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Foreword

The Fourth International Conference on Smart Portable, Wearable, Implantable and Disability-
oriented Devices and Systems (SPWID 2018), held between July 22 - 26, 2018- Barcelona, Spain, is an
inaugural event bridging the concepts and the communities dealing with specialized implantable,
wearable, near-body or mobile devices, including artificial organs, body-driven technologies, and
assistive services

Mobile communications played by the proliferation of smartphones and practical aspects of
designing such systems and developing specific applications raise particular challenges for a successful
acceptance and deployment.

We take here the opportunity to warmly thank all the members of the SPWID 2018 Technical
Program Committee, as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors who dedicated much of their time and efforts to contribute to SPWID 2018. We truly believe
that, thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the SPWID 2018 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that SPWID 2018 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the areas of smart portable
devices and systems.

We are convinced that the participants found the event useful and communications very open.
We hope that Barcelona provided a pleasant environment during the conference and everyone saved
some time to enjoy the charm of the city.

SPWID 2018 Chairs:

SPWID Steering Committee
Marius Silaghi, Florida Institute of Technology, USA
Jun-Dong Cho, SungKyunKwan University, Korea
Lenka Lhotska, Czech Institute of Informatics, Robotics and Cybernetics | Czech Technical University in
Prague, Czech Republic

SPWID Industry/Research Advisory Committee
Warner ten Kate, Philips Research, the Netherlands
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Abstract— The robot technology is developing to improve 

human life and that substitutes human function and capability. 

The key factor of wearable robot is a human-robot interaction. 

The purpose of this study is to analyze the ergonomic factors of 

a human-robot interaction based on literature reviews. To 

search for ergonomic factors on a human-robot interaction, we 

looked into four databases in Web of Science, Scopus, IEEE 

Explore, and Google Scholar. This study reviewed literature 

including papers, books, international standards published 

from January 1st, 2000 to May 1st, 2018. The title and abstract 

of literature was checked by authors. Selected literature was 

reviewed and the main factors were manually extracted. There 

were twelve literature that met the inclusion criteria. This 

study evaluated the ergonomic factors of human-robot 

interaction categorized as safety, human and robot factors 

which were warning sign, stability, fail-safe, range of motion, 

fatigue, contact pressure, motion intention, misalignment, 

power, closed-loop system, and etc. These ergonomic factors 

are suggested to the safety and usability evaluation systems by 

developing ergonomic design specifications of wearable robots. 

Keywords - Wearable Robot; Human-Robot Interaction; 

Ergonomic; Safety; Usability. 

I.  INTRODUCTION 

The robot technology is developing to improve industry 
productivity and convenience in human life. The application 
of wearable robotics is growing in various fields such as 
industry, rehabilitation, prosthetics, space application and 
defense. A wearable robot can be seen as a technology that 
extends, complements, substitutes human function and 
capability or replaces [1]. 

Previous studies still have focused on developing and 
improving the mechanical performance of a wearable robot. 
However, the key distinctive aspect in wearable robots is 
their Human-Robot Interaction(HRI).  An HRI is a hardware 
and software link that connects to both human and robot 
systems [2]. 

The purpose of this study is to analyze to the ergonomic 
factors of HRI on a wearable robot through a literature 
review. 

II. METHOD 

The purpose of this method is to search main factors in 
HRI, and to identify potential ergonomic factors. This review 

details the findings from four electronic databases via 
keyword searches in Web of Science, Scopus, IEEE Explore, 
and Google Scholar. For this study, we searched literature 
related with HRI of wearable robot including papers, public 
documents, books, international standards and report 
published from January 1st, 2000 to May 1st, 2018. 

Regarding the search keyword, the search criteria used 
were ‘human robot interaction’, ‘ergonomics’, ‘human 
factor’, ‘usability’, ‘safety’ and ‘comfortability’. To avoid 
literature not falling into the topic under study, the search 
was performed using the Boolean operator “AND”, with the 
search term ‘ergonomics’ [3]. 

The following additional inclusion criteria were used to 
search the literature: 

 
a. Published as a full text literature, or in press, in peer-

reviewed journals 
b. Published or in press between January 1st, 2000 and 

prior May 1st, 2018 
c. Literature in this study includes that paper, article, 

public document, book, international standard and 
issue report 

d. Literature that considered HRI on wearable robot 
e. Literature with an ergonomics studies or application 

purpose 
 
The process of literature review, titles and abstracts were 

checked separately by three of the authors. Prior to literature 
review, inclusion criteria were identified and corresponding 
relevant information required was analyzed. Then, the 
selected relevant literature was reviewed and the main 
factors manually extracted. 

III. RESULT 

A total of 51 literatures were searched, of which 12 
literatures that met the inclusion criteria [4]-[15]. Table 1 
shows the reviewed literature evaluated for the ergonomic 
factors. It categorized as safety, human and robot factors as 
follows: warning sign, emergency stop, stability, temperature, 
fail-safe, range of motion, fatigue, contact pressure, motion 
intention, misalignment, power, weight, operation type, 
closed-loop system, and etc. 
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TABLE I.  SUMMARY OF MAIN FACTOR REFERRING TO HUMAN, 
ROBOT AND SAFETY ON WEARABLE ROBOT. 

Author and 

year 

Main factor 

Safety Human Robot 

Chan and 

Courtney, 2001 

Warning sign 

Emergency stop 

  

Copaci et al., 

2017 

 Joint angle 

Range of motion 

Actuator 

Degree of freedom 

Torque 

d’Elia et al., 

2017 

Stability Kinematic 

coupling 

Segment length 

Locomotion 

Mechanical power 

de Looze et al., 

2016 

 Muscle load 

Musculoskeletal 

disorder 

Operation 

type(active/passive)  

De Santis et al., 
2008 

Control 
architecture 

Injury 
Damage 

Actuation 
Weight 

Sensor 

ISO 13482:2014 Sharp edge 

Vibration 

Surface 

temperature 

Fail safe 

Musculoskeletal 

disorder 

Fatigue 

Battery 

Power down 

Lenzi et al., 

2011 

 Contact pressure 

Comfort 

Interaction force 
and torque 

Motion intention 

Tactile sensor 

Lenzi et al., 

2012 

 Movement 

intention 

Muscle activity 

Muscle torque 

Movement 

accuracy 

Nguyen and 

Sankai, 2013 

 Strain of contact 

part 

Interaction force 

Contact part 

Nimawat and 

Jailiya 2015 

System 

architecture 

Hyper flex human 
joint 

User interface 

Misalignment 

Tissue load 
Tolerance of 

pressure 

Size 

weight 

Sensor 

Actuator 

Energy storage 

Long et al., 

2006 

 Misalignment 

Discomfort 

Closed-loop system 

Proximal elastic 

module 

Schiele et al., 

2006 

 Degree of 

freedom 

Misalignment 

Optimal design 

 

IV. DISCUSSION 

Based on these results, this study suggested three 
grouped ergonomic HRI factors including the safety for 
human-robot interaction, the usability for human, and the 
mechanical specification to ensure the human safety. A 
factor of HRI on wearable robot are suggested to the safety 
and usability evaluation system by developing ergonomic 
design specifications of wearable robots. This study is based 
on content literature review techniques that briefly reviews 
abstracts, key contents and passages. It means that the results 
of this study do not represent a detailed review of literature, 
or the impact of their findings. 
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Abstract— Human Hand Acti vity Recognition (HAR) using 

wearable sensors can be utilized in various practical 

applications such as lifelogging, human-computer interaction, 

and gesture interfaces. Especially with the latest deep learning 
approaches, the feasibility of HAR in practice gets more 

promising. In this paper, we present a HAR system based on 

deep Autoencoder for denoising and deep Recurrent Neural 

Network (RNN) for classification. The proposed HAR system 

achieves a mean accuracy of 79.38% for seven complex hand 
activities, while only of 72.65% without the autoencoder. The 

presented combination of autoencoder and RNN could be 

useful for much improved human activity recognition. 

Keywords- Human Hand Activity Recognition; Autoencoder; 

Deep Learning; RNN; CNN. 

I.  INTRODUCTION 

Human Hand Activity Recognition (HAR) is  an essential 
technology in many user-centric applications such as human-

computer interactions, assisted living, smart homes, and 
lifelogging [1]. In general, there are two ways for HAR: 

using imaging sensors or inertial sensors that capture human 

activities [2]. Wearable devices are generally equipped with 
inertial sensors such as accelerometer, gyroscope, and 

magnetometer, which have proven useful for HAR. There 
have been many studies recognizing Activities of Daily 

Living (ADL) with these wearable devices [1]-[10]. Besides, 
various classifiers have been employed such as Hidden 

Markov Models (HMM), Support Vector Machine (SVM), 

and Restricted Boltzmann Machines (RBMs) [3], [4], [5]. 
Recently, data-driven approaches using deep learning for 

HAR have led to a significant recognition improvement by  
self-learning without the need of handcrafting features [6], 

[7]. Approaches based on Convolutional Neural Networks 
(CNN) demonstrate the advantages of using convolutional 

filters to capture local dependencies and scale invariance 

features. Previous works, such as [8] and [9] applied CNN to 
extract features from mult i-channel sensor data and 

recognized locomotion activities such as walking, sitting, 
walking upstairs, and walking downstairs.  

Recently, there is a growing interest in hand activity 
recognition [10], due to the widespread use and availability 

of wristbands and smartwatches. In the work [11], CNN was 
utilized to recognize mult iple daily life hand activities from 

multiple sensors signals. Approaches in [12] and [13] used 

Recurrent Neural Networks (RNN) to recognize locomotion 
and hand gestures using multiple Inertial Measurement Units 

(IMU) on the wrist and body parts. The work in [14] 
presented improvements in a mult i-sensor based HAR 

combining CNN and RNN. 
Although these previous studies accomplished some 

success recognizing hand activities, because of the delicate 
movements of hands and sensor noise, some additional 

preprocessing is needed to improve the recognition rate. One 

latest study in [15] examined different motion artifacts in 
constrained and free-mode motion sensor networks and 

demonstrated the effect of alleviating noise motion artifacts 
in HAR performance.   

In this work, we present a HAR system for daily hand 
activities consisting of a deep autoencoder for denoising and 

a deep RNN for classification. As reducing signal noise and 

improving signal representations can be dealt with a deep 
autoencoder [16], we have designed a supervised 

autoencoder for denoising and better signal representation. 
Then, a classifier based on RNN recognizes daily hand 

activities using only the signals from a single IMU on one 
dominant wrist. Our results show a significant improvement 

in recognizing complex hand activities. 

The rest of this paper is organized as follows. Section II 
describes the proposed methodology. In Section III, the 

experimental results  of HAR are presented. Finally, the 
conclusion is given.  

II. METHODS 

Our proposed hand activity recognition system is shown in 

Figure 1. The input signal is  composed of thirteen feature 
channels collected from a single IMU sensor at the right 

wrist of subjects. The Autoencoder (AE) module processes 
this input signal and transfers to the RNN classifier for hand 

activity recognition. 

A. Hand Activity Database 

In this study, we utilized the Opportunity public database 

[17], which contains continuous time -series data of various 

human hand activ ities. The database includes the recordings 

from four subjects: each subject performed an unscripted 

session of hand movements and ADL without constraints. 
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Figure 1. Proposed HAR system for hand activity recognition. From the left , signals coming from a single IMU go through our autoencoder 

module. Autoencoder reconstructs the data and transfer to RNN classifier. Classifier predicts activity class probabilities.  

Each session was performed five times with different 

numbers of repetition for the activit ies. Additional hand 

activities were co llected in an ext ra control (Drill) sessions, 

where each subject performed twenty scripted sequences of 

hand activities. We followed  the Opportunity multi-modal 

gesture challenge guidelines in [17] to split the data into 

train and test datasets. We focus on data collected from a 

sensor placed on the right wrist of a custom jacket, which 

was worn by the subjects. This sensor included a 

commercial RS458-networked XSense IMU composed of a 

three-axis accelerometer, a three-axis gyroscope, a three–

axis magnetometer, and four-channel quaternion orientation 

information. 

From the total of hand gesture classes in the database, we 
selected thirteen activities of our interest. The activities that 

involve similar executions are grouped as the same class. 
Resultant seven classes of hand activities are Close Door 

(Close Door 1 and Close Door 2), Open Door (Open Door 1 
and Open Door 2), Close Fridge, Open Fridge, Open Drawer 

(Open Drawer 1, Open Drawer 2, and Open Drawer 3), 
Close Drawer (Close Drawer 1, Close Drawer 2, and Close 

Drawer 3), and Drink from Cup. 

Using a slid ing window approach, the IMU signals were 

segmented with a window size of four seconds and an 

overlap of 50%. The data were normalized  to a range of [-1, 

+1] with zero  mean, which we denote them as epochs. Each 

epoch is tagged with a specific class label. We named these 

datasets of epochs as the IMU-train and IMU-test datasets 

respectively.  

To train our supervised autoencoder, we modeled the 

previous datasets using an Autoregressive Moving Average 

(ARMA) model and named them as the ARMA-train and 

ARMA-test datasets. Train ing the AE used these ARMA 

datasets as the ideal targets of the reconstructed and 

denoised signals. Finally, the AE reconstructed outputs are 

named as the AE-train and AE-test datasets. The classifier 

uses these datasets for performance analysis of recognition.  

B. Proposed Autoencoder 

In this section, the proposed AE and RNN classifier are 

presented.  

B1. Autoencoder Model 

The encoder 𝑓(𝑥)  in our AE arch itecture is a combination of 

a CNN layer and a Bid irect ional RNN (BRNN). A 

convolution layer extracts features from the input signal 

through a one-dimensional filter. These features capture 

local correlations hidden in  the data and form an  augmented 

representation in a set of multip le feature maps [14]. We use 

the hyperbolic tangent function as a non-linear activation 

function for the output of the convolution. The RNN layers 

process sequential data, taking advantage of parameter 

sharing, making possible each unit in the output be a 

function of the previous units. BRNN takes the output from 

CNN and uses it in two  parallel layers: forward  and 

backward loops used for exploding context from the past 

and future of a specific time step. The BRNN units are 

based on Long Short Term Memory (LSTM) cells, which 

use a concept of gates that define the behavior of the 

memory cell. The input 𝑥𝑡
  is fed into different gates such as 

the forget gate 𝑓𝑡 , input gate 𝑖𝑡, and output gate 𝑜𝑡  with the 

previous cell output ℎ𝑡−1 to compute the current output. In 

the following equations, we describe the LSTM unit  where 

𝜎 represents a non-linear function and [𝑊, 𝑏] are the weight 

matrices and bias vector associated with each gate.  
  

