
VALID 2012

The Fourth International Conference on Advances in System Testing and

Validation Lifecycle

ISBN: 978-1-61208-233-2

November 18-23, 2012

Lisbon, Portugal

VALID 2012 Editors

Amir Alimohammad, San Diego State University, USA

Petre Dini, Concordia University, Canada / China Space Agency Center, China

 1 / 153

VALID 2012

Forward

The Fourth International Conference on Advances in System Testing and Validation Lifecycle (VALID 2012), held on
November 18-23, 2012 in Lisbon, Portugal, continued a series of events focusing on designing robust components
and systems with testability for various features of behavior and interconnection.

Complex distributed systems with heterogeneous interconnections operating at different speeds and based on
various nano- and micro-technologies raise serious problems of testing, diagnosing, and debugging. Despite
current solutions, virtualization and abstraction for large scale systems provide less visibility for vulnerability
discovery and resolution, and make testing tedious, sometimes unsuccessful, if not properly thought from the
design phase.

The conference on advances in system testing and validation considered the concepts, methodologies, and
solutions dealing with designing robust and available systems. Its target covered aspects related to debugging and
defects, vulnerability discovery, diagnosis, and testing.

The conference provided a forum where researchers were able to present recent research results and new
research problems and directions related to them. The conference sought contributions presenting novel result
and future research in all aspects of robust design methodologies, vulnerability discovery and resolution, diagnosis,
debugging, and testing.

We welcomed technical papers presenting research and practical results, position papers addressing the pros and
cons of specific proposals, such as those being discussed in the standard forums or in industry consortiums, survey
papers addressing the key problems and solutions on any of the above topics, short papers on work in progress,
and panel proposals.

We take here the opportunity to warmly thank all the members of the VALID 2012 technical program committee as
well as the numerous reviewers. The creation of such a broad and high quality conference program would not have
been possible without their involvement. We also kindly thank all the authors that dedicated much of their time
and efforts to contribute to the VALID 2012. We truly believe that thanks to all these efforts, the final conference
program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals, organizations and sponsors.
We also gratefully thank the members of the VALID 2012 organizing committee for their help in handling the
logistics and for their work that is making this professional meeting a success. We gratefully appreciate to the
technical program committee co-chairs that contributed to identify the appropriate groups to submit
contributions.

We hope the VALID 2012 was a successful international forum for the exchange of ideas and results between
academia and industry and to promote further progress in system testing and validation.

We hope Lisbon provided a pleasant environment during the conference and everyone saved some time for
exploring this beautiful city.

 2 / 153

VALID 2012 Chairs

VALID Advisory Chairs
Andrea Baruzzo, Università degli Studi di Udine, Italy
Cristina Seceleanu, Mälardalen University, Sweden
Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany
Mehmet Aksit, University of Twente - Enschede, The Netherlands
Amir Alimohammad, San Diego State University, USA

VALID 2012 Research Institute Liaison Chairs
Juho Perälä, VTT Technical Research Centre of Finland, Finland
Alexander Klaus, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany
Kazumi Hatayama, Nara Institute of Science and Technology, Japan
Alin Stefanescu, University of Pitesti, Romania
Vladimir Rubanov, Institute for System Programming / Russian Academy of Sciences (ISPRAS), Russia
Tanja Vos, Universidad Politécnica de Valencia, Spain

VALID 2012 Industry Chairs
Abel Marrero, Bombardier Transportation Germany GmbH - Mannheim, Germany
Sebastian Wieczorek, SAP AG - Darmstadt, Germany
Eric Verhulst, Altreonic, Belgium

 3 / 153

VALID 2012

Committee

VALID Advisory Chairs

Andrea Baruzzo, Università degli Studi di Udine, Italy

Cristina Seceleanu, Mälardalen University, Sweden

Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany

Mehmet Aksit, University of Twente - Enschede, The Netherlands

Amir Alimohammad, San Diego State University, USA

VALID 2012 Research Institute Liaison Chairs

Juho Perälä, VTT Technical Research Centre of Finland, Finland

Alexander Klaus, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany

Kazumi Hatayama, Nara Institute of Science and Technology, Japan

Alin Stefanescu, University of Pitesti, Romania

Vladimir Rubanov, Institute for System Programming / Russian Academy of Sciences (ISPRAS), Russia

Tanja Vos, Universidad Politécnica de Valencia, Spain

VALID 2012 Industry Chairs

Abel Marrero, Bombardier Transportation Germany GmbH - Mannheim, Germany

Sebastian Wieczorek, SAP AG - Darmstadt, Germany

Eric Verhulst, Altreonic, Belgium

VALID 2012 Technical Progam Committee

Fredrik Abbors, Åbo Akademi University, Finland

Jaume Abella, Barcelona Supercomputing Center (BSC-CNS), Spain

Mehmet Aksit, University of Twente - Enschede, The Netherlands

Amir Alimohammad, San Diego State University, USA

Giner Alor Hernandez, Instituto Tecnologico de Orizaba - Veracruz, México

Nina Amla, NSF, USA

César Andrés Sanchez, Universidad Complutense de Madrid, Spain

Selma Azaiz, CEA List Institute - Gif-Sur-Yvette, France

Cesare Bartolini, ISTI - CNR, Pisa, Italy

Andrea Baruzzo, Università degli Studi di Udine, Italy

Serge Bernard, LIRMM, Franmce

Paolo Bernardi, Politecnico di Torino, Italy

Ateet Bhalla, NRI Institute of Information Science and Technology - Bhopal, India

Mikey Browne, IBM, USA

 4 / 153

Luca Cassano, University of Pisa, Italy

Hana Chockler, IBM Haifa Research Labs, Israel

Bruce F. Cockburn, University of Alberta - Edmonton, Canada

Maurizio M D'Arienzo, Seconda Università di Napoli, Italy

Florian Deissenboeck, CQSE GmbH/ Technische Universität München, Germany

Stefano Di Carlo, Politecnico di Torino, Italy

Rolf Drechsler, DFKI Bremen, Germany

Lydie du Bousquet, J. Fourier-Grenoble I University / LIG labs, France

Kerstin Eder, University of Bristol, UK

Stephan Eggersglüß, University of Bremen / DFKI - Cyper-Physical Systems - Bremen, Germany

Khaled El-Fakih, American University of Sharjah, UAE

Robert Eschbach, ITK Engineering AG - Herxheim, Germany

Leire Etxeberria Elorza, Mondragon Unibertsitatea, Spain

Eitan Farchi, IBM Haifa Research Laboratory, Israel

Michael Felderer, University of Innsbruck, Austria

Teodor Ghetiu, University of York, UK

Patrick Girard, LIRMM, France

Hans-Gerhard Gross, Delft University of Technology, The Netherlands

Mark Harman, University College London, UK

Kazumi Hatayama, Nara Institute of Science and Technology (NAIST), Japan

Steffen Herbold, University of Göttingen, Germany

Florentin Ipate, University of Pitesti, Romania

David Kaeli, Northeastern University - Boston, USA

Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland

Zurab Khasidashvili, Intel Israel Ltd, Israel

Alexander Klaus, Fraunhofer Institute for Experimental Software Engineering - Kaiserslautern, Germany

Moshe Levinger, IBM Research - Haifa, Israel

João Lourenço, Universidade Nova de Lisboa, Portugal

Maria K. Michael, University of Cyprus, Cyprus

Abel Marrero, Bombardier Transportation Germany GmbH - Mannheim, Germany

Omer Nguena-Timo, IRIT - ENSEEIHT/ Université de Toulouse, France

Roy Oberhauser, Aalen University, Germany

Johannes Oetsch, Vienna University of Technology, Austria

Kai Pan, University of North Carolina at Charlotte, USA

Bernhard Peischl, Softnet Austria, Austria

Juho Perälä, VTT Technical Research Centre of Finland, Finland

Mauro Pezzè, Università della Svizzera Italiana, Switzerland

Miodrag Potkonjak, Univeristy of California, Los Angeles (UCLA), USA

Wishnu Prasetya, Utrecht University, The Netherlands

Paolo Prinetto, Politecnico di Torino, Italy

Andreas Raabe, fortiss - An-Institut der Technischen Universität München - Munich, Germany

Henrique Rebêlo, Federal University of Pernambuco, Brazil

 5 / 153

Filippo Ricca, University of Genoa, Italy

Auri Marcelo RizzoVicenzi, Universidade Federal de Goiás, Brazil

Goiuria Sagardui Mendieta, Mondragon University, Spain

Christian Schanes, Vienna University of Technology, Austria

Cristina Seceleanu, Mälardalen University, Sweden

Nassim Seghir, University of Oxford, UK

Sergio Segura, University of Seville, Spain

Alin Stefanescu, University of Pitesti, Romania

Mehdi B. Tahoori, Karlsruhe Institute of Technology (KIT), Germany

Nur A. Touba, University of Texas - Austin, USA

Spyros Tragoudas, Southern Illinois University Carbondale, USA

Dragos Truscan, Åbo Akademi University - Turku, Finland

Bart Vermeulen, NXP Semiconductors - Eindhoven, The Netherlands

Arnaud Virazel, Université Montpellier 2 / LIRMM, France

Tanja E. J. Vos, Universidad Politécnica de Valencia, Spain

Stefan Wagner, University of Stuttgart, Germany

Thomas Wahl, Northeastern University - Boston, USA

Sebastian Wieczorek, SAP Research Center Darmstadt, Germany

Cemal Yilmaz, Sabanci University - Istanbul, Turkey

Zeljko Zilic, McGill University, Canada

 6 / 153

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 153

Table of Contents

MBPeT: A Model-Based Performance Testing Tool
Fredrik Abbors, Tanwir Ahmad, Dragos Truscan, and Ivan Porres

1

Cost-Aware Combinatorial Interaction Testing
Gulsen Demiroz and Cemal Yilmaz

9

Sick But Not Dead Testing - A New Approach to System Test
Tara Astigarraga, Lou Dickens, and Michael Browne

17

Test Driven Life Cycle Management for Internet of Things based Services: a Semantic Approach
Eike Steffen Reetz, Daniel Kumper, Anders Lehmann, and Ralf Tonjes

21

AndroLIFT: A Tool for Android Application Life Cycles
Dominik Franke, Tobias Roye, and Stefan Kowalewski

28

Experiences in Test Automation for Multi-Client System with Social Media Backend
Tuomas Kekkonen, Teemu Kanstren, and Jouni Heikkinen

34

Project in Control: An Innovative Approach
Jos van Rooyen

40

From Model-based Design to Real-Time Analysis
Yassine Ouhammou, Emmanuel Grolleau, Michael Richard, and Pascal Richard

45

Automated Structural Testing of Simulink/TargetLink Models via Search-Based Testing Assisted by Prior-Search
Static Analysis
Benjamin Wilmes

51

Fault Detection Capabilities of an Enhanced Timing and Control Flow Checker for Hard Real-Time Systems
Julian Wolf, Bernhard Fechner, and Theo Ungerer

57

When ‘Pure Mathematical Objectivity’ is no Longer Enough
Isabel Cafezeiro and Ivan Marques

63

A Software Quality Framework for Mobile Application Testing
Yajie Wang, Ming Jiang, and Yueming Wei

68

Variability Management in Testing Architectures for Embedded Control Systems
Goiuria Sagardui, Leire Etxeberria, and Joseba A. Agirre

73

 1 / 2 8 / 153

GUI Failure Analysis and Classification for the Development of In-Vehicle Infotainment
Daniel Mauser, Alexander Klaus, Ran Zhang, and Linshu Duan

79

A Holistic Model-driven Approach to Generate U2TP Test Specifications Using BPMN and UML
Qurat-Ul-Ann Farooq and Matthias Riebisch

85

Diagnosability Analysis for Self-observed Distributed Discrete Event Systems
Lina Ye and Philippe Dague

93

A Combined Formal Analysis Methodology and Towards Its Application to Hierarachical State Transition Matrix
Designs
Weiqiang Kong, Leyuan Liu, Hirokazu Yatsu, and Akira Fukuda

99

Model Checking Executable Specification for Reactive Components
Bruno Blaskovic

107

Software Architectural Drivers for Cloud Testing
Etiene Lamas, Luiz Dias, and Adilson Cunha

114

Optical Link Testing and Parameters Tuning with a Test System Fully Integrated into FPGA
Anton Kuzmin and Dietmar Fey

121

Data Model Centered Test Case Design
Federico Toledo Rodriguez, Beatriz Perez Lamancha, and Macario Polo Usaola

127

A Model-Based Approach to Validate Configurations at Runtime
Ludi Akue, Emmanuel Lavinal, and Michelle Sibilla

133

Applying an MBT Toolchain to Automotive Embedded Systems: Case Study Reports
Fabrice Ambert, Fabrice Bouquet, Jonathan Lasalle, Bruno Legeard, and Fabien Peureux

139

Powered by TCPDF (www.tcpdf.org)

 2 / 2 9 / 153

MBPeT: A Model-Based Performance Testing Tool

Fredrik Abbors, Tanwir Ahmad, Dragoş Truşcan, Ivan Porres
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 A, 20520, Turku, Finland
Email: {Fredrik.Abbors, Tanwir.Ahmad, Dragos.Truscan, Ivan.Porres}@abo.fi

Abstract—In recent years, cloud computing has become
increasingly common. Verifying that applications deployed
in the cloud meet their performance requirements is not
simple. There are three different techniques for performance
evaluation: analytical modeling, simulation, and measurement.
While analytical modeling and simulation are good techniques
for getting an early performance estimation, they rely on an
abstract representation of the system and leave out details
related for instance to the system configuration. Such details
are problematic to model or simulate, however they can be
the source of the bottlenecks in the deployed system. In this
paper, we present a model-based performance testing tool that
measures the performance on web applications and services
using the measurement technique. The tool uses models to
generate workload which is then applied to the system in real-
time and it measures different performance indicators. The
models are defined using probabilistic timed automata and
they describe how different user types interact with the system.
We describe how load is generated from the models and the
features of the tool. The utility of the tool is demonstrated by
applying to a WebDav case study.

Keywords-Load Generation. Model-Based Performance Test-
ing. Monitoring. Probabilistic Timed Automata. Models.

I. INTRODUCTION

With the recent advancements in cloud computing, we
constantly see more software applications being deployed
on the web. This opens up a broader window to reach out
to new users. As traffic increases, the overall quality of
such applications becomes an even more important factor,
since most of the processing is done on the server side.
Evaluating that these kinds of systems meet the performance
requirements is no longer a trivial task. High response times,
technical issues, and display problems can ultimately have a
negative impact on the customer satisfaction and ultimately
the profitability of the company. As a result, effective perfor-
mance testing tools and methods are essential for verifying
that systems meet their performance requirements.

The idea behind performance testing is to validate the
system under test in terms of its responsiveness, stability,
and resource utilization when the system is put under certain
synthetic workload in a controlled environment. The idea
behind the synthetic workload [1] is that it should imitate
the expected workload [2] as closely as possible, once the
system is in operational use. Otherwise it is not possible to
draw any reliable conclusions from the test results.

Jain [3] suggests three different techniques for perfor-
mance evaluation: analytical modeling, simulation, and mea-
surement. While analytical modeling and simulation are
good techniques for getting early performance estimation,
they rely on an abstract representation of the system and
leave out details related to the system configuration. Such
details are problematic to model or simulate, however, they
can be the source of the bottlenecks in the system. With the
measurement technique one has to wait until the system is
ready for testing while with the two former techniques one
can start testing while the system is being developed.

Traditionally, performance tests usually last for hours, or
even days, and only test a predefined number of prerecorded
scenarios that are executed in parallel against the system
under test (SUT). The major drawback with this approach
is that it certain inputs that the system will face might
be left untested. Therefore, we suggest the use of models
that describes how the virtual users (VUs) interact with the
system and a probabilistic distribution between actions. The
synthetic workload is then generated from these models by
letting virtual users execute these models.

In this paper, we present a tool that evaluates the perfor-
mance of a system. The main contribution of this work is
that the load applied to the system is generated in real-time
from models, specified using Probabilistic Timed Automata
(PTA). A tool designed in-house is used to generate the load
and monitor different performance indicators.

We use our tool to answer the following questions about
the system under test:

• What are the values of different Key Performance
Indicators (KPIs) of the system under a given load?
For instance, what are the mean and max response times
and throughput for a given number of concurrent users?

• How many concurrent users of given types does the
system support before its KPIs degrade beyond a given
threshold?

The rest of the paper is structured as follows: In Section
II we discuss the related work. In Section III we give an
overview of challenges with load generation and in Section
IV we present our tool. Section VI presents a case study
and a series of experiments using our approach. Finally,
in Section VII, we present our conclusions and we discuss
future work.

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 10 / 153

II. RELATED WORK

There exist a plethora of commercial performance testing
and load generation tools. However, most of them generate
load from static scripts or pre-recorded scenarios that are
scripted and executed in batches. In this section, we have
focused our attention on tools that use models as input.

Denaro et al. [4] propose a tool for testing the perfor-
mance of distributed software when the software is built
mainly with middleware component technologies, i.e. J2EE
or CORBA. The authors claim that most of the overall
performance of such a system is determined by the use and
configuration of the middleware (e.g. databases). The authors
also note that the coupling between the middleware and the
application architecture determines the actual performance.
Based on architectural designs of an application the authors
can derive application-specific performance tests that can be
executed on the early available middleware platform that is
used to build the application with. Their tool differs from
ours in the sense that they target middleware components
only and they make use of stubs for components that are
not available during the testing phase.

Barna et al. [5] present a model-based testing tool that
tests the performance of different transactional systems. The
tool uses an iterative approach to find the workload stress
vectors of a system. An adaptive tool framework drives the
system along these stress vectors until a performance stress
goal is reached. Their tool differs from ours in the sense that
they use a model of the system instead of testing against
the real system. The system is represented as a two layered
queuing model and they use analytical techniques to find a
workload mix that will saturate a system resource.

Another similar approach is presented by Shams et al. [6].
There, the authors have developed a tool that generates valid
traces or a synthetic workload for inter-dependent requests
typically found in sessions when using web applications.
They describe an application model that captures the depen-
dencies for such systems by using EFSMs. Their tool outputs
traces that can be used in well known load generation tools
like httperf [7]. Their approach differs from our in the sense
that they focus on off-line trace generation while we apply
the generated load on-line to the system.

Ruffo et al. [8] have developed a tool called WALTy. The
tool that generates representative user behavior traces from
a set of Customer Behavior Model Graphs (CBMG). The
CBMGs are obtained from execution logs of the system and
a modified version of httperf is used to generate traffic from
these traces.

III. LOAD GENERATION CHALLENGES

In performance testing, one of the main challenges is
the load generation. The reason why load generation is
such a challenge is that there are so many ways to get it
wrong. For instance, important user types may not have
been identified. These important user types might have a

significant impact on the performance of the system. Another
example is that the users that one is simulating during testing
behave differently than users in the real world. This can lead
to the fact that the generated load does not conform to the
load that real users would put on the system. In other words,
for load generation to be successful, one needs to be able to
generate load that represent the real user load as closely as
possible. Failure to do so, often leads to incorrect decisions
regarding the performance of the system.

In real life, users need some time to reflect over the
information that they have received. This is what usually is
referred to as think time. The think time specifies how long
the user normally waits before sending a new request to the
system. Defining a think time for an action is not always as
simple as it might seem. For example, to get really accurate
results, one needs to consider the time it takes for a web page
to be rendered in the client machine and the time it takes
for the user to find a new action. Usually the think-time is
different for different actions. Hence, in the load generation
process, there need to be a way to define a think time value
for each individual action.

Traditionally, load generation has been achieved by defin-
ing static scripts or pre-recorded scenarios that are run or
played back in batches or certain quantities. Even if the
scripts are somewhat parameterized, they do not behave
like real life users would do. For performance testing, and
especially load generation, to make sense one must allow
the virtual user to behave as dynamically as real users.

IV. MBPET TOOL

In our approach towards model-based performance test-
ing, we have developed a tool called MBPeT. The tool has
essentially three high levels purposes: (1) to generate load
according to input parameters and send it to the system,
(2) to monitor the key performance indicators (KPIs) and
other system resources, and (3) to present the results in a
test report. The key performance indicators [9] or the KPIs
are quantifiable values that one wants to measure and track.
Example of typical KPIs are: response time, mean time
between failure, number of concurrent users, throughput, etc.

MBPeT accepts as input a set of models expressed as
probabilistic timed automata, the target number of virtual
users, a ramp function, duration of the test session, and it
will provide a test report describing the measured KPIs.

A. Performance Models

The behavior of virtual users is described with proba-
bilistic timed automata (PTA) [10]. The PTA (see Figure 1)
describes a set of locations and a set of transitions that take
the automaton from one location to another. A transition
can have four different labels: a clock zone, a probability
value, an action, and a reset. The clock zone is an integer
value describing discrete time. The clock zone specifies how
long the PTA waits until firing a transition and, in our

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 11 / 153

case, it is the equivalent of the think time. In the figure
below, this is represented with the variable X. It is, however,
possible to define more than one clock variable. In case of
a branch in the PTA, the transition that is taken is based
on its probabilistic value. Consider location 6 in the PTA
figure below. One can reach location 7 with a probability
of p5 or reach location 2 with the probability of p4. Upon
taking a transition, the associated action is being executed
against the system. Whenever the action is executed there is
a possibility to reset the clock variable. In the PTA below
this is represented with X:= 0. Every PTA has an end
location, depicted by a double circle, which eventually will
be reached.

Figure 1. An example of a probabilistic times automata.

We believe that the PTA models are well suited for model-
based performance testing and that the probability aspect that
the PTA holds is good for describing dynamic user behavior,
allowing us to include a certain level of randomness in
the load generation process. This is important because we
wanted the VUs to mimic real user behavior as closely as
possible and real users do not follow static instructions. With
the help of the probability values we can make it so that
a certain action is more likely to be chosen over another
action, whenever the VU encounters a choice in the PTA.

B. Tool architecture

The tool has a distributed architecture: a master node
controls several slave nodes (see Figure 2.) The actual load
generation is performed on the slave nodes. The master
node just controls the load generation and initializes more
slave nodes when needed. Each slave node is responsible for

generating load for the VUs. The number of VUs a slave
node can support is dependent on its capacity. In addition,
each slave monitors its local resource utilization, collects
KPIs for the system under test and reports the values to the
master node.

Network

Slave
Node 1

Slave
Node 2

Master
Node

Slave
Node N

.

.

.

SUT

Figure 2. Master-Slave architecture for the MBPeT tool.

