]. These approaches consist of “guidelines for
delivering high-quality software in an agile manner” [33].
Hence, it is apparent that agile has no single definition, and
the approaches do not always cover all the necessary aspects
of a development.

In [34], Ambler and Lines comment on the fact that agile
practices were often adapted to the needs of the businesses in
which they were applied. These authors advocate DAD [5],
which provides a framework for this process. It includes a set
of guidelines, drawn up as a result of analysing where agile
approaches fall short. In the remainder of the paper, we make
use of DAD, to understand how Event-B may be used in an
agile project.

DAD is described by its authors as an adaptable process
framework; they identify and discuss the many techniques and
tools that may be used during agile development. Instead of
building on radical, new technologies, the framework adopts

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 11 / 154

Working increment
of the software

Sprint Backlog
Sprint

Product Backlog

Daily
Work

Sprint
Duration

Review and Plan Next Sprint

Figure 3. The Traditional Scrum Life-cycle

a pick-and-mix approach from existing technologies, based on
the authors’ practical experience in industry. Rather than being
a step-by-step guide, there are a set of points to consider, and
a set of guidelines that may be followed if appropriate. Many
of the techniques that are part of DAD can also be used with
Event-B. Much of the advice relates to project planning issues.
One of the decisions includes the choice of which technologies
to use, such as, whether to use Event-B. If the decision is yes,
then a choice of modelling features is available; options include
state-diagram [19] and class-diagram representations [20]. The
scope of the formal model should also be defined.

1) Project management: Some of DAD’s core concepts
concern project management; others relate to individuals and
team-working; and, others relate to tools and techniques. From
the project management perspective, DAD does not impose
a single life-cycle model. We understand it as a process
goal-driven approach; as a side-note, the process goals in
DAD should not be confused with goal-based requirements.
In a process goal-driven approach, a semi-formal decision-
making process is advocated, taking place at certain stages
in the development, with the aid of process goal diagrams.
The diagrams are tree-structured, and identify (at its root) a
process decision point - with sub-branches showing the aspects
(called process factors) to be considered. The leaves identify
the choices that are available. We have identified this as one
area which could be useful for Event-B, see Section V.

Scrum is considered to be a construction-centric approach
focussed on producing working code at the end of each
iteration, see Figure 3. With Scrum, code delivery is seen as
the measure of progress. DAD can be viewed as an extension
of Scrum, adding an inception phase, and a transition phase. It
delivers consumable solutions, which can be seen as the more
general notion of artefacts that are useful for stakeholders.
In addition, DAD advocates the use of technology neutral
terms; scrum’s sprints are known as iterations, see Figure 4.
We also note that there are goals for each development
phase, and on-going goals that are considered throughout the
project. Inception is the upfront consideration of design and
architectural issues, and transition relates to the process of
releasing a project.

In a safety-critical setting, there is likely to be more
emphasis on gathering requirements early on, when compared
to non-critical agile developments. Using DAD as a guide, it
recommends that this stage is short relative to the construction
phase of the project. For safety-critical parts of a system, this
could involve a structured approach to requirements specifica-

Minor
Iteration

Major
Iteration

Review and Plan Next Iteration

Inception Transition

Consumable
Solution

IterationIteration
Backlog

Project
Work-item ListRequirements and

Project Planning

Construction
Goals

Transition
Goals

Inception
Goals

Ongoing
Goals

Construction

Figure 4. A Disciplined Agile Delivery Life-cycle

tion. We discuss how this might be done in Section V. But,
the brevity is mitigated by the fact that the process will be
iterative, so details evolve as the project progresses. In the
DAD process, an important task of the inception phase is to
scope the project and plan for the subsequent phases.

The activities performed during a DAD iteration are driven
by a prioritised work-item list, which may contain require-
ments, change requests, feature requests, and so on. This
expands on the scrum notion of a product backlog which
may just contain requirements. The sprint backlog of scrum
is known as an iteration backlog in DAD. The work-item list
also takes into account the risks associated with the item. It is
suggested that high-risk items are dealt with first, in order to
minimise the risk to the project as a whole. It is recommended
that Event-B is introduced to the process at an early stage of
development, to begin modelling the critical parts of a system.
Both approaches are compatible in this respect. Planning
issues, such as which tasks should be undertaken during the
next iteration, are discussed in the iteration planning phase. In
safety-critical systems, we can choose to take a different view
of iterations. When certification of the system is required, it is
unlikely that this will take place more than three or four times
a year, since it is a lengthy process. This means that there
may be a different interpretation of iterations: minor iterations
can be used for achieving and measuring project progress, with
fully certified releases completed at the end of major iterations.
The transition to a released, and supported product is of less
interest in this paper. The life-cycle may be repeated from
the inception phase, for each release of a product, including
maintenance releases.

2) Team-working: DAD emphasises teamwork and the fac-
tors involving the individuals that make up the team. Motivated
individuals are encouraged to learn, and make improvements,
on an individual level, and at the team level. The lessons
learned should be shared, too. New guidelines and patterns
should be created where necessary. However, this needs to
be done in a structured way, so that the patterns can be
retrieved at an appropriate time in the future: there should be
sufficient information available, to allow decision makers, and
potential users, to make their choices. This can form part of
the information that is available at the time of making process
decisions, which we discuss in Section V.

3) Development Techniques: In the available literature, as
in DAD, practitioners advocate the use of test-driven de-
velopment. Test-driven development begins with the creation
of tests that relate to some required feature. This creates a
link between requirements, and tests, and provides traceability

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 12 / 154

between requirements and code. The test is first written so
that it fails, then an implementation is coded so that the test
no longer fails. The main advantage is that it ensures that the
implementation passes the test, from a very early stage, and
also, as features are introduced. However, there is no assurance
that the test, itself, is correct. The test can be further used
as part of a continuous integration process. “Test early and
test often”, is advice that is commonly given, and developers
can generate several builds in a day. Also, since tests are
only introduced when necessary, it is seen as a Just-In-Time
(JIT) technique. When responding to changes, tests have to
be changed, and the is code refactored, which helps to reduce
technical debt [35].

We now consider how these advantages can be maintained,
in a development that uses Event-B. We have highlighted that
ProR can be used to link requirements to models, so that aids
traceability. There are also tools available for automatic code
generation [36], [29], and model-based testing [37], [38], that
can be used to generate tests. This would make it amenable
to continuous integration. Event-B can also be considered as a
JIT approach since abstraction and underspecification are ideal
ways of deferring the addition of specific details. Refactoring
is also possible with Event-B, and improving the tool support
for this is ongoing. Increased confidence in the correctness of
code could be gained by generation of verification conditions,
such as JML [39] for Java.

IV. USING EVENT-B IN A DAD PROJECT

We consider that DAD and Event-B may be of interest to
organizations developing safety-critical systems. We discuss
how Event-B might be used in an agile way, as part of a DAD-
driven project. In DAD, emphasis is placed on the delivery of
consumable solutions, which are a fully working revision of
the system. However, we view models, diagrams, simulations,
and animations, as consumable solutions; these are delivered at
the end of each iteration. Therefore, we consider that working
code is not the only measure of progress. This is different
from the standard DAD approach where only a fully working
revision of the system is considered to be a deliverable. It is
often the case, that artefacts such as proven models, test results,
and simulation results, are necessary to build the safety case
that is required for certification of a critical system [40]. We
believe that Event-B and DAD complement each other well,
and we now present our view of why agile methods, and DAD,
in particular, do so.

We expect it to be beneficial to start using Event-B early
in the inception phase of development. Since the DAD life-
cycle is flexible, it should be straightforward to incorporate
Event-B into the process. However, a development iteration
for a formal development may be longer than that of an
informal development. This may then require the management
of a two-speed development. If this is to be integrated into a
process with a non-formal part, care will need to be taken to
synchronise the iterations.

There are a number of ways to view, and animate Event-
B models, and perform simulations. These should be useful
in the inception phase onwards. Using these, teams can be
kept informed of the latest developments, which is very
important in a team-centric approach. In Figure 5 (which is
inspired by the DAD life-cycle diagram (Figure 2) of [41])
we interpret Event-B artefacts as being consumable solutions

Model Sim

Sim Code

Design Models

Diagrams

Animations

Model Sim

Analysis Models

Diagrams

Animations

Deployable Code

Tests

Inception Construction Transition

Envisioning,
resource allocation,
initial requirements

Change Requests

Release
Requirements engineering, modelling,
simulation, code gen, build, progress monitoring,
review and feedback

Requirements Product

Support

Metrics

Figure 5. Artefacts Available During an Agile-Event-B Project

of the DAD process. We take the view that stakeholders
will be consumers of the artefacts, and the consumables may
vary as the project proceeds. When not contributing directly
towards product deliverables, they should contribute to making
progress throughout the development life-cycle. This includes
supporting the process-decision making activity or building a
safety-case for certification.

A. Event-B in the Inception and Construction Phases
During the inception stage, we could begin recording

requirements using ProR [17]. Requirements can be linked to
corresponding Event-B elements, which facilitates traceability.
DAD guidelines recommend separating functional and non-
functional requirements into different artefacts, in order to
focus on the individual needs of each set of requirements. This
would be possible in ProR, by generating two requirements
specifications. Event-B is most useful for models involving
functional, and safety, requirements; whereas non-functional
requirements are more suited to simulation and testing. In the
latter case, Event-B can assist with multi-simulation [42], [43].

The DAD approach advocates minimal requirements spec-
ification but recognises that a fuller treatment is needed for a
critical system development, which is likely for projects using
Event-B. In Figure 5, we show when various artefacts become
available during the various phases. In the inception phase, the
system’s most important, high-level properties can be stated,
in abstract models. These ideas can be communicated to non-
technical stakeholders, using animation and other graphical
techniques. B-Motion Studio [25] can be used to link images
representing domain elements, to the Event-B model. An
image’s appearance and location can be linked to the state
of a model. So, as the model’s underlying state changes, then
so does the graphical representation. For those requiring more
technical details, the ProB animator and model-checker can be
used [22]. It provides a simulation feature, where more precise
details of the model can be examined. A choice of enabled
events is presented to the user, allowing step-by-step analysis
of the evolving system. The current state, state history, and
event history, are presented. Details of the guard predicates
are available, to help resolve event enablement issues. The
frequent use of ProB is recommended during modelling and
proving.

As the development progresses through the construction
phase, state-diagrams [19] and class-diagrams [20] can be used

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 13 / 154

for specification, and can be used to communicate aspects of
the design to other stakeholders. Throughout the development,
we can assess more of the non-functional requirements, as
the design matures, by simulating Event-B models with more
accurate representations of continuous state. Such an approach
was developed in the Advance project [42], which focussed
on cyber-physical systems, using the Functional Mock-up
Interface (FMI) approach [43]. In later stages, code can be
generated from the Event-B models, and simulation models
can be replaced with Functional Mock-up Units (FMUs) con-
taining code. Then the simulation more closely represents what
happens in the actual target platform. Deployable code [36],
[29] can be generated automatically from the Event-B models,
if desired.

Configuration for specific target platforms can be done dur-
ing the transition phase, in this case, pre-configured templates,
and code injection may help [44]. During the support phase,
change requests can be generated. These will be fed back into
a new development cycle, as seen in Figure 5.

B. Some Observations on Construction Patterns
During the DAD construction phase, there are a number

of patterns (strategies) that could be used. We investigate how
they relate to the use of Event-B, exploring a number of them
individually.

“The team reliably demonstrates increments of software
at the end of each iteration” :- This is the demonstration
that an iteration has been successful, but how do we measure
success when using Event-B? If code is being generated from
the Event-B models, and this code passes all the unit and
integration tests, then we could use the same measure of
success (by demonstrating the increment). However, if we are
not generating code, how is success to be measured?

In order to understand how this strategy would relate to a
project using Event-B, it is important to understand why it is
considered to be so important in DAD. On closer inspection we
find that the important issues are: highlighting problems at an
early stage, avoiding scope creep, and resisting perfectionism.
The use of Event-B is considered to be a major advantage
in helping with the first issue: identifying problems early.
The second, limiting scope creep, seems to be independent
of the use of Event-B. The last point may be more of an issue
with formal development, due to the emphasis on discharging
proof obligations. Guidelines could be drawn up about when
it is practical to proceed without completing a proof, how to
measure the confidence in its correctness, and recording and
reporting a proof’s status.

We consider the relationship between an incomplete proof
and a failing test. Both relate to the failure to satisfy a
requirement. On page 297 of [5] it is stated that “All tests
should be implemented before the end of the iteration, for
the work to be considered to be potentially consumable”.
However, on page 262, a concession is made in the case-
study. At a point in the project, at the end of an iteration,
there are still some failing tests. Now, the end-of-iteration
date is immutable, so it is accepted that some tests fail. So
it would appear that passing all tests should be the goal, but
it may not be achievable in the time allowed. A pragmatic
approach is to have a two-speed process involving minor-, and
major-iterations. All proofs should be completed for major-
iterations (which may only happen a few times a year). Due

to the weaker requirement associated with minor-iterations, the
model, together with adequate documentation, and a measure
of model integrity should be sufficient.

“Iteration dates are fixed” :- This point initially seems to
be technology-neutral. However, in order to meet this goal, the
authors state that it might be necessary to withdraw items from
the work-item list. It is suggested that this may work best for
larger projects. In small projects, or the small part of a large
project that uses Event-B, removal of a work-item from the list
may be a more significant part of the iteration deliverable, this
could be more of a problem. However, it could be mitigated
by flexible working patterns, as recommended in the pattern
below.

“Team members who finish their tasks begin another
task from the iteration work-list, or help others with their
tasks” :- This encourages developers to make the best use
of the time available. It would seem to be common sense,
but for it to be useful in Event-B, it requires some notion
of collaborative working (in Event-B). It would certainly be
possible to perform some kind of pair modelling. However,
for modellers to be working on independent, parallel tracks,
existing composition techniques need to be improved, and this
work is being undertaken as part of the ADVICeS project [1].
It includes construction of a useful notion of components,
libraries, and interfaces. If such techniques, for parallel de-
velopment, are not available for Event-B or are ineffective,
then Event-B could not really be considered agile with respect
to team-working.

“Stakeholders may request a demo (of working soft-
ware) at any time” :- In a properly versioned Event-B
project, using automatic code-generation tools and continuous-
integration, this is theoretically possible. It should always be
possible to demonstrate a build, but it might not be the most
recent work. In a project using minor-, and major-iterations, it
may be some time between stable builds since minor iterations
may be incomplete. From a practical standpoint, formal mod-
elling is not always seen as a process where certified, automatic
code-generation is important. If there is no certified, automatic
code-generation, then we can still satisfy this goal. But there
is less assurance that the high integrity of a formal model
has been transferred to the implementation. In addition, if we
are using ProB animation, or executable models, as a form of
validation, then there is, again, less assurance that what has
been validated is transferred to the implementation.

C. Construction Anti-patterns
A number of anti-patterns are described by the authors of

DAD. We consider those of interest to us, and describe them
as patterns. “Mitigate risk”: We assume that the use of Event-
B was a step towards achieving this. The authors’ advice is,
to make sure any concerns are flagged and are prominent in
the working environment. “Prove the architecture, with code,
early”: Would this be too complex a task for Event-B to model
and generate code, so early in construction? Event-B may be
useful for modelling the architecture early in the project, but
this aspect requires investigation. “Handle missing require-
ments”: The discovery of a missing requirement can have
repercussions due to dependencies on other requirements. The
strategy, in a software-based project, is to provide a stub for
the missing functionality or swap out the blocked requirement.
In Event-B, requirements are related to model invariants, so,

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 14 / 154

the missing requirement and its related invariant could simply
be added. However, some analysis of the requirement should
be done before adding it to the model, to assess validity. We
envisage that a process, using Event-B in an agile way, would
be able to accommodate this.

V. PROCESS GOALS AND EVENT-B
Once the decision to use Event-B has been made, one may

wish to examine what development strategies are available,
or one may need more detailed guidance on some technical
aspects. We have been inspired by DAD’s goal-oriented deci-
sion approach, to propose a goal-driven process for Event-B
development. This could be useful when modelling as part of
an agile process, and may be useful to the Event-B community
in general.

We consider two categories of potential users: experienced
teams and individuals who need a check-list of things to
consider, and novices. However, to accommodate continuous
improvement in the process, even experienced teams need to
be able to record what they have learned, in the form of
guidelines, patterns, and components. They then need a way of
retrieving that information, so that they may be used to make
process decisions, or design decisions, or for use in modelling.
Inability to find useful knowledge at an early stage of a project
is a barrier to the successful introduction of Event-B. In the
case of reusable components, the deployment of components is
being investigated [1]. The second category of users is novice
teams or individuals. In either case, introducing Event-B into a
company’s existing development process can be difficult since
Event-B advocates can struggle to get accepted into existing
company culture.

There has been a great deal of knowledge recorded already,
about how to proceed at various stages of the development
process. However, this knowledge is widely dispersed on the
web, much of it in an unstructured manner. We would like
to reduce the number of entry points for obtaining guidance,
for the use of Event-B, backed by a goal-driven process and
a structured repository of data. However, we are aware that
many companies may wish to keep their own private repository
too since the information contained within it would be their
intellectual property. We should, therefore, attempt to accom-
modate this in our approach. Another barrier that exists is that
much of the knowledge resides behind an academic pay-wall
which prevents industry from gaining free access to much of
the available information. Our main motivation is to facilitate
the creation of a goal-oriented decision-making process. The
aim is to guide users, both experienced and inexperienced,
providing them with the correct information to make informed
decisions. Users need information upon which to base the
decisions, and they may also need guidance/reminders about
what issues they need to consider.

A. Monitoring mechanisms and metrics
Feedback to developers about the progress of a project

is given through monitoring mechanisms, e.g., with the use
of metrics and measurements (see Figure 4). They should be
easily accessible throughout the duration of the project so that
they can provide up to date information, and enable prompt
action on any issues that are observed. Collecting product
and process measurements early in the development stages is
beneficial since it enables the analysis of the quality of the

model, as well as improvement of modelling and development
process. Furthermore, it contributes to empirically validate
the developers perception about the model, and allow better
estimation of a project. In [3] we proposed the placement of
monitoring mechanisms in short and long iterations of Scrum
process. Since the DAD framework extends Scrum, we can
use the same metrics and measures, and collect them at the
suggested times.

Collecting useful and meaningful measurements, for for-
mal developments used within an agile development process,
requires much more than just reusing the metrics commonly
used in the programming setting. Not only does one need
to consider metrics in terms of requirements and models,
but also keep in mind the specifics of formal modelling and
agile processes. There are several ground rules regarding the
monitoring process: keep it simple and continuous; collect and
combine several metrics and look for trends; and, use metrics
as indicators rather than facts [5].

Some metrics for agile, and in particular, DAD develop-
ments are mentioned in [5]. Below we present the ones that
are advocated for DAD and can be easily adapted for Event-B
development:

• Burn rate depicts how resources are invested in a
particular effort, measured by counting, e.g., money
or time involved in such an effort. In the case of
Event-B modelling, one can use work points assigned
to an item (being an estimate of the man-hours nec-
essary to model a requirement or prove a property) or
according to complexity estimation (points assigned
on the experience-basis). It can be displayed by, e.g.,
using a burnup chart, where the burnup chart would
be comprised of modelled and proven items, and the
total amount of work to do on these.

• Delivered functionality is the only true measure of
progress of a software development project, it is
measured by tracking items in a project. In Event-
B development observing the modelled and proven
items with respect to the ones left in the project
backlog would give the full picture on the state of the
project. Progress of modelling in Event-B can also be
measured with statemachine-based metrics [45].

• Velocity describes how much functionality the team
can deliver per iteration. It is team-specific and mea-
sured in the form of counting ”use case points” or
”story points”. For our purpose, counting requirements
modelled and proved, or work points per iteration
would show the velocity of Event-B development.

Note that the term item stands for a requirement, and/or a
property.

As for quality aspect of a development, it is proposed to
measure the number and severity of defects. However, in the
case of Event-B developments, this metric is not meaningful,
as the measurement should be kept on the model level. We pro-
pose to use several product measurements, e.g., for the size and
complexity of a model, based on Event-B syntax [46] for each
refinement step. Moreover, the number of proof obligations,
both automatic and interactive, will indicate the complexity of
modelling (and proving). Furthermore, adherence to modelling
conventions and styles can be collected via model inspections
and displayed in a form of a histogram or line chart.

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 15 / 154

Very much advocated for agile developments, lifecycle
traceability (to requirements, design, etc.) is enabled by fol-
lowing the refinement of the artefacts of interest. This mea-
surement also shows that product quality is heavily impacted
by the quality of the process.

There are several process-related, time-based, metrics that
can be useful for Event-B developments. These are, for in-
stance, activity time – the time it takes to model and prove
an item (requirement or property); time invested – the amount
of time spent on a project, where work can be categorised by
activities like modelling, proving, re-modelling; and change
cycle time – the period of time from when a requirement,
a property or enhancement request is identified, until it is
resolved (cancelled, or modelled and proved). All of these
metrics can be displayed as a trend on a histogram or line
chart.

B. Other Guidance for Modellers/Developers
There are several other approaches that could contribute

towards the decision-making process, e.g., in preparation for
the iteration planning activity of Figure 4. Kobayashi et al.
propose the use of a method to guide refinement strate-
gies [47]. The dependencies between domain elements (called
phenomena) and artefacts of the model (which are Event-B
invariants) are analysed. Domain elements are modelled, as
usual in Event-B, using sets, variables constants, and events.
The analysis involves computing the relationships between the
domain elements in the invariants, and comparing the order
in which domain elements can be added to the model, with
the aim of simplifying the refinement. From the analysis, a
weighted list of refinement plans is derived, which can help
guide development. In further work [48], the authors propose
a systematic approach to discount invalid refinement plan
proposals.

Another approach is to use existing refinement patterns to
propose alternative refinement plans when proof fails [49]. In
this approach, a reasoned modelling critic is used to analyse
the model, and failing proofs. Under the covers, a search is
performed to find the closest match(es) of the current model
to existing patterns. Alternative modelling strategies, in the
form of high-level refinement plans, are suggested to solve the
problem. This approach provides feedback to the user on a
day-to-day basis; and can also provide feedback in the high-
level, strategic, decision process.

VI. RELATED WORK

Agile methods have established themselves in industry as
a diverse range of practices, aimed at improving the software
development process. The use of agile methods in critical-
systems developments, in particular, with formal methods, has
been investigated. For instance, the work of Eleftherakis and
Cowling describes XFun [50], an agile approach to formal
development using the X-machine formal method. Paige and
Brooke [51] show how an integrated formal method (Eiffel [52]
and Communicating Sequential Processes (CSP) [53]) can be
developed in an agile manner. However, here the emphasis
is on methods engineering. More generally, Gary et al. [54]
discuss their experience of using agile methods in a critical-
system development. They conclude that there is scope for
more research in this area. The Safety Critical Systems Club
discuss the practicalities of using agile development in the

real world [55], with contributions from various developers
from the safety-critical systems business. They conclude that
some agile practices are already in use in a number of the
companies involved, but they are used with a great deal of
caution. Wolff describes how the Vienna Development Method
(VDM) could be used in a project that uses Scrum [56]. Here,
the formal approach is used in parallel with traditional software
engineering methods. The formal approach can be used to
communicate details about the critical parts of the system to
the implementers. In other work, Black et al. posit a positive,
but cautious, outlook for an agile/formal mix, in [57], as do
Larson et al. in [58].

VII. CONCLUSION: WHAT IS STOPPING EVENT-B FROM
BEING USED IN AN AGILE DEVELOPMENT?

We believe that, in theory, Event-B is suitable for use
in an agile project. We know that agile methods are being
used (at least to some extent) in safety-critical systems de-
velopment [55], so we would expect that Event-B might be
useful here, too. In the technical report [2], a preliminary
assessment was performed, to determine which aspects of
Event-B could be considered to contribute to an agile approach.
A preliminary case-study demonstrating the use of Event-B
with agile methods is described in [59]. There are a number of
improvements that could be made to make Event-B more agile.
Some are tooling issues, like improving refactoring, a major
feature of the agile approach. Other improvements require
theoretical advancement, as well as tool support, such as the
development of reusable components or new diagrammatic
representations. In addition to improvements to theory and
tools, we may also seek to improve the modelling process.
When considering how Event-B could be used as part of an
agile engineering process, we believe that a process-decision
framework, similar to the one advocated by DAD, would
be useful. The aim would be to provide developers (both
beginners and experts) with structured assistance throughout
the development life-cycle.

When considering how DAD and Event-B complement
each other or conflict, we ask many questions. For instance,
how do we interpret consumable solutions when developing
critical-systems with a formal method? Do they have to involve
working code, as required in a mainstream software develop-
ment with DAD? This is particularly relevant for embedded
systems, where the ultimate deliverable involves hardware.
In this case, simulation is used to postpone commitment to
hardware, until the latest possible stage. So we take the view
that consumables are artefacts that contribute (in a timely
manner) to the ultimate success of a project. They may be
of use to different stakeholder audiences; for instance, ProB
animation for technically-minded developers, B-Motion Studio
for the non-technical, metrics for project planners, and so
on. In critical-system development, it may be acceptable to
defer code generation, and use animation to perform on-
going validation, since it is so important that everybody fully
understands the issues involved. Code can be generated auto-
matically from Event-B, but the refinement process, down to
the implementation-level, may take longer; and the generated
code might provide a less clear result, than model animation.
It should be easier to make changes to an abstract model too,
since unnecessary detail is omitted from the model, making
this more agile.

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 16 / 154

We also need to understand how formal modelling culture
would work in an agile world. An example of this difference
might be that between failed tests, and failed proofs. At the end
of an iteration, in an agile development, it can be acceptable
to have some tests that fail (with agreement from the client).
It is understood that as the development proceeds more is
learned, which will help resolve the issue, downstream. It
would seem, therefore, that it should be acceptable too, to
have failed proofs at the end of an iteration; but this sits much
less comfortably in the formal world, where so much effort is
invested in discharging proof obligations. It may be considered
that it is enough to be reasonably confident that a proof will
succeed, even though the proof remains to be completed. If
this is the case, how do we estimate and record our confidence,
and how do we measure progress in light of this? In safety-
critical systems development, one would almost certainly need
the minor- and major-iteration approach if it is decided that
all proofs must succeed for the safety-case to be acceptable;
without feedback from the minor-iterations, the development
process would not be very agile.

Team-working is a fundamental aspect of an agile project.
In an Event-B project, this means that models must be worked
on concurrently. We hope to do this with component-based de-
velopment, which also promotes reuse. Composite components
are components made with machines and other components. It
should be possible to independently refine at the component-
level. However, independent refinement, at a finer granularity
(i.e, the sub-models of a component) may be problematic, due
to the dependencies introduced by properties specified over the
state of the whole component. We are currently exploring the
issues, and we are developing a new notion of interfaces for
Event-B in the ADVICeS project [1].

The work to maintain and improve Event-B is ongoing.
We have identified that we may make a contribution by de-
signing a goal-driven process decision framework, backed by a
structured repository for guidelines, and practical advice about
development strategies. This would supplement the existing
support approach, which is in the form of a wiki. This idea
is inspired by the DAD notion of a goal-driven process. The
framework could target beginners and experts separately. It
should provide help and guidance for novices; for expert users,
the approach could provide a checklist of things to consider.
The repository could include information about development
patterns, guidelines for development strategies, and have a
component library. Ideally, for use in industry, there should
be an option to set up a private repository too, which might
be required to protect a company’s IP.

VIII. ACKNOWLEDGEMENTS

This work was carried out within the project ADVICeS,
funded by Academy of Finland, grant No. 266373.

REFERENCES

[1] The ADVICeS Team, “The ADVICeS Project,” available at
https://research.it.abo.fi/ADVICeS/.

[2] M. Olszewska and M. Walden, “FormAgi - A Concept for More Flexible
Formal Developments,” Tech. Rep. 1124, 2014.

[3] M. Olszewska and M. Walden., “DevOps Meets Formal Modelling in
High-Criticality Complex Systems.” in In Proceedings of QUDOS2015
workshop within European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE), 2015.

[4] J. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[5] S. Ambler and M. Lines, Disciplined Agile Delivery: A Practitioner’s
Guide to Agile Software Delivery in the Enterprise. IBM Press, 2012.

[6] R. Jeffries, A. Anderson, and C. Hendrickson, Extreme Programming
Installed. Addison-Wesley Professional, 2001.

[7] K. Schwaber and J. Sutherland, “The Scrum Guide, from scrum.org,”
2010.

[8] M. Poppendieck, “Lean Software Development,” in Companion to
the proceedings of the 29th International Conference on Software
Engineering. IEEE Computer Society, 2007, pp. 165–166.

[9] J.R. Abrial et al., “Rodin: An Open Toolset for Modelling and
Reasoning in Event-B,” Software Tools for Technology Transfer,
vol. 12, no. 6, Nov. 2010, pp. 447–466. [Online]. Available:
http://dx.doi.org/10.1007/s10009-010-0145-y

[10] “The Rodin User’s Handbook,” Available at http:// handbook.event-
b.org/.

[11] A. Romanovsky and M. Thomas, Industrial Deployment of System
Engineering Methods. Springer, 2013.

[12] S. Hallerstede, “Justifications for the Event-B Modelling Notation,”
in B, ser. Lecture Notes in Computer Science, J. Julliand and
O. Kouchnarenko, Eds., vol. 4355. Springer, 2007, pp. 49–63.

[13] R. Silva and M. Butler, “Shared Event Composition/Decomposition in
Event-B,” in FMCO Formal Methods for Components and Objects,
November 2010. [Online]. Available: http://eprints.soton.ac.uk/272178/

[14] M. Butler and I. Maamria, “Practical Theory Extension in Event-B,” in
Theories of Programming and Formal Methods, ser. Lecture Notes in
Computer Science, Z. Liu, J. Woodcock, and H. Zhu, Eds. Springer
Berlin Heidelberg, 2013, vol. 8051, pp. 67–81. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-39698-4 5

[15] J. des Rivieres and W. Beaton, “Eclipse Platform Technical
Overview,” Available at http://www.eclipse.org/articles/Whitepaper-
Platform-3.1/eclipse-platform-whitepaper.html.

[16] “The Rodin Plug-ins Wiki,” at http://wiki.event-
b.org/index.php/Rodin Plug-ins.

[17] M. Jastram, “ProR, an Open Source Platform for Require-
ments Engineering Based on RIF,” available at http://deploy-
eprints.ecs.soton.ac.uk/245/1/seisconf.pdf, 2010.

[18] R. Murali, A. Ireland, and G. Grov, “A Rigorous Approach
to Combining Use Case Modelling and Accident Scenarios,” in
NASA Formal Methods, ser. Lecture Notes in Computer Science,
K. Havelund, G. Holzmann, and R. Joshi, Eds. Springer International
Publishing, 2015, vol. 9058, pp. 263–278. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-17524-9 19

[19] V. Savicks and C. Snook, “A Framework for Diagrammatic Modelling
Extensions in Rodin,” in Rodin Workshop Proceedings, 2012, pp. 31–
32.

[20] C. Snook and M. Butler, “UML-B and Event-B: An Integration of
Languages and Tools,” in The IASTED International Conference on
Software Engineering - SE2008, February 2008. [Online]. Available:
http://eprints.ecs.soton.ac.uk/14926/

[21] M. Plaska, M. Walden, and C. Snook, “Documenting the Progress of
the System Development,” in Methods, Models and Tools for Fault
Tolerance. Springer, 2009, pp. 251–274.

[22] M. Leuschel and M. Butler, “ProB: An Automated Analysis Toolset
for the B Method.” STTT, vol. 10, no. 2, 2008, pp. 185–203.
[Online]. Available: http://dblp.uni-trier.de/db/journals/sttt/sttt10.html#
LeuschelB08

[23] D. Déharbe, “Integration of SMT-solvers in B and Event-B Develop-
ment Environments,” Science of Computer Programming, vol. 78, no. 3,
2013, pp. 310–326.

[24] C. Métayer, “AnimB Homepage,” http://www.animb.org/index.xml.

[25] L. Ladenberger, J. Bendisposto, and M. Leuschel, “Visualising Event-
B models with B-motion Studio,” in Formal Methods for Industrial
Critical Systems. Springer, 2009, pp. 202–204.

[26] A. Iliasov et al., “Supporting Reuse in Event B Development: Mod-
ularisation Approach,” in Abstract State Machines, Alloy, B and Z.
Springer, 2010, pp. 174–188.

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 17 / 154

[27] V. Savicks, M. Butler, J. Bendisposto, and J. Colley, “Co-simulation
of Event-B and Continuous Models in Rodin,” in 4th Rodin
User and Developer Workshop, June 2013. [Online]. Available:
http://eprints.soton.ac.uk/360400/

[28] J. Bendisposto et al., “ADVANCE Deliverable D4.2 (Issue 2) Methods
and Tools for Simulation and Testing I,” The ADVANCE Project, Tech.
Rep., 2013.

[29] A. Edmunds and M. Butler, “Tasking Event-B: An Extension to
Event-B for Generating Concurrent Code,” in PLACES 2011, February
2011. [Online]. Available: http://eprints.ecs.soton.ac.uk/22006/

[30] V. Rivera and N. Cataño, “Translating Event-B to JML-Specified Java
Programs,” in 29th ACM Symposium on Applied Computing, Software
Verification and Testing track (SAC-SVT), Gyeongju, Korea, March
24-28 2014, pp. 1264–1271.

[31] I. Dinca, F. Ipate, L. Mierla, and A. Stefanescu, “Learn and Test for
Event-B - A Rodin Plugin,” in ABZ, ser. Lecture Notes in Computer
Science, J. Derrick, J. A. Fitzgerald, S. Gnesi, S. Khurshid, M. Leuschel,
S. Reeves, and E. Riccobene, Eds., vol. 7316. Springer, 2012, pp. 361–
364.

[32] M. Fowler and J. Highsmith, “The Agile Manifesto,” Software Devel-
opment, vol. 9, no. 8, 2001, pp. 28–35.

[33] T. Dingsoyr, S. Nerur, V. Balijepally, and N. Moe, “A Decade of Agile
Methodologies: Towards Explaining Agile Software Development ,”
Journal of Systems and Software, vol. 85, no. 6, 2012, pp. 1213–1221.

[34] S. Ambler and M. Lines, “Going Beyond Scrum: Disciplined Agile
Delivery,” Disciplined Agile Consortium. White Paper Series, 2013.

[35] V. Krishna and A. Basu, “Software Engineering Practices for Minimiz-
ing Technical Debt,” in Proceedings of the International Conference on
Software Engineering Research and Practice (SERP). The Steering
Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), 2013, p. 1.

[36] F. Degerlund, R. Gronblom, and K. Sere, “Code Generation and
Scheduling of Event-B Models,” Turku Centre for Computer Science,
Tech. Rep. 1027, 2011.

[37] Q. Malik, J. Lilius, and L. Laibinis, “Scenario-based Test Case Gen-
eration using Event-B Models,” in Advances in System Testing and
Validation Lifecycle, 2009. VALID’09. First International Conference
on. IEEE, 2009, pp. 31–37.

[38] A. Stefanescu, F. Ipate, R. Lefticaru, and C. Tudose, “Towards Search-
based Testing for Event-B Models,” in Software Testing, Verification
and Validation Workshops (ICSTW), 2011 IEEE Fourth International
Conference on. IEEE, 2011, pp. 194–197.

[39] N. Cataño, T. Wahls, C. Rueda, V. Rivera, and D. Yu, “Translating B
Machines to JML Specifications,” in Proceedings of the 27th Annual
ACM Symposium on Applied Computing. ACM, 2012, pp. 1271–
1277.

[40] P. Bishop and R. Bloomfield, “A Methodology for Safety Case Develop-
ment,” in Industrial Perspectives of Safety-Critical Systems. Springer,
1998, pp. 194–203.

[41] S. Ambler and M. Lines, “Scaling Agile Software
Development: Disciplined Agility at Scale,” available at
http://disciplinedagileconsortium.org/Resources/Documents/ScalingAgile
SoftwareDevelopment.pdf, May 2014.

[42] The Advance Project Team, “Advanced Design and Verification
Environment for Cyber-physical System Engineering,” Available at
http://www.advance-ict.eu.

[43] The Modelica Association Project, “The Functional Mock-up Interface,”
Available at https://www.fmi-standard.org/.

[44] A. Edmunds, “Templates for Event-B Code Generation,” in 4th
International ABZ 2014 Conference, 2014. [Online]. Available:
http://eprints.soton.ac.uk/364265/

[45] M. Olszewska and M. Walden, “Measuring the Progress of a System
Development,” Dependability and Computer Engineering: Concepts for
Software-Intensive Systems: Concepts for Software-Intensive Systems,
2011, p. 417.

[46] M. Olszewska and K. Sere, “Specification Metrics for Event-B De-
velopments,” in Proceedings of the CONQUEST 2010: ”Software
Quality Improvement”, I. Schieferdecker, R. Seidl, and S. Goericke,
Eds. International Software Quality Institute, 2010, p. 112.

[47] T. Kobayashi and S. Honiden, “Towards Refinement Strategy Planning
for Event-B,” arXiv preprint arXiv:1210.7036, 2012.

[48] T. Kobayashi, F. Ishikawa, and S. Honiden, “Understanding and Plan-
ning Event-B Refinement through Primitive Rationales,” in Abstract
State Machines, Alloy, B, TLA, VDM, and Z - 4th International
Conference, ABZ 2014, Toulouse, France, June 2-6, 2014. Proceedings,
2014, pp. 277–283.

[49] G. Grov, A. Ireland, and M. Llano, “Refinement Plans for Informed
Formal Design,” in Abstract State Machines, Alloy, B, VDM, and Z.
Springer, 2012, pp. 208–222.

[50] G. Eleftherakis and A. Cowling, “An Agile Formal Development
Methodology,” in Proc. 1st South-East European Workshop on Formal
Methods, 2003, pp. 36–47.

[51] R. Paige and P. Brooke, “Agile Formal Method Engineering,” in
Integrated Formal Methods. Springer, 2005, pp. 109–128.

[52] B. Meyer, “Design by Contract: The Eiffel Method,” in TOOLS (26).
IEEE Computer Society, 1998, p. 446.

[53] C. Hoare, Communicating Sequential Processes. Prentice Hall, 1985.
[54] K. Gary et al., “Agile Methods for Open Source Safety-critical

Software,” Software: Practice and Experience, vol. 41, no. 9, 2011,
pp. 945–962. [Online]. Available: http://dx.doi.org/10.1002/spe.1075

[55] The Safety Critical Systems Club, “Agile Development for Safety
Systems,” https://scsc.org.uk/e346.

[56] S. Wolff, “Scrum Goes Formal: Agile Methods for Safety-critical
Systems,” in Proceedings of the First International Workshop on Formal
Methods in Software Engineering: Rigorous and Agile Approaches.
IEEE Press, 2012, pp. 23–29.

[57] S. Black, P. Boca, J. Bowen, J. Gorman, and M. Hinchey, “Formal
versus Agile: Survival of the Fittest,” Computer, vol. 42, no. 9, 2009,
pp. 37–45.

[58] P. Larsen, J. Fitzgerald, and S. Wolff, “Are Formal Methods Ready for
Agility? A Reality Check.” in FM+ AM, 2010, pp. 13–25.

[59] M. Olszewska, S. Ostroumov, and M. Walden, “Synergising Event-B
and Scrum - Experimentation on a Formal Development in an Agile
Setting,” Abo Akademi University, Tech. Rep. 1152, 2016.

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 18 / 154

Unifying Modeling and Programming with ALF

Thomas Buchmann and Alexander Rimer
University of Bayreuth

Chair of Applied Computer Science I
Bayreuth, Germany

email: {thomas.buchmann, alexander.rimer}@uni-bayreuth.de

Abstract—Model-driven software engineering has become more
and more popular during the last decade. While modeling the
static structure of a software system is almost state-of-the art
nowadays, programming is still required to supply behavior, i.e.,
method bodies. Unified Modeling Language (UML) class dia-
grams constitute the standard in structural modeling. Behavioral
modeling, on the other hand, may be achieved graphically with
a set of UML diagrams or with textual languages. Unfortunately,
not all UML diagrams come with a precisely defined execution
semantics and thus, code generation is hindered. In this paper, an
implementation of the Action Language for Foundational UML
(Alf) standard is presented, which allows for textual modeling
of software systems. Alf is defined for a subset of UML for
which a precise execution semantics is provided. The modeler
is empowered to specify both the static structure as well as the
behavior with the Alf editor. This helps to blur the boundaries
between modeling and programming. Furthermore, an approach
to generate executable Java code from Alf programs is presented,
which is already designed particularly with regard to round-trip
engineering between Alf models and Java source code.

Keywords–model-driven development; behavioral modeling; tex-
tual concrete syntax; code generation.

I. INTRODUCTION

Increasing the productivity of software engineers is the
main goal of Model-driven Software Engineering (MDSE) [1].
To this end, MDSE puts strong emphasis on the development
of high-level models rather than on the source code. Models
are not considered as documentation or as informal guidelines
on how to program the actual system. In contrast, models have
a well-defined syntax and semantics. Moreover, MDSE aims at
the development of executable models. Over the years, UML
[2] has been established as the standard modeling language
for model-driven development. A wide range of diagrams is
provided to support both structural and behavioral modeling.
Model-driven development is only supported in a full-fledged
way, if executable code may be obtained from behavioral
models. Generating executable code requires a precise and
well-defined execution semantics for behavioral models. Un-
fortunately, this is only the case for some UML diagrams. As a
consequence, software engineers nowadays need to manually
supply method bodies in the code generated from structural
models.

This leads to what used to be called “the code generation
dilemma” [3]: Generated code from higher-level models is ex-
tended with hand-written code. Often, these different fragments
of the software system evolve separately, which may lead to
inconsistencies. Round-trip engineering [4] may help to keep
the structural parts consistent, but the problem is the lack of
an adequate representation of behavioral fragments.

The Eclipse Modeling Framework (EMF) [5] has been
established as an extensible platform for the development of
MDSE applications. It is based on the Ecore meta-model,
which is compatible with the Object Management Group
(OMG) Meta Object Facility (MOF) specification [6]. Ideally,
software engineers operate only on the level of models such
that there is no need to inspect or edit the actual source code,
which is generated from the models automatically. However,
practical experiences have shown that language-specific adap-
tations to the generated source code are frequently necessary.
In EMF, for instance, only structure is modeled by means of
class diagrams, whereas behavior is described by modifications
to the generated source code. The OMG standard for the
Action Language for Foundational UML (Alf) [7] provides
the definition of a textual concrete syntax for a foundational
subset of UML models (fUML) [8]. In the fUML standard,
a precise definition of an execution semantics for a subset of
UML is described. The subset includes UML class diagrams to
describe the structural aspects of a software system and UML
activity diagrams for the behavioral part.

In this paper, an implementation of the Alf standard is
presented. To the best of our knowledge, there is no other
realization of the Alf standard, which also allows to generate
executable code from corresponding Alf scripts (c.f. Section
IV). The currently realized features of the Alf editor are
discussed, and some insights on the code generator, which is
used to transform Alf scripts into executable Java programs are
also given in this paper. The paper is structured as follows: In
Section II, a brief overview of Alf is presented. The realization
of the Alf editor and the corresponding code generation is
discussed in detail in Section III before related work is
discussed in the following section. Section V concludes the
paper.

II. THE ACTION LANGUAGE FOR FOUNDATIONAL UML

A. Overview

As stated above, Alf [7] is an OMG standard, addressing
a textual surface representation for UML modeling elements.
Furthermore, it provides an execution semantics via a mapping
of the Alf concrete syntax to the abstract syntax of the OMG
standard of Foundational Subset for Executable UML Models
also known as Foundational UML or just fUML [8]. The
primary goal is to provide a concrete textual syntax allowing
software engineers to specify executable behavior within a
wider model, which is represented using the usual graphical
notations of UML. A simple use case is the specification of
method bodies for operations contained in class diagrams. To
this end, it provides a language with a procedural character,

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 19 / 154

Figure 1: Cutout of the abstract syntax definition of Alf [7]

whose underlying data model is UML. However, Alf also
provides a concrete syntax for structural modeling within
the limits of the fUML subset. Please note that in case the
execution semantics are not required, Alf is also usable in
the context of models, which are not restricted to the fUML
subset. The Alf specification comprises both the definition of
a concrete and an abstract syntax, which are briefly presented
in the subsequent subsections.

B. Concrete Syntax

The concrete syntax specification of the Alf standard is
described using a context-free grammar in Enhanced-Backus-
Naur-Form (EBNF)-like notation. In order to indicate how
the abstract syntax tree is constructed from this context-
free grammar during parsing, elements of the productions are
further annotated.

1 ClassDeclaration(d: ClassDefinition) = ["abstract" (d.
isAbstract=true)] "class" ClassifierSignature(d)

Listing 1: Alf production rule for a class [7]

Listing 1 shows an example for an EBNF-like production
rule, annotated with additional information. The rule produces
an instance d of the class ClassDefinition. The production body
(the right hand side of the rule) further details the ClassDef-
inition object: It consists of a ClassifierSignature and it may
be abstract (indicated by the optional keyword “abstract”).

C. Abstract Syntax

Alf’s abstract syntax is represented by an UML class model
of the tree of objects obtained from parsing an Alf text. The Alf
grammar is context free and thus, parsing results in a strictly
hierarchical parse tree, from which the so called abstract syntax
tree (AST) is derived. Figure 1 gives an overview of the top-
level syntax element classes of the Alf abstract syntax. Each
syntax element class inherits (in)directly from the abstract base
class SyntaxElement. Similar to other textual languages, the
Alf abstract syntax tree contains important non-hierarchical
relationships and constraints between Alf elements, even if
the tree obtained from parsing still is strictly hierarchical with
respect to containment relations. These cross-tree relationships
may be solely determined from static analysis of the AST.

Static semantic analysis is a common procedure in typical
programming languages and it is used, e.g., for name resolving
and type checking.

III. REALIZATION

In this section, details of the implementation of the Alf
standard are presented. As the UML modeling suite Valkyrie
[9] is built upon Eclipse modeling technology, and the road
map includes the integration of Alf into Valkyrie, EMF [5]
and Xtext [10] have been used for the realization. In its current
state, the Alf editor adopts most language features of the Alf
standard. For the moment, language constructs, which are not
directly needed to describe the behavior of method bodies
contained in operations specified in class diagrams have been
omitted (e.g., some statements like inline, accept or classify
statements will be implemented in future work). The main
focus has been put on the structural modeling capabilities and
the description of behavior of activities plus the generation
of executable Java code as these are the mandatory building
blocks, which are required to integrate Valkyrie and Alf at a
later stage.

A. Meta-model

According to the abstract syntax specification given in the
Alf standard, a corresponding Ecore model was created. In
its current state, the Alf meta-model comprises more than
100 meta classes and thus, only some relevant cutouts can be
presented here due to space restrictions. Please note that the
Alf specification provides a model for the abstract syntax of
the language. However, due to the tools used to implement
the specification, tool-specific adaptations had to be done.
Furthermore, some language concepts have been omitted and
will be added at a later stage, as described above. Figure 2
depicts the cutout of our realization of the Alf meta-model
responsible for the structural modeling aspects of the language.

This part of the meta-model comprises all mandatory
meta-classes for Packages, Classifiers, and Features, which
are required for structural modeling. The root element of
each Alf model is represented by the meta-class Model. A
Model contains an arbitrary number of PackageableElements,
i.e., Packages and Classifiers. Classifiers may establish an
inheritance hierarchy using the meta-class Generalization. Like

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 20 / 154

SyntaxElement

Classifier

Class

Association

DataType

Enumeration

NamedElement

Package

PackageableElement

0..1

*

Model
1

*

Generalization
0..1*

Operation

Property

FeatureDefinition

1

2..*

1

*
1

*

1
*

EnumerationLiteral 1*

1 0..1

+package

+private

+public

+protected

VisibilityKind

Member

ImportReference

Figure 2: Relevant parts responsible for structural modeling aspects in our realization of the Alf abstract syntax.

UML, Alf supports multiple inheritance between Classifiers.
Classifiers are further specialized by the subtypes Class,
DataType, Enumeration, and Association. While classes, data-
types and associations contain attributes represented by the
meta-class Property, Classes additionally contain Operations.

In Alf, Operations are used for behavioral modeling. Figure
3 depicts a simplified cutout of the Alf meta-model showing
the relevant parts. Operations may be parameterized and may
contain an “Operation Method”. Parameters of an operation
are typed and they possess a name. Additionally, the direction
of the parameter is indicated by the enumeration Parameter-
DirectionKind. Possible values are in, out or inout. The type of
an operation is determined by its return type. The method of
an Operation contains the complete behavior realized by the
operation. One possible way of realizing this method is using
a Block [7], which represents the body of the operation. The
block itself comprises an arbitrary number of Statements.

Statement

ActivityDefinition

Block
1

*

1

-method
0..1

-body

1

0..1

1
*

Parameter

Operation

Figure 3: Simplified cutout of the Alf meta-model for Opera-
tions.

The Alf standard defines different types of Statements.
Figure 4 shows the statements, which are currently realized
in our implementation of the Alf standard as subtypes of the
abstract class Statement.

Besides statements realizing the return values of an oper-
ation (ReturnStatement), several statements dealing with the
control flow are included. Local variables may be expressed
using the LocalNameDeclarationStatement. The initialization
of local variables is done using Expressions, which are encap-
sulated by ExpressionStatements.

Expressions constitute the most fine-grained way of model-
ing in Alf and may be used in different contexts. For example,
they are used for assignments, calculation, modeling of con-
straints or the access to operations and attributes. The current

Statement

ForStatement

SwitchStatement

ExpressionStatement

LocalNameDeclarationStatement

WhileStatement

IfStatement

DoStatement

BreakStatementReturnStatement

Figure 4: Simplified cutout of the Alf meta-model for State-
ments.

state of the Alf meta-model comprises various specializations
of the meta-class Expression, as depicted in Figure 5.

Expression

BinaryExpression

UnaryExpression

AssignmentExpressionIncrementOrDecrementExpression

LiteralExpression NameExpression

InvocationExpressionPropertyAccessExpression

NullExpressionThisExpression

SequenceConstructionExpression

SequenceElementsExpression

Figure 5: Simplified cutout of the Alf meta-model for Expres-
sions.

LiteralExpression is the superclass for various kinds of
literal expressions. They constitute the simplest kind of ex-
pressions and may represent, e.g., strings, boolean values or
numbers. Literal expressions may be used in combination with
assignment expressions or for comparison operations in con-
ditional expressions. While UnaryExpressions, which are used
for boolean or arithmetic negations or type queries (instanceof)
only contain one operator and one operand, BinaryExpressions
have one operator and two operands. Each of the operands may
be an Expression as well and they may be used in conditions
as well as in assignment expressions.

B. Editor

Xtext [10], an Eclipse framework aiding the development
of programming languages and domain-specific languages

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 21 / 154

(DSLs), has been used to create a textual editor on top of
the meta-model described in the previous subsection. Xtext
allows for a rapid implementation of languages and it cov-
ers all aspects of a complete language infrastructure, like
parsing, scoping, linking, validation, code generation plus
a complete Eclipse IDE integration providing features like
syntax highlighting, code completion, quick fixes and many
more. Furthermore, it provides means to easily extend the
default behavior of the IDE components using the Xtend [11]
programming language. Since Xtext uses ANTLR [12] as a
parser generator, there are some restrictions on the grammar,
such as that there must not be any left-recursive rules. The Alf
standard uses left-recursion in various places and thus, these
rules had to be rewritten in order to be used with Xtext. For
example this was needed when realizing various Expressions,
e.g., expressions used for member access (dot notation).

In order to provide meaningful error messages and modern
IDE feature like quickfixes for the end-users of the Alf editor,
a set of validation rules has been implemented. Furthermore,
validation rules are mandatory to check the static semantics
given in the Alf standard. Among others, the validation rules
comprise:

• Access restrictions on features with respect to their
visibility

• Uniqueness of local variables in different contexts
(bodies, control structures and operations)

• Validation of inheritance hierarchies (no cycles)

In order to provide an import mechanism for Alf elements,
the scoping rules had to be specified. The default Xtext scoping
mechanism calculates visibilities for each AST element, and
the result is used, e.g., for linking and for validation of DSL
programs. For the Alf editor the scope for different contexts
had to be determined: A scope for blocks (in operations and
control structures) is needed, furthermore a different scope for
realizing feature access (attributes or operations) on classifiers
is required (taking into account possible inheritance hierar-
chies). For example, inherited properties and operations are
considered when the scope is determined. In addition, the
correct scope for accessing link operations of associations and
enumeration literals is also provided.

Figure 6 shows the running Alf editor. The code completion
menu depicts possible values, which could be used at the
current cursor position. The list of possible matches was
computed using the implemented scoping rules as described
above.

C. Type System

The Alf specification uses an implicit type system, which
allows but does not necessarily require the explicit declaration
of typing within an activity. However, static type checking is
always provided based on the types specified in the structural
model elements. In general, requirements for type systems
comprise the following tasks:

• Type definition: Various model elements are defined
as actual and fixed types (e.g. primitive types).

Figure 6: Running Alf editor, showing scoping applied in the
code completion menu.

• Type calculation A type system should be able to
calculate the type of an element and assign a type to
an element respectively.

• Type validation A type system should provide a set
of validation rules, which ensure the well-typedness
of all model elements.

In the Xtext context, several frameworks exist, which assist
DSL engineers when implementing a type system. For the
Alf editor, the tool Xtext Typesystem (XTS) [13] has been
used, which is optimized for expression-oriented DSLs. XTS
provides a DSL, which allows to declaratively specify type
system rules for Xtext DSLs. The validation of the type system
rules integrates seamlessly into the Xtext validation engine. As
an example, Listing 2 shows a simplified cutout of the type
definition for a local variable using XTS.

1 public class AlfTypesystem extends DefaultTypesystem {
2 private AlfPackage lang = AlfPackage.eINSTANCE;
3 protected void initialize() {
4 //Type definition
5 useCloneAsType(lang.getIntegerType());
6 ... // do the same for all other primitive types
7

8 //Type assignment
9 useTypeOfFeature(lang.getLocalNameDeclarationStatement()

, lang.getLocalNameDeclarationStatement_Type());
10 useFixedType(lang.getNaturalLiteralExpression(), lang.

getIntegerType());
11 ... // define other fixed types
12

13 //Type validation
14 ensureOrderedCompatibility(lang.

getLocalNameDeclarationStatement(), lang.
getLocalNameDeclarationStatement_Type(),

15 lang.getLocalNameDeclarationStatement_Expression());
16 }
17 }

Listing 2: Type definition of a local variable using XTS

When the type system is initialized, primitive types are
defined as clones of their own type (c.f. line 5 in Listing 2). For
the meta-class LocalNameDeclarationStatement the assignment
of the type is depicted in line 9. The fixed type IntegerType
is set for the meta-class NaturalLiteralExpression afterwards
before rules for validating the types are specified.

D. Code Generation

In order to execute Alf specifications, they need to be
translated into executable source code. In this case, the Alf
model acts as platform independent model (PIM), and has

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 22 / 154

to be transformed into a platform specific one (PSM) first.
As future plans for the Alf editor comprise the integration
into the UML case tool Valkyrie [9], the MoDisco Java
meta-model was chosen as platform specific model. To this
end, a uni-directional model-to-model transformation from
the Alf model to the MoDisco [14] Java model has been
implemented. MoDisco is an Eclipse framework dedicated to
software modernization projects. It provides, among others, an
Ecore based Java meta-model (resembling the Java AST) and
a corresponding discovery mechanism, which allows to create
instances of the Java meta-model given on Java source code
input. Furthermore, a model-to-text transformation is included
allowing to create Java source code from Java model instances.

Legend:

ALF Meta-model

ALF Model

ECORE

ATL Meta-model

ATL Engine

ATL Module

executes

Modisco Java Meta-model

Java Model

MoDisco

Java Generator

.java

generates

from to

outputinput

conforms to

Xtext

EMF

ATL

Eclipse

Figure 7: Conceptual design of the code generation using
model transformations.

Figure 7 depicts the conceptual design of the code gen-
eration engine of the Alf editor. The Atlas Transformation
Language (ATL) [15] was used as the model transformation
tool, since it works very well for uni-directional model-to-
model (M2M) transformations. ATL follows a hybrid ap-
proach, providing both declarative and imperative language
constructs. Furthermore, ATL offers a concept for module
superimposition, allowing to modularize and reuse transforma-
tion rules. The M2M transformation implemented for the Alf
editor takes the Alf abstract syntax as an input and produces
an instance of the MoDisco Java meta-model as an output
(c.f. Figure 7). Afterwards, the model-to-text transformation
provided by the MoDisco framework is invoked on the result-
ing output model to generate Java source code files. Please
note that writing the ATL transformation rules was a tedious
task, since the level of abstraction in Alf is much higher than
in Java. For example, a property of an Alf class has to be
transformed into a Java field declaration plus corresponding
accessor methods. In case of an association, navigability also
has to be taken into account and the resulting Java model must
contain all (AST-) elements allowing to generate Java code,
which ensures consistency of the association ends. In total, the
ATL transformation implemented for the Alf editor comprises
more than 9000 lines of ATL code distributed over 8 modules.

IV. RELATED WORK

Many different tools and approaches have been published
in the last few years, which address model-driven development

and especially modeling behavior. The resulting tools rely on
textual or graphical syntaxes, or a combination thereof. While
some tools come with code generation capabilities, others only
allow to create models and thus only serve as a visualization
tool.

The graphical UML modeling tool Papyrus [16] allows
to create UML, SysML and MARTE models using various
diagram editors. Additionally, Papyrus offers dedicated support
for UML profiles, which includes customizing the Papyrus UI
to get a DSL-like look and feel. Papyrus is equipped with a
code generation engine allowing for producing source code
from class diagrams (currently Java and C++ is supported).
Future versions of Papyrus will also come with an Alf editor.
A preliminary version of the editor is available and allows
a glimpse on its provided features. The textual Alf editor is
integrated as a property view and may be used to textually
describe elements of package or class diagrams. Furthermore,
it allows to describe the behavior of activities. The primary
goal of the Papyrus Alf integration is round-tripping between
the textual and the graphical syntax and not executing behav-
ioral specifications by generating source code. While Papyrus
strictly focuses on a forward engineering process (from model
to source code), the approach presented in this paper explicitly
addresses round-trip engineering.

Xcore [17] recently gained more and more attention in the
modeling community. It provides a textual concrete syntax for
Ecore models allowing to express the structure as well as the
behavior of the system. In contrast to Alf, the textual concrete
syntax is not based on an official standard. Xcore relies on
Xbase - a statically typed expression language built on Java - to
model behavior. Executable Java code may be generated from
Xcore models. Just like the realization of Alf presented in this
paper, Xcore blurs the gap between Ecore modeling and Java
programming. In contrast to Alf, the behavioral modeling part
of Xcore has a strongly procedural character. As a consequence
an object-oriented way of modeling is only possible to a
limited extent. E.g. there is no way to define object constructors
to describe the instantiation of objects of a class. Since Xcore
reuses the EMF code generation mechanism [5], the factory
pattern is used for object creation. Furthermore, Alf provides
more expressive power, since it is based on fUML, while Xcore
only addresses Ecore.

Another textual modeling language, designed for model-
oriented programming is provided by Umple [18]. The lan-
guage has been developed independently from the EMF con-
text and may be used as an Eclipse plugin or via an online
service. In its current state, Umple allows for structural mod-
eling with UML class diagrams and describing behavior using
state machines. A code generation engine allows to translate
Umple specifications into Java, Ruby or PHP code. Umple
scripts may also be visualized using a graphical notation. Un-
fortunately, the Eclipse based editor only offers basic functions
like syntax highlighting and a simple validation of the parsed
Umple model. Umple offers an interesting approach, which
aims at assisting developers in rasing the level of abstraction
(“umplification”) in their programs [19]. Using this approach, a
Java program may be stepwise translated into an Umple script.
The level of abstraction is raised by using Umple syntax for
associations.

PlantUML [20] is another tool, which offers a textual

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 23 / 154

concrete syntax for models. It allows to specify class dia-
grams, use case diagrams, activity diagrams and state charts.
Unfortunately, a code generation engine, which allows to
transform the PlantUML specifications into executable code is
missing. PlantUML uses Graphviz [21] to generate a graphical
representation of a PlantUML script.

Fujaba [22] is a graphical modeling language based on
graph transformations, which allows to express both the struc-
tural and the behavioral part of a software system on the
modeling level. Furthermore, Fujaba provides a code gener-
ation engine that is able to transform the Fujaba specifications
into executable Java code. Behavior is specified using Story
Diagrams. A story diagram resembles UML activity diagrams,
where the activities are described using Story Patterns. A story
pattern specifies a graph transformation rule where both the
left hand side and the right hand side of the rule are displayed
in a single graphical notation. While story patterns provide a
declarative way to describe manipulations of the runtime object
graph on a high level of abstraction, the control flow of a
method is on a rather basic level as the control flow in activity
diagrams is on the same level as data flow diagrams. As a
case study [23] revealed, software systems only contain a low
number of problems, which require complex story patterns.
The resulting story diagrams nevertheless are big and look
complex because of the limited capabilities to express the
control flow.

V. CONCLUSION AND FUTURE WORK

In this paper, an approach to providing tool support for
unifying modeling and programming has been presented. To
this end, an implementation of the OMG Alf specification [7],
which describes a textual concrete syntax for a subset of UML
(fUML) [8] has been created. Using the Alf editor, the software
engineer may specify both the structure as well as the behavior
of a software system on the model level. As a consequence,
model transformations may directly be applied to Alf scripts.
In order to execute Alf programs, a Java code generator is
provided, which allows for the creation of fully executable
Java programs and which is already designed particularly with
regard to round-trip engineering.

Future work comprises the integration of the (currently)
stand-alone Alf editor into the UML modeling tool suite
Valkryie [9]. To this end, besides integrating textual and
graphical modeling, also a mapping of the Alf abstract syntax
to the fUML abstract syntax is required as proposed in the Alf
standard [7]. Furthermore, a case study is performed in order
to evaluate the modeling capabilities of the Alf editor.

REFERENCES

[1] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-Driven
Software Development: Technology, Engineering, Management. John
Wiley & Sons, 2006.

[2] OMG, Unified Modeling Language (UML), formal/15-03-01 ed., Object
Management Group, Needham, MA, Mar. 2015.

[3] T. Buchmann and F. Schwgerl, “On A-posteriori Integration of Ecore
Models and Hand-written Java Code,” in Proceedings of the 10th
International Conference on Software Paradigm Trends, M. v. S.
Pascal Lorenz and J. Cardoso, Eds. SCITEPRESS, July 2015, pp.
95–102.

[4] T. Buchmann and B. Westfechtel, “Towards Incremental Round-Trip
Engineering Using Model Transformations,” in Proceedings of the
39th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA 2013), O. Demirors and O. Turetken, Eds. IEEE
Conference Publishing Service, 2013, pp. 130–133.

[5] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF Eclipse
Modeling Framework, 2nd ed., ser. The Eclipse Series. Boston, MA:
Addison-Wesley, 2009.

[6] OMG, Meta Object Facility (MOF) Core, formal/2011-08-07 ed., Object
Management Group, Needham, MA, Aug. 2011.

[7] OMG, Action Language for Foundational UML (ALF), formal/2013-09-
01 ed., Object Management Group, Needham, MA, Sep. 2013.

[8] OMG, Semantics of a Foundational Subset for Executable UML Models
(fUML), formal/2013-08-06 ed., Object Management Group, Needham,
MA, Aug. 2013.

[9] T. Buchmann, “Valkyrie: A UML-Based Model-Driven Environment
for Model-Driven Software Engineering,” in Proceedings of the 7th
International Conference on Software Paradigm Trends (ICSOFT 2012),
Rome, Italy, 2012, pp. 147–157.

[10] “Xtext project,” http://www.eclipse.org/Xtext, visited: 2015.09.30.
[11] “Xtend project,” http://www.eclipse.org/xtend, visited: 2015.09.30.
[12] T. Parr and K. Fisher, “LL(*): the foundation of the ANTLR

parser generator,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, M. W. Hall and
D. A. Padua, Eds. ACM, 2011, pp. 425–436. [Online]. Available:
http://doi.acm.org/10.1145/1993498.1993548

[13] L. Bettini, D. Stoll, M. Völter, and S. Colameo, “Approaches
and tools for implementing type systems in xtext,” in Software
Language Engineering, 5th International Conference, SLE 2012,
Dresden, Germany, September 26-28, 2012, Revised Selected Papers,
ser. Lecture Notes in Computer Science, K. Czarnecki and G. Hedin,
Eds., vol. 7745. Springer, 2012, pp. 392–412. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36089-3 22

[14] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: a generic
and extensible framework for model driven reverse engineering,” in
Proceedings of the IEEE/ACM International Conference on Automated
software engineering (ASE 2010), Antwerp, Belgium, 2010, pp. 173–
174.

[15] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Science of Computer Programming, vol. 72, pp.
31–39, 2008, special Issue on Experimental Software and Toolkits
(EST).

[16] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier,
R. Schnekenburger, H. Dubois, and F. Terrier, “Papyrus UML: an open
source toolset for MDA,” in Proc. of the Fifth European Conference on
Model-Driven Architecture Foundations and Applications (ECMDA-FA
2009). Citeseer, 2009, pp. 1–4.

[17] “Xcore,” http://wiki.eclipse.org/Xcore, visited: 2015.09.30.
[18] “Umple Language,” http://cruise.site.uottawa.ca/umple/, visited:

2015.09.30.
[19] T. C. Lethbridge, A. Forward, and O. Badreddin, “Umplification:

Refactoring to incrementally add abstraction to a program,” in Reverse
Engineering (WCRE), 2010 17th Working Conference on. IEEE, 2010,
pp. 220–224.

[20] “PlantUML,” http://plantuml.com/, visited: 2015.09.30.
[21] “Graphviz,” http://www.graphviz.org, visited: 2015.09.30.
[22] The Fujaba Developer Teams from Paderborn, Kassel, Darmstadt,

Siegen and Bayreuth, “The Fujaba Tool Suite 2005: An Overview
About the Development Efforts in Paderborn, Kassel, Darmstadt, Siegen
and Bayreuth,” in Proceedings of the 3rd international Fujaba Days,
H. Giese and A. Zündorf, Eds., September 2005, pp. 1–13.

[23] T. Buchmann, B. Westfechtel, and S. Winetzhammer, “The added value
of programmed graph transformations — a case study from software
configuration management,” in Applications of Graph Transformations
with Industrial Relevance (AGTIVE 2011), A. Schürr, D. Varro, and
G. Varro, Eds., Budapest, Hungary, 2012.

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 24 / 154

A Systematic Approach to Assist Designers in Security Pattern Integration

Loukmen Regainia∗, Cédric Bouhours† and Sébastien Salva‡
LIMOS - UMR CNRS 6158
Auvergne University, France

Email: ∗ loukmen.regainia@udamail.fr, † cedric.bouhours@udamail.fr, ‡ sebastien.salva@udamail.fr

Abstract—The last decade has witnessed significant contribu-
tions in software engineering to design more secure systems
and applications. Software designers can now leverage specific
patterns, called security patterns as reusable solutions to model
more secure applications. But, despite the advantages offered by
security patterns, these are rarely used in practice, because choos-
ing and employing them for devising less vulnerable applications,
is still a difficult and error-prone task. In this work, we propose
an original approach to guide designers for checking whether
a set of security patterns is correctly integrated into models
and if vulnerabilities are yet exposed despite their use. This
approach relies upon the analysis of the structural and behavioral
properties of security patterns and on formal methods to check
if these properties hold in the application model completed with
patterns. We also provide a metric computation to assess the
integration quality of patterns. Afterwards, we check whether the
vulnerabilities, which should be removed by the use of patterns,
are not exposed in the model. We illustrate this approach on an
example of Web application, the Moodle education platform.

Keywords—Model; UML; Security Patterns; Verification

I. INTRODUCTION

Despite the indisputable improvements recently made in
modeling, coding and testing, software engineering is still
regarded as a complex field. One reason for this complexity is
well-known: software engineering must not only address the
functional aspects of an application, but also have to cover
other aspects such as security. Indeed, providing secure models
and code is recognized as an important factor of quality, but
on the other hand, devising them is a difficult task.

To solve this issue, a large set of papers and tools have been
proposed to help the integration of security in the software
engineering steps [1][2]. Among them, the pattern community
proposed the notion of security patterns as reusable solutions
to security issues in the modeling stage [3]. Specifically, a
pattern represents a structure, a behavior, or some intents that
have to be applied in models to meet security properties or to
prevent threats (sometimes partially). At present, the security
pattern base holds hundreds of available patterns, more and
less detailed and compatible with each other. Many of them
are indeed described with text only, their contextualization
(a.k.a. instantiation) being left to designers. Furthermore, the
impact of their composition is often unknown. Hence, the
choice of the relevant patterns and their inclusion in models
is yet onerous and error-prone, even for experts. This paper
focuses on these difficulties and proposes an approach for
helping designers to integrate the appropriate patterns and to
design more secure applications. This approach corresponds to
a sequential process, whose main benefits are twofold: measur-
ing the integration quality of security patterns in models, and

checking if these models are yet vulnerable to attacks despite
the use of patterns.

More precisely, the designer initially chooses a list of
vulnerabilities that must not be found in the application
model and a set of security patterns that should correct these
vulnerabilities or prevent attackers from exploiting them. The
proposed formal method-based process firstly aims at helping
the designer to integrate each pattern in the application model:
we check whether the structural and behavioral properties
of the pattern hold in the model by means of a method
based on OCL (Object Constraint Language) queries and a
verification technique. The former tries to locate the pattern
shape in the model and returns a coefficient of disclosure.
The verification technique checks whether some behavioral
properties of the security pattern, expressed with LTL (Linear
Temporal Logic) formulas, hold in the model. Then, quality
metrics are computed to evaluate the integration quality of
each pattern and of all the patterns in the model. If these
metrics are low, the model should be revisited. In a second
stage, the process also checks whether each vulnerability can
be detected in the model by means of a verification technique.
Actually, despite the use of security patterns, a vulnerability
may be still present on account of several reasons, e.g., the
use of an incomplete or wrong list of security patterns, or the
composition of several patterns in the model that may induce a
vulnerability. Vulnerabilities are formally expressed with LTL
properties that are given to a model-checker. If any property
is satisfied in the model, the designer is then warned that the
latter still includes vulnerabilities and requires modifications.

We illustrate the benefits of this approach by applying it
on a case study, based on Moodle education platform and
on the vulnerability Code injection, which is a well known
flaw allowing to inject code that is then interpreted by the
application [4].

The paper is structured as follows: we briefly present the
background and motivations in Section II. The approach is
described in Section III. Its illustration on a Web application
example is given in Section IV. Finally, we draw conclusions
and perspectives for future work in Section V.

II. BACKGROUND

As the number of available security patterns is continuously
growing, choosing the appropriate ones, to design more secure
applications, is more and more tedious and error-prone. To
help designers in this task, several papers proposed classifi-
cations and taxonomies to organize security patterns. Based
on the STRIDE threat management methodology, Munawar et

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 25 / 154

al. presented an organization of 97 security patterns on three
architectural layers (Core, Exterior, Perimeter) [5]. In addition,
Alvi et al. proposed in [6] a natural scheme for classifying
security patterns. They associated their classification to the
phases of software life cycle, i.e., security objectives in the
requirement phase, security properties in the design phase, and
attack patterns in the implementation phase.

The above papers provide classifications to help designers
in the choices of security patterns. But, they do not help check
whether patterns are correctly included in models. They also
do not ensure that models are indeed more secure.

For the first point, Konrad et al. introduced in [7] a security
pattern template to ease pattern integration. They exposed the
difficulties related to the lack of comprehensive and formal
description and proposed a template composed of Unified
Modeling Language (UML) diagrams and LTL properties.
Actually, we assume in our approach, that security patterns
are indeed described with this kind of template.

In the last decade, several papers also proposed methods
to check if UML models meet security requirements, the
latter being usually expressed with LTL properties [8]-[9].
For instance, Tanvir, et al. proposed an approach to verify
the impact of using Role Based Access Control (RBAC) in a
Computer Supported Cooperative Work (CSCW) [8]. Thereby,
they showed how to formally check if an application meets
security requirements.

Our approach proposes to consider both above aspects,
i.e., pattern integration assistance and verification of security
properties on UML models, inside a whole process. We
check pattern integration in UML models by considering their
structural and behavioral properties. We also define and assess
their integration quality with metrics. If these are low, the
designer is warned that the UML diagrams of the application
should be revisited. Afterwards, we also check, by means
of model-checking, that the chosen security patterns actually
remove undesired vulnerabilities from the UML models. This
step aims to attest that the chosen patterns are effective against
undesired vulnerabilities, or to warn designers to chose other
patterns.

III. MODEL SECURING WITH PATTERN INTEGRATION
AIDED BY FORMAL TECHNIQUES

In this section, we present our approach to assist designers
to integrate security patterns in models for devising more
secure applications, as illustrated in Figure 1. In this paper, we
assume having a UML model M of the application, a vulner-
ability set V , which must not be exploited by attackers in the
application, and a security pattern set Sp = {Sp1, ..., Spk},
which should prevent the vulnerabilities of V = {V1, ..., Vl}
from being exploited. We also assume having a base of generic
formal properties PVi and PSpj describing Vi and Spj . The
approach illustrated in Figure 2 aims at checking whether each
pattern Spj is correctly integrated on M and if M still has
the vulnerability Vi despite the use of Sp.

As the patterns are described in a generic, abstract form,
the first step for the designer is to instantiate every pattern

Designer

Model Vulnerability Security Patternwants to protect his against a in using

Figure. 1. Context of the proposed approach

to the context of his model. Instantiating a pattern consists in
adapting each constituting element to the specific context of a
model. It is a complex step, which requires expertise in order
to not damage the pattern. Hence, this step has to be verified:

1) Given a pattern Spj , we check if the structural and
behavioral properties of Spj hold in the model M . For
the structural properties, we use the approach and tool
we developed in [10]. Given the pattern Spj and its
generic description, the tool automatically derives a set
of OCL queries encoding the structure of the pattern.
Then, we call an executor of procedural OCL queries
[11]. After the execution, all micro-architectures, subsets
of the model, looking like the pattern are listed and
a coefficient of disclosure CSpj

, ranging between 0
and 1, is given. The one with the highest coefficient
is taken into account to locate where the pattern has
been integrated in the model. If the designer does not
agree, two cases are possible. On one hand, the pattern
instantiation is incorrect and should be modified. On the
other hand, the context is specific enough to justify a
change in the structure. In any case, if the designer does
not consider that the pattern is structurally integrated,
the next step cannot be reached.