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖) (2) 

𝐶�̃� = tanh(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̃� 
(4) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡  ] + 𝑏𝑜) (5) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (6) 

  

From the encoder hidden representation ℎ, the decoder 

𝑔(ℎ) reconstructs the signals by two stacked convolutional 

layers. The last decoder convolution layer has its feature 

map size constrained to the same size of the input channels.  

B2. ARMA Modeling of IMU Activity Signals 

Before training the supervised AE, the ideal target dataset is 

obtained by modeling the orig inal IMU datasets via ARMA. 

The Akaike information criterion was used to select an 

appropriate order fo r the autoregressive and moving average 

models. For each channel, an optimized model was carefu lly  

chosen from a pool of different combination of orders: in  

most cases, the autoregressive model order of 3 and moving 
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average of 4 were selected. The ARMA-train and ARMA-

test datasets represent a denoised and improved 

representation of the signals in the IMU-train and IMU-test 

datasets. In Figure 2, one set of epoch instances from the 

IMU-test and ARMA-test datasets is shown. 

B3. Training and Testing Autoencoder 

The input to the AE was carried by mini-batches composed 

of epochs in the IMU-train dataset and target ARMA-train 

dataset. The AE used the Mean Square Error (MSE) as a 

loss function. The training algorithm iterated up to 100 

training steps with a learn ing rate of 1e-4. Gradient decedent 

recursively updated the network parameters using Adam 

optimizer algorithm. Weights init ialization used a random 

Gaussian distribution with a mean of zero and standard 

deviation of 0.5. To validate the AE performance, we 

quantified the similarity between the AE-test and ARMA-

test datasets. This similarity is based on the overall Root 

Mean Square Error (RMSE) and Pearson Correlat ion 

Coefficient (R) for each corresponding channel from both 

datasets.  

C. RNN Classifier 

The classifier module is composed of three RNN layers 

based on Gate Recurrent Unit (GRU) memory cells. The 

GRU cell possesses a reset gate 𝑟  and an update gate 𝑧 , 

unlike the LSTM variant it does not have an internal 

memory 𝑐𝑡  and an output gate 𝑜𝑡 . The GRU cell combines 

the input gate 𝑖𝑡  and forget gate 𝑓𝑡  in the update gate, and 

directly  apply the reset gate to the prev iously hidden state. 

We describe the GRU gates in the following equations : 
  

𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡])  (7) 

𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡]) (8) 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊[𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡]) (9) 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡  (10) 

  

The output from last RNN layer is connected to a dense 

layer to obtain the class probabilit ies. Despite the 

compelling representation from RGRU, there is still a  

possibility of overfitt ing. We address this using a dropout 

technique for optimization with a value of 0.4 before the 

dense layer. The final layer produces the class probabilities 

from a Softmax function. Init ialization  of the weights uses a 

random Gaussian distribution with of mean zero and 

standard deviation of 0.5. The network is trained over 50 

training steps with a learn ing rate of 3e -4 with an 

optimization based on Adam algorithm. We compute the 

weighted F1-score and accuracy of classification for the 

given test datasets. 

III. EXPERIMENTAL RESULTS 

A. Validation of Autoencoder 

We computed the RMSE and R coefficient between the 
ARMA-test and AE-test datasets to evaluate the performance 

of AE. Table 1 shows a summary of these values. The 
signals in Figure 3 illustrate an exemplary epoch of “Open 

Door” activity from both datasets.  

 

 
Figure 3. Time series from the 3-axis gyroscope in the “Open Door” 

activity: ARMA (solid) and AE (dotted). 

TABLE 1. THE COMPUTED RMSE AND R-VALUES BETWEEN ARMA-

MODELED AND AE OUTPUT DATASETS. 

Channels Axis RMSE R 

Accelerometer 

X 0.0441 0.9387 

Y 0.0383 0.9805 

Z 0.0359 0.9953 

Gyroscope 

X 0.0262 0.9652 

Y 0.0251 0.9820 

Z 0.0234 0.9872 

Magnetometer 

X 0.0130 0.9799 

Y 0.0111 0.9892 

Z 0.0122 0.9927 

Q uaternion 

Q1 0.0328 0.9873 

Q2 0.0361 0.9914 

Q3 0.0340 0.9870 

Q4 0.0345 0.9976 

 

 
Figure 2. Time series from the 3-axis accelerometer in the “Open 

Door” activity: IMU (solid) and ARMA (dotted).  
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A1. Classification Performance 

The summary of the recall values achieved by the classifier 

on the IMU-test, ARMA-test, and AE-test datasets are 

shown in Table 2. Using the raw sensor signals in the IMU-

test dataset, the classifier achieved a mean F1-score of 

72.87% and accuracy of 72.65%. The recognition 

performance is not quite satisfactory for these complex hand 

activities. Using the ARMA-test dataset (i.e., modeled ideal 

dataset), recognition increased to a mean F1-score of 

82.40% and accuracy of 82.14%. For activit ies such as 

“Open Fridge” and “Open Drawer,” their recall values 

increased up to 78.33% and 81.55% respectively from 

around 60%. Finally, using the AE-test dataset (i.e., the 

output of AE), the classifier ach ieved a mean F1-score of 

79.64% and accuracy of 79.38%, reflect ing a 6.75% 

improvement over the raw signals from the IMU-test dataset 

and similar to the performance of the ARMA-test dataset. 

 

A2. Comparison of Related Works  

In this work, we have implemented a HAR system of deep 

denoising AE and RNN classifier, through which the 

improved representation of activity signals are utilized to 

recognize seven daily hand activities  using only a single 

IMU sensor. 

There are rare works of HAR systems utilizing denosing 

AE. The HAR work in [15] used an unsupervised 

Variational Autoencoder (VAE) in combination of CNN 

with LSTM. It shown that using 75 sensor channels that 

presented significat ive motion artifacts from Opportunity 

the denoised signals could improve the accuracy from 

72.96% to 90.81%. A lso there have been HAR works 

utilzing multip le sensors (i.e ., >70 sensor channels) to 

improve the performance. These studies reported F1-score 

of 75.4% [12], a  recall value of 83.5% [13] , and F1-score of 

86.6% [14] without the use of AE. In contrast with those 

studies, our architecture receive an input data compose of 13 

feature channels extracted from only one IMU sensor, which 

is more practical for an end- user application. 

IV. CONCLUSION 

In this work, we have presented a HAR system for daily  

human hand activit ies combining a denoising autoencoder 

and RNN for classification. Our results prove that AE helps 

the deep classifier and eventually HAR by reducing noises 

and representing signals better. The p romising results 

demonstrate the effectiveness of this approach, which could 

be used for other HAR systems. 
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Abstract—Autism Spectrum Disorder (ASD) and Intellectual 

Disabilities (ID) affect an increasing proportion of today’s 

population. Individuals with ASD/ID exhibit frequent forms of 

challenging behaviours such aggression and wandering off 

without warning. Wandering or elopement is common among 

such population and poses a great risk to the individuals and 

causes significant stress to their caregivers. Concurrent with 

wandering is sometimes anxiety and stress which may lead to 

disruptive challenging behaviours emerging from their varying 

internal emotional states and hyper-sensory to their 

surroundings. Caregivers and/or family members do need to 

keep track of such vulnerable population especially the ones 

with more severe autism/intellectual disabilities. The use of 

location tracking and emotional monitoring solutions can assist 

caregivers and family members by complementing their 

behavioural monitoring and intervention approaches. This 

paper reviews existing location tracking and physiological 

monitoring wearable products suited for this population. This 

can help caregivers and family members select suitable device 

for the person of concern taking account his/her unique user 

needs.  

Keywords-autism; assistive technology, emotional 

monitoring, intellectual disabilities, patient localisation, wearable 

sensors. 

I.  INTRODUCTION 

Autism Spectrum Disorder (ASD) is a 
neurodevelopmental condition characterised by deficits in 
reciprocal social interactions and communication skills, 
accompanied by restrictive and repetitive behaviours. 
Intellectual disability (ID), on the other hand, can be 
characterised by deficits in intelligence and adaptive 
behaviour that is at least two standard deviations below the 
mean of the general population. Individuals with ASD/ID 
exhibit frequent forms of challenging behaviours that reduce 
their well-being and quality of life. Individuals with ASD are 
at higher risk of developing challenging behaviours 
compared to the general population [1].  

One common kind of challenging behaviours is wandering 
and elopement. A recent research study reported that about 
half of children with autism spectrum disorder are prone to 
wandering [2] which can be very stressful for parents, 
particularly so for parents caring for children with 
developmental disorders, where the child’s ability to 
communicate with strangers may be impaired.  Also, it has 
been found that more than a quarter of children with 

developmental disabilities wander away from safe 
environments [3]. Further, researchers found that nearly a 
third of reported ASD missing person cases related to 
wandering/elopement from 2011 to 2016 in the United States 
ended in death or required medical attention [4]. 

Therefore, a mechanism that allowed parents and carers to 
track the locations of those individuals could have significant 
benefits and reduce risk. Secondly, such a device could 
potentially be used to monitor physiological signals which 
may correlate with internal emotional states, such as high 
levels of stress. This data may predict episodes of 
wandering/elopement, and could be used to ensure the 
intervention to reduce stress, or to identify their location in 
case being lost.  

Since external challenging behaviour such as wandering is 
accompanied with anxiety issues and varying emotions, it 
will be very useful for caregivers to monitor the internal 
physiological and emotional states of the care-receiver to 
help them understand what such individuals are experiencing 
in a real-time fashion. Building on such physiological 
information, caregiver can take necessary actions to help the 
individual calm down, in case he/she is experiencing stress, 
for example. Also, having a wearable device may help some 
individuals with autism spectrum disorder to increase their 
self-awareness of their internal emotional state and anxiety 
levels so that they can follow certain behavioural techniques 
and coping strategies to help them self-regulate their 
emotions [5]. This could be particularly useful for clients 
with comorbid alexithymia. 

This paper reviews commercial devices that can track 
location and physiological signals, with the potential for 
application to individuals with ASD/ID. Specifically, it 
presents the existing commercial solutions, compares their 
features and associated sensors, and comments on their 
effectiveness and open challenges for this application.  

II. ASD/ID AND THEIR UNIQUE NEEDS 

      ASD and ID are a broad spectrum of disorders ranging 
from mild to profound intellectual disabilities. Individuals 
with these conditions experience a full range of emotional 
states, which can be triggered by a variety of environmental 
and sensory cues, and internal experiences. For example, 
escalated levels of anxiety can potentially lead to what is 
called Challenging Behaviour. Challenging behaviour is 
defined as a culturally abnormal behaviour(s) of such an 
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intensity, frequency or duration that the physical safety of the 
person or others is likely to be placed in serious jeopardy [6]. 
Challenging behaviour include wandering/elopement, 
aggression, self-injury, property destruction, and tantrums. 
Prevalence rates as high as 94% have been reported for 
challenging behaviour in children with ASD [7]. Therefore, 
those individuals have unique needs. The widespread use of 
wearable technology offers an opportunity to help caregivers 
monitor and support such individuals. The use of wearable 
devices embedding sensing modalities such as location 
tracking and physiological sensing can offer a promising 
support for children and adults with ASD/ID who engage in 
challenging behaviour [5]. 

III. RELATED WORK 

      A number of reviews of relevant literature have been 
published. For example, S. Majumder et al [8] conducted a 
review study on sensors used for remote monitoring for 
general population. The authors compared various 
physiological and activity monitoring solutions aimed for the 
elderly population. Specifically, separate comparative studies 
for wearable monitoring devices of cardiovascular system, 
body temperature, oxygen level parameters, and activity 
trackers were presented.  Another work focused on the 
wearable technology from clinical perspective such as 
wellness, safety, and home rehabilitation for older adults and 
individuals with chronic conditions was conducted by S. 
Patel et al [9].  
      More recently, there has been a focus of reviews on the 
application of wearable technology to specific populations 
which bring unique design and function needs. This is 
because some populations have different design and 
wearability requirements [5].  Example of such users are the 
ASD/ID population. According to a survey conducted by S. 
H. Koo et al [5], parents of individuals with ASD were 
particularly interested in being able to monitor their son or 
daughter’s physiological signals to understand anxiety levels 
and other emotions (72%). J. Cabibihan et al [10] surveyed 
the research literatures on different sensing technologies that 
are suitable for screening and intervention for ASD. Those 
sensing technologies were categorised into eye trackers, 
movement trackers, physiological activity monitors, tactile 
sensors, vocal prosody and speech detectors, and sleep 
quality assessment devices. The benefits and effectiveness of 
those devices in supporting the treatment of some symptoms 
of autistic individuals as well as their limitations were 
assessed. 
      According to S. H. Koo et al [5], tracking the 

individual’s activity or location is the third most requested 

information by parents of individuals with ASD after the 

emotional state and aiding of multi-step tasks. Also, M. T. 

K. Tsun et al conducted a review study on tracking devices 

in ASD population [11]. The authors investigated potential 

future assistive tracking solutions for children with 

cognitive disabilities. Various localisation techniques have 

been considered such as radio frequency, inertial 

measurement units, and Global Positioning System which 

can be utilised for indoor and outdoor localisation. 

      As it can be seen, existing review papers either: study 
wearable devices for general or elderly population [8], [9] 
focuses on the research prototypes designed for individuals 
with ASD or ID [10], or target the devices offering one 
functionality such as the work by M. T. K. Tsun et al [11]. 
To the author’s best knowledge, no consideration has been 
given to commercial solutions that enable emotional 
monitoring as well as location tracking devices. This paper 
focuses on devices that offer those two functions.  

IV. TECHNOLOGIES AND SENSING SIGNALS USED  

Building on the urgent need found in previous section, this 
section discusses the technologies and sensors used in the 
following subsections. 

A. Location Tracking Technologies 

Location tracking solutions use different technologies 

based on the required distance and the environment. For 

example, indoor monitoring devices can use accelerometer 

sensors, infrared tags, Bluetooth or WiFi wireless network 

available inside the building, or use a combination of 

technologies for more accurate tracking. Solutions targeted 

for outdoor location monitoring mostly use Global 

Positioning System (GPS) or cellular network service (such 

as GSM or third generation mobile communications).  