The internal architecture of the master node (Figure 3)
includes the following components:

The Model Parser is responsible for reading the input
models and building an internal representation of the model.
In addition, it validates the models with respect to basic well-
formness rules such as: all locations are connected, there is
entry and an exit state, the sum of the probabilities of the
transitions originating from a given node equals to 1, etc. We
chose the dot language as a plain text representation for the
PTAs. The reason for choosing the dot language is that we
wanted to have a simple and lightweight way of representing
models that both humans and machines can understand.

The Core module is the most important component of the
master node. It takes care of reading the input parameters,
initializing the test configuration by distributing relevant
data to slave nodes, initiating load generation and collecting
individual test reports from slaves. The test configuration
contains information about the IP-addresses for the slave
nodes and the master, the length of the test duration, a
ramping function, and the number of concurrent users.

The master node uses two different Test Databases: User
DB and User-Resource Data Base. The User DB contains
data about the users, for instance user name and password,
whereas the User-Resource Data Base contains information
about the resources (documents, pictures, folders, etc) the
users have on their own space on the server. The core module
is responsible for initializing the data bases before the load
generation begins.

The Test Report Creator module is in charge of pro-
ducing an HTML test report once all the slave nodes have
reported back to the master node all the gathered data from
the test run. The report creator module aggregates the data
and computes mean and max of the monitored values and
for the specified KPIs.

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 12 / 153

Master Node

Model Parser

Models Configuration

User DB

User‐
Resource
Data Base

Core

Test Report
Creator

Test
Report

Output to
Slave node

Input from
Slave node

Figure 3. The structure of the master node.

The slave nodes consist of several modules (see Fig-
ure 4). The input received from the master node includes:
the internal representations of the test models and specific
test configuration. All the slave instances have identical
configuration and implementation.

The Load Generator is in charge of generating load that
is sent to the system under test. One instance of the PTA
models is used by each VU to generate traces which results
in sequences of actions based on specified probabilities and
thin times that are sent to the SUT.

The models that we use contain abstract actions and can
therefore, as such, not be directly used directly against the
SUT. An Adapter module is used is to concretize every
action into machine readableS format. For example, in the
case of a HTTP-based system, a login() action needs to
be implemented in the adapter code to be sent as a POST
request over the HTTP protocol. A second example below
shows how an upload file(image/jpg) action on a WebDav
server could be translated by an adapter:

PUT /webdav/user1/picture.jpg HTTP/1.1
Connection: Keep-Alive
Host: www.examplehost.com
Content-Type: image/jpg

A new adapter has to be implemented for each new SUT,
however, it is possible to use different libraries in the adapter
code to make the adaptation much easier. For example, in
the case of the ”login()” action describe above, a standard
HTTP library could be used to send the login to the SUT.

During the testing process each slave node monitors, via
a Resource Monitor, the local resource utilization (CPU,
memory, disk, and network) in order to make sure that the
slave itself does not saturate and become a bottleneck in the
configuration. If, for instance, the CPU utilization goes over
a certain threshold, we can not guarantee anymore that the

load is generated at the same rate as it should be. The slave
node also monitors the response time for each action sent
to the SUT and the error rate of these actions.

The Reporter module is in charge of putting the measured
values together in an organized form and reports them back
to the master node at the end of the testing process. The
reporter is also responsible for notifying the master node if
the local resource utilization threshold has been exceeded.

Slave Node

Load Generator

Adapter

Resource
Monitor

Reporter

Input from
Master node

Output to
Master
Node

Figure 4. The structure of a slave node.

V. PERFORMANCE TESTING PROCESS

In our approach, the testing process (see Figure 5) con-
tains three distinct phases: test setup, load generation and
test reporting.

A. Test Setup

The test setup phase takes care of initializing the test
databases and the configuration of the slave nodes. This is
done before the actual test run in order to avoid any negative
impact on the bandwidth or resource utilization of the tester.

1) Test database initialization: One of the main chal-
lenges in performance testing is providing test data and
configuring the system under test with a configuration as
close as possible to the production environment [9]. As such,
every time before starting the load generation phase, we
configure the system under test and the tool with synthetic
data using a populator script: on the system side, the script
will automatically configure the web server with the given
user configuration and if needed with the corresponding user
spaces. On the MBPeT tool side the script will populate
the user and test data databases with user credentials and
corresponding information/files that the user will eventually
upload to the server.

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 13 / 153

Figure 5. Activity diagram describing the load generation process.

2) System state: In certain cases, the current state of the
SUT has to be captured before starting the test run. This
is useful in stateful systems, in situations where the load
generation should start from a given state of the SUT. For
this, the master node queries the SUT for the user space
resources, and stores the information in the URDB.

3) Slave initialization: When starting the testing process,
the number of available slave nodes and their configuration
(e.g., IP addresses) is provided to the master node. As
mentioned previously, the master node will distribute the
load incrementally on the slave nodes, one at the time, until
the node saturates. However, all the available slave nodes are
initialized with necessary test data and they are just idling.

B. Load generation

Different parameters of the testing process are provided
as command line parameters. The tool can be used in two
modes. The first use is to run with a certain target number
of concurrent users. The tool will then slowly ramp up to
the target number of users, run for the specified test duration
and report back the aggregated values. The second use, and
maybe the more interesting one, is to specify the target KPI
value, for instance a target average response time, and let the
tool find out the maximum number of concurrent users that
the SUT can serve without exceeding the specified threshold.

To generate the load from the models, a few additional
things have to be specified. First, one should input the
models and a test configuration to the tool. Second, one
needs to specify a stopping criterion for when the tool should
stop generating load. This stopping criterion can be of two
types: a time duration or a given threshold value. If a time
duration is given, the tool will generate load based on the
given models and target number of concurrent users, and
stop generating load after the given amount of time has
passed. If threshold values are given for a particular resource,
e.g., the CPU, the tool will monitor that resource and ramp
up the number of users until the threshold value is reached.
All this information is specified in the configuration file. The
load generation process will be discussed in more detail in
Section VI

C. Test Reporting

When the specified test duration runs out or the tool
detects that a certain threshold KPI value has been exceeded,
the testing process is aborted and the test run is summarized.
Consequently, each slave node reports back to the master
node the data that it has collected during the test run. Based
on the collected data the master node produces a test report
of the test run.

The test report contains information such as, the duration
of the test, number of generated users, amount of data sent to
the system, response times for different actions, etc. The test
report also shows diagrams of how various monitored values
changed over time when the user amount was increased, e.g.,
response time, CPU, and resource utilization.

VI. EXPERIMENTS

In this section, we demonstrate our tool by using it to
test the performance of a Webdav [11] file server. Webdav
(Web Distributed Authoring and Versioning) is an extension
to the HTTP protocol and provides a framework for users to
create, change, and move their documents and files stored on
web servers. Webdav also maintains the file properties, e.g.,
author, modification date, file locking, etc. These features
facilitate creation and modification of files and documents
stored on web servers.

The SUT featured a Linux machine with 8-core CPU,
16GB of memory, 1Gb Ethernet, 7200 rpm hard drive, and
Fedora 16 operating system. The file server ran a WebDav
installation on top of an Apache web server. The system
was configured for 1500 users, each with its own user
space. The slave nodes that generated the load had the exact
same configuration and were connected via a 1Gb Ethernet
network to the SUT. In total we have used 3 slave nodes,
but nothing prohibits us from extending this configuration.

By analyzing the Apache server logs of a previous Web-
Dav installation with the AWStats [12] tool, we identified
three user type: heavy, medium and light user, respectively,
based on the average bandwidth each user type used for

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 14 / 153

1 2x=3 / login() / X:=0

3
0.40

40.25

5

0.13

6

0.17

13

0.05 / exit()

70.70

8
0.20

9

0.10

x=3 / random_dir() / X:=0

x=4 / delete_file() / X:=0

100.60

11
0.25

12

0.15

X=2 / upload_file(video/mpeg) / X:=0

x=3 / upload_file(audio/mpeg) / X:=0

x=4 / upload_file(image/jpeg) / X:=0

x=4 / download_file(video/mpeg) / X:=0

x=2 / download_file(audio/mpeg) / X:=0

x=5 / download_file(image/jpeg) / X:=0

Figure 6. Probabilistic time automaton for a heavy user.

transferring. The model depicting the distribution of these
users is shown in Figure 7. We have also identified three
types of file types (jpeg, mp3, avi) that the users usually
transferred having on average file sizes of 3 MB, 5 MB,
and 10 MB, respectively.

0

1

0.2 / heavy_user 0.3/ medium_user 0.5 / light_user

Figure 7. Distribution between different user types.

Figure 6 shows a PTA of the heavy user type in terms of
user actions, the probability for those actions, and the think
time for each action. Eventually the user will find an exit()
action and leave the system. Similar models were created
for the medium user and the light user types. The PTA
models for each user type can be completely different or
be similar only varying in the distribution between actions.
In our experiments we had the latter option.

The load generation process proceeds as follows: the
master node takes as input the performance models, the
test duration, the ramp function, the number of concurrent
users and the target KPIs. The master node initiates load
generation on the slaves in an incremental order. Each slave

node monitors its local resource utilization and the KPIs of
the SUT during the load generation. If the threshold for the
local resource utilization on the slave node is exceeded, the
slave node notifies the master node that it can not anymore
generate new virtual users. The master then initiates load
generation on another slave node. If the threshold of the
measured KPI has been exceeded (in case a target KPI has
been specified) or the test duration has ended the slave nodes
notifies the master node and the load generation is stopped.

During the load generation on the slaves, the slave nodes
execute the PTA models describing the user behavior as
specified in Section IV-A in parallel processes. For each
user the slave node starts a new process. The slave node
then selects a user type if several are specified. The user
type is selected based on probabilistic choice, see Figure 7.
The virtual user then executes the PTA that belong to the
selected user type inside its own process. Consider location 1
of the PTA in Figure 6. A possible execution of the PTA
would be as follows: A virtual user waits until the clock
variable X reaches 3 and then fires the transition. Upon
firing the transition the action login() is sent to the adapter
of the slave. The adapter creates a HTTP message, gets the
user credential from the User DB, and sends the action to
the SUT. In the adapter a timer is started to measure the
response time. When the response is received it is checked
in the adapter for the status code and the response time is
stored. After that the clock variable X is reset to zero and

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 15 / 153

Table I
RESPONSE TIME MEASUREMENTS FOR USER ACTIONS WHEN RUNNING

WITH 1000 CONCURRENT USERS.

Light Users Medium Users Heavy Users
Action Average Max Average Max Average Max

(sec) (sec) (sec) (sec) (sec) (sec)
upload file(video/mpeg) 82.3 133.0 81.5 133.5 85.1 133.3
upload file(audio/mpeg) 158.3 217.4 143.7 214.3 126.2 210.5
upload file(image/jpeg) 56.9 134.1 54.7 126.2 47.2 119.1
download file(video/mpeg) 0.16 2.8 0.16 2.8 0.12 3.6
download file(audio/mpeg) 0.15 3.0 0.18 3.2 0.18 3.0
download file(image/jpeg) 0.13 3.1 0.15 3.7 0.16 1.4

the PTA moves from location 1 to location 2. In location 2
the transition to fire is based on the probabilistic values. For
example, location 4 is reached with a probability of 0.25.
In location 4 the transition is fired when the clock variable
X reaches 3. The random dir() action is sent through the
adapter to the SUT. In this case, the adapter uses the User-
Resource Data Base to select a folder for the user. Upon
receiving the response the clock is reset and the PTA moves
back to location 2. The process is repeated until the exit()
action is fired and the end state is reached. The slave then
chooses a new user type and the PTA corresponding to that
user type is executed in a similar way. In a nutshell, every
user runs independently of each other and decides for itself
which actions to execute.

We have run two experiments with our tool, based on its
two usage modes described in Section V-B

Experiment 1. In the first experiment, we wanted to
answer the following question: What are the mean and max
response times of all actions when system is under the load
of 1000 concurrent users? We ran the test for 1 hour.

In this experiment we found out that the SUT had a
bottleneck, namely the hard disk. Table I shows the average
and max response times values for the actions and user types.

From the table one can see that the response times for
the three upload actions are considerably higher that the
ones for download. This is because a lot of data had to be
written to the hard disk on the SUT, while the slave nodes
simply discarded the data that the virtual users downloaded.
Figure 8 shows the average response time plotted over time
for the three upload actions for the heavy user type.

Experiment 2. In the second experiment, we wanted to
know how many concurrent users of given types the system
supports before the response time degrades beyond a given
threshold? The target threshold limits from the actions can
be seen in Table II.

To figure this out, we had the tool to ramp up the number
of user from 0 to 150 following the user type distribution
in Figure 7 and the tool reported back when the measured
response times exceeded any of the threshold values set
for user actions specified in Table II. Figure 9 shows the
average response times for the three upload actions plotted
over time for the medium user type when ramping up from
0 to 150 users. Similar graphs were created by the tool
for the light and heavy user types. The test report also
includes two tables for this experiment (see Table II and III).

Figure 8. Average response time for uploading picture (bottom), video
(middle), and music (top) when running with 1000 concurrent users.

Table II shows the time and number of users at which the
threshold value for individual actions was exceeded. Table
III shows the average and max response times for individual
action over the entire test durations. The tool reported
that the average and max response times were exceeded
for all of the three upload actions. However, the response
time for upload file(audio/mpeg) for the medium user type
went over the set threshold of 3.5 seconds at 8 minutes
and 44 seconds (524 seconds) into the test run. The tool
was then testing with 74 concurrent users. The distribution
between user types was the following: 50% light users, 28%
medium users, and 22% heavy users.

Figure 9. Average response times for uploading video (bottom), picture
(middle), and music (top) when ramping up from 0 to 150 concurrent users.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a model-based perfor-
mance testing tool that uses probabilistic models to generate

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 16 / 153

Table II
TIME AND NUMBER OF USERS AT WHICH THE THRESHOLD VALUE WAS EXCEEDED WHEN RAMPING UP FORM 0 TO 150 USERS

Action Target Response Time Light Users (50 %) Medium Users (28 %) Heavy Users (22%) Verdict
Average Max Average Max Average Max Average Max Pass/Fail

(sec) (sec) (users) (users) (users) (users) (users) (users)
upload file(video/mpeg) 4.5 12 78 (555.0 sec) 94 (669.0 sec) 86 (613.0 sec) 94 (670.0 sec) 78 (558.0 sec) 112 (801.0 sec) Failed
upload file(audio/mpeg) 3.5 10 76 (543.0 sec) 94 (670.0 sec) 74 (524.0 sec) 94 (670.0 sec) 74 (528.0 sec) 94 (671.0 sec) Failed
upload file(image/jpeg) 2.5 8 77 (545.0 sec) 80 (572.0 sec) 74 (524.0 sec) 80 (572.0 sec) 78 (555.0 sec) 101 (719.0 sec) Failed
download file(video/mpeg) 4.5 12 Passed Passed Passed Passed Passed Passed Passed
download file(audio/mpeg) 3.5 10 Passed Passed Passed Passed Passed Passed Passed
download file(image/jpeg) 2.5 8 Passed Passed Passed Passed Passed Passed Passed

Table III
RESPONSE TIMES WHEN RAMPING UP USERS FOR 0 TO 150 USERS

Light Users Medium Users Heavy Users
Action Average Max Average Max Average Max

(sec) (sec) (sec) (sec) (sec) (sec)
upload file(video/mpeg) 4.78 79.17 4.08 40.79 4.72 64.09
upload file(audio/mpeg) 5.34 92.79 5.57 90.20 6.60 92.79
upload file(image/jpeg) 4.22 93.44 4.25 93.04 5.04 87.84
download file(video/mpeg) 0.05 1.98 0.05 1.57 0.04 1.57
download file(audio/mpeg) 0.04 1.44 0.07 2.11 0.04 1.33
download file(image/jpeg) 0.05 2.04 0.05 2.10 0.06 1.99

synthetic workload which is applied to the system in real-
time. The models are based on the Probabilistic Timed
Automata, and include statistical information that describes
the distribution between different actions and think time. The
tool has a scalable distributed architecture with a master
node that controls several slave nodes. The slave nodes
monitor the target KPIs and the local resource utilization,
and after the test duration has ended the monitored values
are sent to the master node which produces a test report.

We have described how load is generated from the PTA
models and we have also discussed the most important
features of the tool. We demonstrated the utility of the tool
on a WebDav case study. We use our tool to answer the two
questions about the system under test: What are the values
of different KPIs when the system is under a particular load
and how many users of given types does the system support
before its KPIs degrade beyond a given threshold?

In the future, we will focus on the creation of the models
and try to optimize the algorithm for load generation even
further. We will strive to have a more formal approach on
how we go from requirements to model. Also we will look
further into load generation, for instance, develop methods
to specify a minimum number of user action that has to be
fulfilled (trace lengths) before the user can exit the system.

We are currently performing larger scale experiments to
evaluate the capabilities of the tool against existing tools
like, JMeter [13] and httperf [7]. Further, we plan to add
target KPI values, for instance response time and perfor-
mance requirements, in the models. By doing that, we can
have performance requirements and address target response
time values for individual actions.

REFERENCES

[1] D. Ferrari, “On the foundations of artificial workload design,”
in Proceedings of the 1984 ACM SIGMETRICS conference
on Measurement and modeling of computer systems, ser.
SIGMETRICS ’84. New York, NY, USA: ACM, 1984, pp.
8–14.

[2] J. Shaw, “Web Application Performance Testing – a Case
Study of an On-line Learning Application,” BT Technology
Journal, vol. 18, no. 2, pp. 79–86, Apr. 2000.

[3] R. Jain, “The Art of Computer Systems Performance Anal-
ysis: Techniques for Experimental Design, Measurement,
Simulation and Modeling (Book Review),” SIGMETRICS
Performance Evaluation Review, vol. 19, no. 2, pp. 5–11,
1991.

[4] G. Denaro, A. Polini, and W. Emmerich, “Early performance
testing of distributed software applications,” in Proceedings of
the 4th international workshop on Software and performance,
ser. WOSP ’04. New York, NY, USA: ACM, 2004, pp. 94–
103.

[5] C. Barna, M. Litoiu, and H. Ghanbari, “Model-based per-
formance testing (NIER track),” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE
’11. New York, NY, USA: ACM, 2011, pp. 872–875.

[6] M. Shams, D. Krishnamurthy, and B. Far, “A model-based
approach for testing the performance of web applications,” in
SOQUA ’06: Proceedings of the 3rd international workshop
on Software quality assurance. New York, NY, USA: ACM,
2006, pp. 54–61.

[7] Hewlett-Packard, “httperf,” http://www.hpl.hp.com/research/
linux/httperf/httperf-man-0.9.txt, retrieved: October, 2012.

[8] G. Ruffo, R. Schifanella, M. Sereno, and R. Politi, “WALTy:
A User Behavior Tailored Tool for Evaluating Web Appli-
cation Performance,” Network Computing and Applications,
IEEE International Symposium on, vol. 0, pp. 77–86, 2004.

[9] D. A. Menasce and V. Almeida, Capacity Planning for Web
Services: metrics, models, and methods, 1st ed. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2001.

[10] M. Jurdziński, M. Kwiatkowska, G. Norman, and A. Trivedi,
“Concavely-Priced Probabilistic Timed Automata,” in Proc.
20th International Conference on Concurrency Theory (CON-
CUR’09), ser. LNCS, M. Bravetti and G. Zavattaro, Eds., vol.
5710. Springer, 2009, pp. 415–430.

[11] HTTP Extensions for Web Distributed Authoring and Ver-
sioning (WebDAV), http://www.webdav.org/specs/rfc4918.pdf,
Network Working Group pdf, retrieved: October, 2012.

[12] AWStats, http://awstats.sourceforge.net/, retrieved: October,
2012.

[13] The Apache Software Foundation, “Apache JMeter,”
http://jmeter.apache.org/, retrieved: October, 2012.

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 17 / 153

Cost-Aware Combinatorial Interaction Testing

Gulsen Demiroz and Cemal Yilmaz
Faculty of Engineering and Natural Sciences
Sabanci University, Istanbul 34956, Turkey
Email: {gulsend,cyilmaz}@sabanciuniv.edu

Abstract—The configuration spaces of modern software sys-
tems are often too large to test exhaustively. Combinatorial
interaction testing approaches, such as covering arrays, sys-
tematically sample the configuration space and test only the
selected configurations. Traditional t-way covering arrays aim
to cover all t-way combinations of option settings in a minimum
number of configurations. By doing so, they assume that the
testing cost of a configuration is the same for all configurations.
In this work, we however argue that, in practice, the actual
testing cost may differ from one configuration to another and
that accounting for these differences can improve the cost-
effectiveness of covering arrays. We first introduce a novel
combinatorial object, called a cost-aware covering array. A
t-way cost-aware covering array is a t-way covering array
that minimizes a given cost function. We then provide a
framework for defining the cost function. Finally, we present
an algorithm to compute cost-aware covering arrays for a
simple, yet important scenario, and empirically evaluate the
cost-effectiveness of the proposed approach. The results of
our empirical studies suggest that cost-aware covering arrays,
depending on the configuration space model used, can greatly
reduce the actual cost of testing compared to traditional
covering arrays.

Keywords-Software quality assurance, combinatorial interac-
tion testing, covering arrays.

I. INTRODUCTION

The configuration spaces of configurable software systems
are often too large to test exhaustively. The number of
possible configurations is often far beyond the available
resources to test the entire configuration space in a timely
manner, e.g., for regression testing.

Combinatorial interaction testing (CIT) approaches take
as input a configuration space model. The model includes
a set of configuration options, each of which can take on a
small number of option settings. As not all configurations
may be valid, the model can also include some system-
wide inter-option constraints. In the context of this work,
an inter-option constraint is a constraint that implicitly or
explicitly invalidates some combinations of option settings.
In effect, the configuration space model implicitly defines a
set of valid ways the software under test can be configured.

CIT approaches systematically sample the valid config-
uration space and test only the selected configurations.
The sampling is carried out by computing a combinatorial
object, called a covering array. Given a configuration space

model, a t-way covering array is a set of configurations, in
which each possible combination of option settings for every
combination of t options appears at least once [6].

The basic justification for covering arrays is that they can
cost-effectively exercise all system behaviors caused by the
settings of t or fewer options. The results of many empirical
studies strongly suggest that a majority of option-related
failures in practice are caused by the interactions among only
a small number of configuration options and that traditional
t-way covering arrays, where t is much smaller than the
number of options, are an effective and efficient way of
revealing such failures [2], [6], [9], [10].