2) This step consists in checking whether some behavioral
properties of Spj hold in M . We provide, with the
pattern, a set of generic behavioral properties PSpj

,
described in LTL. These rules describe the sequential
message exchanges between the methods and the tem-
poral states of the objects. These properties are generic
and should be manually instantiated by the designer.
Once instantiated, M is automatically translated into a
Promela (PROtocol MEta LAnguage) specification with
the HugoRT tool [12] and we check if this specification
satisfies the previous LTL formulas with the model-
checker Spin [13]. This indicates whether the pattern
integration into the model respects behavior imposed by
the pattern.

3) Quality metrics are now computed to measure the in-
tegration quality of the pattern Spj of Sp into the
model M with regard to the coefficient of disclosure
CSpj and the LTL property set PSpj provided with Spj .
Intuitively, the closer CSpj

is to 1 and the larger the set
PSpj

, the more accurate the estimation of the pattern
integration is. We define the mapping m : PSp → {0, 1}
by m(p) = 1 iff M |= p, and m(p) = 0 otherwise. The
estimation range of a pattern Spj integration is between
0 and n = Card(PSpj) + 1 and this first integration
metric is defined as:

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 26 / 154

0 ≤ m(Spj) =
∑

pi∈PSpj

m(pi) + CSpj
≤ n

Afterwards, we compute the overall integration quality
of the security pattern set Sp = {Sp1, ..., Spk} using an
utility function U . With this aim, we take Simple Ad-
ditive Weighting (SAW) [14] which allows to adjust the
integration estimations of each pattern having different
ranges by a weight representing user preferences and
priorities. In our case U is defined as:

U = 0 ≤
k∑

i=1

m(Spi)/(Card(PSpi
) + 1).wi ≤ 1

with wi ∈ R+
0 and

∑k
i=1 wi = 1, wi being the weight

of Spi to represent designer preferences. The closer U
is to 1, the greater the estimation that security patterns
Sp1, ..., Spk are correctly integrated into M . A good
integration quality U can be reached with few properties.
With a small number of properties, the pattern is not
well documented / defined. In contrast, if the pattern
integration is defined with large property sets and U is
close to 0, this means that a mistake has been made
during the instantiation or that the context is specific
enough to justify a change in the structure of the pattern.

4) The last step of our approach starts when the designer
considers that the pattern is integrated with a sufficient
quality. For the vulnerability Vi ∈ V , we have a set of
generic LTL properties PVi

describing Vi, i.e., undesired
behavior that should never happens. Once more, the
designer has to instantiate these properties in accordance
with the model M . The Spin tool is now called to check
that the Promela specification of M will never satisfy
the undesired behavior expressed by PVi . If the presence
of a vulnerability is detected, a counter-example is
returned by Spin to detail the origin of the violation
of the property. Hence, guided by the counter-example,
the designer has to ensure that the chosen patterns are
effective against the vulnerability or that the combination
of patterns does not induce flaws.

IV. CASE STUDY

In this section, we describe, with more details, the steps of
the proposed approach through a Web application example,
the Moodle education platform [15], and precisely on its
exam (quiz) functionality. The UML class diagram of this
functionality is given in Figure 3 and its sequence diagram
in Figure 4.

A user is identified with an id and accesses the ser-
vice with a request of the form “GET /moodle/quiz/at-
tempt.php?id=123”. The identifier is used by the quizEngine
as a parameter to get information about the user profile so
that he/she has only one opportunity to pass an exam. An
SQL database is used to get the user profile information and
creates an exam session with regard to the requested id.

Designer intantiates the security pattern in his model

[Model M]

[Security Pattern SPj]

[Model M WithPattern]

[Generated OCL queries]

[LTL properties]

Designer uses Neptune to check if the pattern is structurally detectable

[SubSet of the Model with disclosure coefficients]

Designer generates PROMELA specification with HugoRT

[NO]

[YES]

[PROMELA specification of M]

Is cofficient of disclosure acceptable ?

Designer uses SPIN to check if LTL properties held

Designer uses SPIN to check if LTL properties held

Does model respect Pattern properties ?

[NO]

[YES]

[Vulnerability Vi]

[LTL properties]

Is model protected against vulnerability ?

[YES] [NO] [DO NOT KNOW]

Figure. 2. An approach to assist designers to devise more secure applications

Figure. 3. Moodle Quiz engine class diagram

It is well-known that this kind of Web applications is usually
exposed to threats related to input ports ’passing illegal data’,
and especially injection attacks [4]. For instance, an attacker
may exploit a vulnerability to pass an exam many times by
spoofing or forging identities stored in database through SQL
injection attacks. We have chosen to take as example here a
familiar vulnerability called CWE-89: Improper Neutralization
of Special Elements used in an SQL Command (’SQL Injec-
tion’), which is the main reason of SQL Injection attacks and
one of the most recurrent vulnerabilities [16].

In order to secure the Web application, we have chosen to

18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 27 / 154

 : attempt.php : quizEngine

 : question_behaviour

 : qustion_attempt : question : interaction : browser

1 : GET /moodle/quiz/attempt.php?id=123

2 : load_usage_id(123)
3

<<create>>

4
5 : render()

6 : get_renderer()

78 : render()

9
10

11
12

Figure. 4. Moodle Quiz engine sequence diagram

use the Intercepting Validator security pattern whose UML
class diagram is illustrated in Figure 5. This pattern is indeed
presented as a solution to prevent attackers from exploiting the
above vulnerability [17]. The intent of this security pattern is to
validate every user input request before using it as a parameter
by a dynamically loadable validation logic [17].

According to the Intercepting Validator security pattern
documentation, its behavior is highlighted most notably by
the following properties:

1) a validation logic for every data-type used in the appli-
cation,

2) a single mechanism to validate all data-types,
3) the separation of the validation logic from the presenta-

tion logic,

Figure. 5. Intercepting Validator class diagramm

A. Security pattern integration

We instantiated the Intercepting Validator security pattern
on the model of the Moodle QuizEngine application by adapt-
ing its structural and behavioral properties in concordance
with the diagrams in Figures 3 and 4. The pattern classes
are firstly added between attempt.php and quizEngine in the

QuizEngine class diagram to prevent from SQL Injections
through quizEngine, which has access to the database. The
resulting class diagram is depicted in Figure 6. The sequence
diagram of the QuizEngine application is also extended to
include the security pattern behavior. The resulting diagram,
given in Figure 7, shows that the messages exchanged between
attempt.php and quizEngine are now validated.

Figure. 6. Instantiation of the security pattern: class diagramm

B. Security pattern instantiation assessment

In this step, we check if the structural and behavioral
properties of the security pattern hold in the application model
(steps 1, 2 of the approach).

Firstly, we use the method we developed in [10] to extract
the pattern structural properties, expressed with OCL queries.
Then, we call the tool Neptune [11] to return a list of pairs
(v, coef) with v a vertex of the model that is also a vertex of
the pattern and coef a coefficient of disclosure. With the class
diagram of Figure 6, the tool provides the class ”SecBase”

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 28 / 154

IsValidalt

[not_valid]

[valid]

Attempt : attempt.phpStudent : browser qe : quizEngine QuBa : question_behaviour qa : qustion_attemptsecBase : secBase inVal : inputValidator

sqlVal : sqlValidator

que : questioninte : interaction

1

<<create>>

2
3 : GET /moodle/quiz/attempt.php?id=123()

4 : load_usage('123')
5 : validate('123')

6 : validate_SQL()

7

8

9 : generic_err_msg

10 : err_page

11 : load_usage(123) 12 : create_ba(id=123)

13 : render() 14 : get_renderer()

1516 : render()

17

18

19
2021

Figure. 7. Instantiation of the security pattern: sequence diagramm

and a coefficient equal to 1. This means that the pattern
structure has been completely found only one time. With more
complex diagrams, the designer may check if the tool has
indeed recognized the pattern or has revealed a diagram part
that looks like the pattern. He/she can change the class diagram
if required.

For the behavioral properties, we assume having a set of
generic LTL properties describing the Intercepting Validator
pattern. We assume having three generic properties here, given
in Table I col2 have to be manually instantiated to meet the
QuizEngine application model. These ones are given in Table
I col3.

For example, the property ”A validation logic for every
data-type used in the application” given above, is formalized
with the LTL formula p1, which means ”For every Client
input, we do not validate data until the creation of the
matching validator (SQL, XML, LDAP, etc.)”.

p1 : � (Clientinput(Data)→!V alidate(data)

U createV alidator(Data.type))

This generic formula is instantiated with respect to the
QuizEngine application context, found in the sequence di-
agram of Figure 7. The instantiation of the property im-
plies the good choice of the events matching the facts ad-
dressed by the generic LTL formula. For example, the fact
Clientinput(Data) corresponds to the state input (the arrival
of the request “GET /moodle/quiz/attempt.php?id=123”) of the
object attempt.php. The LTL formula becomes :

p1 : � (attempt.inState(input)→

!secBase.inState(WaitingV al) U inV al.inState (valCreated))

To check whether the LTL formula p1, p2, p3 hold in the
model of Figure 7, we then performed the two following steps:

1) The UML diagram is translated into a Promela specifi-
cation, with the HugoRT tool [12],

2) The Spin model-checker [13] is called to check whether
the Promela specification satisfies the LTL formulas.
Namely, Spin checks that the Promela specification
never ends in a state corresponding to a counterexample
of one of the properties p1, p2, p3.

In this example, all the properties of Table I hold. The pat-
tern integration quality can now be straightforwardly estimated
by combining the results obtained from the previous steps.
Here, the estimation of the pattern integration is given by the
metrics 0 ≤ m(Sp1) = 1+1+1+1 ≤ 4 and 0 ≤ U = 1 ≤ 1.
The latter shows that the security pattern is well integrated
compared to the number of available behavioral properties. In
contrast, the metric m(Sp) also reveals that the upper bound
of the metric range (n) is low. This means that the number
of behavioral properties is modest, and perhaps insufficient to
ensure that the pattern is really correctly integrated.

C. Vulnerability exposure assessment

The last step aims at confirming that the security vulnera-
bility is no longer exposed in the application model. We also
assume having a set of LTL generic properties expressing
behaviors that should never happen. For the CWE-89 vul-
nerability, taken as example in the paper, its documentation
provides the following properties [4]: v1: No input validation,
v2: Bad input validation, v3: Privilege escalation, v4: Remote
information inference. This undesired behavior is formalized
with the LTL formulas given in Table II col.2. These formulas
also have to be manually instantiated with respect to the
context of the application. The resulting formulas are given
in Table II col.3. With the UML diagram of Figure 6, one can
deduce that the event clientInput corresponds to the arrival of
information from attempt.php, and invokeTarget corresponds

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 29 / 154

TABLE I
INTERCEPTING VALIDATOR LTL PROPERTIES

P LTL generic form LTL instantiated form LTL
p1 �(Clientinput(Data) →

!V alidate(Data) U createV alidator(data.type))
� (attempt.inState(input)) → (! secBase :
inState (WaintingV alidation) U inV al.inState (validators Created)))

p2 �(inputV aldiator.isUnique) �(secBase.isUnique ∧ inV al.isUnique)
p3 �(clientInput(data)∧!ServerV alidate(data) ∧

♦ServerV alidate(data)) →
(!returnGeneric(message) U ServerV alidate(data))

�((attempt.inState(input)∧!secBase.inState(nonvalid) ∧
♦secBase.inState(nonvalid))→!attempt.inState(err−page) U
secBase.inState(nonvalid))

TABLE II
CWE-89 VULNERABILITY PROPERTIES

Vulnerability
property

LTL generic formula LTL instantiated formula Sat

v1 �(clientInput(data) →
♦invokeTarget(data))

�(attempt.inState(input)→ ♦quizEngine.inState(loadUsage)) No

v2 �(clientInput(data) → �(!V alid(data) →
♦invokeTarget(data)))

�(attempt.inState(input) → �(secBase.inState(nonvalid) →
♦(quizEngine.inState(loadUsage))))

No

v3 �(clientInput(data) ∧ client.right(Min) →
♦client.right(Max))

? ?

v4 �(!valid(data)→ ♦(!genMessage)) �(secBase.inState(nonvalid)→ ♦ (!attempt.inState(err−page))) Yes

to the use of the input data in the object quizEngine. With
the sequence diagram of Figure 6, one deduces that the fact
invokeTarget(Data) of the generic formulas has to be replaced
by the state loadUsage of the object attempt.php.

For example, the property No input validation is formu-
lated with the generic LTL formula v1 in Table II, which
intuitively means ”for every client input (data) the target is
eventually invoked with (data) as parameter”. This formula
reflects undesired behavior because client inputs always have
to be validated before any invocation. The instantiation of the
generic formula v1 gives:

v1 : �(attempt.inState(input) →

♦ quizEngine.inState(loadUsage))

During the generic formula instantiation, we observed that
the third property cannot be deduced. Indeed, this property,
which is related to privilege escalation through SQL injection
cannot be expressed with the events found in the diagram of
Figures 6 and 7. This means that the application model does
not include the required features for exposing this property.
Here, the notion of level of access is indeed not represented.

We now call the Spin model-checker to check the absence of
vulnerabilities in the QuizEngine application model. We obtain
the results listed in Table II col.4. Spin detects the presence of
the vulnerability property v4, and provides a counter-example.
This property means that in the case when the client input
is not valid, the generic error messages (whose content is
minimal) is not sent to the client. Thus, the client may get a
more detailed error message with sensitive information about
the application. This information may be used to deduce attack
vectors with a remote information inference.

As a consequence, the QuizEngine application still ex-
poses the CWE-89 vulnerability and this step reveals that
the Intercepting Validator pattern is insufficient to not expose
this vulnerability. After analysis of the counter-example, we
deduced that the vulnerability was detected because there is
no mechanism, expressed in the security pattern, to generate
generic error messages in the case of invalid input messages.
Indeed, the Intercepting Validator pattern validates and filters
input messages only. Another security pattern is therefore
required, for instance the Exception Shielding pattern [5].

In conclusion, all this process helped integrate the security
pattern and showed that this one was not sufficient to secure
the application against all the threats related to the CWE-
89 vulnerability. Either a more appropriate pattern has to be
taken, or another pattern has to be combined with Intercepting
Validator.

V. CONCLUSION

This paper presents a model-based process for helping
designers to devise more secure applications by checking
the appropriate use and contextualization of security patterns
within UML diagrams. In an initial step, we assume that
the designer chooses a list of vulnerabilities that must not
appear in the application and a list of security patterns, which
should prevent these vulnerabilities from being exploited.
The proposed approach then provides several automatic or
manual steps to ensure whether security patterns are correctly
integrated and if vulnerabilities are still exposed despite the
use of security patterns. A coefficient of disclosure is com-
puted for every pattern and assesses if its structure can be
found in the application model. Then, a quality metric is

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 30 / 154

computed to estimate the integration quality of the patterns
with regard to a set of available properties expressing the
pattern behaviors. Theses metrics guide the designer in the
correct pattern integration. The last step of the process aims at
warning the designer if a vulnerability is still exposed. We have
illustrated this approach with an example of Web application,
which has to be protected against the CWE-89 vulnerability
related to Code Injection.

In the near future, we intend to automate more this process
to make its application easier to use for designers. Automation
sounds typically not applicable to the entire process but to
specific steps, e.g., the choice of the security patterns from
vulnerabilities, or the instantiation of LTL properties from the
application model. Hence, a designer having a very limited
knowledge about security patterns and formal verification
could improve the security of its applications anyway. To
achieve such an automatic process, an initial step will consist
of building an exhaustive base of formal vulnerabilities and
security patterns providing the relationship between them.

VI. ACKNOWLEDGMENT

Research supported by the industrial chair on
Digital Confidence http://confiance-numerique.clermont-
universite.fr/index-en.html

REFERENCES

[1] H. Mouratidis, P. Giorgini, and G. Manson, “When security meets
software engineering,” Inf. Syst., vol. 30, no. 8, pp. 609–629, Dec.
2005. [Online]. Available: http://dx.doi.org/10.1016/j.is.2004.06.002

[2] I. Flechais, C. Mascolo, and M. A. Sasse, “Integrating security and
usability into the requirements and design process,” Int. J. Electron.
Secur. Digit. Forensic, vol. 1, no. 1, pp. 12–26, May 2007. [Online].
Available: http://dx.doi.org/10.1504/IJESDF.2007.013589

[3] N. Yoshioka, H. Washizaki, and K. Maruyama, “A survey on security
patterns,” Progress in Informatics, vol. 5, pp. 35–47, Mar. 2008.

[4] Common weakness enumeration. [Online]. Available: https://cwe.mitre.
org/

[5] Security pattern catalog. [Online]. Available: http://www.munawarhafiz.
com/securitypatterncatalog/

[6] A. K. Alvi and M. Zulkernine, “A Natural Classification Scheme
for Software Security Patterns,” 2011 IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing, pp.
113–120, 2011. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6118361

[7] S. Konrad, B. H. Cheng, L. a. Campbell, and R. Wassermann, “Using
Security Patterns to Model and Analyze Security Requirements,” 2nd In-
ternational Workshop on Requirements Engineering for High Assurance
Systems, pp. 13–22, 2003.

[8] T. Ahmed and A. R. Tripathi, “Static verification of security
requirements in role based CSCW systems,” Proceedings of the eighth
ACM symposium on Access control models and technologies - SACMAT
’03, p. 196, 2003. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=775412.775438

[9] M. Al-lail, R. Abdunabi, R. B. France, and I. Ray, “An Approach to
Analyzing Temporal Properties in UML Class Models,” pp. 77–86, 2013.

[10] C. Bouhours, H. Leblanc, C. Percebois, and T. Millan, “Detection of
generic micro-architectures on models,” in Proceedings of PATTERNS
2010, The Second International Conferences on Pervasive Patterns and
Applications, Lisbon, Portugal, 21st - 26th November 2010, pp. 34–41.

[11] T. Millan, L. Sabatier, T. T. Le Thi, P. Bazex, and C. Percebois, “An ocl
extension for checking and transforming uml models,” in proceedings
of the 8th International Conference on Software Engineering, Parallel
and Distributed Systems (SEPADS). http://www.wseas.org/: WSEAS
Press, 2009, pp. 144–150, (Invited speaker).

[12] S. Merz and C. Rauh, “Model checking timed uml state machines and
collaborations,” in 7th Intl. Symp. Formal Techniques in Real-Time and
Fault Tolerant Systems (FTRTFT 2002, 2002, pp. 395–414.

[13] G. Holzmann, Spin Model Checker, the: Primer and Reference Manual,
1st ed. Addison-Wesley Professional, 2003.

[14] K. P. Yoon and C.-L. Hwang, “Multiple attribute decision making: An
introduction (quantitative applications in the social sciences),” 1995.

[15] Overview of the moodle question engine. [Online]. Available:
https://docs.moodle.org/dev/Overview of the Moodle question engine

[16] OWASP, “Owasp testing guide v3.0 project,” in
http://www.owasp.org/index.php/Category:OWASP Testing
Project#OWASP Testing Guide v3, 2003.

[17] C. Steel, Core Security Patterns: Best Practices and Strategies for J2EE,
Web Services, and Identity Management. Prentice Hall PTR, 2005.

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 31 / 154

Function Point Analysis with Model Driven Architecture
Applied on Frameworks of Partial Code Generation

Rodrigo Salvador Monteiro
Instituto de Computação

Universidade Federal Fluminense, UFF
Niterói, Brasil

e-mail: salvador@ic.uff.br

Roque Pinel, Geraldo Zimbrão
and Jano Moreira de Souza

COPPE / UFRJ
Rio de Janeiro, Brasil

e-mail: {repinel,zimbrao,jano}@cos.ufrj.br

Abstract— Software measurement is a crucial task for the
planning and the developing of information systems. The
Function Point Analysis (FPA) was developed to measure the
complexity of the functionality of systems. Its methods are
independent of technology and can be applied directly to the
specification of features and the domain. However, the
counting should be performed by a metrics analyst, being
under subjectivity, wasting time and a large number of
resources. This article describes the proposal of automation of
function point counting performed using Unified Modeling
Language (UML) models and Model Driven Architecture
(MDA) methodology. Our approach provides a standard
method for counting based on the International Function
Point Users Group (IFPUG), eliminating the subjectivity
present in traditional procedures. The work counts the
number of realized function points, based on the information
system already developed. The counting of function points
achieved allows for transparency to the client receiving the
product besides the construction of an important historical
base for the refinement of future estimates.

Keywords-MDA; Metric; Function Point Analysis;
AndroMDA; MDArte.

I. INTRODUCTION

With the increasing complexity of information systems,
measuring their features is a crucial task for software
projects. Estimation reports become common documents of
the customer relationship, essential to development planning
and organizing tasks. The Function Point Analysis (FPA)
was defined in 1979 as a procedure capable of measuring
the functionality and complexity of information systems [1].
It is performed based on the specifications of features and
the domain, defined as independent of technology, unlike
other metrics, such as Lines of Code (LOC), that depends on
the programming language used. The method of function
points was developed in order to deliver the customer a
measure on the logic functions in the system, based on
specifications. Therefore, the metrics analyst should study
the documentation and count the number of points. Despite
the efforts of the International Function Point Users Group
(IFPUG) [2] to establish a standard for counting, this value
is still under the subjectivity of the analyst. Moreover, this
process is known to require hours of hard work and
dedication, being a large consumer of resources.

Aligned with the independence of technology, we have
the Unified Modeling Language (UML) [3], which allows
projects to have a standard graphical representation. It has
been widely used in information systems specifications,
being the main source for the establishment of the Function
Point Analysis. However, although it is helpful, the analysis
of documents continues to be cumbersome and time-
consuming.

In 2001, the Object Management Group (OMG) released
a guide of definitions about code generation based on
models, the Model Driven Architecture (MDA) [4]. This
methodology uses, among other standards, UML as a
modeling language. Its methods allow the automation of the
life cycle of projects based on UML models, reducing
development time and allowing the standardization of the
system code. The MDA approach provides an environment
ripe for introduction of automatic FPA.

In particular, we explore the use of the framework
MDArte [5], an extension of the AndroMDA framework
[6], to automate the process, extract values from models and
generate artifacts useful in the FPA, such as the
classification of elements of the information system
generated, e.g., Entities, Services and Use Cases. This
choice was based on the maturity of the tool and the number
of information systems that are in production and use [7]. In
addition to automation, its use allows access to systems that
can benefit directly from this proposal. Thus, we aim to
count the number of function points from what was already
realized, i.e., based on functionalities already developed.
Providing an automated procedure for counting the realized
effort aims at delivering transparency to the client receiving
the product. This way, the effort effectively realized can be
confronted with the initial estimates. Moreover, although the
counting is applied on developed functionalities, the results
produced can be used to analyze and understand the
estimation errors. This knowledge must be used in order to
improve the accuracy of the estimations of complexity for
functionalities still under planning.

This paper is organized as follow. Section 2 presents
some related works and our approach to the problem.
Section 3 describes the concepts of Function Point Analysis.
Section 4 explains in detail the proposed automatic
counting. Section 5 discusses the prototype developed.
Section 6 explores the Case Study. Finally, Section 7
concludes the paper.

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 32 / 154

II. RELATED WORK

Automation of FPA has been discussed for some time.
The works [8] and [9] approach the process based on UML
models, using Class Diagrams, Sequence Diagrams and Use
Cases as inputs. In general, the models are read and
interpreted by the application responsible for the counting,
with some exceptions in which the user must interact with
the application. This is because, despite the fact that the
UML and the FPA are independent of technology, in
general, the UML models do not have all the information
necessary for the counting.

In order to aggregate automatic counting to models that
are actually used in the development, i.e., that are
synchronized with the current stage of information system,
the work [10] described the process in an MDA framework.
The main difference between the work in [10] and that
is [8] and [9], is that it explores the fact that the system code
and the counting are processed by the same tool, the code
generation framework, not requiring any additional effort.

However, even the models used for code generation
following the MDA approach may not be sufficient for the
automation of the FPA. When working with a specific group
of MDA frameworks that apply the partial generation of
implementation code [11], the model does not fully
represent the business rules of the information system. In
this type of development, a portion of the system is
implemented manually by the developer. Thus, the code will
contain information relevant to the counting, e.g., entities
that are changed by the system or not.

In our work, we chose a different approach to the
problem. We use the MDA to extract information from
models, ensuring its accuracy, and a tool to extract
information from the system code. Since the information
was only extracted from the code, if the technology is
changed, it is necessary to change only the extractor.

By using not only models but part of the code, our work
and [10] count the number of function points from what was
already realized, i.e., based on information systems already
developed. Although the counting is applied on a developed
project, the result produced can be used to create a historical
base and to adjust and improve accuracy of the FPA rules
application. Further, the proposal will be described and
exemplified with the Case Study.

III. FUNCTION POINT ANALYSIS

The FPA measures the functionality provided by a single
information system [2]. It is a recognized ISO (International
Organization for Standardization) standard for measuring
software and can be determined from the requirements
specification, considered as independent of technology. As
proposed in [1], it counts the following system
characteristics: files used by the system, external inputs and
outputs, user interactions and interfaces. Each feature is
considered individually and counted as the weights
assigned.

The version proposed by IFPUG FPA, used in this work,
provides some modifications to the original rules. It is
described in seven steps [2].

1) Determine the type of function point counting.
2) Identify the system boundary.

3) Count the Data Functions.
4) Count the Transaction Functions.
5) Determine the value of unadjusted function points.
6) Determine the adjustment factor.
7) Calculate the adjusted value.
In our work, the type of count used (step 1) will be

Development Project. It measures the functions provided to
the user with the first installation of the system being
delivered. Our work follows steps 2 to 5. Steps 6 and 7 do
not fall within the scope of this work, as they use system
specific features that must be manually adjusted.

The next two subsections describe the two function
types related to the steps 3 and 4, respectively: data function
and transaction function.

A. Data Function

The Data Functions are functions that deal with stored
data. They are classified as Internal Logical File (ILF) or
External Interface File (EIF). ILFs are related to data that
are created or maintained by the system, while EIFs deal
with external data.

B. Transaction Function

The Transaction Functions are functions that interact
with some user or with external agents. They are classified
as External Input (EI), External Output (EO) or External
Inquiry (EQ).

a) EI: controls information or processes data. Its main
objective is to keep one or more ILFs or to change the
system behavior.

b) EO: sends data or controls information outside the
system boundary. Its main objective is to provide
information to the user, as in reports. They should contain
some processing, for example, mathematical formulas,
maintain an ILF or alter the system behavior.

c) EQ: sends data or controls information outside the
system boundary. Its main objective is to retrieve
information from data items. Unlike EO, they should not
contain processing, maintaining an ILF or alter the system
behavior.

Each Transaction Function also has a number of Data
Element Types (DETs), the smallest meaningful data items
presented (or requested) to (by) the user. Beside DETs, each
Transaction Function has a number of File Type References
(FTRs), the number of Data Functions accessed by the
Transaction Function.

IV. PROPOSAL

Although FPA is independent of technology, when
performed without the use of models, the automation of
counting proposed becomes specific of technology. As an
example, we have [12] where only the COBOL code is
considered during analysis.

Figure 1 illustrates the scheme proposed [14], where the
system code, represented by the points of implementation,
and the artifacts with the characteristics of the system are
generated from UML models. Particularly, Figure 1 shows
an example of the MDA methodology using partial
generation of implementation code. These points are the
spots that actually contain the business rules of the
generated systems.

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 33 / 154

Figure 1. Schema of the proposal.

In our proposal [14], the system code is also used.
However, only the dependence between the elements is
considered, e.g., a Service that handles Entities. Thus, the
points of implementation must pass through a dependency
analysis before being used in the count. This allows the
decoupling between the language used and the Core of
Counting component.

Together with the dependencies, the system features are
also used by the Core. Such features represent information
that can be extracted from models, to classify elements as,
e.g., Entities or Use Cases. Provided with this information,
the Core can extract the dependencies that actually have
value to count and identify the type of function: data or
transaction. Considering the need to recognize and correctly
count the types of functions, we developed conditions
similar to those described in [8] and adapted for Web
systems.

A. Counting Data Functions

As each Data Function has a number of DETs and
RETs, they are counted as follows:

a) DET: defined as the number of attributes of the entity
plus the number of inherited attributes, recursively,
disregarding the identifying attributes.

b) RET: assumed to be 1 (one), since this value is used
in most situations and has achieved good results [8].

TABLE I. DATA FUNCTIONS – UNADJUSTED VALUE [2]

RET Data Element Type (DET) Complexity ILF EIF

1 ~ 19 20 ~ 50 > 50 Low 7 5

0 ~ 1 Low Low Average Average 10 7

2 ~ 5 Low Average High High 15 10

> 5 Average High High

Through the combination of the number of DETs and
RETs, it is possible to assign a complexity to the Data
Function using the left side of Table 1. To each complexity
is assigned a value of unadjusted function points, as shown
on the right side of Table 1.

B. Counting Transaction Functions

As each Transaction Function has a number of DETs
and FTRs. They are counted as follows:

a) DET: for an EI, it represents the number of arguments
of the transaction. For an EO, it represents the number of
output parameters. Finally, for an EQ, it represents the
number of arguments of the transaction plus the number of
output parameters.

b) FTR: analogous to the number of RET for Data
Functions, it is assumed to be 1 (one) due the achievement
of good results [8].

TABLE II. TRANSACTION FUNCTION – COMPLEXITY [2]

FTR
EI

Data Element Type (DET)
EO and EQ

Data Element Type (DET)

1 ~ 4 5 ~ 15 > 15 1 ~ 5 6 ~ 19 > 19

0 ~ 1 Low Low Average Low Low Average

2 ~ 3 Low Average High Low Average High

> 3 Average High High Average High High

TABLE III. TRANSACTION FUNCTION – UNADJUSTED VALUE [2]

Complexity EI EO EQ

Low 3 4 3

Average 4 5 4

High 6 7 6

Similar to the complexity assigned to Data Functions,
the complexity of the Transaction Functions is realized
based on the values of DET and FTR. Table 2 is used to
determine the complexity of EIs, EOs and EQs. Then, the
unadjusted value of function points can be obtained from
Table 3, for all three types of Transaction Functions.

V. PROTOTYPE

In this section, we describe how the information
necessary to perform the automatic counting of function
points is obtained and processed. In order to achieve this
goal, we developed a Prototype to demonstrate in practice
how the automatic counting of function points is made.
Figure 2 shows its operating model.

According to the model, the process begins with
framework MDArte [5] to generate the artifacts used as
input for the Prototype. The MDArte is a tool that receives
UML models and generates the corresponding codes. It is
one example of MDA framework with partial generation of
implementation code, in which business rules should be
described directly in the code at specific locations called
points of implementation.

Figure 2. Schema of the prototype.

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 34 / 154

In our example, we use specific MDArte cartridges to
generate information systems written in Java. Thus, we can
add the tool Dependency Finder [13] to the proposed model.
The Dependency Finder is capable of analyzing compiled
Java code and extracting the dependency list of the
elements. One of the benefits of its use is the generation of
the list of dependencies in XML, as shown in Figure 3,
following a pattern easily reproducible, which could be
generated by other tools to analyze other programming
languages. Thus, the Prototype does not depend directly on
a technology, being flexible to deal with other cartridges
generation, or even systems coded manually.

Figure 3. Example of XML produced by the Dependency Finder.

Figure 4. Example of XML generated by MDArte with system features.

Although the list of dependencies has an important role
in the process, it is not enough for the FPA to be performed.
As seen in Figure 3, the XML produced does not allow for
the classification of elements. So, we use the characteristics
of the information system as auxiliary entry, illustrated by
the XML from Figure 4. This XML excerpt describes some
characteristics of Entity elements.

From Figure 4, we can see that "Person" is an entity and
has a "name" attribute. You may also notice that the entity
"Student" inherits information from "Person", which
explains the presence of method “getName” in Figure 3,
unconfirmed, since it belongs to "Person" and not to

"Student". The information from both types of entries is
related and processed by the Prototype and used to identify
and count the two types of functions: data and transaction.

The Prototype identifies the Data Functions checking
which Entities are inside (ILF) or outside (EIF) of the
boundary of the information system. To do so, it verifies
which Entities have their set methods accessed. This is done
through the attribute "modifier" tag "method", present in the
XML with the characteristics of the system as shown in
Figure 4. This attribute indicates methods that can be used
to change an Entity, which allows its search on the list of
dependencies.

After having classified the Data Function as ILF or EIF,
the process of counting the number of DETs and the number
of RETs begins. Both values are calculated as described in
the previous section. The number of DETs is defined by the
number of attributes of an entity, considering the inherited
attributes and disregarding the identifying attributes. The
number of RETs has been assumed to be 1 (one), as stated
in the proposal.

The Transaction Functions are identified and counted
according to the proposed rules. However, the concepts
have been adapted to Use Cases, particularly the Activity
Diagrams that describe their flow. Figure 5 illustrates how
the Activity Diagrams used by the MDArte are modeled.
The activities with the stereotype <<FrontEndView>>
represent screens and the values associated to the outgoing
transitions its parameters.

Figure 5. Example of Activity Diagram read by the MDArte.

The identification process is represented by the
flowchart in Figure 6. As described in the flow, the
functions are classified into EI or EQ. This flowchart
represents the first stage of the process, remaining to deal
with the EOs.

Figure 6. Flowchart of Transaction Functions identification process. First
Stage.

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 35 / 154

After having identified the EIs and the EQs, the process
continues with the second stage described by the flowchart
in Figure 7. Now, the screens not yet identified are checked
looking for a complementary screen of an EQ, e.g., the
screen that shows the results of a query. If it is not the case,
then the screen is classified as EO.

Figure 7. Flowchart of Transaction Functions identification process.
Second Stage.

Next, we describe how the number of DETs for each
type of Transaction Function is counted based on
information provided to the Prototype. Remembering that
the number of FTRs has been assumed to be 1 (one), as
stated in the proposal.

a) External Input (EI): its number of DETs is calculated
by adding the number of input attributes, present on the
screen, including buttons.

b) External Output (EO): its number of DETs is
calculated by adding the number of attributes in the results
screen. Emphasizing that when displaying information as
table, only the columns are counted, not lines.

c) External Inquiry (EQ): its number of DETs is
calculated by adding the number of the input attributes, as
for EIs, and the number of output attributes, as for EOs.

Having counted the number of DETs and RETs for Data
Functions, and the number of DETs and FTRs for
Transaction Functions, the Prototype performs the
assignment of complexity for each function. Afterwards, it
also determines the value of unadjusted function points
based on Tables 1 to 3.

VI. CASE STUDY

The Case Study was prepared following the proposal
described in this paper as well as the rules used by the
Prototype. Its goal is to demonstrate how automatic FPA is
made for real examples.

Therefore, we chose an information system of an
academic environment as example, limited to a few Entities
and Use Cases for better understanding. Thus, our example
is only responsible for keeping the information of Students
and allows the User to change some of its information, like
the password.

First, we analyze the Data Functions and then the
Transaction Functions.

A. Data Functions

Figure 8 illustrates the class diagram of the Case Study.
You may notice the five Entities, separated into two
symbolic groups: academic system and access control.

a) Person: person information.
b) Student: student information.
c) User: system user information.
d) Group: user groups information.
e) Action: information of actions that can be done

through the system related to the group permission.

Figure 8. Example of Class Diagram read by the MDArte.

The entities Group and Action are kept outside the
system boundary, as they represent a part of access control
based on access groups, like profiles. Thus, as described in
the previous section, the identification of the Data Functions
is done by searching for methods that can modify each
entity among the dependencies of system operations.

a) ILF: Person, Student and User.
b) EIF: Action and Group.

TABLE IV. COUNTING DATA FUNCTIONS

DET RET Complexity Value

Action 1 1 Low 5

Group 1 1 Low 5

Person 1 1 Low 7

Student 2 1 Low 7

User 2 1 Low 7

Unadjusted Total 31

After identifying each entity, the counting process of
RETs and DETs starts. The number of DETs is defined as
the number of attributes of the entity plus the number of
inherited attributes, recursively, disregarding the identifying
attributes. The number of RETs has been assumed to be 1
(one), as stated in the proposal. Applying the values in
Table 1, the unadjusted values will be as defined in Table 4.

B. Transaction Functions

In our example, we will use the CRUD of the Entity
Student to validate the proposal. The left side of Figure 9
represents a screen that allows the User to create a new
Student in the system. It is an example of EI, with two
parameters and one button. Its counting is based on Tables 2
and 3, and shown in Table 5.

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 36 / 154

Figure 9. Screens for inserting and reading a student.

As an example of EO, we have the screen displaying the
information of a Student, illustrated on the right side of
Figure 9, with two result attributes. Applying the values in
Tables 2 and 3, we have the counting as shown in Table 5.

The identification and counting of an EQ can be
considered the most complicated of the three. We chose to
use the same use case described by the Activity Diagram in
Figure 5. The activity named Student Search is the screen
shown on the left side of Figure 10, and the activity Search
Result represents the screen on the right side. In Student
Search, the input values are displayed, two parameters and
one button. Search Result has four attributes, represented by
two columns and two buttons, where View is counted only
once. Based on the same tables as for EO (Table 2 and 3),
we have the counting shown in Table 5.

Figure 10. Screens for searching student.

TABLE V. COUNTING TRANSACTION FUNCTIONS

DET FTR Complexity Value

Insert Student 3 1 Low 3

Read Student 2 1 Low 4

Search Student 7 1 Low 3

Unadjusted Total 10

Finally, from the totals in Tables 4 and 5, 31 and 10,
respectively, we get the unadjusted total of 41 function
points. The total obtained represents the complexity of the
information system described by the Case Study, according
to the rules established by IFPUG [2] and the proposed
automation of this work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a proposal for automatic
Function Points Analysis (FPA) following the standards
presented by IFPUG. Our proposal counts the number of
realized function points, based on functionalities already
developed. This work is the first step aiming to answer the
following question: is the complexity of what was
implemented close to the estimated complexity? The answer
to this question provides transparency to the client receiving
the product and allows for the creation of a historical base
that can be used to improve accuracy of functionalities
under planning.

The proposal was evaluated through the construction of
a prototype and a case study. The counting performed on the

case study was accurate. We are aware that some
simplification, such as assuming RET and FTR values
always as 1, will generate deviations on more complex or
realistic scenarios. That is exactly why our future steps are:
(1) evaluate the proposal on real applications developed
using the MDArte; (2) perform the counting on such
applications with the assistance of a FPA specialist; (3)
identify the deviations; and (4) evolve the proposal in order
to gather more required information from both models and
code. The belief is that the more information we can assume
about the patterns and architecture of the information
system developed the more accurate the automatic counting
procedure will be. This led us to another important issue that
will be evaluated in future research: which is the minimum
set of assumptions about the system implementation in order
to achieve a result with reasonable precision?

REFERENCES

[1] A. J. Albrecht, “Measuring application development
productivity,” Proceedings of the Application Development
Symposium, New York, USA, 1979, pp. 83-92.

[2] IFPUG, “Function point counting practices manual,” release
4.1, International Function Points Users Group, NJ, 2000.

[3] G. Booch, J. Rumbaugh, and J. Jacobson, “The unified
modeling language user guide,” Addison-Wesley, MA, 1999.

[4] J. Siegel, and the OMG Staff Strategy Group, “Developing in
OMG’s model driven architecture”, OMG white paper, 2001.

[5] MDArte, “Framework MDArte,”
https://softwarepublico.gov.br/social/mdarte/, accessed on
23/12/2015.

[6] AndroMDA, “Framework AndroMDA,”
http://www.andromda.org, accessed on 23/12/2015.

[7] R. E. A. Pinel, F. B. do Carmo, R. S. Monteiro, and G.
Zimbrão, “Improving tests infrastructure through a model-
based approach,” ACM SIGSOFT Software Engineering
Notes. 36(1), 2011, pp. 1-5, doi:
http://dx.doi.org/10.1145/1921532.1921544.

[8] T. Uemura, S. Kusumoto, and K. Inoue, “Function-point
analysis using design specifications based on the unified
modelling language,” Journal of Software Maintenance:
Research and Practice, vol. 13(4), 2001, pp. 223-243.

[9] T. Iorio, “IFPUG Function Point analysis in a UML
framework,” Proceedings of Software Measurement
European Forum, 2004.

[10] P. Fraternali, M. Tisi, and A. Bongio, “Automating Function
Point Analysis with Model Driven Development,”
Proceedings of CASCON, 2006, doi:
http://dx.doi.org/10.1145/1188966.1188990.

[11] R. Soley, and the OMG Staff Strategy Group 2000, “Model
driven architecture,” OMG white paper, 2000.

[12] V. T. Ho, and A. Abran, “A Framework for Automatic
Function Point Counting From Source Code,” International
Workshop on Software Measurement (IWSM), 1999.

[13] Dependency Finder, http://depfind.sourceforge.net, accessed
on 23/12/2015

[14] R. E. A. Pinel, “Análise de pontos de função em sistemas
desenvolvidos usando MDA,” COPPE, Master thesis, 2012

28Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 37 / 154

Developing Software for Mobile Devices:
How to Do That Best

Invited Panel

Hermann Kaindl(1, Roberto Meli(2, Andreas Kurtz(3, Bernhard Bauer(4, Petre Dini(5
1) TU Wien, Institute of Computer Technology, Vienna, Austria

2)DPO Srl, Italy
3)BMW AG, Integration Electric/Electronics, Software, Munich, Germany

4)University of Augsburg, Institute for Computer Science, Augsburg, Germany
5) Concordia University, Canada | China Space Agency Center, China

Emails: {hermann.kaindl@tuwien.ac.at, roberto.meli@dpo.it, Andreas.Kurtz@bmw.de, bauer@informatik.uni-augsburg.de,

petre@iaria.org}

Abstract—Including computers and applications into mobile
devices creates a major break-through in the applicability of
computing systems and in the impact this had on users and
even the society. While software development has always been
costly and challenging, it is even more challenging for mobile
devices. This raises the important question of how to best
develop software for mobile devices.

Keywords-mobile device; software development; user inter-
face; Apps; testing.

I. INTRODUCTION

Mobile devices are comparably new and have differences
to more traditional computers like mainframes and PCs
(Personal Computers), such as the following:

• Different and possibly adaptive mobile user
interfaces

• Context-aware/context-sensitive mobile
applications

• Ubiquitous interactions, e.g., with wearables

Because of these differences, especially the software
development for mobile devices poses challenges beyond
that of traditional software development. This raises the
important question of how to do that best.

The remainder of this paper is organized in the following
manner. First, automated tailoring of user interfaces for
smartphones and tablet computers is sketched and discussed
in the context of mobile devices. Then, Apps development
for mobile devices is contrasted with software measurement.
After that, test automation is presented for cars viewed as
mobile devices. Finally, challenges on designing and testing
both Apps and wearable devices are presented.

II. TAILORED USER INTERFACES FOR SMARTPHONES

AND TABLET COMPUTERS
(HERMANN KAINDL)

A fairly obvious difference between, e.g., PCs and
mobile devices such as smartphones and tablet computers is
given through their relative screen sizes. Simply looking up a
Web page prepared for a screen of a typical PC from a
smartphone reveals problems like a tunnel view, which
impair the usability. Sites looked up very often like those of
CNN or airlines; therefore, they present their content tailored
for large or small screens, respectively. This means extra
effort for preparing these Web pages twice. In fact, there is a
whole spectrum of screens sizes due to the large variability
of screens of tablet computers and smartphones. When
tailoring for a larger number of screen sizes, even more
effort is required.

This issue calls for support through automation. In fact,
technology exists for automated generation of Graphical
User Interfaces (GUIs) [7][12][13]. In particular, also
automated tailoring through optimization techniques is
available [15]. Sample GUIs created (semi-)automatically
can be viewed online:

• A demo flight booking GUI, see [1]
• An accommodation booking GUI, see [2], reverse-

engineered from a real-world site (which is not
online any more)

Of course, GUIs cannot be generated through magic.

This approach requires high-level Discourse-based
Communication Models [7][13] as well as (simple) device
specifications to be created manually. While the effort for
creating such models may not always pay back for
generating GUIs of a single device, it most likely will for
generating GUIs for multiple devices from a single model.

Unfortunately, the usability of fully-automatically
generated GUIs is insufficient at the current state of the art.

29Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 38 / 154

So, we devised the so-called Custom Rules for addressing
usability problems in a persistent way, which even showed
that such rules can, in principle, be reused for multiple
devices [16].

Still, there are obstacles for a wide-spread applicability of
such an approach. Recently, we removed the problem of
persistently including Custom Widgets through a GUI
designer. The flight booking application [1] includes a seat
picker widget as usual in real-world applications but
unavailable in usual widget libraries.

This approach for automated tailoring even allows
choosing different strategies such as tabbing or vertical
scrolling, when the content does not fit the given screen size
[15]. We found some evidence that the more wide-spread
vertical scrolling is more efficient for use [14].

With respect to different screen sizes, we found some
evidence that a user is typically more efficient on screens of
larger sizes [17]. Of course, there is a trade-off with the
mobility of such devices.

III. APP DEVELOPMENT & MEASUREMENT:
ALLIES OR ENEMIES?

(ROBERTO MELI)

Mobile application engineering is a relatively new branch
of software engineering. Mobile application development
and maintenance are characterized by:

 Small project sizes and short schedules
 Volatile scope
 Use of diverse technologies,
 User interface and user experience relevance
 Multimedia integration
 Geographical information integration
 Social remote and local interaction

These elements require an organizational approach based

on:
 Time responsiveness
 Agile or evolutionary processes
 Small and very integrated teams
 Strong user involvement
 Interdisciplinary skills
 Supportive architectures and tools

Due to the deadline and uncertainty resolution focus and

production orientation, teams are usually not too interested in
“traditional” engineering practices, especially in
measurement activities. They are perceived as “overhead”. If
any measurement is taken in the App project it is often a
technological measurement.

A. Useful or not?

Nevertheless, “Functional” and “Non-Functional” Size
Measurement Methods might be very useful in
circumstances like the following:

 Corporate context
 Tender / Contract Management
 Project oriented development
 Prioritized and variable resource allocation

 Internal User driven
 Project productivity assessment needs
 Cost control emphasis

On the other side, measurement is not particularly

significant in these situations:
 Personal context
 Informal internal contracts
 Service oriented development
 Self-managed team management
 Fixed resource allocation
 Market User driven
 Business Unit productivity assessment needs
 Time to market emphasis

When we consider Apps development effort, duration
and staff estimation, apparently, there is no spread adoption
of formal methods. Expert judgment seems to be the most
adopted strategy. Unfortunately, the quality of these
estimates is dependent on the quality of the estimators and
many times it is impossible to compare different situations
and to share expertise among different teams [1].

B. Typycal Processes & Deliverables

The process to develop an App is not so different from
those applied to multimedia product or web-based
applications [19]. A typical process should be:

 Agile-oriented
 Iteration-oriented
 Supported by tools

and should include phases like the following:

 Feasibility Study
 Collection of Functional and Non-Functional

requirements
 App Wireframe creation
 Target architecture definition (Android, IOS,

etc.)
 Back end

o Defining the back end structure
o Management of users
o Server side logic
o Customization of User Experience
o Data integration (remote/local)
o Push notification services

 Front end
o Caching of data
o Synchronization of App data
o Mock ups Wire framing
o UI design and development
o UI improvements
o Testing
o Deployment

Developing an App is “project-oriented” but maintaining

it may be “service oriented” with a continuous improvement
process in place.

“The biggest issue, in mobile application development,
still seems to be the diversity of platforms and devices.

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 39 / 154

Offering an App, be it enterprise specific or publicly
available, means to provide different versions at least for the
most widespread platforms (e.g., Android, Apple iOS,
BlackBerry OS), operating system versions (with each
version providing new functions or even altered appearance)
and device types (with different display sizes and
resolutions, controls and navigation styles). Since no
standard cross-platform development approach has emerged
so far, this plethora of combinations results in considerable
development effort.” [1]

Deliverables are documents and products in the
multimedia domain and developing an App is not only a
matter of Programmers and ICT people.

C. Which Measurement and Models?

Any adopted measurement model should be:
 Light
 Quick
 Simple
 Used by developers
 Complete
 Standard
 Product-oriented
 Easy to learn

Simple Function Point [21] has these characteristics for

functional sizing. Measurement should be used for the
governance of the process and the relationship among the
different stakeholders.

In order to estimate effort, duration and staff, a complete
model should be used which takes in account not only the
functional requirements, but also the non-functional and
process requirements like the one presented in [10].

IV. SOFTWARE BASED TEST AUTOMATION APPROACH

USING INTEGRATED SIGNAL SIMULATION
(ANDREAS KURTZ AND BERNHARD BAUER)

New operating concepts are pushing from the Consumer
Electronics Sector (CES) in the automotive industry. This
change characterizes the development in the automotive
industry and makes vehicle manufacturers increasingly
become software developers. Software is an enabler for
flexible and fast growing innovations. Especially the
development cycle in the CES challenges the automotive
industry not to lose connection. Vehicles nowadays must be
linked with the customers’ mobile devices and so become a
mobile device. In today’s vehicles, classic switches have
almost become obsolete. “The automobile is the ultimate
mobile device.” [22]. Modern vehicles can be considered as
mobile devices with Human-Machine Interfaces (HMI) such
as displays, touch screens, gesture control and sensor
operation. With increasing networking and alternative
control options of functions, this change confronts the testing
of customer functions of a vehicle with enormous challenges.

A. Challenges

Developing suitable software testing methods is the main
challenge in software development for mobile devices to get

high quality software. The speed of the hardware
development, and software development cycles of the
consumer electronic industry infuses the automotive
industry. Because of changing trends, the growing
networking of systems needs an innovative approach to be
able to test the developed software fully automated.
Innovative automation methods are a key part to handle the
time pressure. In order to meet this challenge needs, a
software-based approach with possibility to test the entire
chain of reaction. A software-based approach allows reacting
flexibly and fast on changes of software, especially changes
on the interfaces.

Particularly, in the field of HMI, the technology is
changing increasingly towards sensors without mechanical
haptics. From the perspective of the user, the sensors and
actuators on the HMI are fused to one single interface,
touchscreens or sensor areas. This helps the designers to
reduce costs because of being able to change the visual
surface via software.

Further steps for interacting with the mobile device will
be contactless input, gestures or the so-called air touch
technology [9]. Following the term 'mobile devices' includes
vehicles or subsystems of a vehicle.

The changing types of sensors with the innovation speed
lead to new automation methods, to a software-based
integrated approach being able to be adapted as fast as the
software and hardware changes. Software-based integrated
testing methods are missing due to consistent approaches,
and lack of standardization. Especially in the automotive
industry, software does not have a common architecture.
This causes special/customizable solutions for each
implementation.

B. Status

As mentioned before, an automobile becomes a mobile
device. Depending on the point of view, the vehicle system is
a mobile device second order. This means it is a distributed
system combining severally mobile devices to a bigger
mobile device. This consideration is possible because of the
comparable basic architectures of networked Systems-On-a-
Chip (SOC) or on the automotive domain networked
software components on Electronic Control Units (ECUs)
being SOCs. To show current solutions for automated testing
these are separated in external- and software-internal
solutions. With focus to model based testing methods [18],
the testing is separated in four testing steps, in hierarchical
order, and refers at each solution.

 Component test
 Integration test
 System test
 Acceptance test

1) External Automation Solution

Test automation with external automation solution makes
only sense at component test, integration test or part system
test (part system is a system cut in domain systems e.g.,
power-train system). However, the effort to adapt the
interfaces increases enormous at part system test.
Automation solutions for testing customer functions are

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 40 / 154

stimulating the component with physical hardware signals or
remaining bus simulation.

2) Software-internal Automation Solution
A different solution, usable at any test layer, are

additional software functions for an interaction in the
software to trigger customer functions. This allows switching
values or triggering customer functions, but needs for each
customer function a custom-developed and integrated
additional function. If the customer function is changed or
moved to another hardware the additional function for
software-based interaction has to be changed, too.
Duplication of effort, in conjunction with increasing
probability of errors may result.

C. The Methodological Approach

Figure 1 shows the methodical approach. Projecting this
approach, based on an AUTOSAR [6] architecture, to other
software architectures is possible. Various intermediate steps
create a system model and test model for the requirements.
Integrating an additional Software Component (SWC), called
SIMulation Agent (SIM Agent) and deploying it to all ECUs,
generate a software-based distributed simulation, with the
help of an extended driver module to get access to the new
simulation module. This allows simulating signal sequences
in the driver layer with the advantage of reduced data types
and a standardised interface. All other steps of the
methodology are automated. From the test model, abstract
test cases with abstract interfaces are created. These abstract
interfaces become specific with the help of the deployment
files. This allows performing the same test cases on various
hardware platforms by adjusting the mapping 'Config', e.g.,
testing the same software on different mobile phones.

D. Alternative Proposals

An alternative approach could be a different interaction
layer for this kind of simulation approach to avoid changes in
the AUTOSAR architecture used in automotive domain. This
is more compliant to the actual AUTOSAR standard but
increases the number of data types.

V. CHALLENGES ON DESIGNING AND ON TESTING FOR

WEARABLE DEVICES AND APPS
(PETRE DINI)

Three complementary activities are specifically identified
in new market communications activities, namely building
wearable devices, designing Apps dedicated to them, and
testing the solutions. The challenges are driven by several
specific features characterizing each of them, but also by the
nature of services they are used for and the human behavior.
As some of the services are related to life threatening, testing
the systems becomes a cornerstone process. The diversity of
the devices, the heterogeneity of platforms, the absence of
specific APIs and the scattered nature of system parts add to
the complexity for verification and validation activities.

There is a continuously growing market boosted by
Apple Watch very recently. Analysts predict a 42% growth
for the wearable market within the next 5 years, while the
Apps market should follow [3].

A. Challenges in Apps Development

The challenges faced by Apps developers are essentially
induced by the wearable devices.

1) Devices and Apps
Some of the devices have always the screen on (like

Peeble) that should be considered when designing an App to
save as much energy as possible. Multiple screen sizes and
formats (round, squared, e-paper display) need a fully
adapted User Interface (UI) design. Computation options
should also be limited to the minimum needed, as developers
face limited computed power on a wearable device.

Wearable software is fragmented is more visible than for
handheld devices is its intended purpose. Because of lack of
established API, all coding of features takes place
individually. So far, no accepted development cross-
platforms exist; there are several operating systems, but no
industry standard. There are ongoing industrial activities:
Google is developing their Android wearable software
development kit, NTT Docomo’s Device Connect WebAP,
GitHub is sharing the API as open software to enhance both
technical specifications and API for mass commercialization.

There is a tendency to simply re-implement everything in
the existing App on the wearable from an existing mobile
App. This is not a recommended approach, as the interaction
with the wearable watch is different that the interaction with
a phone device. As a result, appropriate methodologies and
guidelines should be developed and adopted. The current
development platforms have limited features for an
appropriate animation.

Troubleshooting wearable devices and Apps together
leads to time-intensive development process and this is due
to the frequency of troubleshooting on the new platforms.

There is a market push for reaching harmonization for
Apps development. Juniper Research estimates the health
related wearable devices industry will reach $53 billion in
four years [4]. As a result, there is a potential that
standardization and methodologies see a quick development.
The finance sector is also helping, e.g., the introduction of
Apple Pay along with the Apple Watch are current solutions;
even more, payment-capable bracelets are offered by
CaixaBank and Barclays.

The growing segment in the Apps marketplace will need
a support for security and privacy. Practically, an embedded
approach of wearable devices and Apps is a vital solution.

2) Thermal Considerations
A specific aspect is that wearable devices introduce some

unique thermal design challenges that should be considered
for devices, Apps and the entire system. This is not only
referring to operability, but also to a required comfort level
for humans. This design challenge is mainly for processor-
intensive applications and units with complex displays.

According to Heussner [8] “electronics placed in direct
contact with the skin need to maintain an ideal operating
temperature at or below the core body temperature of 37°C
(98.6°F). Anything above this is generally considered to be
uncomfortable and hot (see Figure 2). Transitioning to much
higher heat (above 40°C or 104°F) will trigger discomfort
and pain for the wearer.”

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 41 / 154

Figure 1. Software-based methodology for test automation in distributed systems.

Figure 2. Thermal Considerations [8].

3) Materials and Environment

The design should address issues related to material
interaction, reliability of interfaces, and impact on the
thermal environment (for devices, Apps, systems). Chemical
and a mechanical material interaction have to be calibrated;
testing to optimize the package, the coating, and
encapsulation is needed.

B. Testing Challenges

1) Testing Wearable
Wearable devices are deployed everywhere, with various

functions, such as sensing, computing, transmitting, alerting,
etc. A few characteristics make testing challenging, as listed
below.

2) Small Screen
The designers must redefine the wearable screens and

adapt their designing skills to miniaturization; dimensions
should be carefully decided, as every pixel matters. There are
certain limits at which a screen can be squeezed, yet being
conveniently useful. Little of known UI/UX methodologies
can be reused in designing new APIs.

3) Functional Testing
A big testing paradigm change was identified when the

mobile devices arrived. Wearable devices comprise also
different sensors and specific interactions that cannot be
functionally tested by using traditional methods

4) Interaction
Testing should consider a myriad of sensor interactions.

The large spectrum of interactions (Bluetooth, WI-Fi,
hardware) leads to large coverage needs.

33Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 42 / 154

5) Battery Life
Energy and battery-based operation raises special

maintenance issues and a real challenge for both wearable
App developers and testers. These need also suitable testing
criteria tuned to the new features of devices and Apps.

6) Testing for-Real
As wearable devices are quite specific, simply

substituting them with emulators is not suitable; as the
disciple is evolving in a rapid pace, trusting the results of
such emulator is doubtful. Still, there are a few wearable on
the market, e.g., Tizen, Android, etc.

7) Materials-oriented Testing
Due to metal migration concerns, biased testing is

increasingly important to validate sensitivity in moist
environments and to validate the risk of tin whiskers [8].

8) Testing body-wearable systems
There is a large variety of wearable devices and Apps,

from fitness bands (which are essentially data collectors) to
portable heads-up display; additionally, complex interactions
occur between the touch display, cameras, and fast data
communication with mobile platforms (see Figure 3).

Figure 3. Body wearable networks.

Complementary and specific components, like smart e-

textiles, integrate stretch, pressure, and contact-based sensor
elements, integrated within the fabric itself. Testing these
components and their interactions requires appropriate
experiments and calibration; this includes thermal aspects
and materials characteristics on top of standard development
guidelines of mobile devices and/or classic software
development process.

VI. CONCLUSION

Of course, we cannot ultimately clarify how to best
develop software for mobile devices. Still, we present a few
related viewpoints that should help to pave the way towards
a better understanding.

For instance, it is clear that different mobile devices need
different user interfaces. With regard to screen size,
automated GUI generation with automated tailoring may
become an option.

Even whole cars may be viewed from the perspective of
mobile devices today, since the automotive industry is
increasingly influenced by the consumer electronics industry.
This requires software-based integrated testing methods in
order to keep up with the development.

What is specific on designing and testing wearable
devices and Apps is that user experience is more relevant
than in traditional approaches. It is a challenge to develop
and test very specific features; e.g., “smart watches have
very small screens and almost no buttons, making the use of
space, navigation and user interaction incredibly important”
[5].

Overall, it seems as though there will not be any single
approach for developing software for mobile devices “best”.

REFERENCES
[1] http://ucp.ict.tuwien.ac.at/UI/FlightBooking
[2] http://ucp.ict.tuwien.ac.at/UI/accomodationBooking
[3] https://www.utest.com/articles/challanges-of-testing-

wearable-devices
[4] http://www.foxnews.com/tech/2015/02/23/top-wearables-for-

medical-issues.html
[5] http://www.belatrixsf.com/index.php/whitepaper-the-next-

frontier-of-technology-wearables
[6] AUTOSAR Partnership, AUTOSAR Layered Software

Architecture, 2014. [Online]. Available:
http://www.autosar.org/.

[7] Falb, J., Kaindl, H., Horacek, H., Bogdan, C., Popp, R., and
Arnautovic, E., A discourse model for interaction design
based on theories of human communication. In CHI ’06
Extended Abstracts on Human Factors in Computing Systems,
New York, NY, USA, 2006. ACM Press, pp. 754–759.

[8] Heussner, D. Texas Instruments, USA,
http://electronicdesign.com/digital-ics/wearable-technologies-
present-packaging-challenges

[9] Horn N., BMW Group at the CES 2016 in Las Vegas.. BMW
presents the principle of the contactless touchscreen with
AirTouch.

[10] Meli, R. A New Unified Model of Custom Software Costs
Determination in Contracts, Softeng2015, Barcellona, 2015.

[11] André Nitze, Andreas Schmietendorf, Reiner Dumke, An
Analogy-Based Effort Estimation Approach for Mobile
Application Development Projects, IWSM-MENSURA,
2014, pp. 99-103, doi:10.1109/IWSM.Mensura.2014.9

[12] Paterno, F., Santoro, C., and Spano, L. D. MARIA: A
universal, declarative, multiple abstraction-level language for
service-oriented applications in ubiquitous environments.
ACM Trans. Comput.-Hum. Interact. 16 (November 2009),
19:1–19:30.

[13] Popp, R., Raneburger, D., and Kaindl, H., Tool support for
automated multi-device GUI generation from discourse-based
communication models, in Proceedings of the 5th ACM
SIGCHI Symposium on Engineering Interactive computing
systems (EICS’13). New York, NY, USA: ACM, 2013. Tool
demo paper.

[14] Raneburger, D., Alonso-Rios, D., Popp, R., Kaindl, H., and
Falb, J., A User Study with GUIs Tailored for Smartphones,
in Proceedings of the 14th IFIP TC 13 International
Conference on Human-Computer Interaction - INTERACT
2013, Part II, Springer LNCS 8118, Springer LNCS 8118,
2013, pp. 505–512.

[15] Raneburger, D., Kaindl, H., and Popp, R. Strategies for
automated GUI tailoring for multiple device. In Proceedings
of the 48th Annual Hawaii International Conference on

34Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 43 / 154

System Sciences (HICSS-48), IEEE Computer Society Press
(Piscataway, NJ, USA, 2015), 507–516.

[16] Raneburger, D., Kaindl, H., and Popp, R. Model
transformation rules for customization of multi-device
graphical user interfaces. In Proceedings of the 7th ACM
SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS ’15, ACM (New York, NY, USA, 2015), 100–
109.

[17] Raneburger, D., Popp, R., Alonso-Rios, D., Kaindl, H., and
Falb, J., A User Study with GUIs Tailored for Smartphones
and Tablet PCs, in Proceedings of the 2013 IEEE
International Conference on Systems, Man and Cybernetics
(SMC'13), 2013, pp. 3727 - 3732.

[18] Roßner, T, C. Brandes, H. Götz and M. Winter. Basiswissen
modellbasierter Test. dpunkt.verl., Heidelberg, 1 edition,
2010.

[19] Ruhe, M., Jeffery, R., Wieczorek, I., Cost estimation for Web
applications, in Proceedings of International Conference on
Software Engineering (ICSE’03), 2003, 285–294.

[20] Seidl R., Baumgartner M., and Bucsics T. Praxiswissen
Testautomatisierung. dpunkt, Heidelberg and Neckar, 1
edition, 2011.

[21] SiFPA, Simple Function Point Functional Size Measurement
Method, Reference Manual SiFP-01.00-RM-EN-01.01,
http://www.sifpa.org/en/index.htm, [retrieved: January, 2016].

[22] Diess, H., CES-Keynote, 2016

35Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 44 / 154

Developing a Quality Report for Software Maintainability Assessment:
An Exploratory Survey

Pascal Giessler
and Michael Gebhart

iteratec GmbH
Stuttgart, Germany

Email: pascal.giessler@iteratec.de,
Email: michael.gebhart@iteratec.de

Manuel Gerster, Roland Steinegger
and Sebastian Abeck

Cooperation & Management
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
Email: manuel.gerster@student.kit.edu,

Email: roland.steinegger@kit.edu,
Email: sebastian.abeck@kit.edu

Abstract—Maintainability can be a key factor concerning the
success of a software product, since the majority of software
life cycle costs is spent on maintenance. Therefore, there is a
deep interest in analyzing and assessing the maintainability of
a software product with the objective of identifying the need
for action and subsequently minimizing maintenance expenses.
Often software quality metrics are used to analyze the influencing
factors of maintainability while an expert uses their results for
the assessment. However, these metrics are distributed across
several tools, dashboards, and literature. Moreover, there are
further quality indicators for analyzing the maintainability that
cannot be evaluated automatically by means of metrics. Hence,
we aim to develop a quality report containing well-known quality
metrics and further quality indicators that allows an expert to
assess the system under review regarding its maintainability. For
this reason, we conducted an exploratory survey in the area of
research and industry to get the essential ingredients of such
a quality report. In this paper, we present the survey and its
outcomes. The survey shows potential ingredients of a quality
report, i.e., metrics and quality indicators, which can be measured
not only automatically but also manually.

Keywords–maintainability assessment; software quality; quality
report; quality analysis; quality indicators.

I. INTRODUCTION

Nowadays, software products can be seen as ubiquitous
components in our daily life. Each software product is de-
signed to satisfy one or more business or user needs. But, these
needs may change over time due to several influencing factors,
such as changing market conditions or customer behavior. As a
result, software modifications are required to support these new
needs [1]. From an economic point of view, these modifications
should be performed fast with low costs, due to the fact that
the majority of software life cycle costs (LCC) is spent on
maintenance and not on development [1] [2] [3].

That is why it is important to develop and design software
products with maintainability in mind. But, it is unclear how to
analyze and assess the maintainability of a software product in
order to derive actions for improvement. There is no uniform
and agreed set of quality metrics or common quality indicators
for maintainability, since they are distributed across several
tools, dashboards, and literature. A quality indicator gives us a
hint regarding the manifestation of a given quality aspect, such
as the maintainability as part of the ISO/IEC 25010:2011 [4].

Therefore, we have to identify quality indicators and collect
them in a so-called quality report. On the basis of this report,
an expert should be able to assess the maintainability of a
software product. Here, an expert is characterized by technical
and domain knowledge of the software product.

For developing a quality report regarding software main-
tainability assessment, we conducted an exploratory survey
across several institutions in research and industry. This survey
should reveal essential ingredients of such a quality report.
The results enabled us to design a quality report for a specific
software product family in the area of the SmartCampus
ecosystem [5]. The SmartCampus is a service-oriented system
that provides functionality for students, guests, and members
of a university to support their daily life. For instance, the
CompetenceService as part of the SmartCampus system cap-
tures competences of students and offers a semantic search to
get suitable candidates for projects in the area of information
technology [6]. Besides the mentioned results, we have also
gained insight into the importance of quality assessment and
software maintainability for different software development
project members. We think that our results can be used by
experts in order to build their own quality reports for main-
tainability assessment, since we cannot give a universal quality
report due to a missing uniform set of quality indicators.

The paper is structured as follows: In Section II, we lay the
foundation for the upcoming sections by defining important
terms in the area of software quality assessment regarding
software maintainability. Afterwards, we present the related
work in Section III to give an overview of the state of the art in
this research field. By providing the methodology of this paper
in Section IV, we illustrate the design of the study, as well as
an overview of its goals and underlying research questions.
The results of the conducted study are shown in Section V,
followed by the threats to its validity in Section VI. By
evaluating the results in Section VII, we answer our research
questions and draw conclusions. Finally, in Section VIII we
conclude with a summary and give an outlook on further work
in this research field.

II. FOUNDATION

According to the standard ISO/IEC 25000:2005, software
quality is the “capability of software product to satisfy stated

36Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 45 / 154

and implied needs when used under specified conditions” [7].
Software quality assessment is the systematic examination of
the extent to which a software product is capable of satisfying
these needs [7]. As depicted in Figure 1, software quality
can be decomposed into several quality characteristics, sub-
characteristics, and attributes [4]. These attributes can again
be broken down into quality indicators and measurable quality
metrics [8], which are formalized quality indicators [9].

Based on the definition of the term process quality indicator
in ISO/IEC 33001:2015 [10], a software quality indicator is an
assessment indicator that supports the judgment of software
quality characteristics. According to the standard IEEE 1061-
1998, a quality metric is a “function whose inputs are software
data and whose output is a single numerical value that can be
interpreted as the degree to which software possesses a given
attribute that affects its quality” [11].

Quality indicator

Quality metric

Quality report

Quality
characteristic

Software quality

1..8

Quality attribute

consists of

1..*

1..*

can be
refined into

Quality model ISO/IEC 25000 series Quality assessment

can be
assessed
based on

consists of

is formalized by
can be
evaluated
by

1..*

1..*

1..*

Quality sub-
characteristic

0..*

Figure 1. Meta model for software product quality [7] and quality
assessment.

In our work, we focus on the quality characteristic main-
tainability. ISO/IEC 25010:2011 defines maintainability as the
“degree of effectiveness and efficiency with which a product
or system can be modified by the intended maintainers” [4].

A so-called quality report comprises software quality met-
rics and quality indicators in a comprehensive artifact. On the
basis of these quality metrics and indicators, an expert should
be able to assess the maintainability of a software product
under investigation.

III. RELATED WORK

This section summarizes several papers in the context of
software quality assessment and the usage of quality reports.

In Ogasawara et al. [12], an approach to software quality
management is introduced and a quality report for software
products is presented. This report is based on results which
are measured regularly and automatically by a software quality
evaluation tool, such as the number of loops or comments.
However, the authors do not take a closer look at the quality
report. Especially, they do not go into detail about the structure,
properties, and ingredients of the quality report. Instead, they
show a simple sample quality report for reviewing software
product quality containing quality metrics, which can be au-
tomatically measured and easily understood.

Steidl et al. [13] present a quality control process that
combines quality metrics and manual action: Metrics constitute

the basis but software experts have to interpret the metric
results within their context. This manual action is based on
a quality report. Although we pursue a similar idea, the
definition of the term quality report given by the authors differs
from our definition. According to the authors, a quality report
contains the interpretation of the current analysis results, as
well as manual code reviews. As opposed to this, we define
a quality report as an artifact comprising software quality
metrics and quality indicators, which provides the basis for the
interpretation. Moreover, the authors do not describe concrete
properties and ingredients of the quality report.

Annex E of ISO/IEC 25040:2011 [14] gives guidance on
the structure and contents of an evaluation report for software
product quality. However, the structure and contents are only
described on an abstract level. Especially, no concrete quality
metrics are listed.

As opposed to this, Riaz et al. [15] summarize 15 stud-
ies regarding software maintainability prediction and metrics.
Table 6 of their paper comprises 45 successful software
maintainability metrics gathered at source code level. For
example, it contains most of the metrics presented in the
well-known Chidamber & Kemerer (CK) metrics suite [16].
Thus, the authors provide a set of potential ingredients of the
quality report. However, they present only an unstructured set
of metrics, which they extracted from several papers. This
loose collection focuses on size, complexity, and coupling,
ignoring metrics related to other aspects like testing, static bug
detection, and compliance with conventions. Moreover, they
do not consider metrics that have to be analyzed manually.
Although this set is a good starting point for our work, it
is unclear whether these metrics are adequate ingredients of
a quality report for software maintainability assessment in
research and industry.

Altogether, we identified three papers that show rough
information about quality reports and do not go into detail,
especially regarding the properties and ingredients of the
reports. In addition, we identified one paper that presents an
unstructured set of metrics and thus potential ingredients of the
quality report, but does not point out whether these metrics are
adequate ingredients of the report.

IV. METHODOLOGY

This section presents the methodology applied in the study.
It outlines its goals and research questions, the design of the
study and the study population.

A. Goals and Research Questions
We conducted this study in order to determine the im-

portance of both quality assessment and maintainability in
research and industry. Moreover, we wanted to identify prop-
erties and ingredients of a quality report for the purpose of
software maintainability assessment. These research goals led
to the following four research questions:

RQ1: Is quality assessment considered to be important in
research and industry? There are miscellaneous techniques
supporting the development of software products with high
quality. In order to identify the status quo regarding soft-
ware quality, a quality assessment can be conducted. The
survey should show whether a quality assessment is actually
considered to be important for software development project
members in research and industry.

37Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 46 / 154

RQ2: Is maintainability considered to be important in
research and industry? Several publications underline the
importance of maintainability since a huge amount of the
total software LCC can be spent on maintenance. The survey
should reveal whether maintainability is actually considered
to be important for software development project members in
research and industry.

RQ3: Which information should be part of a quality
report for the purpose of software maintainability assessment?
The assessment of software maintainability is often based on
software quality metrics. However, these metrics are distributed
across several tools, dashboards, and literature. Moreover, there
are further quality indicators for conducting an assessment. In
order to develop a comprehensive quality report, which can be
used to assess the maintainability of software, relevant quality
metrics and indicators for maintainability assessment have to
be identified.

RQ4: How important are the given quality report prop-
erties? Considering requirements engineering, software re-
quirements should possess several properties, such as the
traceability [17]. As with software requirements, a quality
report should also possess miscellaneous properties. Since
there are some properties, which we consider to be relevant
to the quality report, the survey should reveal the importance
of each property and identify further properties as appropriate.

B. Study Design
The design of the conducted study comprised three phases.

In the initial phase, we planned and prepared the study. As part
of this, we identified a free web survey tool, Umfrage Online
[18], for conducting the survey. We settled on this tool, since
it is free, easy-to-use and not subject to restrictions concerning
the number of questions and answers.

In the second phase, we developed a checklist regarding the
structure and content of a survey based on specialist literature
(e.g., [19] [20] [21]). In accordance with this checklist, we
created a rough sketch for the survey that contains 16 questions
(12 open questions, 3 closed questions and 1 partially closed
question). Thanks to feedback from researchers, we revised the
survey especially by reducing the number of open questions,
since open questions are prone to reduce the response rate
[22]. Furthermore, we added some demographic questions. The
pretest version of the survey consisted of 23 different questions
(8 open questions, 12 closed questions and 3 partially closed
questions).

In the third phase, we conducted a field pretest with chosen
target subjects. Based on the outcomes of the pretest, there
were only minor changes to the survey mainly affecting the
wording of the questions and answers.