B. Physiological Sensing Technologies for Emotional 

Monitoring  

Emotional assessment for individuals with autism 
spectrum disorder and intellectual disabilities can provide 
insights into the function of the challenging behaviour and 
supplement costly traditional observational approaches. 
Physiological monitoring is found useful to assess the 
varying emotional levels as it can be measured noninvasively 
[12]. Typical physiological signals used include: Heart Rate 
(HR), Heart Rate Variability (HRV), Cortisol Level, 
Respiration Rate (RR), Electrodermal Activity (EDA), Skin 
Temperature (ST), and Electromyography (EMG). Other 
potential technologies may be useful to apply, such as eye 
tracking, using ElectroEncephaloGram (EEG) or brain 
signals but, due to the intrusive nature of the devices 
required for the individual with ASD/ID, they will be 
excluded in this study. It should be noted that various 
emotional states can be inferred from the measured values 
such as: low mood, high stress levels, agitation, excitement, 
and aggression.  

V. REVIEW OF EXISTING TRACKING AND MONITORING 

PRODUCTS 

      While the market is abundant with various products that 
are targeted for tracking and health monitoring of general 
population, there is a set of products that are designed 
specifically for individuals with autism and/or intellectual 
disabilities or can be adopted for this population. In this 
section, we provide a review of existing solutions listed for 
each category. The criteria for selection were: (1) devices 
that are designed specifically for individuals with ASD or 
ID, then (2) devices designed for general population but can 
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be adopted for ASD or ID population in terms of offering the 
functionality that delivers the service. Selected devices are 
consumer electronic device or medically approved ones. If a 
device is clinically validated, it is noted in the tables. 

This section gives an overview of the devices/solutions 
that can be used for monitoring the individuals with ASD/ID. 
Such solutions can be categorised into two groups: (a) 
solutions for tracking the location of the person of concern, 
and (b) solutions for monitoring the internal emotional state 

or physiological state identification. Those solutions will be 
reviewed in the following two subsections:        

A. Location Tracking Solutions 

      TABLE I. lists examples of related products. The 

following products are either commercially available in the 

market or still under development. For instance, Amber 

Alert GPS [13] is a tracking device that can be fitted in the 

backpack of the child or can be worn with a lanyard around

 
TABLE I.      LOCATION TRACKING PRODUCTS  

Product  Device Type Wireless Technology and Range 

Amber Alert GPS [13] wristband GPS for outdoor tracking 
Angle Sense Location Tracker [14] Wristband  Indoor tracking using Wi-Fi 

Pocket Finder [15] Attachable device GPS/AGPS, 3G Cell ID for outdoor location and 

Wi-Fi Touch for indoor locations 

Trax GPS Tracker [16] Attachable device with clips Location tracking using GPS, Beidou, and QZSS 

Securus eZoom [17] pocket-sized device GPS for outdoor tracking 
SPOT 3 Satellite GPS Messenger 

[18] 

pocket-sized device GPS for outdoor tracking 

Yepzon One [19] pocket-sized device GSM network, GPS for outdoor  and Bluetooth 
for near distances  

My Buddy Tag [20] Tag on wristband Bluetooth for near distances 

Trackimo GPS Track Watch [21] Watch GPS for outdoor, Wi-Fi for indoor tracking, and 

Bluetooth for short range tracking 

FiLIP Solution [22] wristband Location tracking using GPS, GSM & WiFi 

BeLuvv Guardian [23] Bracelet or necklace Bluetooth for near distances 
Polar Team Pro [24] T- Shirt GPS for outdoor 

D-Shirt [25] T- Shirt GPS for outdoor, altitude and route 

 

the neck and it uses 3G cellular network to track the 

individual. Also, Angle Sense Location Tracker [26] is a 

GPS device that can be inserted into a sleeve that can be put 

in the pocket or in the interior of the clothing. Another 

device called Trackimo [21], from Trackimo, uses five 

tracking modules: GPS, GPS-A, GSM, Wi-Fi and Bluetooth 

suitable for both indoor and outdoor tracking. Examples of 

other devices that can be attached to the person’s clothing 

are: Pocket Finder [27], Trax GPS Tracker [28], Securus 

eZoom and SPOT 3 Satellite GPS Messenger [18], Yepzon 

One [19], My Buddy Tag [20].  

      A recent acceptability study was conducted using 

questionnaires with individuals with autism spectrum 

disorder and their parents to see what types of devices they 

prefer to use. Accessories such as watches/wristband and 

bracelets have been found to be the most preferred wearable 

technology types [5]. Therefore, several companies have 

developed wristband/watch type devices such as FiLIP [29], 

for example, that can track the location of children both 

indoors and outdoors using GPS, GSM and WiFi with the 

ability to contact the caregiver in case of emergency. 

Another device is BeLuvv Guardian suited for short range 

tracking [23] that uses Bluetooth technology. Another 

product called, Trackimo GPS Track Watch, uses three 

ranges for tracking: GPS for outdoor, Wi-Fi for indoor 

tracking, and Bluetooth for short range tracking. 

      Smart clothing offers a seamless experience and thus 

can be used to track individuals with sensory sensitivities, 

who may not tolerate devices such as wristbands or watches. 

Furthermore, garments, such as t-shirts, have been found the 

second most preferred item for individuals with autism 

spectrum disorder [5]. Therefore, t-shirts and vests equipped 

with location trackers can be used to track those individuals 

by their parents or caregivers. Although most t-shirts with 

location tracking on the market are aimed for athletes, some 

may be adopted for individuals with autism spectrum 

disorder/intellectual disabilities. An example of those is 

Polar Team Pro that offers location and motion tracking 

sensors in addition to heart rate monitor [24]. Another one 

but still under development called D-Shirt by Cityzen 

Sciences which is also planned to measure heart rate, route, 

speed, and altitude [25].  

B. Emotional State Monitoring Solutions  

      The list of examples of physiological and/or emotional 
monitoring devices is presented in TABLE II. Wristbands 
and watches have also been the mainstream wearable device 
technology for physiological monitoring and emotional 
assessment. A brief description of the solutions/products is 
presented in the following paragraphs. 
      Simple consumer devices like Fitbit 2 can collect some 
physiological data such as heart rate. However, there are 
concerns pertaining to the reliability of such devices and 
their lack of capability to provide clinical data [30]. A more 
reliable solution which can provide more comprehensive 
physiological data is E4 Wristband from Empatica, Inc. 
which measures heart rate, heart rate variability, 
electrodermal activity, and skin temperature. However, this 
device can only collect raw physiological signals without 
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providing insights or assessment of the internal emotional state. 
 

TABLE II.      PHYSIOLOGICAL AND EMOTIONAL MONITORING PRODUCTS  

Product/Forthcoming 

Device 

Purpose Device Form 

Factor 

Sensors/Parameters Usefulness/Clinical 

Validation 

Shortcomings 

E4 wristband, 

Empatica Inc. [31] 

Collecting 

physiological and 

movement data 
only 

Wristband HR, HRV, EDA, ST, 

Acceleration 

Medical Device 

class 2a (EU), FCC 

CFR 47 Part 15b 
IC (Industry 

Canada) 

- Obtrusive (may not be 

tolerable by individuals 

with severe to profound 
ID) 

TouchPoints wristband 

(Forthcoming), 
TouchPoints, Inc. [32]  

Stress and anxiety 

relief  
 

Wristband  Bi-lateral alternating 

stimulation –tactile 
(BLAST) 

Patent-pending 

neuroscientific 
technology to 

relieve stress 

Obtrusive (may not be 

tolerable by individuals 
with severe to profound 

ID) 

MyFeel  wristband,  
Sentio Solutions Inc. 

[33] 

 

Recognising 
emotions 

Wristband HR, EDA, Skin temperature 
(ST),  

Preliminary study 
showed usefulness 

on 150 subjects. 

However, no 
clinical validation 

Obtrusive (may not be 
tolerable by individuals 

with severe to profound 

ID) 

Reveal (Forthcoming), 

Awake Labs [34] 
 

Monitoring stress 

and anxiety 
Wristband HR, EDA, ST Clinical trials being 

conducted but not 
clinically validated 

yet. 

-Initial prototype, not 

validated, only for 
anxiety. 

- May not be suitable by 

individuals with severe to 
profound ID 

BioHarness 3.0, 

Zypher, Inc. [35]  

Physiological and 

activity data 

collection 

Chest strap HR, HRV, EDA, body 

temperature, RR, activity, 

posture, location 

Clinical HR 

measurements [36] 

but not to clinical 
HRV [37]. 

Obtrusive (may not be 

tolerable by individuals 

with severe to profound 
ID) 

Equivital Sensor Belt 

[38] 

Physiological and 

activity data 

collection 

Chest Belt ECG; HR, HRV, Respiratory 

rate (RR),  EDA, ST, 

accelerometer, Body 

position  

EQ02 can 

accurately measure 

ECG and HRV, its 

accuracy and 

precision is highly 
dependent on 

artifact content [39]   

 

Obtrusive (may not be 

tolerable by individuals 

with severe to profound 

ID) 

Zephyr belt, 
Medtronic, Inc. [40] 

Sports health 
monitoring 

Belt HR, HRV, RR Suitable for 
consumer 

electronics but no 
clinical validation 

Obtrusive (may not be 
tolerable by individuals 

with severe to profound 
ID) 

Hexoskin Smart Shirt, 

Hexoskin Inc. [41] 

Physiological and 

activity data 

collection and 
monitoring quality 

of sleep 

Shirt HR, HRV, Heart rate 

recovery, Respiration rate 

(RR) and volume, 
Acceleration and power 

Clinical validated to 

obtain precise ECG 

cardiac monitoring 
for long-term 

monitoring [42] 

Does not support real-

time streaming or 

processing, but may be 
suited for monitoring of 

certain individuals with 

ASD/ID who cannot 
tolerate wristband  

Polar Team Pro Shirt, 

Polar Electro Oy [24] 
 

Sports health 

monitoring 

Shirt HR, location and motion 

tracking  

Not clinically 

validated 

Could be used for 

individuals with ASD/ID 
who can tolerate wearing 

the shirt 

AIO Sleeve, Komodo 

Technologies [43] 
 

Physiological, 

activity data 
collection and 

monitoring quality 

of sleep 

Sleeve ECG, HR, HRV, 

accelerometer 

Not clinically 

validated 

Does not support real-

time 
streaming/processing 

(may be suited for 

monitoring of certain 
individuals with ASD/ID 

who cannot tolerate 

wristband) 

    
      More advanced solutions have been developed that use 
emotional identification algorithms to make meaningful 
information out of such data. For example, MyFeel 
wristband, from Sentio Solutions Inc [33], uses proprietary 
algorithms to process the data where it collects heart rate, 
electrodermal activity and skin temperature. 

 
      Another device that is still under development and 

targeted for the population with autism spectrum disorder 

called Reveal, from Awake Labs [34]. This device collects 

heart rate, electrodermal activity and skin temperature data 

to assess anxiety level of the individual and can notify the 
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caregiver when anxiety levels start to rise by applying data 

analytics techniques to make smart clinical decisions. 
Another more advanced solution called TouchPoints 

wristband and produced by TouchPoints Inc. [32]. This 
solution provides not only emotional monitoring but also 
claims to relieve stress using stimulating electrical pulses 
[44]. Other devices that can be worn include: BioHarness, 
Equivital Sensor Belt, Zepher belt and Hexoskin which is 
clinically validated to provide reliable ECG data. The last 
product listed is called AIO Sleeve, developed by Komodo 
Technologies but it is only a consumer device which does 
not provide clinical grade data.  

Recently, smart clothing is becoming the new trend for 

wearable devices especially for physiological monitoring 

and emotional assessment as it provides a seamless 

experience for the users compared to wristbands which can 

be obtrusive to some users. An example of such solutions is 

Hexoskin Smart Shirt, developed by Hexoskin Inc. [41], 

which incorporates fabric sensors that collect: ECG, heart 

rate, heart rate variability, respiration rate, and body 

movement data.  

The need to collect multiple data (e.g., physiological and 

positioning), based on the listed devices, may require the 

use of multiple devices which can cause inconvenience to 

the user. Thus, it is evident that having one device that can 

collect all relevant data (i.e., physiological, movement, and 

positioning) is more practical solution. EQ02 LifeMonitor, 

from Equivital Inc., offers this capability where it can also 

collect the previous parameters and has additional features 

including body movement and GPS location tracking 

system.  

VI. DISCUSSION 

The previous section has reviewed some existing or 

forthcoming products which are either designed for 

individuals with autism/intellectual disabilities or can be 

adopted for this population. 

It can be seen that most solutions provide either tracking 

or emotional monitoring which can be a drawback if they 

lack the other capability.  

As it was seen earlier, individuals with autism spectrum 

disorder /intellectual disabilities can exhibit different kinds 

of challenging behaviours such as wandering and anxiety at 

the same time.  From the reviewed products, it can be 

noticed that most commercial products can only offer one 

type of tracking. However, it would be more useful to 

inform the caregivers of the internal emotional state of the 

individual which may precede wandering so that they can 

take preventative measures to avoid harm for the individual 

or being exposed to unsafe environment. One listed device 

called, EQ02 LifeMonitor, is equipped with sensors that can 

provide the two functionalities. Using such a solution, 

clinicians and caregivers can objectively identify what the 

individuals with ASD/ID are experiencing physiologically, 

which could help in understanding the internal emotional 

state and the contexts and locations in which such behaviour 

is exhibited or escalated levels of anxiety are developed. 

From technical perspective, the target solution can use the 

unlicensed Bluetooth Low-Energy Protocol to transmit the 

physiological and positioning data to a remote recipient 

(e.g., smart phone) when the data can be processed locally 

in the wearable device and the useful information is only 

sent intermittently to the recipient to reduce the 

communication overhead and minimise the power 

consumption. It should be noted that other sensing 

modalities can include sound sensor and light sensor which 

can be useful to detect verbal aggression which is another 

kind of challenging behaviour.  

VII.    CONCLUSION 

In this work, we conducted a review on commercially off 

the-shelf wearable devices suitable for monitoring and 

tracking individuals with autism spectrum disorder and/or 

intellectual disability. Specifically, we briefly explained the 

unique issues that those individuals experience such as 

challenging behaviours. Then, we reviewed the related 

physiological, behavioural, and location related sensors that 

can be used to monitor the internal emotional state, their 

activities, and track their location. After that, we surveyed 

the existing and emerging products in the market with 

various form-factors, examined their usefulness in practice, 

and talked about lessons learnt and their shortcomings.   
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Abstract—This work presents a non-invasive low-cost system 

suitable for the at home assessment of the neurological 

impairment of patients affected by Parkinson’s Disease. The 

assessment is automatic and it is based on the accurate 

tracking of hands and fingers movements of the patient during 

the execution of standard upper limb tasks specified by the 

Unified Parkinson’s Disease Rating Scale (UPDRS). The 

system is based on a human computer interface made by light 

gloves and an optical tracking RGB-Depth device. The 

accurate tracking and characterization of hands and fingers 

movements allows both the automatic and objective assessment 

of UPDRS tasks and the gesture-based management of the 

system, making it suitable for motor impaired users as are PD 

patients. The assessment of UPDRS tasks is performed by a 

machine learning approach which use the kinematic 

parameters that characterize the patient movements as input 

to trained classifiers to rate the UPDRS scores of the 

performance. The classifiers have been trained by an 

experimental campaign where cohorts of PD patients were 

assessed both by a neurologist and the system. Results on the 

assessment accuracy of the system, as compared to 

neurologist’s assessments, are given along with preliminary 

results on monitoring experiments at home.  