Existing approaches construct a t-way covering array in
such a way that all valid t-way combinations of option
settings are covered by using a minimum number of config-
urations. By doing so, these approaches implicitly assume a
simple cost model where the cost of configuring the system
under test is the same for all configurations.

In this work, we argue that this cost model is not always
valid in practice. First, we observe that the configuration cost
often varies from one configuration to other. For example, in
a study conducted on MySQL – a widely-used and highly-
configurable database management system, we observed that
the cost of configuring the MySQL Community Server (a
core component of the system) with its default configuration
took about 6 minutes on average (on an 8-core Intel Xeon
2.53GHz CPU with 32 GB of RAM, running CentOS 6.2
operating system). On the other hand, configuring the system
with NDB cluster storage support – a feature that enables
clustering of in-memory databases, and with embedded
server support – a feature that makes it possible to run a
full-featured MySQL server inside a client application, took
about 9 minutes, as these features needed to be compiled
into the system. Therefore, in a covering array, reducing the
number of configurations that include these features, without
adversely affecting the coverage of option setting combina-
tions, can significantly reduce the amount of time required
for testing. However, existing approaches do not take actual
testing costs into account when computing covering arrays.

Second, we observe that highly configurable systems often
have reusable components, which, once configured, can be
used in other configurations with no or very little additional
cost. One simple example is the presence of compile-time

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 18 / 153

o1 o2 o3 o4 o5 o6 o70 0 0 0 0 0 00 0 1 1 1 0 00 1 0 1 1 1 10 1 1 0 1 0 11 0 0 0 0 1 11 0 1 1 1 1 11 1 0 1 0 1 01 1 1 0 0 0 0 o1 o2 o3 o4 o5 o6 o70 0 0 0 0 0 00 0 0 1 1 0 00 0 0 1 1 1 10 0 0 0 1 0 10 1 1 0 0 1 11 0 1 1 1 1 11 0 1 1 0 1 01 1 0 0 0 0 0
o1 o2 o30 0 00 1 11 0 11 1 0

- Options:{o1,o2,o3}: {0,1}- Constraints: <empty> - Options:{o1,o2,o3,o4,o5,o6,o7}: {0,1}- Constraints: (o1=0 � o2=0 � o3=0)�(o1=0 � o2=1 � o3=1)�(o1=1 � o2=0 � o3=1)�(o1=1 � o2=1 � o3=0)
(a)

A 2-way cost-aware covering array2-way covering array for options {o1,o2,o3}A traditional 2-way covering array

(b) (c)
Figure 1. (a) A traditional 2-way covering array. (b,c) Illustrates our algorithm where (b) shows 2-way covering array for only compile-time options and
(c) shows 2-way cost-aware covering array.

and runtime configuration options.
Compile-time options need to be set before the system

can be built. The system is then configured as a part of the
build process. Therefore, changing the setting of a compile-
time option requires a partial or a full rebuild of the system.
On the other hand, given a build of the system, runtime
options are set when the system is running and the system
is configured on the fly. Note that a build of the system is
a reusable component. Once the system is built for a given
combination of compile-time option settings, the same build
can be used with different runtime configurations without
any additional cost; as long as the settings of compile-time
options stay the same, the same binaries can be reused.
However, runtime configurations are not reusable. Even for
the same build (i.e., the same compile-time configuration)
they need to be reconfigured every time the program is
executed, unless the program state is saved for future use.

Figure 1(a) and 1(c) illustrate the effect of reusable
components on testing cost in a hypothetical scenario. In this
scenario, we have 7 configuration options o1 , . . . , o7 , each
of which can take on a binary value (i.e., 0 or 1). The first 3
options o1 , o2 , and o3 are compile-time options, whereas
the remaining options o4 , o5 , o6 , and o7 are runtime
options. There are no system-wide inter-option constraints;
all option setting combinations are valid. Furthermore, the
system is to be tested with a 2-way covering array. Two
covering arrays are created for comparison.

The 2-way covering array presented in Figure 1(a) in-
cludes 8 unique combinations of compile-time option set-
tings, requiring to build the system 8 times. On the other

hand, the 2-way covering array presented in Figure 1(c)
requires to build the system only 4 times, as it includes
4 unique compile-time configurations. For example, once
the system is built for o1=0, o2=0, and o3=0, the same
binaries are reused without any additional cost for 3 more
configurations included in the covering array. Assuming that
the runtime configuration cost is negligible compared to the
compile-time configuration cost and that the compile-time
configuration cost is the same for all configurations, the 2-
way covering array in Figure 1(c) tests all 2-way option
setting combinations at half of the cost compared to the 2-
way covering array in Figure 1(a).

To improve the cost-effectiveness of CIT approaches,
we introduce a novel combinatorial object, called a cost-
aware covering array. Given a traditional configuration
space model augmented with a cost function and a value of t,
a t-way cost-aware covering array is a t-way covering array
that minimizes the cost function. We, furthermore, provide
an algorithm to compute cost-aware covering arrays for a
simple, yet frequently-faced scenario in practice. The results
of our empirical studies suggest that cost-aware covering
arrays, depending on the configuration space model used,
can greatly reduce the actual cost of testing compared to
traditional covering arrays.

The remainder of the paper is organized as follows:
Section II discusses related work; Section III introduces
cost-aware covering arrays; Section IV presents an algorithm
to compute cost-aware covering array for a particular cost
model; Section V describes the empirical studies; Section VI
presents concluding remarks and directions for future work.

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 19 / 153

II. RELATED WORK

In this section, we provide background information on
traditional covering arrays and discuss related work.

Traditional CIT approaches take as input a configuration
space model M=<O,V,Q>. The model includes a set
of configuration options O={o1, o2, . . . , on}, their possible
values V={V1, V2, . . . , Vn}, and some system-wide inter-
option constraints Q (if any). Each configuration option oi
(1 ≤ i ≤ n) takes a value from a finite set of |Vi| distinct
values Vi = {vi1, vi2, . . . , vi|Vi|}.

Definition 1. Given a configuration space model
M=<O, V,Q>, a t-tuple ϕt={<oi1 , vj1>, <oi2 , vj2>,
. . ., <oit , vjt>} is a set of option-value tuples for a
combination of t distinct options, such that 1 ≤ t ≤ n,
1 ≤ i1 < i2 < . . . < it ≤ n, and vjp ∈ Vip for
p=1, 2, . . . , t.

Not all the t-tuples may be valid due to the constraints
Q. Let valid(ϕt, Q) be a deterministic function such that
valid(ϕt, Q) is true, if and only if, ϕt satisfies the constraint
Q. Otherwise, valid(ϕt, Q) is false. The set of all valid t-
tuples Φt under constraint Q is then defined as: Φt={ϕt :
valid(ϕt, Q)}.

Definition 2. Given a configuration space model
M=<O, V,Q>, a valid configuration c is a valid
n-tuple, i.e., c ∈ Φn, where n = |O|.

Definition 3. Given a configuration space model
M=<O, V,Q>, the valid configuration space C is
the set of all valid configurations, i.e., C={c : c ∈ Φn}.

Definition 4. A t-way covering array
CA(t,M=<O,V ,Q>) is a set of valid configurations,
in which each valid t-tuple appears at least once, i.e.,
CA(t,M=<O,V,Q>)={c1, c2, . . . , cN}, such that
∀ϕt ∈ Φt ∃ ci ⊇ ϕt, where ci ∈ C for i=1, 2, . . . , N .

The problem of generating covering arrays is NP-
hard [15]. Nie et al. classify the methods for generating
covering arrays into 4 main categories [15]: random search-
based methods [16], heuristic search-based methods [8], [4],
[7], [11], [4], [17], greedy methods [6], [9], [5], [19], [18],
[14], and mathematical methods [20], [13], [21], [12].

Random search-based methods employ a random selection
without replacement strategy [16]. Valid configurations are
randomly selected from the configuration space in an itera-
tive fashion until all the required t-tuples have been covered
by the configurations selected.

Heuristic search-based methods, on the other hand, em-
ploy heuristic search techniques, such as hill climbing [8],
tabu search [4], and simulated annealing [7], or AI-based
search techniques, such as genetic algorithms [11] and ant
colony algorithms [17], to compute covering arrays. These
methods typically maintain a set of configurations at any

given time and iteratively apply a series of transformations
to the set until the set constitutes a t-way covering array.

Greedy algorithms also operate in an iterative manner [6],
[9], [5], [19], [18], [14]. At each iteration, among the sets of
configurations examined as candidates, the one that covers
the most previously uncovered t-tuples is included in the
covering array and the newly covered t-tuples are then
marked as covered. The iterations end when all the required
t-tuples have been covered.

Mathematical methods for constructing covering arrays
have also been studied [20], [13], [21]. Some mathematical
methods are based on recursive construction methods, which
build covering arrays for larger configuration space models
(i.e., the ones with a larger number of configuration options)
by using covering arrays built for smaller configuration
space models (i.e., the ones with a smaller number of con-
figurations) [20], [13]. Other mathematical methods leverage
mathematical programming, such as integer programming, to
compute covering arrays [21].

Our approach differs from existing covering array gen-
erators in that we compute a t-way covering array that
minimizes a given cost function, rather than minimizing the
number of configurations required.

Furthermore, Bryce et al. introduce the concept of “soft
constraints” to mark option setting combinations that are
permitted, but undesirable to be included in a covering
array [3]. Although soft constraints could be used to avoid
costly combinations of options settings, thus to reduce
testing cost, using soft constraints for this purpose can be
considered to be an opportunistic approach. Our approach,
on the other hand, takes the task of reducing the cost as an
optimization criterion.

III. COST-AWARE COVERING ARRAYS

In our approach, we take as input a traditional configu-
ration space model augmented with a cost function cost(.).
Given a covering array ca , cost(ca) returns the expected
cost of testing ca .

Definition 5. Given a configuration space model
M=<O, V,Q, cost(.)> and a value of t, a t-way
cost-aware covering array is a t-way covering array that
minimizes the function cost(.).

Defining the cost function is not a trivial task. For
example, the cost of a given covering array may not simply
be the sum of the cost of the configurations in the array, as
some parts of a configured system can be reused by other
configurations with no or little additional cost. Therefore,
we present a framework for defining the cost function.

Definition 6. Given a configuration space model
M=<O, V,Q>, a component class X={oi1 , oi2 , . . . , oik}
is a set of k distinct options, such that X ⊆ O.

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 20 / 153

Definition 7. Given a component class
X={oi1 , oi2 , . . . , oik}, a component x is a k-tuple of
the form {<oi1 , vj1>, <oi2 , vj2>, . . ., <oik , vjk>} for the
configuration options included in X , where k=|X|.

We assume that the set of configuration options O
are divided into p (1 ≤ p ≤ |O|) component classes
X1, X2, . . . , Xp, such that Xi ∩ Xj = ∅ for i̸=j and
X1 ∪ . . . ∪ Xp = O. Consequently, a given configuration
c is composed of p components x1, x2, . . . , xp, such that xi

is a component of component class Xi for i=1, . . . , p.
For example, in our running example depicted in Figure 1,

we have two component classes: X1={o1 , o2 , o3} and
X2={o4 , o5 , o6 , o7}. X1 includes all the compile-time
options, whereas X2 includes all the runtime options.

We distinguish between two types of component classes:
reusable and non-reusable component classes.

Definition 8. A reusable component class Xr is a compo-
nent class whose components can be configured in isolation
and, once configured, they can be reused in other configu-
rations.

Definition 9. A non-reusable component class Xnr is a
component class whose components need to be configured
every time they are used.

Going back to our running example, we observe that X1

is a reusable component class, since, once the system is
built for a given compile-time configuration, the resulting
binaries can be reused in other configurations with different
runtime configurations. On the other hand, X2 is a non-
reusable component class, since the runtime options need to
be configured every time the system is executed.

To determine the cost of a given covering array, we
assume two cost functions: cc(.) and lc(.). The function
cc(x) takes as input a component x (either a reusable or a
non-reusable component) and returns the configuration cost
of x. For example, assuming that the reusable component
x represents a configuration for a library, cc(x) is the
cost of compiling the library with the given configuration.
The function lc(c), on the other hand, takes as input a
configuration c and returns the cost of linking (i.e., gluing)
together the components appearing in the configuration. For
example, assuming that a configuration c is composed of
reusable components xr

1 and xr
2, each of which represents

a library, lc(c) is the cost of linking the two libraries after
they are compiled, i.e., after the cc(xr

1) and cc(xr
2) costs are

paid.

Definition 10. The cost of a configuration c, which is
composed of components x1, x2, . . . , xp, is defined as(∑

1≤i≤p cc(xi)
)
+ lc(c)

However, in the presence of reusable components, the cost
of a given covering array is not the sum of the cost of the

configurations included in the array.

Definition 11. Given a covering array ca={c1, c2, . . . , cN},
let Ri and Si be the set of reusable and non-reusable compo-
nents in a configuration ci, respectively, where 1 ≤ i ≤ N .
The cost of the covering array ca is then defined as follows:

cost(ca)=
∑

x∈
∪

1≤i≤N
Ri

cc(x) +∑
1≤i≤N

(
lc(ci) +

∑
x∈Si

cc(x)
)

Furthermore, reusable components can form a hierarchy.

Definition 12. A reusable composite component is a com-
ponent, which is composed of reusable components and/or
other reusable composite components.

Reusable composite components are constructed by link-
ing the components appearing in the composite, once these
components are configured. Therefore, to account for com-
posite components, the lc(.) function should ensure that the
linking cost of the same reusable composite components is
paid only once.

IV. COMPUTING COST-AWARE COVERING ARRAYS FOR
A SIMPLE COST MODEL

We conjecture that all the methods that have so far been
used to compute traditional covering arrays, such as ran-
dom search-based methods, heuristic search-based methods,
greedy methods, and mathematical methods (Section II), can
also be used to construct cost-aware covering arrays, all
with their own pros and cons. In this work, however, we, as
a proof of concept, present an algorithm to compute cost-
aware covering arrays for a simple, yet important cost model.

In this cost model, the system under test has compile-time
and runtime options. For a given configuration space model
of the system, we define two components Xr and Xnr. Xr

is a reusable component class, containing all the compile-
time options in the model, whereas Xnr is a non-reusable
component class, containing all the runtime options in the
model. We assume that (1) the cost of linking compile-time
and runtime configurations is negligible, i.e., lc(c)=0 for
all c, (2) the compile-time configuration cost is the same
for all compile-time configurations, i.e., cc(xr)=a for some
constant a for all xr, and (3) the runtime configuration cost
of the system is negligible, i.e., cc(xnr)=0 for all xnr.

Under this cost model, the cost of a covering array
ca={c1, c2, . . . , cN} is

cost(ca) = a× |
∪

1≤i≤N

Ri|, (1)

where a is the constant cost of building the system, and
Ri is the set of compile-time components appearing in
configuration ci (1 ≤ i ≤ N). In other words, under this
model the optimization criterion is to minimize the number
of times the system is built, while covering all t-tuples.

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 21 / 153

Although this cost model may seem to be overly con-
strained at a first glance, since our goal is to demonstrate
the differences between the cost-effectiveness of traditional
and cost-aware covering arrays, rather than to compute cost-
aware covering arrays for any given cost function, we believe
that the cost model employed serves well to its purpose.

Furthermore, based on our feasibility studies conducted
on MySQL – a highly-configurable database management
system, and Apache – a highly-configurable HTTP server,
we argue that this simple cost model still has some practical
importance. For example, we observed that (1) both subject
applications have compile-time and runtime options, (2)
runtime configuration cost for both subject applications is
negligible, (3) the cost of linking runtime configurations
with compile-time configurations is negligible. Although,
for both subject applications, compile-time configuration
costs vary from one configuration to another, since building
these systems from scratch is costly, reducing the number of
times they are built is still of practical value, e.g., building
the entire software suite that comes with the source code
distribution of our subject applications with the default
configuration takes about 80 minutes for MySQL and 8
minutes for Apache, on average.

With all these in mind, Algorithm 1 presents our algo-
rithm. In this algorithm, we use traditional covering array
construction as a computational primitive. In particular, we
assume a generator

∏
(t,M) that constructs a traditional t-

way covering array for the configuration space model M .
Given a configuration space model M and a value of

t, our algorithm operates as follows: (1) a traditional t-
way covering array Ω is generated for only the compile-
time options (line 1), (2) all the compile-time configurations
included in the newly computed array are expressed as
an inter-option constraint Q (line 3-5), (3) a traditional t-
way covering array Ψ satisfying Q, is generated for all the
configuration options (line 6). The output Ψ (line 7) is a
t-way cost-aware covering array, aiming to minimize the
testing cost, i.e., aiming to minimize the number of times
the system is required to be built.

The rationale behind this algorithm is a simple one.
Assuming

∏
(t,M) generates a traditional t-way covering

Ω for only the compile-time options with minimal num-
ber of configurations, Step (1) selects a minimal set of
compile-time configurations covering all t-way combinations
of option settings for the compile-time options. Step (2), by
expressing these compile-time configurations as constraints,
ensures that step (3) computes a traditional t-way cover-
ing array around these configurations without introducing
new compile-time configurations, minimizing the number of
compile-time configurations required, thus the testing cost.
If the traditional covering array generator

∏
produces a sub-

optimal solution, then so will our algorithm.
Figure 1(b) and (c) illustrate the algorithm in our running

example introduced in Section I. First, a traditional 2-way

Algorithm 1 Computes a t-way cost-aware covering
array
Input M=<O, V, ∅>: Configuration space model
Input t: Covering array strength
Let M ′ be the configuration space model for only the
compile-time options in M

1: Ω←
∏
(t,M ′)

2: Q← ∅
3: for each c = {<oi1 , vj1>, <oi2 , vj2>, . . .} in Ω do
4: Q← Q ∨ {oi1 = vj1 ∧ oi2 = vj2 ∧ . . .}
5: end for
6: Ψ←

∏
(t, M=<O, V,Q>)

7: return Ψ

covering array is generated for the 3 compile-time options
o1 , o2 , and o3 (Figure 1b). The array has 4 compile-time
configurations. Second, these configurations are expressed
as a constraint so that no additional compile-time config-
urations can be selected (Figure 1c). Finally, a traditional
2-way covering array satisfying the constraint is generated
for all the options. The resulting cost-aware covering array
requires to build the system under test 4 times.

V. EXPERIMENTS

To evaluate the proposed approach, we conducted a set of
experiments.

A. Experimental Setup

To carry out the experiments, we first implemented our
algorithm. In the implementation, we used a well-known and
widely-used covering array generator ACTS (v1.r9.3.2) [1].

We then determined a configuration space model for a
hypothetical system and varied the model in a system-
atic and controlled manner to obtain other models. For
each configuration space model obtained, we computed a
traditional t-way covering array and a t-way cost-aware
covering array, and compared their cost-effectiveness, i.e.,
compared the number of builds required by these arrays.
The constant cost we assume for each configuration (build)
would vary for different systems but this does not affect our
cost comparisons.

All the experiments were performed on an 8-core Intel
Xeon 2.53 GHz CPU platform with 32 GB of RAM, running
CentOS 6.2 operating system.

B. Independent Variables

In particular we experimented with 3 independent vari-
ables:

• m: The number of compile-time options in the
configuration space model. We experimented with
m=5, 6, . . . , 20.

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 22 / 153

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

10

20

30

40

50

60

70

80

90

100

Cost Improvements (3−way)

Number of compile−time options (m)

C
os

t I
m

pr
ov

em
en

t %

m/n ratio=0.1
m/n ratio=0.2
m/n ratio=0.3
m/n ratio=0.4
m/n ratio=0.5
m/n ratio=0.6
m/n ratio=0.7
m/n ratio=0.8
m/n ratio=0.9

(a)
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

10

20

30

40

50

60

70

80

90

100

Cost Improvements (4−way)

Number of compile−time options (m)
C

os
t I

m
pr

ov
em

en
t %

m/n ratio=0.1
m/n ratio=0.2
m/n ratio=0.3
m/n ratio=0.4
m/n ratio=0.5
m/n ratio=0.6
m/n ratio=0.7
m/n ratio=0.8
m/n ratio=0.9

(b)
Figure 2. Cost Improvements in a) 3-way b) 4-way cost-aware covering arrays with different m.

• m/n: The ratio of compile-time options to the total
number of options in the configuration space model,
where n is the total number of options and n −m is
the number of runtime options. We experimented with
m/n=0.1, 0.2, . . . , 0.9.

• t: The strength of the covering array. We experimented
with t=3, 4.

In all the configuration space models, we, without losing
the generality, used binary options only. Given m and m/n
ratio, the respective configuration space model is obtained
by adding binary runtime options to the model, such that
the requested m/n ratio is attained. Furthermore, we opted
not to experiment with t=2 because for the m and m/n
values used in the experiments, the sizes of the covering
arrays generated were similar to each other. This made it
difficult to analyze the effect of our independent variables
on the cost-effectiveness of cost-aware covering arrays.

C. Evaluation Framework

To evaluate the cost-effectiveness of cost-aware covering
arrays and compare it to that of traditional covering arrays,
we counted the number of unique compile-time configura-
tions required by the arrays. That is, we counted the number
of times the system is required to be built. Note that this is
indeed the optimization criterion dictated by the cost model
our algorithm is designed for (Section IV).

When creating the traditional covering arrays, we config-
ured ACTS to create partially filled covering arrays. In a
partially filled covering array, some option settings are left

unset, indicating that, regardless of the actual settings used
for these, as long as they are valid settings for the respective
options, the array will still be a covering array. Once
a partially filled traditional covering array was obtained,
we followed a greedy approach to pick the best settings
for the unset options so that the number of compile-time
configurations is reduced as much as possible. Had we had
ACTS to create fully filled covering arrays, the unset options
would have been randomly set, which could have increased
the number of compile-time configurations required. There-
fore, the fully filled traditional covering arrays used in the
comparisons represent the best case scenario for the partially
filled covering arrays created by ACTS.

D. Data Analysis

Figure 2a-b present the results we obtained. In these
figures, the horizontal axis denotes the values of m (i.e., the
number of compile-time options) used in the experiments,
whereas the vertical axis depicts the percentage of cost
improvements (i.e., percentage of decrease in the number
of compile-time configurations required) provided by cost-
aware covering arrays over traditional covering arrays. Fig-
ure 2a is for t=3 and Figure 2b is for t=4.