The final version of the survey consists of 23 optional
questions (8 open questions, 12 closed questions and 3 partially
closed questions) and is available at [23] in German.

C. Study Population
The population of the study comprises software develop-

ment project members, such as software developers, software
architects or research assistants, from various companies and
research organizations.

The link to the online survey was sent to chosen mem-
bers of several companies and research organizations, who

distributed the link within their institution. These members
and consequently the recipients of the link were selected
using convenience sampling. Since we do not know how
many people received the survey link, the initial sample and
thus the response rate cannot be determined. In total, 113
people answered the survey including 32 respondents (≈ 28%)
who did not complete it. In average, the 81 respondents
needed 14 minutes (adjusted, standard deviation: 13 minutes)
respectively to complete the survey. For survey evaluation,
both the respondents who did and did not complete the survey
are taken into account. The survey was written in German
and was sent to companies and research organizations in
Germany; therefore the results may show a German attitude
towards software maintainability assessment. Most of the 66
respondents who stated their occupation work as software
developers (≈ 23%), followed by software architects (≈ 20%),
research assistants (≈ 18%), and project or group leaders
(≈ 12%). Approximately 6% of the survey respondents are
students and about 21% are occupied otherwise.

As depicted in Figure 2, the respondents work at companies
and research organizations with highly diverse size.

7%

7%32%

36%

8%

9%

1%

1-10
11-50
51-250
251-1000
1001-10.000
10.001-100.000
>100.000

Figure 2. Size of companies and research organizations of survey
respondents by the number of employees (n = 77).

Figure 3 shows that the survey covers software develop-
ment project members working in the domain of software
engineering for less than one year up to more than ten years,
whereby the latter was stated by more than 30% of the
respondents who answered the corresponding question.

<1 1-3 3-5 5-8 8-10 >10
0

5

10

15

20

25

7
9

19

13

7

25

#years

#r
es

po
ns

es

Figure 3. Number of years that respondents are working in the domain of
software engineering (n = 80).

38Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 47 / 154

Furthermore, nearly 30% of the 81 respondents who
answered the corresponding question stated that they have
already participated in a software audit. According to the
standard IEEE 1028-2008, an audit is an “independent ex-
amination of a software product [...] to assess compliance
with specifications, standards, contractual agreements, or other
criteria” [24]. About 30% of the 96 respondents who stated
whether they have already read or created a quality report
answered in the affirmative. If we separate the answers from
research and industry, about 71% of the respondents from
industry have already participated in a software audit and 63%
have already read or created a quality report, compared with
about 12% and 17%, respectively, in research. Due to the great
amount of respondents from industry who are familiar with
software audits and quality reports, and thus software quality
assessment, we distinguish between answers from research and
industry in the following sections.

V. RESULTS

This section outlines the outcomes of the online survey.
By reason of space limitations, we only present the survey
questions which are most relevant for our research questions.

Question 1: How important is the quality assessment of
already existing software for you? The first question should
show the importance of quality assessment for our respondents.
This question explicitly refers to the quality assessment of
already existing software, e.g., in the context of a software
audit. Since we aim to develop a quality report for software
quality assessment, we should first determine whether there is
a demand for assessing software quality. The participants of
the survey could answer this question on a five-point ordinal
scale: “very important”, “important”, “partly important”, “less
important”, and “unimportant”. Figure 4 shows the frequency
distribution of all answers given by 108 respondents.

ve
ry

im
po

rta
nt

im
po

rta
nt

pa
rtl

y im
po

rta
nt

les
s im

po
rta

nt

un
im

po
rta

nt
0

10

20

30

40

19

38

19

4 2

11 12

2 1 0

#r
es

po
ns

es

research industry

Figure 4. Importance of software quality assessment, absolute (n = 108).

The answers are coded with a scale ranging from 1 to 5,
where 1 codes “very important” and 5 codes “unimportant”.
As depicted in Figure 4, the large majority of the respondents
answered with “very important” or “important”, namely almost
75%. Calculating some statistical numbers based on the coding
lead to the following results: arithmetic mean = 2.06, median
= 2, standard deviation = 0.91. As the median indicates, most
of the respondents selected the answers “very important” or
“important”.

ve
ry

im
po

rta
nt

im
po

rta
nt

pa
rtl

y im
po

rta
nt

les
s im

po
rta

nt

un
im

po
rta

nt
0

0.2

0.4

ra
tio

of
re

sp
on

se
s

pe
r

gr
ou

p

research industry

Figure 5. Importance of software quality assessment, normalized (n = 108).

Figure 5 shows that there is a difference between respon-
dents from research and industry. More than 42% of the
respondents from industry answered with “very important”
compared to about 23% of the respondents from research.
This result suggests a more distinct quality awareness in the
industry. Nevertheless, the responses to this question show that
software quality assessment is important for respondents from
both research and industry. Hence, this question reinforces our
decision to develop a quality report that aims to support and
simplify software quality assessment.

Question 2: How important is software maintainability
for you? The second question should reveal the importance
of maintainability for our respondents. Due to the fact that
the quality report should focus on maintainability initially,
the importance of maintainability is crucial to us. The scale
of this question and the coding correspond to those in the
first question. Figure 6 shows the frequency distribution of all
answers given by 91 respondents.

ve
ry

im
po

rta
nt

im
po

rta
nt

pa
rtl

y im
po

rta
nt

les
s im

po
rta

nt

un
im

po
rta

nt
0

10

20

30

40 39

26

1 0 0

16

7
2 0 0

#r
es

po
ns

es

research industry

Figure 6. Importance of software maintainability, absolute (n = 91).

As depicted in Figure 6, not a single respondent answered
with “less important” or “unimportant”. Instead, approximately
97% of the respondents selected the answers “very important”
or “important”. Quantifying the answers based on the coding
lead to the following results: arithmetic mean = 1.43, median
= 1, standard deviation = 0.56.

39Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 48 / 154

ve
ry

im
po

rta
nt

im
po

rta
nt

pa
rtl

y im
po

rta
nt

les
s im

po
rta

nt

un
im

po
rta

nt
0

0.2

0.4

0.6

ra
tio

of
re

sp
on

se
s

pe
r

gr
ou

p

research industry

Figure 7. Importance of software maintainability, normalized (n = 91).

In contrast to the first question, Figure 7 shows that there
is no significant difference between the answers given by the
respondents from research and industry. The responses to this
question reveal that maintainability is very important for both
groups. Therefore, this question reinforces our decision that
the quality report should focus upon maintainability initially.

Question 3: Which information should a quality report
provide for you in order to assess the maintainability of a
software product? By means of the third question, essential
ingredients of the quality report for software maintainability
assessment should be determined. Therefore, we conducted
a brainstorming session in order to identify relevant answers
to this closed question. The identified answers are not only
quality metrics, but also more general quality indicators, such
as the compliance with conventions. These answers are shown
in Figure 8. Beyond this closed question, we created a sub-
sequent open question asking for further information, which
should be part of the quality report. Since the determination of
ingredients is an essential task for developing a quality report,
these two questions can be understood as key issues. Figure 8
depicts the frequency distribution of all answers given by 83
respondents.

Figure 8 shows the number of votes for each software
quality metric or quality indicator we identified in our brain-
storming session. The most popular answers are “quality
of comments” and “understandability of documentation”, the
most unpopular one is “cyclomatic complexity”. Figure 8
depicts the answers in order of declining popularity from the
most popular answer on the left to the most unpopular answer
to the right. However, there is no obvious point which separates
the answers in two parts: ingredients and non-ingredients of the
quality report. Instead, the most popular answers were selected
by about 80% of the respondents and the most unpopular one
by about 20%. Therefore, we cannot identify any quality metric
or quality indicator which is indispensable or dispensable for
the quality report. Moreover, there are no respondents who
selected exactly the same answers. These facts lead us to the
assumption that there is no uniform set of quality metrics and
indicators for the quality report for software maintainability
assessment.

Even the 18 responses to the related open question
strengthen our assumption. Out of 12 proposed quality metrics

and indicators in total, there are nine metrics and indicators
which are only mentioned by one respondent. A possible
explanation for our assumption is that the ingredients of a
quality report depend on different aspects. For example, if we
want to assess the maintainability of a web service based on
SOAP, the quality report does not have to contain information
about the compliance with RESTful best practices. Moreover,
the content of the quality report seems to depend on the
objective of the assessment. For instance, if we want to assess
the readability of a software product, we usually do not need
information about the test coverage. Due to the fact that there
are no respondents who selected exactly the same answers,
the ingredients of the quality report also appear to depend on
the software expert who conducts the assessment. Hence, the
assessment of maintainability seems to be a subjective task,
e.g., based on the experience of the software expert.

Thanks to the related open question, we identified several
additional quality metrics and indicators, which can be part
of the quality report. These potential ingredients are listed
below in descending order of popularity: results of static code
analysis, compliance with software development principles,
description of fundamental design decisions, application of
best practices, maturity level of used technologies, design of
interfaces, results of architectural code reviews, description of
the basic architecture, age of the examined software product,
usage of dependency injection, comprehensibility of the source
code and development practices. Due to the fact that the
most popular response to this question is stated only by five
respondents, we do not elaborate on it.

Separating the respondents from research (n = 60) and
industry (n = 23), Figure 8 reveals some differences between
both groups. The most important quality indicator for the
respondents from industry provides information about the tech-
nologies which were used during development. Moreover, the
quality indicator concerning the functional naming of classes
and methods is more relevant for respondents from industry
than for respondents from research. As opposed to this, the
completeness of the documentation is more important for re-
spondents from research. Determining the number of responses
for each answer relative to the number of respondents from
research and industry respectively, the mean deviation between
both groups amounts to about eleven percentage points. This
indicates that the responses from both groups are quite similar.
Merely, the three mentioned quality indicators above and the
cyclomatic complexity are considerable outliers (deviation >20
percentage points).

Furthermore, the answers to this question point out that the
quality report may contain not only software quality metrics
and indicators which can be measured automatically. Instead,
it may also contain quality metrics and indicators which have
to be determined manually, such as the quality of comments
or the understandability of documentation.

Since well-known quality metrics regarding software main-
tainability are mainly located on the right-hand side of Fig-
ure 8, such as the number of packages, comment ratio or
cyclomatic complexity, these metrics seem to be less important
for software maintainability assessment.

Question 4: How important are the given quality
report properties for you? The fourth question should reveal
the importance of several quality report properties for our

40Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 49 / 154

qu
ali

ty
of

co
mmen

ts

un
de

rst
an

da
bil

ity

of
do

cu
men

tat
ion

co
mpli

an
ce

with
co

nv
en

tio
ns

tes
t co

ve
rag

e

ap
pli

ca
tio

n of
be

st
pra

cti
ce

s

us
ed

tec
hn

olo
gie

s

clo
ne

rat
io

co
mple

ten
ess

of
do

cu
men

tat
ion

fun
cti

on
al

na
ming

ap
pli

ca
tio

n of
de

sig
n pa

tte
rns

ab
str

ac
tio

n of
so

ftw
are

arc
hit

ec
tur

e (U
M

L)

de
gre

e of
co

up
lin

g

nu
mbe

r of
pa

ck
ag

es

co
mmen

t rat
io

nu
mbe

r of
de

ve
lop

ers

cy
clo

mati
c co

mple
xit

y
0

10

20

30

40

50

60

70 67 67
62

56 54 54 53 52
48 46 44

41
34 32

23
18

48 48
43

39 38
34

38
41

31
35 33 32

26 24

16
9

19 19 19 17 16
20

15
11

17
11 11 9 8 8 7 9

#r
es

po
ns

es
total research industry

Figure 8. Ingredients of the quality report for software maintainability assessment (n = 83).

respondents. For this purpose, we derived eight properties from
different standards and papers published in the software quality
field (e.g., [25] [26] [27]). These properties are shown in
Figure 9. Beyond this closed question, we created a subsequent
open question asking for further quality report properties.
Since the quality report has to possess certain properties in
order to be used effectively and efficiently, these two questions
are crucial to us. The participants of the survey could rate
each property on a five-point ordinal scale: “very impor-
tant”, “important”, “partly important”, “less important”, and
“unimportant”. Alternatively, the respondents could answer
with “not judgeable”. The number of answers ranges from
80 to 81 per property including 2 to 7 responses with “not
judgeable” respectively. As these responses were counted as
missing answers, Figure 9 shows the importance of the given
properties based on 74 to 79 responses per property.

co
ns

ist
en

cy

co
rre

ctn
ess

tra
ce

ab
ilit

y

str
uc

tur
ed

ne
ss

cla
rit

y

un
de

rst
an

da
bil

ity

co
mple

ten
ess

co
nfi

gu
rab

ilit
y

1

2

3

4

5

im
po

rt
an

ce
1

=
ve

ry
im

po
rt

an
t,

5
=

un
im

po
rt

an
t

Figure 9. Importance of several quality report properties (n = 74 to 79,
median = thick line, arithmetic mean = cross, outlier = dot).

The answers are coded with a scale ranging from 1 to 5,

where 1 codes “very important” and 5 codes “unimportant”.
Figure 9 contains a boxplot, which comprises a box for each
quality report property. The bottom and the top of each box
are the first and third quartiles, whereas the thick line inside
the box depicts the median (second quartile). The lower and
the upper whiskers (horizontal lines outside a box) denote
the minimum and maximum, respectively, of the coded an-
swers with maximum 1.5 interquartile range. Furthermore, the
crosses visualize the arithmetic means and the dots illustrate
outliers.

The analysis of the responses shows that all of the given
quality report properties are considered as “very important” or
“important”, due to the fact that the median ranges from 1 to
2 and the arithmetic mean ranges from 1.3 to 2.3.

Upon closer examination, the three most important prop-
erties are correctness, traceability, and understandability with
a median of 1 and the lowest values for the arithmetic mean.
The least important property, but still important with a median
of 2 and an arithmetic mean of 2.3, is the configurability of
the quality report. This result is a bit surprising considering the
outcome of question 3. Question 3 suggests that the ingredients
of the quality report depend on different aspects, e.g., the
used technologies or the objective of the assessment. In order
to equip the quality report with the required ingredients,
it has to be configurable. While answering the survey, the
respondents possibly think of several concrete quality reports
instead of a general report. Therefore, the configurability is
circumstantial. However, in our work we aim to develop a
general quality report from which we deduce these concrete
reports by adapting the general one. Hence, the configurability
is a property which we deem very important.

Separating the respondents from research (n = 54 to 57)
and industry (n = 19 to 22) shows that the importance of the
given quality report properties is quite similar for both groups.
There is only one difference in the median concerning the

41Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 50 / 154

traceability (research: 1.5, industry: 1). Moreover, the average
difference between the arithmetic means of each property for
respondents from research and industry is 0.14, which supports
our statement.

The responses to the related open question yield merely two
usable properties, simplicity and robustness. Both properties
were proposed by one respondent respectively. Therefore, we
do not elaborate on it.

Question 5: Do you use tools for static code analysis? If
so, which tools? By means of the fifth question, the usage of
tools for static code analysis should be determined and relevant
tools should be identified. Primarily, the respondents were
asked whether they use tools for static code analysis. If so,
they were asked which tools they use. Therefore, we conducted
a brainstorming session in order to identify several tools for
static code analysis. In addition to these given answers, the
respondents could state further tools. Since software quality
metrics and indicators provided by static code analysis tools
are potential ingredients of the quality report, this question
matters to us. Figure 10 shows the number of votes for the
different tools. Due to space limitations, we only present the
six most popular tools out of 27 in total.

Find
Bug

s

Che
ck

sty
le

Son
arQ

ub
e

PM
D

JD
ep

en
d

Cpp
ch

ec
k

0

5

10

15

10 9

6 5

1

8

17 16 15

12

8

0

#r
es

po
ns

es

research industry

Figure 10. Most popular tools for static code analysis (n = 47).

Altogether, 49 out of 83 respondents who answered the
corresponding question stated that they use tools for static code
analysis. Separating the respondents from research (n = 59)
and industry (n = 24), 88% of the respondents from industry
use these tools in contrast to 47% from research. Although
the usage of static code analysis tools seems to be more
common in industry than in research, these answers underline
the importance of quality assessment for both groups.

Figure 10 contains the six most popular tools, which are
stated by 47 respondents. All these tools are well-known and
provide a huge set of software quality metrics and quality
indicators, which can be used for software maintainability
assessment.

Considering the three tools for Java code, FindBugs,
Checkstyle, and JDepend, we make an interesting discovery.
Altogether, 22 out of the 32 respondents who selected at least
one of these tools use two or all of them. Moreover, these
tools support the same programming language. These two
facts support the statement that currently quality metrics and
indicators are distributed across several tools and dashboard.
Hence, a comprehensive quality report comprising relevant

software quality metrics and indicators provided by these tools
and dashboards seems to be useful.

VI. THREATS TO VALIDITY

This section comprises an analysis of potential aspects
threatening the validity of the survey and its outcomes.

The population of the study comprises software develop-
ment project members from companies and research organi-
zations of different size (see Figure 2). Moreover, we got
responses from participants with a great diversity in experience
regarding the number of years they are working in the domain
of software engineering (see Figure 3). Therefore, the study
population does not pose a threat to the validity.

In total, 113 people answered the survey, 86 from research
and 27 from industry. Here, the relatively small number of
respondents from industry may threat the validity of the survey
and its outcomes.

The survey was written in German and was sent to com-
panies and research organizations in Germany. This definitely
is a threat to the validity of the survey and its outcomes, since
different cultures and customs may imply different attitudes
towards software maintainability assessment.

VII. ANSWERS TO RESEARCH QUESTIONS

In this section, we summarize the answers to the four
research questions mentioned in Subsection IV-A.

RQ1: Importance of quality assessment in research and
industry: Due to the answers to question 1 and question 5, we
come to the conclusion that quality assessment is considered
to be an important task, e.g., in order to identify areas of
improvement. This is true for respondents from both research
and industry, although the answers suggest more distinct
quality awareness in industry.

RQ2: Importance of software maintainability in research
and industry: The answers to question 2 lead us to the
conclusion that software maintainability is a very important
quality characteristic for respondents from both research and
industry.

RQ3: Ingredients of the quality report for software main-
tainability assessment: Due to the answers to question 3, we
conclude that there is no uniform set of quality metrics and
indicators for the quality report for software maintainability
assessment. Instead, the ingredients of the quality report seem
to depend on different aspects, e.g., the used paradigms.
Therefore, we cannot identify any quality metric or indicator
which is indispensable or dispensable for the quality report. In
addition, the answers to this question point out that the quality
report may contain not only quality metrics and indicators
which can be measured automatically. It may also contain
quality metrics and indicators which have to be determined
manually, e.g., due to the fact that domain knowledge is
required.

RQ4: Importance of quality report properties: The answers
to question 4 outline that all given quality report properties
are considered as very important or important for respondents
from both research and industry. Correctness, traceability, and
understandability are the properties considered to be most
important.

42Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 51 / 154

VIII. CONCLUSION

Today, the majority of software life cycle costs is spent on
maintenance. The systematic or even automatic evaluation of
software regarding its maintainability by means of a quality
report might help to reduce these costs. However, there is no
uniform understanding about the metrics and quality indicators
required to assess the maintainability of software. For that rea-
son, we showed the structure and the results of an exploratory
survey for developing an appropriate quality report.

With our survey, we reached 113 respondents, partially
software developers, software architects, research assistants,
and project or group leaders. The survey presented us the
following three key finding: 1) Our initial assumptions about
the importance of quality assessment and maintainability of
software were confirmed by the first questions of the survey.
There was not one respondent who considers that software
maintainability is less or unimportant. 2) The answers to
question 3 showed that there is no uniform set of quality
metrics and indicators for the quality report for software
maintainability assessment. Instead, the software expert who
conducts the assessment has to determine the ingredients of
the quality report depending on different aspects. 3) The
answers to question 3 point out that the quality report may
contain not only quality metrics and indicators which can be
measured automatically. Instead, it may also contain metrics
and indicators which have to be determined manually.

In the future, we will further work on the development
of a quality report for assessing software maintainability. On
the one hand, as we could not identify concrete metrics or
indicators being indispensable or dispensable for the quality
report, we will categorize the identified metrics and indica-
tors initially. Subsequently, we will try to identify additional
metrics and indicators for each category based on literature
research and an examination of several tools for static code
analysis. These metrics and indicators should be understood as
potential ingredients, which can be added to or removed from
the quality report. On the other hand, we will develop a hybrid
approach, which combines automatic and manual analyses in
order to generate a quality report tool-based and with minimal
effort. The basic idea for such an approach already exists [9]
and will be seized by us.

ACKNOWLEDGMENT

We would like to thank all survey participants for their par-
ticipation. Furthermore, we would like to thank the members
of the research group Cooperation & Management (C&M),
Karlsruhe Institute of Technology (KIT), and the engineers of
iteratec GmbH for their valuable comments and suggestions
regarding the development of the survey.

REFERENCES
[1] NASA, “Software Design for Maintainability,” URL: https://oce.jpl.

nasa.gov/practices/dfe6.pdf [accessed: 2015-08-08].
[2] T. Pearse and P. Oman, “Maintainability Measurements on Industrial

Source Code Maintenance Activities,” Proceedings of International
Conference on Software Maintenance, 1995, pp. 295–303, ISSN: 1063-
6773.

[3] J. Choudhari and U. Suman, “An Empirical Evaluation of Iterative
Maintenance Life Cycle Using XP,” ACM SIGSOFT Software Engi-
neering Notes, vol. 40, no. 2, 2015, pp. 1–14, ISSN: 0163-5948.

[4] ISO/IEC, “Std 25010:2011: Software engineering – Software product
Quality Requirements and Evaluation (SQuaRE) – System and software
quality models,” 2011.

[5] M. Gebhart, P. Giessler, P. Burkhardt, and S. Abeck, “Quality-Oriented
Requirements Engineering of RESTful Web Service for Systemic Con-
senting,” International Journal on Advances in Software, vol. 8, no.
1&2, 2015, pp. 156–166, ISSN: 1942-2628.

[6] P. Giessler, M. Gebhart, D. Sarancin, and S. Abeck, “Best Practices for
the Design of RESTful Web Services,” Tenth International Conference
on Software Engineering Advances (ICSEA 2015), 2015, ISSN: 2308-
4235, to be appear.

[7] ISO/IEC, “Std 25000:2005: Software engineering – Software product
Quality Requirements and Evaluation (SQuaRE) – Guide to SQuaRE,”
2005.

[8] M. Gebhart and S. Sejdovic, “Quality-Oriented Design of Software
Services in Geographical Information Systems,” International Journal
on Advances in Software, vol. 5, no. 3&4, 2012, pp. 293–307, ISSN:
1942-2628.

[9] M. Gebhart, “Query-Based Static Analysis of Web Services in Service-
Oriented Architectures,” International Journal on Advances in Internet
Technology, vol. 7, no. 1&2, 2014, pp. 136–147, ISSN: 1942-2652.

[10] ISO/IEC, “Std 33001:2015: Information technology – Process assess-
ment – Concepts and terminology,” 2015.

[11] IEEE, “Std 1061-1998: IEEE Standard for a Software Quality Metrics
Methodology,” 1998.

[12] H. Ogasawara, A. Yamada, and M. Kojo, “Experiences of Software
Quality Management Using Metrics through the Life-Cycle,” Proceed-
ings of the 18th International Conference on Software Engineering,
1996, pp. 179–188, ISSN: 0270-5257.

[13] D. Steidl, F. Deissenboeck, M. Poehlmann, R. Heinke, and B. Uhink-
Mergenthaler, “Continuous Software Quality Control in Practice,” 2014
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2014, pp. 561–564, ISSN: 1063-6773.

[14] ISO/IEC, “Std 25040:2011: Systems and software engineering – Sys-
tems and software Quality Requirements and Evaluation (SQuaRE) –
Evaluation process,” 2011.

[15] M. Riaz, E. Mendes, and E. Tempero, “A Systematic Review of
Software Maintainability Prediction and Metrics,” 3rd International
Symposium on Empirical Software Engineering and Measurement
(ESEM), 2009, pp. 367–377, ISSN: 1938-6451.

[16] S. Chidamber and C. Kemerer, “A Metrics Suite for Object Oriented
Design,” IEEE Transactions on Software Engineering, vol. 20, no. 6,
1994, pp. 476–493, ISSN: 0098-5589.

[17] ISO/IEC/IEEE, “Std 29148:2011: Systems and software engineering –
Life cycle processes – Requirements engineering,” 2011.

[18] enuvo GmbH, “Umfrage Online,” URL: https://www.umfrageonline.
com/ [accessed: 2015-07-27].

[19] D. A. Dillman, Ed., Mail and Internet Surveys – The Tailored Design
Method. John Wiley & Sons Inc., Hoboken, New Jersey, Jun. 2007,
ISBN: 978-04-70-03-85-6.

[20] A. Bryman, Ed., Social Research Methods. Oxford University Press
Inc., New York, Mar. 2008, ISBN: 978-01-99-20-29-5.

[21] L. Bickman and D. J. Rog, Eds., The SAGE Handbook of Applied
Social Research Methods. SAGE Publications Inc., Thousand Oaks,
California, 2009, ISBN: 978-14-12-95-03-1.

[22] D. Robbins, Ed., Understanding Research Methods – A Guide for
the Public and Nonprofit Manager. Taylor & Francis Group LLC,
Abingdon, 2009.

[23] M. Gerster and P. Giessler, “Entwicklung eines Qualitätsberichts,” 2015,
URL: https://www.umfrageonline.com/s/7e3cb3d [accessed: 2015-08-
07].

[24] IEEE, “Std 1028-2008: IEEE Standard for Software Reviews and
Audits,” 2008.

[25] ISO/IEC, “Std 25012:2008: Software engineering – Software product
Quality Requirements and Evaluation (SQuaRE) – Data quality model,”
2008.

[26] R. Plösch, A. Dautovic, and M. Saft, “The Value of Software Docu-
mentation Quality,” 14th International Conference on Quality Software
(QSIC), 2014, pp. 333–342, ISSN: 1550-6002.

[27] R. E. Al-Qutaish, “Quality Models in Software Engineering Literature:
An Analytical and Comparative Study,” Journal of American Science,
vol. 6, no. 3, 2010, pp. 166–175, ISSN: 1545-1003.

43Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 52 / 154

A Tree-Based Approach to Support Refactoring
in Multi-Language Software Applications

Hagen Schink, David Broneske∗, Reimar Schröter∗, and Wolfram Fenske∗
University of Magdeburg, Germany

Email: hagen.schink@gmail.com, ∗{ david.broneske, reimar.schroeter, wolfram.fenske}@ovgu.de

Abstract—Developers build software applications using different
programming languages, so they can benefit from the program-
ming languages’ specific advantages. To allow an interaction of
different programming languages, each programming language
offers Application Programming Interfaces (API) to be called.
However, such interactions pose challenges for source-code refac-
toring across programming languages. To this end, we present a
generalized approach to refactoring in multi-language software
applications based on graphs of trees. To illustrate the broad
application of our approach, we implement a library that builds
the foundation for two tools that support the refactoring of
database applications implemented in Java and Java applications
that invoke code of the functional programming language Clojure.

Keywords–refactoring; multi-language software application;
Java, Clojure, Relational Database

I. INTRODUCTION

Programming languages provide different language con-
structs for the description of algorithms. Depending on the
language constructs, a developer’s effort to implement an
algorithm may differ between programming languages. Hence,
if a developer is able to choose another programming language
for each problem in a single system, she can describe the
solution with a minimum of effort. Consequently, developers
use different programming languages in concert to imple-
ment software applications [1]–[8]. We call such a software
application implemented by means of different programming
languages a multi-language software application (MLSA) [5].

Irrespective of the programming language at hand, refac-
toring is a common technique to modify a source-code’s
structure while preserving the source-code’s semantics [9].
Refactorings are used to improve the maintainability and
extensibility of a code base. A number of refactoring transfor-
mations exist for different programming languages and pro-
gramming paradigms, such as object-oriented programming-
languages [9][10], functional programming-languages [11],
and relational schemata [12].

However, refactoring transformations are defined for single
programming languages and do not consider the interaction of
languages in an MLSA. Thus, applying a refactoring on source
code of one language can break the interaction of languages
within an MLSA. For instance, in a database application,
renaming a table breaks the application code that depends
on the original table name [13]. Since compilers do not
check language interaction at compile time, developers need
a sufficient test coverage to detect the broken interaction or,
otherwise, the broken system goes into production.

In this paper, we present a generally applicable concept
based on graphs of trees that supports developers in checking

and preserving language interaction within an MLSA. To show
the practical applicability of our concept, we present two
prototypes that support refactoring in applications that use (1)
Java and a relational database and (2) Java and the functional
programming language Clojure [14]. Additionally, we provide
a brief discussion of the concept’s performance and discuss
the concept’s generality in respect to different MLSA setups.

The paper is structured as follows: In Section II, we
introduce different realizations of MLSAs and give examples
of how refactoring affects language interaction in MLSAs.
In Section III, we describe and justify our concept for sup-
porting refactoring in MLSAs. In Section IV, we present two
tools, sql-schema-comparer and clojure-java-interface-checker,
which implement our concept for two different language
combinations. We discuss different aspects of the concept in
Section V. Finally, we present related work in Section VI
before we conclude the paper in Section VII.

II. BACKGROUND

In this section, we first describe different approaches to
implement language interaction in MSLAs. Then, we describe
how refactoring can break language interaction in MLSAs by
means of a database application.

A. Implementations of Language Interaction in MLSAs
In general, a software application contains source code

written in one programming language that initializes that
application. In an MLSA, we call the programming language
in which the application’s initialization code is written the
application’s host language. From the code of the host lan-
guage, developers invoke source code implemented in other
languages. We call the invoked languages guest languages.
Based on this definition, we distinguish three realizations of
language interaction:

1) Foreign Function Interface (FFI) [15]
2) Host and guest language share the same platform
3) Guest language is implemented in the host language

The first realization, FFI, describes APIs, which allow develop-
ers to use host language syntax elements for accessing syntax
elements in a guest language (cf. Figure 1a). For instance,
in Java the Java Database Connectivity (JDBC) and the Java
Persistence API (JPA) allow developers to query relational
databases via SQL or an object-relational mapping, and the
Java Native Interface (JNI) allows developers to invoke C/C++
functions. Platforms such as Java and .NET represent the
second realization, in which both, host and guest language,
share the same platform (see Figure 1b). For instance, the
programming languages C#, Visual Basic .NET, and F# can all
be compiled to the Common Intermediate Language (CIL) and

44Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 53 / 154

APIHost Guest

(a) FFI

Host Guest

Platform

(b) Platform

Host

Guest

(c) Language

Figure 1. Relations between host and guest language.

all languages can invoke CIL code [16]. Thus, by compiling the
source code of the guest language to the platform of the host
language, a developer can call the code implemented in the
guest language from the host language. The third realization
(see Figure 1c) describes programming languages such as Lisp
or Ruby, which provide meta-programming features that allow
developers to implement new language elements or DSLs that
represent the guest language [17]–[19].

In case a guest language is implemented in the host
language (cf. Figure 1c), the guest language’s source code
is actually valid source code of the host language. Thus,
developers can reuse existing tools for static code analysis of
the host language to check the interaction between source code
of the guest and the host language. In case the guest language’s
source code can be compiled to the host language’s platform
(cf. Figure 1b), developers can reference the compiled code of
the guest language in the host language and the host language’s
compiler can check the interaction between source code of the
guest and the host language [16]. For instance, F# source code
can be compiled to a managed DLL which a developer can
reference in C# source code. In contrast, if languages interact
by means of an FFI (cf.Figure 1a), existing tools for the host
language cannot check language interactions.

B. Refactoring of MLSAs that use FFIs

Since there is no tool support for refactoring languages that
communicate using FFIs, developers have to assure language
interaction manually. Currently, developers must provide auto-
mated tests with a reasonable test coverage to reliably detect
broken language interactions after source-code modifications
such as refactoring. In former work, we discussed problems in
the case of Java to SQL interactions [13].

For the Java programming language, there are two APIs to
interact with a relational database via SQL: JDBC and JPA.
JDBC allows developers to directly execute SQL statements.
For instance, Figure 2 shows an SQL query that selects the
values of column label of table departments that start
with M.

JPA, in turn, provides an interface for object-relational
mapping (ORM). The ORM maps Java classes to relational
tables and Java methods to table columns. An object relational
mapper can automatically create SQL statements based on the
ORM. Developers can use JPA to access a relational database
without having to write plain SQL. For instance, Figure 3
shows how a developer can map the Java class Department
to the relational table departments with its columns id
and label.

In the following, we explain how refactoring either the Java
source code or the relational schema affects the interaction
between the Java application and the relational database.

1 String stmt = "SELECT label FROM departments "
2 + "WHERE label LIKE ?";
3 PreparedStatement query = con.prepareStatement(stmt);
4
5 query.setString(1, "M%");
6 ResultSet result = query.executeQuery();

Figure 2. JDBC: Parameterized query for department names.

1 @Entity
2 @Table(name="departments")
3 public class Department implements Serializable {
4
5 private int id;
6 private String label;
7
8 public void setId(int id) { this.id = id; }
9 @Id

10 public int getId() { return id; }
11
12 public void setLabel(String label) { this.label = label; }
13 public String getLabel() { return label; }
14 }

Figure 3. JPA: Annotated class Department.

a) Host-Language Refactoring: Given that we use JPA
to access the relational database, we rename the property
label of class Department (cf. Figure 3) to name, be-
cause name is more specific than the more general label.
Consequently, to be consistent, we also rename the methods
setLabel and getLabel to setName and getName,
respectively. This refactoring breaks the application because
the ORM cannot find a matching column name for table
departments in the database schema.

b) Guest-Language Refactoring: Let us assume we
apply a Rename Column refactoring to rename the column
label of table departments to name. This refactoring
breaks the application regardless of whether we use JDBC or
JPA because neither the SQL statement (cf. Figure 2) nor the
ORM (cf. Figure 3) reference the renamed column.

III. CHECKING AND PRESERVING LANGUAGE
INTERACTION

The main idea of our concept to check and preserve
language interactions is as follows. First, we extract those
syntax elements from the host and guest language that are
involved in language interaction and represent these syntax
elements in graphs of trees for the host and the guest language.
Second, by comparing the graph of the host and the graph of
guest language with each other, we are able to detect broken
language interactions. Now, we present this approach in detail.

A. Modeling Language Interaction
For the source code of a guest language CG and the source

code of a host language CH , we call the references to the guest
language’s source code extracted from the host language’s
source code RCH→CG

. Additionally, we call the syntax ele-
ments in the guest language’s source code involved in language
interaction RCG

. Based on the representation as abstract syntax
trees (AST) [20], we describe RCH→CG

and RCG
as sets of

45Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 54 / 154

labeled trees. Consequently, rCH→CG
∈ RCH→CG

is a tree
representing a single invocation of a guest language structure
element in the host language and rCG

∈ RCG
is a tree

representing a single structure element defined in the guest
language that is involved in language interaction.

Since guest languages do not define a uniform set of
syntax elements for language interaction, syntax elements for
language interaction can be different between guest languages.
Consequently, we cannot use a single type of tree to represent
all syntax elements involved in language interaction, because
we neither can oversee all current syntax elements, nor foresee
all future elements involved in language interaction. Thus, we
need to define specialized types of trees, which only represent
the syntax elements in the guest language that are actually
involved in language interaction. For instance, with JDBC or
JPA, the table and column identifiers defined in the relational
database are elements involved in language interaction. In
contrast, with JNI, a function’s name and parameters in C
source code are elements involved in language interaction.

B. Checking the Referential Integrity between Languages
We check the referential integrity between languages by

comparing all trees in RCH→CG
with the trees in RCG

. To
ensure the referential integrity, for all rCH→CG

∈ RCH→CG

there must be one rCG
∈ RCG

, so that the following condition
is satisfied:

rCH→CG
is a top-down subtree of rCG

(1)

However, this precondition is not sufficient because nodes
may be missing in rCH→CG

that are mandatory for language
interaction. For instance, in JDBC, if a developer defines an
INSERT statement, this statement must provide values for all
columns of the referenced tables with a Not Null constraint, or
else the statement fails. Hence, for the set of mandatory nodes
rM , we additionally have to check if

rM ⊆ rCH→CG
(2)

The set rM is defined as follows for mandatory nodes m and
the function parent(x), which returns x’s parent node:

rM = {m | m ∈ rCG
∧ parent(m) ∈ rCH→CG

} (3)

In Figure 4, we illustrate the process of checking language
interaction: First, we need to extract RCH→CG

from CH and
RCG

from CG. In accordance with (3), we compute the set of
mandatory nodes RM for RCG

and RCH→CG
. Then, we can

compare the extracted references. The comparison returns a
result which contains the possibly empty sets RCH→CG

\RCG

and RM \RCH→CG
, i.e., the elements, which were extracted

from the host language source code but are missing in the
guest language source code, as well as the mandatory elements
defined in the guest language source code that are not refer-
enced in the host language source code. Language interaction
is preserved if both sets are empty. Otherwise, the sets contain
the syntax elements, which are involved in the broken language
interaction.

IV. IMPLEMENTING A GENERAL APPROACH TO MLR
In this section, we first introduce the structure-graph li-

brary [21]. The structure-graph library implements an algo-
rithm which we use to implement the sql-schema-comparer and
the clojure-java-interface-checker. The sql-schema-comparer

H
os

t
G

ue
st

(CH)

(CG)

Code

Extract

a

eb

z

y

(RCH→CG
)

a

eb

dc

z

x

w

y

(RCG
)

References

Compare

(RCH→CG
\RCG

∪
RM \RCH→CG

)

Result

Figure 4. The process of checking language interaction.

checks the language interaction between Java source code and
a relational database schema and the clojure-java-interface-
checker checks the language interaction between Java and
Clojure source code.

A. The Structure-Graph Library
The structure-graph library provides a prototypical im-

plementation of a comparison algorithm for trees of syntax
elements as defined in Section III-A. The library takes two
arguments: a source graph GS and a target graph GT . Both
graphs represent sets of trees. Each node v of a tree has a name
and a path. A node is uniquely identified by its name and path;
thus, name and path represent the node’s id. The comparison
of GS and GT returns a list of modified nodes. The library
distinguishes two node modifications: Added and Deleted. A
node v is added if id(v) ∈ GT ∧ id(v) /∈ GS . Conversely, a
node v is removed if id(v) /∈ GT ∧ id(v) ∈ GS . For checking
language interaction, we pass RCH→CG

as GS and RCG
as

GT to the library. Consequently, RCH→CG
\RCG

is the set of
added nodes and RM \RCH→CG

is the set of removed nodes
that are marked as mandatory, respectively.

B. Java to Relational Database Interaction
In [22], we presented the sql-schema-comparer (SSC)

library that applies the structure-graph library to detect mis-
matches between a relational database schema and a schema
expected by the interacting Java source code. To this end, SSC
extracts the expected schema RCH→CG

from SQL statements
and JPA entities defined in the Java source code and the actual
schema RCG

from a relational database. The representation
of RCG

contains a tree for each table. Each tree contains a
root that holds the table’s name. The root has child nodes for
each table column, and each column has child nodes for each
column constraint (cf. Figure 5). Since SSC marks a column
as mandatory if a Not Null constraint is specified on that
column, SSC is able to check if all columns required for an
insertion are referenced by an SQL statement or JPA entity.
The representation of RCH→CG

contains a tree for each SQL
statement and JPA entity defined in the interacting Java source
code. The trees of the expected schema only contain nodes for
the referenced table names and columns, because constraints
are not referenced in the Java source code. For brevity, we do
not discuss column type information here.

C. Java to Clojure Language Interaction
Now, we introduce the Clojure programming language and

describe how the clojure-java-interface-checker preserves the
interaction between Java and Clojure source code.

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 55 / 154

Table

Columnn

Conn...Con1

...Column1

Consn...Con1

Figure 5. Database Schema Graph.

1) The Clojure Programming Language: Clojure is a func-
tional programming language that runs on the Java Virtual
Machine (JVM). Syntactically, Clojure is a Lisp dialect. Since
Clojure runs on the JVM, developers can directly use libraries
available for the programming language Java.

Since Clojure and Java share the same platform (cf. Fig-
ure 1b), developers do not need additional means to invoke
Clojure source code from Java and vice versa. However,
invoking Clojure functions in Java without additional means
works only for compiled Clojure source code. Additionally, the
Clojure library provides an FFI (cf. Figure 1a), which allows
developers to dynamically load and invoke Clojure source code
directly from Java source code.

For dynamically invoking Clojure functions from Java
source code, developers must provide the namespace and the
name of the function to be called. For instance, to call the
function add2 in namespace i.o.c.Test (see Figure 6),
developers use the class RT shown in Figure 7. Since version
1.6, the preferred way of calling a Clojure function is to
use class Clojure that returns an instance of class IFn.
Nevertheless, the basic principle has not changed.

1 (ns o.i.c.Test)
2
3 (defn add2 [x]
4 (+ x 2))

Figure 6. Definition of a namespace and a function in Clojure.

1 Var f = RT.var("o.i.c.Test", "add2");
2
3 f.invoke(2);

Figure 7. Invocation of Clojure function in Java.

2) The Clojure-Java-Interface-Checker Library: We used
the structure-graph library to implement the clojure-java-
interface-checker [23]. The clojure-java-interface-checker is a
library that checks the dynamic invocation of Clojure functions
in Java source code. To this end, the library creates a graph
for the function invocations in the Java source code and for
the actual function definitions in the Clojure source code.
The graph contains a tree for each namespace defined in the
Clojure source code. Each namespace has a child node for
each function defined in that namespace. Additionally, each
node representing a function has a child node for each function
parameter. Having a node for each parameter allows to check
that the function invocation in the Java source code contains the

correct number of parameters. Figure 8 shows the generalized
structure of a tree for a Clojure namespace.

Namespace

Functionn

Paran...Para1

...Function1

Paran...Para1

Figure 8. Clojure Function Graph.

For the function definition in Figure 6 and the function
invocation in Figure 7, the library creates two different trees
(see Figure 9): The only difference between the two trees is
that in Java, we have no information about the called parameter
but its position. Therefore, in Figure 9b the parameter x is
represented by the parameter’s position 0. Accordingly, before
we can compare these graphs, we need to replace the parameter
name in Figure 9a by its position in the function definition.

V. DISCUSSION

In Section III, we discussed an algorithm for checking the
interaction between a host and guest language. We presented
two tools that show the practicability of our approach. In the
following, we discuss the theoretical performance with respect
to the complexity of checking the Conditions (1) and (2) from
Section III-B and the generality of our approach. Furthermore,
we describe the necessary implementation effort and other
areas of application for our approach.

A. Performance
For Condition (1), we check that for each node in RCH→CG

a node exists in RCG
. In a tree structure, each node has a

unique path, thus, we need to check at most hG nodes in RCG

for each node in RCH→CG
where hG is the height of RCG

.
Hence, we get each missing node in O(nHhG) where nH is
the number of nodes in RCH→CG

.
For Condition (2), we check that for each mandatory node

in RM a node exists in RCH→CG
. Again, we need to check at

most hH nodes in RCH→CG
for each node in RM where hH is

the height of RCH→CG
. Hence, we get each missing mandatory

node in O(nMhH) where nM is the number of nodes in RM .
Since the maximum height of the trees is constant, we get a
complexity of O(nH + nM) for checking all conditions.

o.i.c.Test

add2

x

(a) RCG
of Figure 6.

o.i.c.Test

add2

0

(b) RCH→CG
of Figure 7.

Figure 9. Function graphs.

47Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 56 / 154

(CH)

(CG;1)
...

(CG;n)

(a) Single host and multiple guest
programming languages.

(CG)

(CH;1)
...

(CH;n)

(b) Multiple host and single guest
programming languages.

(CH;2)(CH;1) (CG)

(c) A host is also a guest programming language.

Figure 10. MLSA setups.

B. Generality of the Approach
Until now, we discussed an MLSA consisting of one host

and one guest programming language. However, MLSAs can
consist of more than two programming languages. Thus, we
need to discuss our approach in the context of generalized
MLSA setups to justify the generality of our approach.

1) Multiple Guest and Single Host Programming Lan-
guages: The single host programming language uses different
interfaces to interact with multiple guest languages (cf. Fig-
ure 10a). To check the referential integrity of the language
interaction, we need to compute and compare RCG;n

and
RCH→CG;n

with n being the nth guest language of the MLSA.
2) Single Guest and Multiple Host Programming Lan-

guages: The host programming languages use the same el-
ements of the guest programming language for language inter-
action (cf. Figure 10b). Thus, to check the referential integrity
of the language interaction, we need to compute and compare
RCH;n→CG

and RCG
with n being the nth host language of

the MLSA.
3) A Host is also a Guest Programming Language:

Given code of three programming languages CG, CH;1, CH;2

involved in an MLSA where CG is accessed by CH;2 and
CH;2 is accessed by CH;1 (cf. Figure 10c). Hence, this MLSA
contains code of two guest programming languages (CG and
CH;2) and code of two host programming languages (CH;1 and
CH;2). In other words, we have multiple guest and multiple
host programming languages. However, having multiple guest
and multiple host programming languages corresponds to a
combination of the preceding cases.

Apart from the three MLSA setups shown in Figure 10a
to 10c, to the best of our knowledge, no other generalized
MLSA setup exists. Since our approach supports all three
MLSA setups, we conclude that our approach supports the
refactoring of arbitrary MLSAs.

C. Implementation Effort
Our approach requires developers to provide language-

specific components: parsers and the evaluation logic. Parsers
extract the source code of the interacting host and guest
languages and create the graphs for RCG;n

and RCH→CG;n
.

For the creation of graphs, SSC includes the Java graph library
JGraphT [24]. The evaluation logic interprets the results of
SSC and gives language-specific feedback to the user.

D. Fields of Application
Apart from refactoring, another use case for our approach

is content assistance. That is, we can use RCG
to provide

developers with a list of elements with which the developers
can interact with. However, especially in respect to legacy
or undocumented source code, we have to note that our
approach does not consider the guest language’s semantics.
Thus, developers still need to know the behavior of CG.

VI. RELATED WORK

TexMo [25] and XLL [7][26] are tools for linking and
refactoring MLSAs. TexMo uses GenDeMoG [27] which im-
plements a dependency graph and XLL implements a linking
model to link artifacts of interacting languages. Links are
resolved by dependency patterns in GenDeMoG and binding
resolvers in XLL. Thus, in TexMo and XLL, the artifacts
involved in language interaction between two languages are
hidden in dependency patterns or binding resolvers. How-
ever, based on our experience with other language combina-
tions [13], we developed our graph-based approach that makes
the structures involved in language interaction transparent. We
argue that this transparency is crucial because language inter-
action is not only affected by renames of interacting elements.
Yet, TexMo and XLL solely support rename refactorings.

Language composition comprises approaches to extend
a programming language’s syntax and semantics [28]. For
instance, SugarJ [29] and TSL Wyvern [30] allow developers
to embed different languages as first-class citizens in Java and
Wyvern [31], respectively. As a first-class citizen, an embedded
language’s syntax is validated at compile-time. Compile-time
validation allows developers to fix syntax errors in the code of
the embedded language before run-time. Our approach com-
plements language composition because, additionally, it allows
to check the interaction introduced by embedded languages.
For instance, embedding SQL by language composition can
only ensure syntactical correctness, but not that SQL state-
ments reference elements that are available in the database
schema. Thus, language composition cannot ensure language
interaction in general.

UMLDiff detects differences between two UML class
models and reports added, removed, renamed, and moved
UML elements [32]. UMLDiff is part of the Eclipse plug-in
JDEvAn [33]. JDEvAn allows to retrieve UML representations
from Java source code but is extensible to retrieve UML
representations from other languages. JDEvAn and UMLDiff
may be used to retrieve information about the changes that led
to a broken language interaction and, thus, complement our
check of the referential integrity for language interaction.

Orthographic Software Modeling (OSM) introduces views
as first-class entities in software development [34]. In OSM,
all information about a software application is represented in
a single underlying model (SUM). All other models, such as
UML or source code, are generated from the SUM. Since
all changes to a view must be propagated to the SUM, all
views are kept consistent automatically. For instance, in a
database application using JPA, changing the relational model
results in the adaption of the relational schema as well as the

48Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 57 / 154

JPA entities. However, the OSM approach requires a SUM
and a developer, called methodologist, who implements and
maintains the SUM. In general, we cannot presume these
requirements to be fulfilled. Furthermore, the methodologist
needs to model language interaction in the SUM, which
requires intimate knowledge of implementation details.

VII. CONCLUSION AND FUTURE WORK

Language interaction in a multi-language software applica-
tion (MLSA) can be diverse and, thus, complicates the refac-
toring of involved languages. In our approach, we use graphs
of trees to represent syntax elements of different programming
languages that are involved in language interaction. Based on
these graphs, we can check if the source code of one language
correctly interacts with the source code of another language.

Based on our approach, we presented two tools, sql-
schema-comparer and clojure-java-interface-checker, which
check the interaction within a database application and be-
tween source code of the programming languages Java and
Clojure, respectively. We presented performance considera-
tions which suggest that graphs of trees are a viable basis for
checking the interaction of source code of different languages.
We also discussed transferability of our approach to arbitrary
MLSA setups.

In our future work, we want to integrate the sql-schema-
comparer and clojure-java-interface-verifier in the Eclipse
IDE [35] to simplify their usage for daily software develop-
ment. Furthermore, we want to re-use graphs of trees extracted
from the guest language for detecting source-code modifi-
cations, such as refactorings, that led to a broken language
interaction. We assume that the information about source-
code modifications can support developers in fixing language
interaction.

ACKNOWLEDGMENTS

The work of Reimar Schröter is funded by BMBF, grant
number 01IS14017B.

REFERENCES
[1] B. Kullbach, A. Winter, P. Dahm, and J. Ebert, “Program Compre-

hension in Multi-Language Systems,” Working Conference on Reverse
Engineering, 1998, pp. 135–143.

[2] T. C. Jones, Estimating Software Costs. Hightstown, NJ, USA:
McGraw-Hill, Inc., 1998.

[3] M. Grechanik, D. Batory, and D. E. Perry, “Design of Large-Scale
Polylingual Systems,” International Conference on Software Engineer-
ing, 2004, pp. 357–366.

[4] D. Strein, H. Kratz, and W. Lowe, “Cross-Language Program Anal-
ysis and Refactoring,” IEEE International Workshop on Source Code
Analysis and Manipulation, 2006, pp. 207–216.

[5] P. K. Linos, W. Lucas, S. Myers, and E. Maier, “A Metrics Tool
for Multi-Language Software,” International Conference on Software
Engineering and Applications, 2006, pp. 324–329.

[6] N. Chen and R. Johnson, “Toward Refactoring in a Polyglot World:
Extending Automated Refactoring Support across Java and XML,”
Workshop on Refactoring Tools, 2008, pp. 1–4.

[7] P. Mayer and A. Schroeder, “Cross-Language Code Analysis and Refac-
toring,” International Working Conference on Source Code Analysis and
Manipulation, 2012, pp. 94–103.

[8] N. Ford, The Productive Programmer. O’Reilly, 2008.
[9] W. F. Opdyke, “Refactoring Object-Oriented Frameworks,” Ph.D. dis-

sertation, University of Illinois at Urbana-Champaign, USA, 1992.
[10] M. Fowler, Refactoring: Improving the Design of existing Code.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[11] H. Li and S. Thompson, “Tool Support for Refactoring Functional
Programs,” ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation, 2008, pp. 199–203.

[12] S. Ambler, Agile Database Techniques: Effective Strategies for the
Agile Software Developer. John Wiley & Sons, Inc., 2003.

[13] H. Schink, M. Kuhlemann, G. Saake, and R. Lämmel, “Hurdles in
Multi-Language Refactoring of Hibernate Applications,” International
Conference on Software and Database Technologies, 2011, pp. 129–
134.

[14] Clojure homepage. [Online]. Available: http://www.clojure.org/ (visited
on Dec. 3, 2015).

[15] M. Furr and J. S. Foster, “Checking Type Safety of Foreign Function
Calls,” ACM Transactions on Programming Languages and Systems,
vol. 30, no. 4, 2008, pp. 1–63.

[16] J. Hamilton, “Language Integration in the Common Language Run-
time,” ACM SIGPLAN Notices, vol. 38, no. 2, 2003, p. 19.

[17] M. Mernik, J. Heering, and A. M. Sloane, “When and how to Develop
Domain-Specific Languages,” ACM Computing Surveys, vol. 37, no. 4,
2005, pp. 316–344.

[18] L. Tratt, “Compile-Time Meta-Programming in a Dynamically Typed
OO Language,” Symposium on Dynamic Languages, 2005, pp. 49–63.

[19] S. Günther, “Multi-DSL Applications with Ruby,” IEEE Software,
vol. 27, no. 5, 2010, pp. 25–30.

[20] J. Jones, “Abstract Syntax Tree Implementation Idioms,” Conference
on Pattern Languages of Programs, 2003, pp. 1–10.

[21] Structure graph. [Online]. Available: https://github.com/hschink/
structure-graph (visited on Dec. 3, 2015).

[22] H. Schink, “sql-schema-comparer: Support of Multi-Language Refac-
toring with Relational Databases,” International Working Conference on
Source Code Analysis and Manipulation, 2013, pp. 164–169.

[23] Clojure java interface checker. [Online]. Available: https://github.com/
hschink/clojure-java-interface-checker (visited on Dec. 3, 2015).

[24] Jgrapht. [Online]. Available: http://jgrapht.org/ (visited on Dec. 3,
2015).

[25] R. H. Pfeiffer and A. Wąsowski, “TexMo: A Multi-Language Develop-
ment Environment,” European Conference Modelling Foundations and
Applications, 2012, pp. 178–193.

[26] P. Mayer and A. Schroeder, “Automated Multi-Language Artifact
Binding and Rename Refactoring between Java and DSLs used by
Java Frameworks,” European Conference Object-Oriented Program-
ming, 2014, pp. 437–462.

[27] R. H. Pfeiffer and A. Wąsowski, “Taming the Confusion of Languages,”
European Conference on Modelling Foundations and Applications,
2011, pp. 312–328.

[28] S. Erdweg, P. G. Giarrusso, and T. Rendel, “Language Composition Un-
tangled,” Workshop on Language Descriptions, Tools, and Applications,
2012, pp. 1–8.

[29] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann, “SugarJ: Library-
Based Syntactic Language Extensibility,” ACM SIGPLAN Notices,
2011, pp. 391–406.

[30] C. Omar, D. Kurilova, L. Nistor, and B. Chung, “Safely Composable
Type-Specific Languages,” European Conference on Object-Oriented
Programming, 2014, pp. 105–130.

[31] L. Nistor, D. Kurilova, and S. Balzer, “Wyvern: A Simple, Typed,
and Pure Object-Oriented Language,” Workshop on MechAnisms for
SPEcialization, Generalization and inHerItance, 2013, pp. 9–16.

[32] Z. Xing and E. Stroulia, “UMLDiff: An Algorithm for Object-Oriented
Design Differencing,” IEEE/ACM International Conference on Auto-
mated Software Engineering, 2005, pp. 54–65.

[33] Z. Xing and E. Stroulia, “The JDEvAn Tool Suite in Support of Object-
Oriented Evolutionary Development,” Companion of the International
Conference on Software Engineering, 2008, p. 951.

[34] C. Atkinson, D. Stoll, and P. Bostan, “Orthographic Software Modeling:
A Practical Approach to View-Based Development,” in Evaluation of
Novel Approaches to Software Engineering, ser. Communications in
Computer and Information Science. Springer Berlin Heidelberg, 2010,
vol. 69, pp. 206–219.

[35] Eclipse. [Online]. Available: http://www.eclipse.org/ (visited on Dec.
3, 2015).

49Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 58 / 154

Collecting Product Usage Data Using a Transparent Logging Component

Thorvaldur Gautsson, Jacob Larsson

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden
e-mail: {gautsson, jacobla}@student.chalmers.se

Miroslaw Staron

Department of Computer Science and Engineering
University of Gothenburg

Gothenburg, Sweden
e-mail: miroslaw.staron@gu.se

Abstract—Continuous software engineering and experiments on
released products have become very popular in modern software
development. In this paper, we present a software component
used to transparently log usage data from products in order to
facilitate the use of customer-usage data by software developers.
Such a component can aid with software maintenance and life-
cycle management, but also provide help in software production
and validation. We present a technical solution, the evaluation
of its influence on the performance of a sample product, and an
initial study on the acceptance of such a technology by regular
users. Our results show that the mechanisms available in modern
programming languages make it possible to integrate such a
component without manual interventions in product code and
that users are generally positive towards using this technology
for logging the usage of work-related applications. We conclude
that this type of technology can provide new possibilities for
developers to adjust product planning based on the customer
usage data.

Keywords–Logging; usage patterns; features; data analysis.

I. INTRODUCTION

Modern software development emphasizes the need for rapid
delivery of customer value and many software development
companies use the principles of continuous software engi-
neering to deliver on these needs [1][2][3]. The concept of
continuous software engineering drives the development of
technology towards continuous integration, continuous deploy-
ment and continuous feedback from customers. Continuous
integration allows companies to decrease the internal feedback
cycles on the quality of software by advocating quick delivery
of small software increments and testing them directly after
integration with the rest of the software product code. The
continuous deployment philosophy prescribes methods and
tools for delivering software without the need for manual
installation (e.g., changing a web application) and finally
the continuous feedback from customers is often realized as
customer-experiments (also known as A/B testing [4]).

In this paper, we contribute to the area of rapid feed-
back from customers by developing a logging component
which can be integrated with software products (e.g., desktop
applications) without the need to modify the product code.
The logging component collects data about the usage of
features and functions — both per user and per feature. It also
provides the possibility to store strategically taken screenshots
of the GUI (graphical user interface) of an application, and
enables analysing the status of applications before exceptions
or crashes occur. Collecting this kind of data has the potential
to speed up the development feedback substantially compared

to the currently used data (c.f. [5]). The research question
which we analyzed in our research was:

How can an external logging component be used to aid in
the process of software development by providing developers
with information about usage patterns?

We set off to design a component which could be integrated
with existing products without manual intrusion in the product
source code, though recompilation was allowed. We also
defined the term usage pattern as how users use an application
at a high level, i.e., how they interact with the application
through mouse clicks and keyboard input, which pre-defined
features of the application they use, when and how often they
use those features, and when and how they cause exceptions
to occur. The logging component scrutinized in the research
therefore provides developers with the flexibility to define the
precise usage pattern that constitutes a feature.

Although there exists a body of research on both the
logging of software applications as well as managing large
quantities of data (c.f. [6][7]), there is still much to be
researched. Our working hypothesis was that analyzing feature
usage with the help of screenshots and unconstrained logging
of method-calls can be highly valuable for developers. Such
an approach has been found to help companies to remain
innovative in the long run [8].

Our results show that automated logging of method-calls
combined with pre-defined packaging of the sequences of
method-calls into features can help developers to understand
the usage patterns of an application. Based on a survey which
was conducted, we also found that the logging of feature
usage is generally met with a positive attitude for work-related
applications, but skepticism for privately used software. The
study led us to conclude that the largest developmental benefits
are the combination of logging and pre-definition of features
— which is a rather unique approach.

This paper is structured as follows: Section II presents
some of the most related work in the field of customer data
collection and continuous software engineering. Section III
presents the design of our research. Section IV presents the
logging component and its design. Section V presents the
results from the evaluation of the logging component. Finally,
Section VI presents the conclusions from our study.

II. RELATED WORK

Backlund et al [9] studied post-deployment data collection
by conducting a case study on a web-based portal system.

50Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 59 / 154

They began by identifying which quantitative data needed to be
collected, collected it and finally compared the collected data
with survey answers from test subjects. The quantitative data
used was collected through aspect-oriented programming and
included various user actions, such as button clicks and task
completion times. The authors found a correlation between
the survey data and the measurements. For instance, both the
survey and the measurements suggested that a task called
change password was the most difficult task to perform.

Olsson et al. [5][10] studied patterns in post-deployment
data collection in products from three companies in the em-
bedded software development field. Their results show that the
collected post-deployment data that the companies used came
from the operating system, or concerned performance. They
found that while feature-usage data is valuable, it is generally
not collected. In our work, we address this challenge in the
context of applications written in C#.

Lindgren et al. [4] studied the implications of using ex-
periment systems in the development of software. Through
a survey among companies, they found that there is still no
consensus on how to collect customer feedback and how to use
it during development. They also found that customer feedback
is rarely used during development. Our work contributes to the
ability to collect data automatically, thus presenting a way to
use customer data during development.

Börjesson and Feldt evaluated in 2012 two tools for au-
tomated visual GUI testing on a software system developed
by a Swedish aerospace company. They found that visual
GUI testing can perform better than manual testing practices
and that it furthermore has benefits over manual GUI testing
techniques. They stated however that visual GUI testing still
had challenges which had not been addressed [11][12].

III. RESEARCH DESIGN

The research presented in this paper utilized two research
methods: design science research for the development of the
logging component and a case study for its evaluation.

A. Design science research

The design science research approach [13][14] was used
to construct a logging component which serves as a proof of
concept for detecting usage patterns in external applications.
After the logging component had been constructed it was
integrated with a prototype application and then assessed.
Further evaluation was conducted in a case study in which
both qualitative and quantitative aspects were considered.

In order to ensure industrial applicability, the logging com-
ponent was developed in cooperation with Diadrom Systems
AB (hereafter: Diadrom) in Gothenburg. Representatives from
Diadrom provided continuous feedback, both in formal as well
as informal settings. Employees from the company were also
part of the evaluation processes.

Before the development phase began, a prototype software
application called PersonDatabase was built in order to have
an application which the logging component could be built
around. This application had the purpose of storing information
about employees of a fictitious company.

B. Case study
After the design science research phase was over, the

logging component was further evaluated through a case study
[15]. Two applications which had previously been developed
by Diadrom were used in this phase. The assessment involved
both qualitative and quantitative aspects, using both metrics
which were measured as well as structured group interviews.
The case study process model which was used to evaluate the
logging component consisted of the following steps:

1) Two suitable applications for evaluation were identi-
fied: an application from Diadrom (hereafter: Appli-
cation X), consisting of ca. 40 000 LOC; and an open
source application named ScreenToGif which allows
users to record an area of their screen, manipulate,
edit, and then save as a gif image file [16].

2) Qualitative data was collected through workshops
and quantitative data by using the aforementioned
applications.

3) The collected data was analyzed.

1) Interviews: In order to obtain qualitative data, two
workshops were held where semi-structured interviews were
conducted. Application X was evaluated through a workshop
held at Diadrom which was attended by developers at the
company. ScreenToGif was evaluated through a workshop
held at Chalmers University of Technology. Both workshops
followed the same structure. First, the project was introduced
and the research question presented. Next, the integration of
the logging component and the target application was shown.
The attendees were then asked a series of open-ended questions
relating to how difficult they perceived the integration process
to be. Thereafter, a live demonstration was given to show how
the logging component worked on the application which it had
been integrated with. Following that, the logging component
was discussed and questions about its benefits were posed.
The remaining part of the workshop was then used to present
open-ended questions.

2) Measurements: Several criteria were defined which the
logging component had to fulfill, along with ways to measure
them. The following aspects were measured:

• Time to execute a sequence of operations with or
without the logging component

• CPU usage with the logging component
• The size of the database after a sequence of operations
• The size of an average screenshot

In order to obtain data which could be generalized, mea-
surements were taken for three different applications. The
applications tested were the applications used in the work-
shops, i.e., ScreenToGif and Application X, as well as the
PersonDatabase application previously mentioned. The mea-
surements were conducted using the Visual Studio Profiler, the
db.stats() function in MongoDB and SikuliX. The Visual
Studio Profiler is a tool for analyzing performance issues in
an application and gathering performance data. The MongoDB
function returns statistics about a particular database. SikuliX
is a visual GUI testing tool.

The first aspect was measured on the target application,
both with and without the logging component. To measure the
time to execute a sequence of operations in the application,

51Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 60 / 154

SikuliX was used. The tool was used to define a sequence
of operations which was then executed 100 times using a
loop. The time of each execution was then measured from
when the pre-defined sequence started until it stopped. By
doing this both with and without the logging component it
was possible to investigate whether the it slowed down the
application significantly.

To measure CPU usage the Visual Studio Profiler was
used. Due to restricted access and technical limitations it
was not possible to measure CPU usage for Application X,
as permission was not granted to install the application on
computers which had the measuring tools needed. The size of
an average screenshot as well as the size of the database were
measured using the db.stats() function in MongoDB.

C. Analysis methods

The Student’s t-test was used to see whether there was a
statistically significant difference between the time it took for
the PersonDatabase and ScreenToGif applications to execute
a sequence of operations with and without the logging com-
ponent. Since the variance of the data sets for Application X
varied greatly, the Welch t-test was used in that case, as it
performs better for data sets of unequal variance.

The null hypothesis was that there should not be a signif-
icant time difference in executing the sequence of operations
dependent on whether the logging component was integrated
with the application or not.

IV. THE LOGGING COMPONENT

The purpose of the logging component was to log various
user actions and program behavior and store those logs in a re-
mote database. Among the user actions logged were keyboard
input and mouse clicks. Handled and unhandled exceptions,
as well as method-calls, were also logged. Screenshots were
taken when a user interacts with the application — to make it
possible to understand how the application behaved from the
users’ point of view.

The way the logging component operated was by weaving
log statements into the source code of an application at com-
pile time. Weaving is a technique for automatically injecting
code into previously written code and is further explained in
Section IV-A.

Immediately after the logging component started to gen-
erate data, the need for a GUI to view the data emerged. It
became necessary to develop a GUI both for verifying that the
correct data was being logged, and to be able to view how
the logging component worked. The development therefore
resulted in three different modules:

• a logging module that logged usage patterns

• a GUI module for presenting the data

• a weaving module for the code injections

Together these three modules constituted a system which
defines logging and presentation of data for C# WPF (Windows
Presentation Foundation) applications.

A. Weaving Module
The Weaving module only had one purpose: to inject code

into a target application in order to connect it with the logging
module. To achieve this, an open source weaving tool called
Fody was used. By using Fody it was possible to define how
and where code should be injected into the application without
specific knowledge about the Microsoft Build Engine and the
Visual Studio APIs. Since Fody had been released as a NuGet
package it was possible to create a NuGet package out of the
Weaving module that would automatically install Fody.

B. Logging Module
The logging module was developed using C# WPF. To store

the large amount of data that the logging module produced, a
NoSQL database called MongoDB was used due to its flexi-
bility. The logging module provided an interface for logging
information and timestamps for the following:

• Method-calls
• Handled and unhandled exceptions
• Mouse clicks and mouse scroll (start and stop)
• Keyboard button clicks
• Specified Keyboard Shortcuts

The logging module logged method-calls in order to track
the data flow of an application. The method logs contain
data concerning the namespace, class name, method name,
parameter types, parameter names and the time of execution.
This can allow developers to find any given method in their
source code, and the associated timestamp makes it possible
to view the sequential order of execution.

Logging exceptions is also important and an interface was
provided for logging both handled and unhandled exceptions.
To log handled exceptions, it was necessary to insert a log
statement into every ”catch”-block in an application, which is
automatically done by the weaving module. To log unhandled
exceptions, an event handler in C# WPF was used.

To capture user interaction, screenshots were taken for
mouse clicks, mouse scroll, button clicks and specified key-
board shortcuts. All screenshots contained a timestamp to make
it possible to follow the interaction between user and computer
in a sequential order. All saved logs, except for the exception
logs, were accompanied by a screenshot. The purpose of the
screenshots was to allow developers to view what actions a
user had taken; it made it for instance possible to view what
a user did before an exception occurred or how a user used a
certain feature.

C. GUI Module
The GUI module was developed in C# WPF. The GUI

module displays data for a selected individual user or aggre-
gated data for all users. Special sub-menus for statistics and
features sub-menus were available for both one selected user as
well as in the form of aggregated data from all users. A figure
of the statistics view for one users is displayed in Figure 1. The
statistics sub-menu contains information about the following:

• Most common exceptions
• Most used features
• Most called methods
• At what time of day the application is used

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 61 / 154

Figure 1. Statistics sub-menu showing: most called methods, when an
application is used, most common exceptions and most used features

General information presented about an application in-
cluded the following: (i) total number of users, (ii) average
number of sessions per user, (iii) average sessions which
crashed the application per user, (iv) total number of sessions
which crashed the application, (v) total number of sessions, (vi)
average time for a session, (vii) average number of different
flows used per session, and (viii) average number of features
used per session.

Defining features as sequences of method-calls
In order to know how the users of an application use

its features, those features need to be defined in some way.
This was achieved through the GUI module, which provided
functionality for defining and mapping what method calls a
feature consists of.

To give a concrete example of feature definition, we can
consider the previously mentioned PersonDatabase application.
This application enabled its users to add a person to a database
by pressing an add button, then entering the first and last names
in respective input boxes, and finally clicking on a save button.
In this case, it seems reasonable that the add feature finishes
when the save button has been pressed. The above scenario will
trigger methods to be called in the application, and all method-
calls are logged by default. The add feature can therefore be
defined as a sequence of method calls that begins when the
user clicks on the add button and ends when the user clicks
on the save button. The feature definition is therefore kept
completely detached from the source code of the application
that is being logged. This also makes it possible to re-define
features at will, without affecting the underlying data.

In addition to a sequence of method-calls being mapped
to a feature, there can be several flows leading to the same
feature being used. For example, a person could be added
to PersonDatabase by using an add button or perhaps by
using a keyboard shortcut. Each flow is defined by one or
several events, where an event is a method-call that has been
defined by developers as important using the GUI module. An
example of an event would be the first method-call triggered
when clicking the add button. When executing the feature
calculation, all method-calls are mapped to the defined events.
In case there is a defined event for a method-call, the method-
call will be marked as an event. After all the events have
been found, they are iteratively mapped towards flows. If the
events appear in a sequence, as defined by a flow, the flow
is marked as having been used once — together with the

feature that is represented by the flow. In this way, it is possible
to calculate statistics about feature usage. How the mapping
process functions is illustrated in Figure 2.

Figure 2. The different steps in the mapping of a feature.

After the features have been mapped using the method in
Figure 2, various statistics can then be viewed in the GUI
module. The feature usage view for all users is displayed in
Figure 3.

Figure 3. Feature statistics. The bottom row shows data on feature flows

For every feature, it is possible to view statistics for the
average execution time, number of times it was used, how
many session have used it, and the percentage of users that
have used it. Information about the flows for the feature is
available and provides statistics for how many times each flow
has been used, how many users have used the flow and what
the average time for each flow is. A similar view is shown if
a single user is selected.

V. EVALUATION RESULTS

After development had ceased and all data had been
gathered, the results were evaluated and conclusions drawn.

A. Measurements
The average time it took to run a pre-defined sequence of

steps in ScreenToGif, PersonDatabase and Application X with
and without the logging component is summarized in Table I.
The sequence of steps was automatically executed 100 times
and the results then averaged. The data gathered was then
tested by using a t-test with α = 0.05 to see if there was
any significant difference in execution time with and without
the logging component. For PersonDatabase and ScreenToGif
there was a significant difference, but not for Application X.
For PersonDatabase and ScreenToGif the difference observed
is therefore likely caused by the integration of the logging
component. The data collected for Application X had a much

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 62 / 154

higher variance than the data collected for the other two appli-
cations, which is the reason to why no significant difference
could be confirmed.

The performance measurements therefore indicate that the
logging component has some negative effect on the perfor-
mance of an application. How large the effect is depends on the
nature of the logged application. For instance, an application
which has a method that is called thousands of times during
a short interval will likely create latency issues and might
even cause the logging component to run out of memory. In
those cases it would be necessary to disable logging for that
particular method. What the performance measurements appear
to show is that in most cases the time difference is within an
acceptable range, as the observed time difference in all three
cases would be quite hard for a regular user to notice.

TABLE I. AVERAGE TIME TO EXECUTE A SEQUENCE OF STEPS

PersonDatabase ScreenToGif Application X
With the logging component 43.88 s 18.23 s 56.36 s
Without the logging component 42.64 s 17.44 s 55.87 s
Difference 1.24 s 0.79 s 0.49 s

Measurements of CPU usage were gathered using a CPU
measurement tool in Visual Studio by running PersonDatabase
and ScreenToGif with the logging component. The results
are presented in Table II. The CPU usage of the logging
component was divided into three areas: method-call, screen
events and buffer & DB (database). The logging component
constituted 25.93% of the CPU usage of PersonDatabase and
11.91% of the CPU usage of ScreenToGif. The reason for the
large difference is that ScreenToGif requires more CPU com-
putation in general just to run the application. PersonDatabase
is a small application with a relative low CPU usage.

TABLE II. HOW MUCH OF THE TOTAL CPU POWER OF AN
APPLICATION THE LOGGING COMPONENT USES

Method-call Screen Events Buffer & DB Total
PersonDatabase 0.55 % 14.01 % 11.37 % 25.93 %
ScreenToGif 0.2 % 4.45 % 7.26 % 11.91 %

To measure the size of the data generated by the logging
component, a built in measurement tool in MongoDB was
used. The size of an individual image and of a log statement
for a method-call was calculated from the data. The results are
presented in Tables III and IV. Count defines how many logs
the database contained and average object size is calculated
by dividing the total size with count.

TABLE III. DATABASE SIZE FOR STORING IMAGES

Approx. Image Size Count Total Size Avg. Object Size
Small (300x350) 560 7200 kB 12.86 kB
Medium (880x600) 200 12907 kB 64.5 kB
Large (1550x840) 206 26416 kB 128.23 kB

TABLE IV. DATABASE SIZE FOR STORING METHOD-CALLS

Application Count Total Size Avg. Object Size
PersonDatabase 17452 8656 kB 0.496 kB
ScreenToGif 6475 3217 kB 0,496 kB

B. Interviews
In order to evaluate whether an external logging component

could be used to aid software development by providing devel-
opers with information about usage patterns, two workshops
were held to obtain qualitative data. The participants in the
first workshop were four students in the Software Engineering
M.Sc. programme at Chalmers University of Technology. This
workshop was used as a pilot study before conducting the
workshop at our industrial partner. All of the subjects consid-
ered software development to be their area of work and they
all had previous industrial experience which ranged from 2 to
7 years. The main findings from the workshop were:

1) The integration process using weaving was perceived
as straightforward as it required only a few mouse
clicks in the Visual Studio GUI.

2) A set of situations when the logging component
should be modified — e.g., a case of a function which
crashed when being logged (because of buffers) —
were noted.