Keywords-Parkinson’s disease; UPDRS assessment; RGB-D 

camera; hand tracking; human computer interface; machine 

learning; tele-monitoring 

I. INTRODUCTION 

Parkinson’s Disease (PD) is a chronic neurodegenerative 
disease characterized by a progressive impairment in motor 
functions (e.g., bradykinesia) [1] , with important impacts on 
quality of life. Unified Parkinson's Disease Rating Scale 
(UPDRS) [2] is commonly used by neurologists to assess the 
severity of the disease, whose motor aspects are an important 
part. Specifically defined motor tasks are used by 
neurologists to assess impairments and to assign a subjective 
score for each task on a scale of five classes of increasing 
severity. 

The assessment process takes into account specific 
kinematic aspects of the movements (amplitude, speed, 
rhythm, hesitations) which are qualitatively and subjectively 
evaluated by neurologists. On the other hand, a quantitative 

and objective assessment of the tasks is important to increase 
the reliability of the clinical assessment [3]. A commonly 
adopted solution is to make use of the well-established 
correlation existing between kinematic parameters of the 
movements and the severity of the impairment [4][5]. This 
correlation is used in the automatic and objective assessment 
of  UPDRS motor tasks by several technological approaches, 
among which those based on optical devices and wearable 
inertial sensors [6][7]. 

Drug treatment of the PD symptoms is crucial to reduce 
the effects of the impairment in daily activities but, because 
of possible fluctuations in impairment, it would be desirable 
to adjust the therapy on a weekly basis, both for the best 
effectiveness and to reduce side and long term effects [8]. 
Unfortunately, the cost of a traditional weekly assessment, 
preferably at home to reduce patient’s discomfort, is 
unsustainable for the health care system. In this context, 
technology can support neurologists with an objective and 
quantitative assessment of UPDRS motor tasks. Focusing on 
the upper limb tasks of UPDRS, solutions based on wireless 
inertial measurement devices (accelerometers and 
gyroscopes) [8]-[10] and on resistive bend sensors [11] do 
not suffer of occlusion problems but they are more 
uncomfortable for motor impaired people respect to optical 
approaches and, more important, their invasiveness can 
affect motor performance. 

Optical approaches for hand tracking of motor impaired 
people and for the automatic assessment of upper limb tasks 
of UPDRS, namely Finger Tapping (FT), Opening-Closing 
(OC) and Pronation-Supination (PS), have been recently 
proposed based on RGB cameras [12], passive markers [13] 
and  bare hand tracking  by consumer depth sensing devices 
[14]-[17].  

Less attention is generally given to the assessment of the 
tracking accuracy obtainable by the proprietary hand-
tracking firmware of these consumer devices. Their accuracy 
can be unsatisfactory especially for fast movements, as has 
been shown by comparisons with standard optoelectronic 
systems [18]; nevertheless, this is an important requirement 
to be considered for the reliability of kinematic parameters 
and the motor performance assessment. Furthermore, the 
short product life span of these devices and of the related 
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Figure 1. Hand/fingers tracking system 

Software Development Kit (SDK) warns against solutions 
too dependent on proprietary hardware and software. Along 
this line of research, we present a low-cost system for the 
automatic assessment of the upper limb UPDRS tasks (FT, 
OC, PS) at home. The system hardware is based on 
lightweight coloured gloves, a RGB-Depth sensor and a 
monitor, while the software implements 3D tracking of the 
hand trajectories, characterizes them by kinematic features 
and assesses the motor performance by trained Machine 
Learning algorithms. The software performs the real-time 
tracking by fusion of both colour and depth information from 
the RGB and depth streams. The system acts at the same 
time as a non-invasive Human Computer Interface (HCI) 
which allows motor impaired PD patients to self-manage the 
test execution. Respect to other approaches, based only on 
depth information and proprietary algorithms, the hand 
tracking is more robust and accurate for fast movements 
[18], making the final assessment more reliable. Another 
important characteristic of our solution is that it does not 
relay on any particular hardware or SDK; it assumes the 
availability of RGB and depth streams at reasonable frame 
rate.  The accuracies obtained by the classifiers demonstrate 
the feasibility of the system in remote assessment of upper 
limb UPDRS tasks. Some preliminary results on at-home 
monitoring of PD patients are given. 

The paper is organized as follows. The technological 
solution and the methodological approach for the accurate 
tracking of hand and fingers movement are described in 
Section II. Section III reports the results of the automatic 
classification of motor performance and some preliminary 
data about the assessment of patient’s performance at home. 
Conclusions and future work are discussed in Section IV.  

II. SYSTEMS AND METHODS 

A. System Hardware 

The hand/fingers tracking hardware consists of a low-
cost RGB-Depth device (Intel Realsense SR300 ©) that 
provides synchronized RGB color and Depth streams at 
resolutions of 1920x1080 (Full HD) at 30fps and 640x480 
(VGA) at 30 fps (max. 200) respectively. The RGB-Depth 
device is connected via a USB port to a personal computer 
(PC) running Microsoft Windows and equipped with a 
monitor positioned in front of the user (Figure 1). The 
monitor provides the visual feedback of the HCI for the hand 
and finger movements of the user. The user equipment 
consists of black lightweight gloves with imprinted colour 
markers: each colour marker corresponds to a particular part 
of hand to be tracked (e.g., fingertips and wrist) or to be used 
for colour calibration and system interaction (e.g., palm). 

The device drivers and our developed software are used 
to implement both the hand and fingers tracking and the user 
interface of the HCI. The software running on the PC 
implements the data stream acquisition and processing for 
the hand/fingers tracking, the kinematic parameter estimation 
and the task assessment. Furthermore, the data produced in 
every test session, including video sequence of each 
performance, kinematic parameters and system scores are 

automatically encrypted and archived for further analysis and 
for clinician independent supervision and assessment. 

B. Initial Setup 

Global image brightness adjustment, hand segmentation 
and colour calibration for marker segmentation are 
performed during the initial setup phase. The Intel 
LibRealSense library is used for RGB and depth stream 
acquisition and the OpenCV library  [19] is used to recover 
the 3D position of the hand centroid from the depth stream. 
A hand shaking movement of the user starts the recovering 
of the initial hand position. The hand centroid is used to 
segment the hand from the background and to define 2D and 
3D hand bounding boxes, both for colour and depth images. 
Then RGB streams are converted from RGB to the HSV 
colour space, more robust to brightness variations. The 
design of the colour markers and the implementation of a 
colour constancy algorithm compensate for different ambient 
lighting conditions found in domestic environments. For this 
purpose, during the initial setup the white circular marker on 
the palm is detected and tracked in the HSV stream.  The 
average levels of each HSV component of the circular 
marker are used to compensate for predominant colour 
components due to different types of lighting. Their values 
are used to scale each of the three HSV video sub-streams 
during the tracking phase.  

C. Hand and Finger Tracking 

During the tracking phase, the 3D position of the hand 
centroid is used to continuously update the 2D and 3D hand 
bounding boxes (Figure 2). The colour thresholds selected 
during the setup phase are used to detect and track all the 
color blobs of the markers. To improve performance and 
robustness, the CamShift algorithm [19] has been used in the 
tracking procedure.  The 2D pixels of every color marker 
area are re-projected to their corresponding 3D points by 
standard re-projection, and their 3D centroids are then 
evaluated. Each centroid is used as an estimate of the 3D 
position of the corresponding part of the hand that is used for 
movement analysis.  

16Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-657-6

SPWID 2018 : The Fourth International Conference on Smart Portable, Wearable, Implantable and Disability-oriented Devices and Systems

                            23 / 41



 
 

Figure 2. Hand segmentation and marker detection: color blob 

centroids and bounding box 

 
 

Figure 3. Human computer interface with natural gestural 

interaction 

D. Human Computer Interface for System Management 

The real-time hand/fingers tracking software and the 
graphical user interface realize the human computer interface 
(Figure 3) where the patient can manage the test session 
(e.g., start and end the session, select the specific task, input 
information, etc.) by making simple gestures (opening and 
closing the hand, pointing with fingers) towards the 
graphical menu displayed on the monitor.  

E. Clinical Assessment and Data Acquisition 

The system performance was evaluated on two cohorts; 
one made up of forty patients (22 females, 18 males) with a 
diagnosis of Parkinson’s Disease (PD), and the other made 
up of fifteen Healthy Control (HC) subjects. Patients were 
recruited according the UK Parkinson’s Disease Society 
Brain Bank Clinical Diagnostic standards and met the 
following criteria:  Hoehn and Yahr score (average 2.2, min 
1, max 4); age 43–81 years; disease duration 2–29 years. 
Patients were excluded if they had previous neurosurgical 
procedures, tremor severity > 1 (UPDRS-III severity score), 
or cognitive impairment (Mini–Mental Score < 27/30). The 
HC subjects met these criteria: age, 35–78 years, not affected 
by neurological, motor and cognitive disorders. All subjects 
provided their informed consent prior to their participation. 

The PD cohort was assessed for the FT, OC and PS 
UPDRS tasks on both hands by one neurologist expert in 
movement disorders and the resulting UPDRS severity 
scores were found between 0 (normal) and 3 (moderate 
impaired). The performance of the PD patients were tracked 
at the same time by the system and the related kinematic 

parameters of the hand/fingers trajectories were 
automatically extracted. The HC subjects performed the tests 
in the same environmental conditions and with the same 
system setup of PD patients.  

F. Kinematic Parameter Selection 

The automatic assessment of UPDRS tasks makes use of 
the well establish correlation existing between the kinematic 
parameters of the movements, objectively evaluated by the 
system, and the severity of the impairment, subjectively rated 
by neurologists and expressed as UPDRS scores [4]. The 
kinematic parameters we choose are closely related to the 
typical characteristic of the patient movement that are used 
by neurologists to score the performance (amplitude, speed, 
rhythm, hesitations, and others). To compact the information 
associated to the parameters and to reduce their redundancy 
the most discriminative ones among them have been 
identified for every UPDRS tasks. First, a Principal 
Component Analysis (PCA) was applied to the initial set of 
parameters to filter out those which contribute less than 5% 
to represent the whole dataset. Then, the selected kinematic 
parameters were correlated to neurologist UPDRS scores 
(Spearman’s correlation coefficient ρ), keeping only those 
ones with the best correlation with neurologist UPDRS 
scores, at significance level p<0.01 (Table I). Note that the 
choice of the parameters is such that increasing values of the 
parameters indicate a worsening of the performance. 

In this context, the kinematic parameters of the HC 
subjects have been used to normalize the PD ones. Thanks to 
the better performance of HC subjects, their average score 
values pi HC are always better than the pi PD ones, and are 
used to obtain normalized PD parameters ( pi PD norm  = pi PD 
/pi HC). This selection process produces normalized 
parameters which are able to discriminate UPDRS classes 
for the FT, OC and PS, highlighting the increasing severity 
of motor performance by the corresponding increasing of 
their values. This is visually confirmed by the mean values 
of the selected kinematic parameters versus UPDRS severity 
class as shown in the radar graphs of Figure 4(a) for FT, 
Figure 4(b) for OC and Figure 4(c) for PS tasks respectively. 
UPDRS classes for the FT, OC and PS, highlighting the 
increasing severity of motor performances by the 
corresponding expansion of the related radar graph 
representation.  

G. Automatic UPDRS Assessment by Machine Learning  

To implement the automatic assessment of the FT, OC 
and PS UPDRS tasks, three data sets of “parameter vector – 
neurologist UPDRS score” pairs were used to train three 
different classifiers. We use the LIBSVM library package 
[20] to implement three Support Vector Machine (SVM) 
classifiers with polynomial kernel. Their accuracy in 
assigning correctly the UPDRS scores was tested by using 
the leave-one-out cross validation method. The confusion 
matrices were used to characterize the classification 
performance of the SVM classifiers. 

An interesting feature offered by the SVM classifier 
implementation is that, given the kinematic parameters 
vector as input, the classifier output is the vector P of 
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(a) 

 

(b) 

 

(c) 

Figure 4. Radar graph from selected kinematic parameters for FT task 

(a), OC task (b) and PS task (c) 

probabilities pj that the input vector belongs class Cj. To test 
the classifiers and build the confusion matrices the class Ck 
corresponding to the highest probability pk among all the 
probabilities in P is chosen.  

TABLE I.  SELECTED KINEMATIC PARAMETERS 

Name 
Finger Tapping UPDRS task 

Meaning Unit ρ-value 

X1 Maximum opening (mean) mm -0.43 

X2 Maximum opening (CV) - 0.35 

X3 Maximum amplitude (mean) mm -0.41 

X4 Maximum amplitude (CV) - 0.39 

X6 Duration (CV) - 0.42 

X9 Maximum opening velocity (mean)  mm/s -0.58 

X10 Maximum opening velocity (CV) - 0.39 

X11 Maximum closing velocity (mean) mm/s -0.55 

X12 Maximum closing velocity (CV) - 0.43 

X13 Main Frequency Hz -0.48 

Name 
Opening-Closing UPDRS task 

Meaning Unit ρ-value 

X1 Maximum opening (mean) mm -0.54 

X2 Maximum opening (CV) - 0.34 

X3 Maximum amplitude (mean) mm -0.55 

X4 Maximum amplitude (CV) - 0.31 

X5 Duration (mean) s 0.25* 

X6 Duration (CV) - 0.58 

X9 Maximum opening velocity (mean)  mm/s -0.63 

X10 Maximum opening velocity (CV) - 0.47 

X11 Maximum closing velocity (mean) mm/s -0.54 

X12 Maximum closing velocity (CV) - 0.53 

Name 
Pronation-Supination UPDRS task 

Meaning Unit ρ-value 

X1 Maximum supination (mean) deg -0.36 

X2 Maximum supination (CV) - 0.05 

X9 Maximum supination velocity (mean)  deg/s -0.42 

X10 Maximum supination velocity (CV) - 0.35 

X11 Maximum pronation velocity (mean) deg/s -0.46 

X12 Maximum pronation velocity (CV) - 0.44 

X13 Main Frequency Hz -0.47 

X19 Pronation Phase Duration s 0.33 

Legend 

Coefficient of Variation: ratio of standard deviation (σ) to mean μ of the parameter. CV = σ/μ 

Maximum Opening/Supination: peak of distance/angle in one movement 

Amplitude: difference between maximum and minimum distance/angles in one movement 

Duration: time elapsed between the start and the end of one movement 

Maximum Opening/Supination Velocity: peak in an opening/supination phase of one movement  

Maximum Closing/Pronation Velocity: peak in a closing/pronation phase of one movement  

Opening/Supination Phase Duration: Time for opening/supination phase of one movement 

Closing/Pronation Phase Duration: Time for closing/pronation phase of one movement 

Rate: Number of movements per second 
Main Frequency: Frequency with the peak in power spectrum (bandwidth 0.. 4 Hz) 
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The probabilistic assignment P of the classifier output 
allows for an interesting extension to continuous values of 
the discrete UPDRS classification obtained using the most 
probable class. For this purpose, for each task, the 
probabilities pi to belong to specific UPDRS classes (i.e., the 
outputs of the related classifier) have been combined in a 
weighted mean. 