We first observed that the cost-effectiveness of cost-
aware covering arrays were better or the same (but never
worse) compared to that of traditional covering arrays. More
accurately, when t=3, the cost-effectiveness of cost-aware
covering arrays were better than that of traditional covering
arrays in 89% (128 out of 144) of the comparisons. In the

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 23 / 153

Table I
3-WAY AND 4-WAY COST IMPROVEMENT (%) AVERAGES FOR DIFFERENT M/N RATIOS.

m/n ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3-way 54.58 46.31 38.86 31.31 25.63 20.27 14.03 6.89 2.48
4-way 55.83 46.80 39.25 31.83 26.88 20.45 14.80 7.72 1.83

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60
70

80

Cost Improvements (4−way)

m/n Ratio

C
os

t I
m

pr
ov

em
en

t %

m=19

Figure 3. Cost Improvements in 4-way cost-aware covering arrays with
different m/n ratio for m = 19.

remaining comparisons (i.e., 11% of the comparisons), the
cost-effectiveness of the arrays were the same. When t=4,
the cost-effectiveness of cost-aware covering arrays were
better in 94% and the same in 6% of the comparisons.

We then observed that actual cost improvements varied
depending on the m/n ratio used in the configuration
space models. For a fixed m, as the m/n ratio increased,
cost improvements tended to decrease. Table I presents the
cost improvement percentages. For example, when t=4 and
m=19, the cost-aware covering arrays, compared to the tra-
ditional covering arrays, reduced the cost by 59.24%, 52%,
38.89%, 32.1%, 29.17%, 22.99%, 17.72%, 12%, 5.71%
when m/n=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, respec-
tively (Figure 3). Clearly, when m/n=1, regardless of the
value of m, as the configuration space model will include
only compile-time options, there will be no difference be-
tween the cost-effectiveness of traditional and cost-aware
covering arrays.

For the values of m and m/n used, when the m/n
ratio was fixed, the cost improvements tended to be stable
regardless of the value of m. On the other hand, when
m ≤ t, as the compile-time configurations will be tested
significantly, there will be no difference between the cost-
effectiveness of traditional and cost-aware covering arrays.

Furthermore, comparing 4-way and 3-way cost-aware
covering arrays with traditional covering arrays, we observed

that 4-way cost-aware covering arrays tended to provide
slightly more cost improvements than 3-way cost-aware
covering arrays; as t was increased from 3 to 4, the cost
improvements over traditional covering arrays tended to
increase (Table I). For example, when m/n=0.1, the average
cost improvement provided by 3-way cost-aware covering
arrays was 54.58%, whereas 4-way cost-aware covering
arrays provided 55.83% cost improvement.

VI. CONCLUSION AND FUTURE WORK

In this paper, we first introduced a novel combinatorial
object, called a cost-aware covering array. Unlike traditional
t-way covering arrays, which aim to minimize the number
of configurations required to cover all valid t-tuples, t-way
cost-aware covering arrays aim to cover all t-tuples in a set
of configurations, which minimizes a given cost function.
Given a set of configurations, the cost function computes
the actual cost of testing. Furthermore, since computing the
testing cost in configuration spaces is a nontrivial task, espe-
cially in the presence of reusable components, we provided
a framework for defining the cost function. Finally, we pre-
sented an algorithm to compute cost-aware covering arrays
for a particular cost scenario, and empirically evaluated the
cost-effectiveness of cost-aware covering arrays.

All empirical studies suffer from threats to their internal
and external validity. For this work, we were primarily
concerned with threats to external validity since they limit
our ability to generalize the results of our experiment to
industrial practice. One potential threat is that our algorithm
was designed for a particular cost scenario. However, the
cost scenario used in the paper, although simple, is of great
practical importance.

Another possible threat to external validity concerns the
representativeness of the configuration space models used
in the experiments. Although we systematically varied the
models and evaluated the cost-effectiveness of the proposed
approach, i.e., a total of 288 different models were used (16
values of m × 9 values of m/n × 2 values of t), these
models are still one suite of models. A related issue is that
the configuration space models used in the experiments did
not contain any inter-option constraints. While these issues
pose no theoretical problems (our algorithm can be modified
to account for constraints), we need to apply our approach
to more realistic configuration space models in future work.

Despite these limitations, we believe our study supports
our basic hypotheses. We reached this conclusion by noting
that our studies showed that: (1) in practice, the testing cost

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 24 / 153

may not be the same for all configurations, (2) accounting for
the presence of reusable components, i.e., the components,
which, once configured, are reused in other configurations,
can reduce the testing cost, (3) minimizing the number of
configurations as is the case in traditional covering arrays
does not necessarily minimize the actual cost of testing,
and (4) the cost-aware covering arrays were generally more
cost-effective than the traditional covering arrays used in the
experiments.

We believe that this line of research is novel and in-
teresting, but much work remains to be done. We are
therefore continuing to develop new approaches that over-
come existing limitations and threats to external validity. In
particular, we are developing tools and algorithms that are
based on metaheuristic search techniques, such as simulated
annealing, to compute cost-aware covering arrays for any
given configuration space model and for any cost function.

REFERENCES

[1] Advanced Combinatorial Testing System (ACTS),
2010. http://csrc.nist.gov/groups/SNS/acts/documents/
comparison-report.html 10.23.2012.

[2] R. Brownlie, J. Prowse, and M. S. Phadke. Robust testing
of AT&T PMX/StarMAIL using OATS. AT&T Technical
Journal, 71(3):41–7, 1992.

[3] R. C. Bryce and C. J. Colbourn. Prioritized interaction
testing for pair-wise coverage with seeding and constraints.
Information and Software Technology, 48(10):960 – 970,
2006. Advances in Model-based Testing.

[4] R. C. Bryce and C. J. Colbourn. One-test-at-a-time heuristic
search for interaction test suites. In Proceedings of the 9th
annual conference on Genetic and evolutionary computation,
GECCO ’07, pages 1082–1089, New York, NY, USA, 2007.
ACM.

[5] R. C. Bryce and C. J. Colbourn. A density-based greedy
algorithm for higher strength covering arrays. Softw. Test.
Verif. Reliab., 19:37–53, March 2009.

[6] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: an approach to testing based
on combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437–44, 1997.

[7] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. Aug-
menting simulated annealing to build interaction test suites.
In Proceedings of the 14th International Symposium on
Software Reliability Engineering, ISSRE ’03, pages 394–405,
Washington, DC, USA, 2003. IEEE Computer Society.

[8] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J.
Colbourn. Constructing test suites for interaction testing. In
Proceedings of the 25th International Conference on Software
Engineering, ICSE ’03, pages 38–48, Washington, DC, USA,
2003. IEEE Computer Society.

[9] J. Czerwonka. Pairwise testing in the real world: Practical
extensions to test-case scenarios. In Proc. of the 24th
Pacific Northwest Software Quality Conference, pages 285–
294, 2006.

[10] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott,
G. C. Patton, and B. M. Horowitz. Model-based testing in
practice. In Proc. of the Int’l Conf. on Software Engineering,
pages 285–294, 1999.

[11] S. Ghazi and M. Ahmed. Pair-wise test coverage using genetic
algorithms. In Evolutionary Computation, 2003. CEC ’03.
The 2003 Congress on, volume 2, pages 1420–1424, Dec.
2003.

[12] A. Hartman. Software and hardware testing using combinato-
rial covering suites. In M. C. Golumbic and I. B.-A. Hartman,
editors, Graph Theory, Combinatorics and Algorithms, vol-
ume 34 of Operations Research/Computer Science Interfaces
Series, pages 237–266. Springer US, 2005.

[13] N. Kobayashi. Design and evaluation of automatic test
generation strategies for functional testing of software. Osaka
University, Osaka, Japan, 2002.

[14] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence.
Ipog-ipog-d: efficient test generation for multi-way com-
binatorial testing. Softw. Test. Verif. Reliab., 18:125–148,
September 2008.

[15] C. Nie and H. Leung. A survey of combinatorial testing.
ACM Comput. Surv., 43:11:1–11:29, February 2011.

[16] P. J. Schroeder, P. Bolaki, and V. Gopu. Comparing the
fault detection effectiveness of n-way and random test suites.
In Proceedings of the 2004 International Symposium on
Empirical Software Engineering, pages 49–59, Washington,
DC, USA, 2004. IEEE Computer Society.

[17] T. Shiba, T. Tsuchiya, and T. Kikuno. Using artificial life
techniques to generate test cases for combinatorial testing.
In Proceedings of the 28th Annual International Computer
Software and Applications Conference - Volume 01, COMP-
SAC ’04, pages 72–77, Washington, DC, USA, 2004. IEEE
Computer Society.

[18] K.-C. Tai and Y. Lei. A test generation strategy for pair-
wise testing. Software Engineering, IEEE Transactions on,
28(1):109 –111, Jan 2002.

[19] Y.-W. Tung and W. Aldiwan. Automating test case generation
for the new generation mission software system. In Aerospace
Conference Proceedings, 2000 IEEE, volume 1, pages 431 –
437 vol.1, 2000.

[20] A. W. Williams. Determination of test configurations for
pair-wise interaction coverage. In Proceedings of the IFIP
TC6/WG6.1 13th International Conference on Testing Com-
municating Systems: Tools and Techniques, TestCom ’00,
pages 59–74, Deventer, The Netherlands, The Netherlands,
2000. Kluwer, B.V.

[21] A. W. Williams and R. L. Probert. Formulation of the
interaction test coverage problem as an integer program. In
Proceedings of the IFIP 14th International Conference on
Testing Communicating Systems XIV, TestCom ’02, pages
283–298, Deventer, The Netherlands, The Netherlands, 2002.
Kluwer, B.V.

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 25 / 153

Sick But Not Dead Testing -
A New Approach to System Test

Tara Astigarraga1, Michael Browne2, Lou Dickens3,
Systems and Technology Group

IBM
1 Rochester, NY 14626

2 Poughkeepsie, NY 12601
3 Tucson, AZ 85744

{asti, browne, dickens}@us.ibm.com

Abstract— Enterprise data center implementations make
significant investments in high availability configurations,
redundant hardware, software and Input / Output (I/O) paths
that are in many failure scenarios quite successful. However, in
spite of all that investment clients are still facing unexpected
outages and performance impacts related to a phenomenon
referred to as Sick but not Dead (SBND) errors. SBND errors
are sometimes lumped together in a category with other related
errors including transient errors, partial failure scenarios and
soft errors. While SBND errors do have many common
characteristics with the errors described above, there are key
differences and environment impacts which we will explore
further in this paper. We will also present new proactive
techniques, inject scenarios and methods to identify, characterize
and address SBND failures including cross-component impacts
and failures.

Keywords-Software Testing; Sick but not Dead; Software
Engineering; Partial Failure; Transient Error; Soft Failure; SAN
Test; System Test.

I. INTRODUCTION AND MOTIVATION
Despite high availability (HA) configurations, customers

are still experiencing outages and severe performance declines
in their environments. These outages typically show no signs
of hard component failures for which the HA infrastructure
would react to and provide recovery. We classify these errors
as Sick but not Dead (SBND) failures. These errors are often
the hardest failures to identify and can have sporadic but
lasting impacts on the environment as a whole. SBND failures
currently represent 80% of business impact, but only about
20% of the problems [2].

SBND errors are sometimes lumped together in a category
with other related errors including transient errors, partial
failure scenarios and soft errors. While SBND errors do have
many common characteristics with the errors described above,
there are key differences as well. SBND errors by definition
derive from a component within the I/O path that is ‘sick’
meaning behaving in an unorthodox or partially failed fashion
but not completely ‘dead’ or hard failed. Depending on the
component exhibiting the SBND characteristics, the symptoms
can vary, come and go at different intervals and it can take
anywhere from seconds to months for the component to finally

reach a hard fail state. It is this in-between time when the
component is defined as SBND.

Complex customer solutions and environments utilizing
mixed vendor products and technologies create textbook
scenarios for SBND failures to occur. Many products are
intolerant of misbehavior of other devices and most failure
paths deal promptly with hard failure scenarios, but are slower
and more cautious to react to partially failed, misbehaving, or
SBND components in a Storage Area Network (SAN). With
current field solutions, problem determination related to
SBND failure scenarios is complex, time consuming and often
requires special problem determination lab trace tools and a
team of cross-vendor product and solution experts. Current
resolutions to SBND failure scenarios are almost always
reactive vs. proactive. In our system test and SAN labs we
have been developing new proactive techniques, protocol
inject scenarios and methods to identify, characterize and
address SBND failures including cross-component impacts
and failures across the I/O path.

Our current research related to SBND defects reported
shows that the highest number of SBND problems exists along
the I/O path. While related problems do occasionally exist
within specific internal sever paths they are significantly less
frequent, easier to debug and typically contained to a single
server and handled via embedded HA mechanism.

Systems generally behave properly when failures are solid
or hard failures. It is when components act SBND that system
availability is often at risk. In these scenarios failover or
recovery mechanisms often do not behave as we should expect
them to. Often times the problems are corner cases where they
are not easily reproducible and hard to trouble shoot, but
continue to plague customer environments. It should also be
noted that SBND problems are not something that occur in a
particular vendor or product set, but rather a system level
event that occurs when one (or more) component(s) in the
environment does not always behave consistently. Since the
problem does not relate to a particular vendor or component
issue it is not a simple fix but rather a system level event that
must be fully understood, tested and addressed by all vendors
in a distributed systems SAN environment.

The focus of this paper will be on SBND failures related to
the I/O path in distributed systems Fibre Channel (FC) SAN
and Fibre Channel over Ethernet (FCoE) environments. In

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 26 / 153

this paper we will better define and characterize SBND
failures, explain the impacts they can have on complex
customer environments and introduce new testing techniques
and injections we have deployed in our system test labs.

II. COMMON CHARACTERISTICS OF SBND FAILURES
Most SBND failures are not obvious product failures.

Often when problem determination begins all individual
products in the environment may appear ‘healthy’ and existing
internal diagnostics often do not flag anything. Even error log
reviews may come up relatively clean, making problem
determination very difficult. SBND problems by definition
are transient errors, meaning a product is temporarily
misbehaving, making the side-effects or symptoms in an
environment often appear and disappear.

SBND failures are frequently first noticed at the host or
application layer. The tables below outline the most frequent
symptoms and characteristics displayed when SBND failures
were encountered.

 TABLE I. MOST FREQUENT SBND SYMPTOMS

Severe performance degradation at sporadic intervals
Mirror or replication times exceeding Service Level
Agreements
I/O redrives
I/O near redrives
Application sensitivity to Recoverable I/O Events
Product interaction behaviors related to unforeseen
external trigger events

 TABLE II. COMMON SBND CHARACTERISTICS
Not an obvious product failure, individual products in
the environment appear ‘healthy’ even after detailed
internal dump analysis at highest levels of product
support
HA Mechanisms see no error and don’t react
Hard for software and monitoring products to detect,
internal diagnostics often do not find anything
Problems often appear and disappear
Start slowly and often amplify with time

Note; the 2 tables above were compiled using defect data
from problems that were encountered in the IBM system test
labs and the IBM field support group from 2010 through
2012.

One might fail to realize the size and/or scope of a SBND

failure, by examining the symptoms alone. This is because
SBND failures commonly create a sympathy sickness
throughout the entire network. Sympathy sickness is when a
single device or condition in one part of a network impairs the
performance of other devices or other parts of the network.
For example, a single bad small form-factor pluggable (SFP)
in one of the E-ports of an inter-switch link (ISL) can
intermittently corrupt frames that are being transported

through the ISL [3]. The other switches in the SAN or the end
devices will discard these corrupted frames. This will result in
the initiators having to perform error recover, and re-drive the
corrupted I/O exchanges. Thus one bad SFP in an E-port, can
affect the performance of 100’s or 1000’s of initiators that
have their frames transported over the ISL.

III. TEST APPROACH
In a proactive attempt to better address and improve test

and design around SBND customer failures, IBM introduced
an internal quality improvement effort to better define,
categorize and test SBND failures. As part of this ongoing
effort, the IBM Systems and Technology Group labs have
begun introducing a variety of SBND symptoms into complex
system test environments using a three-pronged approach. 1.
Build a center of competency around identifying,
characterizing and debugging SBND failures in the I/O path.
2. Target modified reliability, availability and serviceability
(RAS) microcode to better identify and flag SBND failures for
troubled areas. 3. Targeted test case coverage related to SBND
failures, symptoms and characteristics.

For this paper we will cover the 3rd prong described above
related to increased SBND testing and early results. In late
2010 our SAN test labs within IBM began technical analysis
on SBND errors and targeted ways to not only inject SBND
failures, but to proactively monitor the environment as a whole
for related defects and outages. This was a detailed and
controlled approach consisting of injects in three primary
locations within the I/O path, as outlined in figure 1 below.

Figure 1. Example of Typical SAN

Once the inject areas were established and test tools in

place we began targeted testing covering the most frequent
SBND symptoms and characteristics described in tables 1 and
2. Table 3 below outlines some of the test injects symptoms
and test case examples that were created to inject SBND
symptoms into our SAN environments to monitor for proper
handling and unintended side effects.

TABLE III. SBND TEST SCENARIO INJECTS
Symptom: Types of Injects

Used:
Test Case

Examples: [4]
Severe
Performance

1. Credit starvation
2. Inject Delay

1. Replace R_Rdy
primitives with
IDLE/ARB (FC), inject

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 27 / 153

Degradation PFCs for Class 3 traffic
(FCoE).
2. Hold all frames for x
microseconds

Mirror or
Replication times
exceed Service
Level Agreement

1. port flaps
2. drop frames
3. jitter

1. Port shut/no shut
activity (FC,VFC,Eth)
2. Drop every xth frame
in each direction
3. Corrupt sof, eof, crc
and other header data

I/O redrives or
near redrives

1. drop, corrupt or
re-order data frames
2. short holds of
frames

1. Target data frames
and drop or re-order
2. Hold all data frames
and/or transfer ready
frames for x seconds.

Application
sensitivity to
Recoverable I/O
Events

1. virtual link jams
2. link resets
3. corrupt frames

1. FDISC drops, VFC
jitter, VSAN jams
2. Inject NOS, OLS, LR
and/or LRR onto link
3. Corrupt bits in the FC
or FCoE header and
recalculate CRC

Product behaviors
related to
unforeseen
external trigger
events

1. protocol
violations
2. unexpected data
returns
3. partial recovery
scenarios

1. Inject protocol
deviations from
standard and monitor
destination handling
2. Return Check Cond
to write exchange
3. Drop data frame, then
drop subsequent ABTS,
allow re-driven ABTS
to flow through un-
jammed.

IV. EARLY RESULTS
Overall we established a test suite consisting of over 100

unique SBND test cases, which are run in a controlled SAN
environment allowing us the capabilities to inject a single
error (or combination of errors) and monitor the environment
as a whole. The majority of the problems we have identified
are defects that would have been near impossible to detect and
correlate in a customer environment. The ability to understand
which variables are being injected at which time and location
in the SAN and watching all associated host, switch and
storage logs provides the ability to correlate and connect
events that otherwise would have appeared to be non-related.
Further, having packet level traces at each point in the SAN
allows the ability to deep-dive into the traces. Figure 2 below
illustrates one SBND inject example where every 5 min the
Not_Operational primitive sequence (NOS) was injected to
simulate a bouncing or partially failed port in the SAN. Figure
2 below shows the subsequent behaviors following one of the
NOS injects which resulted in failed link initialization. For
link initialization to complete successfully following our NOS
injects the primitive sequences OLS/LR/LRR/IDLE/IDLE
have to be traded sequentially. In figure 2 you can see one
SAN vendor sent extra R_RDY primitives and LRRs prior to
sending the final IDLE packets required to complete link
initialization.

Figure 2: Protocol trace review

The protocol trace analysis results and frame level debug
capabilities, provide enhanced problem determination
capabilities and when combined with associated host, switch
and storage logs and traces present a clear picture of the
problem and greatly aid in cross-vendor problem
determination.

Typical product system test environments and test plans
will analyze recovery capabilities in a product or system
offering along with potential implementation architectures and
then inject hard errors to determine if products under test were
behaving according to specification and customer
requirements. A high level example would be a system test
environment that had been designed and implemented with
full redundancy of all components in order to minimize
Service Level Agreement (SLA) violations [1]. The test
engineer would then introduce failures of the components at
injectable points in the configuration to validate and verify the
system offering would meet SLA requirements. What this
technique misses is the “almost errors” that are not specified
or articulated as customer requirements. Additionally, there is
some level of subjectivity to a SBND event actually occurring
and convincing the designers that such a situation would exist
in the real world. A test engineer also has to use reasonable
judgment in designing the injection as any SBND injection
can be pushed to unrealistic limits and then the test can be
declared invalid. For example, when testing credit starvation
one must be cautious in the rate of R_Rdy (frame buffer
credit) drops that are injected as too many will cause link
resets, replenishing credits back to the agreed upon limit
during login. For SBND scenarios, the tester would want to
identify the buffer credits allotted during login and drop
R_Rdys at a rate which slowly impacts the environment
without causing an immediate link reset. It is this careful
balance that must be pursued in the test design and execution.
Having a test engineering center of competency for SBND
problems that can provide real world patterns of these
injections is critical to wining the subjective discussions
between test engineers and designers.

Since starting this work in 2010 we have seen a dramatic
spike in internally found SBND related defects being
identified and fixed in system test. In 2010 when we started
this testing only 5% of the defects found in SAN system test
were related to SBND error handling. In May of 2012, these
defects accounted for 48% of the overall defects opened by the
SAN system test teams. The defects opened are spread across
multiple vendors and I/O path components including operating
systems, host HBA/CNA firmware and drivers, multipath

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 28 / 153

drivers, SAN and FCoE switch code and storage firmware and
drivers.

V. CONCLUSION AND FURTHER DEVELOPMENT
As complexity, virtualization and mixed vendor solutions

continue to grow in the IT industry and customer solutions, the
need for highly-skilled SBND low-level testing will also
continue to increase. In an industry where quality is expected
and customer defects can cause costly outages it is no longer
sufficient to test products for correct recovery in hard failure
scenarios. We need to continue to put increased focus on
solution testing, and further on solution injects and handling of
hard failures and SBND failures on any component within the
environment.
 As we continue to implement deeper SBND testing
described in this paper, we are pursuing plans to continue this
effort with a second phase targeting new inject methods and
focus on spreading these testing capabilities and awareness
across IBM test labs worldwide. Given the economic costs of
the tools to inject SBND scenarios and the skill required we
are also innovating in economically scalable methods to do
this type of testing in more diverse testing and test skill
environments. We also continue to drive a close-loop feedback
process between IBM test, development and support teams
and across OEM partners, ensuring that the SBND defects that
have been found are fixed and lessons learned are applied to
future product development and monitoring capabilities.
 It is our hope and vision that impacts of SBND failures be
understood across the industry and that more SBND testing
and proactive measures are taken to help minimize the impacts
these failures have on the environments of the future.