3) The logging component was not found to hinder
application performance. Furthermore, a suggestion
was raised that logging component could be used to
re-architecture an application to its improve perfor-
mance.

4) It was considered essential to conduct a survey to find
how users would perceive being logged.

The second workshop was held at Diadrom and the par-
ticipants were four developers with years of experience in
developing software applications. All participants had previous
experience with Visual Studio and all had used logging tools
of some kind at some point. The target application which the
logging component was integrated with in the workshop was
built for a Swedish aerospace company. The results were:

1) The practitioners perceived the integration process to
be straightforward.

2) The practitioners suggested further uses — for in-
stance customization of which design-time elements
should be logged (e.g., namespaces).

3) The practitioners identified further development areas
— e.g., a management view, adding temporal aspects
or presentation of user clicks as a heat-map.

Finally, the participants concluded that they would not
mind using an application which was logged by the logging
component — as long as the data was not used to try to
measure the productivity or performance of an employee. As
long as the logging component was used for debugging or
developmental purposes, they found logging to be acceptable.

C. Survey
It was considered essential to conduct an initial survey to

find how users of an application would perceive being logged.
This was evaluated by presenting the logging component to
employees at four different companies in Sweden, and after-
wards handing out a survey. The total number of participants
in the survey was 27, of which 16 were software developers,
8 worked in management, and 3 worked in other fields. No
participant had less than 2 years of work experience, and nearly
50% had 10 or more years of work experience.

The participants were also asked about the developmental
perspective. Over 90% of the participants said that they knew

54Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 63 / 154

of a project where the logging component would have been
useful, and 100% of the participants thought that the logging
component had potential to provide information that could
aid in the further development of an application. Just under
90% of the participants thought that the logging component
had potential to provide information that would facilitate the
debugging of an application.

Three questions were asked to query how users would per-
ceive being logged. The participants were first asked whether
they would be comfortable using an application for their own
private matters if they knew that it was being logged. As
Figure 4 shows, 60% of the respondents said that they would
not be comfortable with using a logged application for private
matters. The participants were then asked whether they would
be comfortable using an application at work if they knew that it
was being logged. In this case, the results were very different.
As Figure 5 shows, only 3 out of 27 participants – around 10%
– answered that they would not be comfortable with this.

Q: I would be comfortable if an application that I use for
private matters is being logged by the logging component

Figure 4. Comfort with using an logged application for private matters.

Q: I would be comfortable if an application that I use at
work is being logged by the logging component

Figure 5. Comfort with using a logged application at work.

Finally, the participants were asked whether they would be
more comfortable using an application that is being logged
at work rather than one they use for private matters. 20 out
of 27 answered that they would be more comfortable using a
logged application at work than at home, while 7 participants
answered that they felt that was no difference between the two.
These results therefore suggest that the context in which the
logging component is used can greatly affect the perception
of users about whether logging is acceptable or not. Using a
logged application at work, for instance, seems to be much
more tolerable for most people rather than using a logged
application at home.

VI. CONCLUSIONS

Continuous deployment, experiment systems and user-
centered software engineering approaches have become very
popular in modern software development. However, there are
still challenges, such as how to add logging functionality to an

application, what to log, and how to translate low-level logging
data into knowledge about how product features are used by
their users. In this paper, we contributed by developing and
evaluating a logging component which could be integrated with
a product without affecting its source code, and which added
negligible performance penalties. It was found to provide
developers with informative data on how a product is used
by enabling them to define features and then visualize how
they are used. Since this style of logging can lead to ethical
issues, we conducted a survey with 27 participants at four
different companies to initially assess the attitude of users to
being logged. The results from the survey showed that users
consider the logging process to be acceptable as long as they
are informed of it, and if the logged application is not one that
they use for private matters.

REFERENCES
[1] M. Staron, W. Meding, and K. Palm, “Release Readiness Indicator for

Mature Agile and Lean Software Development Projects,” in Agile Pro-
cesses in Software Engineering and Extreme Programming. Springer,
2012, pp. 93–107.

[2] B. Fitzgerald and K.-J. Stol, “Continuous software engineering and
beyond: trends and challenges,” in Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering. ACM, 2014,
pp. 1–9.

[3] J. Bosch, Continuous Software Engineering. Springer, 2014.
[4] E. Lindgren and J. Münch, “Software development as an experiment

system: A qualitative survey on the state of the practice,” in Agile Pro-
cesses, in Software Engineering, and Extreme Programming. Springer,
2015, pp. 117–128.

[5] H. H. Olsson and J. Bosch, “Post-deployment data collection in
software-intensive embedded products,” in Continuous Software Engi-
neering. Springer, 2014, pp. 143–154.

[6] R. Veeraraghavan, G. Singh, K. Toyama, and D. Menon, “Kiosk
usage measurement using a software logging tool,” in Information
and Communication Technologies and Development, 2006. ICTD’06.
International Conference on. IEEE, 2006, pp. 317–324.

[7] T. Menzies and T. Zimmermann, “Goldfish bowl panel: software
development analytics,” in Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 2012, pp. 1032–1033.

[8] A. Steiber and S. Alänge, “A corporate system for continuous in-
novation: the case of google inc.” European Journal of Innovation
Management, vol. 16, no. 2, 2013, pp. 243–264.

[9] E. Backlund, M. Bolle, M. Tichy, H. H. Olsson, and J. Bosch, “Au-
tomated User Interaction Analysis for Workflow-based Web Portals,”
in Software Business. Towards Continuous Value Delivery. Springer,
2014, pp. 148–162.

[10] H. H. Olsson and J. Bosch, “The hypex model: From opinions to data-
driven software development,” in Continuous Software Engineering.
Springer, 2014, pp. 155–164.

[11] E. Borjesson and R. Feldt, “Automated System Testing Using Visual
GUI Testing Tools: A Comparative Study in Industry,” in Software Test-
ing, Verification and Validation (ICST), 2012 IEEE Fifth International
Conference on. IEEE, 2012, pp. 350–359.

[12] R. Feldt, M. Staron, E. Hult, and T. Liljegren, “Supporting software
decision meetings: Heatmaps for visualising test and code measure-
ments,” in Software Engineering and Advanced Applications (SEAA),
2013 39th EUROMICRO Conference on. IEEE, 2013, pp. 62–69.

[13] V. Vaishnavi and W. Kuechler, “Design Research in Information Sys-
tems,” 2004.

[14] R. H. von Alan, S. T. March, J. Park, and S. Ram, “Design Science
in Information Systems Research,” MIS quarterly, vol. 28, no. 1, 2004,
pp. 75–105.

[15] P. Runeson and M. Höst, “Guidelines for Conducting and Reporting
Case Study Research in Software Engineering,” Empirical software
engineering, vol. 14, no. 2, 2009, pp. 131–164.

[16] Nicke Manarin. ScreenToGif. [Online]. Available:
https://screentogif.codeplex.com (Retrieved: January 2016)

55Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 64 / 154

The ICT Measurement System
Definition, components and a maturity evaluation approach.

Roberto Meli
CEO

Data Processing Organization Srl
Rome, Italy

email: roberto.meli@dpo.it

Abstract— The measurement of ICT (Information &
Communication Technologies) processes and related products /
services is often experienced, by the organizations which make
them for themselves or for the market, as a too expensive
activity that slows down the primary production activities.
Nevertheless, the "measurement of ICT" can give a strong
support to its governance. Rarely measurement is perceived as
an opportunity, most often as a threat. Many measurement
initiatives, in the past, were not successful in becoming stable
frameworks for supporting software processes. A formalized
ICT-Measurement System (ICT-MS) can facilitate to position
the "seemingly expensive" measurement activities in the
context of corporate governance which, at least, makes them
more justified, productive and interesting for the management
and for the other involved stakeholders. An ICT-MS is a
governance tool for both the contractual relations between
customers and suppliers and the internal production processes.
This paper outlines the rationale for the construction of an
ICT-MS; it focuses on the differences between a Measurement
System, a Measurement Program and a Measurement Plan; it
analyzes the ICT-MS into its constituent parts; it provides
useful indications for a custom path of construction of the ICT-
MS. At the end, a simple maturity model is sketched to allow
assessing the maturity and adequacy of an ICT-MS as a
function of specific context variables.

Keywords- ICT Measurement System; Metrics Program;
maturity model.

I. INTRODUCTION
The measurement of ICT processes and of their related

products / services is often perceived, by people in charge of
production, as an unnecessary activity disturbing the primary
workflow of system deployment. If it is practiced, it is often
done to fulfill contractual obligations, sometimes to formally
answer to necessary requisites for a certification of quality or
of a maturity level (i.e., CMM-I model). Measurement is
rarely perceived as a management opportunity, more often as
a threat. It is not easy to win this prejudice if measurement
remains a facultative and naive task left to the personal
initiative of individual analysts or project managers.

A formalized ICT Measurement System allows to
position this "apparently useless" measurement activity in a
context of business governance that, if nothing else, makes it
explicit, integrated into the production processes, cost
effective and valuable for the management and for the other
involved stakeholders. Measurement may be done at
different levels in the ICT organization: at a project level it

gives information about the progress and the state of a
specific project; at the portfolio level it gives information
about the global usage of organizational resources and the
progress and the state of the totality of interacting projects; at
the process level, it gives information about the general
behavior of projects and the statistically derived trends over
time, at the Organizational Unit it gives information about
the efficiency and effectiveness of the structure.

It is essential, in our opinion, to recognize that
"measurement of ICT" can give a strong support to its
governance and that, in most organizations, any activity
which is not continuously fed with resources and managerial
attention is destined to decline or to rapidly reach the
cemetery of good ideas and intentions. This is why it is
preferable to speak about a "Measurement System" more
than a "Measurement Program". As defined in [1], a Program
is "a group of related projects, subprograms and programs
activities managed in a coordinated way to obtain benefits
not available from managing them individually." A Program,
by definition, has a start and an end point for activities; it is
not a permanent endeavor. On the contrary, measurement
should be conceived as a permanent service for the
organization so it should be associated with a stable
structure. The present paper is composed of seven sections
plus references: Section 1 is the introduction; Section 2 is the
definition and qualification of an ICT Measurement System;
Section 3 is devoted to the description of the main available
resources and standards; Section 4 describes the several
components of an ICT-MS; Section 5 is centered on the ICT-
MS life cycle from start-up to on-going operations; Section 6
presents a draft of a capability model for ICT-MS; Section 7
contains a short Case Study description; Section 8 presents
the conclusions.

II. ICT MEASUREMENT SYSTEM DEFINITION
Very often, terms like Metrics Program and

Measurement Plan are used by the software engineering
community [1]-[8], but what are the differences among a
Metrics Program, a Measurement Plan and an ICT
Measurement System?

A Metrics Program is an initiative to promote the usage
of a measurement process in the organization: it is a project
oriented effort; in other words, it is temporary. A
Measurement Program has a specific and obtainable set of
goals to be achieved within a limited and predefined budget
and time. Resources are not assigned to a specific

56Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 65 / 154

permanent organizational unit on a repetitive and regular
base but dynamically allocated to the Program according to
a specific plan. A Metrics Program usually deploys
deliverables and not continuous services.

A Measurement Plan is a project related document
describing all that is needed to implement the measurement
process within a specific ICT project. It lives with the
associated project and does not survive to it.

Fredreiksen H.D. and Mathiassen L. in [7] stated that
"To be successful, a metrics program should be planned in
context with an organization’s processes, structures, climate,
and power". This leads toward a more extensive approach to
the subject, an approach which is not limited by the projects
constraints and capable to survive to its start up phase.

An ICT Measurement System is something more than a
process: it may be defined as a living operational
sociotechnical system deputed to the management of the
measurement aspects of the ICT processes and products /
services [9]. It represents a governance tool both of the
contractual relationships between clients and suppliers and
of the internal production processes. An ICT-MS
contributes to the enhancement of the processes involved in
the management, design, implementation and delivery of
projects and ICT services. Its purposes are mostly devoted
to support process improvement, the governance of the
incoming / outgoing supplies, benchmarking, calculating
and monitoring of productivity, cost, time and quality.

The adoption of a metrics system involves the definition,
collection and use of a set of metrics and rules of use related
to the various organizational levels which will be composed
in such a way as to favor the understanding of the business
performance. The ICT-MS is the best tool to develop the
culture and practice of measurement of ICT business in
organizations and include them in their 'genetic code'.

An ICT Measurement System (Figure 1) is composed of
various elements: Processes, Methods, Techniques, Tools,
Infrastructures, Information Systems, Organizational
Structures, Competencies, Motivations. An ICT
Measurement System is the only permanent entity capable
to supply adequate measurement services to the staff that
needs them.

Measuring ICT systems and related services thus

requires dedicated resources, expertise, time, equipment and
organization. This activity is often seen as a too expensive
task that slows down the primary development activities.
Just because of the actual difficult market conditions,
unfortunately, public and private organizations are less

motivated to stake resources to ensure the performance of
the measurements, without having a confidence about the
extent of the economic return associated with such
resources. A paradoxical situation, then, occurs: not
investing resources in the culture and practices of measuring
generate wastes in the management of projects that affect
willingness and capability to invest in areas that are not
clear in terms of returns, thus creating a vicious cycle that is
difficult to break. A formalized ICT-MS can facilitate to
position the "seemingly expensive" measurement activities
in the context of corporate governance which, at least,
makes them more justified, productive and interesting for
the management and for the other involved stakeholders.

III. RELEVANT RESOURCES AND STANDARDS FOR AN ICT
MEASUREMENT SYSTEM

Several detailed resources are available to guide the
implementation of a measurement process. Unfortunately,
they do not cover adequately the constitution of the ICT-MS
as a company’s permanent system but are, anyway, precious
sources of information for some of the major components of
that system. Specifically, there are some de facto and de jure
standards helping the identification of: stakeholders,
information requirements, activities, tools, deliverables of a
measurement process. Figure 2 clarifies the relationships
among the main standards and models.

The ISO/IEC 15939 standard [10] and the Practical

Software Measurement framework (PSM) [7], describe a
Measurement Process and its related Measurement
Information Model (MIM). These models are the reference
guides for anyone involved in the field. They outline a
project oriented measurement process in terms of
information models, activities and results. Other important
available resources are: the Capability Maturity Model
Integration (CMM-I) [11], the “Guidelines to Software

ISO/IEC
25040:2011

ISO/IEC
14143

ISO
9001:2015

ISO/IEC 15504

ISO/IEC
15939:2007

ISO/IEC
12207:2008

ISO/IEC/IEEE
15288:2015

ISO/IEC TR 9126
ISO/IEC 250XX

Figure 2. Available Standards & Models for ICT measurement

Tools /
Infrastructures

Methods & Techniques

Organizational
Structures

Motivations

Information
Systems Competencies

Processes

Measurement System

Figure 1. ICT Measurement System components

57Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 66 / 154

Measurement” by IFPUG [4] and the Software Engineering
Body of Knowledge (SWEBOK) [12].

A. ISO/IEC 15939
Figure 3, extracted from the standard documentation,

shows the flow of activities and their relations.

The ISO approach muddles up activities needed to build

up a permanent ICT-MS with activities needed at the
temporary project level. Actual practices suggest to keep
them separate to be more effective and efficient. The cycle
shown in Figure 3 could be covered at various levels: the
project level and the portfolio level (both of them being
temporary), the functional level and the ICT-MS level (both
of them being permanent). Information needs are different at
all levels and feedback loops have different timings.

B. Practical Software Measurement (PSM)

In this model, the differentiation between actions at the
system level and actions at the project level is clearer
although a permanent system is not explicitly identified and
suggested. Section 5 of the First Part of the Practical
Software and System Measurement guide is devoted to the
'Enterprise and Organizational Context' from which the
following Figure 4 has been extracted. PSM approach is
still very “project” oriented and the global organizational
context is not completely covered at the same detailed level
as the project is.

C. CMM-I.
CMM-I is a set of best practices used to help an

organization succeed. Best practices are grouped by
activities (Process Areas) like Requirement, Risk,
Configuration, Planning, etc. One of the Support Process
Areas is “Measurement & Analysis”, whose purpose is to
develop and sustain a measurement capability that is used to
support management information needs. This area is
positioned at Maturity Level 2. This means that it is
considered as a basic subject that should be metabolized by
most organizations. Also this framework is process / project
oriented (Figure 5) and it is not centred on permanent
structures to perform measurement activities.

D. Guidelines to Software Measurement (IFPUG)
This document has a section named " Implementing and

Sustaining a Software Measurement Program", which
"provides guidelines for both implementing and sustaining a
software measurement program using a project based
approach. " The main sections are:

• Introduction
• Stakeholders and Participants
• Features, Benefits and Applicability
• Implementation Methods
• Considerations and Issues
• Sustaining a Software Measurement Program

In this document, too, a project oriented approach is

outlined. No information about how to build and run a
permanent measurement system.

E. SWEBOK
The Software Engineering Body of Knowledge

(SWEBOK) covers the measurement theme in a light way.
The measurement issues are embedded into the Engineering
Foundations and in other related areas like Software
Requirements, Software Engineering Management,
Software Quality but a general framework is missing and a
"project/process" view is adopted.

Figure 4. Enterprise & Organizational Context

Figure 3. Measurement activities according to ISO/IEC 15939

Measurement
Plan

Measurement
Repository

Procedures
& Tools

Measurement
Indicators

 SP 1.1
Establish

Measurement
Objectives

 SP 1.2
Specify

Measures

SP 1.3
Specify

Data Collection
Procedures

 SP 1.4
Specify
Analysis

Procedures

SP 2.4
Communicate

Results SP 2.3
Store Data
& Results

 SP 2.2
Analyze

Data

 SP 2.1
Collect

Data

Figure 5. CMM-I – PA “Measurement & Analysis”

58Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 67 / 154

F. Resources Summary
To summarize, it is possible to state that there is a large

amount of useful information and models about how to run
a Metrics Program or initiative and about how to measure
and analyse specific products and processes, but there is less
documented knowledge about the building of permanent
ICT-MS. Specifically, the following points are not clearly
addressed:

• support a project manager in using measures to
manage a project;

• support a service manager in using measures to
manage continuous services

• support a line manager to use measures to manage the
business units

• create and maintain a permanent structure capable to
supply measurement services in an explicit and
recognizable way and to evolve itself to follow the
business needs.

This paper describes a model/framework that could help

organizations in defining their own paths to achieve
permanent results in the goal of adopting measurement as a
common practice to make ICT governance.

IV. ICT-MS COMPONENTS
In this section, the main components of an ICT-MS

(Figure 6) will be highlighted: Services, Processes,
Methods & Techniques, Tools, Information System,
Organization, Competencies and Motivations.

A. Services

An ICT-MS should supply, as a priority, the following
general services:

• identification of indicators and metrics required at various

levels of the organization
• choice of measurement standards and definition of internal

guidelines
• maintenance of measurement processes and tools
• creation and maintenance of the database of ICT measures

• management of a metrics documentation centre (paper /
intranet)

• active promotion and dissemination of standards, methods
and tools

• internal promotion and search for consensus on
measurement initiatives

• on line helpdesk
• internal / external (suppliers) auditing
• collection, processing and interpretation of the collected

data (reports, statistics, studies, analysis, benchmarking)
• modelling productivity and internal / external

benchmarking
• reports to the Management and Organizational Units
• overall improvement of the metric system itself (model of

productivity calibration, development of procedures,
guidelines update, etc.)

and hopefully:
• research / testing / publication in measurement subjects
• external representation
• participation in technical conference events and external

initiatives

The main services to the project and ICT service
management should be the following:

• sizing Products and ICT Services
• supporting effort, time, cost and staff forecasts
• consulting projects or service units on measurements,

estimates, surveys of interest on projects and applications
• support in the drafting of documents for (active and

passive) procurement and contracts
• support in the negotiation and management of disputes

The main services to the top management should be the

following:
• internal benchmarking
• external benchmarking
• asset sizing
• multilevel reporting
• feeding of Balanced Scorecard or dashboards

B. Processes
The processes of a ICT-MS should be identified, shared

and described in documents of the Quality Management
System. Documenting an ICT-MS requires both writing
specific procedures and changing those ruling the
production and delivery of ICT products and services. If
measurement is integrated in the usual production processes
then more reliable data will actually be collected. If
measurement is perceived as a task that does not contribute
to the project then involved stakeholders may resist
providing reliable data.

Tools /
Infrastructures

Methods & Techniques

Organizational
Structures

Motivations

Information
Systems Competencies

Processes

Measurement System

Figure 6. ICT-MS on-going components

59Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 68 / 154

C. Methods, Techniques and Tools, Infrastructures
The choice of methods, techniques and tools must be

done in strict accordance with the goals and objects of
measurement. The techniques are specific business
approaches, described by objectives, deliverables, work
steps, means, standards used etc. that can achieve limited
results within a broader methodological framework. For
example 'the structured interview' is a technique for data
collection that can be adopted in different methodological
framework. Tools are usually software applications that
support the use of techniques and methods or they are
collections of templates or documents.

Organizations often reverse the correct sequence that
starts from information needs, derives necessary metrics,
sets out the responsibilities of measurement and identify the
techniques and tools needed.

Pressed by market forces and victims of too simplified
approaches, so captivating as inconclusive, the manager
who is not particularly well-informed believes that with the
purchase of last generation tools, all the problems of
measuring ICT are automatically and magically solved.

Despite the bitter disappointments in the ICT history
when technologies have substituted "system thinking", it is
always much easier to acquire a tool than designing a major
organizational change.

If properly attributable to the role for which they were

born - helping and not replacing human expertise - the tools
are invaluable for several reasons: they
• ensure greater uniformity and standardization of

measurements made in different contexts;
• can automate repetitive and boring work parts of

measurement, accelerating related processes and
making them, consequently, less expensive;

• can automatically detect some measures from the
products or services;

• allow cross-checks that are difficult to achieve
manually;

• reduce the possibility of errors and render the
measurement more reliable;

• can 'capture' knowledge and make it available to people
with little experience.

According to the PSM framework, tools can be

classified as follows:

D. Information System

The information system of the organization should be
prepared or modified to permit, as smoothly as possible, the
collection, processing and distribution of basic data and
indicators. Sometimes it is necessary to juxtapose "official"
data and "unofficial but real" data. This is why the
connection between business information systems and
support systems for measurement can not be mechanistic
but should have to be flexible and configurable. For
example, it is possible that in some organizations it is not
officially allowed to register and charge the staff overtime to
the projects, however, this does not mean that the overtime
is not done. Very often professionals are involved beyond
the pure material compensation and they prefer to release a
good product even if it will cost some or many hours of
unpaid work. In this way the accounting figure does not
keep track of what actually happens and the apparent
productivity will be better than the real one. In this way the
estimates that will be made on future projects from the
current actual data will contain a systematic
underestimation.

Since there are many stakeholders in the process, the

tools should be modular:

TABLE 1 CLASSIFICATION OF TOOLS TO SUPPORT THE
MEASUREMENT FUNCTIONS

60Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 69 / 154

If we have a look at Figure 7, [13] and we start from the

bottom, we can identify:

Data Collections Services: in any office environment

there are a lot of sources which can provide data. There will
be many Excel files, sometimes some XML or Text files
(CSV), usually a lot of data bases (ERP, etc.), and a lot of
tools (configuration management, change request
management, planning, requirement management, test, ….).

It is very important that the M&A solution provides
services that help one easily build a new data collector and
reuse it at any time. It should be possible to adapt it to a new
situation. The data collector should automate the collection
of data, as frequently as one needs, and wherever the
sources are.

M&A Repository: this is the knowledge database.

Histories of projects will help to predict the future with
accuracy. In general, this is an SQL database.

Indicators Library: once an indicator is specified, it

must be possible to reuse it on another project. The other
project could also reuse an extractor. The entire M&A
system must be designed with a "reuse" approach. In large
organizations having a lot of projects and a good level of
process maturity, it is important to build a project dashboard
in a few seconds. In the Library, it should be also possible to
find templates of indicators, like curves’ profiles.

Publication services: the purpose of this component is

to provide the information products to the allowed people,
with security management. The dashboard must be
accessible through the web, wherever the user is, always
updated.

E. Organization
The organization of an ICT-MS can take different forms

and structures depending on a number of variables to be

considered. The main structural options concern the degree
of centralization / decentralization of the measurement
function with respect to the production structures, its size in
terms of human resources and the mixture of insourcing /
outsourcing.

A centralized function concentratesamong
 under one manager all the necessary professional

resources devoted to the provision of metrological services,
has a budget for the procurement of products and consulting
and is particularly suitable to attract and retain talent in the
field of software measurement. A structure of this type
provides services to the rest of the organization as any other
supporting techno-structure. It can define service level
agreements and internal protocols of services engagement.

Among the advantages of a centralized organization,

with respect to a distributed one, we include the following
points:
• guarantee of greater consistency in measurement
• development of specific professional roles
• better management of interproject priorities
• reduction of redundant costs
• easy sharing of the know-how

Among the disadvantages:
• greater organizational effort
• dependence of the projects by an "external" body
• greater complexity of planning
• less awareness on the issues of measurement by

productive staff
• possible rejection as a "foreign body" by the production

facilities

With respect to the dimensioning of the measurement
organizational units, observe that it must be calibrated in
function of the requests for service which, in turn, depend
on the number of projects / services to be performed, the
degree of maturity of the processes, from the extension of
the field of application of measures / estimates, the number
of measures to be taken, the degree of turbulence of the
processes, the degree of formality of the contractual aspects
associated with products / services ICT and other factors.

Finally, regarding the mixture of outsourcing /
insourcing options, it can be said that, being the
measurement service associated with a process that does not
belong to the repertoire of "core processes" and being very
easily measurable in itself, it is an ideal candidate for a full
outsourcing. Any choice, going from a total delegation to an
exclusively internal service, is possible. Full outsourcing
may be a starting point in order to have a very quick
activation of the system using external expertise. As soon as
the maturity of organization and internal skill grow up at a
sufficient level it is possible to internalize many activities. A
balanced outsourcing may be an arrival point using external
resources to complement internal capabilities for peak

Publication services

Indicators Library

M&A Repository

Data Collection Services

Excel XML CSV Data
Bases Tools

Direction Project Quality & SEPG Integrator

Figure 7. Information System architecture

61Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 70 / 154

workloads or the provision of very specialized and unusual
skills at the state of the art. In any case the government of
the whole process must remain an internal capability.

Factors to consider when choosing organizational

options are:

• Company size
• Frequency of use of the measures
• Average level of measurement experience
• Cultural maturity in measurement subjects
• Level of awareness and managerial support
• Specificity of application domains
• Resources overload
• Confidentiality domain.

In an ICT Measurement System, there are at least 3

categories of persons.

• Project : People who are developing and maintaining
the software or system

o Provide objective information
o Provide subjective information
o Attend training
o Produce lessons-learned experience
o Use provided processes and models

• Measurement & Analysis Team: people who

understand, assess and refine the ICT-MS

o Analyse experiences
o Develop models and relationships
o Produce standards and training
o Provide measurement services
o Provide feedback

• Technical Support: people who maintain the

information repository

o Write data collection procedure
o Establish database structure
o Quality Assurance
o Archive data and documents

F. Competencies
Staff skills are critical to the success of the measurement

process. Depending on the adopted organizational solutions
it may be possible to engage new already trained personnel
otherwise it will be necessary to identify internal candidates
and to develop their professional skills. The level of rapid
obsolescence of the industry is such that training must be
continued and implemented both through traditional
classroom interventions and through e-learning and self-
training options. It is often necessary or appropriate to

pursue certification of competencies regarding specific
methods. Of course, the learning path will be different for
every position in the ICT-MS.

To be able to manage its tasks, the M&A team should
have a lot of technical skills for building measurement
plans, Balanced Score cards, Tableaux de Bord, GQ(I)M
(Goal Question (Indicator) Metric), SPC (Statistical Process
Control), ETL (Extract Transform Load Techniques),
Estimate, benchmark, causal analysis, Function Point
Analysis, SLOC (Source Line Of Code), Earned Value
Analysis, etc.

In addition to technical competencies it should be
considered that the measurement professional must play a
consultant role interacting with people not often very happy
to be involved and sometimes impatient to go back to
programming and "producing". Soft skills are then as
important as technical knowledge.

G. Motivations
As written, a metric system that does not provide

motivation (rewards and penalties), for the application of
measurement procedures will not be used reliably. We must
develop the whole project of creation of the Metric System
around the understanding of the true goals of the people
involved, their interests, attitudes, approaches, cultural and
operational needs. The measures, once developed the correct
preparation of the field, may also become an instrument of
evaluation of individual performance, but this takes time
and organizational maturity: it is not advisable to start with
this goal in mind, it is an arrival point and not a starting
point. The system of measures should be designed so that all
persons involved in the process of collecting, processing and
distribution of information and metrics understand why and
what they are doing and, possibly, what benefits brings
them.

V. ICT-MS LIFE CYCLE
As we have seen, an ICT-MS is a permanent entity that

provides services throughout the organization on an ongoing
basis. No organizational system, however, is created and
evolves on its own, there must be an organized and
temporary effort whose purpose is the design, construction
and start-up of the system itself. The supporting activities
that have not responsible in the organization and resources
allocated to them tend to fall on deaf ears after an initial
period of general curiosity. A key to success, for the
establishment of an ICT-MS, is the ability of the sponsor to
set a credible cost / benefit analysis. We need to imagine the
extent of intervention on ICT business support as a systemic
initiative in which the various cultural, organizational and
technical elements are combined in a harmonious and
structured way. So the evolution of the ICT-MS, once
started, will be guaranteed by specific improvement
initiatives, i.e., change projects (Figure 8).

62Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 71 / 154

The basic prerequisites for the success of an ICT-MS

are:
• the metric system and its objectives are supported by the

management;
• measurement must provide added value to all parties

involved in the collection, measurement and analysis
of historical data;

• the ICT-MS must cooperate and do not come into
conflict with other operating systems in an
organization, reusing as much as possible of existing
assets.

A master plan for a metrics program (building an ICT-

MS) may include the following points:
• Setting goals and benefits of the metrics system and its

creation project
• Identification of the relevant stakeholders
• Obtaining sponsorship
• Communication and promotion of the initiative
• Identify roles and responsibilities of project
• Preliminary definition of the metrics to be adopted
• Defining procedures and measuring tools
• Definition and management of training plans
• Releasing into operations the ICT-MS

VI. ICT-MS CAPABILITY ASSESSMENT
As in many other ICT areas, it is possible and useful to

define a model to assess the capability of an ICT-MS.
Currently, there is no specific model for Measurement
Systems but measurement is present in many frameworks to
assess the global capabilities of ICT organizations like
CMM-I, OPM3 [14], Prado [15]. A capability assessment is
useful to benchmark an organization in this area and to
design an evolutionary path for improvement.

A. Capability
Measurement capabilities depend significantly on how

the ICT-MS was designed and created, but also by the three
other factors shown in Figure 9: commercial practices,
competitive context and managerial commitment.

The first factor is the mode of relationship between

customers / suppliers. If they are focused on management of
social relational and adaptive behaviour based on mutual
compromises and agreements of a 'political' type, hardly the
measure will emerge as a real need, because it takes away
flexibility in the implicit/explicit negotiations. Conversely,
if the relationships are based on the clear identification of
the reciprocal rights / duties and explicit assessment of the
interdependence of the factors of negotiation then the
measure will become essential to give practical support to
the negotiation process.

The second factor mentioned is the competitive context
in which a company or public administration is immersed.
Monopolistic demand or supply can lead to the superfluity
of the measure while the presence of a high number of
competitors pushes up the mechanisms of transparency and
quantitative comparison.

Finally, the orientation of management is crucial to
ensure sponsorship and directions for practical use of the
resources made available by the ICT-MS.

B. Maturity and Adequacy
Maturity is a general level of evolution of the system,

which is demonstrated by the possession of some practices
and properties considered as advanced by general
consensus. Adequacy is a different concept. It is related to
the relationship with the environment and its requests on the
organization but it is also a measure of internal consistency
of the different ICT-MS components. To be adequate means
to be consistent with the environment requests and that the
different components show an homogeneous level of
evolution. If the context of customers and rulers is informal
then a too formal measurement process is a threat instead of
an opportunity. The reverse is true too. If we have very
skilled measurement professionals but no defined processes
and no measurement tools then the ICT-MS is not adequate.
In order to be adequate, the organization must be flexible in
terms of the system components. Maturity and Adequacy
are not related one to each other: it is possible to be mature

Figure 8. start up and improvement of an ICT-MS

Figure 9. Measurement Capability

63Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 72 / 154

and not adequate or the opposite or any combination of the
two variables [16].

VII. A SHORT CASE STUDY
The framework outlined in this paper has been adopted

by the largest Italian regional ICT public company. In 2010
it started a project to build up an ICT-MS outsourcing the
services to start up the system and involving heavily internal
resources to go live with the system. The management was
satisfied with the results and after 5 years of life the ICT-
MS is a stable part of the organization. All the components
of the system were addressed properly starting from
knowledge evolution (traditional training and on the job
training) for more than 140 staffing units and progressing to
process and methods definition, tools adoptions, a partially
distributed organization (a central competence reference
staff and a distributed responsibility in organizational units),
administrative data definition, data collection procedures,
links to requirements management and analysis, formal
outsourcing documents and processes. Measurements goals
were added to Management By Objective (MBO)
framework to assess manager's performance over the years.
The initial start up project ended after 2 years but the
measurement activities are part of the ordinary production
processes and supported by ordinary budget. The evolution
of the ICT-MS is granted by the central functional staff.

VIII. CONCLUSIONS
This paper has presented a relatively new concept named

ICT-MS, which is different from Metrics Program that is
largely described in literature and standards. The highlight is
on the systemic approach and the permanent nature of the
system with respect to the "project" oriented approach. An
ICT-MS is crucial for the exploitation of the ICT
governance because it gives evidence, objectivity and
independence from individuals. Any organization interested
in the incorporation of measurement in its core processes
should devote adequate resources to the set up and
maintenance of an ICT-MS taking care of all the

components in an integrated way. To help grow in the most
efficient and effective way an ICT-MS Capability Model
may help in defining the "as is" situation as well as an
evolutionary path for improving.

REFERENCES
[1] PMI, "A Guide to the Project Management Body of Knowledge

(PMBOK Guide, 5th edition), PMI, pp. 9-10, 2013.
[2] IFPUG, "IT Measurement: Practical Advice from the Experts",

Addison-Wesley, ISBN: 020174158X, Part II Measurement Program
Approaches, 2002.

[3] IFPUG, "The IFPUG Guide to IT and Software Measurement",
Auerbach Publications, ISBN-10: 1439869308, Section V
Measurement Programs, 2012.

[4] IFPUG, "Guidelines to Software Measurement", release 2, 2004.
[5] Pressman R.S., "Software Engineering: A Practitioner's Approach,"

Sixth ed: McGraw-Hill, Chap. 2, 6, 7, pp. 22-26 , 2004.
[6] Fenton N.E., Pfleeger S.L., "Software Metrics: A Rigorous & Practical

Approach", 2/e, International Thomson Computer Press, Chap. 1-14,
1998.

[7] Fredreiksen H.D. and Mathiassen L., Information-centric assessment
of software metrics practices, IEEE Transactions on Engineering
Management, 52(3), 350–362, August 2005.

[8] Practical Software and Systems Measurement, PSM Guide,
http://www.psmsc.com/, Nov 2015.

[9] GUFPI-ISMA, Metriche del software. Esperienze e ricerche, Roberto
Meli, "The Metric System as a tool to regulate the processes of ICT
production and services ", ISBN: 9788846471390, Franco Angeli,
2006.

[10] ISO/IEC 15939:2007, http://www.iso.org/, Nov 2015.
[11] CMMI Institute, CMMI® for Development (CMMI-DEV), Version

1.3, http://cmmiinstitute.com/cmmi-models, Nov 2015.
[12] SWEBOK project, http://www.swebok.org, Nov 2015.
[13] Hamon Patrick, Meli Roberto, A successful roadmap for building

complex ICT indicators, SMEF 2007, Rome (IT),
http://www.dpo.it/smef2007/, Nov 2015.

[14] PMI, Organizational Project Management Maturity Model (OPM3®) –
Third Edition, 2013,
http://marketplace.pmi.org/Pages/ProductDetail.aspx?GMProduct=001
01463501, Nov 2015.

[15] Prado, PMMM model,
http://www.maturityresearch.com/novosite/en/index.html, Nov 2015.

[16] R.Meli, "Adequate maturity in Project Management", Il Project
Manager, Franco Angeli, fascicolo 2, 2010.

64Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 73 / 154

Distributed Asynchronous Focus Group Interviews

Gathering Requirements from Distributed Stakeholders Using Asynchronous Focus Group Methodology

Ulrike Hammerschall

Department of Computer Science and Mathematics
University of Applied Sciences Munich

Munich, Germany
ulrike.hammerschall@hm.edu

Abstract— Globally distributed project teams are a more and

more common trend in software development. Stakeholders

and development teams of the same project are situated in

different countries and time-zones. As a consequence,

coordination between team members relies heavily on suitable

online communication environments. This is especially the case

during requirements elicitation, when requirements for a new

system need to be identified. Most elicitation techniques

require physical presence of stakeholders in order to be

effective. This is not always possible in distributed project

teams. The question is if and how traditional elicitation

techniques can be adapted to distributed project settings. This

paper proposes a concept to adapt a special elicitation

technique - traditional face-to-face focus group interviews – to

online focus group interviews. The concept proposes a

discussion model based on a questionnaire that allows

conducting asynchronous online focus groups in online

environments as similar as possible to traditional face-to-face

focus group discussions. Furthermore, a process model is

introduced to plan and conduct asynchronous online focus

groups. Finally, the paper discusses open issues of the concept

that need further investigation.

Keywords- focus group; distributed asynchronous focus

group; requirements elicitation.

I. INTRODUCTION

Requirements Elicitation is the process of finding
requirements for a software system. A common technique for
requirements elicitation is interviews with stakeholders [1].
Interviews in requirements elicitation are usually performed
face-to-face with each stakeholder. The interviewer asks a
list of questions based on a questionnaire and documents
answers from the interviewee.

Besides traditional interviews, the use of focus group
interviews has emerged as an effective elicitation technique
as well [2]. Focus groups are a powerful social interviewing
technique that allows researchers to elicit several viewpoints
from users at the same time [3]. Individuals are asked to
participate in what is usually a structured interview on a
predesignated topic [4]. During a focus group session, data is
collected through group interaction on a topic determined by
the researcher [5]. Focus groups emerged as a qualitative
research method used in market research or social sciences
[6]. Its strength is to reveal hidden information through

group interaction in addition to information that could be
gathered by face-to-face interviews.

In traditional focus groups, the interviewer and the
interviewees meet in a room and discuss face-to-face. In
global project teams presence of all group members at the
same time in the same room might not always be possible. In
this case, focus group discussion needs to be conducted
online. Research in focus groups addresses this problem.
Due to the widespread use of internet technology, online
focus groups have emerged during the nineties [7][8]. Online
focus groups can be performed synchronously or
asynchronously. Synchronous groups are similar to face-to-
face focus groups, as they are conducted in real time via chat
or video-conferencing. Asynchronous groups on the other
hand, do not require real time attendance of participants
during a session. Communication is done via forums or
email. Participants can contribute, read and comment on
contributions from other group members [8].

Traditional face-to-face focus groups are a well-
established elicitation technique. However, this type of group
discussion is not useful in distributed project environments
when stakeholders live globally distributed in different
countries and time-zones. There are platforms available for
asynchronous online group discussions, however, support for
focus group methodology is still rare [9].

This paper proposes a concept for tool-supported
asynchronous online focus groups (AOFG). This includes a
model for online discussions and a process model to plan and
conduct focus group events with distributed participants.
Both models - discussion and process model – can be used in
distributed, tool-supported environments.

Section 2 starts with a survey on focus group
methodology and identifies relevant aspects that need to be
considered in online focus group methodology. Based on
this, a discussion model for focus group sessions is proposed
in Section 3. Section 4 defines a process model to prepare,
conduct, and analyze AOFG. This paper marks the first step
of a larger research project. Therefore, Section 5 discusses
open issues and research questions for further investigation.
Related work and summary in Sections 5 and 6 round up this
paper.

65Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 74 / 154

II. CONDUCTING FOCUS GROUPS

Focus groups are a carefully planned discussion,
designed to obtain the perceptions of the group members on
a defined area of interest [10]. The term “focus” (or
“focused”) refers to the fact that a moderator intervenes to
shape the discussion using a researcher-determined strategy
[4]. The group setting enables the participants to build on the
responses and ideas of the others, which increases the
richness of the information gained [11]. Traditional (face-to-
face) focus groups are usually conducted in similar ways
with small variations:

Group setting: A group of people is gathered in one room
and is discussing a topic. Group size is usually small. Many
authors propose a group size between four and twelve
participants ([10][13][14][15][18]). Size is a crucial aspect
for group success. Large groups are more difficult to
manage. They require a higher level of moderation and
control which might not be desirable for the research topic of
the group [15]. On the other hand, it might be difficult to
maintain an active discussion in a smaller group. Small
groups also run the risk of being less productive. They work
best when the participants are likely to be both interested in
the topic and respectful of each other [15].

Duration: Duration of focus group sessions depends
mainly on group size. Kitzinger proposes session length up
to two hours [12]. Powell and Single determine session time
from 90 up to 120 minutes [6].

Roles: Focus groups are usually based on a two role
model: moderator and participant. To [13] the moderator is
quite critical to the success of the group. He or she
supervises and guides group session in order to achieve the
best results for the research question. Davis proposes a third
role, the client [7]. This might be reasonable, e.g., in case of
market research. Client representatives of the product under
discussion observe focus group discussion without
interfering.

Discussion methodology: Focus groups are group
interviews. Therefore, there are several ways to conduct a
group session. An obvious proceeding would be to ask each
participant in the group the same question and document his
or her answers. However, Kitzinger states that group
interaction should explicitly be used as part of the interview
method. The interviewer has a series of open ended
questions to discuss within the group. Participants are
encouraged to explore the questions and talk to one another,
asking questions, exchanging anecdotes and commenting on
each other’s experiences and points of view [12]. Powell and
Single propose up to six open ended questions for a focus
group session [6].

Most aspects of face-to-face focus groups, e.g., group
size or role model can be easily adapted to asynchronous
online focus groups. Discussion methodology on the other
hand will need to be adapted to distributed environments.

III. DISCUSSION MODEL

In this section, a discussion model for asynchronous
online focus groups is proposed. This model adapts as much
as possible face-to-face group discussions to an online

environment, when discussion participants are not available
in real time. Figure 1 summarizes the model structure. Each
online session needs - similar to face-to-face focus groups -
two roles: a moderator who supervises the discussion and
several participants who conduct the discussion. In the center
of any focus group session is a questionnaire with a list of
questions that guides the focus group discussion. The
questionnaire and the questions are prepared by the
moderator based on group objective and context information.

Figure 1. Discussion model for focus group sessions with questionnaire.

The list of questions constitutes a kind of backbone for
focus group discussion. All participating roles may comment
on questions during the focus group session. A comment
might be an answer to the question, another question, a
thought, further information about objective and context, a
reply to another comment or just a note. Even the moderator
may participate and enter the discussion. However, his or her
task is to keep the discussion focused on the initial research
question.

Asynchronous online focus groups lack the power of
nonverbal interaction in face-to-face focus groups, e.g., body
language, facial impressions, approving or disapproving
nods. A simple mechanism of evaluation helps to overcome
this disadvantage in some ways. Any participant may assign
a value of approval to any comment. Values are visible to all
group members. A participant may never assign a value to
his or her own comments. Finally, the moderator should not
assign any values to comments in order to avoid any
influence on group interaction.

The model discussed in this chapter tries to keep
formalization of focus group discussion as simple as possible

66Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 75 / 154

in order to stay flexible and not to hinder discussion flow.
Possible model refinements are discussed in Section 5.

IV. PROCESS MODEL

In this section, a process model for planning and
conducting asynchronous online focus groups is defined. The
model supports the discussion model defined in Section 3. It
is based on findings in [3][10][13] and the principles for
traditional face-to-face focus groups identified in Section 2.

Step 1: Define online focus group objective.
The focus group method is well suited to generate ideas

or discuss concepts [10], but it is not realistic to expect
explicit and well defined requirements. The objective of a
focus group for requirements elicitation can be, for example:
share experience about process, legacy system and system
context or generate new and exciting ideas for possible
requirements. Input to this process step is information about
business objective, system idea and constraints. The result of
this step should be a clear view on focus group context, focus
group objective and a coarse questionnaire to guide the
discussion. Furthermore, focus group composition with
expected participant profiles and viewpoints should be
determined.

Step 2: Plan online focus group event.
Preparing an online focus group event requires several

organizational tasks. First of all, an online platform for focus
group discussion has to be set up. This includes setting up a
new questionnaire with questions and ensuring platform
availability and access rights to participants. Finally a time-
frame for discussion has to be defined, in particular start, end
and, duration. Distributed groups will need considerably
more time to ensure that any participant has sufficient time to
follow and contribute to the discussion.

Step 3: Define and recruit participants.
Group size plays a crucial role in focus groups. Small

groups may be more efficient than large groups. However, in
case of online focus groups, a higher number of participants
might be reasonable in order to achieve a lively and more
fruitful discussion. Finding and recruiting participants for a
focus group event requires a high amount of effort. This step
needs to follow a process to determine how to identify
possible participants and motivate them to engage in the
focus group event. Recruited participants need access to the
discussion platform and need to be informed about
discussion schedule.

Step 4: Conduct and analyze focus group session.
In online focus groups, not all participants might be

available at the start of the discussion. The moderator has to
ensure that any participant receives the information
necessary to enter the discussion. This includes discussion
procedure, rules and duration. The discussion itself is based
on questions and comments. Questions are published by the
moderator (one at a time or all at the same time), participants
keep discussing by writing comments on questions and other
comments. To express agreement with a comment or point

out its importance any participant may assign a value. The
number of values assigned to a comment may give a hint
about its importance with respect to the initial group
objective and constitutes an important means for focus group
analysis.

V. RESEARCH QUESTIONS

The model discussed in this paper adapts face-to-face
focus group methodology as much as possible to online
focus groups. The main idea behind this approach is that in
general face-to-face focus groups are the best solution, but in
some circumstances personal attendance of participants is
not possible. In this case, online focus groups could be the
second best solution. However, the question remains if
online focus groups could be a methodology of their own.
Research questions are for example:

1. Asynchronous online focus groups allow a highly
variable groups size due to their virtual character. There are
no physical limitations as for example room size. An
interesting question to investigate would be what is a good
group size for online focus groups to achieve the best results
in requirements elicitation?

2. Group discussions that last over a couple of days may
have a problem to motivate participants and to keep them
engaged in focus group discussion. A corresponding research
question would be how to improve motivation and achieve
high engagement even over a longer period of time? This
may include questions about using gamification techniques
in online group discussions.

3. Traditional discussion methodology for face-to-face
focus groups is based on questionnaires. The discussion
model proposed in Section 3 adapts this approach to online
focus groups. However, this might not be the best solution.
Investigation can reveal discussion models more suitable for
online focus groups. Maybe a more specific approach that
distinguishes between questions, comments, jokes, answers,
and so on might be more appropriate.

4. Focus groups usually use a two-role-model: a
moderator supervises focus group session and several
participants take part and discuss. Online focus groups may
use a different role model. The moderator could for example
be supported by co-moderators. Another model could use the
client role as proposed in [7]. Discussion about online focus
groups could find flexible role models that can be adapted to
specific focus group events.

5. The approach presented in this paper addresses
requirements elicitation in distributed stakeholder teams.
However, it might as well be suitable for another research
area that emerged recently: crowd requirements engineering.
Requirements are elicited via crowd sourcing. The objective
is to provide the engineering team access to a wide diversity
of actual and potential users of new products [17]. An
interesting research question could be how to successfully
perform online focus group sessions with a potentially
unlimited number of participants (the crowd).

67Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 76 / 154

VI. RELATED WORK

Group techniques for requirements elicitation are mostly
group discussions with a specific discussion methodology.
Examples are group work, brainstorming, requirements
workshops or Joint Application Development (JAD) [1].
Using these techniques with asynchronous distributed
stakeholder groups requires suitable tool support. A study
conducted by Zarinah and Salwah reveals that there is a trend
towards group based requirements elicitation tools.
Discussion technique is mainly group meeting, group
discussion and participatory design [9]. Group based
requirements elicitation tools using focus group
methodology are rare. The authors of [9] introduce a multi-
viewpoint approach for tool-supported focus groups in
requirements elicitation based on an iterative elicitation
algorithm. A similar approach based on chat-messages is
proposed by Davis [7]. The objective in this case is to
support marketing research with distributed stakeholders.

Lloyd et al [16] investigated in a study the effectiveness
of elicitation techniques in distributed environments. They
found that requirements elicitation techniques like Question
and Answer method, Customer Interview or Brainstorming
were effective in distributed environments. However, the
authors state that synchronous environments seem to be
more effective than asynchronous environments.

The approach proposed in this paper tries to overcome
this drawback. Presuming that concentration on well-defined
requirements as a result of online group discussions may
hinder creativity and group dynamics the approach proposed
in this paper concentrates on group discussion methodology,
how to support group dynamics in an online environment
and how to engage participants that cannot share group
session in real time.

VII. CONCLUSION

This paper proposes a concept to support asynchronous
online focus group interviews as similar as possible to
traditional face-to-face focus groups. In the center is a
discussion model for focus groups based on a predefined
questionnaire. Group members discuss by commenting on
questions asked by a moderator. A comment can be any type
of information: a real answer, a joke, an opinion, information
or an experience report. Group members can assign marks of
approval to contributions they think valuable to the topic
under discussion. Furthermore, the concept defines a process
model for planning and conducting asynchronous online
focus groups using the discussion model.

The concept is still under research. Next steps will be to
provide an implementation and evaluate the concept in real
life project environments. Further research questions include
group engagement and motivation as well as improved data
analysis.

VIII. REFERENCES

[1] D. Zowghi and C. Coulin, "Requirements Elicitation: A Survey
of Techniques, Approaches, and Tools," In: A. Aurum and C.

Wohlin (eds.) "Engineering and Managing Software

Requirements," pp. 19–46. Springer Verlag, Berlin/Heidelberg,

(2005).
[2] Z. M. Kasirun and S.S. Salim, "Focus Group Discussion Model

for Requirements Elicitation Activity," In: 2008 International

Conference on Computer and Electrical Engineering (ICCEE),
pp. 101–105.

[3] R. Mazza and A. Berre, "Focus Group Methodology for

Evaluating Information Visualization Techniques and Tools,"
In: 2007 11th International Conference Information

Visualization (IV '07), pp. 74–80.

[4] E. Perecman and S. R. Curran, "A Handbook for Social

Science Field Research. Essays & Bibliographic Sources on
Research Design and Methods," SAGE Publications, Inc, 2455

Teller Road, Thousand Oaks California 91320 United States

of America (2006).

[5] D. L. Morgan, "Focus Groups," Annu. Rev. Sociol. 22, 129–

152 (1996).

[6] R. A. Powell and H. M. Single, "Focus Groups," International
Journal for Quality in Health Care 8, 499–504 (1996).

[7] H. O. Davis, "System and method for conducting focus groups

using remotely loaded participants over a computer network,"

Google Patents, http://www.google.com/patents/US6256663
(2001).

[8] R. Rezabek, "Online Focus Groups: Electronic Discussions for

Research," Forum Qualitative Social Research 1 (2000)
[9] M. K. Zarinah and S. S. Salwah, "Supporting collaborative

requirements elicitation using focus group discussion

technique," International Journal of Software Engineering and

Its Applications 3, 59–70 (2009).

[10] J. Kontio, L. Lehtola, and J. Bragge, "Using the focus group

method in software engineering: obtaining practitioner and

user experiences," International Symposium on Empirical

Software Engineering, 2004. ISESE '04, pp. 271–280.

[11] J. D. Langford and D. McDonagh, "Focus groups, Supporting

effective product development," Taylor & Francis, London,
New York (2003).

[12] J. Kitzinger, "Qualitative research. Introducing focus groups,"

British medical journal 311, 299 (1995).
[13] L. Litoselliti, "Using focus groups in research," continuum

research methods (2003).

[14] R. A. Krueger: "Designing and Conducting Focus Group

Interviews," University of Minnesota (1998).
[15] "Focus Groups as Qualitative Research," SAGE Publications,

Inc, 2455 Teller Road, Thousand Oaks California 91320

United States of America (1997).
[16] W. J. Lloyd, M. B. Rosson, and J. D. Arthur, "Effectiveness of

elicitation techniques in distributed requirements engineering,"

In: IEEE Joint International Conference on Requirements

Engineering, (2002) pp. 311–318.

[17] M. Hosseini, K. Phalp, J. Taylor, and R. Ali, “Towards

Crowdsourcing for Requirements Engineering, “ in Proc. of

the Empirical Track of REFSQ, (2014) pp. 82–87.

[18] M. Shitanshu and R. Rekha,” A Software Solution to Facilitate

Moderation, Observation and Analysis in a Focused Group

Interview (FGI),” In: IEEE International Conference on
Technology for Education, (2013) pp. 9-12.

68Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 77 / 154

Applying Privacy by Design in Software Engineering - An European Perspective

Karin Bernsmed
Department of software engineering, safety and security

SINTEF ICT
Trondheim, Norway

karin.bernsmed@sintef.no

Abstract— Privacy by Design (PbD) is an approach to protect
privacy by embedding it into the design specifications of
technologies, business practices, and physical infrastructures.
However, despite its many advantages, many organizations
struggle with incorporating these practices in their existing
software engineering processes. This paper evaluates the
current state-of-the-art related to PbD in software engineering
and analyzes the impact of the proposed European data
protection legislation on this process. We propose four key
viewpoints of PbD and discuss how these can be applied in a
software engineering process. We then translate these
viewpoints into a self-assessment method that can be used to
evaluate to what degree an organization has managed to adopt
the PbD mindset in their software engineering projects.

Keywords-privacy; PbD; privacy engineering; personal data;
EU data protection law

I. INTRODUCTION

Privacy and personal data protection issues have been
frequently in the news during the last few years, in particular
in the context of social networking, big data and cloud
computing. Consumer profiling by online advertising
companies is a huge market and the loss of privacy is the
price that consumers have to pay for the free services that
they utilize. At the same time, the right to data protection is a
highly developed area of law in Europe. Creating and
maintaining software that is compliant with European data
protection laws are therefore crucial for organizations that
want to do business in Europe.

Broadly speaking, personal data means any kind of
information that can be used to identify an individual. Some
obvious examples include someone's name, address, national
identification number, credit card number or a photograph.
Less obvious examples are metadata in electronic
documents, log files and system configurations and IP
addresses. Personal data is not just information that can be
used to identify an individual directly; information that can
be used to single out a person from a group of people using a
combination of information (or other identifiers) will also
fall in the category of personal data. Almost all software that
provides services targeted towards individual end-users will
therefore collect personal data and hence be subject to
applicable data protection law.

Privacy by Design (PbD) is an approach to protect
privacy by embedding it into the design specifications of
technologies, business practices, and physical infrastructures.
PbD consists of seven foundational principles [1]:

1. Proactive not Reactive; Preventative not Remedial,
which means to anticipate and prevent privacy invasive
events before they happen.

2. Privacy as the Default Setting, to ensure that
personal data are automatically protected in any given IT
system or business practice. No action is required by the user
– privacy is built in by default.

3. Privacy Embedded into Design, not bolted on as an
add-on. Privacy becomes an essential component of the core
functionality being delivered.

4. Full Functionality — Positive-Sum, not Zero-Sum,
meaning that one seeks to accommodate all legitimate
interests and objectives in a positive-sum “win-win” manner.
The purpose is to avoid dichotomies, such as privacy vs.
security or privacy vs. functionality.

5. End-to-End Security — Full Lifecycle Protection, to
ensure that all data are securely retained throughout its entire
lifecycle, and then securely destroyed at the end of the
process, in a timely fashion.

6. Visibility and Transparency — Keep it Open, to
assure all stakeholders that whatever the business practice or
technology involved, it is in fact, operating according to the
stated promises and objectives.

7. Respect for User Privacy — Keep it User-Centric,
which requires architects and operators to keep the interests
of the individual uppermost by offering such measures as
strong privacy defaults, appropriate notice, and empowering
user-friendly options.

PbD hence implies a proactive integration of technical
privacy principles in the design of a system or software (such
as privacy default settings or end-to end security of personal
data) as well as the recognition of privacy in a company’s
risk management processes [2]. According to Ann
Cavoukian, the Ontario Canada information and privacy
commissioner who first coined the term, PbD can thus be
defined as “an engineering and strategic management
approach that commits to selectively and sustainably
minimize information systems’ privacy risks through
technical and governance controls” [1].

PbD is often presented as the solution to the digital
world's privacy problems. However, despite the obvious
advantage with adopting the PbD approach, many
organizations still struggle with how to incorporate these
practices in their existing software engineering processes [3].
The seven principles are expressed in abstract terms and
there are many open challenges that need to be addressed.
Privacy engineering has emerged as a concept for
transforming the PbD principles into a framework for

69Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 78 / 154

implementing privacy in system design and development
processes. As concluded from the 2014 NIST Privacy
Engineering Workshop [4], there is currently a
communication gap around privacy between the legal and
policy, design and engineering, and product and project
management teams, which makes it difficult to understand
and manage privacy risks. Moreover, there is a need for tools
that measure the efficiency of existing privacy practices in
organizations.

The purpose of this paper is to help organizations apply
the Privacy by Design concept in their software engineering
lifecycle by providing support for analyzing the current
situation and practical guidance for building in PbD data
protection practices that are compliant with European Data
protection legislation. The paper is organized as follows.
Section II summarized existing guidelines, tools and research
related to engineering Privacy by Design. In Section III, we
discuss the legislative aspects of PbD in Europe. Section IV
outlines our approach to integrating PbD in a software
engineering process and Section V presents a self-assessment
method for PbD. Finally, Section VI concludes our work.

II. STATE OF THE ART

In this section, we summarize existing work related to
PbD. We pay particular attention to the papers and reports
that provide practical guidance on how to operationalize
PbD, i.e., how to integrate the principles into existing
software engineering processes. We also provide an
overview over relevant ongoing research efforts in Europe.

A. Reports and Guidelines from the Software Industry

The report "Operationalizing Privacy by Design: A
Guide to Implementing Strong Privacy Practices" from 2012
[5] gives a thorough introduction to the seven principles of
PbD and provides practical advices for how each of the
different principles can be implemented in an organization
and by whom (i.e., the management, the application and
program owners or the software engineers). For each of the
PbD principles, the report also outlines a number of
different case studies from different domains and explains
how this particular principle has been implemented in
practice. The report represents an overview over the work
that has been performed at the Information and Privacy
Commissioner in Ontario, Canada.

The OASIS Privacy by Design for Software Engineers
(PbD-SE) Technical Committee has developed a draft
specification to help document software engineering make
privacy-informed decisions about a system's architecture.
Their Privacy Management Reference Model and
Methodology (PMRM) [6] intend to help system architects
to analyze the system from a privacy point of view and to
help them identify necessary technical and process
mechanisms that must be implemented to support existing
privacy policies in the organization. The methodology is
based on defining and analyzing how actors and systems
integrate in use-cases and the report contains a number of
illustrative examples of how this can be done. PMRM is

primarily specified with the Fair Information Practice
Principles (FIPPs) [24] in mind, however it also supports
parts of the PbD concept since it encourages building
privacy in already from day one of a system design.

Microsoft's guidance document "Privacy Guidelines for
Developing Software Products and Services" [7] includes an
overview of basic concepts and definitions that are related to
software security and provides guidelines for how the
principles notice, choice, onward transfer (to third parties),
access, security, and data integrity should be implemented.
The document includes several practical examples (figures)
showing how many of the concepts, for example explicit
consent and opt-in, have been implemented in Microsoft's
own software portfolio.

Finally, the position paper "Privacy Engineering &
Assurance" written by NOKIA in 2014 [10] presents a
process consisting of a set of proactive engineering
activities. The activities include identifying the privacy
impact of a given object, designing controls and mitigations
to ensure appropriate Privacy by Design, and then verifying
that the implementation is complete and operational, while
documenting evidence of this state for reference of
regulatory compliance and in the event of a privacy breach.

B. Relevant Research on Privacy by Design

The paper "Engineering Privacy" from 2009 by
Spiekermann and Cranor [2] provides a structured overview
over the different topics included under the term privacy
engineering. The paper introduces the term privacy spheres
to categorize the collection of personal data w.r.t whether
the data are stored at the users' own devices under their own
control (the so called "user sphere"), in back-end servers
and networks under the service providers' control (the
"recipient sphere"), or a combination thereof where users
have some control over their personal data (the "joint
sphere"). Spiekermann and Cranor recognize the necessity
to consider the users' privacy expectations as well as
possible regulatory issues when analyzing how system
activities will impact privacy and they point out a number of
different privacy issues that the needs to consider when
designing IT systems. They also give some guidance for
how to design a "privacy friendly" system, based on the
degree of identifiability that will be required by its users,
and provides some practical advices for how to maximize
privacy for different types of systems. The paper also
provides a nice overview over the existing research
disciplines in the field of information system privacy.

The paper "Engineering Privacy by Design" by Gurses
et.al, [3] points out data minimization as the necessary first
step in order to create systems that are in line with the PbD
concept. The authors point out the lack of concrete guidance
of how to actually implement the PbD principles and they
further argue that the FIPPs' focus on control and
transparency, and the European data protection regulation's
focus on purpose specification and user consent, are not
sufficient to protect the individuals' privacy. The paper

70Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 79 / 154

presents two case studies where the authors show how
privacy risks can be heavily reduced when data
minimization is applied. They generalize their findings into
five main steps for system design that should be taken to
reduce privacy risks: 1) Functional Requirements Analysis
(the necessary system functionality is clearly described), 2)
Data Minimization (for each functionality, the data that are
absolutely necessary to fulfil the functionality is analyzed),
3) Modelling Attackers, Threats and Risks (models of
attackers and threats are developed, and the likelihood and
impact of the threats are used to do a thorough risk
analysis), 4) Multilateral Security Requirements Analysis
(to ensure that the security and correct behavior of the
system), and 5) Implementation and Testing of the Design
(making sure that the system fulfils the integrity
requirements revealing the minimal amount of personal data
and that the functional requirements are fulfilled). Finally,
the authors point out the need for experts trained in privacy
engineering methodologies that also have a basic
understanding of legal requirements related to personal data
protection.

The paper "Privacy Design Strategies" by Hoepman [11]
presents eight privacy design strategies, which are derived
from legal requirements from the European data protection
legislation. The strategies are derived both from a data
oriented perspective (focusing on the principles minimize,
hide, separate and aggregate) and from a process oriented
perspective (focusing on the principles inform, control,
enforce and demonstrate). For each of the eight strategies,
the author has identified a number of privacy design patterns
that can be applied to implement the strategies. The paper
represents work in progress and the author state that further
research will be performed to classify existing privacy
design patterns into privacy design strategies, and to
describe these design patterns in more detail.

Privacy by Design is also a topic of investigation in
several ongoing European FP7 research projects; the most
prominent being CIPHER [15], which will analyze security
and trust in information systems that process personal data,
and provide a methodological framework and a global
European regulatory and technological roadmap, PRIPARE
[16], which will deliver a privacy and security-by-design
software and systems engineering methodology, A4Cloud
[17], which will (amongst other things) deliver a Privacy
Impact Assessment tool for cloud services and USEMP
[18], which aim to empower users with control over the
sharing of their personal data. In particular, PRIPARE is
relevant to our work since they aim to deliver a
methodology for Privacy and Security by Design that can be
embedded into current methodologies for ICT systems and
software [12].

 Our analysis of the existing work in this section
concludes that either the existing guidelines on PbD do not
consider the strict EU personal data legislation in their
guidance documents [2][3][5][6][7] or (implicitly) they
assume that the organization that will operate the software

develops its own software [4][10][11]. Even though there
are promising ongoing research efforts, much work remains
to be done. In particular, there is currently a gap of
knowledge in how PbD can be built in the procurement
phase of IT systems for organizations that engage
consultancies or external software development companies
and that have little or no knowledge of how to derive
security and privacy requirements and how to impose such
requirements on their software vendors. In the next section,
we will present the main implications of the existing
personal data protection legislation is Europe, before we
proceed with presenting our approach for applying PbD.

III. PBD IN EUROPEAN DATA PROTECTION LEGISLATION

The processing of personal data in Europe is regulated by
the implementation of the Data Protection Directive ("the
Directive") [19], which ensures that personal data can only
be collected and used legally under strict conditions, for a
legitimate purpose, and that the data subject, who is an
identified or identifiable natural person, must always be
informed about the intention to collect and use his/her data.
According to the Directive, the person, or organization, that
is defined as the data controller, i.e., the entity that
determines the purposes and means of the processing of
personal data, will (in most cases) be held responsible and
accountable to the data subject for ensuring that personal
data are processed according to the rules in the Directive.
Even though the Directive aims to protect the privacy of
individuals, it only supports a limited part of PbD, and to a
very limited extent. For example, as pointed out in the
RAND report [8], while privacy policies are considered to
be an acceptable way to meet the legislative requirements of
obtaining consent and providing transparency, these policies
are rarely read and even if they are, they appear to serve
little useful purpose for the data subject due to their length,
complexity and extensive use of legal terminology.

However, with the evolution of regulation, PbD has
received more attention. In 2012, the Commission proposed
a major reform of the EU legal framework on the protection
of personal data (the "proposed Regulation") [9]. The
European Commission has explicitly stated that the
Proposed Regulation will embrace the concept of Privacy by
Design [20]. Unfortunately, the current version of the
Proposed Regulation is still quite general and vague. The
most relevant part of the Proposed Regulation, from the
PbD perspective, is its Article 23 - Data protection by
design and by default. The first paragraph in this article
states that "the controller shall, both at the time of the
determination of the means for processing and at the time of
the processing itself, implement appropriate technical and
organizational measures and procedures...". Even though
this statement indicates that privacy must be considered
both when the system is to be designed ("the time of the
determination of the means") and when it is operating ("the
time of the processing itself"), nothing is said of how these
requirements should be implemented in practice. Further,

71Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 80 / 154

the second paragraph of Article 23 states that "The
controller shall implement mechanisms for ensuring that, by
default, only those personal data are processed which are
necessary for each specific purpose of the processing... "
and "... those mechanisms shall ensure that by default
personal data are not made accessible to an indefinite
number of individuals". Here we note that, even though the
"by default" part of PbD is supported, the Proposed
Regulation does not aim to minimize the purpose of data
collection at all; it merely states that the default setting
should be to only process data for a specific purpose. This
requirement already exists in the current EU Data Protection
legislation. Further we note that the Proposed Regulation
only points out the controller as being responsible for
implementing these mechanisms. In many practical cases
settings (for example when public cloud services are
adopted) the controllers will not be involved in neither the
design nor the implementation of the system. In our opinion,
even though the European Commission has emphasized that
the Proposed Regulation will support PbD; it is unclear to
whether it will have any impact at all on existing software
engineering processes. This view is also shared by Koops
and Leenes, who argue that Article 23 cannot, and should
not, "be read as a procedural requirement to embed data
protection rules as much as possible in system design, but
instead as a substantive requirement calling upon data
controllers to consistently keep privacy at the front of their
minds when defining system requirements" [14].

Even though PbD is vaguely described in Article 23,
there are other parts of the Proposed Regulation, which will
strengthen the rights of the data subjects. One example is
Article 17, which emphasizes the data subjects right to "be
forgotten", meaning that the controller must be prepared to
erase all links to, copies of and replications of the data
subject's personal data. Another example is Article 18,
which specifies that a data subject has the right to obtain a
copy of all his/her personal data that has been collected.

Awaiting the Proposed Regulation, several of the
European Data Protection Authorities (DPAs) have started
to promote the PbD concept, for example the British ICO
[21] and the Norwegian Datatilsynet [22]. However, similar
to the SOTA presented in Section III, there is a clear gap
between the advices provided by these authorities and the
concrete mechanisms that must be implemented in the
software in order to be compliant with the Proposed
Regulation.

IV. INTEGRATING PBD IN THE SOFTWARE SYSTEM

ENGINEERING PROCESS

It is a non-trivial path for an organization with little
knowledge of security and limited funds to go ahead and
implement the best practices presented in Section II and the
requirements that steam from the regulation presented in
Section III. Very little research has been done to address the
real world challenges of using the proposed methods in
organizations, apart from the large software companies. This

is especially the case where the organization has no
dedicated software security or privacy group, which is often
the case in, for example, SMEs and the public sector where
few, if any, dedicated developers are employed. Instead,
procurement and integration of commercially available (or
open source) software into the enterprise architecture is
more common, often along with custom built software
components for integration and various functionality
"plumbing". Consultants are commonly used for
development and integration, making it hard to establish
privacy and security engineering practices within the
organization. In cases like these, the data management
lifecycle, which spans from the moment personal data are
gathered by the organization until the moment they have
been destroyed (i.e., the retention period), is in the hands of
the organization itself whereas the software engineering
lifecycle, which spans from the early design phase until the
software is fully installed and operating, is managed by the
consultants.

Moreover, implementing PbD in the software engineering
lifecycle is in itself a multidisciplinary exercise, comprising
technical, organizational and legal concerns. A properly
defined set of security and privacy policies must for instance
be in place for application owners and developers to elicit
specific sets of security and privacy requirements. On the
other hand, true support is a matter of the management in
the procuring organization, ensuring that the organization
has the capabilities needed to accomplish its mission.

Figure 1. The stakeholders involved in the software engineering process.

An organization that wants to implement the seven PbD

principles therefore needs to concretize them into a set of
actions that the organization needs to consider internally, as
well as into a set of well-formulated privacy requirements
that they will need to impose on their consultancies and/or
or software vendors during the analysis, design and
implementation phases of the development of the software
itself. This is a process that will need the involvement of a
wide range of stakeholder (illustrated in Fig. 1).

When analyzing the seven PbD principles (from a
software engineering point of view) and the different
documents that were reviewed in Sections II-III, we have
concluded that there are four distinct viewpoints of PbD,

72Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 81 / 154

which is top-down in the sense of involving both the
organization as well as the actual software engineering
process and that will require the involvement of the
stakeholders identified in Fig. 1. These four viewpoints will
be presented in the next section, along with an introduction
to the accompanying PbD self-assessment tool that we have
created.

V. A SELF-ASSESSMENT METHOD FOR PBD

The self-assessment method that we propose consists of
four different viewpoints. First and foremost, we maintain
that privacy must be acknowledged in the organization. This
viewpoint implies that privacy must be taken seriously by

the management and that a privacy mindset should be
adopted by those who are responsible for the systems that
process personal data. In our view, acknowledging privacy
means, for example, that the organization has appointed a
privacy officer who is accountable for privacy protection, a
privacy policy has been established and approved by the
management and that PIAs, or privacy risk assessments, are
regularly performed within the organization.

Secondly, organizations need to be transparent about their
privacy practices; any organization that processes personal
data needs to inform the data subjects about the processing
of their personal data. The privacy policy (or set of privacy
policies) is the statement that discloses the details of what
data will be collected, how it will be used and with whom it
may be shared. The organization's privacy policy must be
compliant with data protection legislation and it must be
actively enforced in all its IT systems, including the
software that is to be developed. Unfortunately, due to their
complexity, difficult language and sheer length, users tend
to neither read nor understand the policies prior to
acceptance [8][13]. Having adopted a PbD mindset, the

organization's privacy policy should therefore be clearly
written and easy to access, contain no ambiguous language,
and be as restrictive as possible in terms of how much data
that will be collected and how it will be used.

Having acknowledged privacy in the organization and
having a proper privacy policy in place are two fundamental
cornerstones that the organization needs to have in place
before the software system procurement phase starts. The
former will ensure that sufficient attention and resources are
put in place to protect privacy and the latter will serve as a
basis for deriving appropriated privacy requirements when
the software development process starts. These two
viewpoints will need the involvement of business owners,

regulators, 3rd parties and application developers.
Once the software development processes has started, the

third viewpoint, building privacy in is invoked. This
viewpoint aims to ensure that privacy is integrated into the
early phases of the software engineering process, in
particular during the analysis, design and implementation
phases. Software specific privacy requirements will be
elicited from relevant stakeholders (business and application
owners, regulators and the intended end-users), the privacy
requirements must validated towards the organization's
privacy policy and existing PbD best-practices are
incorporated into the code by the software development
team.

Finally, the fourth viewpoint enabling end-user control
will ensure that the intended users of the software (i.e., the
individuals who will be the data subjects of the personal
data that will be collected) will be in control over his/her
personal data. This viewpoint will ensure that the users are
empowered with mechanisms to change their privacy
settings, give and withdraw consent, and view, correct and
delete personal data that have already been collected.

Figure 2. The role of the four viewpoints in the different phases of the standard waterfall software development process.

73Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 82 / 154

Fig. 2 illustrates how these four viewpoints relate to a

standard waterfall software development process and what
stakeholders that will be involved in each of the viewpoints.
As indicated in the figure, acknowledging privacy and
appropriate privacy policies are continuous processes that
need to be in place before the software development
activities starts and that will persist during the lifetime of
the software. These processes will involve business owners,
regulators, 3rd parties (with whom the data may be shared)
and application developers in the organization. On the
contrary, building privacy in and enabling end-user control
consist of activities that will be accomplished during the
analysis, design and implementation phase and that will
involve the software vendors and prospective consultancies,
the application developers in the organization and
representatives of the end users who will be data subjects
when the software is operating.

In the rest of this section, we present the self-assessment
method, which has been organized as a checklist (Table I-
IV) that has been derived from the four viewpoint
introduced in the previous section. The checklist has gone
through several iterations with security and privacy experts,
before converging to 43 questions to be treated as
recommendations, (i.e., answering "yes" is better than
answering "no"). We then introduce a simple tool for
analyzing the results of applying the checklist to an ongoing
or finalized software project. Note that the tool itself is an
adapted version of the security checklist for water network
operators, originally developed by Jaatun et.al [23].

In our checklist, we have prepared three possible
answers; "yes", "partly" and "no", however, it is of course
also possible to use for example a sliding scale to indicate to
what degree the organization that is being assessed is
compliant with the different statements. We do not stipulate
what methods the organization should apply to answer the
individual checkpoints, but envision a combination of
interviews, document analysis and testing as being an
appropriate approach.