In this way, a continuous estimation (W) of the UPDRS 
score is obtained (1): 

 

                                     W = ∑ i ∙ pi                                                        (1) 

i = 0..4; pi = probability to belong to class Ci 

 
The advantage of this approach is the possibility to assess 

continuous variations of motor impairments that is not 
possible to obtain with a quantized (0-4) UPDRS score. A 
support to the correctness of the proposed extension is based 
on the choice of kinematic parameters, which are closely 
related to the clinical ones; the increase of a parameter value 
should correspond to an increasing of the neurologist’s score. 
In practice, the classifiers output probabilistic assignment 
vectors P with only two significant probabilities that are 
related to contiguous classes. An application of the 
continuous UPDRS score estimate W in monitoring small 
fluctuation of patient impairment is presented in the 
preliminary experiments paragraph.  

III. RESULTS 

A. Accuracy of the Automatic Assessment 

The confusion matrices shown in Table II, III and IV 

were used to characterize the classification performance of 

the SVM classifiers for the FT, OC and PS UPDRS tasks, 

both for the left and the right hand.  

From them, all standard parameters for classifier 

evaluation (accuracy, sensitivity and so on) can be easily 

derived. 

TABLE I.  FT CONFUSION MATRIX (UPDRS CLASSES) 

 
SYSTEM SCORES 

 C0 C1 C2 C3 

CLINICAL 

SCORES 

C0 15 3 0 0 

C1 2 21 2 0 

C2 0 1 18 3 

C3 0 0 2 13 

TABLE II.  OC CONFUSION MATRIX (UPDRS CLASSES) 

 
SYSTEM SCORES 

 C0 C1 C2 C3 

CLINICAL 

SCORES 

C0 14 2 0 0 

C1 1 17 2 0 

C2 0 1 22 3 

C3 0 0 4 14 

TABLE III.  PS CONFUSION MATRIX (UPDRS CLASSES) 

 
SYSTEM SCORES 

 C0 C1 C2 C3 

CLINICAL 

SCORES 

C0 8 3 0 0 

C1 1 10 2 0 

C2 0 2 30 6 

C3 0 0 3 15 

 
It can be noted the nonzero off diagonal elements of the 

matrices are one position far from the diagonal ones, 
meaning the classification errors were limited to one UPDRS 
class. 

B. Preliminary Experiments on UPDRS Assessment 

A preliminary experiment to assess the feasibility of the 
proposed system in monitoring PD patient at home has been 
conducted. A small group of PD patients (4 subjects) used 
the system at home for a period of a week. The subjects were 
instructed to perform FT, OC and PS task at different times 
(30m, 1.5h, 2.5h, 3.5h) from drug intake, every day of the 
week. The intent was to assess the potential fluctuations in 
upper limb motor performance in the period after the drug 
intake. 

To give insight of the experiment results, a sample of the 
FT assessment is shown in Figure 5 for a PD patient, male, 
65 years old, diagnosis at 60, non-fluctuating, and with more 
motor impairment on the right side. The patient was 
performing the upper limb UPDRS tasks daily, at different 
times (30m, 1.5h, 2.5h, 3.5h) from drug intake as required. 
Thanks to the data storage and the remote retrieving 
capability of the system, the session data (video, scores, 
parameters) and in particular the videos acquired by the 
system during task executions were accessed from remote, 
analysed and scored by the neurologist for both hands, 
resulting in a FT score of UPDRS 0 or UPDRS 1. 

As shown in Figure 5, on the average, there is a good 
agreement between system and neurologist scores. 
Nevertheless, the system can assess tasks on a continuous 
scale (W score definition) respect to the standard discrete 
UPDRS score. This feature could open the possibility to 
investigate the interaction between drugs and motor effects 
with a more objective, sensible and hopefully accurate 
approach.  

IV. CONCLUSIONS AND FUTURE WORKS 

This work presents a non-invasive and low-cost system 
for the automatic assessment of PD patients performing 
standard upper limbs UPDRS tasks at home. The system is 
based on a new human computer interface that, by an 
accurate hand tracking allows both the system management 
and the automatic and objective UPDRS assessment. The 
hand gestural interface makes it suitable for motor impaired 
users, as are PD patients. The automatic assessment of 
UPDRS tasks is performed by a machine learning approach 
which uses some selected kinematic parameters that 
characterize the patient’s movements. UPDRS task 
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Figure 5. Automatic assessment of a FT task (left and right hand) at 
different times from drug intake. The continuous UPDRS assessment 

values and neurologist scores are shown at four different time. To 
facilitate the interpretation, scores are connected by coloured lines 

classifiers were trained during an experimental campaign 
where PD patients were assessed by the neurologist and the 
system. The results about the obtained confusion matrices of 
the classifiers show the classification errors are limited to 
one UPDRS class and only in a few cases, making the 
system suitable for at home self-administrated assessment of 
upper limb UPDRS tasks. Based on the classifier outputs, a 
new continuous estimation of the UPDRS score is introduced 
and its potential benefit discussed. 

Preliminary results about the application of the 
continuous UPDRS score in the at home monitoring of PD 
patients are presented. Further experiments are still needed to 
validate both the system usability and accuracy in the home 
environment, and the usefulness of the continuous UPDRS 
score here introduced in monitoring fine motor impairment 
fluctuations. Next steps will address also the extension of 
this solution to the analysis of other UPDRS tasks, aiming to 
obtain a global and comprehensive assessment of the neuro 
motor status of PD patients. It would be very important in the 
perspective of an optimization of the drug therapy, so 
improving both the clinical management and the patient's 
quality of life. This would be even more relevant if the 
overall assessment could be carried out at the patient's home, 
whenever more frequent observations are needed to better 
evaluate worsening in motor symptoms. 
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Abstract—Object of the study was to evaluate the efficacy of 
propriocettive Focal Stimulation on Gait in moderate 
Parkinson (PD) patients by a preliminary open multicentric 
study, using Equistasi®, nanotechnological device of the 
dimension of a plaster which generates High Frequency 
segmental vibration. The efficacy of Gait Analysis (GA) on 
evaluating gait modification on Parkinson’s Disease (PD) 
Patients is already well known. On the other hand, several 
studies have shown that Proprioceptive Focal Stimulation 
seems to be useful in symptoms amelioration in several 
neurological disease. Therefore, GA was recorded in a group of 
PD patients. Twenty-one PD patients (age 69,51 years, 
Duration disease 8.52 years, Duration Therapy 7,19 years; 
H&Y 2.46) at their best on therapy, were enrolled in the study. 
Two GA were performed always at the morning, before and 
after the treatment.  Three plaques devices were put on the 
skin: one at C7, one at the right and the left leg, on soleus 
muscle. Equistasi® is a nanotechnological device of the 
dimension of a plaster which generates High Frequency 
segmental vibration.  Clinical state was monitored by 
MDUPDRS part III. Parametric (One-way ANOVA and 
paired t-Student) and not – parametric statistic (Freidman 
ANOVA and Wilcoxon test) were used. The analysis of the 
Spatial –Temporal variables showed a significant improvement 
of Mean Velocity (MV) p=.002, Stride Lenght (SL) in right and 
left respectively p=.0013 and p=.017, Stance (STA) in right and 
left respectively p=.025 and p=.047 and Double Support Stance 
(DSS) in left and right stride respectively p=.034 and p=.033. 
MDUPDRS Part III was statistically reduced with p=0.017; 
furthermore the items 3.10, and 3.12 were statistically reduced 
respectively with p=.025 and p=.046. The results, in this group 
of patients, encourage to investigate the mechanical focal 
vibration as stimulation of proprioceptive system in PD. The 
effect of the device on patients may open a new possibility to 
the management of PD. The data indicates as the device 
ameliorates postural stability and gait performance and 
confirms the support that GA gives to underlight the 
modifications of gait in PD patients.

Keywords-Parkinson; Rehabilitation; focal vibrations; 
Equistasi; Gait Analysis. 

I. INTRODUCTION 

Parkinson’s Disease one of more diffuse 
neurodegenerative disease, second after Alzheimer’s disease, 
present four cardinal motor symptoms: tremor, rigidity, 
bradykinesia, and postural instability. Last sign is the more 
influent on the activity of daily living, because it induces 
falls [10]. Pharmacological therapy as well as surgical 
therapy are not enough to well control this symptom, and 
many times the postural instability may induce fear to fall 
syndrome, and the PD patient are confined in wheelchair 
[11].  It is already know the Basal Ganglia have golden role 
in the pathological progression of PD patients, but it is not 
really true for balance and postural instability, where the 
Supplementary Motor Area, seems to be an important role 
specially, on production of Anticipatory Postural 
Adjustments (APAs). Humans in fact use anticipatory and 
compensatory postural strategies to maintain and restore 
balance when perturbed. Inefficient generation and 
utilization of anticipatory postural adjustments (APAs) is one 
of the reasons for postural instability [12]. SMA is a relay of 
many loops, not only cortical-subcortical loop (cortical-
BBGG- thalamic- Cortical loop), but also vestibular loop, 
and proprioceptive loop and is known that gait analysis is 
important for the clinical evaluation of PD patients [1]. 
Equistasi®, nanotechnological device of the dimension of a 
plaster which generates High Frequency segmental vibration. 
It is not really known how this devise works, there are some 
studies indicating that this focal stimulation modifies the H 
wave in the medulla [13] and in PD patients, the presence of 
Equistasi improves effects of rehabilitation [2]. Object of the 
study was to evaluate the efficacy of Propriocettive Focal 
Stimulation in moderate Parkinson disease patients by a 
preliminary open study. 

II. METHOD 

A. Design 

This is a multicentric, open study. 21 patients diagnosed 
with hydiopatic PD were enrolled in four rehabilitation 
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centers in Italy: S. Lucia Foundation in Rome (principal 
center), the Auxologic Institute of Piancavallo Verbania, the 
Villa Margherita Clinic in Vicenza and the Mondino 
Neurological Institute of Pavia, each received approval from 
their ethics committee with protocol number respectively 
CE/PROG 478/15 del 19/11/2015, 58/16, 61/16, 60/16 After 
screening and enrollment, the patients receive a 
proprioceptive mechanical stimulation for 8 weeks with the 
Equistasi method [2], in the absence of any other 
rehabilitative trials. Informed consent was obtained from the 
participants. 

B. Subjects 

Participants could be included if they had consented to 
participation, patients with rigid akinetik form of bilateral 
idiopatic Parkinsons Diseasei (Hoehn and Yahr 2-3) in 
according to current criteria [3] for at least four years with a 
good response to antiparkinsonian therapy and with stable 
drug therapy for at least 3 months. The exclusion criteria 
were: presence of co-morbidity that prevent safe mobility or 
exercise (including clinically evident neuropathy and 
important medical conditions such as malignant tumors), 
severe dysautonomia with marked hypotension, major 
depression of mood, dementia, pregnancy, caridac pacer 
maker, deep brain stimulation (DBS) or other conditions 
affecting postural stability (eg poor visual acuity or 
vestibular dysfunction). In addition, patients had to have a 
MMSE > 24 points [5]. 

C. Instrumental assessment 

As primary measures of outcome for Gait Analisys 3D  
the main measures of the linear path (BTS Smart system 
with Davis Procol in all the Centers) were evaluated: the 
speed (Velocity), the length of the step (Stride Length), the 
percentage of support times (Stance) and the percentage of 
the times of double support (DST).  

D. Clinical assessment 

Motor impairment was assessed with the parts III (motor 
examination) of the Unified PD Rating Scale [6] and Items 
3.10, 3.11, 3.12, 3.13 were separately evaluated for 
underlying data on gait, freezing of gait, postural and 
postural instability of PD patients. Other data collected at 
baseline included age, gender, body mass index (BMI), 
disease duration, Hoehn and Yahr scale, anti Parkinsonian 
treatment expressed as levodopa-equivalent daily dose [7] 
and cognitive status assessed with the MMSE. All adverse 
events such as injuries, were verified and recorded during the 
study.  

E. Statistical Analysis 

This clinical trial used a sample of convenience, with the 
assumption that 21 participants would be ample to explore 
safety and feasibility. Given the small sample and the lack of 
normal distribution of most of the variables on Shapiro-Wilk 
test, nonparametric statistics were used. Treatment effect 
across time points were explored Wilcoxon signedrank test. 
we have also verified with Montecarlo method (MC) [12] 

[13], the adequacy of the p-value estimates. Categorical 
variables were compared by means of chisquare test. All 
values were expressed as mean and standard deviation were 
chosen to improve clarity of data presentation. IBM SPSS 
Statistics ver. 20.0 was used for all statistical analyses. All 
tests were two-sided with a level of significance set at 
P,0.05. 

III. RESULT 

Twenty-one subjects were enrolled in this open study 
(Table 1) and we have observed the clinical and instrumental 
assessments before (T0) and after (T1) 8 weeks of treatment. 
No major adverse events or death were observed during the 
study period. 

TABLE I: BASELINE DEMOGRAPHIC AND 
CLINICAL VARIABLES. BMI: BODY MASS INDEX; 
H&Y: HOEHN & YAHR STAGE; LEDD: LEVODOPA 
EQUIVALENT DAILY DOSE; MMSE: MINI-MENTAL 

STATE EXAMINATION. 