VI. ACKNOWLEDGMENTS
The authors would like to thank their employer, International
Business Machines (IBM) for supporting their efforts to
produce educational content. We would also like to thank
those parties who provided quotations for use in this paper.

REFERENCES
[1] A. Hanemann, D. Schmitz, and M. Sailer, "A framework for failure impact
analysis and recovery with respect to service level agreements," Services
Computing, 2005 IEEE International Conference on , vol.2, no., pp. 49- 56
vol.2, 11-15 July 2005 doi: 10.1109/SCC.2005.10
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1524423&is
number=32587 [retrieved: July, 2012]
[2] B. Rogers, “z/OS 1.11 Sysprog Goody Bag” Presented at SHARE Session
2228,“ March 2010. [Online]. Available:
http://mobile.share.org/client_files/SHARE_in__Seattle/S2228RR092920.pdf
[retrieved: July, 2012].
[3] FC-MI, ANSI Standard 3.2.14-3.2.34, 2001.
[4] FC-FS-3, ANSI Standard 5.2.4-5.2.5, 2008.

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 29 / 153

Test Driven Life Cycle Management for Internet of Things based Services: a
Semantic Approach

Eike S. Reetz, Daniel Kümper and Ralf Tönjes
Faculty of Engineering and Computer Sciences

University of Applied Sciences Osnabrück
Osnabrück, Germany

Email: {e.reetz, d.kuemper, r.toenjes}@hs-osnabrueck.de

Anders Lehmann
Institute for Business and Technology

Århus University
Århus, Denmark

Email: anders@hih.au.dk

Abstract—Concepts for Internet of Things (IoT) are cur-
rently limited to particular domains and are tailored to meet
only limited requirements of their narrow applications. To
overcome current silo architectures, we propose a business
oriented service composition of IoT enabled services with
(semi-) automated model based testing capabilities. Explicit
description of services as well as the target environment
allows for automated design and execution of tests, hence
enabling fast and robust IoT based service provision. This
work proposes a semantic description of the test design and
execution process to enable reasoning of test behaviour and
suitability in the different phases of a service life cycle. The
proposed work describes a test model and an appropriate test
architecture. A first testbed implementation demonstrates their
applicability. The proposed approach enriches current views
of IoT architectures with knowledge from the field of service
oriented architectures and makes them usable in distributed
environments with partial unreliable resources by introducing
a formalised integration of automated testing into the life cycle
management.

Keywords-model based testing; Internet of Things; life cycle
management; semantic test description.

I. INTRODUCTION

Seamless and transparent integration of smart objects into
the environment is an open research topic for almost 20
years. Several aspects of a smart interaction between the
virtual and the physical world from low level resource
constraint sensors and actuators to high level description
and interaction capabilities based on context-awareness have
been proposed so far, resulting in several isolated solutions
for the Internet of Things (IoT). Nevertheless, most of the
proposed approaches address only the open issues of a
specific application domain. Moreover, the limited interop-
erability between different silo solutions tends to prevent
mass market services and service composition. To overcome
these technological limitations, we propose a flexible service
creation environment for IoT in order to dynamically design
and integrate new types of services and therefore enable new
business opportunities.

Due to interactions with the real world and a large
variety of involved technologies, these services have to be
very flexible and robust. This requires enhanced testing

capabilities already included in the service creation process.
Our approach is not only to pursue a test-driven service life-
cycle management, but also to automate the testing process
appropriately. Testing in the IoT domain is a challenging
task: The diversity and distribution of involved components,
as well as their unreliability, raise current research issues.
Furthermore, the need for realistic conditions results in a
complex testing environment. Moreover, the dynamics of the
IoT environment make the development and maintenance of
services an error prone challenge.

The presented concepts have been conducted in the scope
of the European research project ”IoT.est” (the overall
project concept can be found at [1]). This paper focuses
on the aspects related to automated testing by describing
the current status of the approaches and their limitations.

The overall contribution of this paper can be summarises
as follows: we propose a test-driven life cycle management
which can be utilised for rapid IoT based service creation
and deployment based on automated testing. Therefore, our
overall concepts of a test-driven life cycle management,
semantic descriptions of service and tests, and the derived
test architecture are envisaged. We are following a Ser-
vice Oriented Architecture (SOA) and, therefore, we are
extending classical approaches by adding enhanced testing
capabilities (e.g, test automation, emulation of network,
resources and real world context), which we believe enable
the applicability of SOA to the IoT domain.

The rest of the paper is structured as follows: after giving
a brief overview of the State of the Art in Section II, the
IoT service concept will be briefly explained in Section III.
Afterwards the model based testing approach is introduced
in Section IV and the test architecture is described in Section
V. First prototype implementations and testing principles are
then presented in Section VI. Conclusions and future work
finally conclude this paper.

II. RELATED WORK AND OPEN RESEARCH ISSUES

Current solutions do not consider test-friendly automated
development of services. Some approaches like the UML
2.0 Testing Profile [2] provide concepts for designing and

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 30 / 153

developing black-box tests, but do not provide guidance
how to utilise it. The abstract UML 2.0 Testing Profile
(U2TP) notation has to be transformed into a test specific
programming language like TTCN-3 [3] or JUNIT [4].
TTCN-3 specifies tests and how they have to be executed.
Several tools provide an environment for test creation and
execution. Nevertheless, a drawback of TTCN-3 is the lack
of simplicity in the generation of tests since the users need
to learn a new language. Our approach tries to overcome
this drawback by automated test case design and execution
during service development.

Initial concepts of software engineering processes applied
phase-models like the waterfall model and assume software
can be split into sequential phases. Iterative models, such as
the spiral model or V-model, change this paradigm by con-
sidering more iterative approaches. The V-model introduces
testing to the phases of the waterfall model. In recent years,
agile development processes, such as Extreme Programming,
have been introduced. One important outcome of of the
agile development approach is the test-first method, which
aims at a test-driven target orientated service development
process [5]. A Pattern Oriented Software Development
(POSE) approach for web service development has been
proposed by Chengjun [6]. A pattern represents compo-
nents and relationships amongst them. For each identified
POSE process a pattern is built; it comprises the activities,
goals, architecture definition and validation. Adapting these
software development processes to IoT service development
rises some challenges: the support for services at different
levels of granularity, the support for service composition,
consistency checking, the identification of dependencies
and the service development as contentious process. For
automation purposes, detailed descriptions of processes and
resources are crucial to control the IoT resource effects in
the service life cycle, especially during the testing phase.

III. IOT SERVICE CONCEPT

The investigated approach of IoT enabled services shows
similarities to classical service oriented architectures [7].
Our model for IoT enabled business services extends the
classical consumer/provider role concept by connecting IoT
resources (Inspired by the EU Project Sensei [8]) to the
service component and differentiate between Atomic Service
(AS) and Composite Service (CS). The AS is the smallest
separable, which could be either a classical web service or
an IoT service. IoT services access sensors and actuators by
abstracting their interfaces and capabilities. They provide an
interface based on SOA interfaces (e.g., RESTful), which
enables reusability by other entities. A CS is a conjunction
of atomic or composed services and integrates the business
flow perspective into the service. The CSs are modelled
with a Business Description Language like Business Process
Model and Notation (BPMN) or Business Process Execution
Language (BPEL), thus providing an abstract way to design

the service and accelerating evaluation of services and
integration of business logic.

IV. MODEL BASED TESTING

Due to dynamic and unreliable components involved in
IoT based services, efficient planning of resources for testing
is required. In order to address test levels with a certain cov-
erage, it is necessary to simplify and automate the test design
and execution process. Therefore, model based testing is a
promising approach to improve the IoT based services by
generating test cases from models extracted from the service
description. Figure 1 highlights the well known concept of
model based testing. Abstract test cases can be derived from
a service model, which is a partial description of the service.
The figure shows an extension to this classical approach
by introducing an explicit model of the environment in
which the service is executed. The explicit description of
an environmental model can be utilised to build components
for emulating the environment in an abstract and executable
way. Modelling the environment appears crucial for con-
vincing test results due to the distribution and unreliability
of IoT components as well as due to the interaction with
the real world. Different to the classical SOA domain of
web services, IoT services require a novel paradigm to
model the expected interaction with physical and virtual
objects. Enhanced models of the environment assure more
sophisticated testing capabilities of resources, network and
real world effects to the System Under Test (SUT).

The next subsection explains how model based testing
is integrated into the life cycle management and highlights
the different scopes of the testing process within various
phases of the life cycle. Afterwards, a semantic test model
is proposed, enabling reasoning of test behaviour and suit-
ability in the different phases of a service life cycle with
self-explanatory derivation and execution of test cases.

A. Test driven life cycle management

In order to understand why life cycle management is
important, we need to keep the paradigm shift of SOA in
mind. A SOA enables an improved alignment of business
and IT needs. Due to the composition of services, logic can
be separated from the implementation. Classical approaches
tend to decide how to achieve quality of service, security, or
combinations of functions at design time and thus reduce the
flexibility of the business processes. Another improvement is
the reduction of the time to market since the decomposition
of applications into services increases sharing and reusability
of services. Different stakeholders, as well as the integration
of IoT enabled business services, require coordination and
collaboration in terms of service design, execution and
testing. This results in the need of a common understanding
of the service life cycle process. In addition to these classical
outcomes of a well defined life cycle, a management process
enables to (semi-) automatise the test process based on the

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 31 / 153

Service Model

Service

Abstract Emulation

Environment

Env. Model

Executable Emulation

is executed in an

is a partial description of

Is derived from

is abstract Version of

Executable Tests

Abstract Tests

emulates

can be run against

are abstract versions of

are derived from

is a partial description of

control

are derived from

Figure 1. Extended model based testing approach

semantically described process and the service itself. There-
fore, knowledge about the functional and non-functional
behaviour of the service as well as the test modelling and
execution are explicitly described by utilising a machine
and human interpretable semantic description. The proposed
life cycle approach takes advantage of well known phase
models. Nevertheless, we believe that the explicit integration
can significantly enhance the applicability for IoT based
services. This test description enables reasoning of test
behaviour and suitability in the different phases of an IoT
service life cycle. In these life cycle phases (Figure 2), the
focus of interests is different.

In the modelling phase, the focus is on making the service
perform according to the functional specifications. Thus, the
focus is on functional testing, i.e. unit tests and integration
tests.

In the composition phase, the focus is on building complex
services by composing other services. In this phase, it
becomes more important to discover the atomic services
needed to achieve the goals of the composite service. Like-
wise, it is important to be able to discover the tests that
effectively represent the composite service. These composite
service tests need to make sure that the underlying services
are available or can be emulated adequately. Therefore,
there is a need to gather this specific service composition
information and add it to the description of the tests.

In the deployment phase, a number of services is typically
deployed. In order to be able to evaluate the success of the
deployment, the semantic description of the services to be
deployed can be checked for inconsistencies, contradictions
and overlaps. The focus of the deployment is to prove that
the deployed services will be able to deliver the services
as promised in the Service Level Agreement (SLA). In the

Service
Modelling Service

Creation,
Composition

and
functional

Description

Identification
of

Provisioning
Metadata

Test
Derivation

Deployment
in Sandbox

Test
Execution

Test
Evaluation

Service
Deployment
in Runtime

Environment

Monitoring &
Adaptation

Evaluation

Identification /
Adaptation

of the
Business
Process

Modelling

Composition

Deployment

Execution

Figure 2. Test driven Life Cycle Management

deployment phase, the concrete environment for running the
service is chosen. By adding information of the concrete
environment, the expected load can be determined by load
tests.

In the execution phase, the service provider measures
relevant parameters of the services being executed in order
to prove compliance with the SLA. By using the information
added to the load tests in the deployment phase, the service
provider can predict when the services are close to reach the
maximum capacity. These results can also be used to set up
alarms, which will be triggered if the measured parameters
indicates imminent breach of the SLA. The effect of the
alarm can then lead to a dynamic re-selection of the atomic
services in utilisation.

The detailed steps of the test driven life cycle management
are shown in Figure 2. Its original purpose is to identify
the business process requirements and goals and categorise
them into different life cycle phases (short term and long
term requirements). The categorisation assures a fast ability
to demonstrate first results and helps to adjust requirements
during the life cycle process. The next step, Service Mod-
elling, decomposes the business process and tries to identify
possible service components, taken into account that already
available services should be reused if possible. As in all
steps, requirements from previous steps are evaluated (in
terms of feasibility) and new requirements are identified.
Modelling goals ensures the proper identification of the
required service components.

Contrary to the first steps requiring rather manual actions,
the Service Creation and Composition phase is supported
with tools to discover and compose services. The outcome
of this step is a deployable service including a semantic

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 32 / 153

service description. The next phase takes care of required
meta data for service provisioning. This includes semantic
descriptions of the service contract and the service run-time
where the service is be to deployed. With this information,
the Test Deviation phase can reason about the semantic
descriptions in order to build test cases as well as the test
execution flow. Afterwards, the service is executed within a
sandbox environment. The sandbox is controlled from the
test execution engine (to be discussed in Section V) and
intends to act as the service run-time environment under
realistic conditions in terms of load, traffic and competing
services running in parallel. The execution of test cases
results in the test evaluation. The test outcome is finally
compared to the expected outcome and if the tests pass
successfully the service is available for deployment.

The Service Monitoring and Adaptation phase takes place
if the service is deployed successfully. Service monitor-
ing based on current behaviour can result in dynamic re-
selection of utilised atomic services. In addition, the mon-
itoring phase discovers if the service consumption is as
expected, for example if the number of request per minute fit
to the expectations. From the discoverer information further
needs for the next life cycle as well as adjustments for the
sandbox are detected within the Evaluation phase.

Contrary to classical life cycle approaches, this life cycle
is driven by the semantic description of the service, the
service run-time environment and the test environment.
Therefore, it is possible to automatise and integrate the
test design and execution into the service design-time. As
a benefit there is a clear separation between developing
and testing, i.e. the developer does not create the test cases
explicitly, which might result in a non-optimal test coverage.
Moreover, there is a kind of integrated testing since the test
cases are automatically built and executed in a controllable
sandbox. This results in fast feedback and rapid service
improvement during design time.

B. Semantic Test Model

The procedure for testing is closely related to service
process modelling; the service models described in [9] are
used to describe test cases, test data and the test flow. This
work employs the concepts defined in the OWL-S [10]
to specify the service test semantics – including inputs,
outputs, preconditions and effects (named IOPE) used for
behavioural description of the service interface and the
resource interface connecting to various IoT resources.

The description of the test model within a test ontology
is the basis for automated test case creation and execution.
The test ontology enables the creation of reusable test cases
for an SUT and the modelling of the test flow which
will be executed (Figure 3). A Test Design Engine (TDE)
utilises precise service descriptions and a knowledge base
containing business expert knowledge, test data generation
and a test oracle for deriving tests, distinguishing different

Service
Description

SUT Model Life Cycle

Environment
Description

IOPE
hasBehaviourDescription

Semantic Test Model

usesInput

Knowledge
Base

Test FlowTest Cases

Test Execution
Engine

Test Design
Engine

processesDescriptions

processesExecution
hasTa

rgetInform
ation

ha
sV

alu
eI

nf
or

m
at

ion

isControlledBy

Resource IF
Description

Service IF
Desciption

hasBehaviourDescription

defines

de
fin

es

de
fin

es

hashas

SLA

ha
s

Figure 3. Semantic Test Model

Service Provider Infrastructure

Service

Broker

Test Design

Engine Sandbox

System Under Test

Service

(Atomic or Composed)

Test Execution

Engine

Emulation

Interface
Communication

Interace

Developer

Figure 4. Test Environment for IoT enabled Composite Service

types, e.g., functional or reliability, and levels of tests, i.e.,
unit, interface, integration, or collaboration test. The service
description thereby also supports the interface description
of external IoT resources used by the generic emulation
interface (Section V-C). Attribute values of service descrip-
tions are constrained by a min and max value or a value
list and an optional default value. Moreover, events are
defined to describe transition of states and events. Reasoning
engines, e.g., rule based systems, can exploit the knowledge
to derive the behaviour model and constrain the test cases,
i.e., behaviour model plus test data. The defined test flow
enables the Test Execution Engine (TEE) to process different
tests and ensures the desired coverage regarding different
states and paths of the finite state machine of the service.

The semantic test model is involved in different stages of
the services and enables a highly automated test manage-
ment.

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 33 / 153

V. TEST ARCHITECTURE

As mentioned in the previous section, due to the real
world interaction and the lack of control of components
involved in atomic and composite services, tests can not
be executed in a productive environment. Our approach
integrates systematic testing into the life cycle management.
Therefore, each service that is designed will be tested in
a (semi-) automated way before being deployed. The SUT
will be placed in a so called sandbox, which emulates the
target environment as realistically as possible – not only
functionally, but also in from a real world, e.g., network
and resource oriented, point of view. In order to achieve
automated test case creation and execution each SUT needs
to be described semantically. Although tests based on the
semantic description can only detect whether the service acts
as described and not as it was imagined by the developer,
the test automation promises to overcome current limitations
as far as complex and distributed IoT enabled composite
services are concerned and can improve the service quality
significantly. Figure 4 depicts the main components of the
test architecture for IoT enabled services. The SUT can
be either a AS or a CS. The sandbox ensures that the
behaviour can be emulated according to the test cases. This
includes the emulation of network, hardware resources and
IoT resource related parameters and characteristics. The
Test Execution Engine (TEE) controls the environment and
executes the test cases. The TDE is responsible for deriving
the test cases from the semantic description of the SUT and
generates test data. The test creation process is triggered
either by the upload of a new or updated service from the
Service Developer (including semantic description) or by the
detection of new or changed service elements in the Service
Broker lookup, which might be selected from a CS at run-
time. The proposed test environment is located at the service
provider infrastructure of the SUT and does not consider
white-box unit tests from the service developer perspective.

A. Test Design Engine

The Test Design Engine (TDE) is responsible for create
test cases for new and changed services and takes care of
preparing their execution. The main functions and interfaces
are shown in Figure 5). The TDE is trigged via the Service
Developer Design Interface by transmitting the SUT together
with a semantic description. In the first phase a Codec Plug-
in Creator will identify which protocols are utilised by the
service interfaces and, if required, create a new codec in
order to abstract the protocol flow. Afterwards, the test cases
for functional and non-functional tests are created and the
order of execution is defined based on a extended finite state
machine of the service. The test cases are described with
the standardised Test Control Notation Version 3 (TTCN-
3) language. Afterwards, the test cases will be enriched
with generated test data based on the IOPE conditions of
the semantic service description. The Test Case Compiler

Test Design Engine

Test Execution

Interface

Service Developer

Design Interface
Test Data Generator

Test- Case and Flow Creator

Codec Plug-in Creator

Test Case Compiler

Service Broker

Figure 5. Test Design Engine for IoT based Composite Service

Test Execution Engine

Communication

Interface

Network Emulation

Interface

Context Emulation

Interface

Run-time Emulation

Interface

T
e

s
t C

a
s
e

 E
x
e

c
u

tio
n

 E
n

g
in

e

Test Design

Interface

Service Broker

Interface

Codec Plug-in Pool

Service Broker Emulation

Service Interface Emulation

Engine

Network Emulation Engine

Resource Emulation Engine

Context Emulation Engine

Logging and Monitoring

Figure 6. Test Execution Engine for IoT based Composite Service

produces executable code from the test cases and assures
a native test case execution by sharing test case executable
code via the Test Execution Interface with the TEE.

B. Test Execution Engine

The Test Execution Engine (TEE) is the central compo-
nent to coordinate the test flow. Figure 6 depicts the main
components and interfaces of it. The execution is triggered
by the Test Design Interface. While the Test Case Execution
Engine takes care of the test execution it accesses emulation
components in order to execute the SUT under controlled
and emulated conditions of the target environment. This
includes also the emulation of the Service Broker (in case
of composite services) in order to control the run-time
service selection. In case of a service request from the SUT,
the emulated Service Broker answers the request with the
binding address of the Service Interface Emulation Engine.
This assures that no external resources are involved in
the execution and allows for testing all possibly correct
and partly incorrect behaviours of the external service with
fully controllable emulated components. Therefore, the test
execution of composite service is capable of testing the
interoperability of the connected services without directly
executing the involved components.

C. Sandbox

The sandbox ensures that the SUT can be executed in
a test environment and can be manipulated during the test
execution (shown in Figure 7). In addition, the separation be-
tween the TEE, and the sandbox offers the ability to execute

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 34 / 153

Sandbox

Communication

Interface

Network Emulation

Interface

Context Emulation

Interface

Run-time Emulation

Interface

S
U

T

IoT/external

Resource Interface

Network Emulation

IoT/external Resource Emulation

Execution Runtime

Emulation

Figure 7. System Under Test Encapsulation

the tests in a distributed manner. The SUT service interfaces
are connected with the Test Encapsulation Communication
interface via the Network Emulator. Each message from or to
the SUT can be manipulated in terms of delay and packet
loss for evaluating the robustness. The network emulation
is controlled via the Network Emulation Interface from the
Network Emulation Engine of the TEE. Run-time behaviour
changes are made by the Execution Runtime Emulation and
assure the identification of potential SLA violations. The
strict isolation of the SUT within the sandbox is realised
by encapsulating interfaces to external web services or IoT
resources. Therefore, the service description mandatorily
includes the IOPE description to all external services or
IoT resources. Nevertheless, functional descriptions from
interfaces only partly describe the utilisation flow of the
interface (e.g, typically time deltas between request, typical
response delays). To overcome this limitation the inclusion
of a capture and reply mechanism is intended in order to
reuse real communication with IoT resources and inject the
traffic back in the test mode.

VI. PROTOTYPE IMPLEMENTATION

The requirements of IoT business services raise a lot of
open test issues as mentioned earlier. In order to explain
some of our concepts by example we have implemented
parts of our proposed architecture to highlight the complex-
ity of a (semi-) automated test case creation and execution
approach. In the outlined example test cases are designed
for our Context Provisioning Middleware [11]. The test case
execution validates if a lookup service interface is working
properly (integration tests). The Context Broker is requested
via a HTTPS/Get interface. The correct answer is expected
to be encoded in an Extensible Markup Language (XML)
based language called ContextML [12] described within a
provided XML Schema Definition (XSD) file.