TABLE I. ACKNOWLEDGING PRIVACY IN THE ORGANISATION

Checkpoint Yes Partly No
The organization has appointed a privacy
officer, who is accountable for privacy
protection

A privacy policy has been established and
approved by the management

PIAs, or privacy risk assessments, are
regularly performed within the
organization

Privacy audits are regularly performed
within the organization

Notice of personal data processing has
been given to all the relevant DPAs

Checkpoint Yes Partly No
Data processing agreements have been
established with all 3rd parties that will
process personal data

The organizations' software and
infrastructure regularly undergoes
security risk and threat analysis

The organization has a privacy
education/awareness training program

The organization is prepared to handle
security incidents affecting personal data

TABLE II. APPROPRIATE PRIVACY POLICIES

Checkpoint Yes Partly No
The amounts of personal data that can be
collect have been minimized

The purpose for data collection has been
defined to be as specific as possible

Any sharing of personal data to 3rd
parties has been clearly specified

The retention date is no longer than
necessary to fulfil the purpose of data
collection (or to comply with existing
legislation)

The privacy policy clearly states who are
responsible for the personal data and how
they can be contacted

The privacy policy is clearly written, to
make it easy to understand by the
intended end-users

The length of the privacy policy is not
excessive, but kept to a minimum

The privacy policy can easily be retrieved
by customers and end-user at all times

TABLE III. BUILDING PRIVACY IN (SOFTWARE SUPPORT)

Checkpoint Yes Partly No
Software specific privacy requirements
have been elicited from relevant
stakeholders (business and application
owners, regulators and the intended end-
users)

The privacy requirements are consist with
the organizations' privacy policy

The privacy requirements have been
incorporated in code developed by the
software engineers

The software only collect the personal
data necessary to deliver its intended
functionality

The software includes appropriate
mechanisms for obtaining end-user
consent

74Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 83 / 154

Checkpoint Yes Partly No
The software has mechanisms in place to
limit the use of personal data to the
specific purpose for which it was
collected

The software has mechanisms in place to
avoid future data linkage

The software will encrypted all personal
data by default using standardized
encryption mechanisms with securely
managed encryption keys

All personal data are anonymized
whenever possible

There is an expiry date associated with all
personal data that are collected

All collected personal data will be
properly deleted after they expire

The software provides audit trails
showing how personal data have been
collected, processed and deleted

The software has been subject to a
thorough security risk and threat
assessment

The focus on privacy has not been traded
against functionality

TABLE IV. ENABLING END-USER CONTROL

Checkpoint Yes Partly No
The default privacy settings in the
software are as restrictive as possible

The user can change the settings that
control what kind of personal data are
collected

The user can change the settings that
control for what purpose personal data are
collected

The user can view what personal data
have been collected

The user can view who has access to the
personal data that will be collected

The user can view who has accessed the
personal data that have been collected

The user can make corrections to personal
data that have been collected

The user can export a copy of all personal
data that have been collected

The user can request personal data to be
immediately deleted

The user's personal data is not shared
with 3rd parties, unless the user
specifically agrees to this ("opt-in")

The user can choose not to share personal
with 3rd parties ("opt-out")

The user's privacy settings are valid
across different platforms and persist over
time

If the checklist is used to evaluate a software engineering
process that has already started, or software that is already
operating, the answers can be visualized in order to show to
what degree the PbD concept has been adopted. We have
implemented a simple Excel-based tool and applied it to a
case study that we are working on. The case study involves
a public organization in Scandinavia, which currently is
preparing a pilot study of the usage of cloud-based software
for remote monitoring of health-care patients in their homes.
Security and privacy are high on the agenda for this
organization and since the software will collect large
amounts of (sensitive) personal data, they need to be
compliant to the existing privacy legislation in Europe, as
well as to the upcoming privacy regulation, in order to
succeed with their project. (For confidentiality reasons we
are not allowed to reveal any technical details about the case
study.) The result from the first viewpoint for this
organization is illustrated in Fig. 3.

Figure 3. Visualizing to what degree privacy has been acknowledged in the

organization

In the figure, the colors green, yellow and orange have

been used to visualize the ratio of answers that have been
selected as "yes", "partly" and "no", respectively. From the
figure, we can see that, even though this particular
organization have fulfilled some of the identified
checkpoints, they still have a long way to go before privacy
has been fully acknowledged.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented four viewpoints of
Privacy by Design and our approach to translate these into a
list of checkpoints. The intention of our approach is to
clarify what the PbD concept means in a software
engineering context. We also aim to help organizations that
are involved in personal data processing to adopt a privacy
mindset and to make sure that their software is compliant
with the vision of PbD. In the next step, we will compile a
best-practices document that includes existing privacy
design patterns, strategies, mechanisms and tools, and map

75Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 84 / 154

these to the checkpoints in our self-assessment checklist in
order to identify whether there are any gaps that current
technology cannot fulfil. We believe that a combination of
technical mechanisms (PETs) and organizational measures
will be necessary in order to fully adopt the PbD concept.

ACKNOWLEDGMENT

This work has been partly funded from the European
Commission’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no: 317631 (OPTET) and
317550 (A4CLOUD).

REFERENCES
[1] A. Cavoukian, "Privacy by Design Curriculum 2.0", 2011.

[Online]. Available from: https://www.ipc.on.ca/ [retreived:
2015-10-29]

[2] S. Spiekermann, and L. Faith Cranor, "Engineering Privacy".
IEEE Trans. Softw. Eng. 35 (1), pp 67-82, January 2009,
doi=10.1109/TSE.2008.88

[3] S. F. Gürses, C. Troncoso, and C. Diaz, "Engineering Privacy
by Design", Computers, Privacy & Data Protection, 2011.
[Online] Available from:
http://www.cosic.esat.kuleuven.be/publications/article-
1542.pdf [retreived: 2016-01-12].

[4] NIST Privacy Engineering Objectives and Risk Model
Discussion Draft, April 2014. [Online]. Available:
http://www.nist.gov/itl/csd/upload/nist_privacy_engr_objectiv
es_risk_model_discussion_draft.pdf [retreived: 2016-01-12].

[5] A. Cavoukian, “Operationalizing Privacy by Design: A Guide
to Implementing Strong Privacy Practices”. Information and
Privacy Commissioner, Ontario, Canada, December 2012.

[6] OASIS. "OASIS. Privacy Management Reference Model and
Methodology (PMRM) Version 1.0.", March 2012. [Online].
Available from https://www.oasis-open.org/ [retreived: 2016-
01-12]

[7] Microsoft. "Privacy Guidelines for Developing Software
Products and Services, Version 3.1", September, 2008.
[Online]. Available: http://www.microsoft.com/en-
us/download/details.aspx?id=16048 [retreived: 2016-01-12]

[8] N. Robinson, H. Graux, M. Botterman, and L. Valeri,
"Review of the European Data Protection Directive", 2009,
RAND Corporation. [Online]. Available:
http://www.rand.org/pubs/technical_reports/TR710.html
[retreived: 2016-01-12]

[9] Proposal for a Regulation of the European Parliament and of
the Council on the Protection of Individuals with Regard to
the Processing of Personal Data and on the Free Movement of
Such Data (General Data Protection Regulation), COM
(2012) 11 final (25 January 2012).

[10] NOKIA, "Privacy Engineering & Assurance. The Emerging
Engineering Discipline for implementing Privacy by Design",
NOKIA Position Paper 1/10, 2014-09-08. [Online].

Available: http://www.w3.org/2014/privacyws/pp/Hirsch.pdf
[retreived: 2016-01-12]

[11] J-H. Hoepman, "Privacy Design Strategies". ICT Systems
Security and Privacy Protection, IFIP Advances in
Information and Communication Technology Volume 428,
2014, pp 446-459, 2014.

[12] "PRIPARE: A New Vision on Engineering Privacy and
Security by Design", PRIPARE position paper, April 2014.
[Online] Available from: http://pripareproject.eu/research/
[retreived: 2016-01-12]

[13] L. Faith Cranor, P. Guduru, and M. Arjula, “User interfaces
for privacy agents”. ACM Trans. Comput.- Hum. Interact.,
13(2):135–178, 2006.

[14] B-J. Koops and R. Leenes, "Privacy regulation cannot be
hardcoded. A critical comment on the ‘privacy by design’
provision in data-protection law". Int. Rev. Law Comput.
Technol. 28 (2), May 2014, pp. 159-171.
doi=http://dx.doi.org/10.1080/13600869.2013.801589

[15] "CIPHER: Integrated Cybersecurity framework and
roadmap". [Online] http://cipherproject.eu/ [retreived: 2016-
01-12]

[16] "PRIPARE: Preparing Industry to Privacy-by-design by
supporting its Application in Research". [Online]
http://pripareproject.eu/ [retreived: 2016-01-12]

[17] "Cloud Accountability project". [Online].
http://www.a4cloud.eu/ [retreived: 2016-01-12]

[18] "USEMP: User Empowerment for enhanched online
management". [Online]. http://www.usemp-project.eu/
[retreived: 2016-01-12]

[19] Directive 95/46/EC of the European Parliament and of the
Council of 24 October 1995 on the protection of individuals
with regard to the processing of personal data and on the free
movement of such data.

[20] European Commission, "Progress on EU data protection
reform now irreversible following European Parliament vote",
Strasbourg, 12 March 2014. [Online]. Available:
http://europa.eu/rapid/press-release_MEMO-14-186_en.htm
[retreived: 2016-01-12]

[21] Information Commissioner's Office (ICO), "What is ‘privacy
by design’?" [Online] Available: https://ico.org.uk/for-
organisations/guide-to-data-protection/privacy-by-design/
[retreived: 2016-01-12]

[22] The Norwegian Data Protection Authority.
http://www.datatilsynet.no/English/ [retreived: 2016-01-12]

[23] M.G. Jaatun, J. Røstum, S. Petersen, and R. Ugarelli,
"Security Checklists: A Compliance Alibi, or a Useful Tool
for Water Network Operators?", Procedia Engineering,
Volume 70, 2014, Pages 872-876, ISSN 1877-7058,
http://dx.doi.org/10.1016/j.proeng.2014.02.096.

[24] "Privacy Online: A Report to Congress. Federal Trade
Commission", June 1998. [Online]. Available from:
https://www.ftc.gov/reports/privacy-online-report-congress
[retreived: 2016-01-12]

76Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 85 / 154

End User in Charge - Social Framework for Open Source Development

Kwabena Ebo Bennin, Shahid Hussain, Arif Ali
Khan, Solomon Mensah, Ernest Pobee

Department of Computer Science
City University of Hong Kong

Hong Kong, China
{kebennin2-c,shussain7-c,aliakhan2-c,smensah2-c,

epobee2-c}@my.cityu.edu.hk

Mohammed Alqadhi
Department of Computer Science

Jazan University
Jazan, Saudi Arabia

malqadhi@jazanu.edu.sa

Abstract— Open Source Software (OSS) is often developed in
a public collaborative manner. Online OSS repositories such as
GitHub, Google Code and SourceForge support collaborative
OSS development by offering services such as subversion
management, bug tracking and others. However, OSS mostly
favors end-users who are programmers or have some pre-
requisite programming skills. The normally short README
description file provided by the OSS developers does not
contain enough information to help the novice end-users who
intend to use the software in terms of installation and usage.
Also, despite being equipped with social coding feature to
support distributed multi-developer work environment, most
OSS repositories provide only a storage space for the OSS files
and this limits end-users just to their bugs/review comments on
a different platform and naturally, people would also like to be
key stakeholders like changing the functionality and
accessibility of software they could use. Some online OSS
repositories do not make provision for users to frequently
communicate with the developers of the OSS to discuss about
the published content on the repository. In this paper, we
propose a social framework for OSS development to address
the aforementioned issues. The framework is aimed to allow:
(1) knowing the degree of matching between the sought user’s
requirements and the available OSS by presenting the end-
user with the business domain model of a candidate OSS
associated to its textual requirements description and (2) a
lifetime communication between the users and OSS developers
and even inviting other developers out of the OSS development
team if needed.

Keywords-Open Source Software; OSS; End User;
Crowdsourcing; Social development.

I. INTRODUCTION

Open Source Software (OSS) development is an
approach to the design, development, and distribution of
software offering accessibility to software’s source code for
modification or enhancement. OSS has contributed to
software technology by providing end-users from many
sectors such as governmental/non-governmental
organizations, businesses and individuals around the world

leverage to customize OSS for their personal needs (see
Table I). Basically, this wide adoption of OSS is because an
OSS is a freeware and promotes reuse through code
transparency and a quality alternative to close source
software [8][9]. Such quality is a result of collaborative
efforts of developers from all over the globe and also the
flexibility of allowing team members to contribute as much
as they can, whenever they want [7]. Therefore, this
partially defeats the classic concept that only a centralized
management and strong control on the access to the source
code produces a good and high quality software product.
OSS has also dispelled in practice the view that rigorous
management and a clearly defined design is instrumental for
a successful software development project because many
open source software projects have been successfully
completed even without a clear initial design and formal
management process [1].

Most OSS developers contribute to development of
projects not because of money but as a way of giving to the
society freely [6]. There exist many Web-based software
repositories for hosting OSS such as GitHub [10] and
SourceForge [11] on the world wide Web. They provide the
service of social software development by facilitating multi-
developer OSS projects and offering subversion control, bug
tracking, release management, mailing lists and wikis.

TABLE I. EXAMPLES OF POPULAR OPEN SOURCE SOFTWARE

Usage Domain OSS Example

Office Productivity Suites
Apache openOffice, libreOffice, Neo
Office, Calligra

Finance and Accounting
Applications

GnuCash, TurboCASH

ERP Software ADempiere,OFBiz, OpenERP

CRM Software SugarCRM, OpenCRX, Fat Free CRM

Communication and
Telephony Software

AsteriskNOW, Elastix

Content Management
Systems

Drupal, Wordpress, OpenCms, Joomla

E-commerce Tools OpenCart, PrestaShop

77Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 86 / 154

The most often usage scenario for nowadays’ Web-based
OSS repositories begins with an end-user who looks for an
OSS project that satisfies a set of requirements. The
presented results based on the end-user’s search on the OSS
repository Website will be of one of these two possibilities:
(1) finding a list of preexisting OSS that possibly partially
fulfills the end-user’s requirements or (2) finding no
candidate OSS that matches or satisfies the end-user’s
requirement, thus, the end-user would have to create a
totally new system from scratch. Also, most available OSS
repositories do not provide the user with useful
documentation information to help decide the degree to
which a stored OSS satisfies a targeted user’s requirements.

Mostly, an OSS will be associated only with a README
file containing only technical information such as
configuration, installation and others. For example, a simple
search for a point of sale software may bring results of more
than 30 different OSS systems. The end-user will be
confused as to which software he/she should select. The
end-user could end up installing/testing nearly half of the
resulted list of systems before obtaining the desired system.
Another limitation of these OSS repositories is the lack of
developer support. This difficulty stems from the lack of
frequent communication channels between OSS users and
developers. Usually, end-users have to contact developers
through their personal homepages and e-mails. For that,
Websites for network of questions and answers, such as
StackOverflow.com are the popularly targeted venues by
OSS end-users. StackOverflow helps end-users to discuss
and solve their problems with developers who voluntarily
offer help and support. Research works in [3][4] have
studied a group of OSS authors (i.e., those who developed
the OSS) and the committers (i.e., those who reuse the OSS)
who have been identified as active on both GitHub and
StackOverflow platforms. Both studies observed that there
is a positive connection between participating in
StackOverflow and the productivity on GitHub. Also, the
study in [5] found that end-users do not follow up with the
OSS project within the OSS repository but rather, they go to
the community Websites such as StackOverflow [2] when
faced with any problem concerning the OSS project. All of
the aforementioned studies can be indicatives of the
difficulty the end-users endure in trying to communicate
with the authors and developers of an OSS project on the
OSS repository platform.

To address these two issues, we propose a social
framework for OSS projects that will: (1) provide a
mechanism for storing software requirements on an easy-to-
manipulate format in order to facilitate the process of
matching between the functionalities provided by the OSS
and the sought end-user’s requirements. (2) incorporate
social networking feature to frequently connect developers
and users. (3) Moreover, end-users are involved in the
process of social reviewing and crowd testing of the OSS
being developed.

Figure 1. An overview of the proposed framework.

The framework (Figure 1) will be a Web-based service that
offers a platform to undertake a multi-developer OSS
project. It also provides a social networking facility to
ensure all users (i.e., the developers and end-users) are
connected.

II. OVERALL FRAMEWORK

A. Framework Components
The framework mainly consists of three components as
follows:

1) Source Code Repository: this repository will contain
the source code files for all OSS projects on the platform.
Also, it will keep track of all changes made by different
users by means of subversion management facility to ensure
that each user’s corresponding changes are linked to the
changes in the requirements repository.

2) Requirements Repository: this will store the
requirements documentation for all OSS projects available
on the repository in XML-based format namely, XML-
based Requirements Description Language (XRDL).

3) Social Network: this component will frequently
connect all users in the repository (developers and users).

B. XML-Based Requirements Description Language (XRDL)
We propose an XML-based language for providing a

well-organized, structured and easy-to-manipulate format
for storing requirement documents in the OSS requirements
repository. This feature emanates from the inherent
dynamicity of XML, as it is a dynamic markup language
where one can define his/her own structures and constructs.
Dynamic requirements description can be accomplished
through user-defined requirements tags that define different
requirements-related constructs. The tags may define the
following constructs:

• Requirements
• Service type
• System Category
• Language

• User
• User Story
• Use-Case
• Class

78Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 87 / 154

Figure 2. A sample XRDL document mapped from requirements collection
form.

An XRDL document (Figure 2) will be generated
automatically by mapping the information retrieved from a
form filled by the user at the beginning of the OSS
development cycle. State-of-the-art techniques like textual
analysis already employed within contemporary CASE tools
will help in extracting artifacts such as actors, use-cases
and classes from the user entries in the form. By utilizing
XML (Figure 3) hierarchical power, these artifacts
information will be transformed into different
representations. We care about creating different
representations of the requirements due to the fact that the
platform will bring together volunteering developers from
different schools of thought on software development. For
instance, if a developer adopts Scrum development method
then, he/she will be interested in viewing requirements as
user stories. In contrast, a developer who follows a
systematic software engineering approach
needs to deal with use-cases and class diagrams which are
doable by applying textual analysis to the user stories.

Figure 3. An XML schema to capture requirements information in XRDL
document shown in Figure 4.

III. ILLUSTRATIVE OSS DEVELOPMENT STORY

The story begins with an end-user who has a set of
business requirements and searches for an OSS that satisfies
the requirements. The user will go to the platform and fill in
a form that is designed in a very simple and easy-to-
understand display to end-users (Figure 4). Upon
submission of the form, all developers on the platform will
be notified of the newly created requirements record.

Interested developers will pursue and provide feedback
to the end-user. Other end-users who have similar
requirements or needs can also join thus, they end up in a
single development group within the social software
development platform.

In the first project’s requirements collection form, the
collected requirements are mostly composed of user stories.
With this proposed framework, since there will be a number
of end-users on the same platform, it will be easy to interact
and get a clearer picture of the requirements through a social
requirements refinement process. That is, the developers and
other end-users who are subscribed to the social
development platform can help in breaking down and
refining the collected requirements (Figure 5).

Figure 4. A sample project’s requirements collection form.

Figure 5. A sample social refinement for OSS requirements.

<?xml version="1.0" encoding="UTF-8"?>
<requirements reqid="001"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="requirement.xsd">
<system> <service>new</service>

<platform>PHP</platform></system>
<preference> <category>Information
systems</category></preference>
<story><user>tenant</user>
<body>user should get management fee receipt, report incidents, check
incident handling progress</body>
</story>
<story><user>Security Guard</user>
<body>update fee payment for tenants, update incident report status,
generate incident report</body></story>
</requirements>

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="requirement">
<xs:complexType>
<xs:sequence>
<xs:element name="system"><xs:complexType> <xs:sequence>
<xs:element name="service" type="xs:string"/>

<xs:element name="platform" type="xs:string"/>
</xs:sequence></xs:complexType></xs:element>
<xs:element name="preference"><xs:complexType>
<xs:sequence>
<xs:element name="category" type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="story" maxOccurs="unbounded">
<xs:complexType><xs:sequence>
<xs:element name="user" type="xs:string"/>
<xs:element name="body" type="xs:string"/>
</xs:sequence></xs:complexType></xs:element>
</xs:sequence> <xs:attribute name="reqid" type="xs:string"
use="required"/>
</xs:complexType></xs:element>
</xs:schema>

79Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 88 / 154

Should there be more than two end-users and developers
on the platform, as end-users keep on refining the
requirements, the developers develop and design prototypes.
After each prototype, it can be pushed to the end-users for
testing. This cycle will be repeated until a fully functional
application is developed and all stakeholders are satisfied
with the results. Another alternative scenario is when the
end-user logs in to the OSS social development platform
and searches the software repository for a possible OSS that
matches his/her requirements. For the search, a set of
indicative keywords related to the users of the systems and
usage scenarios to search the repository could be used. The
output of the search will be one of the following two
scenarios:

a) Returning a list of preexisting OSS that possibly
partially fulfills the end-user’s requirements.

b) Finding no candidate OSS prompting the end-user to
create a totally new system from scratch by filling in
the requirements collection form. In case of
availability of a match, then the platform will display
the candidate list of OSS projects for the user
associated with its most updated requirements. The
presented requirements will be in the form of a
business domain model associated with text-based
requirements description (Figure 6). Through the
presented business domain model, the end-user can
quickly understand the functionality provided by the
available OSS projects. The end-user will go through
these listed OSS and check whether it matches his
requirements either partially or fully.

If an OSS matches the user’s requirement fully, then
he/she will proceed to use it. However, it is more likely the
OSS will match the end-user’s requirements partially, so
there will be a need to slightly change requirements and
consequently, the corresponding OSS code accordingly.
Therefore, the user will fill a change request form stating the
minor changes to be implemented upon submission to the
social development platform. Members who are experienced
in the same programming language in which the selected
OSS was written or domain or who worked on the previous
OSS application will be notified with a new user request.
This therefore will ensure there is still continuity of the
project and communication with developers.

All changes or updates made to the source code will be
saved in subversions. Similarly, the requirements documents
will be updated with the latest refined requirements and
stored in the repository in XRDL.

Figure 6. Part of the business domain model for a video rental system.

Finally, after completion of development of software,
should the end-user encounter any challenges in the usage of
the software, they could always return to the framework and
interact with the developers to get their bugs fixed or
request any update(s).

IV. BENEFITS

We list the potential benefits of using this framework.

Social Requirements Refinement: All active stakeholders
(including end-users) who are experts in their domain
together with the developers can collaborate and agree on
the best requirement data and hence generate the best and
necessary requirement for the developers to work with.
There will be no misunderstanding with the output at the
end of the project since requirements were clearly defined
so many times during each information session.
Social Review of Source Code: Since the development is a
crowd effort, other developers have the opportunity to
review the source codes and make contributions in the areas
of bug detection, refactoring and efficient and smart
algorithms to make the system as robust as required.
Crowd Testing: A unique robust testing technique is
applied in this framework. Testing is not only done by
developers but end-users also participate in this process.
Hence, bugs hidden during white box testing by
programmers will be exposed by end-users. Also, with a
large community, a rigorous stress testing approach is
applied to the system to ensure the system is stable and can
withstand heavy load.

Reuse and sharing of components: The source code
repository will be available for reuse and therefore shared
among the community.

V. CONCLUSION

The Web is now proliferated with so many open source
projects or applications which are at the disposal of end
users. The success of OSS on the Web is a clear indication of
how end-users would like to be involved in the development
of software. However, the platforms for OSS development
mostly favor users who are programmers or have some pre-
requisite programming skills and provide limited or no
technical support. In this paper, we have addressed the
challenges faced by end-users in finding and using OSS in
the current Web-based OSS repositories. We proposed a
social framework that involves end-users during the
development of an OSS project.

End-users who need software will present their problems
to an open community of developers and end-users and
people who have the same or similar interest will
collaborate to provide solution for the end-users. In this
framework, contributors can willingly divide themselves
into groups such as requirements analyst, developers and
testers. The framework encourages crowdsourcing and
crowd testing to support social end-user development by

80Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 89 / 154

which people can easily share problems and associated
solutions together with the underlying rationale that the
completed project can be used by all contributors.

REFERENCES

[1] J. M. Gonzalez-Barahona and C. Daddara "Free software/open
source: Information society opportunities for europe?" Working
group on Libre Software, http://eu. conecta. it/paper/cathedral_bazaar.
html (2000).

[2] StackOverflow: Q&A Website. Available from:
http://www.stackoverflow.com. [accessed December 2014]

[3] B. Vasilescu et al., StackOverflow and GitHub: Associations between
Software Development and Crowdsourced Knowledge, In Social
Computing (SocialCom), 2013 International Conference on (pp. 188-
195). IEEE.

[4] B. Vasilescu, Human aspects, gamification, and social media in
collaborative software engineering, in Companion Proceedings of the
36th International Conference on Software Engineering. 2014, ACM:
Hyderabad, India. pp. 646-649.

[5] C. Ayala et al., OSS Integration Issues and Community Support: An
Integrator Perspective, in Open Source Systems: Long-Term

Sustainability, I. Hammouda, et al., Editors. 2012, Springer Berlin
Heidelberg. pp. 129-143.

[6] A. Westenholz, (Ed). The Janus face of commercial open source
software communities: An investigation into institutional (non) work
by interacting institutional actors. Copenhagen Business School Press
DK, 2012.

[7] A. Hemetsberger, and C. Reinhardt. "Collective development in open-
source communities: An activity theoretical perspective on successful
online collaboration." Organization studies 30.9 (2009): pp. 987-
1008.

[8] A. Boulanger,. "Open-source versus proprietary software: Is one more
reliable and secure than the other?." IBM Systems Journal 44.2
(2005): pp. 239-248.

[9] B. Fitzgerald,. "A critical look at open source." Computer 37.7
(2004): pp.92-94.

[10] C. Gandrud,. "Github: A tool for social data set development and
verification in the cloud." Available at SSRN 2199367 (2013).

[11] SourceForge Software repository. https://www.sourceforge.net
[accessed December 2014]

81Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 90 / 154

Sequence Data Mining Approach for Detecting Type-3 Clones

Yoshihisa Udagawa and Mitsuyoshi Kitamura
Computer Science Department, Faculty of Engineering,

Tokyo Polytechnic University
Atsugi-city, Kanagawa, Japan

e-mail: {udagawa, kitamura}@cs.t-kougei.ac.jp

Abstract— Code clones are introduced to source code by
changing, adding, and/or deleting statements in copied code
fragments. Thus, the problem of finding code clones is
essentially the detection of strings that partially match. The
proposed algorithm is based on the well-known apriori
principle in data mining and is tailored to detect code clones
represented as sequences of strings. However, the apriori
principle may generate too many sequential patterns. The
proposed algorithm finds a compact representation of
sequential patterns, known as maximal frequent sequential
patterns, which is often two orders of magnitude smaller than
frequent sequential patterns. Early experiments using the Java
SDK 1.7.0.45 lang package demonstrate the number of
extracted patterns and elapsed time in several contexts.

Keywords-component; Code clone; Maximal frequent sequence;
Longest common subsequence(LCS) algorithm; Java source code.

I. INTRODUCTION

Copying and pasting similar code (or code clones) is very
common in large software since it can significantly reduce
programming effort and time. However, code clones
complicate software maintenance. For example, when an
error is identified in one copy, the same error can occur in
the code clones. Thus, a maintenance programmer must
check all code clones to ensure parallel changes.

Generally, the detection process for code clones
comprises two phases, i.e., transformation and matching [1].
(1) Transformation phase: parts of interest of the source code

are transformed to another intermediate representation for
ease of matching.

(2) Matching phase: the intermediate representation units are
compared to find a match.
Because copying and modifying statements are common

programming practices, finding code clones that partially
match is a challenging task from both practical and technical
perspectives. Partially-matching code clones are referred to
as type-3 clones, gapped clones, and near-miss clones in
code clone detection literature [1]. The term “gap” refers to
nothing-match or non-match elements that comprise two
code clone candidates.

A number of approaches have been developed for
detecting code clones. State-of-the-art research is divided
into two categories. The first category is dedicated to code
clone detection. Ducasse et al. [2] defined and assessed six
degrees of transformation with regard to varying gap sizes of
zero, one, and two. Because of limitations of scalability, they
restricted themselves to a gap size of zero in some case
studies. Roy et al. [3] proposed a near-miss clone detection

method called Accurate Detection of Near-miss Intentional
Clones (NICAD). NICAD combines language-sensitive
parsing with language-independent similarity analysis using
an optimized longest common subsequence (LCS) algorithm
[4] to detect code clones. Murakami et al. [5] proposed a new
token-based method that detects gapped code clones using a
local sequence alignment algorithm, i.e., the Smith–
Waterman algorithm. They discussed a sophisticated trace
back algorithm tailored for code clone detection.

The other category focuses on frequent sequence mining
techniques to detect code clones and code change patterns.
CP-Miner [6] employs an extended version of CloSpan [7] to
support gap constraints in frequent subsequences. It tolerates
one to two statement insertions, deletions, or modifications
in copy-pasted code. Negara et al. [8] developed a
sophisticated data mining algorithm that effectively detects
frequent code change patterns. They also identified 10 types
of popular high-level code change patterns from mined code
change patterns.

The main idea of the proposed approach is a combination
of frequent sequence mining and the LCS algorithm to detect
type-3 clones.

A sequence is called a frequent sequence if it appears in a
given sequence database with a frequency no less than a
user-specified threshold (i.e., minSup). Although several
algorithms have been proposed for frequent sequence mining,
such as CloSpan, ClaSP, and CM-ClaSP [9], one of the
drawbacks of these algorithms is that they can present a very
large number of sequential patterns. A sequential pattern is
maximal if immediate super-sequences are frequent [10].
The maximal sequential patterns are generally a small subset
of frequent sequential patterns. The proposed approached
employs maximal sequential pattern mining to discover a
compact set of clone candidates.

The main contributions of this paper are as follows: (1)
development of a code transformation parser that extracts
code matching statements; (2) development of a matching
algorithm that efficiently detects type-3 clones using a
tailored sequential pattern mining algorithm; (3) evaluation
of the proposed algorithm using the Java SDK 1.7.0.45 lang
package with several parameters; and (4) performance
comparison of the proposed algorithm to previous methods.

The remainder of this paper is organized as follows.
Section 2 presents an overview of the proposed approach.
Section 3 describes the proposed algorithm, which discovers
clone candidates using maximal frequent sequence mining.
Section 4 presents the results of an experimental study using
the Java SDK lang package. Finally, Section 5 concludes the
paper and provides suggestions for future work.

82Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 91 / 154

II. OVERVIEW OF OUR APPROACH

Our goal is to detect method pairs or sets that share
common code fragments. In the proposed approach, Java
source code is initially partitioned into methods. Then, code
matching statements are extracted for each method. The
extracted statements comprise class method signatures,
control statements, and method calls [11]. Our approach
consists of the following four steps (Figure 1).

Figure 1. Overview of the proposed approach.

A. Extraction of code matching statements

Under the assumption that a method call characterizes a
program, the proposed parser extracts a method identifier
called in a Java program. Generally, the instance method is
preceded by a variable whose type refers to a class object to
which the method belongs. The proposed parser traces a type
declaration of a variable and translates a variable identifier to
its data type or class identifier as follows.

<variable>.<method identifier>
is translated into
 <data type>.<method identifier>
or
 <class identifier>.<method identifier>.
We have developed a parser that extracts control

statements with various levels of nesting. A block is
represented by the "{" and "}" symbols. Thus, the number of
"{" symbols indicates the number of nesting levels. The
following Java keywords for 15 control statements are
processed by the proposed parser.

if, else if, else, switch, while, do, for, break, continue,
return, throw, synchronized, try, catch, finally

We selected the Java SDK 1.7.0.45 lang package as our
target. The number of total lines is 67,677. Figure 2 shows an
example of the extracted structure of the encode(char[] ca,
int off, int len) method in the StringCoding.java file of the
java.lang package. The three numbers preceded by the #
symbol are the number of comments, and blank and code
lines, respectively. The extracted structures include control
statement nesting depth; thus, they provide sufficient

information for retrieving methods using the structure of the
source code.

Figure 2. Example of the extracted structure.

In this study, we only deal with Java. However,

extraction of code matching statements can allow our
approach to be independent of programming languages, such
as C/C++ and Visual Basic.

B. Encoding statements in three 32-decimal digits

The conventional LCS algorithm takes two given strings as
input and compares each character of the strings. However,
the length of statements in program code differs; thus, the
conventional LCS algorithm does not work effectively. In
other words, for short statements, such as if and try
statements, the LCS algorithm returns small LCS values for
matching. For long statements, such as synchronized
statements or a long method identifier, the LCS algorithm
returns large LCS values.

 We have developed an encoder that converts a statement
to three 32-decimal digits, which results in a fair base for a
similarity metric in clone detection. Figure 3 shows the
encoded statements that correspond to the code shown in
Figure 2. Figure 4 shows the mapping table between three
32-decimal digits and a code matching statement extracted
from the original source files.

Figure 3. Encoded statements corresponding to Figure 2.

StringEncoder::encode(char[] ca, int off, int len)→001→
13V→005→004→003→005→004→003→00C→14F→
141→142→00V→14G→005→144→003→14H→005→
144→003→003→011→07F→003→004→003→003

83Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 92 / 154

Figure 4. Mapping table between three 32-decimal digits and a code
 matching statement.

C. Detecting frequent sequences with gaps

We have developed a mining algorithm to find frequent
sequences based on the apriori principle [12]. The proposed
algorithm is designed to find a set of frequently occurring
sequences. Note that several matches can be detected in a
sequence for a subsequence given as a matching condition.
For example, the proposed algorithm detects the two matches
of subsequence A→B in sequence A→B→A→C→A→B→
D.

The LCS algorithm is tailored to match three 32-decimal
digits as a unit. The LCS algorithm can match two given
sequences even if "gaps" (nothing-match or non-match
elements) exist. Given two sequences of matching strings S1
and S2, let |lcs| be the length of their longest common
subsequence, and let |S1| and |S2| be the length of S1 and S2,
respectively. The “gap size” gs is defined as gs= |lcs| -
min(|S1|, |S2|).

D. Mining maximal frequent sequences

Frequent sequences mining can result in a very large
number of sequential patterns, which makes it difficult for
users to analyze the results. Mining maximal frequent
sequences addresses a drawback of frequent sequences
mining [10]. We have developed an algorithm to discover
maximal frequent sequences. Note that our approach deals
with gapped sequences; thus, it requires a tailored technique
to filter non-maximal frequent sequences.

III. PROPOSED FREQUENT SEQUENCE MINING

This section outlines the proposed frequent sequence
mining algorithm and shows some examples that
demonstrate how the algorithm works.

A. Proposed Frequent Sequence Mining Algorithm

The proposed approach is based on frequent sequence
mining. A subsequence is considered frequent when it occurs
no less than a user-specified minimum support threshold (i.e.,
minSup) in the sequence database. Note that a subsequence
is not necessarily contiguous in an original sequence.

We assume that a sequence is a list of items, whereas
several algorithms for sequential pattern mining [9] deal with
a sequence that consists of an ordered list of "itemsets." Our
assumption is rational because we focus on detecting code
clones. In addition, the assumption simplifies the

implementation of the proposed algorithm, which makes it
possible to achieve high performance (Section 4).

The proposed frequent sequence mining algorithm
comprises two methods, i.e., GProve (Figure 5) and
Retrieve_Cand (Figure 6). It follows the key idea behind
apriori; if a sequence S in a sequence database appears at
least N times, so does every subsequence R of S.

Figure 5. Frequent sequence detection of the proposed

algorithm.

Figure 6. Candidate sequences retrieval for the next
 repetition.

The variable k indicates the count of the repetition (line 2,

Figure 5). LinkedList < String > Sk is initialized to hold 15
control statements. The Retrieve_Cand method (line 5,
Figure 5) discovers a set of sequences of length k+1 from a
sequence database that matches statement sequences in Sk.
The while loop (lines 9–17) finds frequent sequences and
sequence IDs in a sequence database.

Lines 12–14 maintain the frequent sequences. Note that
the proposed algorithm handles gapped sequences, and both
a frequent sequence and its "gap synonyms" are prepared for
the next repetition. Here, "gap synonyms" means a set of
sequences that match a given subsequence under a given gap
constraint.

Generally, the Retrieve_Cand() method in Figure 6
works as follows. HashMap <String, Integer> Ck holds a
sequence (String) and its frequency (Integer). First, Ck is
cleared (line 2, Figure 6). The three for loops examine all
possible matches between an element in Sk and sequences in
a sequence database. The longest common subsequence
algorithm is tailored to compute the match count and gap

84Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 93 / 154

count (line 6, Figure 6). The if statement, (line 7, Figure 6)
screens a sequence based on the match count and gap count.
Lines 8–10 maintain the frequency of sequences and its “gap
synonyms.”

B. Extracting Frequent Sequences

In our approach, we assume a program structure is
represented as a sequence of statements preceded by a class-
method ID. Each statement is encoded to three 32-decimal
digits so that the LCS algorithm correctly works regardless
of the length of the original program statement. The
proposed algorithm is illustrated for the given sample
sequence database in Figure 7. MTHD# is an abbreviated
notation for a class-method ID.

Figure 7. Example sequence database.

Figure 8 shows the result of the frequent sequences for a

gap of 0 and minSup of 50%, which is equivalent to a
minSup count that equals 2. “005” is a frequent sequence
with a minSup count of 6 because “005” occurs once in the
first and second sequences and twice in the third and fourth
sequences. The proposed algorithm maintains an ID-List,
which indicates the positions a frequent sequence appears in
a sequence database. The ID-List for “005” is 1|2|3+3|4+4.

Similarly, 005→003→ is a frequent sequence with a
minSup count of 3, i.e., the ID-List for 005→003→ is 1|3+3.

Figure 8. Result of the frequent sequences (gap, 0; minSup, 50%).

Figure 9 shows the result of the frequent sequences for a

gap of 1 and minSup of 50%. “005” is a frequent sequence
with a minSup count of 6, which is the same in the case of a
gap of 0.

Similarly, 005→003→ is a frequent sequence with a
minSup count of 5. In addition to the consecutive sequence
005 → 003 → , the proposed algorithm detects gapped
sequences. In the case of 005→003→, the algorithm detects
005→00A→003→ in the second sequence and 005→006→
003→ in the fourth sequence. Thus, the ID-List for 005→
003→ is 1|2|3+3|4.

Figure 9. Result of the frequent sequences (gap, 1; minSup, 50%).

Figure 10 shows the result of the frequent sequences for a

gap of 2 and minSup of 50%. In addition to 005→ and 005
→003→, 005→006→ is detected as a frequent sequence

because 005→003→00F→006→ in the third sequence
matches 005→006→ with a gap of 2, and 005→006→ in the
fourth sequence with a gap of 0. Thus, the ID-List for 005→
006→ is 3|4.

Figure 10. Result of the frequent sequences (gap, 2; minSup, 50%).

C. Extracting Maximal Frequent Sequences

A frequent sequence is a maximal frequent sequence and
no supersequence of it is a frequent sequence. The set of
maximal frequent sequence is often several orders of
magnitude smaller than the set of all sequential patterns. In
addition, it is representative because it can be used to recover
all frequent sequences. Several algorithms for finding
maximal frequent sequences and/or itemsets employ
sophisticated search and pruning techniques to reduce the
number of sequence and/or itemset candidates during the
mining process.

However, we wish to measure the effects of a maximal
frequent sequence; therefore, the proposed algorithm first
extracts a set of frequent sequences and then detects a set of
maximal frequent sequences.

Note that, since we deal with a gapped sequence,
screening a maximal frequent sequence is required to check
that none of the immediate super-sequences of gap
synonyms, which are a set of sequences that match a given
subsequence under the gap constraint, is a frequent sequence.

IV. EXPERIMENTAL RESULTS

We present some measures on frequent sequences or
candidate clones, time analysis, and findings relating to the
Java SDK 1.7.0.45 lang package. Some features of the code
are as follows.
1. After screening methods without control statements or

method calls, the normalized code consist of 2,522
methods, 18,205 identifiers, and 1,286 unique identifiers.

2. The maximum length method is
isCallerSensitiveMethod() (127 lines), which is obtained
from the java.lang.invoke.MethodHandleNatives.java file.

3. The maximum method nesting level is seven, which is
obtained from the getEnclosingMethod() method of the
java.lang.Class.java file.

A. Maximum Length of Retrieved Sequences

The proposed algorithm can retrieve sequences that
satisfy an arbitrary gap size specified by the user. Figure 11
summarizes the maximum lengths of the retrieved
sequences for each minSup and gap size. As minSup
decreases, the filtering condition lessens; thus, the
maximum lengths increase. As the gap size increases, the
matching condition lessens; thus, the maximum lengths
increase. The results in Figure 11 show that the maximum

MTHD1→005→003
MTHD2→005→00A→003→003
MTHD3→005→003→00F→006→005→003
MTHD4→005→006→003→005→00C

005→ N=6（1|2|3+3|4+4）
005→003→ N=3（1|3+3）

005→ N=6（1|2|3+3|4+4）
005→003→ N=5（1|2|3+3|4）

005→ N=6（1|2|3+3|4+4）
005→003→ N=5（1|2|3+3|4）
005→006→ N=2（3|4）

85Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 94 / 154

lengths reach 120 when minSup is 2 and gap size is no less
than 2.

Figure 11. Maximum length of retrieved sequences for each minSup

and gap size.

B. Numbers of Retrieved Sequences

Figure 12 shows the number of retrieved frequent
sequences with respect to gap (0 to 4) and minSup (2 to 10).
As expected, the number of retrieved frequent sequences
increases as gap increases and minSup decreases. The
proposed algorithm can find frequent sequences that occur at
least twice in the sequence database, which is necessary for
finding all possible code clones. Note that the numbers of
retrieved frequent sequences for a gap of 0 are plotted on the
right secondary axis because they are 1/7 to 1/60 of the
numbers of retrieved frequent sequences for a gap of 1 to 4.

Figure 12. Numbers of retrieved frequent sequences (gap size, 0 and 1-4;

minSup, 2-10).

Figure 13 shows the number of maximal retrieved
frequent sequences with respect to a gap of 0 to 4 and
minSup of 2 to 10. As expected, the number of maximal
retrieved frequent sequences is a compact representation of
the set of frequent sequences, which is approximately one to
two orders of magnitude smaller than that of frequent
sequences. The ratio of the number of frequent sequences to
the number of maximal frequent sequences increases as gap

increases. For example, the ratio is approximately 100,
which is the largest obtained ratio, when gap is 4 and
minSup is 2.

Figure 13. Numbers of retrieved maximal frequent sequences (gap size, 0

and 1-4; minSup, 2-10).

C. Time Analysis

Figure 14 shows the elapsed time in milliseconds for
retrieving frequent sequences. The x-axis indicates minSup.
Note that the elapsed time for a gap of 0 is plotted on the
right secondary axis. We measured elapsed time using the
following experimental environment.

CPU: Intel Core i3-540 3.07 GHz
Main memory: 8 GB
OS: Windows 7 64 Bit
Programming Language: Java 1.7.0

The proposed algorithm can retrieve frequent sequences
fairly efficiently. For example, it takes 289,481 milliseconds
to identify 154,789 frequent sequences for a gap of 1 and
minSup of 2. Note that elapsed time increases as the gap
increases. The results show that the elapsed time is
approximately 4.8 × N × t, where N is the number of gaps,
and t is the elapsed time for a gap of 0.

Figure 14. Elapsed time (milliseconds) for retrieving frequent sequences.

86Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 95 / 154

The maximal sequential pattern (MaxSP) and vertical
mining of maximal sequential patterns (VMSP) produce a set
of maximal sequential patterns. However, the runnable code
of MaxSP downloaded from an open-source data mining
library [9] fails to process the sequence database due to an
overly long process time. For VMSP, it processes in less than
100 ms with a very small set of maximal sequential patterns
that is approximately three orders of magnitude smaller than
the expected set of patterns.

Figure 15 shows a comparison of elapsed time for the
proposed algorithm with respect to gap 0, as well as ClaSP
and CM-ClaSP, which produce the best available results.
Note that ClaSP and CM-ClaSP terminate with a stack
overflow error when minSup is less than 7.

Figure 15. Comparison of elapsed time.

Figure 16 shows elapsed time in milliseconds for
retrieving maximal frequent sequences. The input is a list of
retrieved frequent sequences, and the output is a list of
maximal frequent sequences. The elapsed time is nearly
proportional to the number of maximal retrieved frequent
sequences in Figure 13. The elapsed time for extracting a
list of maximal frequent sequences is 1/160 of that for
retrieving a set of frequent sequences and is nearly
independent of gap size.

Figure 16. Elapsed time for retrieving maximal frequent sequences.

D. Source Code Findings

By increasing gap size to greater than 2, we can relax the
gap constraint; however, this is detrimental to the relevance
of retrieved sequence occurrences. We limit ourselves to a
gap size of 1 to simplify analysis.

Figure 17. Four clone candidate methods.

Figure 17 shows a set of four methods that match a

sequence 005→ 004→ 003→ 00C→ 141→ 142→ 00V→
within a gap of 1. These four methods are defined in the
StringCoding.java file of the java.lang package. They are
considered clones because the arguments in the encode and
decode methods differ only slightly in order to implement
method overloading. In addition, they share the sequence
005→004→003→00C→141→142→00V→. Note that only
the encode(char[] ca, int off, int len) method (Figure 2)
matches the sequence 005→004→003→00C→141→142→
00V→ with one gap (i.e., "14F" or CharsetEncoder.reset()),
as shown in the third row of Figure 17. This difference is
considered to be worthy of checking by the implementer of
the methods.

V. CONCLUSINONS AND FUTURE WORK

We have presented an approach to identify type-3 clones
using a source code parsing technique to extract matching
code statements, a maximal frequent sequence mining
algorithm, and a modified LCS algorithm for computing the
matching degree and gaps of corresponding code segments.

Early experiments using the Java SDK 1.7.0.45 lang
package indicate that the algorithms can identify type-3
clones in a reasonable elapsed time. The experimental results
show that the ratio of the number of the frequent sequences
to the number of maximal frequent sequences reaches
approximately 100. However, the proposed algorithm still
generates thousands of maximal frequent sequences.
Therefore, we plan to improve the proposed algorithm in
future.

87Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 96 / 154

REFERENCES
[1] C. K. Roy and J. R. Cordy, “A survey on software clone

detection research,” Queen's Technical Report:541. Queen’s
Uni-versity at Kingston, Ontario, Canada, Sep. 2007, pp.1-
115.

[2] S. Ducasse, O. Nierstrasz, and M. Rieger, “On the
effectiveness of clone detection by string matching,” Journal
of Software Maintenance and Evolution Research And
Practice, Jan. 2006, pp.37–58.

[3] C. K. Roy and J. R. Cordy, “NICAD: Accurate detection of
near-miss intentional clons using flexible pretty-printing and
code normalization,” Proc. 16th IEEE International
Conference on Program Comprehension, June 2008, pp.172-
181.

[4] J. W. Hunt and T. G. Szymanski, “A fast algorithm for
computing longest common subsequences,” Comm. ACM,
Vol.20, Issue.5, May 1977, pp.350-353.

[5] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto,
“Gapped code clone detection with lightweight source code
analysis,” May 2013, pp.93-102.

[6] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A tool
for finding copy-paste and related bugs in operating system
code,” Proceedings of the 6th Symposium on Operating
System Design and Implementation, Dec, 2004, pp.289-302.

[7] X. Yan, J. Han, and R. Afshar, “CloSpan: Mining closed
sequential patterns in large datasets,” Proc. 3rd SIAM
International Conference on Data Mining (SDM’03), May,
2003, pp.166-177.

[8] S. Negara, M. Codoban, D. Dig, and R. E. Johnson: Mining
Fine-Grained Code Changes to Detect Unknown Change
Patterns, Proc. 36th International Conference on Software
Engineering(ICSE 2014), May 2014, pp.803-813.

[9] “An Open-Source Data Mining Library,”
http://www.philippe-fournier-viger.com/spmf/index.php,
v0.96r20, August 2015.

[10] P. Fournier-Viger, C.-W. Wu, A. Gomariz, and V. S. Tseng,
“VMSP: Efficient vertical mining of maximal sequential
patterns,” Proc. 27th Canadian Conference on Artificial
Intelligence (AI 2014), Springer, Advances in Artificial
Intelligence, Lecture Notes in Computer Science,Vol. 8436,
May 2014, pp. 83-94.

[11] Y. Udagawa, “A novel technique for retrieving source code
duplication,” Proc. 9th International Conference on Systems
(ICONS 2014), Vol. 9, Feb. 2014, pp.172-177.

[12] R. Agrawal and R. Srikant, “Fast algorithms for mining
associa-tion rules,” Proc. 20th International Conference on
Very Large Data Bases(VLDB), 1994, pp.487-499.

88Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 97 / 154

A Multi-Agent System for Expertise Localization in Software Development
José Ramón Martínez García1, Ramón René Palacio Cinco2, Joel Antonio Trejo-Sánchez3

Luis-Felipe Rodríguez1, Joaquin Cortez1

1Instituto Tecnológico de Sonora, Unidad Nainari,
Antonio Caso 2266, Ciudad Obregón, Sonora, México.

e-mail:joseramonmg26@gmail.com, luis.rodriguez@itson.edu.mx
joaquin.cortez@itson.edu.mx

2Instituto Tecnológico de Sonora, Unidad Navojoa,

Ramón Corona S/N, Colonia ITSON, Navojoa Sonora, México.
e-mail:ramon.palacio@itson.edu.mx

3Universidad del Caribe, Dpto. Ciencias Básicas e Ingeniería,

Esquina Fraccionamiento Tabachines, Cancún, Q.R.
e-mail:jtrejo@ucaribe.edu.mx

Abstract— In software industry, expertise is fundamental to the
timely ending of projects, since tasks are solved in a more
efficient manner. The expertise of an organization exists in
people or artifacts and it is not easy to identify when required
because this information does not reside in a repository to
facilitate its management in terms of storage, consultation and
distribution. This causes uncertainty among members of the
organization to determine the appropriate expertise to solve a
project activity. The aim of this paper is to present a multi-
agent system that supports the expertise location in software
development. Using a knowledge flow methodology the
barriers that prevent the flow of knowledge and interaction in
software development activities were identified and using this
information the requirements were elicited. The architecture
provides information concerning the location of the
appropriate expertise to solve a problem posed by a user
making use of the artifacts and experts available in the
organization.

Keywords-knowledge; expertise; agents; software
development.

I. INTRODUCTION
Today, organizations have a special interest in treating

knowledge as an organizational resource. This type of
resource represents a change regarding how to manage
information that generates different processes inside the
organizations. Using this information, organizations promote
the exchange of knowledge among its members, so that
through the current knowledge, it will increase and improve
their work practices in order to create organizational
knowledge. For this, organizations need to promote internal
support among members to generate and transfer knowledge
that will later help with better decision making [1].

According to [2], knowledge can be found in persons
(individual or group) and artifacts (e.g., business practices
and daily routines, technologies, physical or digital
documents repositories, such as books, manuals, videos, and
so on) by which it can produce wealth, multiply the
production of physical goods, and create competitive
advantage [3][4]. New knowledge always stems from an
individual in the organization, so that knowledge passed

from individual to organizational. This means, an
organization cannot create knowledge without an individual
initiative and the interaction that occurs within teams.
Knowledge can increase or consolidate in the group through
dialogue, discussion, exchange of experience and
observation. So the members of an organization generate
new points of view through dialogue and discussion. This
dialogue can include considerable conflicts and
disagreements, but it is precisely such conflict that pushes
employees to question existing premises and give new
meaning to their experiences [5].

In many situations, when developers encounter
difficulties with an activity, they usually searches for
knowledge. This is because the goal is to find the expertise
(better quality knowledge) to solve the problem or the
difficulty, demanding a greater degree of knowledge [6].
This article addresses the problem to locate the appropriate
expertise to solve problems in an organization, particularly in
software development. This is, because the software industry
generates different type of artifacts during the development
process (e.g., system requirements, modules, components
software, manuals, etc.) and such artifacts are connected or
related to the creator/s (programmer, software architect,
analyst, etc.) [7]. During the activities of software
development, project activities are distributed to members of
the working group and they work individually, at a certain
times come together to integrate their products to achieve the
project deliverables or artifacts. For this, they require
existing expertise in the organization so they turn to their
colleagues to share knowledge in order to solve obstacles.
So, the challenge for these organizations is to obtain
adequate expertise in a timely manner in order to maintain
the competition level of the company to win more contracts
and fulfill their commitments on time with customers, and
for this the organization requires its members to be effective
in generating artifacts [8].

In software development, a lot of knowledge can be
shared among members of development either between
analysts and programmers or between programmers and
testers, but much of this knowledge remains tacit and
depends heavily on the interaction between members to

89Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 98 / 154

obtain or share that knowledge. This, combined with the
global trend of the software industry [9] placing the different
team members working in different geographical locations,
limited to communication [10] and activities coordination
[11], which is reflected in misunderstandings, errors and
waste of resources [12]. Therefore, the main objective of this
article is to design and model an agent based system to
support the localization of expertise in the development of
software architecture, which makes use of existing
knowledge and experience, so that, in this way, they can
anticipate problems, innovate and generate new knowledge
between the working groups and could potentially help these
organizations to improve their development process. The
remainder of the paper is organized as follows Section II
outlines the related work, after which, in Section III, the
phases of the methodology used in this work are described.
Section IV explains the multi-agent architectural propposal
and describes the process of expertise location. Finally,
Section V presents our concluding remarks and the
directions of our future work.

II. RELATED WORK
The location of expertise in software development is a

complex and little discussed issue, since there is a tacit
knowledge in people. In order to acess that knowledge,
software engineers generally interact with each other to find
out who is the best person to answer any questions or help
with a project task. For this, efforts have been made to
manage the location of expertise by using an agent-oriented
approach, as in [13], where a multi-agent architecture
designed to manage information and knowledge generated
during maintenance of software is presented, using Web
technologies to support interaction between players using
different reasoning techniques to generate new knowledge
from prior information and learning from their own
experience. This reasoning is based on the different cases
that happened in a previous project or previously in the same
project, as well as the experience documented by the
stakeholders. Another proposal that works with the agent-
oriented paradigm [14] presents an initial implementation of
a system that works with agents that help localization
expertise (experts) under the theme ‘Java programming
language’, where agents are responsible for scheduling
appointments for the exchange of knowledge, proactively
detecting when help is needed, providing additional
information during the interaction and adjusting their own
mechanisms of profiles according to user feedback.

Systems that focus to a particular kind of knowledge
(artifacts) have also been developed, such as BluePrint [15],
which describes the design, implementation and evaluation
of a web search interface integrated with the development
environment Adobe Flex Builder that helps users locate code
examples of previous projects using keywords (e.g.,
programming language, framework, class name and/ or
method). SNIFF [16] works with the location of artifacts,
which facilitates the search for existing libraries through a
plugin for the Eclipse development environment for Java
programming language. It is based on the premise that
libraries are fine match documented facilitating the search

for the library with the available domain Java programming.
Similarly, Exemplar [17] is a tool for searching software
projects of great importance for source code reuse. It uses the
keywords and the words in the description of the project to
infer on the needs of the user.

Finally, there are many works about locating the
knowledge of the people (experts), such as QuME [18],
which is a prototype of a personalized Web interface for
users of online communities requiring help with Java
programming language. It has a mechanism to infer the level
of knowledge of a java programming language user,
calculated using parameters such as the questions being
asked in the forum, the response frequency, the keywords in
the user profile and other aspects that help determine the
level of expertise of person. Expertise Recommender [19] is
an experts recommendation system using a general
recommendation architecture based on a study of location
field experience, which is adjusted according to the needs of
the user and the field of the related experts. This work has
led to locate the level of knowledge of people based on
specific parameters and the history of knowledge that has
been shared in a specialized forum.

This section shows how researchers have made many
efforts to locate the expertise in software development
environments. These studies have suggested reasoning to
generate new knowledge from a knowledge base. They have
also proposed software platforms to locate artifacts in
development projects and systems to allow the location of
experts on specific topics. However, none of the works we
studied has integrated artifacts and experts. These works are
limited to collecting the knowledge for use at a particular
time, without sharing it, so that no one else can access it later
or find out who is the supplier. The most cited papers collect
the individual expertise of users but do not integrate and
share it to make it accessible to all developers in an
organization. This is a key element, since software
development experience is an important factor for on-time
deliveries, as highlighted in [2]. It is important to support the
reuse of organizational knowledge [6].

III. KNOWLEDGE FLOW IDENTIFICATION
To identify barriers to the flow of knowledge and

interaction in software development activities KoFI
Methodology (Knowledge Flow Identification) [20][21] was
used. This methodology consists of four phases. Phase 1
consists in the identification of different sources that
generated or stored knowledge; Phase 2 identifies the types
of knowledge used and generated in the main processes of
the organization, while Phase 3 identifies how knowledge
flows within the organization. Finally, Phase 4 consists in
identifying the main problems that hinder the flow of this
knowledge.

This methodology identified the sources of knowledge,
knowledge entities that are used in the activities of these
organizations, how knowledge is distributed and the
problems that arise during the activities of the members in
order to solve their doubts or complete their deliverables.
This methodology helps the elicitation of the requirements

90Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 99 / 154

to support the expertise location in the software
development.

A. Phase 1: Knowledge Sources
The sources of knowledge that exist in software

development organizations were validated through a focus
group. This focus group was aimed at knowing how workers
of software development perform expertise search and how
they manage their knowledge, in order to validate whether
the sources of knowledge that are listed in the software
engineering literature are consistent with the daily developer
activity. The focus group was held on the premises of the
software company UXLAB [22] and lasted 90 minutes. The
group involved 11 members of the organization, 7
developers and 4 designers. The focus group subjects were
asked how they obtain knowledge individually, where they
stored it, how they transfer it and how they infer the level of
expertise of a colleague. The result of this phase is
summarized in Table I.

TABLE I. SOURCE KNOWLEDGE

Sources Description
Artifacts Bookmarks: When developers find a place of interest or it

helped them to solve a problem, they usually save the
address in the browser.
Projects: Developers usually save previous projects source
code for reuse in some cases.
Manuals: In some cases the acquired knowledge is stored as
a user manual.
Official documentation: In some cases, developers often
visit the official site of some technology to obtain
information about it.

Persons Developers often seek experts, people with some degree of
knowledge of a specific topic or area that could be
particularly useful to solve some problems presented by
development activities, so it involves all people within the
organization represent a source of knowledge.

B. Phase 2: Knowledge Topics
In order to categorize and organize knowledge identified

in software development organizations a plot showing the
three scenarios in which the expertise is involved (see Table
II) was performed.

The scenario of Individual Knowledge is characterized by
a knowledge necessity, this consists of a developer looking
for information on forums, official documentation and in his
own bookmarks. Once the developer finds useful
information, the transition (tacit to explicit) starts. This
happens when the developer stores this information.

The scenario Knowledge Exchange is characterized by
the way knowledge is transfered, which can be obtained
through training directly with an expert (e.g., advice and/or
training) or indirectly performed by using some explicit
action recommended by experts (e.g., manuals, specialized
forums, etc.).

Finally, the scenario Expert Search relates to the
identification of the experience and knowledge that
colleagues have about a particular query to acquire new
knowledge or solve an obstacle concerning any work

activity. Once a developer finds an expert, they exchange
Knowledge Exchange.

TABLE II. KNOWLEDGE REPRESENTATION

Scenario Characteristics Representation

Individual
Knowledge

Knowledge necessity

Forums
Official Documentation
Video Tutorials
Bookmarks
Projects

Transition (tacit to
explicit)

Format
Author
Thema
Folder name
Notes
Language
Source

Knowledge
Exchange

Direct Training courses
Advisery

Indirect

Keywords
Bookmarks
Web sites
Manuals

Expert Search Expertise Level

Experience
Work area
Availability
Programming
languages
Recommendations
Contributions

C. Phase 3: Knowledge Flow

The flow of knowledge to locate expertise starts with a
developer that needs to acquire new knowledge to solve any
difficulties in an activity. Then he/she choose between doing
a search in artifacts or search for an expert.

Figure 1. Knowledge Flow Activity Diagram.

91Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 100 / 154

In the case of choosing a search of artifacts, searches
should be performed in all available artifacts (pages,
manuals, videos, reused code). When an artifact is found it
is checked whether this helped achieve the objective or still
need to find more artifacts. If not necessary to search for
more artifacts then the objective was met, otherwise, the
search for more artifacts continues. An artifact may suggest
to seek expert help. In the case of choosing an expert search,
start looking for experts with the degree of knowledge to
solve the difficulty presented in the activity. Once an expert
is found, one needs to check their availability to start an
interaction with the expert. Later, one must check if expert
consultation was sufficient or if there is a need to
consult another expert. It may also happen that an expert
suggests the consultation of an artifact. If the objective was
fulfilled, the process ends (see Figure 1).

D. Phase 4: Problems in the Knowledge Flow
With the information obtained from the focus group, it

was possible to identify the problems that prevent the
distribution of knowledge in the activities of support
software localization expertise. These are:

1) Administration of the artifacts (individual or
group): In some cases, the knowledge supplier is
known, but one does not have access to its artifacts
(e.g., blogs, manuals, reused code).

2) Management Experts: Sometimes it is difficult to
find the person with the appropriate level of
expertise to consult if there is any doubt on how to
solve a problem or to perform an activity.

3) Availability of the Experts: In some cases, it is not
known if the expertise or expert is available to the
person who needs them.

4) Timely resolution of difficulties: In some cases, a
lot of time is wasted in finding expertise that does
not have the knowledge needed to solve an issue.

IV. SUPPORTING EXPERTISE LOCATION
With the information obtained from KoFI methodology,

it was possible to elicit the system requirements for the
expertise location (see Table III). With these requirements, a
model of a multi-agent architecture is needed. This multi-
agent system is composed of virtual modules each dedicated
to managing artifacts and experts within the organization.

TABLE III. EXPERTISE LOCATION REQUIREMENTS

Requirements
R1. The system will have an interface where an information query can
be performed and also new knowledge can be registered.
R2. The system is responsible for capturing new knowledge repositories
and will perform searches of users.
R3. The system is responsible for making decisions to find the best
resources for the user according to their needs.
R4. The system is responsible for making the calculation of potential
experts that have the knowledge and availability to provide knowledge
to the user.

The purpose of ExLoc (Expertise Location) system is to
provide appropriate resources to the users needs, collect all
the knowledge that is available within the organization,
provide contact information with experts who can help solve
some problems. There are 4 basic ExLoc agents: User Agent
(UA), Central Search Agent (CSA) and Fuzzy Expert Agent
(FEA). Working together for expertise location, either to
capture or search (see Figure 2).

Figure 2. ExLoc Architecture.

The CSA Agent receives the search parameters sent by

the UA Agent. For example, when a user needs to know Web
backend programming, in PHP language to make a database
connection in MYSQL, this parameters trigger a set of rules
to identify artifacts or experts who have knowledge related to
the search. Later the results of this process are sent to the UA
agent presented as a list of reources to the user. The CSA
Agent sends a series of actions that the user can perform to
satisfy their need for knowledge. At the end of this process
the systems ask the user if such knowledge was useful for
him, using a ranking score to mark the usefulness of the
resource in the case of those who have been helpful to the
user. The results of this questions are used to update the
knowledge repositories.

A. User Agent (UA)
The main objective of User Agent (UA) is to provide the

user an interface that allows to search expertise, as well as
to capture new knowledge.

Task (R1)

• Receive data capture of the new knowledge
• Perform Search of expertise
• Send the information to the Central Search Agent

(CSA)
• Update repositories

There is an UA which interacts with each user allowing

customization of searches through the interest or the history
of users. Each UA communicates with the CSA, so that, it
sends alerts or actions performed by the user and also
receives the information obtained as a result of these actions
and later shows it to the user.

B. Central Search Agent (CSA)
The main objective of CSA is to act as an expert in

expertise location strategies in software development.

92Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 101 / 154

Task (R3)

• Decision making
• Run the search or capture
• Distribute knowledge

There is a CSA around the multi-agent system

responsible for processing all actions and inferring what is
the best option according to user needs.

The CSA Agent receives as input the user query.
According to the need of the user, the CSA Agent creates a
strategy to search in the knowledge base (KB) of artifacts
and experts for the right tools to support the user. The CSA
has an inference engine that interacts with the artifacts and
experts KB. Next we describe the inference engine.

The knowledge base (KB) contains all the knowledge of
the artifacts and the experts respectively. The system starts
with the knowledge provided by the registered users.
Through the use of such knowledge, this will increment. The
semantic network of Figure 3 represents the knowledge. The
expert system can search the expertise in any of two
knowledge repositories: the artifacts contain knowledge from
a number of tutorials, papers, web sites and forums. Such
knowledge is classified as in the previous example where the
platform was web, type backend, language PHP and the
subject was a database connection in MYSQL. Then, the
classification of the expert knowledge includes the project
where the expert is currently working, experience of topics
the expert has been working on (e.g., Android Projects, Web
pages etc.), the schedule of the user to know if the expert is
available and the personal data.

Figure 3. Semantic Network of the Knowledge Representation

The inference engine is able to explore through all the
knowledge from artifacts and experts.

The inference engine begins the decision making by
exploring the user query input and comparing it with the KB
of artifacts and with the available experts. Figure 4 presents
the inference engine implicit in the CSA agent. The user
introduces the input query to the CSA. The input query is
processed by the inference engine and returns a suggestion to

the CSA. The inference engine uses the expertise stored in
the knowledge base to support in the decision making
process.

Figure 4. Inference Engine

C. Fuzzy Expert Agent (FEA)
FEA has the main objective to make the calculation of

available experts who could help the user based on the
requirements of the problem.

Task (R4)

• Finding the right persons according the user needs

There is a FEA responsible for calculations of the experts
using the repository with information from members of the
company. Later, candidates found are sent to CSA.

V. CONCLUSION & FUTURE WORK
This article addresses the issue of expertise location in

the software development with a multi-agent system that
makes use of the experts and artifacts available in the
organization. Because of that, both artifacts and experts play
an important role, since, in some cases, there is not enough
knowledge stored in the system, but some expert may be able
to help and an artifact can lead to such an expert. The
requirements of the system were elicited with the
information obtained from the KoFI methodology. This
methodology was used to know the sources that are located
in the software development software, and the topics or the
way they store and transfer. Then, with this information, the
knowledge flow was built, to identify the problems that the
developer currently faces.

As future work, we intend to work in the semantic
network presented as the basis of a language through wich
the agents will comunicate. Also, we intend to extend the
functionality of CSA and FEA to interact with a wider range
of knowledge and perform the validation of ExLoc in the
work context of software development.

REFERENCES
[1] E. Pasher and T. Ronen, The Complete Guide to Knowledge

Management: a Strategic Plan to Leverage Your Company's
Intellectual Capital, John Wiley & Sons, 2011.

[2] I. Becerra-Fernandez and R. Sabherwal, Knowledge management:
systems and processes, ME Sharpe, 2010.

[3] E. Fragouli, “Intellectual Capital & Organizational Advantage: an
economic approach to its valuation and measurement,” Business and
Management, vol. 7, no. 1, 2015, pp. 36-57.

93Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 102 / 154

[4] N. Bontis, “Assessing knowledge assets: a review of the models used
to measure intellectual capital,” International Journal of Management
reviews, vol. 3, no. 1, 2001, pp. 41-60.

[5] I. Nonaka and H. Takeuchi, The Knowledge-creating Company: How
Japanese Companies Create the Dynamics of Innovation, Oxford
University Press, 1995.

[6] K. A. Ericsson, M. J. Prietula and E. T. Cokely, “The Making of an
Expert,” Harvard Business Review, vol. 85, no. 7/8, 2007, pp. 114.

[7] R. S. Pressman, Software Engineering: A Practitionerʼs Approach,
7/e, Mc Graw-Hill, 2009.

[8] I. Rus and M. Lindvall, “Guest editors' introduction: Knowledge
Management in Software Engineering,” IEEE software, vol. 19, no. 3,
2002, pp. 26-38.

[9] D. Damian and D. Moitra, “Guest Editors' Introduction: Global
Software Development: How Far Have We Come?,” Software, IEEE,
vol. 23, no. 5, 2006, pp. 17-19.

[10] R. E. Jensen, “Communication Breakdowns in Global Software
Development Teams: Is Knowledge Creation the Answer?,” Proc.
17th ACM International Conference on Supporting Group Work,
ACM, 2012, pp. 289-290.

[11] J. D. Herbsleb and D. Moitra, “Global Software Development,”
Software, IEEE, vol. 18, no. 2, 2001, pp. 16-20.

[12] H. Van Vliet, “Knowledge Sharing in Software Development,” Proc.
10th International Conference on Quality Software (QSIC), IEEE,
2010, pp. 2-2.

[13] O. M. Rodríguez, A. Vizcaino, A. I. Martínez, “Using a Multi-agent
Architecture to Manage Knowledge in the Software Maintenance
Process,” Knowledge-Based Intelligent Information and Engineering
Systems: 8th International Conference, KES 2004, Wellington, New
Zealand, September 20-25, 2004, Proc., Part I, M. G. Negoita, et al.,
eds., Springer Berlin Heidelberg, 2004, pp. 1181-1188.

[14] A. Vivacqua, “Agents for Expertise Location,” Proc. AAAI Spring
Symposium Workshop on Intelligent Agents in Cyberspace, 1999, pp.
9-13.

[15] J. Brandt, M. Dontcheva, M. Weskamp and S. R. Klemmer,
“Example-Centric Programming: Integrating Web Search into the
Development Environment,” Proc. SIGCHI Conference on Human
Factors in Computing Systems, ACM, 2010, pp. 513-522.

[16] S. Chatterjee, S. Juvekar and K. Sen, “Sniff: A Search Engine for
Java Using Free-Form Queries,” Fundamental Approaches to
Software Engineering, Springer, 2009, pp. 385-400.

[17] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk and C.
Cumby, “A Search Engine For Finding Highly Relevant
Applications,” Proc. Software Engineering, 2010 ACM/IEEE 32nd
International Conference on, IEEE, 2010, pp. 475-484.

[18] J. Zhang, M. S. Ackerman, L. Adamic, K. K. Nam, “QuME: A
Mechanism to Support Expertise Finding in Online Help-seeking
Communities,” Proc. 20th annual ACM Symposium on User Interface
Software and Technology, ACM, 2007, pp. 111-114.

[19] D.W. McDonald and M.S. Ackerman, “Expertise Recommender: A
Flexible Recommendation System and Architecture,” Proc. ACM
Conference on Computer Supported Cooperative Work, 2000, pp.
231-240.

[20] O. M. Rodríguez-Elias, A. Vizcaíno, A. I. Martínez-García, J. Favela
and M. Piattini, “Knowledge Flow Identification,” Encyclopedia of
Information Science and Technology, 2009, pp. 2337-2342.

[21] O. M. Rodríguez-Elias, A. Vizcaíno, A. I. Martínez-García, J. Favela
and M. Piattini, “Studying Knowledge Flows in Software Process,”
Software Engineering and Development, Nova Publishers, 2009, pp.
37-68.

[22] UXLAB, 2015; http://www.uxlab.mx/

94Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 103 / 154

Exploring the Scala Macro System for Compile Time
Model-Based Generation of Statically Type-Safe REST Services

Filipe R. R. Oliveira, Hugo Sereno Ferreira, and Tiago Boldt Sousa

Department of Informatics Engineering
Faculty of Engineering, University of Porto, Portugal

Email: {filipe.rroliveira, hugo.sereno, tiago.boldt}@fe.up.pt

Abstract—Representational State Transfer (REST) is a prolific
architectural style among modern Web services, mainly due to its
better performance, scalability and simplicity. A common usage
of the style includes services that implement CRUD (Create,
Read, Update, and Delete) operations for entities of a model.
Most frameworks that do this automatically, apply the models
logic in run-time usually using reflection or in-memory data
structures, and are written in dynamically typed programming
languages. Such technical choices usually hinder two software
quality attributes: performance (due to run-time adaptation) and
maintainability (due to absence of compile-time guarantees). This
paper studies the impact of interpreting the models at compile-
time with statically typed programming languages, using Scala as
a representative. Based on a generic architecture, we implemented
a proof of concept, called the Metamorphic framework, which
uses a Domain Specific Language (DSL), supported by a macro
system, to generate entire applications. Evaluation was executed
by performing both quantitative benchmarks and qualitative
analysis of Metamorphic against other frameworks.

Keywords–Model-Driven Engineering; REST; Internal DSL;
Scala Macros.

I. INTRODUCTION

The number of Internet users has tripled in the last decade
[1] mainly due to the appearance and growth of mobile
devices. These users and devices stay connected and explore
their potentialities through the consumption of Web services,
such as, static or dynamic Web pages, mobile applications
content, and real-time services. Two common architectures
for implementing these services were the Remote Procedure
Call (RPC) and the Service-Oriented Architecture (SOA) [2],
mainly explored through the Simple Object Access Protocol
(SOAP).

In the same time-frame of SOAP’s specification, Roy
Fielding defined the Representational State Transfer (REST)
architectural style [3] to be applied in distributed hypermedia
systems. The style defines a set of six constraints: client-
server, stateless, cache, uniform interface, layered system, and
code-on-demand. The uniform interface constraint uses the
concept of resource, around which communication is built.
A resource is an abstract instance of any concept that can
be uniquely identified. All these constraints enable scalability,
portability, visibility, and simplicity in exchange for some
degraded efficiency and reliability. It is normally preferred to
the SOAP approach as it achieves better performance most of
the time [4]. In practice, REST is usually implemented using
URI (Uniform Resource Identifier) for resource identification,
and HTTP for stateless client-server cacheable communication.

The need to implement more complex and robust Web
services led to the development of frameworks, that provide
solutions for recurrent problems and enable better structured
implementations. Some of these use model-driven engineering
[5], i.e., they can deliver CRUD operations for a set of
model entities, reducing repeated code when compared with
most traditional frameworks. This approach has the following
advantages: short-time-to-market, fewer bugs, increased reuse,
and easier-to-understand up-to-date documentation [6].

In general, current model-driven REST frameworks do
in fact reduce repetition of code but due to implementation
decisions there are two main problems.