Patients Mean stdv 

SEX (M/F) 14/7 

SIDE (R/L) 13/8 

AGE 69,51 10,1 

BMI 25,89 3,7 

DISEASE DURATION 8,52 3,2 

YEARS OF THERAPY WITH L-DOPA 7,19 3,1 

DISEASE ONSET AGE 60,04 10,4 

LEDDS 697,3 110,4 

H/Y 2,46 0,51 

MMSE 26,4 1,46 

A. Kinematic parameters 

In the kinematic variables of the gait, we observed a 
significant improvement in Speed from 0.694 m/s to 0.756 m 
s p = .0002; a significant increase in the length of the Stride, 
both right and left respectively from 0.823 m to 0.902 m p = 
.0013 and from 0.835 m to 0.895 m p = .0173; Stance right 
and left significantly decreases, respectively from 64.65% to 
62.75% p = 0.0253 and from 64,22%; to 62,75% p = .0342; 
the right and left DST decreases significantly, respectively 
from 14.02% to 12.99% p = .0342 and from 14.71% to 
13.47% p = .0333 (Table 2). 
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TABLE II: DIFFERENCES BETWEEN T0 AND T1 IN 
THE TEMPORAL SPACE PARAMETERS; WE USED 

ANOVA FOR REPEATED MEASURES 

Pre (dst) Post (dst) p value 

Velocity (m/s) 0,694 (0,25) 0,756 (0,24) .0002 

Stride Lenght R (m) 0,823 (0,25) 0,902 (0,22) .0013 

Stride Lenght L (m) 0,835 (0,14) 0,895 (0,19) .0173 

Stance R (%) 64,65 (3,5) 63,46 (3,4) .0253 

Stance L (%) 64,22 (2,3) 62,75 (3,5) .0473 

DST R (%) 14,02(3,2) 12,99 (3,1) .0342 

DST L (%) 14,71 (2,8) 13,47 (3,1) .0333 

B. Clinics parameters  

In the clinical variables we observed a significant 
decrease in Total Score UPDRS Part III from 37.57 to 32.25 
p = .0179; a significant decrease of ITEM 3.10 from 1.761 to 
1.333 p = .025 and a significant decrease of ITEM 3.12 from 
1.809 to 1.322 p = .0461. No other significant difference was 
observed at the end of active treatment (Table 3).  

TABLE III: DIFFERENCES BETWEEN T0 AND T1 
IN CLINICAL VARIABLES; WE USED WILKOXON 

SIGNED RANK TEST AND MC METHOD. 

IV. CONCLUSION 

It is already demonstrated that the vibration of the axial 
muscles, produces systematic change in the erect posture 
[15] and the in the orientation of the body [16], and it 
induces in an improvement of balance. The imperceptible 
vibration released from the Equistasi device, have already 
given a positive response in the rehabilitation of some 
neurodegenerative pathologies [2] [17] [18] and have also 
highlighted their capacity in the modulation of the spinal 
circuit [13]. Nevertheless, the data indicate a trend of 
improvement on all spatial-temporal parameters, as if the 
vibrations were acting even on different circuits from the 
dopaminergic. It is noted in literature how the rehabilitation 
of Parkinson’s disease is centered on the stimulation of the 
vestibule spinal reflex (VSR), can modify those components 
of the ambulation more correlated with the rhythmicity and 
the equilibrium [19]. Furthermore precedent studies put in 
evidence how in PD there a compromise sense of timing [20] 

and of the discrimination of the proprioceptive input [21]. 
Therefore, the focal muscular vibration (FV) not only have 
an impact on the circuit on the spinal cord, but also provide a 
notable proprioceptive influx to different parts of the central 
nervous system, thus influencing the precision of the 
execution of the voluntary movements [14]. This open-label 
study has the limit of not being controlled and the number of 
patients must be calculated appropriately to have a power of 
at least 80%. Nevertheless, the results, in this group of 
patients, encourage to investigate the mechanical focal 
vibration as stimulation of proprioceptive system in 
Parkinson’s disease patients, and open a new possibility for 
management of moderate PD patients. Moreover, this study 
confirms the importance of GA in the clinical approach of 
Parkinson’s disease. 

REFERENCES

[1] Peppe A, Chiavalon C, Pasqualetti P, Crovato D and 
Caltagirone C. “Does gait analysis quantify motor 
rehabilitation efficacy in Parkinson’s disease patients?” Gait 
Posture. 2007 Sep;26(3):452-62. 

[2] Volpe D, Giantin MG and Fasano A “A wearable 
proprioceptive stabilizer (Equistasi®) for rehabilitation of 
postural instability in Parkinson’s disease: a phase II 
randomized double-blind, double-dummy, controlled 
study”.PLoS One. 2014 Nov 17;9(11). 

[3] Berardelli A, Wenning GK, Antonini A, Berg D, Bloem BR,
Bonifati V, Brooks D, Burn DJ, Colosimo C, Fanciulli A, 
Ferreira J, Gasser T, Grandas F, Kanovsky P, Kostic V, 
Kulisevsky J, Oertel W, Poewe W, Reese JP, Relja M, 
Ruzicka E, Schrag A, Seppi K, Taba P and Vidailhet M. 
“EFNS/MDS-ES/ENS [corrected] Recommendations for the 
diagnosis of Parkinson’s disease.” Eur J Neurol 20: 16–3. 

[4] Hoehn MM and Yahr MD (1967) “Parkinsonism: onset, 
progression and mortality. Neurology” 17: 427–442.

[5] Folstein MF, Folstein SE and McHugh PR (1975) ‘‘Mini-
mental state. A practical method for grading the cognitive 
state of patients for the clinician.” J Psychiatr Res 12: 189–
198. 

[6] Fahn S and Elton R Members of the UPDRS Development 
Committee (1987) “Recent developments in Parkinson’s 
disease.” Fahn S, Marsden C, Calne D, Goldstein M, editors. 
Folorham Park, NJ: Macmillan Health Care Information. 
153–163, 293–304. 

[7] Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, et al. 
(2010) “Systematic review of levodopa dose equivalency 
reporting in Parkinson’s disease.” Mov Disord 25: 2649–
2653. 

[8] Fay MP, Kim HJ and Hachey M. “On Using Truncated 
Sequential Probability Ratio Test Boundaries for Monte Carlo 
Implementation of Hypothesis Tests”. J Comput Graph Stat. 
2007;16(4):946-967.  

[9] Hozo I, Tsalatsanis A and Djulbegovic B. “Monte Carlo 
decision curve analysis using aggregate data.” Eur J Clin 
Invest. 2017 Feb;47(2):176-183. 

[10] Benatru I, Vaugoyeau M and Azulay JP. (2008) “Postural 
disorders in Parkinson’s disease.” Neurophysiol Clin 38: 459–
465 

[11] Smulders K, Dale ML, Carlson-Kuhta P, Nutt JG and Horak 
FB. “Pharmacological treatment in Parkinson's disease: 
Effects on gait.” Parkinsonism Relat Disord. 2016 Oct;31:3-
13 

Pre (dst) Post (dst) p value

UPDRS III 37,57 (16,4) 32,25 (12,0) .0179 

ITEM 3.10 1,761 (0.94) 1,333 (0,73) .0250 

ITEM 3.11 0,525 (0,94) 0,656 (0,92) .1861 

ITEM 3.12 1,809 (1,05) 1,322 (1,02) .0461 

ITEM 3.13 1,901 (1,17) 1,550 (1,03) .0767 

23Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-657-6

SPWID 2018 : The Fourth International Conference on Smart Portable, Wearable, Implantable and Disability-oriented Devices and Systems

                            30 / 41



[12] Schlenstedt C, Mancini M, Horak F and Peterson D. 
“Anticipatory Postural Adjustment During Self-Initiated, 
Cued, and Compensatory Stepping in Healthy Older Adults 
and Patients With Parkinson Disease.” Arch Phys Med 
Rehabil. 2017 Jul;98(7):1316-1324 

[13] Alfonsi E, Paone P, Tassorelli C, De Icco R, Moglia A, Alvisi 
E, Marchetta L, Fresia M, Montini A, Calabrese M, Versiglia 
V and Sandrini G. “Acute effects of high-frequency 
microfocal vibratory stimulation on the H reflex of the soleus 
muscle. A double-blind study in healthy subjects.” Funct 
Neurol. 2015 Oct-Dec;30(4):269-74. 

[14] Kording KP and Wolpert DM (2006) “Bayesian decision 
theory in sensorimotor control.” Trends Cogn Sci 10: 319–
326. 

[15] Courtine G, De Nunzio AM, Schmid M, Beretta MV and 
Schieppati M (2007) “Stance- and locomotion-dependent 
processing of vibration-induced proprioceptive inflow from 
multiple muscles in humans.” J Neurophysiol 97: 772–779. 

[16] Lackner JR and Levine MS (1979) “Changes in apparent 
body orientation and sensory localization induced by 
vibration of postural muscles: vibratory myesthetic illusions.” 
Aviat Space Environ Med 50: 346–354. 

[17] Spina E, Carotenuto A, Aceto MG, Cerillo I, Silvestre F, 
Arace F, Paone P, Orefice G and Iodice R. “The effects of 

mechanical focal vibration on walking impairment in multiple 
sclerosis patients: A randomized, double-blinded vs placebo 
study.”  Restor Neurol Neurosci. 2016 Sep 21;34(5):869-76. 

[18] Leonardi L, Aceto MG, Marcotulli C, Arcuria G, Serrao M, 
Pierelli F, Paone P, Filla A, Roca A and Casali C. “A 
wearable proprioceptive stabilizer for rehabilitation of limb 
and gait ataxia in hereditary cerebellar ataxias: a pilot open-
labeled study.” Neurol Sci. 2017 Mar;38(3):459-463. 

[19] Tramontano M, Bonnì S, Martino Cinnera A, Marchetti F, 
Caltagirone C, Koch G and Peppe A. “Blindfolded Balance 
Training in Patients with Parkinson's Disease: A Sensory-
Motor Strategy to Improve the Gait.” Parkinsons Dis. 
Hindawi Publishing Corporation Parkinson’s Disease Vol 
2016, Article ID 7536862, 6 pages. 

[20] Fiorio M, Stanzani C, Rothwell JC, Bhatia KP, Moretto G, et 
al. (2007) “Defective temporal discrimination of passive 
movements in Parkinson’s disease.” Neurosci Lett 417: 312–
315. 

[21] Jacobs JV and Horak FB (2006) “Abnormal proprioceptive-
motor integration contributes to hypometric postural 
responses of subjects with Parkinson’s disease.” Neuroscience 
141:999–1009.

24Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-657-6

SPWID 2018 : The Fourth International Conference on Smart Portable, Wearable, Implantable and Disability-oriented Devices and Systems

                            31 / 41



TouchWear: Context-Dependent and Self-Learning Personal Speech Assistant for 
Wearable Systems with Deep Neural Networks 
Using Contextual LSTMs on Recurrent Neural Networks 

 

Joshua Ho 
Research Center for Information Technology Innovation 

Academia Sinica 
Taipei, Taiwan 

jho@iis.sinica.edu.tw 

Chien-Min Wang 
Institute of Information Science 

Academia Sinica 
Taipei, Taiwan 

cmwang@iis.sinica.edu.tw
 
 

Abstract— Context awareness in future adaptive systems for 
wearable computers comprise many features, such as ability to 
sense and perceive contexts, to be inferred by the generation of 
a user model, to perform the computation and present the 
communication interface, and to provision implemented 
services. In this work, we introduce a system application 
prototype implemented by distinguishing contexts from 
wearable systems. Thus, user behavior, activity, and 
application data are trained to generate a user model. Next, a 
voice interface administered by the artificial personal speech 
assistant not only enables conversation with the user but is also 
used to build a recurrent model of deep neural networks 
primarily based on the conversation logs. Ultimately, the 
service and recommendation framework are implemented and 
deployed so that the wearable system has the capacity to aid 
people in need by means of service-oriented and wearable 
adaptation. 

Keywords-wearable computing; personal speech assistant; 
context awareness; deep neural network. 

I.  INTRODUCTION 
Using wearable devices, like smart watch and smart 

glasses, is more than just convenient, because they collect 
important information about the context according to the 
user’s body behavior and head movement. In contrast to 
smartphone users who often receive limited information of 
little on-body context because of their ‘heads-down’ gesture 
from looking at their smartphones, users of wearable devices 
are able to focus more on social interactions and the 
surrounding views. Wearing smart watches and smart glasses 
permits fewer restrictions and more augmented conditions. 

In recent years, artificial speech assistants like Apple Siri, 
Amazon Alexa, Cortana, and Google Assistant [19] have 
become widely adopted as a conversing medium for mobile 
computation. By taking advantage of acoustic and 
concatenative models of Text-To-Speech (TTS), speech 
assistants can execute and control voice commands, system 
recommendations and services according to user requests. In 
our design, recommendations and services can more 
effectively conform to personal intentions, activities, 
favorites, records, surrounding environments, social 
networks and crowdsourced information. 

 
Figure 1.  Context dependent states with wearable systems are 

automatically learned and identified by the Personal Speech Assistant of 
DNN, which continously offers relevant and appropriate services. 

Therefore, the proposed system, TouchWear, aims to use 
wearable computers to present contextual, automated sensing 
as well as a service-oriented workflow for human 
computation (Figure 1). Furthermore, TouchWear is 
represented by the personal speech assistant (PSA) that 
models with continuous self-learning Deep Neural Networks 
(DNN), to transform and retrieve helpful, on-the-fly, 
historical, or even private information. Finally, the system 
provides mobile services that hinge on the infrastructure 
being successfully used in practical deployment. 

This paper introduces the implementation of our 
prototype application for wearable devices, which is built on 
context dependent and continuous information from the user 
perspective based on modern Artificial Intelligence of 
DNNs. TouchWear is designed according to the following 
four methods: (1) integration of previous research paradigms 
for recognizing user activity into the system, and the design 
of a system adapter for context awareness through the use of 
wearable devices; (2) evaluation of learning patterns from a 
user’s behavior and a conversation proposed by the PSA, and 
performance of continuously self-learning AI model based 
on DNNs, where the system adapter is flexible enough to 
manage either notifying the PSA of recognized contexts, or 
perceiving new contexts; (3) design of a message extractor 
and filter to better address the user’s contextual query, while 
at the same time, personalized results retrieved and generated 
by the PSA processed every now and then; (4) 
implementation of an infrastructure for mobile service-
oriented applications (SOAs), which model the business 
requirement and bring services via specially designed user 
interfaces.
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Figure 2.  TouchWear system architecture – an overview of wearable application. 