As outlined in the previous section, the Test Design
Engine (TDE) prepares the test cases for execution. After

recognising the new service the TDE identifies an appropri-
ate codec for HTTP and XML. Hence, knowledge from the
defined structure of the XML data is transferred into a codec
and the constraints of the provided XSD file are utilised
for building the expected data structures in the TTCN-3
format [13]. An element of the related structures is shown
in Listing 1. Basically, it enables casting the received data
stream into the expected XML structure. Based on the XSD
description the possible data structure consists of a scopeEl
element that consists of a list of par elements structured
in a parA element. In addition, the expected data types
and data items are described. The next step is to build the
test cases and the test execution flow. Even a very simple
example like this can illustrate the required complexity of
an automated process. Like many other data types, the XSD
description allows interlaced structures without limitations
of the length. Hence, it has to be tested against dynamic
data structures. The templates depicted in Listing 2 are
utilised to test the interface against the expected data input.
As shown in Listing 2, the template restricts the data item
‘n‘ to the string ‘scope‘ and allows only letters from a-Z
and numbers of 1 to 15. But where does this knowledge
originate from? Data constraints like these are not included
in the XSD description. Therefore, the services needs an
additional semantic description as proposed in IV-B.� �
type record s c o p e E l {

record {
XSDAUX. s t r i n g n ,
record of record {

XSDAUX. s t r i n g n ,
XSDAUX. s t r i n g c o n t e n t

} p a r o p t i o n a l
} parA

}� �
Listing 1. XML Structure Described with TTCN-3

The templates are utilised by a test execution function. A
control structure defines the flow of the test execution. The
test execution function sends a response to the SUT and

� �
t empla te s c o p e E l . parA . p a r [−] p a r T e s t := {n := ”

scope ” , c o n t e n t := p a t t e r n ” [a−zA−Z] # (1 , 1 5) ” } ;
t empla te contextML responseCheck (t emplate s c o p e E l .

parA . p a r p l i s t) := {
c o n t e n t := {

s c o p e E l s := {
s c o p e E l := {
{

parA := {
n := ” s c o p e s ” ,
p a r := p l i s t

. . .
}
t empla te GETInfo g e t I n f o A u t h := { . . . }� �

Listing 2. TTCN-3 Templates

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 35 / 153

XSDExample.tc_HTTPGetWithAuthentication
Start : 2012-03-14 16:16:16.584
End : 2012-03-14 16:16:17.265

MTC SYSTEM

HTTPConf... HTTPConf...

timer0(10.0)

httpClienthttp
call GETreq

INFO:Attached file: http8175764283759699129.xml

get reply GETreq
httpClienthttp

match

match

pass

GETreq

pass

{ content := {scopeEls := { scopeEl := {{ parA := { n:= “scopes“, par :=

16:16:16.660

16:29:45.945

16:16:16.667

16:16:17.076

16:16:17.092

16:16:17.098

16:16:17.247

16:16:17.251

16:16:17.265

Figure 8. Test Execution Screenshot

validates the response with the shown template. Figure 8
shows the resulting graphical view of the the test execution
realised with a tool called TTworkbench [14]. It shows the
interaction flow between the Main Test Component (MTC)
and the System to test. After receiving the get reply the test
case is marked as pass.

VII. CONCLUSION AND FUTURE WORK

In this paper, we discussed that the domain and application
boundaries for IoT can be overcome with a business oriented
service composition. Our life cycle management takes into
account that IoT enabled services need to cope with the
abstraction of heterogeneity, reliability and robustness by
integrating (semi-) automated self-testing capabilities. Our
model based testing approach addresses these issues and
identifies a semantic test description enabling reasoning of
test behaviour and suitability in the different phases of a
service life cycle. An appropriate test architecture has been
presented. Practical problems are discussed based on an IoT
based service with a typical web interfaces. Due to the broad
scope of the paper, the discussions are rather concentrated
on a high level and future work work will include a more
detailed description of the proposed approach, which appears
to be a promising way utilising SOA in the IoT domain.

VIII. ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
under grant agreement n◦ 257521.

REFERENCES

[1] R. Tönjes, E. S. Reetz, K. Moessner, and P. M. Barnaghi, “A
test-driven approach for life cycle management of internet of
things enabled services,” in Procedings of Future Network
and Mobile Summit, Berlin, Germany, pp. 1–8, 2012.

[2] I. Schieferdecker, Z. Dai, J. Grabowski, and A. Rennoch, “The
uml 2.0 testing profile and its relation to ttcn-3,” Testing of
Communicating Systems, pp. 609–609, 2003.

[3] ETSI, “The testing and test control notation version 3 (ttcn-
3).” European Standard 201 874, 2002/2003.

[4] Y. Cheon and G. Leavens, “A simple and practical approach
to unit testing: The jml and junit way,” ECOOP 2002 Object-
Oriented Programming, Springer, pp. 1789–1901, 2006.

[5] M. Huo, J. Verner, L. Zhu, and M. Babar, “Software quality
and agile methods,” in Proceedings of the 28th Computer
Software and Applications Conference, 2004. COMPSAC
2004., pp. 520–525, IEEE, 2004.

[6] W. Chengjun, “Applying pattern oriented software engineer-
ing to web service development,” in Procedings of Inter-
national Seminar on Future Information Technology and
Management Engineering, 2008. FITME’08., pp. 214–217,
IEEE, 2008.

[7] G. Canfora and M. Di Penta, “Service-oriented architectures
testing: A survey,” Software Engineering, Springer, pp. 78–
105, 2009.

[8] M. Presser, P. Barnaghi, M. Eurich, and C. Villalonga, “The
sensei project: integrating the physical world with the digital
world of the network of the future,” Communications Maga-
zine, IEEE, vol. 47, no. 4, pp. 1–4, 2009.

[9] W. Wang, S. De, R. Toenjes, E. Reetz, and K. Moessner, “A
comprehensive ontology for knowledge representation in the
internet of things,” in Procedings of the 11th International
Conference on Trust, Security and Privacy in Computing and
Communications, pp. 1793–1798, IEEE, 2012.

[10] W3C, “Owl-s: Semantic markup for web services.”
W3C Member Submission 2004. Available online
at http://www.w3.org/Submission/OWL-S retrived: October,
2012.

[11] M. Knappmeyer, N. Baker, S. Liaquat, and R. Tönjes, “A
context provisioning framework to support pervasive and
ubiquitous applications,” in Proceedings of the 4th Euro-
pean Conference on Smart Sensing and Context (EuroSSC),
(Berlin, Heidelberg), pp. 93–106, Springer-Verlag, 2009.

[12] M. Knappmeyer, S. Kiani, C. Frà, B. Moltchanov, and
N. Baker, “Contextml: a light-weight context representation
and context management schema,” in Procedings of 5th IEEE
International Symposium on Wireless Pervasive Computing
(ISWPC), pp. 367–372, IEEE, 2010.

[13] I. Schieferdecker and B. Stepien, “Automated testing of
xml/soap based web services,” in Kommunikation in Verteilten
Systemen, pp. 43–54, 2003.

[14] Testing Technologies, “TTworkbench.”
Website. Available online at
http://www.testingtech.com/products/ttworkbench.php
retrieved: October, 2012.

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 36 / 153

AndroLIFT: A Tool for Android Application Life Cycles

Dominik Franke∗, Tobias Royé†, and Stefan Kowalewski‡

Embedded Software Laboratory
Ahornstraße 55, 52074 Aachen, Germany

{∗franke, †roye, ‡kowalewski}@embedded.rwth-aachen.de

Abstract—The states and state transitions of mobile appli-
cations - often referred to as application life cycle - play a
crucial role in high quality applications. An incorrect life cycle
implementation might lead to unexpected application behavior
and data loss. However, yet there are no tools available for
supporting developers to implement the application life cycle
correctly and to test application life cycle-related properties.
This work presents the integrated tool AndroLIFT, consisting
of two parts, for supporting the correct implementation of
Android application life cycles. One part supports implement-
ing and allows monitoring of application life cycles, even of
multiple applications being in different states. The second
part implements a unit-based testing approach, providing the
possibility to test life cycle-related properties. AndroLIFT is
implemented as an Eclipse plug-in to be integrated with the
Android Developer Tools.

Keywords-application life cycle; unit-based testing; develop-
ment tools; software quality; Android.

I. INTRODUCTION

Application life cycles describe the different process re-
lated states and state transitions of an application. Figure
1 presents the life cycle of an Android 2.2 Activity. An
Activity is an Android application, which has a graphical
user interface (unlike services). An Activity can be in one
of four states:

• It is shut down, if it was not started, yet, or if it has
been destroyed. The Activity holds no data in RAM.

• An Activity is stopped, if it is not visible to the user,
e.g., another Activity currently holds the user focus.

• In the state paused the application might still be visible
to the user, but it does not hold the user focus, e.g., an
incoming call-dialog covers a part of the user interface.

• If an Activity is running, it usually is in foreground
and holds the user focus. We show in [1] that this is
not always the case. On Android, at each moment in
time only one Activity can be in this state.

The two states s1 and s2 are intermediate states, in which
the application never remains for a long period of time.
The transitions are labeled with various method names,
e.g., onCreate() and onStart(). These methods are
callback methods, triggered by the Android system in case of
a state change. But, not all state changes cause the execution
of callback methods. The transitions labeled with kill mark
state changes, in which the application is killed by the

shut down
paused

stopped

onCreate() onStart()

onResume() onPause()

onRestart()

onStop()

onDestroy()

kill

s1

kill

s2

onStart()

running

Figure 1. Android Activity Life Cycle [1]

Android system, without invocation of any callback meth-
ods. Reasons for such killing might be lacking resources
or an application crash. In this cases, the application has no
possibility to react on a state change. But, to react on regular
state changes, the developer can override the corresponding
callback methods.

Due to restricted resources and limited input/output ca-
pabilities, usually, modern mobile platforms, like Android,
iOS and WP 7, have only one active user interface applica-
tion running (plus some background services). This policy
requires a special kind of scheduling (see Fig. 2). Each
time a new GUI-application shall be opened, the currently
running application first has to be stopped. For instance, on
Android the running application first changes its state from
running to paused. Then, the new application changes its
state from shut down to paused and then running. Next,
the other paused application is stopped and remains in this
state. During this application-switch, already multiple life
cycle callback methods are called (see Fig. 2). In each of
the callback methods the application might have to turn
off/on connections, hardware modules (e.g., Bluetooth, Wi-
Fi, GPS, ...) or store data. An incorrect or insufficient
implementation of the application life cycle might lead
to unexpected application behavior and thus to bad user
experience, poor usability and data loss [2], [3]. For instance,
we pretend that application A in Fig. 2 makes use of the
GPS module. It releases the module in onStop(), since
the developer assumes that application A is first stopped,

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 37 / 153

Application A

Callback Method

onPause()

onStop()

...

Application B

State State Callback Method

...

...

...

(running)

paused

stopped

onCreate()

onStart()

onResume()

(shut down)

paused

running

...

...

...

...

T
im

e

Figure 2. Scheduling two Applications on Android [4]

before application B is started. But, Fig. 2, which is the
true scheduling on Android 2.2 [4], shows that application
B is running before application A is stopped. If application
B wants to access the GPS module when starting, it will fail,
since application A still uses the module. After application
A releases the module in onStop(), no life cycle callback
methods of application B are called. The GPS module
remains unused and application B does not use it, except
if application B would actively poll for it, which is no life
cycle action.

There are no tools available, yet, to help developers to
find this certain kind of errors, implement the application
life cycle or test life cycle-related properties of mobile
applications. In this paper, we present AndroLIFT, a tool
which helps developers of mobile applications to analyze,
implement and test application life cycles. AndroLIFT is
implemented for Android applications, but the concepts
behind it can be implemented for other mobile platforms,
too. We chose Android for a first implementation, since it
is currently the most widespread mobile platform. Addition-
ally, Android itself and the developer tools for Android are
available open source. This allows to integrate AndroLIFT
as a plug-in into the available Android Eclipse framework.
Neither iOS nor Windows Phone, two competing mobile
platforms, are available open source. The first functionality
of AndroLIFT we present, supports the implementation of
the application life cycle by allowing to monitor application
life cycles during runtime in a life cycle view. It also eases
the implementation of the life cycle, e.g., overriding the
life cycle callback methods, by connecting a graphical view
of the application life cycle to the source code editor. The
second functionality integrates the life cycle testing approach
from [4] into the Android Eclipse plug-in. It provides a user-
friendly graphical interface to the life cycle testing library,
eases implementation of the test approach, and connects it
directly to the life cycle view.

The paper is structured as follows: Section II presents
details about some Android developer tools, of which An-
droLIFT makes use of. In Section III, the life cycle view is

introduced. This view is extended by the testing functionality
in Section IV. Section V concludes this work.

II. BACKGROUND

This Section introduces the tools on which the AndroLIFT
library and plug-in are based on. First, the Android Logcat
tool, a logging tool for Android devices, as part of the
Android SDK, is presented. Second, a brief description
of the Android Development Tools, for development of
Android applications with Eclipse, is given.

A. Android SDK, ADB and Logcat

The Android Software Development Kit (SDK) is a bundle
of various tools, applications and documentation to develop
software for the Android platform [5]. Since the Android
SDK is a very rich bundle, but we only need few of those
components for this work, we do not explain too much about
the Android SDK itself. Therefore, we refer to the official
Android SDK references.

One of the core components of the Android SDK for ap-
plication development is the Android Debug Bridge (ADB).
ADB is a command line tool, which allows to communicate
between a development machine and an Android device or
emulator. For instance, it provides the possibility to send
data to a device, remotely install and remove applications
and forward ports. It also allows to receive log information
from the device using the Logcat-tool. Android’s Logcat
allows on a development machine to view debug output from
an emulator or connected device. It is the main logging
mechanism on Android. Next to log messages sent by
applications using the android.util.Log-class, it also provides
various system information, as stack traces in case of an
error and kill information, if a process is killed.

Logcat has a structured way of logging. For instance, each
log information can be attached with certain information.
Printing a log information with priority debug looks from
the perspective of the developer as follows:

Log.d("MyTestClass",
"Connection to server failed.");

The corresponding Logcat-output looks like:

D/MyTestClass(1633):
Connection to server failed.

We use this Logcat tool to send information about the life
cycle state of an application to AndroLIFT.

B. Android Development Tools

The Android Development Tools (ADT) is a tool collection
for development of Android applications with the Eclipse
IDE. The ADT Eclipse plug-in extends Eclipse with different
features, like Android projects, building and debugging
Android applications, SDK tools integration, Android XML
editor and integrated Android framework documentation [6].

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 38 / 153

Eclipse

Device

SDK

ADB

DDMS

ADT

AndroLIFT Plug-in

Test

Extension

Life

Cycle

View

Figure 3. Integration of AndroLIFT into ADT

It is the common way to develop Android applications with
ADT and Eclipse.

As these tools are available open source, we build our
AndroLIFT plug-in on top of ADT. The advantage is that
Android developers used to Android development with ADT
get an integrated approach in a well-known environment.
The integration of AndroLIFT into Eclipse and ADT is
sketched in Fig. 3. AndroLIFT is fully integrated into the
ADT environment. It consists of two parts, introduced in
Sec. III and IV. ADT uses the Android SDK tools to commu-
nicate with devices. For the following work, especially the
SDK-tools ADB and Dalvik Debug Monitor Server (DDMS)
are important. DDMS allows further debugging services, like
radio state information, screen capture on device and incom-
ing call spoofing [7]. It usually connects to ADB to provide
its full functionality. So, following the architecture in Fig.
3, the AndroLIFT plug-in never communicates directly with
the device, but uses the same communication channels as
ADT does: over ADB and DDMS.

III. LIFE CYCLE VIEW

To find out in which life cycle state an application is,
the developer has to override the corresponding life cycle
callback methods and print the corresponding information.
There exists no other way to get this information on all
mobile platforms like Android and iOS. But, as mentioned
above, the life cycle of a mobile application is an important
component for high quality applications. A graphical repre-
sentation of the life cycle would help to examine the life
cycle, its behavior during state changes and corresponding
callback methods to react on certain events. We present such
a view for the Android platform as part of ADT.

Figure 4 shows a screenshot of the AndroLIFT life cycle
view of an Android Activity. The life cycle is taken from
a reverse engineering approach [1], which is shown in Fig.
1. The intermediate states are left out (see Fig. 1), since
for the developer it is only important what the resulting
callback sequence on the corresponding transition path is,
e.g., onCreate() is followed by onStart(). As a first
step the developer has to specify on the left side of the
life cycle view, which Activity of which package shall be
monitored. Therefore the Activity can be executed on the

Android emulator or a USB-connected real device. Then
the current state of this Activity is marked by a dashed line.
For instance, the Activity in Fig. 4 is currently in the state
shut down. Next to the different states of the Activity, all
available callback methods and kill-transitions are displayed
as labels of the state transitions. If the monitored Activity
changes its state, e.g., from shut down over paused to
running, the corresponding path and states in the view are
animated. To make the state changes comprehensible and
traceable for the developers, the animations do not run in
real-time, but slightly delayed. First, the transition labeled
onCreate(), onStart() would be marked, followed
by the state paused, transition labeled onResume() and
finally state running, each marked for 500ms. Additionally,
each call of a callback method is logged in the life cycle
callback history view, presented on the left side in Fig. 4.
It prints the name of the Activitiy (important in case of
multiple running Activities), name of the callback method
executed in that Activity and a timestamp of the call, to
understand the order of the callback methods. With such a
view on the application life cycle, the developer easily can
find out the different state changes as a consequence of a
certain event, e.g., incoming call or SMS.

If the developer knows and sees how his application
behaves during runtime regarding its life cycle and which
callback methods are called, he can easily implement a
correct life cycle behavior. To ease the implementation of
the life cycle, we added another feature to the life cycle
view. By right-clicking a callback method, a menu pops
up, with which the developer immediately can jump to the
corresponding callback method in the source code editor.
An example is given in Fig. 5, where the developer is
about to modify the life cycle callback method onStart().
Additionally, if the corresponding callback method is not
overridden, yet, AndroLIFT automatically overrides the call-
back method and places the cursor to the correct position in
the source code editor. The developer immediately can start
implementing the life cycle behavior.

Since the Android system itself, as all other modern
mobile platforms, do not give any information about the
current state, the application under test has to do so. It has
to report the state of its life cycle to the life cycle view, each
time the state changes. This information is needed by the life
cycle view to trace the life cycle during runtime. This can be
done in two different ways. One way is to extend an Activity
class, called DebugActivity, which AndroLIFT provides.
This class has already all code, which is needed by the
life cycle view, encapsulated. This includes the initialization
of the connection between the AndroLIFT plug-in and the
application under test. It also automatically forwards state
information to AndroLIFT via Logcat. If the developer does
not want to use the DebugActivity, the code has to be placed
manually in the corresponding applications, which is no big
effort, either. For the onPause()-method the injected code

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 39 / 153

Figure 4. The Life Cycle View allows to monitor the Life Cycle nearly in Real-time

looks as follows:

Log.d(this.getClass.getName(),
"onPause() called.");

The corresponding callback to the super class is mandatory
in callback methods on Android and for AndroLIFT certain
information containing the names of the package, Activity
and life cycle callback method have to be printed to the
Logcat tool. This has to be done for each life cycle callback
method. This information is fetched by the life cycle view
and processed accordingly. For instance, by knowing, which
life cycle callback method was recently called, AndroLIFT
knows the current state of the application.

IV. LIFE CYCLE TESTING

In a previous work [4], we present an approach to test life
cycle-related properties on mobile platforms. This unit-based
testing approach sees one Activity as a unit, regarding its life
cycle. Life cycle state changes on modern mobile platforms
are usually only triggered by the underlying system, not
directly by the application itself or by another application
[8]. For instance, if an application requests to be paused,
the underlying system decides if and when to pause the
application. In this sense a mobile application is separated
regarding its life cycle, and thus in this sense a unit. This is
not unit-testing in the original sense, where smallest testable
part is separated and tested [9]. On Android, we see one
Activity as a unit. We trigger the environment, e.g., making

an incoming call to the Android system, and observe the
reactions of the Activity regarding its life cycle.

To specify the expected behavior of an application we
use assertions. An assertion can be derived from a part of
the specification of the application, e.g., if the user receives
an incoming call while writing an e-mail, do not loose the
already composed e-mail text. On Android, if the user is
writing an e-mail, the corresponding application must be in
the state running (see Fig. 1). We know from [1] that an in-
coming call causes an Android Activity to be paused. Thus,
following our testing approach, in onPause() assertions
need to be defined, which store the current content of the
affected text fields (subject, main text, etc.) and a reference
to the text fields. The object reference is needed to be able to
check those text fields after resuming the application. After
the call, the application resumes again, which means that
the callback method onResume() is invoked (see Fig. 1).
So the previously defined assertions have to be checked in
onResume(). The stored text is compared to the current
text in the affected text fields and the test results are printed
to the user. For more detailed information on testing life
cycles of mobile applications, we refer to [4].

We implemented this approach for Android as a library,
called AndroLIFT runtime assertion library. The package
structure of this library is sketched in Fig. 6. Due to
reasons of clarity, not all classes are displayed in this figure.
The LCAssertions-class is the main class of the library. It
handles, stores and checks all assertions. The Util-package

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 40 / 153

Figure 5. The Life Cycle View assists in implementing Life Cycle
Behavior

AndroLIFT

Util

Assertions

Data

AssertionData

AssertionRadioGroup

AssertionStringInTextView

AssertionContentProvider

AssertionUriAuthority

Connection

AssertionConnection

AssertionAddress

AssertionAvailability

AssertionPort

Hardware

AssertionHardware

AssertionBluetooth

AssertionDisplay

AssertionGPS

AssertionMicrophone

AssertionSpeaker

AssertionWifi

… …

…
…

…
…

LCAssertions

Figure 6. Package Overview of the AndroLIFT Runtime Assertion Library

holds different utilities, like database schemas for storing
assertions. The Assertions-package contains various types of
assertions:

Data Assertions: All assertions regarding data persis-
tence, e.g., content of text fields, choice of radio buttons
and list selection.
Connection Assertions: Assertions for checking if
some kind of connection, e.g., IP/TCP or Bluetooth,
is still available and active.
Hardware Assertions: Assertions about the status of
hardware components, e.g., checking if GPS or Blue-
tooth is on.

The developer uses the different types of assertions to
specify requirements to life cycle-related properties of his
application and passes them to LCAssertions. This core class
of the library manages the definitions and checks of the
assertions depending on the current application state. By
knowing the current state, AndroLIFT is able to check all
assertions in the corresponding states. Since mobile appli-
cations might be killed, e.g., due to lacking resources, the
library is also able to store assertions persistently. Therefore
it uses the storage possibilities of the application under
test, like the database on Android. With this concept, the
developer can also check requirements like:

The application might not loose the content of an
e-mail, even if it is killed by the system due to low
battery.