Firstly, they are mostly implemented in dynamically typed
languages [7], such as Python and JavaScript. These kind of
languages don’t require the use of explicit types, in which
case type-related errors are more susceptible to happen. This
fact combined with dynamic typechecking delays resolution of
these errors to run-time, suggesting longer debugging sessions.
Strongly and statically typed languages reduce substantially
this problem and consequently may enable better performed
services, due to compiler optimizations based on types.

Secondly, these frameworks implement model-based gen-
eration through the inspection of variables or introspection [8]
for collecting the schema, and through parameterized functions
or intercession [8] for responding to requests. All this work is
done at run-time, increasing the program’s setup time or even
the response time to requests.

Following such logic and considering a statically type-
safe programming language that enables generation of REST
services in compile time, a question can be raised:

Can a model-driven REST framework written in
that language improve the development process and
performance when compared to current ones?

In this research, Scala [9] was used as proof of concept
to answer this question. This language, that was built with
scalability in mind, offers a strong static type system, and
an easy capacity for compile-time generation, through macros
[10]. These characteristics promise that developers may be able
to implement their model-driven REST services even faster and
with more robustness, as type errors may be identified sooner.

The paper is organized as follows. Firstly, in Section II
the most relevant model-driven REST frameworks are briefly
presented and compared. Secondly, in Section III, we describe
a generic architecture for model-driven REST applications and
how that was translated into the Metamorphic framework.
Thirdly, in Section IV the validation criteria is defined as well

95Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 104 / 154

as the steps executed to verify that, which include framework
benchmarks and a synthetic environment experiment. At last,
the conclusion of the work is presented followed by future
work that can be explored.

II. MODEL-DRIVEN REST FRAMEWORKS

Model-driven REST frameworks usually consider two
types of resources: collections of entities which may have
create and read operations; and instances of entities which may
have update, replace, and delete operations.

A. Django REST Framework
Django REST framework [11] is an open source framework

in Python to build Web APIs (Application Program Interfaces),
and is built on top of the Django framework [12], a tool
that enables fast development of Web applications, including
model-driven development. The framework is funded in: views
that given requests perform necessary actions and prepare
responses; serializers that define the structure of object’s data;
and urls that connect URLs (Uniform Resource Identifiers)
with views.

class Category(models.Model):
name = models.CharField(max_length = 50)
description = models.CharField(max_length = 100)

class CategorySerializer(serializers.ModelSerializer):
class Meta:

model = Category

class CategoryViewSet(viewsets.ModelViewSet):
queryset = Category.objects.all()
serializer_class = CategorySerializer

router = routers.DefaultRouter()
router.register(r’categories’, CategoryViewSet)
urlpatterns = router.urls

Listing 1. Example of a simple API with the Django REST framework

The support for model-driven development is delivered by
subclassing a base model, a base model serializer, and a base
generic view, as shown in Listing 1. These subclasses override
the interface methods and use reflection in order to implement
the intended functionality. This adds an overhead on responses
when compared with manual implementations that directly
access variables without having to inspect their name in the
beginning.

B. Eve
Eve [13] is also an open source framework in Python, and

is built on top of the Flask microframework [14] that supports
HTTP (Hypertext Transfer Protocol) I/O (Input/Output) oper-
ations and routing. In contrast to Django REST that supports
four types of SQL (Structured Query Language) databases, Eve
only supports non relational MongoDB databases.

DOMAIN = {
’categories’: {
’schema’: {

’name’: {
’type’: ’string’, ’maxlength’: 50, ’required’: True

},
’description’: {

’type’: ’string’, ’maxlength’: 100, ’required’: True
}

}
}}

Listing 2. Example of a simple API with the Eve framework

It is more based in specification rather than writing code
requiring only the initialization of the DOMAIN variable, as
shown in Listing 2.

C. LoopBack

LoopBack [15] is an open source Node.js framework [16],
which means that is written in JavaScript. It is built on top of
the Express framework [17] that provides a thin layer of Web
application features. It considers relations between entities as
resources, besides instances and collections of entities.

{
"name": "Category",
"plural": "categories",
"base": "PersistedModel",
"idInjection": true,
"properties": {
"name": { "type": "string", "required": true },
"description": { "type": "string", "required": true }

},
"validations": [],
"relations": {},
"acls": [],
"methods": []

}

Listing 3. Example of a simple API with the LoopBack framework

The framework tries to hide its inner workings by pro-
viding a command-line tool through which model entities
are specified. In fact, this tool generates JSON (JavaScript
Object Notation) files with the provided specification which
may be edited, as shown in Listing 3. When the server
application is started the model is interpreted and the correct
dispatch functions are dynamically generated, similar to Eve
and contrary to Django REST.

D. Sails

Sails [18] is an open source Node.js framework [16], and
is also built on top of the Express framework [17] providing
a Model-View-Controller (MVC) development architecture. It
enables model-driven development by providing entity scaf-
folding (generation of code templates) using sails generate api
<entity name>.

module.exports = {
attributes: {
name: {
type: "string", maxLength: 50, required: true },

description: {
type: "string", maxLength: 100, required: true }}};

Listing 4. Example of a simple API with the Sails framework

The developer must then complete the generated files with
a specification of the entities, just like in Listing 4. Just like the
previous examples the model is only known by the framework
in run-time by importing the modules.

E. Conclusion

The identified frameworks are implemented in a dynami-
cally typechecked language, either Python or JavaScript. Each
of them implements model-based services with different ap-
proaches: class specialization in the case of Django REST;
variable initialization in the case of Eve and Sails; and
command-line interaction in the case of LoopBack.

96Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 105 / 154

III. PROPOSED FRAMEWORK

Building high-quality frameworks is usually the result of
many design iterations [19] using: either a bottom-up approach
that starts with concrete applications and iteratively abstracts
concepts into the framework; or top-down which relies on
domain knowledge. The development of Metamorphic used
a bottom-up approach. Considering architectures proposed by
the online community, we built a non model-driven base appli-
cation that followed a supposedly ideal architecture. In order
to generate such kind of applications, we designed an internal
DSL that relied on the use of macros. Macro architecture and
tests were designed and implemented iteratively.

A. Application Architecture

Generated applications can either be synchronous or asyn-
chronous but they have only one architecture (Figure 1). The
architecture is not model centered, allowing generation of
generic Web applications. This fact assures better software
quality as components have to be less decoupled from their real
use. Influenced by this decision, the architecture is composed
of a mandatory layer, the application logic, and an optional
layer, data storage, which may be used by the first layer.

The application logic is implemented by an App object that
initiates services. These services may require access to data
storage through repositories. A repository must have an entity
associated with it and the whole application has access to a
set of developer settings.

Settings

App

Repository

Service

*

*

1 1..*

Entity
* 1

Figure 1. Architecture of a generated application.

To enable greater flexibility of generation, the application
logic is defined by a model, as shown in Figure 2. The model
allows the specification of services, which may have depen-
dencies and a set of operations. Each operation implements
an HTTP method for a path, expects the request body to be
serializable for a specified class, and contains a body. It is
at the operations level that one of the possible programming
styles is applied, by using the isAsync flag.

Application

name

Service

name

* services

Code

tree

Operation

isAsync

Method

Path

base

PathParameter

name

RequestBody

name
class

*

operations

0..1 dependencies

1

body Get Post Put Delete

parameters*
requestBody0..1

*

path

1

method

Figure 2. Application logic model.

To enable configurations, the Config [20] library was used,
which enables the use of one file for setting configurations
of all dependencies of a project. This means that besides
Metamorphic’s configurations, developers can still configure
underlying libraries.

metamorphic {
host = "111.111.111.111"
port = 9000
databases.default.name = "file.db"

}

Listing 5. Example of configuration file with a SQLite database

The configurations (Listing 5) are defined inside the meta-
morphic scope and shall be either host (”localhost” as default),
port (8080 as default) or databases. Scopes inside databases
may specify a name, an user, a password, an host, a port, a
number of threads (numThreads) or a maximum queue size
(queueSize).

B. Internal DSL
Scala macros enables generation of classes, traits and

objects either through type providers or macro annotations
[21]. The first discourages reuse of types in the scope calling
the macros, while the second despite some limitations allows
reuse. Through an internal DSL the framework makes use of
these annotations.

Applications are identified by @app annotations in objects
(Listing 6), which may have a set of entity definitions, a list
of default operations, and a set of service definitions.

import metamorphic.dsl._
@app object PersonApp {

@entity class Person {
def fullname = StringField()
def birthdate = DateField()

}

class PersonService extends EntityService[Person] {
val operations = List(GetAll)

def create(person: Person) = {
if (person.fullname.length < 5)

Response("Name is too short.", BadRequest)
else
super.create(person)

}
}

}

Listing 6. Example of simple API with the Metamorphic framework

The model specification follows the metametamodel in
Figure 3 which is independent of any specification source such
as this DSL. In this case entities can be defined using the
@entity annotation in a class. The macro annotation expansion
adds a companion object with replicated content, which helps
to identify types errors as the compiler will typecheck the result
after expansion. Entities are composed by fields which are
case classes that accept a variable number of values to enable
configuration and may be of type: IntegerField, DoubleField,
StringField, BooleanField, DateField, DateTimeField, Object-
Field, ListField, ReverseField.

All fields accept an Option argument, meaning that the
property is not required. The first argument of a ListField or
an ObjectField is the companion object of an entity definition.
These two types of fields are by default mapped to many-
to-many and one-to-many relations, respectively. The use of

97Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 106 / 154

Property

name

PropertyType

1 *

entity

Entity

name

* properties String

Integer

Boolean

Relation

RelationEnd
ListEnd

ObjectEnd

PropertyOptions

isOption
isVisible

1

type
1 options Double

Date

DateTime

RelationPropertyOptions

isReverse

end11 end21

0..1 0..1

reverse

Figure 3. Framework’s metametamodel.

R.Object as argument changes this behavior to many-to-one
and one-to-one relations, respectively.

The generated entity operations can be the ones identified
in Table I, which are implemented using entities plural as
the base path. By default, each entity has all operations
automatically implemented. Declaring the operations variable
in the @app scope changes the set of default operations to
be implemented. Operations are identified using the following
objects: Create, GetAll, Get, Replace, and Delete.

TABLE I. ENTITY OPERATIONS SPECIFICATION

Operation HTTP method Path Success code Error codes

Create POST basePath/ 201 (Created) 400 (Bad Request)

GetAll GET basePath/ 200 (Ok) -

Get GET basePath/:id 200 (Ok) 404 (Not Found)

Replace PUT basePath/:id 200 (Ok) 400 (Bad Request), 404
(Not Found)

Delete DELETE basePath/:id 204 (No Content) 404 (Not Found)

Changes to the default implemented operations are done
via services, which can override the set of default operations
for a particular entity. Operations implementations return a
Response if synchronous or Future[Response] if asynchronous
and can also be overridden. Customized operations can use a
repository variable for accessing storage and use the keyword
super for applying the default implementation.

C. Implementation
The classes and traits required by the DSL were created in

the package metamorphic.dsl (Figure 4), including the @app
annotation. The annotation implementation depends on the
package matcher for translating the code tree into a metameta-
model instance and an application logic model instance. There
is also a dependency of package generator for mapping those
models into the final application tree.

metamorphic.dsl

generator

matcherapplication

model

AppAnnotation

Figure 4. Diagram of packages for the Metamorphic framework.

The framework was designed to have a flexible and loosely
decoupled architecture that allows long-term maintainability.

With that in mind the generator package doesn’t provide
any concrete generation of applications, building them instead
using dependency injection. The framework requires for a
project to provide two dependencies/generators: a repository
generator and a service generator.

dsl

slick

sqlite postgres h2

generator

SlickDriverGenerator

SlickRepositoryGenerator

RepositoryGenerator

ApplicationGenerator

reference
.conf

Settings

Figure 5. Dependency injection of a RepositoryGenerator that uses Slick.

To test this proof of concept, two repository generators
were implemented based in the Slick library [22], one for
synchronous applications and the other for asynchronous ap-
plications. Figure 5 illustrates how dependency injection is
performed for a RepositoryGenerator that uses Slick, which
also uses dependency injection to implement different database
systems. We also implemented a service generator that uses
components from the Spray toolkit [23].

IV. VALIDATION

It was expected that the developed framework would have
the following characteristics:

• Quick and easy to use. Developers that look for these
kind of frameworks want to have a Minimum Viable
Product (MVP) as soon as possible without having to
explore all the framework’s documentation.

• Error preventive. Statically typechecked programs re-
assure developers about their code quality and reduce
frustration when debugging.

• Better response times. Due to its programming lan-
guage origin, improvements in performance should
be noted when compared with existing model-driven
frameworks.

The first and second characteristics were validated using syn-
thetic environment experiments [24], in the form of an aca-
demic quasi-experiment. The last characteristic was validated
through dynamic analysis [24], in the form of benchmarks.

A. Benchmarks
Comparing response times of different REST frameworks

shall not be generic, i.e., comparison must be executed between
services with the same characteristics. The categorization of
compared services followed two properties: the type of entities
and the type of operations. Entities may be: (i) simple entities
which don’t have navigable relations with other entities; (ii)

98Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 107 / 154

entities with objects which have a navigable relation with
multiplicity one; (iii) or entities with lists which have a
navigable relation with an infinite upper bound.

The same scenario was compared using seven different
implementations: (i) synchronous version of Metamorphic; (ii)
asynchronous version of Metamorphic; (iii) LoopBack; (iv)
Sails; (v) Django REST in Python 2.7; (vi) Django REST
in Python 3.4; (vii) Eve. All of these used a PostgreSQL
9.3.8 database (except Eve that used MongoDB) and were
installed in production environments to guarantee maximum
performance.

The experiment was executed in a portable computer
Lenovo Thinkpad T430 with the following specifications:
Ubuntu 14.04 LTS 32-bit; Intel Core i5-3210M @ 2.5GHzx4;
4GB Sodimm DDR3 Memory (1600 MHz); and 500GB 7200
RPM 32 MB Cache SATA Hard Drive. The tests were locally
executed in an environment without Internet connection, all
non-essential programs closed, and two terminals in fore-
ground: server application and benchmark application.

All batches of operations were performed with a maximum
of 10 concurrent requests. For each tuple, (Framework, Opera-
tion, Entity Type) 5000 requests were executed and, to discard
any possible setup effects, 1000 requests were executed before
testing each framework.

TABLE II. FRAMEWORK’S RANK BY ENTITY TYPE AND RANK SUM

Framework Create GetAll Get Replace Delete Sum

LoopBack 1 | 1 | 1 3 | 2 | 1 1 | 1 | 1 2 | 2 | 2 1 | 1 | 1 21

Metamorphic
Async

2 | 2 | 2 1 | 1 | 2 3 | 2 | 2 1 | 1 | 1 2 | 2 | 2 26

Sails 3 | 3 | 6 2 | 6 | 4 2 | 3 | 3 3 | 3 | 6 3 | 3 | 5 55

Django REST 3.4 5 | 5 | 4 5 | 4 | 5 6 | 5 | 5 5 | 4 | 3 4 | 4 | 4 68

Django REST 4 | 4 | 3 6 | 5 | 6 5 | 6 | 6 4 | 5 | 4 5 | 5 | 3 71

Metamorphic 6 | 6 | 5 4 | 3 | 3 4 | 4 | 4 6 | 6 | 5 6 | 6 | 6 74

Eve* 1 | 1 | 1 4 | 3 | 2 4 | 3 | 3 1 | 1 | 2 3 | 3 | 3 35

* pseudo-rank; not comparable.

The frameworks were compared using rank sums. Table
II presents the ranking of the frameworks by entity type
in the following order: simple entities; entities with objects,
and entities with lists. Considering the sum of these rank
sums it is possible to conclude that, in spite of not being
the best performant framework, the asynchronous version of
Metamorphic already achieves performances better than most
model-driven frameworks. In fact, without almost no effort to
optimize framework’s implementation, its results are close to
the most performant framework, LoopBack, and it is the best
solution to implement GetAll and Replace operations.

B. Academic Quasi-Experiment
8 MSc students in their 5th year of the Master in Infor-

matics and Computing Engineering, from the Faculty of Engi-
neering of the University of Porto, were asked to participate.
The experiment tested only one of the current model-driven
frameworks against the synchronous version of Metamorphic.

All subjects started by answering a questionnaire and
reading a problem guide. The subjects were split in two groups
with two different treatments and had to perform the same set
of tasks (Round 1). Then, each subject performed the same set
of tasks as before with another treatment (Round 2). The test
finished by answering another questionnaire.

The treatments were: baseline treatment - a default ready-
to-use Django REST project; and experimental treatment -
a default ready-to-use Metamorphic synchronous project. In
both treatments, a guide about the framework and the language
syntax were handed to the subjects. The experiment consisted
in three tasks: (i) modeling using a UML diagram and the
entities schema; (ii) creation of services operations for the
entities; and (iii) customization of the defined operations.

Each subject executed the test in an isolated area of a low
noise laboratory, with a single portable computer with Internet
access mimicking a real programming situation. The subjects
could only use a text editor of their choice and clarify any
doubts they had. Application running and testing had to be
done using the terminal. A screencast program was used to
correctly measure time and development metrics in a non-
intrusive way.

The questionnaires were designed with a five-point Likert
scale [25]. Their responses were compared using the non-
parametric, two-sample, rank-sum Wilcoxon-Mann-Whitney
[26] test, with n1 = n2 = 4 and significance level of
5%. The results revealed statistical validity of the experiment
and that implementing model-based operations is easier and
more intuitive to do using Metamorphic (ρ = 0.014 in both
rounds). Also, there is an high chance that implementations
of models and customizations are easier and more intuitive
(ρ1 = 0.043, ρ2 = 0.200 and ρ1 = 0.014, ρ2 = 0.100
respectively).

The framework may be considered quicker to use as time
measurements indicate that development time may decrease
35%, and lines of code measurements indicate that the quantity
of code may decrease 28%. As can be seen in Table III,
modeling (Task 1) and operations definition (Task 2) may be
implemented faster even after having knowledge about the
problem (Round 2). The results of Task 3 were unexpected
and may be explained by the reduced amount of requested
customizations, that was 2.

TABLE III. STATISTICS OF TIME MEASUREMENTS (MINUTES)

Measurement Round x̄E σE x̄B σB x̄B − x̄E (x̄B − x̄E)/x̄B

Task 1
1 11.44 03.11 20.13 09.18 08.69 43.2%
2 07.94 01.48 08.81 03.06 00.87 09.9%

Task 2
1 08.31 06.46 22.94 13.73 14.63 63.8%
2 10.69 05.76 17.25 01.49 06.56 38.0%

Task 3
1 05.06 02.12 03.92 02.67 -1.14 -29.1%
2 05.31 01.91 03.44 00.97 -1.87 -54.4%

Total
1 45.81 08.19 70.56 12.14 24.75 35.1%
2 31.50 01.86 51.38 08.29 19.88 38.7%

As illustrated in Table IV, applications built with the
Metamorphic framework barely have runtime errors with mea-
surements indicating the contrary for the baseline treatment. It
should still be noted that the amount of non-runtime errors
using the experimental framework are slightly lower than
runtime errors using the baseline. This corroborates the error
preventive nature as there are less errors that when occur are
detected faster.

At last, the number of test executions measurement in-
dicates that applications built with Metamorphic require less
iterations to validate all the tests.

The results of this experiment should be carefully con-
sidered, as the number of subjects may not be representative
of the developer community. In order to diminish this threat

99Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 108 / 154

TABLE IV. STATISTICS OF ERROR MEASUREMENTS

Measurement Round x̄E σE x̄B σB

Non-runtime errors
1 02.8 2.06 01.5 1.29
2 04.3 1.71 00.3 0.50

Runtime errors
1 00.0 0.00 05.8 4.99
2 00.3 0.50 05.5 1.73

each subject executed the tasks for each of the frameworks
increasing the number of data points.

V. CONCLUSION AND FUTURE WORK

This work required a full and extensive review on REST
frameworks, specially model-driven REST frameworks, as very
little is documented scientifically. With that knowledge a
meta-architecture was developed, through modeling, that is
independent of any programming language. A framework that
follows such meta-architecture was also developed. This was
designed to be as modular as possible by enabling the use of
components through cross-project dependency injection.

Validation of the proof of concept revealed that the re-
sponse to the research problem may be positive. This means
that it is possible to improve the development process and
execution performance of model-based REST services, through
a framework that is written in a statically type-safe program-
ming language that enables code generation in compile time.
Improvements in the development process are backed by a
reduced number of lines of code, a reduced number of run-
time errors, and a reduced development time when using the
proof of concept. Despite unexpected execution performances
in some cases the authors believe the premise may hold for a
more mature framework.

The only identified disadvantage of use of the framework
is the additional development time required for compiling
applications before testing. For big applications this may be
critical as for any small change the entire code will be re-
generated.

The source code of the framework can be found in
https://github.com/frroliveira/metamorphic and more details
about this research, such as the experiments can be found in
http://paginas.fe.up.pt/ ei10038/dissert. Further research of the
identified problem would be connected with Metamorphic as
it is not yet a full featured framework. Future work could be:

1) Test models flexibility. Knowledge on Metamorphic’s
flexibility to other generators is empirical. To ensure
such information another repository and service gen-
erators could be implemented based in other libraries.

2) Extension of models. For a framework to be useful,
it may contain most features developers will need.
Metamorphic has the basic features, so others would
be welcome such as entity inheritance, authentication,
database migrations, filtering, and pagination.

3) Profiling. Understanding any possible bottleneck in
generated applications could be done trough profiling.
This would aim to fully validate the performance goal
initially established.

4) Experiments. Having a new and more mature version
of the framework, its validity should be tested in
industrial environments with samples that are more

size significant. This time both versions, synchronous
and asynchronous, should be tested.

5) Swagger definition. Swagger [27] defines a “standard,
language-agnostic interface to REST APIs which
allows both humans and computers to discover and
understand the capabilities of the service without
access to source code”. This would allow faster
testing of the generated services.

REFERENCES

[1] I. Society, “Global Internet Report 2014,” 2014, URL:
http://internetsociety.org/sites/default/files/Global Internet Report

2014 0.pdf [accessed: 01, 2016].
[2] J. Kopecký, P. Fremantle, and R. Boakes, “A history and future of web

apis,” it - Information Technology, vol. 56, no. 3, 2014, pp. 90–97.
[3] R. T. Fielding, “Architectural styles and the design of network-based

software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[4] P. K. Potti, S. Ahuja, K. Umapathy, and Z. Prodanoff, “Comparing
performance of web service interaction styles: Soap vs. rest,” in Pro-
ceedings of the Conference on Information Systems Applied Research
ISSN, vol. 2167, 2012, p. 1508.

[5] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, 2006, pp. 25–31.

[6] D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorogbe, “The
architecture of a uml virtual machine,” SIGPLAN Not., vol. 36, no. 11,
Oct. 2001, pp. 327–341.

[7] L. Cardelli, “Type systems,” ACM Computing Surveys, vol. 28, no. 1,
1996, pp. 263–264.

[8] D. G. Bobrow, R. P. Gabriel, and J. L. White, “Clos in context-the
shape of the design space,” Object Oriented Programming: The CLOS
Perspective, 1993, pp. 29–61.

[9] Ecole Polytechnique Fdrale de Lausanne - EPFL, “The Scala Program-
ming Language,” URL: http://scala-lang.org/ [accessed: 01, 2016].

[10] E. Burmako, “Scala macros: Let our powers combine!: On how rich
syntax and static types work with metaprogramming,” in Proceedings
of the 4th Workshop on Scala, ser. SCALA ’13. New York, NY, USA:
ACM, 2013, pp. 3:1–3:10.

[11] T. Christie, “Django REST framework,” URL: http://django-rest-
framework.org/ [accessed: 01, 2016].

[12] D. S. Foundation, “Django,” URL: https://djangoproject.com/ [accessed:
01, 2016].

[13] N. Iarocci, “Python REST API Framework — Eve 0.5 documentation,”
URL: http://python-eve.org/ [accessed: 01, 2016].

[14] A. Ronacher, “Flask,” URL: http://flask.pocoo.org/ [accessed: 01, 2016].
[15] StrongLoop, “LoopBack,” URL: http://loopback.io/ [accessed: 01,

2016].
[16] N. Foundation, “About — Node.js,” URL: https://nodejs.org/about/

[accessed: 01, 2016].
[17] Express, “Express - Node.js web application framework,” URL:

http://expressjs.com/ [accessed: 01, 2016].
[18] M. McNeil, “Sails.js — Realtime MVC Framework for Node.js,” URL:

http://sailsjs.org/ [accessed: 01, 2016].
[19] R. J. Wirfs-Brock and R. E. Johnson, “Surveying current research in

object-oriented design,” Communications of the ACM, vol. 33, no. 9,
1990, pp. 104–124.

[20] Typesafe Inc., “typesafehub/config,” URL: https://github.com/typesafe
hub/config [accessed: 01, 2016].

[21] E. Burmako, M. Odersky, C. Vogt, S. Zeiger, and A. Moors, “Scala
macros,” November 2013, URL: http://scalamacros.org/paperstalks/201
3-11-25-ScalaMacrosPoster.pdf [accessed: 01, 2016].

[22] T. Inc, “Slick,” URL: http://slick.typesafe.com/ [accessed: 2016-01-05].
[23] Typesafe Inc, “spray — REST/HTTP for your Akka/Scala Actors,”

URL: http://spray.io/ [accessed: 01, 2016].
[24] M. V. Zelkowitz and D. R. Wallace, “Experimental models for validating

technology,” Computer, vol. 31, no. 5, 1998, pp. 23–31.

100Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 109 / 154

[25] R. Likert, “A technique for the measurement of attitudes.” Archives of
psychology, 1932.

[26] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical
methods. John Wiley & Sons, 2013.

[27] SmartBear, “Swagger — The World’s Most Popular Framework for
APIs.” URL: http://swagger.io/ [accessed: 01, 2016].

101Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 110 / 154

Migration from Annotation-Based to Composition-Based Product Lines: Towards a
Tool-Driven Process

Fabian Benduhn1,2, Reimar Schröter1, Andy Kenner2, Christopher Kruczek2,
Thomas Leich2, and Gunter Saake1

University Magdeburg1, METOP GmbH2, Germany
1email:{fabian.benduhn, reimar.schroeter, gunter.saake}@ovgu.de,
2email:{andy.kenner, christopher.kruczek, thomas.leich}@metop.de

Abstract—Software product lines allow a developer to produce
similar programs based on a common code base. Two main
techniques exist: composition-based and annotation-based ap-
proaches. Although composition-based approaches offer potential
advantages such as maintainability, in practice mostly annotation-
based approaches are used. The main reason hindering the mi-
gration of existing projects is the difficulty of the transformation
process that can take a lot of time in which maintenance and
evolution of the system are put on hold. Thus, for a company,
it is hard to estimate the transformation costs and the success
is uncertain. As already stated in previous work, a hybrid
solution using both approaches may be an adequate solution
to overcome this problem. Therefore, we propose a migration
concept focusing on technical requirements, such as tool- and
language support to reduce the risk during the error-prone
migration process. We exemplify the concept by considering
the partial migration of a real-world system from preprocessor-
based variability to an implementation based on feature-oriented
programming. We identify conceptual and tool-based challenges
that must be addressed for the practical application. We present
technical considerations that must be taken into account for step-
wise migration and specific challenges related to our case study.

Keywords–Software Product Lines; Step-wise Migration; Vari-
ability Mechanisms; Implementation Techniques.

I. INTRODUCTION

Software product lines are a concept to create similar
programs based on a common code base [1][2]. Several imple-
mentation techniques with different advantages and disadvan-
tages exist [3]. We distinguish between annotation-based and
composition-based approaches. In practice, variability is often
implemented by annotating code with preprocessor directives
to achieve conditional compilation. In detail, preprocessors
are an easily accessible mechanism for fine-grained adaptation
of source code to achieve similar programs with low effort.
While the use of preprocessors provides an effective way
to implement software variability, the technique comes with
disadvantages related to code and feature traceability [4][5].

In contrast, composition-based approaches, such as feature-
oriented programming (FOP), avoid these problems by pro-
viding specialized modularization mechanisms [6][7]. In FOP,
each feature, which serves as a configuration option, is en-
capsulated in a dedicated module so that it can be combined
with other features to generate variants. Therefore, compared
to annotation-based approaches, the traceability of features is
straight forward, which eases maintenance and extension of
the source code.

Despite the potential advantages of composition-based over
annotation-based approaches, their use has not been widely
adopted in industry. There are several reasons for this situation.
On the one hand, the usage of FOP in practice is difficult
and error-prone and has high requirements regarding sufficient
tool support. On the other hand, the process of a complete
transformation to these techniques for legacy systems can be
time consuming, and it is hard to estimate the transformation
costs [8]. Thus, preprocessors remain the dominant approach
in industry.

Kästner and Apel formulated the idea to use a combina-
tion of annotation-based and composition-based approaches to
combine their advantages and to enable a step-wise migration
process [9]. We build on this idea of such a hybrid approach
and propose a process for its instantiation considering practical
concerns, such as required tool support. In a case study, we
investigate how Berkeley DB, a database management system
using preprocessor directives to implement variability, could be
migrated using our migration concept. We present details of
the step-wise migration and identify technical and conceptual
challenges.

In detail, we make the following contributions:

• We propose a concept for the instantiation of a step-
wise migration process based on the combination of
annotation-based and composition-based approaches that
considers technical concerns.

• We exemplify our concept considering the migration
of Berkeley DB, from an implementation in the pro-
gramming language C with preprocessor annotations to
a composition-based implementation using FeatureC, a
newly developed extension of FeatureHouse [10].

• We identify technical and conceptual challenges that we
have to consider during our migration concept.

In Section II, we introduce the necessary background for
the rest of the paper. We propose our tool-driven migration
concept in Section III and its practical application to a real-
world project in Section IV. In Section V, we discuss several
project-specific challenges. We give an overview of related
work in Section VI and conclude in Section VII.

II. IMPLEMENTATION OF VARIABILITY IN SOFTWARE
PRODUCT LINES

In this section, we give a brief overview on implementation
techniques for software product lines. We consider two ba-
sic approaches, annotation-based and composition-based [3].

102Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 111 / 154

1 s t a t i c i n t bam getbo thc (dbc , d a t a)
2 DBC ∗dbc ;
3 DBT ∗ d a t a ;
4{
5 . . .
6 r e t u r n (bam ge tbo th f indda tum (dbc , da t a , . . .) ;
7}
8
9 # i f d e f HAVE COMPRESSION

10 s t a t i c i n t b a m g e t l t e (dbc , key , d a t a)
11 DBC ∗dbc ;
12 DBT ∗key , ∗ d a t a ;
13 {
14 i n t r e t ;
15 . . .
16 r e t u r n (r e t) ;
17 }
18 # e n d i f

Figure 1. Conditional compilation using preprocessor directives.

In detail, we focus on the representation of variability in
source-code artifacts. However, the distinction between both
approaches can be generally applied to many types of variable
development artifacts, such as models, specifications, and
documentations [11][12][13]. Now, we present advantages of
both approaches and their combination.

A. Annotation-Based Implementation of Variability

The idea of annotation-based approaches to implement
variability is that certain parts of the development artifacts are
mapped to features by annotating them. Individual variants
can be generated by removing parts representing undesired
features.

As annotation-based technique, preprocessors are
commonly used that exist for many languages and
tools [14][15][16]. In practice, the usage of preprocessors
is widespread, e.g., in open-source projects [17], operating
systems, and databases. The mechanism also allows a
developer to implement fine-grained variability, including
changes to single characters within program statements. In
Figure 1, we exemplify the usage of the C preprocessor for
conditional compilation. The code in Line 9 is annotated
using feature HAVE_COMPRESSION. In detail, the beginning
of the variable code fragment is marked by the directive
#ifdef, the end is marked by #endif. Thus, if feature
HAVE_COMPRESSION is not activated, the preprocessor
removes the specific code before it is given to the compiler.

Preprocessors support very fine-grained source code vari-
ability but this property negatively influences the code com-
prehension of the system. Thus, alternative annotation-based
approaches with more sophisticated tool support and certain
restrictions regarding the discipline of annotation usage have
been developed [18][19][20]. Similarly, researchers have inves-
tigated the code comprehension of preprocessor programs and
related problems and proposed several approaches to improve
them, e.g., with different background colors [4][18]. Despite
these efforts, the general problems with such annotation-based
approaches, such as the C preprocessor, are not completely
solved. However, preprocessors remain the dominant approach
in practice.

Figure 2. FOP - Structural combination of code artifacts.

B. Composition-Based Implementation of Variability
To overcome the problems of annotation-based approaches,

several composition-based implementation techniques have
been proposed [6][7][21][22][23][24][25]. In composition-
based approaches, variable features of a system are mapped
to dedicated modules. The main advantage is that this mod-
ularization improves traceability of features and separation of
concerns [3].

In this paper, we focus on the composition-based approach
FOP. The main idea of FOP is to modularize software into
cohesive units — each module encapsulating a particular
feature of the software. Individual program variants can be
generated by superimposing the desired feature modules based
on a hierarchical representation of their structure, called Fea-
ture Structure Trees (FST) [10]. In detail, two corresponding
inner nodes (i.e., nonterminal) are merged when they have the
same type and name. For terminals (i.e. leave nodes, e.g.,
functions), it depends on the implementation, i.e., whether
the node is refined (i.e., extended) or completely overwritten.
In Figure 2, we exemplify composition-based variability for
FOP. We use the same example as given for the annotation-
based approach of Figure 1. In the base feature, the file
bt_cursor.c with the functions __bam_getbothc and
__bam_getbothc_finddatum exists. However, the file
bt_cursor.c also exists in feature HAVE_COMPRESSION
with the function __bam_getlte. After the combination, the
file includes all functions of both features.

C. Combination of Annotation-Based and Composition-Based
Approaches

Despite the potential advantages of composition-based ap-
proaches, there are some problems regarding their practical
application in industry. First, the migration from legacy sys-
tems, which often use preprocessors to implement variability,
to composition-based approaches is a difficult and error-prone
task. Long migration processes are generally problematic,
because they must usually be performed in parallel to the
regular development and maintenance of the software, and
eventually merged - which is, again, a time-consuming task.
Thus, the risk to switch to composition-based approaches is
high. Second, composition-based approaches are not suitable
for fine-grained variability as used in many preprocessor-
based systems. Thus, it is especially difficult to ensure that
a migration process results in a well-structured system, which
may diminish the potential benefits of the composition-based
approach.

As a possible way out of this dilemma, Kästner and
Apel proposed the idea to combine annotation-based and
composition-based approaches [9]. In detail, they formulated
the idea to use this concept to enable a step-wise migration pro-
cess from annotation-based to composition-based approaches
in which intermediate steps use the combined approach and,
thus, avoid the usually long, atomic migration process. Kästner
and Apel discuss this migration process in a theoretical manner

103Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 112 / 154

Figure 3. General migration concept for the instantiation of a step-wise migration of annotation-based to composition-based approaches.

and state the need for sufficient tool support as a necessary pre-
requisite for its practical application. We present a migration
concept and discuss practical considerations for companies that
are interested in the application of a system transformation.

III. TOOL-DRIVEN MIGRATION CONCEPT

In this section, we introduce our concept for the tool-
driven migration of software systems with annotation-based
implementation of variability to a system using composition-
based variability. Our concept is generally applicable in the
sense that it is independent of specific annotation-based and
composition-based implementation techniques. It describes a
process consisting of four steps, as depicted in Figure 3. In
particular, we have to (1) enable automation, (2) introduce
support for systematic variability management, (3) initialize
the desired composition mechanism, and (4) apply the step-
wise migration.

One of the goals of our approach is to ensure a consistent
state in each step. Thus, a long migration process that hinders
regular development of the project is avoided and costs to
merge the migration results can be reduced. When applying
this to concrete projects, the details on how this consistency
is ensured may vary. Ensuring a minimal interruption of the
continuous development, requires that the application can be
compiled, executed, and tested in each step. In the following,
we describe each step of our concept in detail.

(1) Enabling Automation
The first step of our migration concept is to enable automa-

tion of important tasks in the software-development process for
a given project. This will enable the developer to validate the
correctness of each subsequent step. Typically, this includes the
capability to automate the process of building, executing, and
testing the program as provided by many modern integrated
development environments (IDEs). The choice of the specific
IDE depends on the later steps, e.g., the IDE’s support for
variability management tools. Thus, even if the project already
provides automation for relevant tasks, it might be still neces-
sary to switch the used IDE in preparation of the next steps.

(2) Introducing Systematic Variability Management
Having ensured that we enabled automation, execution,

and testing of our software, a systematic variability manage-
ment should be introduced. An important aspect of variability
management is to provide techniques for the modeling of the
variability space and a mapping to code artifacts. Therefore,
the variability artifacts must be identified and possibly re-
engineered for integration. Furthermore, variability-related tool

Figure 4. Step-wise migration in detail.

support must be provided to establish a tool-driven configu-
ration process and the automation of variant generation. In
addition, the possibility to execute variants or test them is a
frequently desired aspect.

(3) Initialization of the Composition Mechanism
In this step, the technical prerequisites to employ a compo-

sition mechanism must be ensured. The result of this step is a
trivial decomposition into a single module. However, it must be
ensured that the used tools support the desired language, and
that modules can be composed accordingly. For instance, if we
take FOP as composition-based approach, we have to initialize
the project using one base feature module in which we include
all code fragments with all preprocessor directives. Afterwards,
it must be possible to apply the composition mechanism,
which, in this step, results in an output that is equal to the
input (i.e., equal to the base feature). Furthermore, we have to
ensure that the automated variant-generation mechanism using
preprocessors of Step (2) can be used to remove the undesired
features of this composed output.

(4) Step-wise Migration
After the execution of the previous steps, the main task

of the step-wise migration can start. The step-wise migration
consists of small refactoring steps in which we can extract
a specific source-code artifact into a module (cf. Figure 4).
Therefore, it is necessary to (4.1) analyze the code to identify
the next fragment for the modularization, (4.2) refactor the
code to improve the structure, so that it is easier to modularize,
and (4.3) extract the corresponding code fragment into a
module. Since we define each sub-step as a refactoring, the
complete product line should be in a consistent state before
and after each step. This can be ensured by taking advantage
of the support for automated building, executing, and testing,
which has been ensured in the first step.

IV. PRACTICAL APPLICATION TO A REAL-WORLD
PROJECT

In the previous section, we introduced a general process for
the step-wise migration of annotation-based to composition-
based approaches with the focus on necessary tool support to

104Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 113 / 154

enable a successful practical application. Now, we investigate
the applicability of this process to initialize the migration of
a real-world project. Our focus is to identify technical and
conceptual concerns and possible challenges for the process
that may be useful to guide companies in their own migration
projects.

We consider the application of the proposed migration
concept to Berkeley DB, a database management system, from
an annotation-based implementation using the C preprocessor
to a composition-based implementation based on FOP. In
detail, Berkeley DB consists of 229.419 lines of code. Since
Berkeley DB is written in C with preprocessor annotations,
it is a practically relevant case study with high challenges of
an annotation-based product line. Another reason for selecting
Berkeley DB is that it was used in several case studies related
to research on variability (for more details, see Section VI).
According to the properties of Berkeley DB, we have to search
for an IDE that allows us to apply our migration concept and
that supports variability management for C with preprocessors
and a solution for FOP in the programming language C.

Since it supports the required properties for our migration
task, we have chosen the IDE Eclipse with the plugin Fea-
tureIDE for variability support. FeatureIDE supports the com-
plete development cycle of software product lines including the
modeling step, as well as different implementation techniques,
such as annotation-based and composition-based approaches
(i.e., also FOP) [26]. Therefore, besides a hybrid solution of
annotation- and composition-based approaches, it fulfills all
theoretical requirements of our migration concept. In detail,
FeatureIDE integrates a set of command line tools that support
different implementation techniques. In our application, we
extend the command line tool FeatureHouse which implements
FOP based on superimposition as introduced in Section II-B
[10]. In the following, we describe for each step of the
migration process some of the relevant technical decisions and
the tool-specific steps that have to be performed. We focus on
the description of the applicability of the process in general,
as well as on the practicability of the specific tools we have
used.

(1) Enabling Automation – Integration into Eclipse

As described before, to enable automation of the build
and testing process for Berkeley DB, we use Eclipse because
we plan to use FeatureIDE during the subsequent steps. In
detail, we create a new Eclipse project for the programming
language C and include our case study Berkeley DB with all
files and additional material. For the automated generation and
execution of a specific variant, we administrate further Eclipse
settings so that we ensure a correct behavior of Berkeley
DB (i.e., we do not consider variability management so far).
In detail, we use the C and C++ Integrated Development
Environment (CDT) of Eclipse for the configuration and apply
the subsequent make process. In our case, this step took several
hours. But the necessary time for this step strongly depends
on the complexity of the application and on the intended test
mechanism that should ensure the correctness of the system.
Even if this step may take longer for other projects, it has to
be done only once for the complete migration process.

(2) Introducing Systematic Variability Management – Using
FeatureIDE

The next step is to introduce systematic variability manage-
ment for this Eclipse Berkeley DB project. Using FeatureIDE,
we can automatically convert the project into a FeatureIDE
project, by adding specific configuration properties. As result,
it is possible to automate the configuration, generation and
execution for each variant of the product line. A central part
of this step is to make the variability explicit. Therefore, we
need to create a feature model in which we define configuration
options in terms of features and their dependencies. This task
was easy for us, because Berkeley DB was studied several
times and, thus, we reused information of a previous study and
selected 10 out of 28 preprocessor variables as configurable
features. As result, we use FeatureIDE to create a feature
model of Berkeley DB that consists of one root feature and ten
optional child features (i.e., they can be combined arbitrarily to
variants). Afterwards, we can use FeatureIDE’s configuration
editor to specify the specific variants of Berkeley DB that we
want to create. If the build process of a project is straight
forward, FeatureIDE already supports direct compilation and
execution. However, in the case of Berkeley DB, the build
process involves a specific configuration process. Thus, Fea-
tureIDE needs to start the configuration and make process for
which we developed an extension to bridge the gap. Because
of our experience in plugin development, it was easy to create
a first prototype for our needs. Therefore, this step takes only
a few days for us. By contrast, without our experience and
without knowledge of the available variability options, this
step can also take several weeks. Furthermore, the step can
be extended arbitrarily, this depends on the tool support that
a company needs. For instance, it is also possible to develop
IDE views to give a code outline or editors with specialized
visualization techniques to highlight variability. As explained
above, we have decided to use FeatureIDE, but there are other
tools for variability management that could be used, depending
on project-specific requirements [27]. The time that is required
for this step depends largely on project-specific infrastructure,
but in general this step has to be performed only once per
migration process

(3) Initialization of the Composition Mechanism – Using
FeatureC

The main advantage of FeatureIDE is that the plugin also
supports other implementation techniques. Thus, in this step,
we can change the implementation strategy that is used by
FeatureIDE. However, no existing tool supports the required
hybrid approach. Thus, we have developed FeatureC, a feature-
oriented extension of C that additionally supports the use
of preprocessors. Therefore, we have extended the existing
composition tool FeatureHouse. As mentioned above, Feature-
House is a command line tool for FOP in which different
languages can be integrated using a specialized grammar [10].
On the one hand, this grammar is needed to parse a specific
programming language. On the other hand, the grammar
encodes the composition rules for this specific language. For
a hybrid solution, the already existing C grammar of Fea-
tureHouse has to additionally support annotations. Therefore,
we developed the extension FeatureC. With FeatureC, we can
create one feature module in which all the existing annotation-
based source code is located. Afterwards, we can use the same
procedure to configure, compile and execute a specific variant.

105Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 114 / 154

Figure 5. Required grammatical changes to support annotations in feature
modules - illustrated by using the example of Figure 1.

For our case study Berkeley DB, several grammar changes
were necessary. In detail, we adapted the grammar in a
way that directives outside of a function are represented as
nonterminal. This change allows us to parse the preprocessor
annotations and to produce an output in which this annotation
still exists. We depict this fundamental change in Figure 5.
Here, we depict the structural representation of the file given
in Figure 1 that can be combined with the corresponding nodes
of another feature.

By contrast to the mentioned grammatical change, in some
cases we were able to avoid grammatical changes through
source-code disciplines (see next section for detailed infor-
mation). However, in hindsight, we spent the most time on
grammar changes and code disciplination. All other parts of
this step were partly straight forward. In sum, the complete step
required several weeks; however it is largely dependent on the
project-specific languages as well as tools, and is independent
from the actual size of the project or the number of features
to be extracted.

(4) Step-wise Migration – Application on Berkeley DB

In this step, the actual migration procedure can start. As
stated in the previous section, each refactoring consists of three
sub-steps. For our case study, we used a manual approach to
extract two features (HAVE_HASH and HAVE_HEAP) with a
focus on the identification of existing challenges. The identified
project-specific challenges are discussed in the next section.

While we have used a manual approach, we identified the
need for further tool support. We give a short overview on
approaches that could aid the migration procedure based on
our experience with the manual approach. In future work, we
plan to investigate the integration of selected tools. For code
analysis, several tools exist that consider variability [28]. On
the one hand, it would be possible to use tools that aid the
developer to identify potential code fragments representing
features. On the other hand, code analysis can be used to
ensure the correctness of each sub step. With Morpheus,
Liebig et al. provide a promising tool for automated refactoring
of C code that can cope with preprocessor directives [29].
Kästner et al. provide a concept for automatable refactorings
that can be used to aid the migration from annotation-based
to composition-based implementations [30]. The approach
requires specific disciplined annotations and supports a subset
of Java, for which it can be guaranteed that the refactorings
can be performed correctly. It should be investigated to which
extend this approach can be applied to real-world systems in
other programming languages, such as C, for which prepro-
cessor directives already exist. Furthermore, there are several
approaches to transform preprocessor-based implementations
into aspect-oriented implementations [31][32]. While we used
feature-oriented programming for our case study, our general
process can also be applied to a migration to an aspect-oriented

product line. Therefore, this line of research may be interesting
for the practical application.

V. PROJECT-SPECIFIC CHALLENGES

In this section, we discuss details of our experiences and
challenges during the application of our migration concept to
two features of Berkeley DB. Therefore, we present several
insights regarding the application of concepts and discuss
project-specific challenges regarding the tools and languages
used for the migration of Berkeley DB.

A. Interdependence of Process Steps
In our proposed tool-driven migration concept, we propose

multiple steps to achieve an environment in which a step-wise
and fine-grained migration can be applied to an annotation-
based product line. As a result, in Step 4, it should be possible
to refactor the code in a fine-grained manner so that we can
introduce a composition-based approach in which each inter-
mediate step presents a fully-functional hybrid solution. As a
result, the transformation process is much more predictable and
less risky, because it is not necessary to perform the complete
migration process in one atomic step - avoiding expensive
parallel development or delays. Concepts to cope with the
interdependency of the individual process steps are required.

Considering the migration of Berkeley DB, we found out
that a revision of a previous step can help to ease the current
step. For instance, after we started to refactor Berkeley DB, we
identified several tool-driven, as well as conceptual challenges
that required changes to the initialization phase of Step 3. In
detail, it could be beneficial to change the language support
of FeatureC instead of adapting Berkeley DB in an awkward
manner. This problem is strongly related to our next remarks.

B. Undisciplined Use of Preprocessors
We started by using existing tools for the variability man-

agement of our case study. However, it turned out that the lan-
guage support was not sufficient. In particular, the composition
mechanism for FOP (i.e., FeatureHouse) did not support the
hybrid strategy in which annotations are completely supported
in compositions. Therefore, we introduced FeatureC with some
grammatical changes so that it is possible to use FeatureHouse
in a straight-forward manner.

Besides the discussed grammar change of Figure 5, we
realized further adaptions of the underlying C grammar. How-
ever, it was possible to avoid some grammar changes because
their necessity was the result of an undisciplined usage of
preprocessor annotations. Therefore, we restricted the usage of
annotations to certain useful patterns. In Figure 6, we show an
example of such a problematic annotation that we have found
in the source code of Berkeley DB. On the one hand, the
restriction to disciplined preprocessor annotations is a promis-
ing approach to increase the understandability of the code.
On the other hand, it would have been technically difficult to
implement an approach flexible enough for all cases, while
still taking advantage of the existing tool infrastructure. As a
result, we had to refactor the code to introduce the desired
preprocessor discipline. In general, it is advisable to consider
the introduction of preprocessor discipline in concert with
providing the necessary language support for the related tools.

106Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 115 / 154

1 d b e r r x (env , DB STR A(” 0 1 5 3 ” ,
2 ”s(u) : h o s t lookup f a i l e d : s”, ”s u s ”) ,
3 nodename == NULL ? ”” : nodename , p o r t ,
4 # i f d e f DB WIN32
5 g a i s t r e r r o r A (r e t)) ;
6 # e l s e
7 g a i s t r e r r o r (r e t)) ;
8 # e n d i f

9 # i f d e f DB WIN32
10 d b e r r x (env , DB STR A(” 0 1 5 3 ” ,
11 ”s(u) : h o s t lookup f a i l e d : s”, ”s u s ”) ,
12 nodename == NULL ? ”” : nodename , p o r t ,
13 g a i s t r e r r o r A (r e t)) ;
14 # e l s e
15 d b e r r x (env , DB STR A(” 0 1 5 3 ” ,
16 ”s(u) : h o s t lookup f a i l e d : s”, ”s u s ”) ,
17 nodename == NULL ? ”” : nodename , p o r t ,
18 g a i s t r e r r o r (r e t)) ;
19 # e n d i f

Figure 6. Disciplining of annotation-based approaches.

C. Variability in the Presence of Scope-Sensitive Statements
In our practical application of our migration concept, we

adapted existing tool support for FOP to cope with our specific
language requirements, i.e., for C code with preprocessor an-
notations. The migration process to introduce FOP involves the
creation of so-called hook functions, which are a mechanism
to add code by a refinement in the middle of the function. The
reason is that when only a small part of a function is variable,
it is often useful to extract this part into a hook function,
enabling more fine-grained refinements. While this process
may often be straight forward, it may require modifications
that may introduce errors. In particular, we experienced that
statements that depend on the current scope are potentially
problematic in Berkeley DB for instance goto, switch, and
return statements. In Table I, we summarize how often
these statements exist in the complete code, as well as how
often they are part of variable code and compare these values
with all cases in which their usage results in a problem for
all identified features, selected features, and our two extracted
features, HAVE_HASH and HAVE_HEAP.

goto-Statements
In Figure 7, we show an example of a goto-statement of

Berkeley DB. Assume, we extract the code related to Feature
HAVE_HASH (Line 6-12) into a hook function without further
considerations. The result would be that the goto-statement
from Line 9 operates in a new scope and, thus, the correspond-
ing goto-label would be out-of-scope, and lead to an error. In
the complete code of Berkeley DB we count 4642 occurrences
of goto statements, whereas only 635 interact with variable
code. 20% of these occurrences result in a potential problem
considering all features. Several strategies exist to solve this
situation. Depending on the exact occurrences of the problem,
we have to select the most promising strategy that could lead
to new required tool support.

The straight-forward solution is to extract the complete
method into the HAVE_HASH feature module. This would lead
to code clones and diminish the benefit of the modularization.
In some cases, it is possible to create a hook method in which
we insert the considered variable code part including the code
artifacts behind the goto-label. This is often possible in case
of ordinary error handling. However, this might require further

modifications, such as a huge parameter list, in which the
current state of all variables in the scope of the goto-label
must be preserved. A third solution considers a more concep-
tual mechanism of inlining, which allows us to extract only
the variable code into a feature module also with the goto-
statement. Through the generation process of the combined
code, it is possible to achieve a code artifact in which the scope
is again in the correct scope and works correctly. However, this
solution separates the goto-statement from the label and, thus,
breaks the convention regarding this mechanism.

switch-Environment
In Figure 7, we illustrate a switch construct that is prob-

lematic and cannot be treated in a straight-forward manner. In
detail, it is not possible to extract the complete case into a hook
method using a 1:1 extraction of the variable parts. Similar to
the goto-statement, the scope will change and the case cannot
be handled. In Table I, we can see that Berkeley DB includes
429 switch statements, whereas 16% are involved in variable
code artifacts. Only half of them, exactly 36, result in a case
that is not straight-forward manageable. As the problematic
statements are relatively few, an expensive adaption of the
tool-support may not be advisable in this case. Nevertheless,
we discuss multiple solution strategies.

Similar to the goto-statement, multiple solution strategies
exist for this example. First, it is possible to extract the
complete switch into a feature module. However, this is not
a viable option if the number of the used variables and, thus,
needed parameters is too high. A second option could be a
hook method inside of the case. For this, it must be ensured
that the value DB_HASH (cf. Line 7) is actually defined and this
could be error-prone. Third, we also can change the composer
strategy so that, for instance, a new keyword allows us to refine
the case on this specific line. However, special knowledge is
needed to apply such grammar extensions.

return-Statements
Besides the previous problems, we also identified the

extraction of return statements to hook functions as a
challenge. Again, if we extract corresponding code artifacts,
we change the scope of these statements. However, the problem
occurs if a return statement is only defined for some cases and
not for all, such as could appear in an if-else case in which
only one case contains a return. In the code of Berkeley DB,
there are 7779 return statements while only 1254 are part of
variable code. Again, 20% of these variable cases lead to a
potential problem that we can solve in multiple ways.

One solution is an additional parameter of the hook
function that indicates whether we should utilize the return
statement. Afterwards, the caller side needs to evaluate this
additional parameter. By contrast to the first solution, in some
cases, we can directly insert a new return statement for our
purpose. In detail, if we know that, for instance, all original
return statements result in a positive integer, we can also
use a negative integer to indicate that a return is not valid.
Furthermore, we can also use a grammar adaption as third
solution. In this case, it is necessary to create a kind of an
inlining. Nevertheless, the challenge is that a new function
needs a return statement in all cases to be compatible to
the signature. In the grammar-adaption solution, this can be
solved with an additional keyword.

107Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 116 / 154

1 / / db / p a r t i t i o n . c
2 s w i t c h (new dbc−>db ty pe) {
3 c a s e DB BTREE :
4 . . .
5 b r e a k ;
6 # i f d e f HAVE HASH
7 c a s e DB HASH:
8 i f ((r e t = h a m s t a t (new dbc , &hsp , f l a g s)) != 0)
9 go to e r r ;

10 . . .
11 b r e a k ;
12 # e n d i f
13 d e f a u l t :
14 b r e a k ;
15 }

Figure 7. Example of potential problems to extract hook methods.

VI. RELATED WORK

The idea to combine annotation-based with composition-
based implementation techniques to facilitate a step-wise mi-
gration process has been formulated by Kästner and Apel [9].
In our work, we consider a similar concept and investigate its
application to a real-world project with a focus on technical
concerns and challenges that must be considered to prepare
and perform the actual migration process.

Researchers have investigated advantages and disadvan-
tages of many different techniques to implement variability
for product lines [3], and proposed several possible combi-
nations. Aspectual Feature Modules have been proposed to
combine the advantages of two different composition-based
approaches: aspect-oriented programming and feature-oriented
programming [33]. In contrast, we focus on a combination
of annotation-based and composition-based approaches to en-
able the possibility of a step-wise migration of the prevalent
preprocessor-based product lines in practice. Similarly, the
choice calculus has been proposed to provide a formal basis
for the combination of annotation-based and composition-
based approaches to combine their benefits [34]. However, the
potential application to migration has not been discussed. In
order to improve the practicability of approaches that com-
bine annotation-based with composition-based implementa-
tion, Behringer proposes a concept to improve the visualization
of the underlying representations [35]. This complements our
work, in the sense that it could be used to ease the practical
application of the migration process.

Rosenmüller et al. also extracted feature modules from an
implementation of Berkeley DB [36]. Complementary to our
experiences, they have used a step-wise process in which they
refactored the C code into C++, and transformed the resulting
object-oriented version into a feature-oriented version of C++.
In contrast, we have focused on a direct application of FOP to
avoid long and costly refactorings and transformations with the
goal to minimize the risk of the overall process. Furthermore,
they identified the use of local variables as a potential problem
that must be considered when extracting hook methods.

Alves et al. present a case study in which they migrated a
real-world product line from an annotation-based to an aspect-
oriented implementation [37]. They identify several language-
specific strategies to transform certain variability patterns in
the code into aspects. For the specific case of aspect-oriented
programming this work provides complementary insights that
can be used as a guide to perform the actual transformation,
i.e., Step 4 in our proposed process.

TABLE I. OCCURRENCES OF POTENTIAL PROBLEMS IN
BERKELEY DB.

Number of Problems in

Complete Variable All Selected Extracted
Code Code Fea- Fea- Fea-

tures tures tures

#switch 429 71 36 19 11
#goto 4642 634 127 58 35
#return 7779 1254 248 34 9

VII. CONCLUSION AND FUTURE WORK

Software product line engineering provides different de-
velopment approaches. Whereas annotation-based approaches
are mainly used in industry, compositional approaches promise
advantages, such as eased maintainability. However, if a com-
pany plans to transform an existing annotation-based into a
composition-based product line, a wide range of challenges
exist. Whereas complete refactorings are error-prone and can
take a lot of time, existing work proposed to use a hybrid
solution that combines both approaches. We build on this idea
and propose a detailed instantiation that allows us to transform
the system in a step-wise manner. This tool-driven concept is
based on intermediate results and ensures that the complete
product line is in a consistent state at all times. To exemplify
the application of our approach, we developed FeatureC, a
hybrid implementation technique, and applied it to Berkeley
DB as a case study. We identified challenges regarding the
composition-based concept as well as the granularity of mod-
ularizations. In future work, we plan to apply our migration
concept to further case studies. Furthermore, we aim to use
the concept for projects of our industrial partners.

ACKNOWLEDGMENTS

This work is partially funded by the BMBF project NaVaS
(grant number 01IS14017A and 01IS14017B).

REFERENCES

[1] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Boston, MA, USA: Addison-Wesley, 2001.

[2] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product
Line Engineering: Foundations, Principles and Techniques. Berlin,
Heidelberg: Springer, 2005.

[3] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines: Concepts and Implementation. Berlin, Heidelberg:
Springer, 2013.

[4] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze, R. Dachselt,
M. Papendieck, T. Leich, and G. Saake, “Do Background Colors Im-
prove Program Comprehension in the #Ifdef Hell?” Empirical Software
Engineering (EMSE), vol. 18, no. 4, 2013, pp. 699–745.

[5] D. Le, E. Walkingshaw, and M. Erwig, “#ifdef Confirmed Harmful:
Promoting Understandable Software Variation,” in Proceedings of the
International Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). Washington, DC, USA: IEEE Computer
Science, 2011, pp. 143–150.

[6] C. Prehofer, “Feature-Oriented Programming: A Fresh Look at Objects,”
in Proceedings of the European Conference on Object-Oriented Pro-
gramming (ECOOP). Berlin, Heidelberg: Springer, 1997, pp. 419–443.

[7] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling Step-Wise Re-
finement,” IEEE Transactions on Software Engineering (TSE), vol. 30,
no. 6, 2004, pp. 355–371.

[8] P. Clements and C. Krueger, “Point / Counterpoint: Being Proactive Pays
Off / Eliminating the Adoption Barrier,” IEEE Software, vol. 19, no. 4,
2002, pp. 28–31.

108Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 117 / 154

[9] C. Kästner and S. Apel, “Integrating Compositional and Annotative
Approaches for Product Line Engineering,” in Proceedings of the GPCE
Workshop on Modularization, Composition and Generative Techniques
for Product Line Engineering (McGPLE). Passau, Germany: Depart-
ment of Informatics and Mathematics, University of Passau, 2008, pp.
35–40.

[10] S. Apel, C. Kästner, and C. Lengauer, “Language-Independent and Au-
tomated Software Composition: The FeatureHouse Experience,” IEEE
Transactions on Software Engineering (TSE), vol. 39, no. 1, Jan. 2013,
pp. 63–79.

[11] I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botter-
weck, A. Pathak, S. Trujillo, and K. Villela, “Software Diversity: State
of the Art and Perspectives,” International Journal on Software Tools
for Technology Transfer (STTT), vol. 14, 2012, pp. 477–495.

[12] F. Benduhn, T. Thüm, M. Lochau, T. Leich, and G. Saake, “A
Survey on Modeling Techniques for Formal Behavioral Verification of
Software Product Lines,” in Proceedings of the Workshop on Variability
Modelling of Software-intensive Systems (VaMoS). New York, NY,
USA: ACM, 2015, pp. 80:80–80:87.

[13] M. Alférez, R. Bonifácio, L. Teixeira, P. Accioly, U. Kulesza, A. Mor-
eira, J. a. Araújo, and P. Borba, “Evaluating Scenario-Based SPL
Requirements Approaches: The Case for Modularity, Stability and
Expressiveness,” Requirements Engineering, vol. 19, no. 4, 2014, pp.
1–22.

[14] GCC Development Team, “The C Preprocessor,” Website, 2015, avail-
able online at http://gcc.gnu.org/onlinedocs/cpp/index.html; visited on
October 29th, 2015.

[15] Munge Development Team, “Munge: A Purposely-Simple Java Prepro-
cessor,” Website, 2015, available online at http://github.com/sonatype/
munge-maven-plugin; visited on October 29th, 2015.

[16] J. Pleumann, O. Yadan, and E. Wetterberg, “Antenna: An Ant-to-End
Solution For Wireless Java,” Website, 2015, available online at http:
//antenna.sourceforge.net/; visited on October 29th, 2015.

[17] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An Anal-
ysis of the Variability in Forty Preprocessor-Based Software Product
Lines,” in Proceedings of the International Conference on Software
Engineering (ICSE). Washington, DC, USA: IEEE Computer Science,
2010, pp. 105–114.

[18] C. Kästner and S. Apel, “Virtual Separation of Concerns – A Second
Chance for Preprocessors,” Journal of Object Technology (JOT), vol. 8,
no. 6, 2009, pp. 59–78.

[19] Big Lever Software Inc., “Gears: A Software Product Line Engineer-
ing Tool,” Website, 2015, available online at http://www.biglever.com/
solution/product.html; visited on October 29th, 2015.

[20] pure::systems, “pure::variants,” Website, 2015, available online at http:
//www.pure-systems.com/pure variants.49.0.html; visited on October
29th, 2015.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin, “Aspect-Oriented Programming,” in Proceedings of
the European Conference on Object-Oriented Programming (ECOOP).
Berlin, Heidelberg: Springer, 1997, pp. 220–242.

[22] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella, “Delta-
Oriented Programming of Software Product Lines,” in Proceedings of
the International Software Product Line Conference (SPLC). Berlin,
Heidelberg: Springer, 2010, pp. 77–91.

[23] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr., “N Degrees of
Separation: Multi-Dimensional Separation of Concerns,” in Proceedings

of the International Conference on Software Engineering (ICSE). New
York, NY, USA: ACM, 1999, pp. 107–119.

[24] Y. Smaragdakis and D. Batory, “Implementing Layered Designs with
Mixin Layers,” in Proceedings of the European Conference on Object-
Oriented Programming (ECOOP). London, UK: Springer, 1998, pp.
550–570.

[25] A. Bergel, S. Ducasse, and O. Nierstrasz, “Classbox/J: Controlling
the Scope of Change in Java,” in Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA). New York, NY, USA: ACM, 2005, pp. 177–189.

[26] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich,
“FeatureIDE: An Extensible Framework for Feature-Oriented Software
Development,” Science of Computer Programming (SCP), vol. 79, no. 0,
2014, pp. 70–85.

[27] J. Pereira, K. Constantino, and E. Figueiredo, “A Systematic Literature
Review of Software Product Line Management Tools,” in Software
Reuse for Dynamic Systems in the Cloud and Beyond, ser. Lecture
Notes in Computer Science. Springer, 2014, vol. 8919, pp. 73–89.

[28] J. Meinicke, T. Thüm, R. Schöter, F. Benduhn, and G. Saake, “An
Overview on Analysis Tools for Software Product Lines.” New York,
NY, USA: ACM, 2014, pp. 94–101.

[29] J. Liebig, A. Janker, F. Garbe, S. Apel, and C. Lengauer, “Morpheus:
Variability-aware Refactoring in the Wild,” in Proceedings of the
International Conference on Software Engineering (ICSE). Piscataway,
NJ, USA: IEEE Computer Science, 2015, pp. 380–391.

[30] C. Kästner, S. Apel, and M. Kuhlemann, “A Model of Refactoring
Physically and Virtually Separated Features,” in Proceedings of the
International Conference on Generative Programming and Component
Engineering (GPCE). New York, NY, USA: ACM, 2009, pp. 157–166.

[31] B. Adams, W. De Meuter, H. Tromp, and A. E. Hassan, “Can We
Refactor Conditional Compilation into Aspects?” in Proceedings of
the International Conference on Aspect-Oriented Software Development
(AOSD). New York, NY, USA: ACM, 2009, pp. 243–254.

[32] A. Reynolds, M. E. Fiuczynski, and R. Grimm, “On the Feasibility
of an AOSD Approach to Linux Kernel Extensions,” in Proceedings
of the AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software. New York, NY, USA: ACM, 2008, pp. 8:1–
8:7.

[33] S. Apel, T. Leich, and G. Saake, “Aspectual Feature Modules,” IEEE
Transactions on Software Engineering (TSE), vol. 34, no. 2, 2008, pp.
162–180.

[34] E. Walkingshaw and M. Erwig, “A Calculus for Modeling and Imple-
menting Variation,” in Proceedings of the International Conference on
Generative Programming and Component Engineering (GPCE). New
York, NY, USA: ACM, 2012, pp. 132–140.

[35] B. Behringer, “Integrating Approaches for Feature Implementation,” in
Proceedings of the International Symposium Foundations of Software
Engineering (FSE). New York, NY, USA: ACM, 2014, pp. 775–778.

[36] M. Rosenmüller, S. Apel, T. Leich, and G. Saake, “Tailor-made data
management for embedded systems: A case study on berkeley DB,”
Data and Knowledge Engineering, vol. 68, no. 12, 2009, pp. 1493–
1512.

[37] V. Alves, A. Costa Neto, S. Soares, G. Santos, F. Calheiros, V. Nepomu-
ceno, D. Pires, J. Leal, and P. Borba, “From Conditional Compilation
to Aspects: A Case Study in Software Product Lines Migration,” in
Workshop on Aspect-Oriented Product Line Engineering (AOPLE),
2006.

109Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 118 / 154

Executable Testing Based on an Agnostic-Platform Modeling Language

Concepción Sanz1, Alejandro Salas1, Miguel de Miguel1,2, Alejandro Alonso1,2, Juan Antonio de la Puente1,2
1Center for Open Middleware, Universidad Politécnica de Madrid (UPM)

Campus de Montegancedo, Pozuelo de Alarcón - Madrid, Spain
2DIT, Universidad Politécnica de Madrid (UPM), Madrid, Spain

Email: {concepcion.sanz, alejandro.salas, miguelangel.demiguel, alejandro.alonso}@centeropenmiddleware.com,
jpuente@dit.upm.es

Abstract—Among the different approaches to deal with testing,
model-based techniques come up as promising solutions due to
their independence from testing platforms, their quick adaptation
to changes during the modeling process, and the use of abstract
concepts, which make testers focus only on the business. However,
most of the solutions are proprietary or based on the complexity
of the Unified Modeling Language (UML) models. We propose
a testing framework based on a non-UML test-centred modeling
language which is agnostic about any execution platform. The
framework also allows to increase the expressivity of the test
models by designing execution flows, which connect to elements
existing in test models. Apart from design tests, the proposed
framework deals with execution, including the necessary mecha-
nisms to transform models, on demand and in an automatic way,
into executable tests for a variety of testing platforms. In order
to show the flexibility of the proposed approach, we introduce as
case study two testing platforms which manage tests in different
ways.

Index Terms—Model-based testing; Reuse.

I. INTRODUCTION

Research on testing activities has provided along time a
wide variety of approaches to deal with more and more de-
manding needs in terms of quality assurance, time-to-market,
devices, test automation, productivity and maintenance, among
others. Among the existing approaches, it can be found mech-
anisms which were initially considered for purposes different
from testing, as it happens with the approximations based on
models. Models were only considered for documentation at
first, later were included in software development mechanisms
and now can be found in testing frameworks as promising
alternatives for increasing the automation and the abstraction
level of the testing activities.

Most of the non-model-based testing frameworks offer
solutions which are highly coupled to the specific platform
where tests will be finally executed. This makes necessary
having a deep technical knowledge about the target platform,
preventing non-expert people to take advantage of the testing
frameworks. The absence of models also makes difficult the
migration of tests between different testing frameworks. A
significant effort in time and work is necessary in order to
adapt the entire collection of tests to a new framework. Cur-
rently, as software applications increase their complexity and
extend the list of devices and platforms where being executed,
the variety of frameworks that can be involved during the
testing process also increases. Such diversity leads to more
complex testing environments and requires specialized testers
to manage them. Some examples of testing frameworks are

QuickTest Professional(QTP-HP)[1], JUnit [2] and Selenium
[3].

In contrast, approaches based on models offer an intermedi-
ate layer between the tester and the final testing platform, al-
lowing users to design tests based on abstract concepts, which
are independent from any platform. Once tests are described as
models, they are translated into executable tests for a specific
platform. This is the approach followed by commercial frame-
works, such as Conformiq [4], which translates models into
JUnit, Selenium or HP Functional Testing [5], among others.
The level of abstraction existing in a model-based approach
provides a faster mechanism to design tests, since testers only
need to focus on the business domain instead of technology.
Besides, the conversion from test models to executable tests
is usually made in an automatic way, being less error-prone
than applying non-modelled approaches directly.

Regarding model-based approaches, most of commercial
and open source solutions are usually based on UML, a
general-purpose language whose extension and lack of a
precise semantic has given rise to the development of more
specific languages for testing. Among these, it can be men-
tioned the specific UML Testing Profile (U2TP) [6], or domain
specific languages (DSLs) for easing the use of UML diagrams
for testing purposes [7]. These alternatives are still dependent
on UML and usually need to be combined with action lan-
guages in order to provide behaviour and execution features.
Regarding functionality, commercial model-based frameworks
offer integrated proprietary solutions where users can design
models; execute them in their own platform; or allow the
transformation of the models into tests for specific testing
languages. However, it is difficult to find all these features
in open solutions, so users usually need to integrate and
adapt different tools by themselves in order to get similar
functionalities.

Consequently, two are the goals to achieve in this work.
Firstly, developing an open framework to enable the design
of platform-independent test models using abstract concepts
ease to manage by non-expert testers and non-UML based.
Secondly, enabling the integration of the independent test
models with different testing platforms, so users do not require
deep knowledge of those platforms to get executable tests.

There has been developed an Eclipse-based open-source
testing framework which allows the design of platform-
independent test models and their integration with different
execution platforms by means of customized transformations.

110Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 119 / 154

Thus, one test model can be used in different testing en-
vironments just applying, in an automatic way, the right
transformation. These transformations enable users to make
use of different testing environments simultaneously without
being experts on all of them, and ease the migration among
platforms. The only expert needed is the one that builds the
transformation rules. Among the testing environments involved
in the proposed framework, JUnit and Selenium are the ones
selected as open-source tools.

The proposed framework is based on a non-UML based
modeling language which manages high-level concepts related
to testing. These concepts isolate test models from specific
testing frameworks and allow the reuse of test elements among
models, easing the design of tests to non-experts testers. The
framework not only allows to design tests but also establishes
platform-independent execution flows using the elements ex-
isting in the test models.

The rest of the paper is structured as follows. Sections I
and II motivates this work and provides an overview of the
state-of-the-art respectively. Section III gives an overview of
the testing framework and introduces the way execution flows
are set. Section IV explains how the proposed framework
connects models to different testing platforms giving rise to
test executions. Finally, Section V summarizes the main results
of this work and sketches the lines for future work. From the
development point of view, a fully functional prototype of the
entire proposed framework has been implemented, providing
details about it along the different sections of the paper.

II. RELATED WORK

The need for producing reliable applications and ensuring
the functionality in a scenario of short time-to-market, tight
budgets and complex applications, puts pressure on the testing
process that the companies carry out. Research on this topic is
increasing, giving rise to a large variety of testing approaches,
and thus, to a large variety of platforms for testing. This variety
requires testers with a large experience and a deep knowledge
in each platform in order to take advantage of all the existing
features. This expertise prevents other potential users, such as
developers, from making or at least sketching their own tests.

Among the most promising approaches applied to testing,
we can find solutions based on models. According to this
paradigm, test cases can be designed using concepts with
low or none technical knowledge. Through these concepts, the
functional behaviour of the system under test can be described,
giving rise to test models, which can be later transformed into
tests which are executable in a specific testing platform. The
functional behaviour can be described using concepts based on
formal specifications (e.g., B, Z) [8][9], diagrams of any kind -
state charts, use case, sequence diagrams [10], (extended) finite
state machines [11][12] -, or graphs, among others. Among
all, one of the most popular ways to describe tests is based
on diagrams, being the UML modeling language [13] the
most extended language to design them. UML is a general-
purpose modeling language and owns a wide and ambiguous
semantic. For this reason, and due to its extended use in

testing activities, it was developed a specific UML profile,
UML 2.0 Testing Profile (U2TP) [6], which has been used in
different research [14][15][16]. However, the ambiguity and
complexity still continue in U2TP, motivating the development
of alternative DSLs, although still linked to UML [7]. Once
models are described, independently of the applied modeling
language, its execution is not straightaway due to the absence
of an execution engine in the framework used for the design
process. Even when an engine is included, models need to be
manually adapted or customized in order to be executed.

The proposal described in this work differs from the existing
approaches based on models in the fact that the design of test
models is completely independent of UML or any other of its
associated DSLs. The models proposed are based on a different
modeling language, which involves abstract test concepts in
order to increase the number of potential test designers. This
is possible since models are independent from any testing
platform, so no technical knowledge is required from users.
The resulting models can be also automatically derived to
executable tests for specific testing platforms, once again
without requiring technical knowledge from the final user. In
summary, the management of abstract concepts, the absence
of technical knowledge, and the simplicity and reduced size
of the modeling language, compared to UML, can help to
reduce the learning curve and increase the potential users of
the framework.

Considering model-based testing tools which include the
design and execution of tests, these tools are mostly propri-
etary, being difficult to adapt or extend, and being limited to
manage specific testing platforms for execution. On the other
hand, open source testing solutions are usually incomplete
in terms of functionality. In this proposal, the entire testing
process, based on the design, derivation and execution of tests,
is integrated in an open source platform. This platform can be
easily extended to manage a large variety of testing platforms
according to user’s needs.