The organization of this paper is presented as follows: 
Section II provides a review of the previously related works. 
Section III depicts the design of the system architecture and 
its challenges. Section IV evaluates the use cases and 
preliminary results, and finally, Section V concludes the 
paper with our current plan for the future work. 

II. RELATED WORK 
In recent years, research has discussed many areas that 

are related to our work, such as Human Activity Recognition 
(HAR) [1][5][6] on mobile devices, which helps us 
understand how to analyze user’s wearable sensory systems 
and the designed interfaces [2][3] for perceiving contexts. 
Context-awareness involves the concept of sensing oneself in 
a context, which means tracking ‘Head-Centered and 
Context-Aware Learning’ [12][15][16] on a wearable device, 
and also exploring the surrounding environments. Pervasive 
computing to address location-awareness [4] has also drawn 
considerable attentions in the development of wearable 
computers [7]. Other related work on wearable devices 
tackles privacy-preserving issues [11] on a crowd-powered 
system, which also inspires us for designing and enhancing 
our information retrieval, filtering, and extraction. 

Furthermore, conversational agents with Artificial 
Intelligence are becoming increasingly ubiquitous in 
business, technology and daily life. Relevant research on 
these agents describe PSA to recognize the disordered 
speech [18], Chatbots with a Support Vector Machine 
(SVM) classifier [9], end-to-end systems [21][22] to play the 
communication role to synchronize physical motoring [10], 
and DNN-based agents to build embedded questions and 
answers, based on bidirectional long short-term memory 
(LSTM) network to measure the cosine similarity [8][17]. 

In order to achieve ubiquitous data access on mobile and 
wearable computing in TouchWear, SOAs are practiced and 
designed due to the limited memory and connection 
bandwidth [13]. Based on the advocated services designed 
and implemented by SOAs [14], our proposed system is able 
to consider user’s adaptive contexts as predicted services via 
PSA more adequately and efficiently than the related works. 

III. SYSTEM ARCHITECTURE 
The system guides a user through the designed wearable 

application (Figure 2), while the PSA provides instructions 
and conversations on the voice-based application. The 
below steps present the processes, integrated frameworks, 
components and how they work together. 

A. Context Aware Sensing and Wearable Devices  
Contextual sensing is the most fundamental analysis of 

context-aware systems. TouchWear directly uses sensory 
data of Accelerometer, Gyroscope, and the signals of Global 
Positioning Systems (GPS) to detect a user’s activity and 
location, where Wi-Fi signals are also considered in the 
indoors [24]. With our wearable devices (Google Glass [25], 
Sony SmartEyeglass [26]) and producing data (frequency 
5Hz), the modeled SVM classifier is capable of recognizing 
targeted activity and location in around 3 seconds. 

B. Activity Recognition and System Adapter 
In Table 1, we depict six activities (both indoors and 

outdoors) in which TouchWear takes the detected context-
aware messages as prerequisite information to prepare for the 
conversations with the user. The system adapter, which is 
based on context awareness, will inform PSA per user’s 
request to initiate the conversation. As for the content of the 
conversation, the DNN will periodically notify the PSA via 
APIs if there is any update to the latest entropy. Furthermore, 
continuous self-learning occurs to conceive new contexts, 
such as new activities, or to improve accuracy of old ones. 

APIs can be triggered by the following: highly 
compressed formats, publishing and exchanging protocols, 
Web Services with SOAP, XML-based service invocation, 
JSON RESTful services implementing TouchWear, and 
interface compliance with Open Standard Gateway initiative 
(OSGi). The designed adapter needs not only to implement 
the regulations satisfying the requirement of each 
application, but also to use the exact pair of enterprise public 
and private key infrastructure (PKI), SSL, or the secure PGP 
encryption system [20] to cryptographically achieve needs. 
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TABLE I.  RECOGNIZED ACTIVITY AND LOCATIONS  

Smart Glasses Activity, Location, and Performance 
Activity  Outdoor Indoor Performance 

driving city road, highway N/A 87% 

jogging hiking route, 
mountain area 

gym, indoor 
stadium 86% 

walking side walk, street building hallway, 
house 88% 

sitting outdoor bench, 
park, open field 

office, study 
room, living room 89% 

cooking BBQ, brewery area kitchen, dining 
room 87% 

dining places for grilling, 
garden 

dining room, 
restaurant 91% 

C. Database and Deep Neural Networks  
Early works on computer speech systems focused on 

rule-based or hand-crafted implementations to simulate 
human conversations [9]. However, it is very difficult to 
enumerate the real conditions and all possible states, 
especially in light of the great complexity of human 
language. For this reason, recent speech assistants and 
Chatbots in Recurrent Neural Networks (RNNs) of DNN 
have been shown to meliorate accuracy to improve 
performance. After the evaluations of two large datasets, the 
Cornell Corpus of movie dialogues and thousands of Twitter 
logs with Long Short-Term Memory networks (LSTMs), 
TouchWear takes sequence to sequence (seq2seq) learning 
process [23] to construct its memory dependent network by 
using the conversation logs at this stage. Information of 
personal (such as emails) and social (Emails, tweets) is 
stored in the database server, and also continuously migrated 
to model the recurrent contextual information in the 
proposed system. 

D. Personal Speech Assistant 
The PSA, or AI Bot in TouchWear, is implemented by 

using the open-source project of Google Hangouts [30] to 
leverage current applications on our wearable platform. The 
AI Bot uses contextual information of activity recognition 
according to the wearable application; then, the AI Bot 
initials the automated service with example greetings such as 
“Hi buddy, would you like some music while driving?” or 
“Good morning John, how may I help you?”, which are the 
first contextual messages. In contrast to these examples in 
which the AI Bot initiates the conversation, users for 
instance can just simply say “Please mute, Bot” to switch it 
back to the on-demand service type. So, “OK, AI Bot” or “Hi 
Bot” are launched by user to converse with the AI Bot.  

 

 
Figure 3.  (A) Loss, (B) Accuracy: Training after 1000 epochs, where 

three testing datasets were evaluated. 

There were three testing datasets that contain 
conversation logs trained by the LSTMs in our DNN. Since 
the seq2seq training processes use the same training data to 
validate the model in each epoch done by TensorFlow [27] 
and tflearn [28] frameworks, an iteration of 1000 epochs 
generates a loss of 0.00385 and an approaching accuracy of 
1.00000 near the 400th epoch visualized on the tensorboard 
[27] (Figure 3). 

E. Filter and Extractor 
The retrieved responses are provided by AI Bot 

according to the deep learning from ongoing conversations, 
user Email threads, and simulated social tweets. TouchWear 
currently uses four categories to filter and extract the results, 
as shown in Table II. The four categorized directories in the 
system are regular and critical for personal information, and 
regular and privacy preserving for social information. 
Accordingly, the authentication plays a vital role in the 
‘critical’ category for personal information, whereas filtered 
datasets, using metadata and programming, are particularly 
essential for the ‘privacy preserving’ category for social 
information. 

TABLE II.  INFORMATION FILTER AND EXTRACTOR 

Information 
Type 

Category vs. Filter and Extractor 
Category Filter Extractor 

personal 
information 

regular none ranking 

critical 
authenticated 

by secure 
frameworks 

extracted ranking 
based on secure 

frameworks 

social 
informaion 

regular defined rules ranking 

privacy 
preserving filtered datasets 

extracted ranking 
based on filtered 

datasets 

F. Service-Oriented Mobile Application  
Mobile SOAs are examined and designed for 

TouchWear. The backend servers receive user commands 
through the PSA, and the commands are executed by 
contracting the system APIs of the targeted application. If the 
syntax is complying with the regulations and if the user’s 
authentications are authorized, the provisioning applications 
will be triggered and planned toward the completion to meet 
business requirements. At the present time, the system has 7 
mini services (or groups) to evaluate the system integrity in 
the experimental and validating phase. Table III below 
shows the list of SOA mini-services, where the services with 
asterisk have the permission to access the personal contacts. 

TABLE III.  SOA MINI SERVICE LIST 

SOA Services 
1. Voice or video call * 
2. Search and play music (personal music albums) 
3. Facility automation 
4. Search ‘keyword’: conversation logs, Email * 
5. Social networks: recommendation for shopping and entertainment * 
6. GPS navigation setup  
7. Food / restaurant search and reference  
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G. Other System Frameworks 
The system stands on the top of TensorFlow to build up 

DNNs with LSTM RNN, which is implemented by seq2seq 
learning process. In seq2seq, the encoder and decoder take 
the input and generate the output based on the semantic 
contexts. In our experiments, we observed that LSTM could 
learn to spell words and copy general syntactic structures to 
capture the essence of the input sentences. Thus, the system 
was prepared with initial trials of training data that consisted 
of 1025 Email threads, 480 lines of conversation log on 
Hangouts, and dozens of social tweets simulated by the 
open-source SocialEngine [29]. 

IV. USE CASES AND PRELIMITARY RESULTS 
We began our project with the aim of studying how to 

recognize activity and location by using sensors on wearable 
devices. The current system can recognize three activities, 
driving, jogging, walking with an accuracy up to 87% and its 
performance is getting better in our experiments. However, 
though sitting can be recognized with accuracy 89%, it is 
more difficult to distinguish dining and sitting since both are 
very similar, unless additional sensors like the camera and 
Wi-Fi signals are applied, same as for cooking as well. For 
information extraction and filtering, the current system ranks 
results with descending score and/or reverse chronicle order, 
and the top one will return to the query each time. 

Initial trials of use cases were conducted using 11 types 
(omitting indoor driving) according to 6 indoor and outdoor 
activities that were recognized by the system. From the 
user’s perspective, contextual services and conversing 
accuracy are the most important parts. Two use cases are 
demonstrated in Figure 4, where (a) a user is heading to work 
by driving and was successfully recommended an enjoyable 
song, and (b) a user is walking and located close to home or 
is on the way home, and the recipe recommendation of 
dinner is offered by AI Bot. 

 

            
                     (a)                                                 (b) 

Figure 4.  Demonstrated use cases (a) driving, (b) walking. 

TABLE IV.  SURVEY AND POSITIVE RESPONSES 

Interview Questions Positive Responses 
Q1. Are context-aware PSAs more 
perceived and helpful? 87.5% 

Q2. How is the performance by using 
contextual PSA with DNNs and SOA? 83.3% 

Also, the filtered datasets are designed to authenticate 
users before accessing their personal information so as to 
protect their privacy, where defined rules are given to control 
sharing and prevent the leaking of private information. 
Shared topics include food, entertainment, shopping 
experiences in Emails and tweets, with the removal of 
critical data according to filtered datasets. The initial trials 
were conducted in a proof-of-concept system, and the results 
show that the performance is very high regarding context-
awareness, the conversation accuracy of LSTMs and the 
targeted SOAs in the laboratory, though more calibrations to 
our system are still further required, such as ‘machine-
learning search’, ‘social sharing’ and ‘location precision’. 

The survey from our user study with 16 participants 
shows that the proposed system was more preferred than 
systems without context-awareness (Table IV): (i) the 
wearable platform with context-aware PSAs were found to 
be more advantageous, as helpful aids and with more 
perceived accuracy; (ii) the performance of the contextual 
PSAs was seen as more resembling a real and constructive 
intelligent agent that assists people in their daily life. These 
PSAs were based on the security and the preservation of 
privacy of personal and social information on LSTMs, and 
the designed SOA mobile applications also offer contextual 
services per user’s requests. 

V. CONCLUSION AND FUTURE WORK 
TouchWear proposes a unique system design for the 

proposed wearable application that exploits the contextual 
information for future wearable systems, by integrating a 
wearable platform, context-aware computing, PSAs, and 
modeling and modification of DNNs with recurrent neural 
networks, with the aim to design more intelligent solutions 
for problems that emerge in daily living. Moreover, the 
system is tailored to user-centric requirements and services 
effectively extracted by the designated information retrieval. 
Likewise, service operations are explicitly performed by the 
SOA-based mini services of mobile applications. Compared 
to systems without contexts, the proposed contextual DNNs 
significantly outperform the accuracy of conversation 
exchanges, start automated workflows for predicting and 
comprehending user’s status, and take into account user 
favorites, demands and social associations by using the AI 
Bot more intimately. The continuous self-learning processes 
are clearly able to achieve more system genuineness, 
usability and user-friendliness. Our implementation was also 
more favored by the users according to the interviews. The 
insightful design of the application is promising and can be 
extended to the benefit of many people, their workplaces, 
and homes. If this forthcoming system is extensively 
adopted, we anticipate in the future that optimal context-
awareness and context-intelligent wearable computing will 
be achieved in addition to Artificial Intelligence. 

In our future work, we will focus other subsets of DNNs 
for any domain, investigate more use cases of search and 
social application, and identify and design more scenarios for 
disability-oriented systems in wearable computing. We hope 
our upcoming systems will assist more people in their daily 
living and activities. 
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Abstract—Stress leaves a harmful impact on the health of people
and puts their health at serious risk. To assess stress, this study
presents an approach to measure the stress levels of graduate and
undergraduate students by analyzing the activity behavior of their
daily routine. Our approach monitors the activity behavior non-
invasively using the smartphone sensors. The activity behavior
is classified into three classes with an accuracy of 98.0% using
a support vector machine. We build linear relationship between
those recognized classes of activity (explanatory variables) and
stress level experienced by the students. This approach is based
on multiple linear regression that computes a stress score, and
categorizes stress in three levels: low, mild, and acute. Such results
illustrate that the graduate students experience high stress as
compared to the undergraduate students.

Keywords–Stress; activity and sleep behavior; smartphone sen-
sors.

I. INTRODUCTION

A natural defense of the human body, also known as
stress, protects individual against any danger. Stress for a short
time can be helpful, but long-term stress can negatively affect
health. People suffer from stress when they are overloaded and
feeling an inability to cope with the demands. Stress is a state
in which individuals are expected to perform too much under
sheer pressure and in which they can only marginally meet
the demands. These demands can be related to psychology,
finance, work, and relationships that pose a real challenge or
threat to health, and well-being of individuals. If stress is
not timely cured and the person is going through constant
stress, it can affect human body with headache, depression
[1], heart attack [2]-[4], stomachache, high blood pressure,
insomnia, and weakened immune system. Clinically, subjective
methods such as questionnaires and interviews are conducted
to evaluate stress, whereas for objective assessment of stress,
many researchers presented their works to detect stress [5]-
[11]. However, they tried to measure stress using like inva-
sive sensors EEG [5][9][10], ECG [11], and Galvanic Skin
Response (GSR) [6]. EEG or ECG sensors provide state-
of-the-art accuracy for stress detection. However, the usage
of EEG or ECG to analyze stress is impractical in real-life
settings, because people do not feel comfortable to go outside
in public places wearing EEG or ECG in their daily-life.
People suffering from stress may not choose to openly wear
the device because stressed persons are already shy to express
themselves and therefore, such wearables may not be socially
acceptable to them. Moreover, the efficiency of these devices
degrades as users perform any motion-related task. To the best
of our knowledge, no one has designed a system for non-
invasive detection of stress yet. Therefore, we are motivated

to design non-invasive stress detection system.