The corresponding assertions are then stored in the database,

which is a persistent storage. After the corresponding test
case is executed, e.g., low battery is simulated with the An-
droid emulator, and the application is returned, the assertions
can be restored from the database and checked.

The following code presents an example usage of the
AndroLIFT library:

@Override
public void onPause(){
super.onPause();
Assertion a = Factory.
createDataAssertion(STRING_IN_VIEW,
textView1);

androLift.assertThat(ON_RESTART, a);
androLift.onPause();

}

With the help of an assertions-factory, the developer defines
an assertion a about a string value in a text view object
textView1. The library fetches the current text from the
text view and stores it automatically. Further, the developer
specifies that a shall be checked in the callback method
onRestart(). The last line in this example tells Andro-
LIFT that onPause() is called, so the state changes to
paused. Due to the restricted possibilities to get information
about the current application state on Android, AndroLIFT
needs to get this information from the application under
test. So just like with the life cycle view (see Sec. III), the
application under test needs to make a call to AndroLIFT
in each life cycle callback method. Regarding the example
above, for the callback method onPause() it is the line
androLift.onPause().

On top of this life cycle testing API, we developed a
graphical user interface, which we integrated as an extension
to the life cycle view plug-in. In this case there are various
advantages of a graphical user interface over a library: The
library itself was not integrated into the well-known ADT.
Since the life cycle view is integrated into these tools, the
testing extension is. The usability of the testing library is
enhanced by this integrated solution. Further it is easier
to learn and more intuitive to use than on code-level with
corresponding code-level documentation.

With the graphical test extension, the user can create
an assertion by right-clicking the corresponding life cycle
callback method, in which the assertion shall be checked.
With only few clicks the user is able to create the same
assertion as given in the code above. First, he has to decide,
which type of assertion he wants to define. Second, he needs
to specify, where the object, e.g., a text view, is defined,
since on Android user interface objects can be defined in
Java as well as in XML. Finally, the developer needs to
define the method, in which the assertions shall be defined.
It will be checked in the method he right-clicked before.
Figure 7 shows the output-view of the AndroLIFT test-
extension. On the left side the developer can choose, which

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 41 / 153

Figure 7. Output of the AndroLIFT Plug-in

test results from which Activity he wants to see. If his
application contains multiple Activities, they are listed on
the left side. After clicking on one of the listed Activities,
the corresponding test results are printed in the table. The
developer can see the type of the assertion, the attached
value as well as the result. If the assertion passed, the result
field is filled green. If an assertion did not pass, the result
field is printed red. If the assertion has not yet been checked,
e.g., since only the defining but not yet the checking callback
method has been executed, the result field prints yellow. This
way of reading test results is far more user friendly and less
error prone than checking test results in a log file, as with
the pure AndroLIFT runtime assertion library.

V. CONCLUSION

Application life cycles play an important role in the
area of mobile applications. An incorrect or insufficient
implementation of the life cycle might cause unexpected
behavior of the application, leading to bad usability and even
data loss. Until now, there are no tools available to analyze
and test application life cycles.

In this paper, we presented AndroLIFT, a tool which
helps the developer to monitor the life cycle, assists him
in implementing it and testing life cycle-related properties.
AndroLIFT is written as an extension to the ADT, the
common way of developing Android applications with the
Eclipse IDE. With the life cycle view the developer can
observe and analyze the life cycle of his Android application.
Developers easily learn about the behavior of the application
life cycle to certain triggers, like an incoming call, and
with which callback methods one can react appropriately.
Further, with right-clicking the corresponding life cycle
callback methods in the life cycle view he can quickly
implement assisted the life cycle of his application. With the
test extension of the AndroLIFT plug-in the developer has
a user-friendly way to use the AndroLIFT testing library.
From within the life cycle view he can create life cycle
assertions, using the corresponding GUI. During and after
test execution, e.g., simulation of an incoming call, the test
extension of the life cycle view presents the results in a
well-readable way, aligned to the well-known JUnit-testing
tools.

By helping to learn and understand the life cycle of
Android applications quicker and better, developers get a

good feeling for the behavior of the life cycle to certain
events. They can immediately see, with which life cycle
callback methods they can react appropriately to certain
life cycle triggers. With the test extension the developer
can specify test cases by creating assertions in an intuitive
and user-friendly way. The tool handles automatically all
source code injections (except a few), which are necessary
for working with the AndroLIFT runtime assertion library.
Additionally, the life cycle test results are presented in a
human readable and comprehensible way.

ACKNOWLEDGMENT

This work was supported by the UMIC Research Centre,
RWTH Aachen University, Germany.

REFERENCES

[1] D. Franke, C. Elsemann, and S. Weise, Carsten Kowalewski,
“Reverse engineering of mobile application lifecycles,” in 18th
Working Conference on Reverse Engineering (WCRE). IEEE
Computer Society, 2011, pp. 283 – 292.

[2] D. Franke, S. Kowalewski, and C. Weise, “A mobile software
quality model,” in 12th International Conference on Quality
Software (QSIC). IEEE Computer Society, 2012, pp. 1 – 4.

[3] D. Franke and C. Weise, “Providing a software quality frame-
work for testing of mobile applications,” in 4th International
Conference on Software Testing Verification and Validation
(ICST), Berlin, Germany. IEEE Computer Society, 2011, pp.
431–434.

[4] D. Franke, S. Kowalewski, C. Weise, and N. Prakobkosol,
“Testing conformance of lifecycle-dependent properties of mo-
bile applications,” in 5th International Conference on Software
Testing, Verification and Validation (ICST). IEEE Computer
Society, 2012, pp. 241 – 250.

[5] S. Komatineni and D. MacLean, Pro Android 4. Apress, 2012,
vol. 1.

[6] R. Meier, Professional Android 2 Application Development.
John Wiley & Sons, 2010, vol. 2.

[7] E. Burnette, Unlocking Android: A Developer’s Guide. Man-
ning Publications, 2009, vol. 2.

[8] D. Franke, C. Elsemann, and S. Kowalewski, “Reverse engi-
neering and testing service life cycles of mobile platforms,”
in 2nd DEXA Workshop on Information Systems for Situation
Awareness and Situation Management (ISSASiM). IEEE
Computer Society, 2012, pp. 16 – 20.

[9] A. Hunt and D. Thomas, Pragmatic Unit Testing in Java with
JUnit. The Pragmatic Programmers, 2003, vol. 1.

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 42 / 153

Experiences in Test Automation for Multi-Client System with Social Media Backend

Tuomas Kekkonen, Teemu Kanstrén, Jouni Heikkinen
VTT Technical Research Centre of Finland

Oulu, Finland
{tuomas.kekkonen, teemu.kanstren, jouni.heikkinen}@vtt.fi

Abstract—Effective testing of modern software-intensive sys-
tems requires different forms of test automation. This can be
implemented using different types of techniques, with different
requirements for their application. Each technique has a
different cost associated and can address different types of
needs and provide its own benefits. In this paper, we describe
our experiences in implementing test automation for a multi-
client application with a social media backend. As a first option,
traditional scripting tools were used to test different aspects of
the system. In this case, the test cases were manually defined
using an underlying scripting framework to provide a degree
of automation for test execution and some abstraction for test
description. As a second option, a model-based testing tool
was used to generate test cases that could be executed by a
test harness. In this case, a generic model of the behaviour
was defined at a higher abstraction level and from this large
numbers of test cases were automatically generated, which
were then executed by a scripting framework. We describe
the benefits, costs, and other properties we observed between
the two different approaches in our case.

Keywords-model-based testing; test automation; performance
testing; data validation testing; web service testing.

I. INTRODUCTION

Testing is commonly referred to as one of the most time
consuming parts of the overall development and maintenance
process of a software intensive system. To address this, vari-
ous techniques have been developed to make test automation
more efficient, each with their own costs and benefits. In
this paper, we describe our experiences in implementing
test automation for a multi-client system with a social-
media backend. In implementing this system, two different
approaches were applied to create and execute test cases with
varying degrees of test automation. Both tested the system
through its external interfaces built on top of HTTP requests
with JSON data structures (REST style web services). We
describe our observed costs, benefits, and limitations of each
approach.

The first approach we applied was based on using existing
test automation frameworks to provide a scripting platform
for manually defining test cases and automating test execu-
tion. The tools applied are existing HTTP scripting tools to
manually define test sequences for testing specific properties
of the system. For us, the benefit with this approach is quick
bootstrapping of the test automation process in using off-the-
shelf tools, and the ability to manually define specific test
cases for specific requirements. The cost is in creating large

sets of test cases manually, which quickly becomes labour
intensive and exhaustive. The main person responsible for
this approach was the first author of this paper.

The second approach we applied was based on model-
based testing (MBT). MBT is used to generate test cases
from a model describing the system. This model typically
describes the behaviour of the system in a form of a state-
machine at a suitable abstraction level for generating the
required test cases. The MBT tools provide components
and modelling notations to make the modelling easier, and
algorithms to generate test cases from the models. The test
logic and integration with the test setup are domain specific
and need to be created separately for each tested system.
For us, the benefit with this approach is getting extensive
coverage with automated test generation. The cost is in
creating the models for test generation and integration with
test execution. The main person responsible for this approach
was the third author of this paper.

Guidance and coordination for both of these approaches
was provided by the second author of this paper.

The rest of the paper is structured as follows. Section II
presents the problem domain. Section III presents the manual
test setup and experiences. Section IV presents the MBT
test setup and experiences. Section V discusses the overall
experiences in a broader context. Finally, conclusions end
the paper.

II. BACKGROUND

We consider the system under test (SUT) here as a
form of a web-application, where the different components
communicate over HTTP requests. The service also provides
a native mobile client interface and a social-media web-
browser interface. However, in the testing phases described
in this paper, we were interested mainly in testing the
backend service. This is because the concerns of the project
parties were on the high bandwidth and data processing
requirements set by the data collection and transfer. Thus
the user-interface part is not discussed in detail at this point,
but only for the relevant interface and data processing parts
related to these interfaces.

Often in web application testing the main goal is to get
assurance that the service can handle all the user requests
without problems. Therefore, it can be seen as performance
testing. This requires assessing various properties such as

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 43 / 153

Figure 1. Test Automation Pyramid.

response latency, varying event sequences, event frequency
handling, and error handling(as described e.g., in [1]). To
estimate the capabilities the tester has to have some idea
how many users the service will have and what type of
requests there will be. The variance in effect to the server
between requests can be in processing load, I/O load and
network load. Based on the estimates the service is loaded
with different requests and then maybe bottlenecks are
discovered. Then the development team can optimize those
weaknesses in the service. Usually, some big faults in the
server configuration or server side scripting are discovered
at this phase. In our experience, basic properties such as
database query implementations and even chosen image
formats can cause serious performance issues depending
on choices made in design and development. Besides basic
verification of the basic functionality of the SUT, our goal
was also to verify the performance of the system and identify
any bottlenecks.

We view test automation as a form of a pyramid, where
manual testing is at the bottom and MBT at the top. This
is illustrated in Figure 1. In this pyramid, the different
levels of test automation build on top of the lower levels,
and in our experience, it is not possible to implement the
higher levels effectively without first having the lower levels
working. This is similar to, for example, how Blackburn et
al. described evolution of test automation from basic test
execution to scripting based on action words, and finally
model-based testing at the fourth generation [2].

Manual test automation at the lowest level can be just a
user clicking on controls of a graphical user-interface and
observing how they feel it should behave. Test scripts are
typically a form of computer program written to perform
a specific sequence. Keywords are abstractions that are
transformed into test scripts by a test automation framework,
allowing one to create test cases using higher level language
concepts. As MBT generates test cases, optimally it should
be able to generate them in terms of higher level elements
such as keywords to avoid having to put low level details
in to the test model. Keywords are a suitable approach for
this as they are already supported by several test automation
frameworks. An example of such integration can be found,
for example, in [3]. An approach where the MBT tool
can also be guided through embedded keywords, effectively

combining benefits of both approaches can be found in [4].
In terms of a web service such as the one we tested here,

this type of an effort is not directly possible, but rather
scripting tools are required for even the most basic testing,
where the reference for expected behaviour is typically the
natural language specification of the SUT. The ability to
execute test scripts is also a prerequisite for MBT. For
this reason, the MBT part also requires having the same
underlying execution platforms available as the manual
scripting part we described as the first approach applied in
our case study. The MBT approach also requires formalizing
the specification as a suitable behavioural model from the
typical natural language form. For this reason, we can only
expect to have to spend more effort on the MBT approach.
Thus, it is also important to understand the potential benefits
to be able to evaluate where it may be most applicable and
produce realistic gains.

Besides the choice of the level of test automation applied,
other factors also affect the overall cost of the solution.
This includes integration with other tools in the tool chain
such as test management tools, defect tracking, continuous
integration, virtual machines and others (see e.g., [5], [6] for
examples). However, these are common requirements for any
level of test automation and as such we focus here on the
parts specific to test automation itself, where the differences
are greater.

A. Previous Experiences

Test automation has been considered one of the biggest
cost factors in the software development process for a long
time. For example, Persson and Yilmazturk describe estab-
lishing test automation as a high risk and high investment
project in their experience report [7]. They also list 32
pitfalls encountered in taking test automation into use in
practice. These are too numerous to list all here, but some
of the most relevant ones include poor decision making with
regards to what is automated and to what extent, considering
full test automation as a replacement for manual testing, and
the misconception that test automation would always lead
to savings in labour costs. We provide in this paper some
added insights into these pitfalls and information to help
make more informed decisions on what, where, and how to
automate.

A similar experience report is also provided by Berner
et al. [8]. Among other things, their experience shows
misplaced expectations for fast return of investment of test
automation, limited test automation beyond test execution,
wrong abstraction levels for tests. They also note again that it
is also their experience that automated testing cannot replace
manual testing, but should rather be seen to complement
it. Similarly, importance of proper maintenance is also em-
phasized. Again, we provide in our case study information
on our experiences in manual vs. highly automated testing

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 44 / 153

Manual Tester
With limited set of virtual

devices
MBT Tester with a large

set of virtual devices

OSMO Tester

Social Media
Platform

Database
Server

Figure 2. Description of the target service and the testing methods.

approaches (from the lower levels of the pyramid to the
higher levels).

Several case studies on using MBT have also been
published. These typically focus on presenting the benefits
achieved, while providing little discussion or comparison
with a manual test automation approach for the same SUT.
Examples of such studies include MBT for the Android
smartphone platform [9], for the healthcare domain [10],
automotive domain [11], information systems [12], and
several others. In this paper, we describe not only the benefits
of MBT as a separate study, but a comparison with manual
testing for the same project. Both testing methods aimed
for the same goal, but ended up using a slightly different
approach.

B. Our Testing Domain

The SUT here is a multi-user service with mobile phone
clients and a backend server. A diagram of the environment
is presented in Figure 2. The backend server also hosts web
applications for social media purposes. The mobile client
is a standalone application that collects information about
the user behaviour and provides a view for the user to this
information on the mobile device. The user can also activate
a social media component, in which case the data is uploaded
to the backend server once a day. When activated, the
backend server processes the data and provides a summary
of information through a social media application.

Data collected by the mobile phone application consists
of logged events with timestamps and usage information
of different applications on the phone. The data is XML
formatted, but also contains comma separated data fields
within.

The backend service receives the data sent by the mobile
clients and stores it in temporary data storage. After a certain
time, it is batch processed to a more detailed form. It is
then stored in the final location to be used by the social
media application. The triggering of the batch process causes
high spikes in the service load. Due to the heterogeneous
user set, the social media also causes high load in the form
of complex database queries with varying parameters based
on different user configurations and their associated social
network graph.

The desired capacity of the service was calculated to be
around 100 000 data uploads per day and the same amount
of social media content requests per day. The registration
message, which is only sent once per user, is not included in
the estimates. Numbers were calculated from the estimated
user count of 1 million from which one tenth were expected
to enable data upload to the backend server, and little less
were expected to also use the social media application. The
service was expected to have users globally so the load is
distributed evenly around the day. Little higher service load
was expected to occur in the European daytime as the biggest
set of users were expected to be from Europe. Size of the
data was estimated to be 4 KB for every data upload. These
numbers were safe estimates to leave some room for error.
This would simply calculate into 400 megabytes of data each
day and roughly 1 upload per second.

The estimates are hard to make for such a service with
different users and mobile phone capabilities. Also, the
popularity of the social media application varies between
countries and its usage is hard to estimate. Therefore, the
distribution of request types sets the problem for estimating
the capabilities of the service and therefore the testing of the
service. As it is a web service it faces the same problems
as any other service with multiple users. An estimate has
to be made as to what kind of requests can be expected in
what ratio and in what sequence. If the more data intensive
requests are more common, then the required capabilities of
the service are different than in a situation when it mostly
faces computing load and only little bandwidth load.

To create test scenarios to test this type of service, a tester
needs to write complicated test scripts. For example, a tester
could write scripts that create requests to the server and
have the script repeat these requests any number of times.
This script could also include a mechanism to observe if the
system responded properly and if the data gets processed
into final storage properly. Checking the data from the
storage requires a secondary access point to the database.
Last step would be to make sure everything gets done
properly no matter what the sequence of actions is.

The input in testing was chosen to contain the most
sensitive and data intensive requests types. We will call them
request1 and request2. Request1 contained user registration
information with many details about the user and the mobile
device. Request2 contained certain logged information col-
lected during a day from the phone. This data was naturally
linked to the previously created user.

III. MANUAL TESTING

During the main development phase of the system, the
manual test approach was the one first applied to create a
limited set of required test scenarios. Here, by manual, we
mean simple scripting based testing. It was seen as a means
to quickly achieve the needed coverage for the most critical
requirements.

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 45 / 153

Apache Bench[13], Siege[14], Grinder[15] and Curl[16]
were used as tools for the testing in this phase. The goal
was to verify the core functionality of the service, and to
see how many requests it can serve in a certain time.

A. Process

1) Create desired requests: Using Curl, a simple HTTP
request program, the tester first created a request and verified
that it gets appropriate response. Variables in the request
were static.

2) Implement the request into test program: When the
request type is clear and the parameters are correct, this
request can be implemented as a test case for Apache Bench,
Siege or Grinder. Both were used in this test and they
provided similar features for this type of simple testing.
Apache Bench cannot be used as versatilely as Grinder.
Grinder provides the possibility to define test case with
multiple requests which is useful in this scenario. Apache
Bench was only used to test performance with one type of
request.

3) Scripting: Apache Bench runs a single HTTP request
with defined amount of threads for defined amount of times.
To run repeatedly with different parameters in repeats and
concurrence the tester has to implement a small shell script
to make this process easier for repetition purposes too. The
same applies for Siege and they are both strictly command
line operated.

4) Execute the tests: Executing here means letting the
test script repeat the test with desired configuration. In
Siege and apache bench the testing can be configured by
changing the amount of simultaneous requests and interval
in requests. The goal was to reach a certain performance
in terms of requests per second with any reasonable count
of simultaneous requests. In practice, we targeted 50 to 200
simultaneous requests. Simultaneous users or requests here
mean executing the HTTP requests as fast as possible with
parallel threads. The same number of simultaneous users in a
web page consumes fewer resources than this because users
do not repeat their requests that fast.

5) Observe performance: Documenting and analysing the
results is the final part of testing. Server performance was
analysed with one type of request at first. This way, some
sorts of estimates of the performance were determined and
some rough limitations could be set. In reality, other vari-
ables and requests can have great impact on performance.

B. Weaknesses

During the initial testing phase many weaknesses were
noticed in the manual testing process. The test scripts were
not able to produce variance in the test data. This was
partially solved by creating random variables in the test data.
However, it still did not produce suitable data when certain
type of data was needed in different scenarios. When the test
script is not designed from the beginning to be functional

enough with variables and randomness, its configurability is
weak.

IV. MODEL-BASED TESTING SETUP

MBT is often used to help testers increase test coverage.
This can be achieved by varying the test sequences or
variables in test steps through the usage of the model. In
our test environment we have used the OSMO Tester MBT
tool described in [17].

MBT and test automation in general are processes that
require time for setting up and implementing. Their ad-
vantage is usually observed in a longer running software
development project.

In our case, we used only MBT with the goal of fully
integrating all the required external testing tools into the
MBT tool. This way, the test generator could directly gen-
erate and execute test steps against the SUT. This way, the
test engineer does not need to set up complex execution en-
vironments for different tests, but can run them at once. The
tools used were Grinder, OSMO and JDBC SQL connector.
To integrate this environment the solution was to import
OSMO as a library to Grinder Jython based environment
and use the test generator from there. Similarly it was also
possible to use JDBC connector for the database connection.

A. Process

1) Grinder: The first phase of building the MBT setup
was setting up Grinder with the requests and response
verification. The main goal was to see how Grinder works
and how it could be integrated with OSMO to perform the
testing against SUT. Here, the input data, along with user and
request count configuration, was specified inside Grinder.

2) Grinder and OSMO: In the second part of the process,
the OSMO was brought into the setup. The possible requests
and responses were included in the OSMO system test
model. This model was used in Grinder Jython script which
then produced input data for the Grinder HTTP requests.
This way, the requests had increased coverage while still
being able to verify the responses.

3) Grinder, OSMO and SQL: The last part of the MBT
setup was bringing the database element into testing. Natu-
rally to verify the server operation the database processors
correct operation had to be confirmed. Bringing this into the
test automation really improved the testing process in our
case. In manual testing, verification was limited to checking
one or few requests ending up correctly into the database
after processing. In the MBT setup, the effect of every
request was checked against the database.

B. Weaknesses

As mentioned many times in reports about model-based
testing, the launching and covering the requirements takes
lot of time in the beginning. For us, also the matter of
learning the environrment delayed the process of imple-
menting model-based testing. A decision about where to

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 46 / 153

implement the model had to made. We decided to create
a Java class including the model which was then brought
to the Jython based environment of Grinder. This setting
up phase also lead us to broaden the requirements that we
would cover with the setup. It felt the limited set of testing
requirements set by the project was not worth implementing
as a model-based setup. Therefore, we went on to implement
a more advanced performance testing setup which included
the validation of performance in malicious and exceptional
situations.