III. TESTING FRAMEWORK: INTRODUCING EXECUTION
FLOWS

The testing framework proposed in this work is outlined in
this section, focusing on the way test models can be enhanced
by adding execution flows which allow testers to select, from
test models, the elements which will be executed on a platform
and the flow that these elements will follow during execution.

The aim of the proposed testing framework is to isolate
testers from specific platforms as much as possible, allowing
them to focus on the design of the tests by means of mod-
eling techniques. The framework will provide the appropriate
mechanisms to create test models, and transform them into
executable tests with the minimum interaction of the user.
Figure 1 summarizes the testing framework developed.

A. Framework overview

The core of the framework relies on the testing modeling
language described in [17], which covers abstract concepts re-
lated mainly to structural and basic behavioural aspects neces-

111Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 120 / 154

Fig. 1. The proposed framework allows users to focus the effort on the
design of the test, being agnostic about any testing platform.

sary to design tests in a platform-independent way. An impor-
tant part of the language is related to the reuse of test elements,
structural and behavioural, in order to reduce design time
avoiding repetitions and minimizing mistakes or omissions
due to those repetitions. This reuse is carried out by pointing
directly to the wanted elements (structural or behavioural).
A specific GMF (Graphical Modeling Framework)[18] editor,
Test Model Editor, encapsulates the language and allows to
build the test models graphically. The way the test elements
are graphically represented is related to their definition in
the defined modeling language. Thus, structural elements are
components of different complexity that can be nested in order
to provide the test plan with a hierarchy of test elements. An
example of structural elements being graphically represented
in the editor can be seen in Figure 2. Behavioural elements
are inside structural elements and represent basic execution
units which will have a direct translation in each target testing
platform. Sequences of these elements provide the behaviour
of the tests.

Once models are created and the user wants to get exe-
cutable tests, it is time for transforming the model. The user
selects the target platform for executing the tests and the
assistant for that platform starts working. This assistant ap-
plies a collection of transformation rules, which automatically
translate the initial agnostic model into tests which can be
executed in the chosen platform. The independent nature of
the test models and the existence of specific transformation
assistants let the same model be executed in several testing
platform, saving time at test design.

Finally, the test models designed can be stored in a regular
repository in order to be accessible from the testing framework
and from outside. Inside the framework, the models can be
accessed from the editor and the transformation assistants for
modifications or transformations respectively. From outside,
the repository could be accessed by Application Lifecycle
Management (ALM) tools for supervision activities. These
ALM tools, such as HP-ALM[19] or IBM Rational Team
Concert[20], using suitable automatic interpreters, could get

Fig. 2. Example of the developed Test Model Editor building a test model.

the required information directly from test models to fill
in their own structures. In this way, migrations from one
management tool to another would require less effort since test
models are independent from those tools, remaining unaltered
during the entire migration process.

This initial framework has been extended with execution
models in order to provide more expressivity to the test
models. These models are also platform-independent and allow
to select which elements from a specific test model will
be executed and establish their execution flow. The built of
such models is enabled by an Execution Model Editor, while
the transformation of these models into executable flows is
performed by specific assistants, similarly to the way tests
models are managed.

In both cases, the assistants bridge the gap between the
agnostic models and the chosen target testing platform, and
hide the complexity of the platform. They are also responsible
for retrieving relevant information during the execution of the
test elements and provide appropriate reports to users.

B. Execution modeling language

The test modeling language used in this framework allows
to design hierarchies of structural test elements as a way to
organize the test model. However, the language does not pro-
vide a way to select which of the test elements will be finally
executed in the target platform and the order of that execution.
Thus, the user will have to rely on the features included
in the target testing platform related to the specification of
execution order, if any. This is an important feature since all
the executable tests do not need to be executed at once and it
is usually interesting to have different execution flows during
the testing process. Besides, all the testing platforms do not
provide the option to create these flows.

The functionality of the proposed framework has been
extended to include the design of execution flows. The aim is
to provide more expressivity of test models without increasing
the complexity of the test modeling language. For this reason,
a new language has been introduced in the framework, the
Business Process Model and Notation (BPMN) [21], giving
rise to execution models which are still independent from any
target testing platform.

112Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 121 / 154

BPMN is a standard defined by Object Management Group
(OMG) and originally developed to provide a modeling nota-
tion comprehensible for all business users, from purely busi-
ness people to analysts and technical developers. Nowadays,
BPMN is widely used in academia and industry due to the
large set of concepts managed, independent from any specific
domain, and its flexibility to be adapted to other scenarios
different from business. This flexibility is due to the fact that
BPMN enables the extension of its specification in order to
include custom concepts, which represent characteristics of
particular domains. The standard is also interesting in terms
of execution, since there is a variety of runtime execution
engines, which allow the execution of BPMN models almost
effortless.

Although the number of concepts managed in the standard
is huge (activity, flow, event, gateway, etc.), in this work, we
only make use of a subset of them. The chosen elements are
available through the developed GMF Execution Model Editor,
represented in Figure 1. This editor acts as a filter for the
allowed elements, since the standard has not been cut back.
The number of BPMN elements managed in the initial subset
can be easily increased by simply updating the editor.

Making use of the extensibility feature existing in BPMN
to adapt the standard to particular domains, it has been
possible to link specific elements in BPMN models to elements
defined in agnostic test models. The BPMN element chosen
to establish this connection has been the ServiceTask element.
It represents atomic activities in a process flow, in particular,
activities which can be seen as an individual service and can
be automated. This description fits well with the purpose of
the proposed methodology.

An example of the way these ServiceTasks are linked to
agnostic test models can be seen in Figure 3, where each of
the ServiceTasks included in the execution model is pointing
to structural elements of different complexity (TestSuite, Test-
Project, TestCase, etc.) in the test model. Thus, in the figure,
the execution model establishes that among all the structural
elements existing in the test model for PiggyBank (a simplified
online banking application used as case study in this research),
only the TestProject Login and the TestSuite Balance will be
executed, showing also the execution order of those elements.
The rest of the elements existing in the test model are not
required for execution and then, they are not included in the
execution model.

An actual example of the Execution Model Editor related
to PiggyBank is shown in Figure 4, pointing out the way test
elements are linked to BPMN elements.

The execution model shown in Figures 3 and 4 represents
a very simplified flow using BPMN. However, the number
of concepts and features defined in BPMN, combined with
the different concepts defined in the test language allow
to introduce different levels of expressivity to the proposed
framework.

A first type of expressivity included in the framework,
shown in the figures, allows to link ServiceTasks only to
structural test elements - TestProjects, TestSuites, etc. -. In

Fig. 3. Extended BPMN specification in order to link to test elements.

Fig. 4. Example of the developed Execution Model Editor building an
execution model related to Piggybank.

these BPMN models, the test elements linked are independent
among them in the flow, i.e., the failure of a ServiceTask
does not imply the suspension of the remaining elements in
the model, unless there is a branch in the flow considering
that case. In these models, conditional flows can depend
on the result of the execution of ServiceTasks, seeing this
execution as a black box which generates a single result for
each ServiceTask, independently of the structural test elements
involved.

IV. FROM MODELING LANGUAGES TO TESTING
PLATFORMS: A PRACTICAL CASE

This section shows the way all the elements existing in
the proposed framework work together in order to evolve
from agnostic test and execution models to executable tests
in different platforms.

As shown in Figure 1, users start designing test models for
specific applications, ignoring the final platform where tests
will be finally executed. These platform-agnostic test models
can be enriched with BPMN models, which help users to

113Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 122 / 154

define the execution flow of test elements defined in test mod-
els. Given the agnostic approach considered in the modeling
languages and editors involved in the proposed framework,
users can completely ignore any execution platform during
the design of test models and execution flows. Only when
users want to turn a model into executable tests, test execution
platforms are required. Even then, users do not need any
technical knowledge about the target platform or the way
final tests are built. When a target platform is selected from
the proposed framework, the transformation and execution
assistants are the only elements responsible for automatically
generating tests which are executable in the chosen platform.
Both, test models and execution flows, can be transformed to
be executed in any available platform.

The mechanisms used to perform the transformation into
executable tests are explained next. Before that, the testing
platforms managed in the proposed framework are explained.

A. Selenium and GP: testing platforms as case study

Two testing platforms with different characteristics have
been considered for test execution. Both suitable for testing
web applications, since this is the kind of applications man-
aged in this work. The considered platforms are: Selenium[3],
as open source solution; and GP, a proprietary tool suite
developed by Santander Group[22].

• Selenium is the selected platform for testing web appli-
cations using an open source solution. It lacks of a way
to organize tests, being the tester entirely responsible for
providing a structural organization. Tests for execution
can be written entirely in Java using Selenium WebDriver
[23] or as a combination of JUnit tests and Selenium
Server [3]. In this proposal, we use the second option in
order to simplify the generation of the tests files.

• GP is a proprietary testing tool, which integrates different
open source technologies in a common working environ-
ment in order to homogenize their usability. It allows
the design and automatic execution of tests for web and
Eclipse-based applications. Selenium and SWTBot are
some of the technologies included.
From the structural point of view, GP manages elements
which provide hierarchical information to organize the
tests, allowing individual tests and collections of tests.
According to the functionalities included in the platform,
it provides a repository of basic behaviours, which can
be grouped appropriately to design the each individual
test. The technology involved in these behaviours is
completely transparent to testers.
The internal structure of GP tool suite is based on a
database technology as storage mechanism for all the ele-
ments managed in the platform. This approach can be also
found in other testing platforms, such as HP QuickTest
Professional (QTP) [1] or IBM Rational Functional Tester
(RFT) [24].

Since both platforms build and organize tests in a different
ways, the approach to build the transformation engines needed
in each case will be also distinct.

Fig. 5. Transformation and execution assistants link models to testing
platforms.

B. Getting executable tests

Following the proposed workflow, and assuming that test
models are ready to be transformed into executable tests,
users have two ways to continue working. Both are based
on transformation and execution assistants, whose role in the
testing framework is summarized in Figure 5. This figure also
sums up the different technologies and languages used in the
implementation of the developed prototype.

1) Transform an entire test model: The user can opt for
transforming an entire agnostic test model into a collection of
equivalent tests to be executed in a specific testing platform.
In this use case, generically represented in the lower part of
Figure 5, the user selects the agnostic test model that needs
to be transformed and decides the specific testing platform
among the options where tests will be executed. Having this
information, the assistant delegates the task to the specific
transformer for the chosen platform. This assistant provides
flexibility to the proposed framework, isolating the editors and
users from any testing platform.

Each transformer knows the internal structures of its target
platform and the agnostic testing language, establishing the
correspondence between the elements in the target platform
and the agnostic elements. The existence of this correspon-
dence makes possible that, in an automatic way, the trans-
former applies to the test model the appropriate rules to
generate an equivalent collection of tests in the target testing
platform. In this process, the elements existing in the test
model (structures, behaviours, data, etc.) are mapped into their
corresponding elements, creating all the necessary structures
to reproduce the test model in the executable target platform.
The transformer not only translates test models, but also
interprets them. This is specially relevant referring to data,
which potential complexity (unique/multiple values, complex
structures, etc.) can generate a single test or a collection of
tests as a result of all the possible combinations.

The implementation of each transformer will depend on how
the target platform can be represented. If it can be represented
as an Eclipse Modeling Framework (EMF) model, model-to-

114Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 123 / 154

model transformations can be performed. Otherwise, model-
to-text transformations or other alternatives will be necessary.
Considering GP tool, based on a database, the tool can be
represented by its own modeling language inferred through the
database schema. According to this, the content of the database
in a particular moment is the state of the system, a state that
can be represented as a model. This model enables the use of
model-to-model transformations to implement the transformer
to GP, using the operational Query/View/Transform (QVT)
language. Instead, transforming to Selenium requires model-
to-text transformations, using Acceleo, due to the lack of a
modeling language to represent Selenium and JUnit.

2) Execute a BPMN flow: Users that want to focus just on
the execution of a portion of an agnostic test model can design
execution flows (upper part of Figure 5). Before executing the
flow, the testing platform where tests will be executed has
to be selected. Similarly to test models, BPMN models are
not executable straightaway, being also necessary an assistant.
When the assistant knows the target platform, it delegates the
task to the appropriate interpreter, which will check whether
the agnostic model associated with the BPMN model has
already been transformed and exists in the chosen platform.
Otherwise, the corresponding transformation assistant will
be performed first. After that, the interpreter will face two
tasks before triggering the execution of the BPMN model
automatically. First, connecting the BPMN model to a BPMN
engine, which reads, interprets and executes the model. This
connection requires a suitable infrastructure (called BPMN
project in Figure 5), which varies depending on the chosen
BPMN engine. Second, since ServiceTasks in the proposed
extended BPMN models point to agnostic test elements, it is
mandatory their translation to references to executable tests
which exist in the target testing platform. For this second
task, it is worth to mention that during the transformation
process of a test model, some extra data can also be generated
if needed. The need for this auxiliary information depends
on how costly is to associate in a BPMN model an agnostic
test element to its executable tests once the test model has
been transformed. This association can be based on one-
to-one relationships, but it is mostly based on one-to-many
relationships because of two reasons. First, since the structural
element referenced in a ServiceTask can be a container of
other tests elements, the BPMN engine will need to call for
execution to each of the individual tests that the transformation
process generates from the container element. For instance,
ServiceTask in Figure 3 is referencing the complex element
TestProject Login, represented in Figure 6.a. All the tests
contained need to be known. Second, the agnostic models
manage collections of data for specific inputs of the tests.
These collections give rise to a set of individual tests where
each input only has one value associated with it. This is the
case represented in Figure 6.b, where one single test element,
TestCase Button Accept, is transformed into a variable number
of executable tests depending on the data defined in it.

According to this, executing BPMN models in the GP plat-
form, requires an intermediate model as extra information in

Fig. 6. Model-to-model transformations usually turn into one-to-many
relationships that are managed through the intermediate model.

order to associate the structural tests elements in the agnostic
model to the identifiers of their corresponding executable tests
generated in the target platform. However, using Selenium as
target platform does not require extra information, since the
association between test elements and executable tests is easier
to obtain.

Once the BPMN model points to executable tests, it is time
to establish the infrastructure to make the flow executable.
This infrastructure depends exclusively on the BPMN engine
chosen for execution. In this work, it has been used the
BPMN engine provided by Activiti [25], which requires an
Eclipse project to execute the BPMN models. Apart from the
designed BPMN model, the project must contain information
to deploy it for execution and set up the BPMN engine.
It also includes the way to implement the execution of the
ServiceTasks existing in the BPMN model. This implementa-
tion codifies the way all the executable tasks associated to
a particular ServiceTask are identified and called for their
automatic execution one by one. In this process, it is used
any extra information that might have been generated during
the transformation of its corresponding test model. As can be
seen in Figure 5, the execution of the tests is provided by
platform-dependent libraries (GP runnable, selenium-server),
which allow an automatic interaction with each platform. The
Activiti-based project is the output of the interpreter when
a user wants to execute a BPMN model, and the rules to
generate the involved Java classes are based on model-to-
text transformations, using as model the test model itself
(for Selenium platform) or the intermediate model (for GP
platform). Once the building of the Eclipse project is complete,
the interpreter initiates its execution, triggering the BPMN
engine which reads the BPMN model, interprets each one of
the existing elements, and performs the actions associated with
each one. When the BPMN engine finds a ServiceTask, all its
associated tests are launched for execution before continuing
with the flow.

V. CONCLUSION AND FUTURE WORK

The proposed model-based testing framework, the proto-
type of which has been entirely implemented, provides a
infrastructure to design graphically test and execution models

115Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 124 / 154

independent from any testing platform. The execution models
represented as BPMN flows, increase the expressivity of the
test models by extending BPMN elements to include custom
concepts related to the testing language.

The proposed framework allows a quick starting of the
testing phase, being able to work in parallel to the development
process, and a quick adaptation to changes in the requirements.
It also enables the reuse of test elements among models.
The models are only attached to an application, but can be
applied to very different platforms for test execution due to
the assistants provided in the framework, which automatically
transform models to executable tests in each particular plat-
form. The use of graphical editors and assistants allow to hide
the complexity of testing execution platforms, increasing the
number of potential users of the framework.

As future work, the expressivity of the tests will be in-
creased by including more BPMN concepts to the ones already
managed by the editor, and the implementation of complex
behavioural elements based on BPMN flows. The platforms
managed currently in this framework are Selenium as open
source solution, and GP as proprietary tool. Other platforms
can also be integrated building their corresponding assistants.
Thus, the integration of tools, such as HP Quality Center (HP
QC), also database-based as GP platform, could be affordable
in the near future.

ACKNOWLEDGEMENT

The work for this paper was partially supported by funding
from ISBAN and PRODUBAN, under the Center for Open
Middleware initiative [26].

REFERENCES

[1] A. Rao, HP QuickTest Professional WorkShop Series: Level 1 HP
Quicktest. Outskirts Press, 2011.

[2] P. Tahchiev, F. Leme, V. Massol, and G. Gregory, JUnit in Action.
Greenwich, CT, USA: Manning Publications Co., 2010.

[3] A. J. Richardson, Selenium Simplified: A Tutorial Guide to Selenium
RC with Java and JUnit. Compendium Developments, 2012.

[4] A. Huima, “Implementing Conformiq Qtronic,” in TestCom/FATES,
ser. Lecture Notes in Computer Science, A. Petrenko, M. Veanes,
J. Tretmans, and W. Grieskamp, Eds., vol. 4581. Springer, 2007, pp.
1–12.

[5] Hewlet-Packard Company, “HP Functional Testing,” 2012.
[6] P. Baker et al., “The UML 2.0 Testing Profile,” Sep. 2004.
[7] J. Iber, N. Kajtazovic, A. Holler, T. Rauter, and C. Kreiner, “Ubtl - UML

Testing Profile based Testing Language,” in Model-Driven Engineering
and Software Development (MODELSWARD), 2015 3nd International
Conference on. SciTePress, February 2015, pp. 99–110.

[8] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

[9] M. Cristiá and P. R. Monetti, “Implementing and Applying the Stocks-
Carrington Framework for Model-Based Testing,” in ICFEM, 2009, pp.
167–185.

[10] L. C. Briand and Y. Labiche, “A UML-Based Approach to System
Testing,” in Proc. of the 4th Int. Conference on The Unified Modeling
Language, Modeling Languages, Concepts, and Tools. London,
UK, UK: Springer-Verlag, 2001, pp. 194–208. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647245.719446

[11] C. Pedrosa, L. Lelis, and A. Vieira Moura, “Incremental testing of
finite state machines,” Software Testing, Verification and Reliability,
vol. 23, no. 8, 2013, pp. 585–612. [Online]. Available: http:
//dx.doi.org/10.1002/stvr.1474

[12] K. Karl, “GraphWalker,” URL: www.graphwalker.org [accessed: 2015-
12-18].

[13] M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003.

[14] B. P. Lamancha, P. R. Mateo, I. R. de Guzmán, M. P. Usaola, and
M. P. Velthius, “Automated Model-based Testing Using the UML
Testing Profile and QVT,” in Proc. of the 6th Int. Workshop on
Model-Driven Engineering, Verification and Validation, ser. MoDeVVa
’09. New York, NY, USA: ACM, 2009, pp. 1–10. [Online]. Available:
http://doi.acm.org/10.1145/1656485.1656491

[15] M.-F. Wendland, A. Hoffmann, and I. Schieferdecker, “Fokus!MBT:
A Multi-paradigmatic Test Modeling Environment,” in Proc. of the
Workshop on ACadeMics Tooling with Eclipse, ser. ACME ’13.
New York, NY, USA: ACM, 2013, pp. 1–10. [Online]. Available:
http://0-doi.acm.org.cisne.sim.ucm.es/10.1145/2491279.2491282

[16] P. Baker et al., Model-Driven Testing: Using the UML Testing Profile.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[17] C. Sanz et al., “Automated model-based testing based on an agnostic-
platform modeling language,” in Proceedings of the 3rd International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD), 2015, pp. 239–246.

[18] Eclipse(b), “Eclipse Graphical Modeling Framework (GMF) Tooling,”
URL: http://www.eclipse.org/gmf-tooling/ [accessed: 2015-12-18].

[19] Hewlet-Packard Company, “HP Application Lifecycle Management,”
2011.

[20] International Business Machines Corp., “IBM Rational Team Concert,”
2008.

[21] OMG, Business Process Model and Notation (BPMN), Version 2.0,
Object Management Group Std., Rev. 2.0, January 2011, URL: http:
//www.omg.org/spec/BPMN/2.0 [accessed: 2015-12-18].

[22] URL: www.santander.com/ [accessed: 2015-12-18].
[23] S. Avasarala, Selenium WebDriver Practical Guide. Packt Publishing,

2014.
[24] C. Davis et al., Software Test Engineering with IBM Rational Functional

Tester: The Definitive Resource, 1st ed. IBM Press, 2009.
[25] T. Rademakers, Activiti in Action: Executable business processes in

BPMN 2.0, 1st ed. Shelter Island, NY: Manning Publications, 2012.
[26] URL: http://www.centeropenmiddleware.com/ [accessed: 2015-12-18].

116Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 125 / 154

Software Based Test Automation Approach Using
Integrated Signal Simulation

Andreas Kurtz
BMW Group

Integration Electric/Electronics, Software
Munich, Germany

andreas.kurtz@bmw.de

Bernhard Bauer
University of Augsburg

Institute for Computer Science
Software methodologies for

distributed systems
Augsburg, Germany

bauer@informatik.uni-augsburg.de

Marcel Koeberl
BMW Group

Integration Electric/Electronics, Software
Munich, Germany

Abstract—Test automation in distributed systems requires new
methods in signal simulation for the stimulation of the distributed
system. Increasing complexity of electric electronic (E/E) systems
increases the testing-effort. The main challenge is to reduce the
time spent on manual stimulation of input signals in favor of
automated testing. The systems currently used for test automation
have to be adapted to each hardware and software version of the
system to be tested. The approach shows a software-based au-
tomation solution through the integration of a simulation service
in the AUTOSAR architecture. By integrating a generic software-
based simulation module with an interaction point at the basic
software driver layer, the execution of tests can be automated
and improved in terms of adaptively and reproducibility.

Keywords–Automotive; distributed systems; model based testing;
simulation; system model; test model.

I. INTRODUCTION

Mastering complexity and customer orientation are chal-
lenges in the development of electric electronic (E/E) and
software functions in the automotive industry. In current
and future vehicles, the increase of the distribution and the
networking of functions demands new ways of automation
for testing customer features. Software bugs are the main
reason for malfunctions in new developed cars [1]. In the
automotive industry, the safety requirements are extremely
important because of their implications. Therefore, there is a
need to err on the side of caution.

This paper focuses on developing a method for test au-
tomation of the automotive system model. The system model
stands for the total system deemed to be a distributed system
with its networked hardware (HW) and software components
(SWC). The long-term goal is a solution for automating system
model test, at a total system level, with an integrated distributed
software-based solution.

The rest of the paper is structured as followes. Section II
presents the State-of-the-art model based testing approach and
the current realisation level in the automotive industry. Section
III describes the over all approach, followed by Section IV with
a detailed description of a concrete implementation. In Section
V a related approach is shown to point out the difference to the
new approach, concluded in Section IV with a short outlook.

A. Problem Statement

The increasing complexity of developed functions with
shorter developing time leads to exceeding use of methods.
Figure 1 shows the raising demand of using methods when
reducing development time to handle equal development effort.
In addition to an increase of system complexity the conven-
tional methods have to change to virtual development.

Figure 1. Reducing time demands increase of virtualisation [2]

State-of-the-art software-based automation methods, used
in automotive software development, use additional software
functions integrated in the software components to be tested.
This kind of interaction affects the customer function itself.

These functions, used for virtual input stimulation, interact
with the customer functions and require specific solutions for
each type of implementation. Using this kind of automation
does not reflect the functional behaviour of the system model
like in customer usage. Additional signals and interfaces are
used to get access to the implemented customer functions with
the goal to compare the system model towards specification.
Another aspect is the additional software code, needed to
realize the interaction. Last, but not least, crosslinked functions
are not detected because of the high-level interaction point.
Therefore malfunctions in close-by or connected SWCs are
not noticed.

A physical simulation of sensor signals at the hardware
interface does represent the customer usage but is too ex-
pensive to build a specific solution for each HW variation.
The main challenge for physical signal simulation is to find

117Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 126 / 154

a generic solution for all types of hardware interfaces. The
developed method shall use the test model in combination
with the AUTOSAR description files, to generate data for
stimulation of the system model.

This paper focuses on a method for distributed systems,
extracting the needed data out of the test model and the AU-
TOSAR configuration files. AUTOSAR supports the approach
because of the standardised software architecture (Figure 2),
giving the chance of developing a generic method.

Figure 2. AUTOSAR Architecture, Components and Integration [3]

II. STATE-OF-THE-ART

The start scenario to get test cases in model based testing
(MBT) is presented in Figure 3(A), with a test designer and
its mental test model. The tester, expecting to have the entire
test cases, executes the textual test cases. The prospective goal
is to reach scenario (C) shown in Figure 3. This enables to
compute the test cases for a test automation. By a change, from
difficult to understand textual test cases to formal models, we
can enable automation methods.

Figure 3. Textual vs. model based specification of tests [4]

With the mentioned focus on the total system as a dis-
tributed system, the test case models become complex. Due to
the many options of partitioning the variable number of par-
ticipants (SWCs) to the different hardware options, regarding
the standardised architecture framework, the complexity of the
models grows.

Model based testing methods are [4]:

● Component Test or so called ’unit test’, in which the
individual program components are tested in isolation.

● Integration Test is testing the interaction of several
componentes.

● System Test is to ensure the operability of the entire
system according to the requirements

● Acceptance Test is the test under real operating con-
ditions, as well as the interaction of several systems.

At System Test, the aim of the approach, the distribution
of functions increases automation complexity. In addition,
the simulation of input signals is more difficult, due to less
accessible interfaces without disturbing the system’s behavior.

Figure 4 shows a simplified software architecture with the
main layers of AUTOSAR. From bottom up, above the HW
there is the basic software (BSW) allocated. The basic software
contains modules shown in Figure 2. All communication to the
SWCs is distributed via the runtime environment (RTE). Figure
4 shows the same architecture for both cases with two SWCs:
SWC1 (and lower layers) representing the human machine
interface (HMI), iDrive Controller (ZBE), and SWC2 (and
lower layers) representing the Navigation System (Navi) with
symbolised tree structure of the menu.

Figure 4. Use Case - SW-Architecture; (A) Customer Use; (B) Simualtion
state of the Art; simple draft

With reference to the example, we look closer to the
software architecture according to AUTOSAR. Conventional
software-based automation methods interfere at application
SWC layer, shown in Figure 4(B) named Diag. Usually these
functions are integrated for software-based internal error de-
tection and setting data trouble codes (DTC).

Figure 4(A) shows a customer interaction with the total
system via the ZBE, e.g., the customer enters navigation
destination. Figure 4(B) shows the conventional method with a
so-called diagnosis job (Listing: 1) to hit the right menu items.
The conventional virtual interaction via diagnosis job interacts
in SWC2 and tends to a different behaviour in the total system.

1 apiJob(ECU, "steuern_routine", "ARG;MENU;
Ç STR", \%i;\%i;\%i;\%i)

Listing 1. Example Diagnosis-Job

118Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 127 / 154

This function (Listing: 1) uses a unique identifier (ID) to
hit a menu item. A series of these jobs is necessary to reach the
same goal (in this case an entered navigation destination), but
shows a different total system behaviour. For both cases, we
see the same appearance but in Figure 4(B) the communication
between SWC1 and SWC2 is missing. The result is that errors
in the data communication that occur in the customer case are
not detected.

III. RELATED WORK

Model based testing is the basic approach in the automo-
tive product development. Methods for data-flow analysis can
help to improve the explained method by computing realistic
software-paths and the corresponding data sets. With the help
of this information, the test model can be improved to get near
100% test coverage in consideration of the customer use cases.
Domain knowledge is the key for computing user realistic
software paths. Other paths only have to be checked referring
their impact on customer functions.

A existing approach with focus on ’automation, modular-
ization and compatibility of all equipment to do measurement,
calibration and diagnosis’ [8] is the Can Calibration Protocol
(CCP) [8]. The Protocol is used for calibration and data ac-
quisition. Realised as a driver with access to the internal ECU
memory this part of the protocol causes additional CPU load.
During a session using CCP a ’continuous logical connection’
[8] is established to transfer data from the ECU to the master
device (off board test automation). This approach interacts at
the driver layer. CCP has the main goal of data acquisition in
contrast to data simulation.

IV. THE APPROACH

The goal is to compare system- and test model with an
integrated distributed software solution to get the system’s
behavior closer to the system’s behavior in customer’s use.
Figure 5 shows the approach of comparing system- and test
model.

Figure 5. Approach of comparing system- and test model based on a standard
model based approach

The methodological approach is to integrate a generic
software-based simulation module (SIM Module) and a sim-
ulation interface (SIM Interface) in the system model. The
novelty of the approach is the layer of intervention (AUTOSAR
driver layer) with the associated reduced data complexity. The
reduced data complexity is due to the focus on system input
signals. In summary, it is a distributed simulation of input
signals in a distributed system with an engagement in the basic
software driver layer.

– How does this work? – These distributed SIM modules
can receive test cases from the off board test automation system
and execute the test cases, individually or jointly, by order of
the off board system. The data for the test cases is computed
out of the test model and transferred in abstract test data and
a mapping table (Config). The separation has the advantage of
using the test case for different hardware configurations.

Figure 6. System-, test and environment model [4]

Figure 6 is intended to show that the test model is the
combination of the specified system model functional be-
haviour and the environment model. The environment model
includes all external factors e.g., temperature, light or physical
characteristics to the system model as well as the customer.

Figure 7. Automation Approach AUTOSAR view. (A) Customer use; (B)
simple draw of SIM Interface integration in AUTOSAR Basic Software

The interaction of the simulation, formerly manipulation,
at the AUTOSAR basic software interface (Figure 7(B)) allows
the SWCs to operate closer to the customer use.

On the one hand, the customer function operates closer to
the behaviour in the normal customer usage which leads to
detection of errors in the functional implementation or errors
between layers. On the other hand, the simulation gets easier

119Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 128 / 154

by getting closer to the hardware layer, because of reduced
types of signals. There are only discrete signals, because all
data processing of customer input ends up in analog digital
converter. A positive effect is that in case of simulation, cross-
linked functions are also triggered and show their behaviour
as well as the misbehaviour.

V. THE DETAILS

The methodological approach detailed in Figure 5 shows
schematically how the test case data is loaded to the system
model. Based on the assumption that a test model is available
test cases are derived therefrom. To get only the relevant
test cases, we compute theoretical software paths of the test
model with the background knowledge of the specific domain
(Figure 5).

The separation of the total system in cluster e.g., power-
train, power-network, infotainment and other is called domain.
We need the domain knowledge to reduce the number of
computed paths. It is not meaningful to test all theoretical
possible software paths of a single software component at total
system level testing. Looking at the distributed system with
all of its participants, the software components in cooperation
reduce the possible paths. The more components participate the
more complex the system gets, but also the functions limit each
other e.g., timing, min- and max values. For example when
focusing on power-network functions the domain knowledge
does have information and boundaries of the power train
like the engine speed range. The speed range is decisive
for the operating range of the generator and thus for energy
availability.

The bigger part of software functions is developed with a
model based approach and realised with state machines. The
main reasons for the increase of complexity are that on one
hand the conditions for triggering the transitions are built in
various state machines in different software levels, and on
the other hand, almost all of the conditions do have timing
constrains. This expands the number of use cases by testing
boundary values e.g., lower limit, upper limit, lower limit
follower, upper limit follower and last but not least the time
steps on the valid timing interval.

Computing the paths of the menu structure has been per-
formed with a data-flow based model analysis [5] [6]. All paths
had to start and end in the main menu with the requirement
that every transition can be passed only once per path to avoid
loops. The result is a set of paths with the information of states
passed, transitions and trigger for transitions.

After computing all relevant paths of the test model,
we can generate test cases, including information as named
before. With this information, the idea is to compute a set of
all sequences for simulating all user input hardware signals.
The computed data is separated in the interface information
and the data sequence. This dataset describes the overall
customer function input and will be mapped to the ECU
and HW-Channel allocation specified in the system model.
This configuration database is stored in the off board test
automation (Figure 5). With this approach the general customer
input information can be mapped to each specific AUTOSAR
implementation.

Figure 8. Schematic Diagram of AUTOSAR Configuration files [3]

The configuration Config (Figure 5) is an information
depending on the specific implementation, computed out of the
AUTOSAR description files. These files are generated in the
software development process (Figure 8). These files give the
specific input of which SWC is mapped to each ECU as well
as channel and communication path information. In Figure 8,
the shown files contain the following information:

● Software Component Description: Describes the func-
tional dependencies

● System Description: Describes the partitioning of
SWCs to ECUs

● ECU Configuration: Describes the signal routing to
the HW-Abstraction

● Basic Software Description: Describes the mapping of
the HW-Abstraction to the HW-Channels

These descriptions are specific for each AUTOSAR soft-
ware architecture. Therefore, the information depends on the
software of the system model. Errors in the configuration files
are handed to the test automation.

Figure 9 shows the software architecture solution for the
new methodological approach. What is new is that this SIM
module is integrated in each ECU, which reads sensor signals.
The SIM Module represents the merger of the following three
components:

● SimAgent is the logical component, including a state
management and is responsible for the execution of
the sequences, data storage and safety requirements,

● SimGW does only route signal data to the Microcon-
troller Abstraction Layer (MCAL),

● DioSim is the interface to the existing driver (DIO)
and its read services with the goal to replace the
physical signals with the simulated in case of an active
simulation.

120Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 129 / 154

Figure 9. Software Architecture of Simulation module

The SimGW module is used to route the signals from the
SimAgent to the DioSim. This is a temporary solution that
we do not have to edit the I/O-Abstraction of the existing
AUTOSAR basic software. Above the RTE there will be the
SimAgent as a part of the BMW System Function Software
Components next to the normal application software compo-
nents (Figure 10). BMW System Functions are standardised
software components that are integrated into each ECU, e.g
Diagnosis- or DTC-Functions.

Figure 10. Integration of Simulation Interface in AUTOSAR Driver Layer

– The simulation process. – Enabling of the simulation will
follow the sequence shown in Figure 11.

● Init(), activating the SimAgent via diagnosis job
(CAN-Message),

● FlushSim(), erasing the existing data in the memory,

● UpdateSim(), setting initial values and parameters, like
start value and start time,

● EnableSimulation(), activating the simulation service.

After enabling the simulation service, the UpdateSim()-
Function is used to feed the DioSim-module with the data
during the simulation.

The novelty here is that a test case is temporarily stored
in the ECU memory and is executed by the SIM Agent. Each
SIM module has to keep only the simulation data necessary
for the ECU specific simulation to low memory requirements.

Sim Agent SimGw DioSim

Init()

FlushSim()

FlushSim()

UpdateSim()

UpdateSim()

EnableSimulation()

EnableSimulation()

Cyclic()

UpdateSim()

UpdateSim()

looploop

Figure 11. Process Start of Simulation Service [7]

Figure 12 shows the chain of reaction through the AU-
TOSAR basic software when a SWC requests data from the
RTE. If there is a request of a RTE variable, the normal chain
of reaction will be triggered. If the request reaches the Dio-
module the Dio-module will check if there is a simulation
active for the requested channel (GetSimState()) and will
switch to the simulated data if required. In all other cases
the physical state of the hardware I/O will be read.

The additional function request GetSimState() will be in-
tegrated in the Dio-module and will have an insignificant
influence on the time response of the request. There will be
no difference between the time response in normal customer
use or in simulation usage, because in both cases the new
additional function request will be triggered.

The worst case execution time analysis (WCET) calculates
a percentage increase of the processor about 3,3%. This is a
calculation for 255 simultaneously simulated channels, on an
80MHz CPU with a task cycle of 1ms and in case of the non-
existence of simulation data. In this case the software reads,
after failure of reading a simulated value, the physical value
of the hardware I/O.

For the research an 80MHz CPU with a 12.5ns Assembler
instruction execution time is used. This CPU is used to
calculate execution times for 1ms tasks. The first one is with
no simulation active and the second one is with simulation
active without data:

121Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 130 / 154

● DioSim GetSimState=0 - [normal case]
& no active Simulation
WCET = 12,5ns according to 1 function call

● DioSim GetSimState=1 - [worst case]
& no Simulation Data
& Reading real data
WCET = 32950ns

An impact could be a time delay being critical for a SWC.
In normal case the SWC runs in tasks about 10ms and the
delay will be about less than 0,01%.

RTE IoHwAb Dio DioSim

sym runHwIoService()

ReadChannel()

GetSimState()

DioSim
SimulationState

GetSim()

int

Origin ReadChannel()

int

altalt

[DioSim SimulationState ==
ENABLED]

[DioSim SimulationState !=
ENABLED]

Dio LevelType

int

Figure 12. Simulation Service process [7]

Savety functions such as stopping and fall-back mecha-
nisms have been integrated in the SimAgent. This allows to
abort the simulation at any time in two ways: delayed or
immediately. ’Delayed’ for a smooth end of the simualtion.
’Immediately’ in case of a system malfunction.

VI. CONCLUSION

The method of virtual hardware signal simulation, with an
integrated software approach, allows to automate the user input
analogous to the customer use cases and thereby to compare
system- and test model in an innovative way. The approach
shows a different solution with no need of special hardware
equipment because of the integration of the simulation in
the distributed system as a software-based distributed system.
The methodology is realised as a standard module for easy
integration in the AUTOSAR BSW to get an interface for the
automation. The key aspect of this approach is the point of
interaction located in the BSW driver layer. The methodology
uses an abstraction to specific hardware input signals via
mapping to reduce data and to keep the simulation module
as generic as possible.

A simple generic simulation module controls the simulation
process. Because of its simplicity, the simulation has a barely
measurable effect on the CPU workload. The system reaction,
respectively the system interaction with the customer and
environment will be evaluated with proven and tested methods
already in use. Therefore, there is no need in building up new
evaluation methods and systems for the system analysis.

The new approach has a substantial similarity to the CCP
approach in the connection layer: both interact at the driver
layer. The enormous difference between both is the cutting
of the data communication to the SIM Agent (slave), during
simulation. This reduces CPU workload and the new approach
is enables a simulation, much closer to the customer case.

Next steps for the implementation are to check the data size
of the simulation sequences, especially for long-term simula-
tions, beacuase memory space in automotive ECUs is scarce.
The memory space in the automotive ECUs is associated with
high cost hardware, and therefore the main constraint on the
test case steps and the number of parallel simulated channels.

REFERENCES

[1] Basycon Unternehmensberatung GmbH. (2006) Softwarequalität
durch verbesserte Entwicklungsprozesse. [Online]. Available:
http://www.basycon.de/de/web/basycon/publ typ poster [Jan. 5, 2016]

[2] M. Eigner and R. Stelzer, Product-Lifecycle-Management: Ein Leitfaden
für Product-Development und Life-Cycle-Management, 2nd ed., ser.
VDI. Berlin and Heidelberg: Springer, 2013.

[3] AUTOSAR Partnership. (2014) AUTOSAR Components. [On-
line]. Available: http://www.autosar.org/fileadmin/images/media pic
tures/AUTOSAR-components-and-inte.jpg [Dec. 15, 2015]

[4] T. Roßner, Basiswissen modellbasierter Test, 1st ed. Heidelberg:
dpunkt.verl., 2010.

[5] C. Saad and B. Bauer, Eds., Model-Driven Engineering Languages
and Systems: Data-Flow Based Model Analysis and Its Applications.
Springer, 2013.

[6] C. Saad and B. Bauer, Eds., Industry Track of Software Language En-
gineering (ITSLE), 4th International Conference on Software Language
Engineering (SLE 2011)(May 2011): The Model Analysis Framework
An IDE for Static Model Analysis, 2011.

[7] M. Köberl, “Integration softwarebasierter Automatisierungsmethoden in
eine Test-ECU,” Master’s thesis, University of Augsburg, Augsburg,
2015.

[8] H. Kleinknecht, A. Krüger, H.-G. Kunz, R. Maier, H. Schröter, and
R. Zaiser. (1999) Can Calibration Protocol - Version 2.1.

[9] AUTOSAR Partnership. (2014) AUTomotive Open System ARchitec-
ture: Enabling Innovation. [Online]. Available: http://www.autosar.org/
[Dec. 15, 2015]

[10] B. Beizer, Software testing techniques, 2nd ed. New York: International
Thomson Computer Press, op. 1990.

[11] D. W. Hoffmann, Software-Qualität, ser. EXamen.press. Berlin and
Heidelberg: Springer, 2008.

[12] M. Pezzè and M. Young, Software testing and analysis: Process,
principles, and techniques. [Hoboken and N.J.]: Wiley, ©2008.

[13] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing,
3rd ed. Hoboken and N.J: John Wiley & Sons, ©2012.

[14] R. Seidl, M. Baumgartner, and T. Bucsics, Praxiswissen Testautoma-
tisierung, 1st ed. Heidelberg and Neckar: dpunkt, 2011.

[15] S. Byhlin, A. Ermedahl Jan Gustafsson, and B. Lisper, “Applying Static
WCET Analysis to Automotive Communication Software.”

[16] Vector Informatik GmbH, “AUTOSAR Configuration Process - How to
handle 1000s of parameters: Webinar 2013-04-19,” 2013.

[17] H. Balzert, Lehrbuch der Softwaretechnik/2: Software-Management,
2nd ed., ser. Lehrbücher der Informatik. Heidelberg: Spektrum Akad.
Verl, 2008.

122Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 131 / 154

Medical Mobile Apps Data Security Overview
Ceara Treacy, Fergal McCaffery

Regulated Software Research Centre & Lero

Dundalk Institute of Technology,

Dundalk, Ireland

e-mail: {ceara.treacy, fergal.mccaffery }@dkit.ie

Abstract— In the growing industry of mHealth, mobile medical

apps are becoming a popular mechanism for healthcare

delivery. Characteristically, these apps are designed to both

process and transmit data that is sensitive medical data. Such

data is required to be kept private and secure through

regulations and legislation. The detections of increased app

hacking by security companies and researchers are especially

significant amidst today’s rapid growth in healthcare mobile

apps. Consequently, security and integrity of the data

associated with these apps is a growing concern for the app

industry, particularly in the highly regulated medical domain.

Until recently, data integrity and security in transmission has

not been given serious consideration in the development of

mobile medical apps. There are currently no procedures or

standard practices for developers of mobile medical apps to

assure data integrity and security in transmission. This paper

is an overview of existing mobile medical apps data security

issues and security practices. We discuss current regulations,

standards and best practices concerning data security in

mobile medical apps. The paper introduces the concept of a

process model and testing suite to assist mobile medical app

developers to implement data security requirements to assure

the Confidentiality, Integrity and Availability of data in

transmission.

Keywords-Mobile Medical Apps; data security; regulations;

data security testing.

I. INTRODUCTION

In mHealth, mobile apps are generally classified into
mobile health/wellbeing apps (MHAs) and mobile medical
apps (MMAs). A MMA is an app that qualifies as a medical
device and is therefore required to follow the applicable
medical device regulatory requirements. Medical
professionals and the general public use mobile apps to
perform many tasks, such as: health and fitness tracking,
sharing medical videos, photos and x-rays; blogs to post
medical cases and images; share personal health information;
and keep track of alerts on specific medical conditions and
interests [1]. MMAs are evolving quickly with the
processing capabilities of mobile devices. The use of mobile
apps enables dynamic access to personal identifiable
information and the collection of greater amounts of
sensitive data relating to personal health information (PHI).
The use of mobile apps implicates changes in the way health
data will be managed, as the data moves away from central
systems located in the services of healthcare providers, to
apps on mobile devices [2]. Increasing reliance on mobile
apps raises questions about compromised patient privacy [3]
and security of the data accompanying the apps [2]. The
PwC’s Health Research Institute’s survey claims 78% of
surveyed consumers were worried about medical data

security, while 68% were concerned about the security of
their data in mobile apps [4].

The impact of data breaches in the medical industry is
far-reaching in terms of costs, losses in reputation [5] and
potential risk to patient safety. Reasons for obtaining access
to PHI can be for monetary aim, harmful and personal
intention [6]. An example of the importance of cybersecurity
can be seen with the health insurer Anthem in the US. A
reported breach involved hackers obtaining personal
identifiable information and PHI for about 80 million of its
customers and employees [7]. The information stolen falls
under the Health Insurance Portability and Accountability
Act (HIPAA), which is the federal law governing the
security of medical data and could result in fines up to
$1.5million. A data breach that maliciously makes changes
to a medical diagnosis or prescribed medication has serious
consequences in terms of physical harm and patient safety.
With PHI breaches, either through physician diagnosis or a
treatment plan, the possibility of personal harm or loss is
pronounced.

The Food and Drug Administration (FDA) regulates
medical devices in the U.S and are alert to the cybersecurity
of medical devices. In July 2015, the FDA issued a
cybersecurity alert to users of a Hospira Symbiq Infusion
System pump, where it strongly recommended discontinued
use, as it could be hacked and dosage changed [8]. In
September 2015, the FBI issued a cybersecurity alert,
outlining how Internet of Things (IoT) devices may be a
target for cybercrimes and may put users at risk [9]. If a
cyber-thief changes patient medical information or a
physician diagnosis, serious medical harm or even death can
result. An article that references the DarkNet, describes how
it is now possible to purchase a medical identity that mirrors
individual ailments, size, age and gender, to seek "free"
medical services that would not be suspicious to a clinician.
It states this type of crime is estimated to cost the healthcare
industry in the US between $35 billion and $80 billion each
year [10].

It is largely assumed MMAs are not typically deployed in
“hacker rich” mobile environments [11]. However, Arxan
research shows that many sensitive medical and healthcare
apps have been hacked with 22% of these being FDA
approved apps [11]. MMA developers do not have extensive
experience with the types of threats other consumer app
industries (e.g., banking) are familiar with. Consequently,
security and privacy has not been given serious consideration
until recently, while the importance of security is getting
recognized little is yet being done [12]. Development of
MMAs is picking up momentum as many companies are
lured into the domain by the explosion of the market and the

123Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 132 / 154

potential financial gains. However, issues arise such as:
many of these developers are not coming from the highly
regulated medical device domain and are not aware of the
data protection and privacy requirements of PHI. Developers
coming from the medical device domain are discovering the
technical complications of entering the mobile domain. The
European Commission’s ‘Green Paper on mHealth’, findings
are that this market is dominated by individuals or small
companies, with 30% being individuals and 34.3% are small
companies (defined as having 2-9 employees) [13]. This
would advocate a lack of experience, knowledge and
financial means to address the issues outlined above. The
research aims to assist developers address privacy and
security of data for MMAs, drawing from the standards and
best practice perspectives.

This paper is organized as follows: Section II covers
background on MMAs and data transmission. This section
also discusses MMA security matters. Section III, outlines
the privacy and security laws for health data. In Section IV,
we introduce our research of a process model to assure the
Confidentiality, Integrity and Availability (CIA) of data in
transmission for developers of MMAs. Finally, we conclude
the paper and present the future work in Section V.

II. BACKGOUND

A. MMAs and Data Transmission

In July 2011, the FDA issued draft guidance for MMAs
and defined a “mobile medical app” as a software application
run on a mobile platform (mobile phones, tablets, notebooks
and other mobile devices) that is either used as an accessory
to a regulated medical device or transforms a mobile
platform into a regulated medical device and can be used in
the diagnosis, treatment, or prevention of disease [14].

Mobile devices now provide many of the capabilities of
traditional PCs with the additional benefit of a large selection
of connectivity options [15]. Mobile devices typically
connect to wireless sensor networks, which are being used in
a wide range of medical and healthcare apps [16]. Wireless
Body Area Networks (WBAN) emerged in order to address
the growing field of sensor technologies. A WBAN is a
purpose sensor network that operates independently to
connect to various medical sensors and appliances, located
inside and outside of a human body [17]. The information is
transmitted via independent nodes that collect sensitive (life-
critical) information [18]. A Task Group IEEE 802.15.61,
was established for the standardization of WBAN. The
current IEEE 802.15.6 standard purpose was to define new
Physical (PHY) and Medium Access Control (MAC) layers
for WBAN and defines three PHY layers; Narrowband (NB),
Ultra wideband (UWB), and Human Body Communications
(HBC) layers. The selection of each PHY depends on the
application requirements.

Currently, technologies used for data transmission
include Bluetooth/ Bluetooth Low Energy, ZigBee, UWB,
Wireless Medical Telemetry Service (WMTS),
communication networks such as WiFi (WLAN) and mobile
data networks 3G & 4G. Data is transmitted to and from the
MMA or to sensors on a personal health device or a medical

device. Other transmission of data may occur between the
MMA and for example: remote Health/Service Centers;
Medical Professionals; or Health Record Networks. In some
cases, the information sent to the MMA is processed on the
app and retransmitted to the specified device or center.
Through MMAs the collection of significant medical,
physiological, lifestyle and daily activity data [13] is greatly
amplified and transmitted via varied and numerous networks.

B. Mobile Medical Application Security

Security and privacy related to patient data are two
essential components for MMAs. The fundamental concepts
when considering data security are confidentiality, integrity
and availability. Confidentiality is protection of the
information from disclosure to unauthorized parties. Integrity
refers to protecting information from being modified by
unauthorized parties. Availability is ensuring that authorized
parties are able to access the information when needed.
When considering data security risks for MMAs it is
necessary to specify what types of security threats they
should be protected against. Deployment of MMAs involves
security threats from multiple threat sources which include:
attacks; the user; other mobile apps; network carriers;
operating systems and mobile platforms. These security risks
are further extended when consideration is given to the
unauthorized access to the functionality of supporting
devices and unauthorized access to the data stored on
supporting devices [19]. The 2015 Ponemon report on
mobile app security, emphasized that not enough is spent on
mobile app security [20].

1) Attacks: Attacks are the techniques that attackers use
to exploit the vulnerabilities in applications. There are
numerous tools available for hacking into MMAs and
wireless networks. Hackers target mobile apps to gain entry
into servers or databases in the form of malware attacks. A
recent list of these tools can be found in the Appendix of the
Araxan Report [11]. This report examined 20 sensitive
medical and healthcare apps and discovered 90% of
Android apps and no iOS apps have been subject to hacking
[11]. When data travels across a network, they are
susceptible to being read, altered, or “hijacked”. Potential
for breaches of confidentiality of data occurs during
collection and transmission of data. Data in transmission to
and from the MMAs must be protected from hacking. Some
of the most common issues (but not inclusive) are
Easvesdropping, Malware, Node Compromise, Packet
Injection, Secure Localization, Secure Management,
Sniffing Attacks, Denial of Service (DoS), SQL injection
attacks, Code Injection and Man-in-the Middle attacks. The
consideration of WBANs for MMAs must satisfy rigorous
security and privacy requirements [18]. Wireless channels
are open to everyone. Monitoring and participation in the
communication in a wireless channel can be done with a
radio interface configured at the same frequency band [21].
This may cause severe damage to the patient since the
cybercriminal can use the attained data [18] for many of the
illegal purposes mentioned above. The ISO/IEEE 11073
standard deals only with mutual communication protocols
and frameworks exchanged between and has never

124Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 133 / 154

considered security elements until recently, irrespective of all
sorts of security breaches [22]. Security issues must be
resolved while designing medical and healthcare apps for
sensor networks to avoid data security issues [16].

2) Users: Many of the mobile devices will be personal
and bypass the majority of inbound filters normally
associated with corporate devices which leaves them
vulnerable to malware. It is important that the user has good
knowledge of the security safeguards, what measures to
follow and what precautions to take [23]. A key challenge
with MMA data is the lack of security software installed on
mobile devices [24]. Many mobile device users do not avail
of or are unacquainted with basic technical security
measures, such as firewalls, antivirus and security software
measures. Mobile device operating systems are very
complex and therefore demand additional security controls
for the prevention and detection of attacks against them
[25]. The accessibility of social media and email make it
easy to post or share information in violation of HIPAA
regulations. An example being, a New York nurse was fired
because she posted a photo to Instagram of a trauma room
after treating a patient [26]. Mixed with the availability to
mobile phone cameras and social media apps, the risk of
employees divulging PHI and violating HIPAA
requirements has increased [27]. One of the greatest threats
to MMA data security lies with the fact that most are on
mobile devices which are portable, making them much more
likely to be lost or stolen [28]. Potentially any data on the
device is accessible to the thief, including access to any data
and hospital networks. Due to the regulatory protection of
PHI, it is important that even when the app is on a stolen
device the security of the data remains protected and is
regularly backed-up [25]. Measures should be available to
remotely lock the MMA, disable service, completely wipe
out the data [25] and restrict access to supporting devices.

Not all users password-protect their devices. Even when
passwords are used because of the lack of physical
keyboards with mobile devices, users tends not use complex
passwords to secure their information. The use of more than
one type of authentication technique suggested by Alqahtani,
would afford better data security for MMAs [25]. The
difficulty is requesting lengthened authentication
requirements from a busy medical professional. Inputting
numerous passwords, or waiting for an authentication code
in a pressurized situation is not desirable.

3) Other mobile apps: Unfortunately, many users
download mobile apps often without considering the
security implications. Unintentionally, a user can download
malware in the form of another application, an update or by
downloading from an unauthorised source. The difficulty in
detecting the attack was due to the fact that there currently is
no mobile device management application programming
interface (API) to obtain the certificate information for each
app [29]. An attacker can use Masque Attacks to bypass the
normal app sandbox and get root privileges by attacking
known iOS vulnerabilities [29]. Cloned apps are a concern,
over 50% of cloned apps are malicious and therefore pose
serious risks. A recently discovered iOS banking app
malware, Masque Attacks, replace an authentic app with

malware that has an identical UI. The Masque Attacks
access the original app's local data, which wasn't removed
when the original app was replaced and steal the sensitive
data [29]. The mobile device management interface did not
distinguish the malware from the original as it had used the
same bundle identifier.

4) Operating systems & devlopment: Consideration with
handling data on mobile devices includes unintended data
leakage. It is essential that the MMA is not susceptible to
analytic providers that will sell the data to marketing
companies. The app stores are attempting to address this,
e.g., Apple is banning app developers from selling
HealthKit data or storing it on iCloud. Google insists that
the user is in control of health data as apps cannot be
accessed without the user providing permission. Developers
could include analytics that report how often a section of the
MMA was viewed, similar to the analytics credit card
provider’s use to flag unwanted access to data. It is equally
important to consider the intentional or unintentional
sharing of personal information. Leakage of personal data
from the device to the MMA and the leakage of MMA data
onto personal devices are key considerations. The bypass of
outbound filters elevate the risk of non-compliance with
data privacy laws and requirements, e.g., the use of personal
Dropbox.

 A basic requirement such as encryption is not used in
many apps. Data is encrypted so that it is not disclosed whilst
in transit. Data encryption service provides confidentiality
against attacks. The requirement of encryption is stressed,
not only for the data, but for the code in development to
assure data security [16][25]. Data encryption of passwords
and usernames if they are to be storage on the MMA is
essential, many apps store this information in unencrypted
text. This means that anyone with access to the mobile
device the MMA resides on can see passwords and
usernames by connecting the device to a PC. If the MMA is
hacked, the information encrypted will be useless to the
cybercriminals. Many apps send data over an HTTPS
connection without checking for revoked certificates [30].
MMA developers should ensure that back-end APIs within
mobile platforms are strengthened against attacks using state
of the art encryption. As discussed above a MMA could
expose healthcare systems that had not previously been
accessible from outside their own networks. In MMA data
security consideration developers should always use modern
encryption algorithms that are accepted as strong by the
security community.

Hackers are aware that just because a patch was released
does not means it was applied, which, in turn make the app
vulnerable for attacks [31]. Some recommend the installation
of “Prevention and Detection” software for defending and
protecting against malware as essential [25]. Consequently,
software that tracks detection and anticipates attacks would
require consideration in MMA development.

It is essential that developers research the mobile
platforms they are developing for. Each mobile OS offers
different security-related features, uses different APIs and
handles data permissions its own way. Developers should
adapt the code accordingly for each platform the MMA will

125Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 134 / 154

be run on. There are no standards that straddle development
or security testing across the different platforms. Developers
design security for each individual OS.

III. PRIVACY AND SECURITY LAWS FOR HEALTH DATA

In the rush to market the aspects of privacy and security
are not properly considered [32]. Increasingly, MMA
developers must deal with a range of international
regulations if they want to perform business in more than
one country. The absence of privacy laws in some countries,
in addition to inconsistency or even conflicting laws, means
PHI is often misused and treated superficially. Some MMA
providers find they are in breach of regulation only when
they are warned or fined, blindsided by regulatory issues,
due to the complexity [33]. Privacy and security policy
issues relating to data with MMAs are now of primary
importance since the surge in the value of PHI on the black-
market partly due to the lack of security controls within
healthcare and the increase in the security of credit card data
[34]. A global landscape analysis of current privacy
legislation and regulation was undertaken by Thomas
Reuters Foundation and mHealth Alliance on the privacy and
security policies to protect health data [33]. The report states,
that most jurisdictions agree, data security is essential and
suggests the world of privacy law is divided into three major
groups: Omnibus data protection regulation in the style of
the European laws that regulate all personal information
equally; U.S.-style sectorial privacy laws that address
specific privacy issues arising in certain industries and
business sectors, so that only certain types of personal
information are regulated; The constitutional approach,
whereby certain types of personal information are considered
private and compelled from a basic human rights perspective
but no specific privacy regulation is in place otherwise [33].

A. European Union

If you have MMAs within the EU, the EU Data
Protection Directive (Directive 95/46/EC) [35] is the key
piece of regulation that will affect how you manage and store
data. This is the one law in the EU regarding security and
privacy in health data. This Directive is implemented in laws
of Member States and requires establishment of supervisory
authorities to monitor its application. However, at the
beginning of 2012, the EU approved the draft of the
European Data Protection Regulation [36]. This means the
law will apply generally over all states in the EU, so it will
not require individual Member States implementation. With
this progression in regulation all Member States will be at
the same stage of security and data protection [32]. Directive
2002/58/EC of the European Parliament and of the Council
of 12 July 2002 [37], known as the ePrivacy Directive, is
concerned with the processing of personal data and the
protection of privacy in the digital age. It is now law in all
EU countries and covers all non-essential cookies, and
tracking devices. This Directive principally concerns the
processing of personal data relating to the delivery of
communications services. It provides rules on how providers
of electronic communication services, should manage their
subscribers' data. It also guarantees rights for subscribers

when they use these services. The key parts that MMA
developers are concerned with in the directive are:
processing security; confidentiality of communication;
processing traffic and location data; cookies and controls.

B. United States

According to the Thomas Reuters Foundation and
mHealth Alliance report, the US is one of the legislative
leaders in this area [33]. The main law that applies to health
data issues is HIPAA as stated previously. HIPAA was
updated in the HIPAA Omnibus Rule required by The Health
Information Technology for Economic and Clinical Health
Act of 2010, (HITECH Act). The HITECH Act established
new information security breach notification requirements
that apply to businesses that handle personal health
information and other health data [38]. The FDA released
guidance “Content of Premarket Submissions for
Management of Cybersecurity in Medical Devices” and this
provides a list of recognized consensus standards dealing
with Information Technology and medical device security
[39]. The fact that MMAs may transmit information
wirelessly places them in the domain of Federal
Communications Commission (FCC) regulation to ensure
consumer and public safety [40]. Recognizing the need for
regulatory clarity, the FCC, FDA, Office of the National
Coordinator (ONC) and the Department of Health and
Human Services (HHS) came together in a grouping called
the Food and Drug Administration Safety and Innovation
Act (FDASIA) Working Group. The group released a report
that contains a proposed strategy and recommendations on
an appropriate, risk-based regulatory framework pertaining
to health information technology including MMAs [41].

IV. PROPROSED CURRENT RESEARCH

A. Research Background

As the MMA domain grows and becomes a standard
established mechanism for health delivery, data security and
privacy of health data will be essential. MMAs are being
developed persistently without proper security application,
principally due to the lack of understanding of current
standards, regulation requirements and best practice
pertaining to data security in healthcare. There are currently
no process models or testing suites for developers to assure
data security in transmission for MMAs.

The proposed research is developed using the only
Medical Device (MD) security standard, IEC/TR 80001-2-
2:2012. This standard presents 19 high-level security-related
capabilities in understanding the type of security controls to
be considered and the risks that lead to the controls [42].
IEC/DTR 80001-2-8 (currently at a committee draft stage) is
a catalogue of security controls developed relating to the
security capabilities defined in IEC/TR 80001-2-2. The
report presents mapping of security controls for developing
security cases to establish confidence in each of the security
capabilities [43]. Accordingly, the security controls support
the maintenance of confidentiality and protection from
malicious intrusion. The report provides guidance to
healthcare organizations and MD manufacturers for the

126Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 135 / 154

selection of security controls to protect the CIA and
accountability of data and systems during development,
operation and disposal [43].

This research leverages on the established security
controls in IEC/WD TR 80001-2-8 relating to the two
transmission security capabilities from IEC/TR 80001-2-2.
We will also apply additional security controls pertinent to
MMAs, accomplished with comparative expert validation,
by means of analysis of applicable standards and best
practices. Further, we will research to adopt testing methods
and applicable tests to form a testing suite, in collaboration
with a data security expert to assure that the required security
controls for data CIA in data transmission are in place.

B. Approach

The research will be completed in three parts. The
research method will consist of Literature Review (LR) and
Action Design Research (ADR) for each part.

1) Approach part one: The two transmission security
capabilities selected from IEC/WD 80001-2-2 will provide
the starting point. The catalogue of security controls in
IEC/WD 80001-2-8 for the two capabilities will provide the
basis for the security controls. The LR for this part will
establish the additional standards and best practices
pertaining to mobile data transmission and security of data.
To develop the process to establish the security controls
applicable to MMAs. Some of the standards and best
practices currently being research include (but not
inclusive) are: ISO/IEC 11073; NIST SP 800-53, OWASP
mobile security; NIST FIPS 140-2; ISO 27799. The LR will
additionally review other domains that have experience in
data security in transmisssion, e.g., financial, to establish
practices. The ADR fragment will develop and validate the
process with comparitive expert review.

2) Approach part two: A LR will establish the current
cyber attacks on mobile apps, MDs and MMAs and
establish a database. The LR will additionally research
testing methods associated with the attacks and applicable
tests. This part will be completed in collaboration with
identified data security experts and a testing
organisationation. To assure that the required security
controls for data CIA in data transmission are in place. The
Testing Suite will be complied through ADR via the data
experts, testing organisation and MMA developers.

3) Approach part three; The completion of the research
will be through ADR with two identified MMA
development companies. The development of the Process
Model and the Testing suite will be validated through ADR
with industrial partners. Completion of the research aim is
the demonstration of confidence of data security during
transmission MMAs. Therefore demonstrating
confidence/trust in the data transmission and storage.

V. CONCLUSION AND FUTURE WORK

This paper examined existing data security issues and
practices in relation to MMAs. A summary of regulations
relating to data privacy and security MMA providers are
mandated by law to adhere to, were outlined. Compliance
and improved understanding of data security regulations and

best practices will assist developers to meet the security
requirements for data in transmission. The security gaps in
MMAs are exploited due to lack of knowledge,
understanding or amalgamated regulation for data security
with MMAs.

The mobile app industry claim innovation is stifled, due
to the lack of clarity in regulations and security concerns.
Developers will need to find the optimal balance between
data security and privacy as MMAs expand and PHI enters
into new aspects. The lack of consistent data security to
assure privacy, to allow interoperability, and to maximize the
full capabilities [44] of presents a significant barrier to the
industry. The primary focus of our future research in this
domain will be in the development and implementation of
both the process model and testing suite. Validation of the
research will be completed in collaboration with two MMA
development companies. The MMAs being developed will
have different transmission requirements and capabilities to
assure diversity.

ACKNOWLEDGMENT

This research is supported by the Science Foundation
Ireland through Lero - the Irish Software Engineering
Research Centre (http://www.lero.ie) grant 10/CE/I1855 and
grant 13/RC/20194.

REFERENCES

[1] B. M. Silva, J. P. C. Rodrigues, F. Canelo, I. C. Lopes, and L.
Zhou, “A data encryption solution for mobile health apps in
cooperation environments.,” J. Med. Internet Res., vol. 15, no.
4, p. e66, Jan. 2013, doi:10.2196/jmir.2498.

[2] D. He, M. Naveed, C. A. Gunter, and K. Nahrstedt, “Security
Concerns in Android mHealth Apps,” In AMIA Annual
Symposium Proceedings. Nov. 2014, pp. 645–654.

[3] Y. Yang and R. . Sliverman, “‘Mobile health applications: the
patchwork of legal and liability issues suggests strategies to
improve oversight.,’” Health Aff., vol. 33, no. 2, pp. 222–7,
2014, doi: 10.1377/hlthaff.2013.0958.

[4] Price Waterhouse Cooper - Health Research Institute, “Top
Health Industry Issues of 2015 - A new health economy takes
shape,” Nov. 2014. pp. 1-18.

[5] “Data breach results in $4.8 million HIPAA settlements,”
U.S. Department of Health and Human Services, 2014.
[Online]. Available from:
http://www.hhs.gov/about/news/2014/05/07/data-breach-
results-48-million-hipaa-settlements.html 2016.01.10

[6] N. H. Ab Rahman, “Privacy disclosure risk: smartphone user
guide,” Int. J. Mob. Netw. Des. Innov., vol. 5, no. 1, pp. 2–8,
2013, doi: 10.1504/IJMNDI.2013.057147.

[7] G. S. McNeal, “Health Insurer Anthem Struck By Massive
Data Breach - Forbes,” Forbes, 2015. [Online]. Available
from:
http://www.forbes.com/sites/gregorymcneal/2015/02/04/massi
ve-data-breach-at-health-insurer-anthem-reveals-social-
security-numbers-and-more/ 2016.01.10

[8] U.S. FDA “Safety Communications - Cybersecurity for
Medical Devices and Hospital Networks: FDA Safety
Communication.” FDA Website, 2013 [Online]. Available
from:http://www.fda.gov/MedicalDevices/Safety/AlertsandN
otices/ucm356423.htm 2016.01.10

[9] FBI, “Internet of Things Poses Opportunities for Cyber
Crime,” FBI Website, 2015. [Online]. Available from:
https://www.ic3.gov/media/2015/150910.aspx 2016.01.10

127Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 136 / 154

[10] J. Williams, “Don’t Mug Me For My Password! -
InformationWeek,” Information Week, 2014. [Online].
Available:http://www.informationweek.com/healthcare/securi
ty-and-privacy/dont-mug-me-for-my-password!/a/d-
id/1318316 2016.01.10

[11] Araxan, “State of Mobile App Security,” Volume 3, Nov
2014.

[12] J. Kabachinski, “Mobile medical apps changing healthcare
technology.,” Biomed. Instrum. Technol., vol. 45, no. 6, pp.
482–6, Nov/Dec. 2011, doi: 10.2345/0899-8205-45.6.482

[13] European Commission, “Green Paper on mobile Health
(‘mHealth’),” Brussels, 2014.

[14] U.S. FDA, “Mobile Medical Applications Guidance for
Industry and Food and Drug Administration Staff,” 2013.

[15] M. La Polla, F. Martinelli, and D. Sgandurra, “A Survey on
Security for Mobile Devices,” Commun. Surv. Tutorials,
IEEE vol. 15, no. 1, 2013, pp. 446–471.

[16] M. Al Ameen, J. Liu, and K. Kwak, “Security and privacy
issues in wireless sensor networks for healthcare
applications.,” J. Med. Syst., vol. 36, no. 1, pp. 93–101, Feb.
2012, doi: 10.1007/s10916-010-9449-4.

[17] J. Y. Khan and M. R. Yuce, “Wireless Body Area Network
(WBAN) for Medical Applications,” in New Development in
Biomedical Engeneering, D. Campolo, Ed. InTech, pp. 591–
623, 2010.

[18] S. Saleem, S. Ullah, and K. S. Kwak, “A study of IEEE
802.15.4 security framework for wireless body area
networks.,” Sensors (Basel)., vol. 11, no. 2, pp. 1383–95, Jan.
2011, doi: 10.3390/s110201383.

[19] J. L. Hall and D. McGraw, “For Telehealth to Succeed,
Privacy and Security Risks Must be Identified and
Addressed,” Health Aff., vol. 33, no. 2, pp. 216–221, 2014,
doi: 10.1377/hithaff.2013.0997

[20] Ponemon Institute LLC, “The State of Mobile Application
Insecurity,” IBM, 2015.

[21] V. Mainanwal, M. Gupta, and S. Kumar Upadhayay, “A
Survey on Wireless Body Area Network : Security
Technology and its Design Methodology issue,” in 2nd
International Conference on Innovations in Information,
Embedded and Communication systems (ICIIECS 2015),
IEEE, March 2015, no. I, pp. 1–5, ISBN: 9781479968183

[22] S. S. Kim, Y. H. Lee, J. M. Kim, D. S. Seo, G. H. Kim, and
Y. S. Shin, “Privacy Protection for Personal Health Device
Communication and Healthcare Building Applications,” J.
Appl. Math., vol. 2014, pp. 1–5, June 2014, doi:
10.1155/2014/462453

[23] M. Souppaya and K. Scarfone, NIST Special Publication 800-
124 Guidelines for Managing the Security of Mobile Devices
in the Enterprise. Gaithersburg, USA: National Institute of
Standards and Technology, 2013, pp. 1–29.

[24] D. Nyambo, Z. O. Yonah, and C. Tarimo, “Review of
Security Frameworks in the Converged Web and Mobile
Applications,” Int. J. Comput. Inf. Technol., vol. 3, no. 4, pp.
724–730, Jul. 2014.

[25] A. S. Alqahtani, “Security of Mobile Phones and their Usage
in Business,” Int. J. Adv. Comput. Sci. Appl., vol. 4, no. 11,
pp. 17–32, 2013.

[26] C. Wiltz, “Mobile App Developers to Congress: HIPPA is
Stifling Innovation | MDDI Medical Device and Diagnostic
Industry News Products and Suppliers,” Mobile Health, 2014.
[Online]. Available from:
http://www.mddionline.com/article/mobile-app-developers-
congress-hippa-stifling-innovation-140918 2016.01.10

[27] FierceHealthIT, “Mobile & HIPAA Securing personal health
data in an increasingly portable workplace.” FierceHealthIT,
2014. [Online]. Available from:

http://servicecenter.fiercemarkets.com/files/leadgen/mobile_a
nd_hipaa_final.pdf 2016.01.10

[28] P. Ruggiero and J. Foote, “Cyber Threats to Mobile Phones,”
United States Computer Emergency Readiness Team, 2011.

[29] H. Xue, T. Wei, and Y. Zhang, “Masque Attcak: All Your
iOS Apps Belong to US,” FireEye, 2014. [Online]. Available
from: https://www.fireeye.com/blog/threat-
research/2014/11/masque-attack-all-your-ios-apps-belong-to-
us.html 2016.01.10

[30] M. B. Barcena, C. Wueest, and H. Lau, “How safe is your
quantified self ” Symantech: Mountain View, CA, USA 2014.

[31] Y. S. Baker, R. Agrawal, and S. Bhattacharya, “Analyzing
Security Threats as Reported by the United States Computer
Emergency Readiness Team,” International Conference on
Intelligence and Security Informatics (ISI 2013) IEEE, June
2013, pp. 10–12, ISBN:978-1-4673-6214-6

[32] B. Martinez-Perez, I. Torre-Diez de la, and M. Lopez-
Coronado, “Privacy and Security in Mobile Health Apps: A
Review and Recommendations,” J. Med. Syst., vol. 39, no. 1,
p. 1-8, Jan. 2015, doi: 10.1007/s10916-014-0181-3

[33] Thomas Reuters Foundation and mHealth Alliance, “Patient
Privacy in a Mobile World a Framework to Address Privacy
LawIssues in Mobile Health,” Thomas Reuters Foundation,
London, 2013.

[34] J. Williams, “Don’t Mug Me For My Password! -
InformationWeek,” Information Week Healthcare, 2014.
[Online]. Available from:
http://www.informationweek.com/healthcare/security-and-
privacy/dont-mug-me-for-my-password!/a/d-id/1318316
2016.01.10

[35] Directive, E.U. "95/46/EC of the European Parliament and of
the Council of 24 October 1995 on the protection of
individuals with regard to the processing of personal data and
on the free movement of such data." Official Journal of EC
23.6, 1995.

[36] EU Commission. "Proposal for a Regulation of The European
Parliament and of the Council on the protection of individuals
with regard to the processing of personal data and on the free
movement of such data (General Data Protection Regulation).
(Vol. 11) 2012.

[37] Directive, E.U. "2002/58/EC of the European Parliament and
of the Council of 12 July 2002 concerning the processing of
personal data and the protection of privacy in the electronic
communications sector, Off." (Directive on privacy and
electronic communications). JL 201, 31.7. 2002.

[38] L. J. Sotto, B. C. Treacy, and M. L. Mclellan, “Privacy and
Data Security Risks in Cloud Computing,” Electron. Commer.
Law Rep., vol. 186, pp. 1–6, Feb. 2010.

[39] U.S. Food and Drug Administration, “Content of Premarket
Submissions for Management of Cybersecurity in Medical
Devices - Guidance for Industry and Food and Drug
Administration Staff,” 2014.

[40] A. A. Atienza and K. Patrick, “Mobile Health: The Killer App
for Cyberinfrastructure and Consumer Health,” Am. J. Prev.
Med., vol. 40, pp. 151–153, May 2011.

[41] Food and Drug Administration and Safety and Innovation Act
(FDASIA), “FDASIA Health IT Report Proposed Strategy
and Recommendations for a Risk-Based Framework,” 2014.

[42] IEC/TR 80002-2-2:2012, Application of risk management for
IT-networks incorporating medical devices Part 2-2 :
Guidance for the disclosure and communication of medical
device security needs, risks and controls. 2012.

[43] A. Finnegan and F. McCaffery, “A security Argument for
Medical Device Assurance Cases,” Softw. Reliab. Eng. Work.
(ISSREW), IEEE Int. Symp., Nov. 2014, pp. 220–225.

[44] European Commission, “Medical Devices: Guidance
Document MEDDEV 2.1/1.” 2012.

128Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 137 / 154

Reachability Games Revisited

Imran Khaliq
Media Design School

Auckland, New Zealand
email:imran.khaliq@mediadesignschool.com

Gulshad Imran
Dept. of Mathematics, University of Auckland

Auckland, New Zealand
email: ggul005@aucklanduni.ac.nz

Abstract— In this paper, we provide a refined analysis of the
classical algorithm for solving reachability games. We provide a
new algorithm that remembers information about fewer nodes
than the classical algorithm does by computing the number of
efforts made by the player to win the game.

Keywords – reachability games; effort based strategies; mem-
oryless determinacy

I. INTRODUCTION

In system Verification and Testing, the reachability ques-
tion asking if a system can attain some specified state
from a given state is well studied and well motivated. The
reachability question was studied in the context of games by
many [1] – [7]. Reachability games are played between two
players Players 0 and Player 1, over a finite directed graph.
The nodes of the graph are the states of the system it models
and edges of the graph represent transitions of the system.
An infinite sequence of states of the system can now be
viewed as an infinite path through the graph. The question
of reachability in verification can now be solved in terms
of constructing winning strategies for the corresponding
reachability game. In reachability games, Player 0 wins a
play if the play visits some specified set, called a target set,
at least once. A reachability game is solved in linear time
on the size of the underlying graph [2].

The problem of solving a reachability game is mainly
about constructing the attractor set for the winner. The
concept of attractor set is also useful for the solution of
infinite games with Safety [6], Buchi [8], McNaughton [9],
and, Parity [10] winning conditions. The classical algorithm
(see for instance [2]) for solving reachability games suggests
a winning strategy that remembers ranks of all the nodes in
the winning region of Player 0. Roughly, a rank of a node
v is i if Player 0 can reach the target set (starting from
v) within i moves made by the players. In this paper, we
carefully analyse the attractor set of the target set. We call
the attractor set (for Player 0) of the target set the winning
region for Player 0. We observed that the winning region may
contain Player 0 nodes such that all its outgoing edges lead to
the winning region of Player 0. We call a set containing such
nodes the effortless region of Player 0. The ranks of the nodes
in effortless region need not to be remembered. Therefore,
our winning strategy for Player 0 takes into account such
nodes and hence improves upon memory efficiency. We call
such strategies, effort-based strategies. We call a strategy that
is dependent only on the current node of the play, memoryless
strategy. Thus memoryless strategies do not depend on the

history, where history is a finite prefix of a play. We will
prove that effort-based strategies are memoryless strategies.
Such strategies recall fewer ranks than the classical approach.

The summary of the paper is as follows. In Section II,
we will provide basic definitions about games in general.
In Section III, we will describe reachability games. In
Section IV, we will provide our own procedure for solving
reachability games. Finally, the conclusion is presented in
Section V.

II. BASIC DEFINITIONS

Our games are played between two players. We call them
Player 0 and Player 1. The underlying graph of a game is
called arena. Our definition of arena is the following:

Definition 2.1 (Arena): An arena is a tuple (V0 ∪ V1, E),
where V0 and V1 are pairwise disjoint sets of nodes and
E ⊆ V0×V1∪V1×V0 is the set of edges. We set V = V0∪V1.
We also postulate that for every u ∈ V there always exists
v ∈ V such that (u, v) ∈ E. We always assume that the
set V of nodes is finite. The set of successors of u ∈ V is
defined by uE = {v ∈ V | (u, v) ∈ E}.

Thus, arenas are just finite bipartite graphs. The nodes of
the set V0 will be called Player 0’s nodes and nodes of V1
will be called Player 1’s nodes.

Let G = (V0∪V1, E) be an arena. A play between Player
0 and Player 1 is described as follows. The play begins at
any node v0 ∈ V . Say the node is in V0. In this case, Player
0 selects an edge e = (v0, v1), moves along the edge, and
passes control to the opponent. Then, Player 1 selects an edge
e = (v1, v2), moves along the edge and passes control to the
opponent. This goes on turn by turn. The definition of arena
implies that at any given moment of the play, the players
are able to make moves and continue the play. Formally, we
define a play as follows.

Definition 2.2 (Play): A play in the arena G = (V0 ∪
V1, E) is an infinite sequence v0, v1, v2, v3 . . . such that
(v0, v1), (v1, v2), (v2, v3), . . . are all edges of the graph.

Unless the arena is trivial, there are infinitely many infinite
plays. Clearly, every play is an element of V ω , where V ω is
the set containing all sequences over V .

Let G = (V0∪V1, E) be an arena. Let ρ = v0, v1, v2, . . . ,
be an infinite play played between Player 0 and Player 1.
We would like to define what it means that Player 0 wins
the play ρ. The winner is determined through the following
definition.

129Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 138 / 154

Definition 2.3: A winning set for Player 0 is a subset
W ⊆ V ω . We say that Player 0 wins the play ρ if ρ ∈ W .
Otherwise, Player 1 wins the play.

Now, we are ready to formally define a game.

Definition 2.4 (Game): A game between Player 0 and
Player 1 is a tuple (V0∪V1, E,W), where G = (V0∪V1, E)
is an arena and W is a winning set for Player 0. We typically
denote games by Γ.

Note that, arenas are finite objects while winning sets W are
not necessarily objects that are defined by finite means.

A. Strategies

In this section, given a game, we define the winner of
the game and explain what it means to solve the game. The
notation σ ∈ {0, 1} will represent one of the two players
Player 0 and Player 1, his opponent will be represented by
1− σ.

Let Γ = (V0 ∪ V1, E,W) be a game. We define histories of
the game as follows.

Definition 2.5: A history is a finite prefix of a play. We
define set of histories for Player σ as follows: H(σ) = {h | h
is a history and the last letter of h is in Vσ}.
Clearly, H(σ) ∩ H(1 − σ) = ∅ and every history is either
in H(σ) or in H(1 − σ). Informally, a strategy for Player
σ, is a rule that tells the player which edge to select given
a history of a play in H(σ). Formally, we define a strategy
for a player as follows.

Definition 2.6: A strategy for Player σ is a function fσ :
H(σ) → V such that for every h = v0, v1, . . . , vn ∈ H(σ)
we have (vn, fσ(h)) ∈ E.

Now, given a node v ∈ V and strategy fσ for Player σ, one
can consider all the plays starting at v and consistent with
the strategy fσ . Here, we say that a play ρ = v0, v1, v2, . . .
is consistent with fσ if v0 = v and for all histories h =
v0, v1, . . . vi ∈ H(σ) of this play we have (vi, fσ(h)) ∈ E
and vi+1 = fσ(h).

Definition 2.7: Let Γ = (V0 ∪ V1, E,W) be a game. Let
v ∈ V be a node.
• We say Player σ wins from a node v if Player σ has

a winning strategy fσ such that all the plays that begin
from v and consistent with fσ are winning for the
player.

• We say Player σ wins from a set or has a winning
strategy from a set A ⊆ V if Player σ has a winning
strategy from each node in A.

• We say that v is a winning node for Player σ if the
player wins the game from the node v.

From this definition, it follows that, if v is a winning node
for a player, then v can not be a winning node for the
opponent. One of the fundamental concepts in game theory
is the following definition.

Definition 2.8: A game Γ is determined if every node of
the game is winning for either Player 0 or Player 1.

There are examples of games that are not determined,
see [11]. Determinacy is one of the important topics in
descriptive set theory. One of the important theorems is the
following theorem of Martin [12].

Theorem 2.9 (Martin’s determinacy theorem): Every
Borel game, that is the game at which W is a Borel set, is
determined.
Reachability games are Borel and hence determined. The
definition below is meant when we say a game is solved.

Definition 2.10: Let Γ be a game. We say Γ is solved if
there exists an algorithm that given the Γ, outputs the sets W0

and W1, where W0 is the set of all nodes in Γ from which
Player 0 wins the game and W1 is the set of all nodes in Γ
from which Player 1 wins the game. The set Wσ , σ ∈ {0, 1}
is called winning region for Player σ.

III. REACHABILITY GAMES

In this section, we discuss reachability games in detail.
The algorithm and definitions discussed here are borrowed
from [2]. In reachability games, Player 0 wins a play if the
play visits a specified set of nodes at least once. Formally,
we define reachability games as follows.

Definition 3.1 (Reachability Games): A reachability
game Γ consists of:

1) The arena G = (V0 ∪ V1, E).
2) The target set T of nodes T ⊆ V0 ∪ V1.

We say that Player 0 wins a play v0, v1, v2, v3 . . . if there
exists an i such that vi ∈ T . Otherwise, Player 1 wins the
play.
From the definition, it is clear that Player 0 wins a play ρ
from a node u if
• ρ begins from the node u;
• there is a finite prefix η of ρ such that the last node in
η belongs to the target set.

Definition 3.2: A memoryless strategy for Player σ is a
function fσ : Vσ → V such that (u, fσ(u)) ∈ E. A game
enjoys memoryless determinacy if for every node one of the
players wins the game with memoryless strategy.

It turns out that winners in reachability games have
memoryless winning strategies. We prove this in the next
theorem. Before we proceed, we define some notations. Let
Γ be a reachability game. Assume X ⊆ V . Define,

reachσ(X) = {u ∈ Vσ | ∃ v ∈ uE ∩X}∪
{u ∈ V1−σ | uE ⊆ X}.

When the player is clear, then sometimes we denote the
above set by reach(X).

Theorem 3.3 (Memoryless Determinacy [2] pp. 34):
Reachability games enjoy memoryless determinacy.

Proof: The winning region for Player 0 is defined
inductively. We set, X0 = T , and for i ∈ ω, Xi+1 =
reach0(Xi) ∪ Xi. Since the set of nodes V is finite there
is an s such that Xs = Xs+1, where s is the smallest such
number.

130Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 139 / 154

Claim 3.4: The set Xs is the winning region for Player
0, that is W0 = Xs.

For the proof, we use the concept of rank. We say a node u
has rank r, r ≥ 0, if u ∈ Xr \Xr−1. A node u has infinite
rank if u /∈ Xr for all r.
To define a memoryless strategy f0 for Player 0 we linearly
order < the set V1 that is, v1 < v2 < v3 < · · · < vl where
l = |V1|. We define f0 as follows:

Let v ∈ Xs∩V0. Let r be the rank of v. Then f0(v)
is minimal with respect to < such that (v, f0(v)) ∈
E and rank of f0(v) is r − 1.
For v /∈ Xs, we set f0(v) be the minimal with
respect to the order < such that (v, f0(v)) ∈ E.

We show that f0 is winning strategy from the set Xs. Let
v be a node in Xs. From the above definition of reach(Y)
it implies that v has some finite rank r say. If v is Player
0’s node then by the strategy f0 Player 0 chooses f0(v) of
rank r − 1. If v is Player 1’s node then Player 0 waits for
Player 1’s move. Since vE ⊆ Xr−1, any choice of Player
1 selects a node in vE of rank strictly less than r. Each
player’s move select a node of lesser rank every time. Since
r is finite, every play that begins from v ultimately ends at
a target node. Hence Xs ⊆W0.

Now, we show that Player 0 cannot win from a node in
V \Xs. Let M = V \Xs. To define a memoryless strategy
f1 for Player 1 we linearly order the set V0 that is v′1 < v′2 <
v′3 < · · · < v′m where m = |V0|.

If v ∈M∩V1 then f1(v) is minimal with respect to
the order such that f1(v) ∈M and (v, f1(v)) ∈ E.
If v ∈ Xs then f1(v) is the minimal with respect
to the order such that (v, f1(v)) ∈ E.

Let v belong to M . If v is Player 0’s node then Player 1 does
nothing but just waits for the Player 0’s move. Any choice
of Player 0 selects a node in M . This is because vE ⊆ M
as otherwise v would be in W0.

If v is Player 1’s node then there exists a node v′ ∈ M
such that (v, v′) ∈ E otherwise v would belong to W0. By
strategy f1 Player 1 chooses minimal f1(v) with respect to
the order < such that f1(v) ∈M and (v, f1(v)) ∈ E. Player
0 cannot win any play which begins from a node belongs
to M if Player 1 follows the strategy f1. This is because
M ∩ T = ∅. Hence, W0 = Xs and W1 = M .

Corollary 3.5: There exists an algorithm that solves
reachability games in O(|V | + |E|) time, where V is the
set of nodes and E is the set of edges in the arena.

Proof: We construct the winning region for Player
0 inductively. Initially, we set X0 = T . Suppose Xi is
constructed. To construct Xi+1, first we copy elements of
Xi to Xi+1. Second, we add a node u in Xi+1 if:
• u ∈ V0 and if there exists a node v ∈ Xi such that

(u, v) ∈ E, then we add to Xi+1.
• u ∈ V1 and if uE ⊆ Xi, then we add to Xi+1.

To implement the procedure for constructing the winning
region in O(|V | + |E|) time, we assign a counter c(u) to

a node u /∈ T . Initially, we set c(u) = 1 if u ∈ V0 and
c(u) = |uE| if u ∈ V1.

Whenever, we add a node v to Xi+1, where v /∈ Xi,
we subtract 1 from the counter of each node u such that
(u, v) ∈ E; From this point on the edge (u, v) will never be
used again. When a counter becomes zero then the node is
also added to Xi+1. This shows that the running time of the
algorithm is in O(|V |+ |E|).

Corollary 3.6: Let Γ be a reachability game. The function
φσ : 2V → 2V defined by φσ(A) = A ∪ reachσ(A), is
monotone function with respect to set inclusion, where A ⊆
V and 2V is the set containing all subsets of V . That is,
φσ(A) ⊆ φσ(B) whenever A ⊆ B.

Definition 3.7: We denote the winning region of Player 0
in a reachability game by Attr0(T) and call it the 0-attractor
of the set T . A memoryless winning strategy f0 as described
in the proof of Theorem 3.3 is called T -attractor strategy for
Player 0. When the target set T is clear, then we simply say
attractor strategy for Player 0.

Note that, in reachability games, we can change the roles
of the players. In this case, Player 1 tries to reach a given
set T while the opponent tries to avoid it. As shown above,
one can build the 1-attractor of the set T . Hence, we can
talk about σ-attractor sets for the players when a target set
is specified.

Definition 3.8: A σ-trap (or trap for σ) is a subset X ⊆ V
such that vE ⊆ X for every v ∈ X∩Vσ and vE∩X 6= ∅ for
every v ∈ X ∩ V1−σ . A memoryless strategy which assigns
for v ∈ X∩V1−σ a node f(v) ∈ vE∩X is called a trapping
strategy for Player 1− σ.

Corollary 3.9: The complement of σ-attractor of a target
set T is σ-trap.

IV. REACHABILITY GAMES AND EFFORT MOVES

In this section, We give a refined analysis of the set
Attr0(T) for a given reachability game Γ. The idea here
is to compute the number of efforts made by Player 0 to
win the game from Attr0(T). Let X ⊆ V be a set. Define
=(X) = {v ∈ V | vE ⊆ X}. We define the sequence
=0,=1,=2,=3, . . . as follows:

=0 = X, =i+1 = =(=i) ∪ =i.

Since the arena is finite, there exists a minimal k such that
=k+1 = =k. We call this =k, the effortless region for X and
denote it by eff(X).

Lemma 4.1: Player 0 has a winning strategy from eff(T)
to visit T .

Proof: Let u ∈ eff(T). This implies that u ∈ =i for
some i. Since uEi ⊆ =i−1, any play starting at u will
eventually visit =0 = T . Thus, a winning strategy for Player
0 is simply to choose any node v such that (u, v) ∈ E.
In order to construct the winning region for Player 0, we
define the sequence eff0, eff1, eff2, eff3, . . . as follows:

eff0 = eff(T)

131Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 140 / 154

effi+1 = eff(effi ∪ reach(effi)).

Let us recall reach(Y) = {u ∈ V0 | ∃v ∈ uE ∩ Y } ∪ {u ∈
V1 | uE ⊆ Y }, where Y ⊆ V . Here, the second part is
empty. Since, the arena is finite, it implies that there exists
a minimal t such that efft+1 = efft.

Definition 4.2: The Player 0’s move from a node u to a
node v in a reachability game is called an effort move if
u ∈ reach0(effi) \ effi and v ∈ effi for some i.

Lemma 4.3: Player 0 has a strategy from effi+1 \ effi to
visit T after i+ 1 effort moves have been made.

Proof: We prove the lemma by induction on i. For
i = 0, let x ∈ eff1 \ eff0. This implies that any play
from x will eventually visit reach0(eff(T)). For every u ∈
reach0(eff(T)), there exists a v ∈ eff(T) such that (u, v) ∈
E otherwise u /∈ reach0(eff(T)). We set f(u) = v. Player 0
now moves to this v.

Let the lemma be true for i = k. Let x ∈ effk+1 \ effk.
Any play from x will eventually visit reach(effk). For every
u ∈ reach0(effk) there exists a v ∈ effk such that (u, v) ∈ E,
otherwise u /∈ reach0(effk). We set f(u) = v. If Player 0
follows this strategy f , then Player 0 can visit effk after one
effort has been made if a game begins from the node x. By
induction hypothesis Player 0 can visit T after k + 1 effort
moves.

Theorem 4.4: Let Γ be a reachability game. Consider the
sequence defined as follows:

eff0 = eff(T)

effi+1 = eff(effi ∪ reach0(effi)).

If t is the minimal number such that efft+1 = efft then efft
is the winning region for Player 0 and V \efft is the winning
region for Player 1.

Proof: Let u ∈ efft. By the above two lemmas Player
0 has a strategy to visit T after t effort moves. Hence efft ⊆
W0. This strategy can be written explicitly as follows. For
any given u ∈ V0 set:

If u ∈ reach0(effi) \ effi for some i then select
v such that (u, v) ∈ E and v ∈ effi. Otherwise,
select any w such that (u,w) ∈ E.

To prove W0 = efft, we show that Player 1 has a winning
strategy from V \ efft. We set W ′ = V \ efft. Let a play
begins from a node u in W ′. If u is Player 0’s node then
Player 1 does nothing but just waits for the Player 0’s move
at u. Any choice of Player 0 selects a node in W ′. This is
because uE ⊆W ′ as otherwise u would be in reach0(efft).

If u ∈ V1 ∩W ′, then there exists a node v ∈ W ′ such that
(u, v) ∈ E otherwise u would belong to efft. We define
g(u) = v. Any play which begins from a node in W ′ and
consistent with this strategy g always stays inside W ′. Hence
g is a winning strategy for Player 1 from W ′ because W ′ ∩
T = ∅. Thus, W0 = efft and V \ efft = W1.

Note that the winning strategy f , for Player 0, extracted
from the classical algorithm that solves a reachability game,

remembers ranks of all the nodes in Attr0(T). That is, for
all u ∈ Attr0(T), f(u) = v, where v ∈ uE and rank of v is
strictly less than u. For all z ∈ V0\Attr0(T), f(z) is such that
(z, f(z)) ∈ E. Our new procedure for solving reachability
games suggests a winning strategy g that remembers only
nodes in

T ∪ reach0(eff0) ∪ reach0(eff1) ∪ reach0(eff2) ∪

We define g as follows. For all u ∈ X , g(u) = f(u), where
X = T ∪ reach0(eff0) ∪ reach0(eff1) ∪ reach0(eff2) ∪
For all z ∈ V0 \ X , f(z) is such that (z, f(z)) ∈ E. We
call this strategy, effort-based strategy . Thus, we obtain the
following theorem.

Theorem 4.5: Given a reachability game, there exists a
linear time algorithm that extracts an effort-based memory-
less winning strategy for the winner.

V. CONCLUSION

To win a reachability game, the classical algorithm remem-
bers ranks of all nodes of the arena. The winning region for
a player may contain nodes such that all their outgoing edges
lead to the winning region of the player and hence no effort is
involved by the player at such nodes. The region that contains
such nodes we called it effortless region. Our algorithm takes
effortless region into account and hence improved memory
efficiency. Moreover, the algorithm is memoryless and it
takes linear time on the number of nodes and edges of the
arena.

REFERENCES

[1] W. Thomas, ”Infinite games and verification,” Proc. Computer Aided
Verification, LNCS 2404, Springer 2002, pp. 58–64.

[2] E. Grädel, W. Thomas, and T. Wilke, ”Automata, logics, and infinite
games: A guide to current research”, LNCS 2500, Springer, Heidel-
berg, 2002.

[3] L. Roditty, and U. Zwick, ”A fully dynamic reachability algorithm for
directed graphs with an almost linear update time”, Proc. 36th ACM
Symposium on Theory of Computing, 2004, pp. 184-191.

[4] B. Khoussainov, J. Liu, and I. Khaliq, ”A dynamic algorithm for reach-
ability games played on trees”, Proc. 24th International Symposium
of Mathematical Foundations of Computer Science, LNCS, vol. 5734,
2009, pp. 518-529.

[5] P. Hunter, ”Reachability in succinct one-counter games”, Proc. 9th
International Workshop on Reachability Problems, LNCS 9328, 2015,
pp. 37- 49.

[6] K, Chatterjee, L. Alfaro, and T. A. Henzinger, ”Strategy improvement
for concurrent reachability and turn-based stochastic safety games”,
Jouranl of Computer and System Sciences, vol. 79, issue 5, 2013, pp.
640 - 657.

[7] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz, ”How much
memory is needed to win infinite games”, Proc. 12th Annual IEEE
Symposium on Logic in Computer Science, Warsaw Poland, 1997 pp.
99 - 110.

[8] K. Chatterjee, T. Henzinger, and N. Piterman, ”Algorithms for buchi
games”, Proc. 3rd Workshop of Games in Design and Verification,
2006.

[9] R. McNaughton, ”Infinite games played on finite graphs”, Annals of
Pure and Applied Logic, vol. 65, pp. 149184, 1993.

[10] M. Huth, J. H. Kuo, and N. Piterman, ”Fatal attractors in Parity
games”, Proc. FoSSaCS, pp. 34 - 49, 2013.

[11] D. Gale, and F. Stewart, ”Infinite games with perfect information.
Annals of Mathematical Studies (Contributions to the Theory of
Games II)”. vol. 28, 1953, pp. 245-266.

[12] D. Martin, ”Borel determinacy. Annals of Mathematics”, vol. 102,
1975, pp. 363-375.

132Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 141 / 154

Dynamic Symbolic Execution with Interpolation Based Path Merging

Andreas Ibing

Chair for IT Security

TU München

Boltzmannstrasse 3, 85748 Garching, Germany

Email: andreas.ibing@tum.de

Abstract—This paper presents a dynamic symbolic execution en-
gine for automated bug detection in C code. It uses path merging
based on interpolation with unsatisfiable cores to mitigate the
exponential path explosion problem. Code coverage can be scaled
by varying the interpolation. An algorithm for error and branch
coverage is described. The implementation extends Eclipse CDT.
It is evaluated on buffer overflow test cases from the Juliet test
suite in terms of speed-up through merging, reduction of the
number of analyzed program paths and proportion of merged
paths.

Keywords–Symbolic execution, interpolation, branch coverage,
error coverage.

I. INTRODUCTION

Symbolic execution [1] is a program analysis technique,
that can be used for automated bug detection. In order to
find bugs with arbitrary program input, the program input is
treated as symbolic variables. Operations on these variables
then yield logic equations. Satisfiability of program paths and
satisfiability of bug conditions are decided by an automated
theorem prover (constraint solver). The current state of au-
tomated theorem provers are Satisfiability Modulo Theories
(SMT) provers [2].

Symbolic execution can be applied both as static analysis
(without executing the progran under test) and as dynamic
analysis (using binary instrumentation) [3]. Dynamic symbolic
execution follows a program path with a complete concrete
program state, and additionally a partial symbolic program
state. The partial symbolic program state comprises the con-
straints on symbolic variables which have been collected on
the path (path constraint). The concrete program state satisfies
the constraints on the symbolic variables. Dynamic symbolic
execution is also known as concolic execution (concrete/sym-
bolic [4]). Dynamic symbolic execution has several advantages
compared to the static only approach. Complicated program
constructs can be concretized, i.e., executed only concretely by
dropping the relevant symbolic variables [3]. Concretization is
sound with respect to bug detection, i.e., while it does lead
to false negative detections, it does not lead to false positive
bug detections. Concretization also provides more flexibility in
handling library function calls. Function call parameters can
be concretized and the function executed concretely. Dynamic
symbolic execution with configurable concretization is also
called selective symbolic execution [5]. Another argument for
dynamic symbolic execution is that execution of concrete code
is much faster than symbolic interpretation.

The number of satisfiable program paths in general grows
exponentially with the number of branch decisions, for which

more than one branch is satisfiable. This bad scaling behaviour
is known as path explosion problem. In order to alleviate the
path explosion problem, it is shown in [6] that a live variable
analysis can be applied so that program paths, that only differ
in dead variables, can be merged. A more comprehensive
sound path merging approach is described in [7]. It is based on
logic interpolation (Craig interpolation [8]), i.e., on automated
generalization of constraint formulas. The interpolation uses
unsatisfiable cores (unsat-cores) and approximates weakest
precondition computation. Given an unsatisfiable conjunction
of formulas, an unsat-core is a subset of the formulas whose
conjunction is still unsatisfiable. This approach leads to bet-
ter scaling behaviour by finding more possibilities to merge
program paths.

The accuracy of bug detection tools is typically evaluated
as percentage of false positive and false negative bug detections
in a sufficiently large bug test suite. Currently the most
comprehensive test suite for C/C++ is the Juliet suite [9].
In order to systematically test a tool’s accuracy, it combines
’baseline’ bugs with different data and control flow variants.
The maximum context depth spanned by a flow variant is
five functions in five different source files. Each test case is
a program that contains ’good’ (bug-free) as well as ’bad’
functions (which contain a bug), so that both false positives
and false negatives can be measured.

This paper presents a dynamic symbolic execution engine
which uses unsat-core based interpolation of unsatisfiable
program paths and unsatisfiable bug conditions in order to
achieve scalability through merging as many program paths
as early as possible. The engine is applied to the problem of
automated bug detection (testing). This includes that with each
bug detection, the constraints for merging program paths are
automatically adapted.

The remainder of this paper is organized as follows: Section
II describes the motivation and details of the algorithm. Section
III describes scaling of code coverage by varying interpolation,
and puts the described algorithm for error and branch coverage
into context. The implementation as plug-in extension to the
Eclipse C/C++ development tools (CDT) is depicted in section
IV. Section V evaluates the tool in terms of speed-up through
path merging and of the number of completely and partly
analyzed program paths on buffer overflow test cases from
the Juliet test suite. Related work is described in section VI.
Evaluation results are discussed in section VII.

133Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 142 / 154

II. ALGORITHM

This section describes the motivation (in subsection II-A)
and details of the algorithm and gives an analysis example in
subsection II-E.

A. Motivation

Motivation for the algorithm are the following points:

• It is sufficient to detect each bug on one program path
only. It is not necessary to detect each bug on all
paths where this bug might be triggered. A program
path can therefore be pruned if it is impossible to
detect any new bugs on any extension of the path.
This information can be gained from backtracking
program paths, that were analyzed till program end.
This implies a depth-first traversal of the program
execution tree (the tree of satisfiable program paths).

• Since interpretation is much slower than execution
of code, as much code as possible should not be
interpreted. Execution should be interrupted only at
locations, that need to be interpreted symbolically.
Constraint-based analysis is needed only for the detec-
tion of input dependent bugs. In this paper, a debugger
is used for adaptive binary instrumentation, i.e., break-
points are path-dependent for efficiency. Variables can
become symbolic (through assignment of a symbolic
value) and concrete (through assignment of a concrete
value). Breakpoints are only set for locations where
symbolic variables are used.

B. Algorithm overview

The algorithm has two analysis steps. The first step is
a path-insensitive static analysis as preparation, in order to
determine locations that must be symbolically interpreted
(initial debugger breakpoints). Program input is treated as
symbolic. This includes the return values of certain standard
library functions (these functions can be configured). From
these starting points, the static analysis uses inference over
the data flow to find out which locations can be reached with
these variables. This is often called a taint analysis. Details are
described in subsection II-C.

The second step is dynamic symbolic execution, which is
a path-sensitive and context-sensitive analysis and therefore
needs a constraint solver as logic backend. For an efficient
dynamic analysis where variables path-sensitively can become
symbolic or concrete, the program locations that need to be
symbolically interpreted are also path-sensitive. Conceptually,
read/write breakpoints are needed for all symbolic variables.
This is implemented by setting breakpoints on all locations
where a symbolic variable is used. Breakpoints are adaptively
set and removed during analysis. A path can be merged
(pruned) during symbolic analysis when the path constraint
implies a merge formula for the same location. Merge formulas
are generated by backtracking unsat-cores for unsatisfiable
error conditions and unsatisfiable program paths. Locations
where path merging possibilities are checked (merge locations)
are branch nodes in control flow graphs (CFG). Details are
described in subsection II-D.

The algorithm overview is also listed as pseude-code in
Algorithm 1. The static pre-analysis corresponds to line 1. The
depth-first dynamic symbolic execution corresponds to lines 4-
37.

1 Set{Location} symlocs = findInitialBreakLocations();
2 debugger.setBreaks(symlocs);
3 direction = forward;
4 while (! (direction == exhausted)) do
5 if (direction == forward) then
6 Location loc = debugger.continue();
7 if (isProgramEnd(loc)) then
8 direction = backtrack;
9 continue;

10 if (mergeLocs.contains(loc)) then
11 if (cansubsume(loc)) then
12 direction = backtrack;
13 continue;

14 cfgnode = getNode(loc);
15 interprete(cfgnode);

16 else if (direction == backtrack) then
17 foundNewInputVec = false;
18 while (!foundNewInputVec) do
19 backtrackErrorGuards(cfgnode);
20 if (cfgnode instanceof BranchNode) then
21 setNewMergeLocation(cfgnode);

22 cfgnode = backtrackLastNode(path);
23 if (isProgramStart(cfgnode)) then
24 direction = exhausted;
25 break;

26 if (cfgnode instanceof DecisionNode) then
27 if (hasOpenBranch(cfgnode)) then
28 boolean isSat = checkSat(path +

openBranch);
29 if (isSat) then
30 InputVector newInput =

getModel(path + openBranch);
31 foundNewInputVec = true;

32 else
33 uc = getUnsatCore(path +

openBranch);
34 setGuard(openBranch, uc);

35 if (foundNewInputVec) then
36 direction = forward;
37 debugger.restart();

Algorithm 1: Dynamic symbolic execution with interpola-
tion based path merging

C. Preparation: path-insensitive extended taint analysis

The static pre-analysis determines for all program loca-
tions:

• which variable definitions may reach the location
(reaching definitions [10])

• whether a symbolic variable might be used (read) at
the location; in the following this location property is
called ’maybe symbolic’

• whether the location is a potential bug location; This
property depends on the bug types that are to be
found. For the example of buffer overflow detection,
a location is considered a potential bug location when
it contains an array subscript expression or a pointer
dereference.

• whether the location is a control flow decision node

134Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 143 / 154

From this information, it is then determined, for which loca-
tions breakpoints must be set for all program paths. That is:

• input dependent bug locations: a potential bug location
where a symbolic variable might be used. These
locations must be symbolically interpreted in order to
detect the bugs with a solver satisfiability check or to
compute an unsat-core.

• input dependent control flow decisions: input depen-
dent branches must be symbolically interpreted for
correct merge formula generation during backtracking
and to avoid incorrect path merging. This is described
in more detail is subsection II-D.

The analysis is implemented as a monotoneous propagation
of changes and uses the worklist algorithm [10]. Source files
are parsed into abstract syntax trees (AST), and control flow
graphs are computed for all function definitions in the ASTs.
When the properties of a control flow node change, the change
is propagated to its children (which are then added to the
worklist). Since the propagation is monotoneous, the reaching
of a fixed-point (empty worklist) is guaranteed. The analysis
is not path-sensitive and does not need a constraint solver.
It therefore has a better scaling behaviour than symbolic
execution.

D. Selective symbolic execution with unsat-core based inter-
polation

The symbolic execution is essentially a depth-first traversal
of the execution tree. As such, it has a forward and a backtrack-
ing mode. The backtracking mode generates program input for
the next path. The current path is backtracked to the last input-
dependent control flow decision. If possible (satisfiable), the
last decision is switched to obtain a new path.

1) Forward symbolic execution: The forward symbolic
execution mode corresponds to lines 5-15 in Algorithm 1. The
debugger is run until it stops at a breakpoint. For this program
location, the corresponding CFG node is resolved (line 14).
This CFG node is then interpreted and translated into an
SMT logic equation. Values of concrete variables are queried
from the debugger when needed. More details regarding the
translation are provided in the implementation section (Section
IV). Functions from the standard library are wrapped, so that
input can be traced and forced as desired using debugger
commands.

a) Unsat-core interpolation for unsatisfiable bug con-
ditions: Another path can be merged if no new bug detection
is possible along any of its extensions, i.e., when potential bug
locations remain unsatisfiable for the new path. This is the case
when the new path’s path constraint implies the unsat-cores of
the potential bug locations.

b) Updating for bug detections: When a bug is de-
tected, any new detections of same bug (same type and loca-
tion) become irrelevant. Therefore, any unsat-cores that were
computed for this potential bug location before, can be deleted
and the constraints removed from merge formulas. Unsat-cores
are computed using the idea of serial constraint deletion from
[7]. A path constraint is a conjunction of a set of formulas. For
each of these formulas it is checked in turn with the solver,
whether the conjunction remains unsatisfiable if the formula is
removed. The function is only kept if the conjunction would
become satisfiable otherwise. In the following, a computed
unsat-core is also called an error guard.

Figure 1. Example function, from the Juliet test suite [9]

c) Path merging: Breakpoints are set during backtrack-
ing for branch locations, for which at least one merge formula
has been computed. When the current path constraint implies
the merge formula, the path is pruned. The implication check
uses the solver and corresponds to line 11 in Algorithm 1. The
implication is valid if its negation is not satisfiable.

2) Backtracking: The backtracking mode corresponds to
lines 16-37 in Algorithm 1. It generates program input for
the next path and backtracks error guards to generate merge
formulas. Backtracking is only concerned with the partial
symbolic program state along the current path, i.e., only with
locations which were symbolically interpreted.

a) Input generation: The symbolic program state is
backtracked to the last decision node. For child branches that
were not yet covered in the context of the current (backtracked)
path, it is checked with the solver whether or not this path
extension is satisfiable. If it is satisfiable, the solver’s model
generation functionality is used to generate corresponding
program input values for the next path. If not, an unsat-
core is computed and the symbolic program state is further
backtracked.

b) Unsat-core interpolation for unsatisfiable paths:
Because unsatisfiable paths are not further explored, any
potential error locations after the unsatisfiable branch are not

135Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 144 / 154

global_returns_t_or_f()

else then

fgets(input_buf, CHAR_ARRAY_SIZE, stdin) != NULL

else then

data = atoi(input_buf);

global_returns_t_or_f()

else then

data � 00 � data < 10

else thenelse then

Figure 2. Algorithm progress for the example function from Figure 1

evaluated in this context. Another path can therefore only be
merged as long as unsatisfiable branches remain unsatisfiable.
This means, that an unsat-core for an unsatisfiable path is also
treated as an error guard.

c) Backtracking error guards: Error guards are gen-
erated as unsat-cores in forward symbolic execution at the
locations of unsatisfiable bugs, or during backtracking at
unsatisfiable branch nodes. Backtracking also backtracks these
formulas. The conjunction of backtracked error guards for one
path (one execution tree node) is a merge formula. When a
node’s child is backtracked, then any formulas which were
generated in this child (as symbolic interpretation) are removed
from the node’s error guards. Because constraints are removed,
backtracking means a generalization of merge formulas. Deci-
sion nodes are the only control flow node type that has more
than one child node, i.e., several branch nodes. The childrens’
contribution to a decision node’s error guard is determined
during backtracking as the conjunction of the childrens’ error
guards. The reason is that path merging requires, that no new
bug detection becomes possible on any extension of the current
path. When backtracking reaches a branch node, a breakpoint
is set and associated with the merge formula.

E. Example

To illustrate the algorithm, it is applied to the example
function shown in Figure 1. The example is a ’bad’ function
from the Juliet suite [9], which contains a path-sensitive buffer
overflow in line 17. The standard library functions fgets(),
atoi() and rand() are treated as giving arbitrary (uncon-
strained) symbolic input. These functions are called in lines
5, 6 and 38. Static pre-analysis additionally yields breakpoints
for lines 3, 13, 16 and 27 as input-dependent control flow
decisions, and for lines 17 and 28 as input-dependent potential
error locations. Together, these lines are indicated as shaded
in the figure. Breakpoints are set on these lines, so that the

debugger stops there and they are symbolically interpreted.
The remaining not shaded locations are always just executed
concretely, the debugger is not stopped for them. For the
example, we assume that the function is called directly before
program end, i.e., there are no backtracked formulas from other
functions called later.

Algorithm progress is illustrated in Figure 2. The explored
satisfiable program paths are marked with green numbers 1-
8 in exploration order. Unsat-cores for unsatisfiable bugs are
shown as green formulas (on path 1 and 2). Unsatisfiable
branches are marked with a blue ’false’ symbol (⊥, four times).
Backtracked unsat-cores are shown as red formulas next to the
respective control flow nodes. Merge locations are the branch
nodes, i.e., ’then’ and ’else’. The merge formulas are shown
in red next to them. The ’true’ symbol (T) indicates an empty
backtracked unsat-core (7 times). Path merges occur during
the exploration of paths 5, 6, and 7. The respective merge
targets are marked ’A’ to ’C’. The bug is detected on path 8.
This potential bug was unsatisfiable on path 2. The respective
computed (backtracked) unsat-core is removed, because any re-
detection of this bug on another path would be irrelevant. By
removing constraints, more path merging can become possible
in general. The updated tree nodes are marked ’D’ and ’E’,
the removed constraints are crossed out in green.

Analysis results are also illustrated in Figure 1: merge lo-
cations and the corresponding merge conditions (implications)
are indicated in red on the right side of the figure. For any
further call of this function in the program under analysis, all
paths can be merged at latest in lines 15 or 26 (because the
respective implications are always valid).

III. A COVERAGE AND INTERPOLATION HIERARCHY

Interpolation is an automated generalization of formu-
las. Through interpolation, interpolated path constraints may
become equal. Here, interpolation by removing constraints

136Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 145 / 154

Figure 3. Coverage and interpolation hierarchy

from the path constraint during depth-first path exploration is
considered.

Code coverage can be scaled by varying interpolation.
Merge formulas are yielded from interpolation. With ’more’
interpolation it is meant here to remove more constraints from
the path constraint. With fewer constraints in merge formulas,
more paths imply the merge formula and are pruned from the
execution tree. The achieved coverage is given by the set of
remaining paths.

Figure 3 illustrates four interesting algorithms and corre-
sponding coverage. Unsat-cores are not unique. This corre-
sponds to different path sets that can achieve the same coverage
criterion. The annotation ’contains’ for interpolation constraint
sets on the right side of the figure assumes that unsat-cores are
computed in the same way with serial constraint deletion.

A. Branch coverage

(Backtracked) unsat-cores of unsatisfiable branches are
used as merge formulas. A path is only pruned if it implies
the previously computed backtracked unsat-cores. This means
that any extension of the (pruned) path can not cover any
yet uncovered branch. Therefore, this interpolation achieves
branch coverage. Branch coverage means that every branch in
the program that can be covered with any program input is
actually covered.

B. Error and branch coverage

This is the algorithm described in Section II. It uses unsat-
cores for unsatisfiable branches and additionally unsat-cores
of potential (and yet undetected) errors. This comprises unsat-
cores necessary to achieve branch coverage. The additional
constraints require to only prune a path when all previously
unsatisfiable error conditions remain unsatisfiable. This means
that any extension of the pruned path can not witness any yet
undetected error. Error coverage means that every error that

is satisfiable with any program input, and for whose potential
existence a constraint is generated, is actually witnessed on a
remaining (not pruned) path.

C. Context coverage

In backtracking, the sets of dead and live variables are
exactly known. Live variables are the ones that are read on at
least one extension of the current path. Only live variables can
contribute to unsat-cores in a path extension. This interpolation
therefore comprises the interpolation needed to achieve error
and branch coverage. By removing dead constraints, path
constraints can become identical. Context coverage means
that every program location is covered in every distinct (live)
context.

D. Path coverage

Complete path constraints (including constraints for dead
variables) are used, no interpolation is done. Every path
constraint is different, so no paths are pruned. Depth-first
traversal without path merging achieves path coverage, i.e., ev-
ery satisfiable program path is actually covered. This includes
context coverage.

IV. IMPLEMENTATION

The implementation extends previous work, that is de-
scribed in [11]. This previous work is a dynamic symbolic
execution engine for Eclipse CDT, that does not have any path
merging functionality.

A. Dynamic symbolic execution using Eclipse CDT

This subsection shortly review [11]. The engine is a plug-in
extension for CDT’s code analysis framework (Codan [12]). It
uses CDT’s C/C++ parser, AST visitor and debugger services
framework (DSF [13]). The DSF is an abstraction layer over
the debuggers’ machine interfaces that are supported by CDT.
The plug-in further uses Codan’s CFG builder.

137Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 146 / 154

Figure 4. Run-times with and without path merging

Initial breakpoints are set on function calls that are con-
figered to return unconstrained symbolic input values. Further
breakpoints are set during symbolic execution for locations,
where symbolic variables are used. Breakpoints are also set
on pointer assignments, because pointer targets might become
symbolic through assignment of a symbolic value.

When the debugger stops at a location, the corresponding
CFG node is resolved. The AST subtree that corresponds
to the CFG node is then interpreted according to the tree
based interpreter pattern [14]. The visitor pattern [15] is used
to traverse the AST subtree and translate it into an SMT
logic equation. SMT queries are formulated in the SMTlib’s
[16] sublogic of arrays, uninterpreted functions and bit-vectors
(AUFBV), and the Z3 SMT solver [17] is used to decide them.

B. Interpolation and path merging

Correct merging requires the ’maybe symbolic’ static pre-
analysis described in section II. Interpolation based path merg-
ing means that more breakpoints are set than without merging.
On a path that can not be merged, more locations are symboli-
cally interpreted than without merging. The implication check
for merging further requires variable projections as described
in the following. Single assignments are used in the translation
to logic to avoid destructive updates, i.e., single assignment
names are used for variables in the logic equations. Because
a merge formula was computed on a different path and the
translation into logic uses single assignment names, a subset
of variable names in both formulas (merge formula and path
constraint) has to be substituted. These variable names are the
last single assignment versions in both formulas of variables
whose definitions reach the merge location. These variables are
projected (substituted) to the corresponding syntax tree names
(names in the source code). Because branch nodes are not
necessarily explicit in the source node, the merge locations are
not exactly branch nodes, but rather the next following program
location where a debugger breakpoint can be set. This is
the following expression or declaration with initializer. Merge
location examples are given in Figure 1. The computation of
unsat-cores with serial constraint deletion is straight-forward.

V. EXPERIMENTS

The implementation is evaluated with 39 buffer overflow
test programs from the Juliet suite (buffer overflows with
fgets()) that cover Juliet’s different control and data flow

Figure 5. Number of analyzed paths with and without path merging

Figure 6. Breakdown of the number of analyzed paths with merging

variants for C. The test programs are analysed with the Eclipse
plug-in, as JUnit plug-in tests. Eclipse version 4.5 is used
on a i7-4650U CPU on 64-bit Linux kernel 3.16.0, with
GNU debugger gdb version 7.7.1. The presented algorithm for
error and branch coverage is compared with straight-forward
dynamic symbolic execution without any merging (i.e., path
coverage), as described in [11].

The results are shown in Figures 4, 5 and 6. The horizontal
axes show the flow variant number. Juliet’s flow variants are
not numbered consecutively, to allow for later insertions in
future test suite verions. Both the presented algorithm and
the path coverage algorithm accurately detect the contained
errors for all flow variants except for flow variant 21. In this
flow variant (control flow depends on a static global variable),
CDT’s CFG builder falsely classifies a branch node as dead
node, which leads to false negative detection.

A. Speedup with merging

The measured run-times both with and without path merg-
ing are shown in Figure 4. The figure’s time scale is logarith-
mic. Despite of the additional analyses for path merging, there
is a clear speed-up for all test cases. The biggest speed-up is
achieved for flow variant 12, which also contains the largest
number of satisfiable program paths.

138Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 147 / 154

B. Reduction in the number of analyzed paths

Figure 5 shows the number of analyzed paths with path
coverage on the one hand and with error and branch coverage
on the other. There is a clear reduction in the number of
analyzed paths for all test programs. Merging prunes a subtree,
which in general splits into more than one satisfiable program
path. The figure shows a strong correlation with Figure 4, so
that the reduction in the number of analyzed paths can be seen
as the main reason for the speed-up.

C. Proportion of merged paths

Figure 6 shows a breakdown of the analyzed paths for
merging only (error and branch coverage). The analyzed paths
are distinguished into paths, that are completely analyzed until
program end, and others, that are merged at some point. The
figure shows that for all test cases the majority of analyzed
paths is merged at some point, which is an additional reason
for speed-up and explains another part of it (with the reduction
of the analyzed lengths of the paths that are merged).

VI. RELATED WORK

Work on symbolic execution spans over 30 years. An
overview is given in [18]. Dynamic symbolic execution is
presented in [3]. The concept of selective symbolic execution
is described in [5]. The implementation uses breadth-first
execution tree traversal without path merging. Path merging
based on live variable analysis is presented in [6]. Path merging
based on interpolation using unsat-cores is described in [7].
The latter approach is more comprehensive. It comprises
elimination of constraints for dead variables, because those are
not present in backtracked formulas. The interpolation based
merging approach is used in a static symbolic execution tool
for verification [19].

The work at hand differs in that it combines dynamic
and selective symbolic execution with interpolation based path
merging. Further, the efficient application to testing requires
that merge conditions are updated in case of a bug detection,
whereas a verification tool may terminate at the first error
detection (when verification fails). The work at hand builds on
the author’s previous work described in [20], which performs
static symbolic execution with path merging based on a live
variables analysis. As already mentioned, it also builds on
own previous work described in [11], which performs dynamic
symbolic execution without any path merging.

VII. DISCUSSION

Interpolation based path merging with the presented algo-
rithm for error and branch coverage shows a clear speed-up
already for the tiny Juliet test programs. Due to the improved
scaling behaviour, it is expected to lead to increasing speed-
ups for larger programs. Future work might include loop
subsumption and the detection of infinite loops. Another point
is the addition of checkers for different bug types.

ACKNOWLEDGEMENT

This work was funded by the German Ministry for Educa-
tion and Research (BMBF) under grant 01IS13020.

REFERENCES

[1] J. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, 1976, pp. 385–394.

[2] L. deMoura and N. Bjorner, “Satisfiability modulo theories: Introduction
and applications,” Communications of the ACM, vol. 54, no. 9, 2011,
pp. 69–77.

[3] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Conference on Programming Language Design and
Implementation, 2005, pp. 213–223.

[4] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in European Software Engineering Conference and
International Symposium on Foundations of Software Engineering,
2005, pp. 263–272.

[5] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for in-
vivo multi-path analysis of software systems,” in Int. Conf. Architectural
Support for Programming Languages and Operating Systems, 2011.

[6] P. Boonstoppel, C. Cadar, and D. Engler, “RWset: Attacking path
explosion in constraint-based test generation,” in Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), 2008, pp. 351–
366.

[7] J. Jaffar, A. Santosa, and R. Voicu, “An interpolation method for
CLP traversal,” in Int. Conf. Principles and Practice of Constraint
Programming (CP), 2009, pp. 454–469.

[8] W. Craig, “Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory,” The Journal of Symbolic Logic, vol. 22,
no. 3, 1957, pp. 269–285.

[9] T. Boland and P. Black, “Juliet 1.1 C/C++ and Java test suite,” IEEE
Computer, vol. 45, no. 10, 2012, pp. 88–90.

[10] F. Nielson, H. Nielson, and C. Hankin, Principles of Program Analysis.
Springer, 2010.

[11] A. Ibing, “Dynamic symbolic execution using Eclipse CDT,” in Int.
Conf. Software Engineering Advances, 2015, in press.

[12] E. Laskavaia, “Codan- a code analysis framework for CDT,” in
EclipseCon, 2015.

[13] P. Piech, T. Williams, F. Chouinard, and R. Rohrbach, “Implementing
a debugger using the DSF framework,” in EclipseCon, 2008.

[14] T. Parr, Language Implementation Patterns. Pragmatic Bookshelf,
2010.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[16] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB standard version
2.0,” in Int. Workshop Satisfiability Modulo Theories, 2010.

[17] L. deMoura and N. Bjorner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2008, pp. 337–340.

[18] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Communications of the ACM, vol. 56, no. 2, 2013, pp.
82–90.

[19] J. Jaffar, V. Murali, J. Navas, and A. Santosa, “TRACER: A symbolic
execution tool for verification,” in Int. Conf. Computer Aided Verifica-
tion (CAV), 2012, pp. 758–766.

[20] A. Ibing, “A backtracking symbolic execution engine with sound path
merging,” in Int. Conf. Emerging Security Information, Systems and
Technologies, 2014, pp. 180–185.

139Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 148 / 154

Verification of Architectural Constraints on Interaction Protocols Among Modules

Stuart Siroky, Rodion Podorozhny, Guowei Yang

Computer Science Department
Texas State University

San Marcos, TX 78666, USA
Email: {cs1773, rp31, gyang}@txstate.edu

Abstract—The importance of adhering to an adopted architec-
tural style throughout software development and maintenance has
been long recognized. This paper introduces an approach to effi-
ciently checking the correspondence of architectural constraints
on sequences of method invocations, i.e., interaction protocols
involving more than two modules. Our approach combines
parameterized slicing and non-deterministic symbolic execution.
Slicing produces an executable portion of the bytecode of the
system under analysis relevant to the given architectural property,
and symbolic execution is applied to the slice to check all paths
and all interleavings for any violations of the given architectural
constraints. We have implemented our approach in a prototype,
where IBM WALA library is used for slicing, Javassist is used to
aid in the mocking of the unused code, and Symbolic PathFinder
is used for symbolic execution. Two case studies on verification of
Model-View-Controller systems have demonstrated the usefulness
of our approach. In particular, property guided automatic slicing,
in some cases, significantly reduces the size of the input to the
symbolic execution, resulting in a reduction of verification time.

Keywords–verification; architecture; symbolic execution; call
graph.

I. INTRODUCTION

Software architecture was defined as a set of constraints
on components, form and rationale by Perry and Wolf [1].
The importance of adhering to an adopted architectural style
throughout software development and maintenance has been
recognized by the software engineering community. It helps
avoid architectural erosion and drift, so that the chosen archi-
tectural style continues providing its benefits and ensuring its
correspondence to requirements.

A number of formal architectural description languages
(ADL) have appeared over the years. For instance, Wright [2],
is an example of ADL with an emphasis on specification
of interaction protocols between modules as part of abstract
behavior specification of components and connectors. Further
work in the area of software architecture paid attention to
automation of checking correspondence between the architec-
tural prescription and implementation. The ArchJava tool [3]
can serve as an example in this direction. The tool and
associated ADL allows for definition of component ports and
connectors and type checking of combinations of ports and
connectors. It also allows for checking correspondence of a
given implementation against an architectural specification.

In this work, we introduce an approach to checking corre-
spondence of architectural constraints on sequences of method
invocations, i.e., interaction protocols involving more than two
modules. For example, constraints of this kind are defined in a
popular Model-View-Controller (MVC) architectural style [4],

[5]. The implementation of the approach for validation uses
Java programming language. Thus, the analysis system pro-
cesses bytecode for a Java Virtual Machine.

First, the approach uses multi-parameter slicing [6] so
that to reduce the amount of the code to be analyzed. The
prototype uses IBM’s WALA [7] library to perform slicing.
Next, mocking is performed with the help of Javassist bytecode
manipulation library [8] to make the produced bytecode slice
executable. Next, the approach uses symbolic execution [9],
[10] via Symbolic PathFinder [11] to systematically explore
all paths connecting the initial and final methods of interest
so that to check if any architectural constraints are violated by
the implementation.

The symbolic execution traversal checks if there are fea-
sible paths that will break the constraints on legal method
invocation sequences and builds path conditions to allow for
test case generation along the legal invocation chains. In our
approach, the search is directed only in the sense that the
paths that do not connect the initial and final methods are
not traversed. The symbolic execution traversal uses results of
the slicing and mocking to explore a smaller state space. The
symbolic execution is non-deterministic in relation to those
variables whose values would not be fixed due to the choice
of a source method. Thus, in case of a concurrent system, all
interleavings in the slice would be traversed, increasing the
assurance level of the analysis results.

We implement our approach in a prototype, where we use
WALA [7] for calculating the slice, Javassist [8] to aid in the
mocking of the code not contained in the slice and use Sym-
bolic PathFinder (SPF) [11] for symbolic execution. Evaluation
based on two case studies demonstrates the usefulness of our
approach. In particular, property guided automatic slicing, in
some cases, can significantly reduce the size of the input to
the symbolic execution, resulting in a reduction of verification
time.

The rest of the paper is organized as follows. Section II
discusses related work. Section III presents our approach to
verification of architectural constraints. Section IV evaluates
our approach using two case studies. Section V concludes the
paper with a discussion of some future work.

II. RELATED WORK

In this section, related work is described. The idea of
slicing paired with symbolic execution is not new. Two closely
related research projects that use a combination of slicing and
symbolic execution are described below.

140Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 149 / 154

First is the work of Jaco Gendenhuys et al. titled “Prob-
abilistic Symbolic Execution” [12]. In this work, the authors
explore the adaptation of symbolic execution to perform a more
quantitative type of reasoning – the calculation of estimates
of the probability of executing portions of a program. They
present an extension of the widely used Symbolic PathFinder
symbolic execution system that calculates path probabilities.
They exploit state-of-the-art computational algebra techniques
to count the number of solutions to path conditions, yielding
exact results for path probabilities. To mitigate the cost of using
these techniques, they present two optimizations, PC slicing
and count memorization, that significantly reduce the cost of
probabilistic symbolic execution. Here, slicing and symbolic
execution are paired together in a way that uses symbolic
execution to calculate path probabilities to aid in the slicing.
This differs from our focus on reducing the state space with
slicing and then using symbolic execution for verification.

Another work that primarily focuses on the line reachability
problem is that of Kin-Keung Ma et al. in “Directed Symbolic
Execution” [13]. In this work, the authors study the problem
of automatically finding program executions that reach a
particular target line. This problem arises in many debugging
scenarios; for example, a developer may want to confirm that
a bug reported by a static analysis tool on a particular line
is a true positive. They propose two new directed symbolic
execution strategies that aim to solve this problem: shortest-
distance symbolic execution (SDSE) uses a distance metric
in an inter-procedural control flow graph to guide symbolic
execution toward a particular target; and call-chain-backward
symbolic execution (CCBSE) iteratively runs forward symbolic
execution, starting in the function containing the target line,
and then jumping backward up the call chain until it finds a
feasible path from the start of the program. They also propose
a hybrid strategy, Mix-CCBSE, which alternates CCBSE with
another (forward) search strategy. The line reachability prob-
lem is very similar to the final point of interest in our problem.
The difference is that they are trying to create test cases and
the constraint is satisfied with a single path; while in our case,
all possible paths between two points must be explored and
the constraint must hold for all such paths.

The two projects mentioned above are related because
they combine slicing and symbolic execution. Yet they do not
focus on verification of architectural constraints in the area of
software architecture research.

Next, related work in the software architecture is
overviewed. The most prominent initial work on a formal
architectural description language (ADL) is that by R. Allen
on the Wright ADL [14] done in the early 1990s. In his
work, R. Allen introduces a formal language for definition
of protocols assigned to connectors in an ADL. The work
itself focuses on description of the suggested formal ADL
and does not contain applications of verifiers even though the
author does suggest doing such verification with a SPIN model
checker [15]. Another related work is by Jonathan Aldrich
on a system for verifying consistency between a specification
in a formal ADL and source code [3]. He developed a tool
called ArchJava that allows for verification of topological
and component constraints consistency between a prescribed
architecture and source code under development. In his work
though the protocols for communication among modules are
not specified and not verified. The ArchJava stops at defining

types of connectors and at checking if topological constraints
of a software architectural prescription are adhered to. Finally,
the work by S. Uchitel shows an application of a model
checker LTSA to verification of protocols among modules
defined in the UML sequence diagram [16]. The author creates
an extension to LTSA model checker [17] by Jeff Magee
and Jeff Kramer that is aimed at verifying for the lack of a
deadlock, race conditions and event sequence properties based
on protocols defined in sequence diagrams. The approach
presented in this work differs in that it verifies the protocols on
the produced bytecode via symbolic execution and uses slicing
to create property specific slice of that bytecode.

III. APPROACH

Our approach combines property-guided slicing and sym-
bolic execution. The kinds of properties we focus on are
constraints on interaction protocols among modules. Such
constraints are often part of architectural constraints on con-
nectors.

An architectural constraint of this kind has a source and
sink method invocations. Thus, we would like to determine a
slice of the program that contains paths by which the execution
threads can move from the source invocation to the sink
invocation. Once, given a property, such an executable slice is
produced, symbolic execution with constraints on the values
of variables that correspond to the property is performed.
Thus, our approach starts with a traversal of the analyzed
system’s call graph that, first, identifies the part of the call
graph containing only the paths connecting a source and sink
methods and, next, does a traversal of implementations of
the methods inside that part of the call graph using symbolic
execution [10], [9].

The symbolic execution traversal checks if there are fea-
sible paths that will break the constraints on legal method
invocation sequences and builds path conditions to allow for
test case generation along the legal invocation chains at a
later time. Thus, slicing prunes the method implementation
of calls not relevant to the property. Yet, care must be taken
to retain those calls on which there is either control or data
dependency. Therefore, we are using a slicing implementation
that constructs a proper system dependency graph (SDG).
Furthermore, our approach makes sure that the obtained slice is
executable so that it can be fed directly to symbolic execution.
The symbolic execution traversal uses the call graph to avoid
invocation of method calls that do not correspond to allowed
transitions. Unlike [13], our approach needs to traverse all
possible call graph paths between source and sink methods to
show there is no violation.

For the initial validation of the approach we constructed
a prototype that uses IBMs WALA library [7] for the slicing,
Javassist [8] to aid in the bytecode manipulation when mocking
the code to create an executable slice and Symbolic Path Finder
(SPF) [11] to perform the symbolic execution for property
verification. Even though we used WALA library, a slicing al-
gorithm customized for this kind of architectural property that
is explicitly constrained both by a source and a sink method
would be more efficient. For instance, such an algorithm
can be improved by concurrent traversal of the SDG starting
simultaneously from the nodes that correspond to source and
sink methods of a given property. These tools however could

141Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 150 / 154

Figure 1. Mocking illustration

not be used for our prototype without modification to deliver
an executable slice.

The summary of the steps of our approach is as follows.
The first step is to define the architectural constraints that
are of interest. The constraints will provide the source and
sink methods based on which a slice will be calculated.
The information from the calculated slice is used to mock
the original bytecode into an executable slice. The modified
bytecode can then be non-deterministically processed by the
symbolic execution component which applies the constraints
to all feasible paths in the slice. The implementation of this
tool is illustrated below.

Once the constraints have been defined it is possible to
begin calculating a slice. Several inputs are fed into the slicing
component. The original byte code, a scope file, exclusion file,
and the name of the class containing the main method. The
scope file helps to define the set of code to be sliced. The
exclusion file is used to ignore libraries and large bodies of
code that can be safely ignored. This would include being able
to ignore java.math or java.io if the code that is being
processed did not use these libraries. Without the exclusion
file there is too much library information for WALA to be
effective. The name of the file containing the main method is
needed so that WALA will know where to begin. With these
four inputs WALA represents the code in a call graph. The
call graph along with the final point of interest, the call and
callee methods, a system dependence graph (SDG) are created
by WALA. The final node of interest is also determined in the
graph using the call and callee methods. Since the final method
of interest in our constraint could be called in multiple places
the point from which it is called, the callee method, is needed
to determine the exact point the slicing should begin from.

The next step is to calculate the actual slice of interest.
Using the call graph, SDG, final point of interest and the
slicing options, a description of the slice can be calculated.
The slicing options allow the user to determine the level
of control and data dependence the slicer will use and the
direction of the slicing calculation, forward or backward. For
all of our experiments backward slicing was used to produce
an executable slice of the code. The dependency option used
for all experiments was full data and control dependence to
help ensuring that the slice calculated would be an executable

slice. The output description of the slice contains the methods,
branches, statements and variables contained in the slice and
their relation. This output description produced by WALA
is not bytecode, nor is it easily transformed to bytecode,
if at all. WALA also does not guarantee that the slice will
be executable. The description of the slice is then parsed,
extracting all of the methods that are contained in the slice.

The list of methods contained in the slice and the original
bytecode for the program are used to create an executable
version of the slice. First, a list of methods to mock needs to
be determined. This list starts off by including all the methods
in the original bytecode. From here, the list of methods
contained in the slice is removed along with other sets of
methods deemed to be needed. This list of methods that is
not contained in the slice that is excluded from mocking (i.e.,
the methods whose complete implementation is needed for
a slice to be executable, but that were not placed into the
slice by WALA) contains the object constructor methods, any
abstract methods, and base library methods. Excluding these
methods from mocking eases the modification of the bytecode
with little impact to the final result. The result is a list of
methods that will be mocked in the code. The list of methods
to be mocked is used to mock the original bytecode, producing
modified bytecode files that can be executed. The mocking step
finds the classes and methods in the code to be mocked and
uses Javassist to remove the bodies of the methods and fix
up the bytecode to keep it executable. If a method returns a
value, an appropriate return type will be inserted back into
the method body. The removal of the method body effectively
removes any traversal further down that path. This approach
to mocking effectively stubs out the remaining irrelevant code
[18].

This is a simplistic and not completely efficient way of
modifying the code. One caveat of doing the code modifi-
cation in this manner is that if there is code that returns
an object and that object then calls some other function.
i.e., getObjA().add(xxx), and then if the result of the
getObjA() method returns a null after mocking the sec-
ondary call of null.add(xxx) then this invocation se-
quence will cause a null exception. Such a situation can be
handled by adding the first method to a list of methods to
exclude from mocking. A more precise approach would be
to remove the invocation of the methods in question and
the associated bytecode. It is sufficient to show the proof
of concept for creating a reduced set of code. The modified
class files are then written back and can be run by any test
program just like the originally complicated code. In our case,
the modified code is fed to the second part of the process,
the verification of the architectural constraints using Symbolic
PathFinder (SPF).

We implement a Java PathFinder [19] listener to monitor
invocations and returns of methods maintaining a call stack.
At the point where an invoke instruction is seen in the stack,
it is checked against the constraints and a violation or a
pass can be reported. Currently, constraint definition is done
programmatically, i.e., it is hardcoded into the listener, albeit
the use of a formal temporal logic appropriate for expressing
the given properties would be preferred. This is left for future
work.

Here, a small example for the slicing and
mocking is described and illustrated in Figure 1.

142Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 151 / 154

Figure 2. MVC Sequence Diagram (by John Hunt)

TABLE I. CALCULATOR MVC SYMBOLIC EXECUTION RESULTS

Techniques # Paths Runtime
(SS) # States Max

Depth
Memory

(MB) # Instructions

Orig; no Slicing 90 3 225 5 78 82,563
W 2 threads; no slicing 90 287 39,947 17 132 133,433,898
W 2 threads; w slicing 3 1 17 5 60 5,626

TABLE II. CALCULATOR MVC SLICING RESULTS

Actions Time (SS)
Build Call Graph 4.37
Create SDG & Slice 7.78
Modify Bytecode 0.631
Total 12.82

In this example code, a slice is to be calculated
for Obj2.method2(). The resulting slice should
contain bytecode for the following sequence of method
invocations: SliceMockExample.initMethod() →
SliceMockExample.m1() → Obj2.method2(). The
other methods will be mocked, having the code removed or
replaced as necessary. The code to be removed and replaced is
highlighted in blue in Figure 1. Even though the removed code
in this illustration is small, a real world implementation will
have more complicated and larger method implementations to
be removed and mocked. There may also be many mocked
methods. Thus, reduction in the amount of code to be removed
from the analyzed system can be noticeable.

IV. EVALUATION

A. Case Study 1: MVC Calculator
For the first case study we chose a simplified implementa-

tion of a calculator that uses the Model View Controller (MVC)
architectural style from [5]. The MVC architectural style can
be considered to be composed out of the following design pat-
terns: Component, Strategy, and Observer. Its implementation
was simplified by replacing Swing library calls with stubs so
that SPF would not execute the Swing library code. The test
driver code was also added so that to mimic a scenario of user
interactions with the calculator.

The constraint on an interaction protocol to be checked is
due to the Strategy design pattern used by MVC.

It requires that a user gesture represented by an invocation
of a method in the View should not directly invoke a method
that modifies state of the Model. Instead, a View method
should invoke a method in the Controller, which, in turn,
should invoke a method in the Model. Thus, a Controller
encapsulates strategies that map user gestures to manipulation
of the Model. The Model is responsible for notifying the view
of any changes. The sequence diagram in Figure 2 illustrates
the event-based notification communication according to MVC
[5].

Our implementation of the approach uses particular method
names specific to this implementation when checking this

143Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 152 / 154

TABLE III. MODELCHECKCTL MVC SYMBOLIC EXECUTION RESULTS

Techniques # Paths Runtime
(SS) # States Max

Depth
Memory

(MB) # Instructions

Orig. No Slicing 4 2 5 2 76 74,851
W slicing 4 1 5 2 76 16,510

TABLE IV. MODELCHECKCTL MVC SLICING RESULTS

Actions Time (SS)
Build Call Graph 3.54
Create SDG & Slice 19.8
Modify Bytecode 0.224
Total 24.22

constraint on interaction protocol between components. Spec-
ification of the constraint itself is currently implemented
programmatically. The following constraints on interaction
protocol were verified:

• The view should never update without notification
from the model.

• The model should never notify if the controller has
not issued an operation.

• The controller should not issue an operation if the
handler has not created an action.

• The handler should not create an action if there is no
activity in the view.

The pertinent classes of the calculator implemen-
tation under analysis include CalculatorView,
CalculatorController, and CalculatorModel.
The whole codebase under analysis contains many more
classes, but these contain the methods used in the architectural
constraint. The CalculatorView contains a method that
mimics pressing a button by invoking a “button pushed”
method on an instance of a given button. It also contains
an inner class Handler with an actionPerformed
method. It is this method that is invoked in response to
a “button pushed” method. The actionPerformed
is supposed to invoke an operation method from the
CalculatorController class. The operation method,
in turn, is supposed to invoke a relevant method from
CalculatorModel. The buttons correspond to basic
calculator operations: addition, subtraction, store,
and equals (to perform the previously chosen operation
between two operands). The constraint requires that an
actionPerformed method should not invoke the
CalculatorModel methods directly.

The verification tool prototype has been applied to several
variants of the Calculator application to collect performance
data. The tool with both slicing and symbolic execution was
run on:

• the Calculator application that does not violate the
given constraints

• the Calculator application that violates the given con-
straints

• the Calculator application that violates the given con-
straints and has a potentially long running execution

paths that are not of interest to the given constraints
(internal concurrency via multi-threading was used)

Also, the tool with symbolic execution alone was run on the
Calculator variants with a violation and without a violation
of the constraint as a baseline.

The results of the first case study are shown in Tables
I and II. The codebase for the Calculator contains 787
total methods in the project, 99 of which are created and
not inherited from the external libraries. After the slicing, the
mocking removed 77 method bodies, a reduction of 77.78%.
The size of the original bytecode was 42.5 KB (43, 577 bytes),
and was reduced to 29.9 KB (30, 654 bytes), 70.3% of the
original bytecode size. From the results, little gain can be
seen between the original code and the sliced code other than
a reduction in the number of paths that SPF traversed. The
total time to verify, including the time slice and modify the
code, was expensive – almost four times what the original
code took to verify. However, when one compares the variant
of the analyzed system with internal concurrency to the sliced
code, the advantage of reducing the problem is more noticeable
due to a large number of interleavings removed from non-
deterministic execution by SPF. There are savings in total time
of verification and the number of paths explored. In this case,
slicing happened to remove a code block with internal concur-
rency. Analysis and modification of the code can be expensive;
however, if it allows the removal of computationally expensive
code, the benefit can be substantial. In this experiment, the
symbolic execution time was reduced from 4 minutes and 47
seconds (287 seconds) to only one second.

B. Case Study 2: ModelCheckCTL
The second case study uses Computation Tree Logic (CTL)

based model checker implemented in the MVC architectural
style. The architectural constraints to verify are the same as
for the first case study as enforced by MVC. This example is
about twice as large compared to the Calculator example
in terms of the size of the codebase. The Model part of
the MVC itself has more components in that it contains
classes for representation of a Kripke Structure, a CTL formula
and a result representation. The Calculator example only
contains one class in the Model part that encapsulates the
calculator’s current computation result and previously entered
operand.

For brevity, we do not describe the implementation details
for the constraint definition in this case study. The model
checker under analysis provides a user with a GUI for def-
inition of a CTL formula in a text field, choice of a file with
a Kripke structure to be analyzed via a file chooser, and a text
area that displays, textually, the result of model checking (i.e.,
whether a property holds and if not - a textual representation of
a counterexample). The GUI has a number of buttons that are
used to run the analysis, to clear the text areas, and to close
the application. As the system was built according to MVC

144Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

 153 / 154

architectural style, the verification performed is very similar
to the first case study.

The results of this experiment are shown in Tables III
and IV. The codebase for the model checker contains 1, 097
total methods, 258 of which are created and not inherited.
After the slicing, the mocking removed 196 method bodies,
a reduction of 75.97%. The size of the original bytecode was
96.4 KB (98, 802 bytes), and was reduced to 64.1 KB (65, 736
bytes), 66.5% of the original bytecode size. A significant
amount of bytecode was removed by slicing. Also, we note
that multiple properties can be verified on the slice, so even
greater benefit can be achieved by performing slicing before
symbolic execution.

V. CONCLUSION

In this paper, we introduced an approach to checking
architectural constraints on sequences of method invocations
via combination of slicing and symbolic execution. To our
knowledge, this is a novel approach to property-guided verifi-
cation of architectural constraints. Our approach would make
verification of such properties more efficient by reducing the
application to a potentially much smaller executable slice for a
given increment of a software development process, thus sig-
nificantly cutting down on time taken by regression testing both
during development until release and maintenance after the
release of the analyzed software system. Using slicing for the
reduction of the problem size seems to hold the most promise
for code that has low coupling. It is especially effective in cases
where the code deemed not needed for property verification
is long running and/or contains multi-threading. In such a
case, the resultant slice is noticeably smaller than the initial
codebase, and furthermore, some potentially long running code
not needed for property verification will be removed from the
slice.

This work shows proof of concept of the suggested ap-
proach, and there are a number of directions for further im-
provement. First of all, a slicing algorithm that takes multiple
criteria (statements for which a slice is calculated) can speed up
calculation of a slice. One approach might be to compute one
slice using forward traversal starting from the source method
of an interaction protocol property and another one using
backward traversal from the sink method of the property and
then use their intersection as a resultant slice. Any node already
marked by the former slicing traversal would end the slicing
exploration down that path by the latter slicing traversal and
vice versa. Implementation of the slicing algorithm traversal
from multiple nodes of an SDG could be done concurrently,
further reducing the slicing time. As future work we also
intend to add a general specification of the constraints via an
appropriate logic and a test case generation capability based on

the path conditions created by the symbolic execution of the
property-guided slice. We would like to perform a quantitative
comparative analysis against similar approaches. In addition,
we would like to validate the prototype by applying it to
analysis of larger systems.

REFERENCES
[1] D. E. Perry and A. L. Wolf, “Foundations for the study of software

architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, Oct. 1992,
pp. 40–52.

[2] R. Allen, “A formal approach to software architecture,” Ph.D. disser-
tation, Carnegie Mellon, School of Computer Science, January 1997,
issued as CMU Technical Report CMU-CS-97-144.

[3] J. Aldrich, C. Chambers, and D. Notkin, “Archjava: Connecting soft-
ware architecture to implementation,” in Proceedings of the 24th In-
ternational Conference on Software Engineering, ser. ICSE ’02. New
York, NY, USA: ACM, 2002, pp. 187–197.

[4] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view
controller user interface paradigm in smalltalk-80,” J. Object Oriented
Program., vol. 1, no. 3, Aug. 1988, pp. 26–49.

[5] J. Hunt, “You’ve got the model-view-controller,” Planet Java.
[6] F. Tip, “A survey of program slicing techniques,” Journal of Program-

ming Languages, vol. 3, March 1995, pp. 121–189.
[7] “IBM WALA,” http://wala.sourceforge.net/wiki/index.php/Main Page.
[8] “Javassist,” http://jboss-javassist.github.io/javassist/.
[9] L. A. Clarke, “A program testing system,” in Proc. of the 1976 annual

conference, ser. ACM ’76, 1976, pp. 488–491.
[10] J. C. King, “Symbolic execution and program testing,” Communications

of the ACM, vol. 19, no. 7, 1976, pp. 385–394.
[11] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: symbolic execu-

tion of Java bytecode,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’10, 2010,
pp. 179–180.

[12] J. Geldenhuys, M. B. Dwyer, and W. Visser, “Probabilistic symbolic
execution,” in Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ser. ISSTA 2012. New York, NY,
USA: ACM, 2012, pp. 166–176.

[13] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in Proceedings of the 18th International Conference on
Static Analysis, ser. SAS’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 95–111.

[14] R. Allen, “A Formal Approach to Software Architecture,” Carnegie
Mellon University, Technical Report CMU–CS–97–144, 1997.

[15] G. J. Holzmann, “The model checker spin,” IEEE Trans. Softw. Eng.,
vol. 23, no. 5, May 1997, pp. 279–295.

[16] S. Uchitel, R. Chatley, J. Kramer, and J. Magee, “LTSA-MSC: Tool
support for behaviour model elaboration using implied scenarios,”
in Ninth International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS. Springer Verlag, 2003,
pp. 597–601.

[17] J. Magee and J. Kramer, Concurrency: State Models & Java Programs.
New York, NY, USA: John Wiley & Sons, Inc., 1999.

[18] “Mocking,” http://www.michaelminella.com/testing/the-concept-of-
mocking.html.

[19] “Java PathFinder Tool-set,” http://babelfish.arc.nasa.gov/trac/jpf.

145Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Powered by TCPDF (www.tcpdf.org)

 154 / 154

http://www.tcpdf.org