Stress score

MicrophoneAudio input

Accelerometer 

and gyroscope
Motion input

Smartphone sensors

Activity Recognition

Data analytics

Figure 1. An architecture of stress monitoring system.

Stationary Moving Sleepingy

Figure 2. Subject while performing different activities.

In this paper, we present a novel system to measure the
stress of the university students by analyzing their activity be-
havior in daily routine. We choose undergraduate and graduate
students to evaluate their stress level, because they are more
vulnerable to stress due to a variety of challenges such as poor
academic performance [12], finances [13], poor sleep [14], and
inability to cope with research demands of supervisor. Besides,
high rates of suicide in American and Asian countries are
associated with academic related stress [15]. It is imperative
to take preventive measures for protecting the students from
deleterious outcome associated with stress by monitoring their
daily activity behavior.

We have broadly categorized the daily-life routine of the
students into three clusters: stationary, moving, and sleeping.
We think that poor sleep and sedentary behavior (i.e., sta-
tionary) are two main indicators of stress, whereas movement
behavior of person signifies less stressed or happy man. Our
system consists of motion and audio sensors that records
input data with the assistance of an application (App) running
on a smartphone. We exploit the motion sensors namely
accelerometer and gyroscope-sensors and a microphone sensor
of the smartphone as the primary sources of data input to
our system. The motion sensors record the activity behavior
and the audio sensor records voice signal of the participants
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at the rate of 10 samples/second and 44100 samples/second,
respectively, as shown in Figure 1. The activity recognition
algorithm is applied to the acquired signals, and recognized
activity behavior is transmitted to the cloud server for data
analysis to detect stress.

This paper is organized as follows. In Section II, we
describe the experimental setup to collect raw data using the
smartphone sensors and the proposed approach. In section III,
we discuss and evaluate the system performance for stress
detection based on the daily activity behavior.

II. MATERIALS AND METHODS

Our approach employs tri-axial accelerometer, tri-axial
gyroscope, and microphone of a smartphone. An accelerometer
and gyroscope are dedicated to measuring acceleration and
angular velocity of the subjects during stationary, moving, and
sleeping states, whereas the microphone records surrounding
noise level when subjects are in stationary and sleeping states.
Figure 2 depicts the three of the activities performed by the
subject while the smartphone is in the proximity to him.
Smartphone app developed by MATLAB is responsible for
collecting the experimental data and transmitting the data to
the cloud server for further analysis.

A. Experiment Design

We recruited 32 students (16 graduate and 16 under-
graduate) of Sungkyunkwan University, average age of 29.7
years with standard deviation of 10.6 years, to analyze our
envisioned system. Subjects signed consent form prior to the
experiment and whose rights have been protected following
declaration of Helsinki. Selected Subjects had no head injury
and were not using any medication. We employed same man-
ufacturer and same model smartphone, iPhone 6, for recording
the daily activity experimental data, because the majority of
participants in the trial had an iPhone 6, and since the idea
was to let the participants use the same type of smartphone
so as to avoid the normalization problem of the activity data.
Each participant recorded their 24 hour activity of daily routine
which constituted experimental data of 768 hours. If a person
is sleeping, the amplitude generated by a microphone is either
near to zero or very small due to snoring, whereas when subject
wakes up, he/she has to say “good morning” or “hello”, and
as to signal the microphone that the subject has woken up,
and similarly, subject has to utter “good night” to indicate
beginning of sleep. The words spoken at the time of before
and after the sleep helps in determining sleep duration of the
subject automatically. All participants also participated in a
stress-related survey. The data of 25 hours were discarded
because some participants could not carry mobile in some
unavoidable situations. The students were grouped into two
clusters based on educational degree they are currently pursu-
ing in the university: graduate and undergraduate. The daily
routine information of both groups forms experimental data
for activity recognition. Acquired signals of the sensors are
segmented into non-overlapping segments of 20 seconds. The
segment length of 20 seconds was selected based on the best
performance of activity recognition classifier after exploring
a range of 3 to 30 seconds. The activity information was
annotated into three classes: stationary, moving, and sleeping.

B. Proposed Approach
Our system for stress detection has three stages. Subjective

assessment is performed about stress through a survey in
stage one. In stage two, subject’s activity of the whole day is
recognized, and stress level is detected based on the recognized
activity information in stage three. The activity information
is comprised of three broad classes: stationary, moving, and
sleeping. Our system tries to recognize these activities using
an activity recognition classifier. We think that these three
classes of activities are essential to determine stress of the
university student. We have exploited participants’ interaction
with a smartphone to indirectly determine their stress level. If
participant is stressed, he/she suffers from insomnia and often
remains in stationary activity. Therefore, we exploited subjec-
tive assessment and daily activity information of participants
to calculate their stress levels. The proposed approach tries
to exploit relation of sleep, stationary, and moving activities
with stress using linear regression. We think that the pressure
of supervisor and fear of failure causes the student to sleep
less and study for long hours, whereas a person who sleeps
less and stays stationary longer than usual becomes victim of
stress. Therefore, it is very important to address the problem
of stress faced by the university students using a novel non-
invasive approach.

C. Activity Recognition
The distinct patterns as shown in (Figures 3(a) to 3(f)) were

generated by the motion sensors of smartphone according to
the activity subjects performed in their daily schedule. Three
segments of 40 seconds in Figure 3 demonstrate a difference
in acceleration and angular velocity of each activity. The
patterns of moving activity are clearly distinguishable from
the rest of the two activities. To some extent, patterns of
sleeping and stationary activity are obscure due to being same
in nature. For solving this problem, the microphone is used
to differentiate sleeping from stationary activity as shown in
Figure 4. We have modified the signal of audio input in order
to keep the privacy of subjects. Amplitude signal of audio input
during sleep stays approximate to zero, whereas the amplitude
during stationary (awake) state is higher as shown at extreme
ends of audio signal in Figure 4. Since, features play an
essential role in the recognition of activities, so features must
characterize the patterns effectively without carrying irrelevant
and redundant information so that activity recognition classifier
perform efficiently. The amplitude based features are extracted
from segments of experimental data for training the activity
model. Those features are arithmetic mean, standard deviation,
interquartile range, kurtosis, geometric mean, median, maxi-
mum, range, skewness, energy of a signal, waveform length,
entropy, RMS and ratio of RMS to maximum.

Forward Features Selection (FFS) procedure is employed
on the computed features to reduce redundancy and avoid
overfitting. The top 6 features are selected using FFS and
those selected features are fed into Support Vector Machine
(SVM) to develop the activity recognition model. The activity
recognition model is trained and evaluated using a 32 fold
cross-validation technique with leave-one-out. This technique
allowed the training of the quadratic SVM on the features
from 31 out of 32 subjects and validated the model with
the remaining subject. The activity recognition algorithm has
classified the acquired signals of the sensors with an accuracy
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Figure 3. Motion sensors signals; (a), (c), and (e) represents Accelerometer
signals in x, y and z axes, whereas (b), (d), and (f) are Gyroscope signals in

x, y and z axes.

of 98.0% into three activity classes of stationary, moving, and
sleeping as shown in Figure 5. The moving class is comprised
of walking, running, and any other exercise involving the body
motion. SVM is a supervised machine learning algorithm. We
implemented SVM for activity recognition using classification
learner tool in MATLAB 2016b. One-vs-all strategy and linear
kernel function k( ~Xt, ~Xi) = ~Xt, ~Xi is used whose penalty C
parameter is 1 by default.

D. Stress Detection

The activity information recognized by SVM is transmitted
to the cloud server for data analytics to detect stress (S) in
the students. We tried to search relationship between stress
and three activity classes: moving, stationary, sleeping. We
exploited different linear regression models to build a robust
model to estimate stress. Stationary and sleeping activities data
are included to develop the stress estimation model because
those two variables showed a significant relationship with
stress, whereas moving activity data was discarded after it
showed no any significant improvement in the model. We have
computed stress score using (1). We think that sleep duration
and stationary activity are essential explanatory variables to
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Figure 4. Audio signals for sleeping activity.
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Figure 5. Activity recognition performance of SVM.

determine the stress levels.

S = aX + bY + θ (1)

where X and Y represents stationary and sleeping activity
classes, whereas a, b, and θ are parameters.

We employed curve-fitting tool of MATLAB 2016b to
evaluate the proposed model, and determined the values of
a, b, and θ using least square method. As shown in Table I,
the parametric values of the proposed approach are calculated
as 0.176, -0.386, and 3.01 for a, b, and θ, respectively. The
pvalues of stationary and sleeping variables are lower than
0.05 which proved the statistical significance of the earlier
mentioned variables in estimating the stress score. The adjusted
R-Squared value is 0.909 which means 90.9% variance in
stress is successfully explained by the proposed model based
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on two explanatory variables (i.e., stationary and sleeping).
Stationary has the effect of a on the stress score, whereas
sleeping affects the stress score by factor of b. All the pa-
rameters have a partial effect on stress. The parametric values
of (1) shown in Table I suggest that sleeping has a higher
effect on stress score than stationary, because parameter b is
higher in weight than parameter a. If both the variables are
0 in values, then parameter θ affects estimated stress highly.
Stress reduces when sleep time increases and vice versa. On
the contrary, stationary activity is directly proportional to the
stress.

TABLE I. LINEAR REGRESSION ANALYSIS OF PROPOSED MODEL

Estimated Standard t Statistic P value
parameters error

Intercept 3.01 0.78263 3.8429 0.00061
Stationary 0.176 0.04124 4.2701 0.00019
Sleeping -0.386 0.05506 -7.011 1.0393e-07
Number of observations 32
Root Mean Squared Error 0.287
R-squared 0.915
Adjusted R-Squared 0.909

Three levels of stress are calculated based on lower and
upper thresholds. Those three levels of stress are low, mild,
and acute. If S < δ1, the subject is less stressed or normal,
he has a mild stress if δ1 ≤ S ≤ δ2, and he has an acute
stress if S > δ2. The δ1 and δ2 represents lower and upper
thresholds. Stress level scores for all the students is computed.
The result of stress computation shown in Figures (5(a) to
5(b)) has demonstrated that 2 graduate student have acute or
high stress and 2 others out of 16 graduate students have mild
stress, whereas only 3 out of 16 undergraduate students have
mild stress. This statistics of stress experienced by students has
validated our claim that graduate students have higher average
stress as compared to the undergraduate students due to poor
sleep and higher sedentary or stationary behavior.

III. DISCUSSION AND CONCLUSION

The focus of our research was to present an approach to
detect stress levels experienced by the students. Our approach
uses non-invasive strategy to monitor the three levels of stress
in the subjects using a commonly available electronic device
(smartphone). We employed the motion sensors and audio
sensor of the smartphone to record the overall activity of
the individuals. Prior studies have considered stress detec-
tion with EEG, ECG and Galvanic Skin Response (GSR)
[3][6][9][10][11] which provide a direct method to measure
stress and are preferred choice of users in indoor settings, but
these devices are socially unacceptable to people going out
in public places (i.e., school, office, shopping market, etc.,)
while wearing these measurement devices. Our non-invasive
method based on the smartphone is user friendly and socially
acceptable to users, because the smartphone sensors do not
interfere with their daily work and they can use the smartphone
to measure their stress levels in public places without letting
anybody know.

We have analyzed our approach using two groups of the
students. The smartphone recorded the activity of students
when they performed routine tasks without interfering in their
daily-life tasks. An experiment was performed in order to
obtain activity data on the basis of which, stress scores or levels
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Figure 6. Stress relation with daily life activity behavior (a) Effect of
Sleeping activity on Stress Score, (b) Effect of Stationary activity on Stress

Score, and (c) 3D curve fitting of the proposed model.

can be detected. The activity recognition classifier grouped
the daily-routine behavior of the subjects into three classes:
moving, stationary, and sleeping. We experimentally evaluated
three of the activity classes to build statistical models for
stress computation, but the model is built on only stationary
and sleeping classes. Moving activity did not contribute any
significant information about stress in the model, therefore, it
is discarded. Stationary and sleeping are two broad classes
of activity which are essential to assess someone’s stress
level. The estimation of stress levels by proposed approach
is demonstrated in Figures (6(a) to 6(b)). The curve fit of
the stress estimation model is shown in Figure 6(c) which
depicts the inverse relationship of sleeping with stress and
direct effect of stationary on the stress. The conclusion drawn
from proposed model also agrees with the previous studies
that stress causes poor sleep [16][17] and high stationary or
sedentary behavior [17] is related to stress.

We experimentally found that graduate students suffer
higher stress than the undergraduate students studying in the
university. Our proposed strategy determined the stress of the
students and 2 out of 16 graduate students is suffering from
acute or high stress, 2 out of 16 graduate students have mild
stress, whereas only 3 out of 16 undergraduate students have
mild stress. It is not possible that people carry the smartphone
all the time, so it is a limitation of our approach. We will
try to integrate motion and biological sensors in arm band
or embed to T-shirt for monitoring the activity of individuals
and notifying them about their stress levels in real-time as our
future work.

We have presented a novel approach based on smart-
phone sensors to measure the stress level of graduate and
undergraduate students studying in the university. Our system
has determined three stress levels by analyzing the activity
behavior and experimentally found that graduate students are
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more stressed than undergraduate students.
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[16] C. Alcántara, et al., “Stress and sleep: Results from the hispanic
community health study/study of latinos sociocultural ancillary study,”
SSM-population health, vol. 3, 2017, pp. 713–721.

[17] J. E. Pelletier, L. A. Lytle, and M. N. Laska, “Stress, health risk
behaviors, and weight status among community college students,”
Health Education & Behavior, vol. 43, no. 2, 2016, pp. 139–144.

34Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-657-6

SPWID 2018 : The Fourth International Conference on Smart Portable, Wearable, Implantable and Disability-oriented Devices and Systems

Powered by TCPDF (www.tcpdf.org)

                            41 / 41

http://www.tcpdf.org