V. DISCUSSION

The manual testing in the project was done by a test
automation expert who had a long history with the project
and its previous iteration. He also had experience with web
applications and the tools used for manual testing prior
to the manual test effort. He was able to get going and
implement the first test cases in a matter of hours. Further
test cases were implemented over time and were similarly
low effort. However, they were limited to testing only the
core features with as few test scripts as possible. The manual
testing reached higher coverage in terms of covering all the
features of the service. Despite this it lacked in covering
those requests with different types of parameters.

The MBT testing in the project was done by a test
automation expert who had his background in a different
domain, was unfamiliar with the SUT, and with the tools
used to implement model-based testing for the SUT. Learn-
ing the tools and the expected behaviour of the SUT took
several months of effort to build the different iterations of
the MBT solution described in Section IV. Each iteration
took about one man-month of effort in this case. The MBT
implementation of the testing covered the request types in
the web service that are most resource intensive. The main
goal was to provide more variance in the performance testing
which was the main concern in deploying of the service.

A. Method evaluation

Evaluating the difference between processes is difficult
in a case such as this when the two in comparison have
different components to start up with. The person performing
the manual testing had different background than the person
building the model-based testing. Therefore, the efficiency
and performance of the processes are hard to evaluate, but
we concentrate on the performance and usability of the test
environments which came out as a result.

1) Setting up: As stated earlier the difference in setting
up these two types of test environments is noticeable. Model-
based testing takes more time in early stages, but saves
time in longer run. This is often shown in research about
model-based testing[18]. This effect was clearly visible,
especially in the great effort of setting up the model-based
environment in contrast to ease of making the manual tests
run accordingly.

2) Repeatability: Repeating the created set of requests
was not an issue in manual testing. When a set of tests and
scripts were done, repeating those and changing the user
and request count was easy. In this sense manual testing can
easily execute the test cases as a form of regression testing.
This is important, especially when something is changed
in the SUT and there is need to test the performance for
possible improvements. MBT can cause issues here if care
is not taken to make the generated tests repeatable. If the
test cases are regenerated from a changed model or from
the same model with different parameters, the test contents
can change and the results are not consistent. Because of this
care has to be taken to document which model configuration
or which set of generated tests was used for which reported
performance.

3) Modification: At one point in manual testing there was
a certain set of requests that repeated in many test cases,
but in a different sequence. When a new request type was
added it had to be added to every test case, which was very
laborious. Making this type of change in the MBT setup
does not require this type of effort. The tester only needs to
add the request type into the model and generate new tests
with varying sequences and payloads.

4) Sequence direction: In manual testing, the tester has
to create the sequence by hand and this repeats through the
whole test run. This is true if Siege is used to define the
test case requests. In the MBT approach we used sequence
direction for example by defining that request1 has to repeat
n times before any request2 type requests are generated.
Support for rules like these makes it easy to produce guided
variance in test generation.

5) Request type distribution: This part was the most
difficult for manual testing with the tools we used. Siege
was the tool that was able to take the requests as a list and
therefore with some added manual effort it was possible to
modify the ratio of request1 and request2. Still this was not
that flexible. OSMO provides the possibility to simply give
a weight to each step in the test case and this way the ratio
of each request can be defined to a great accuracy in a long
test case. Different variant combinations can also be easily
generated to any numbers automatically with OSMO Tester.

6) Payload configuration: The biggest advantage of MBT
in this scenario was the ease of modifying the content of
the requests. This was illustrated earlier in Figure 2. It was
possible to make each request have different type of input
data and to include some faulty data. Even though this might
not be essential in performance testing, it is important to
know whether certain type of data causes performance issues
or lockups.

VI. CONCLUSION

We have described here a set of experiences in implement-
ing both manual and model-based performance testing for a
single project. The results show how manual testing was an

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 47 / 153

effective way to bootstrap the testing process and produce
focused test cases for the system under test. With good
knowledge of a large set of suitable tools for the domain,
it is also possible to create a good initial test suite with
reasonable effort.

However, maintenance of large test suites quickly be-
comes laborous, and addressing extensive variation in testing
manually is too expensive. This is where MBT can help.
MBT can have a significant initial investment required, but
can result in much easier means to evolve a test suite and
to address large scale variation requirements. Familiarity
with the tools, techniques and the domain can also work
to significantly reduce the initial investment required.

In the end, we can say that for us the best process would
be to start with manual testing and when the system under
test and the test environment are stable enough bring in
model-based testing. At this point, MBT can also be applied
to address some of the needs for manual testing using
specific configuration properties of OSMO Tester such as
those described in [4].

We continue to apply MBT to new projects with similar
and different properties, collect the experiences and improve
our understanding of how the different types of testing may
benefit the testing process in different contexts. We wish
to have a case to properly apply and analyze both manual
and model-based approach. In this case the model-based
approach was added later then whe possibility appeared.
This way, the starting points and motives of the testing were
not exactly same. With a dedicated case we could provide
a better comparison of the types with metrics and cost
analysis. In the beginning of each process the testing had
same goal. However when model-based testing advanced,
its purpose was altered a little to cover slightly different
objective.

REFERENCES

[1] A. Shahrokni and R. Feldt, “Robustest : Towards a framework
for automated testing of robustness in software,” in 3rd
International Conference on Advances in System Testing and
Validation Lifecycle (VALID 2011), 2011, pp. 78–83.

[2] M. Blackburn, R. Busser, and A. Nauman, “Why model-based
test automation is different and what you should know to get
started,” in International Conference on Practical Software
Quality and Testing, 2004, pp. 212–232.

[3] T. Pajunen, T. Takala, and M. Katara, “Model-based testing
with a general purpose keyword-driven test automation frame-
work,” in 4th IEEE International Conference on Software
Testing, Verification and Validation Workshops, 2011, pp.
242–251.

[4] T. Kanstén and O.-P. Puolitaival, “Using built-in domain-
specific modeling support to guide model-based test genera-
tion,” in 7th Workshop on Model-Based Testing (MBT 2011),
2012.

[5] B. Peischl, R. Ramler, T. Ziebermayr, S. Mohacsi, and
C. Preschern, “Requirements and solutions for tool integration
in software test automation,” in 3rd International Conference
on Advances in System Testing and Validation Lifecycle
(VALID 2011), 2011, pp. 71–77.

[6] V. Safronau and V. Turlo, “Dealing with challenges of au-
tomating test execution architecture proposal for automated
testing control system based on integration of testing tools,” in
3rd International Conference on Advances in System Testing
and Validation Lifecycle (VALID 2011), 2011, pp. 14–20.

[7] C. Persson and N. Yilmazturk, “Establishment of automated
regression testing at abb: Industrial experience report on
avoiding the pitfalls.,” in 19th International Conference on
Automated Software Engineering (ASE’04), 2004, pp. 112–
121.

[8] S. Berner, R. Weber, and R. Keller, “Observations and lessons
learned from automated testing,” in 27th International Confer-
ence on Software Engineering (ICSE’05), 2005, pp. 571–579.

[9] T. Takala, M. Katara, and J. Harty, “Experiences of system-
level model-based gui testing of an android application,”
in 4th IEEE International Conference on Software Testing,
Verification and Validation (ICST 2011), 2011, pp. 377–386.

[10] M. Vieira, X. Song, G. Matos, S. Storck, R. Tanikella,
and B. Hasling, “Applying model-based testing to health-
care products: Preliminary experiences,” in 30th International
Conference on Software Engineering, (ICSE 2008), 2008, pp.
392–401.

[11] E. Bringman and A. Krmer, “Model-based testing of automo-
tive systems,” in 3rd International Conference on Software
Testing, Verification, and Validation (ICST 2008), 2008, pp.
485–493.

[12] P. Santos-Neto, R. Resende, and C. Pádua, “An evaluation
of a model-based testing method for method for information
systems,” in ACM Symposium on Applied Computing, 2008,
pp. 770–776.

[13] “Apache bench, the apache software foundation,” http://httpd.
apache.org/docs/2.0/programs/ab.html, 2012, [retrieved: June-
2012].

[14] “Siege load tester home page,” http://www.joedog.org/
siege-home/, 2012, [retrieved: June-2012].

[15] “The grinder, a java load testing framework,” http://grinder.
sourceforge.net/, 2012, [retrieved: June-2012].

[16] “cURL command line tool,” http://curl.haxx.se, 2012, [re-
trieved: June-2012].

[17] T. Kanstén, O.-P. Puolitaival, and J. Perälä, “Modularization
in model-based testing,” in 3rd International Conference on
Advances in System Testing and Validation Lifecycle (VALID
2011), 2011, pp. 6–13.

[18] M. Utting and B. Legeard, Practical model-based testing: a
tools approach. Morgan Kaufmann, 2007.

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 48 / 153

Project in Control: An Innovative Approach

Jos van Rooyen

Bartosz ICT BV

Arnhem, the Netherlands

jos.van.rooyen@bartosz.nl

Abstract-Nowadays, companies are still struggling to execute

and deliver IT-projects successfully. Several reasons can be

mentioned. The main question, however, is how the business

can gain confidence in the new or adapted IT-system? This

article describes an approach where, from a business point of

view, the IT-system is monitored to assure that the business

can use the IT-system in its daily operations. The approach is

developed in practice, during several projects over the last 5

years. The experiences are collected and structured in such a

way, that projects and companies can apply the method into

their own organization. All the companies who applied the

approach were successfully Ready for Shipment.

Keywords-Quality Monitoring; Change Management;

Integrality; Ready for Shipment and Practical Based Approach.

I. INTRODUCTION

Nowadays, companies are still struggling to execute and

deliver IT-projects successfully. Often, requirements are not

met, business operations are poorly prepared and the

business processes are not supported well by the delivered

IT-system. IT and business are not aligned, project’s

deadlines are far from planned and the budget is exceeded

significantly. No wonder new projects are welcomed with

skepticism.

The causes of failed projects are all recognized and

nevertheless the IT industry is still struggling with this issue

and apparently not able to change this. Is it possible to

change this at all? How to gain more control to successfully

implement an IT-system? How to avoid decrease of quality

when the time pressure on the project increases? How to

ensure that the end-users are well prepared, accept the new

system and actually experience added value?

This article describes an approach to improve the

success rate of IT projects. Instead of focusing on IT, in this

approach, the business processes are leading and taken as a

starting point. From there, it is derived how it can be

supported automated or manually and how that together

affects the organization. The approach is not the ultimate

solution, but the experience till now is that by applying the

described approach, the success rate of the IT-projects will

increase significantly. How to achieve this? By not looking

at IT solely! The approach that will be described is a

Practical-Based Approach. The approach was developed in

practice during several projects over the last 5 years. Table I

shows the number of projects, the domain where the

approach is applied and the size of the projects. The

experiences are collected and structured in such a way, that

projects and companies can apply the method into their own

organization.

The paper has the following structure. Section II

describes the cause of failure of IT-projects. Section III

describes the integral approach. Section IV presents the

application of the approach. Section V concerns the related

work. Finally, in Section VI, conclusions and future work

are mentioned.

II. CAUSE OF FAILURE IT-PROJECTS

A much referred cause is the shaky base of the project.

The business case is not specific enough [8]. Requirements

are incomplete, ambiguous or even unclear

[1][10][11][12][13]. A more soft cause is the alignment of

business and IT [4]. The business is not understood by the

IT department and vice versa. How can a system be

developed, if you do not know what process will be

supported or by whom it will be used?

Another cause is the skill of the project member [9].

Despite the fact that a lot of methods, processes and

techniques have been developed, the quality of the

individual skills determines the end result. The system

development process is lengthening. Many projects are, e.g.,

outsourced to low-wage countries. As such, this does not

have to be a problem; but, it complicates communication

because of the distance and different languages it brings

cultural differences and, as stated before, results in wrong

products. If the IT-project is not sure what it wants, how to

expect that others deliver the right product? A well known

example is the annotation of numbers. Are you talking about

inches or cm?

One final cause to be mentioned here is the one-sided

way of looking to projects. Very often the technology is

leading. High tech solutions and state-of-the-art are the

miracle words and triggers. Developers tend to forget for

whom they are developing software and in what context

their contribution is used. It is obvious that there is no fit as

long as it is not considered and treated in coherence along,

with the to be supported processes and the organization for

which it is meant for.

Despite the fact that project management methods,

development methods, techniques, development

40Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 49 / 153

environments etcetera are improving enormously and

expanding continuously, this does not seem to result in more

successful projects. On the contrary, from publications it is

derived that the percentage of successful projects hardly

exceeds 45% [1].

Considering all the above, there is no single cause for

the failed projects. One thing is for sure. You cannot blame

the IT only [7]. The business does not know exactly what

they want, they are not responsive enough, rely too much on

others such as vendors and bring in new requirements as the

project is already underway [2][3][5]. The processes should

be taken as a starting point. What is required for example to

implement a procurement process? A new system itself is

not enough. What about the users, workflow, offices and

communication? Herein lays the core causes of the

problems that occur. IT should not be looked at solely from

an IT-perspective, but from a business perspectives instead

and, as an integral part of the triangle: IT, Processes and

Organization.

The question is: “How to solve this?” The answer is not

straightforward. Having made mistakes in the past and

having learnt from them, an integral approach has been

developed, where elements of different fields and skills are

applied and combined. Fields such as, Change Management,

Testing and Quality Assurance. Elements from the fields

Testing and Quality Assurance have been clustered under

the header of Quality Monitoring. The application of the

combination of the elements from different fields ensures

that projects can be implemented more successful. An

integral approach, in which from the business perspective to

look at IT and the consequences for the organization, has

been proven to be a successful one. Herein lays the unique

character of the approach. The approach has been developed

over the last few years during various projects and gradually

evolved to what it is today. One thing is for sure, the

development of this approach will continue for years.

III. THE INTEGRAL APPROACH

The distinctive character of this approach, is by looking

from an integral point of view to the required business

processes, the required resources (IT) and, the (future)

organization. The integral approach is based on two main

components, i.e., a base architecture and a 5 steps action

plan. The base architecture is presented in Figure 1.

Figure 1. Base Architecture

In the end, the approach should provide enough

confidence in the IT-system and organizational readiness to

decide that the IT-system can be released at a certain

moment in time. In such a way, that you know when the

system is released, the planned activities can be continued,

insight in risks is provided, knowledge about the

weaknesses is present, goals as defined in the business case

have been reached and assurance to the organization is

achieved. This way, you can maintain focus during the

project.

Every project starts with a certain goal, preferably

derived from the business goals as defined by the

organization [8]. The project should contribute to that goal.

Often, these goals are derived from the mission statement of

the organization. The goals are elaborated in a business case

to a project’s objective. From this objective, the main focus

is determined. This could be changes of the business

processes, the functionality of the information system,

changes to the business or even a combination of these

three.

In this approach, the business process is always the

starting point. From here, the needed changes in IT and

subsequently the consequences for the organization are

derived. These insights are the base for defining the Change

Management plan. The input gathered from this approach, is

also used in defining the Quality Monitoring plan.

In order to be able to apply this approach in sequential steps,

the 5 steps action plan has been developed. This roadmap

will guide organizations from business case to a fine tuned

implementation of an IT-system.

The 5 steps action plan

The 5 steps action plan consists, as the name already

suggests, of 5 sequential steps that contribute to a fine tuned

implementation. The 5 steps action plan is shown in Figure

2. A short description of the 5 steps is given below.

41Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 50 / 153

Step1: Visioning

Visioning is the preparation of a successful transition, in

which on forehand the consistency between processes,

IT and organization, is defined, to sustain implementation

and embedding of the information system.

Step 2: Reconnaissance

 During the reconnaissance step the scope of the

implementation and the embedding of the information

system in relation to processes, IT and organization, in

consistency with the vision, is explored. The purpose of this

step is to get a clear picture of the goal of the project. What

material is available, what kind of development process is

used and who are the most important stakeholders?

Step 3: Commitment

 During the commitment step, vision and reconnaissance

will be elaborated into a commitment agreement (contract,

plan, quality monitor plan, change plan). This is the

blueprint for the implementation and embedding of the

information system.

Step 4: Realizing

Realization consists of developing, implementing and

embedding of the information system in the organization,

according the agreed quality level over the axes of

processes, IT and organization. By observations, it might be

necessary to adjust vision, reconnaissance or agreement.

Figure 2. 5 steps action plan

Step 5: Improving

In the step of improving, the effect [14][15] of the

implementation, will be evaluated and if needed, processes,

IT and organization will be optimized. To do so, the

Deming circle: plan, do, check and act, can be applied.

The 5 steps action plan assumes that the steps are taken

sequentially. This is correct, but on basis of observations,

one may need to take a step back. If it appears that the

Change Management plan is not effective due to whatever

reason, one should go back to the step reconnaissance and

adjust the strategy.

IV. APPLICATION

From experience, the approach, as outlined, can be

applied in all type of projects, like inhouse projects or

offshore development (see Table I and further explanation

in the next sections). This approach is not only applicable

for new projects, but for releases as well. Depending on the

targets, a large and solid process can be used, or a quick and

pragmatic process. Independent of its size, it has been

proven that the approach is suitable along with different

development methods, like Waterfall [6], Agile [27], and

Rational Unified Process (RUP) [28].

Keep in mind that a defined plan is not static. Depending

on deviations, the plan must be adjusted accordingly and

timely. One should not only regard the ideal path, but also

regard the situation that deviations rise. For instance when

requirements are not achieved as expected or not all defects

are solved.

A. Experiences

The described method has been developed over the past

years and evaluated against literature [17]

[18][19][20][21][22]. In many projects, the approach has

been applied and gradually shaped. At first an inventory of

the current situation “as is” of the project was conducted.

The problem that occurred was that it was difficult to

determine whether the IT-system suffices the business

needs. For that reason acceptance criteria were defined,

including entry and exit criteria, requirements and product

risks. Based on the acceptance criteria, it became possible to

measure the quality of the IT-system and the Operational

Readiness of the organization. Another major development

was the idea to not only measure and monitor the IT-project

and report findings, but also to cooperate in the

improvement of all findings together with all involved

parties such as business units, third party software vendors

and system management.

Change management was able to made adjustments to

their plan, based on the results of the quality monitoring

activities. An example is the so-called known error. A

known error is an accepted bug in the software of an IT-

system for which a validated workaround is available. In

that case, this bug will not affect the business. However

42Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 51 / 153

Change Management has to communicate this known error

to the stakeholders.

This is an example how Quality Monitoring and Change

Management amplified each other. Another angle of

integrality. This way, the integral approach has been

matured to the current level. The projects, where this

approach has been applied, are all released successfully due

to the continuous improvements.

It appeared that in environments in which a lot of (third)

parties are involved, the approach worked very well.

Business knew what was going to be delivered, what the

quality would be, and whether the users and organization

were ready to support the change and to use the product. By

defining and agreeing the acceptance criteria up front, it was

possible to review the test process of the several third party

vendors. To determine the coverage degree for instance of

the applied test sets.

It is about production readiness versus product

readiness. Production readiness means that the organization

is ready and prepared to use the new IT-system (product

readiness). That includes cultural changes, migration of

information, training of employees and measurement of

satisfaction of customers.

B. Applicability

The applicability of the base architecture is high. The

approach was applied into large international complex

commercial organizations. Industry, banks and insurance

companies, but also in large (semi) government

organizations, the base architecture proved to be a big gain.

The architecture is not only applicable in the IT domain, but

we believe it is applicable on projects in general. However,

there is no evidence yet. The experience till now is

collected in IT or IT related companies [16]. Detailed

information is gathered in Table I.

Table I. FACTS & FIGURES APPLIED PROJECTS

Domain No. of

projects

Type of

project

Size in million

euro’s

Industry 2 Third party

development

 >20

Government 2 Third party

development

>200

Energy &

utilities

2 Third party
development
Inhouse
development

>10

Semi

government

1 Third party
development

<1

The integral approach has appeared to be usable in a

whole, but also parts of the approach can be used

autonomic. Especially the step Realizing. Reason for this is

that projects already started before we were involved into

the projects.

C. Validation of the approach

As stated before the described integral approach is a

practical based approach. The experience is that validation

of the approach was hard to achieve. The approach, which

was chosen, is also practical based. Based on the findings

the approach was expanded with new techniques. Applying

these techniques in the project the effectiveness could be

measured. Based on these measurements, the approach was

validated. In the situation the techniques were not sufficient

enough; new ideas were developed to solve the findings. On

this way, the approach was validated on a continuous base.

V. RELATED WORK

The presented integral approach is at the moment really
unique in the industry. Existing approaches are focusing on
IT solely [18][23]. The presented integral approach, focus
not only on IT but also on the business processes and the
related organization. Another main advantage is that the
presented approach, not only look to the System
Development Life Cycle but also to the implementation
phase and the system management phase [26]. There are
some interesting developments related to parts of the
presented approach. These are focusing on product quality
[24]. However, there is no interaction with the involved
business processes and organization. Another development is
around the topic of Quality Supervision [25]. This
development is focusing on improvement of the total System
Development Life Cycle. The goal of Quality Supervision is
to remove all waste in the chain.

VI. CONCLUSIONS AND FUTURE WORK

This article described an integral practical based
approach, from a business point of view, to collect
information to determine if the organization is ready for
usage of the new or adapted IT-product. The described
approach is applied in several large IT-projects successfully
(see Table I). All projects are released without major
problems. Applying the presented approach has several
advantages such as: Organization is ready for shipment,
knowledge about weakspots is delivered and the organization
is able to decide on a structured way to go live or not. One of
the main topics for the upcoming period is to develop a
structured questionnaire, which can be used in the
reconnaissance step to determine the current situation. Based
on the results, concrete steps can be defined. By executing a
lot of projects in the coming years more experiences must be
collected to validate the integral approach.

43Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 52 / 153

ACKNOWLEDGMENT

I like to thank my fellow authors, Jan Fokke Mulder,
Hans Somers, Hanneke Kroon van der Linde and especially
Jurgen van Amerongen. I would also like to thank all the
companies who have provided input and used the method in
their development process.

REFERENCES

[1] Ernst & Young, ”ICT barometer,” ict-barometer.nl/rapporten,

2009.

[2] K. Lindhout, ”5 valkuilen bij veranderen IT,” FM.NL, mei
2010.

[3] N. Beenker, ”Opdrachtgever grootste risico bij IT-projecten,”
nicobeenker.nl, May 2010.

[4] R. Poels, ”Beïnvloeden en meten van business-IT alignment,”
Amsterdam: Dissertation VU University, 2006.

[5] L. Dohmen, ”Hoe adviseurs, coaches en goeroes onbewust
verandering blokkeren,” ManagementSite.nl, 2011.

[6] W. Turner, R. Langerhorst, G. Hice, H. Eilers, E. Remmerde,
and A. Uijttenbroek, “SDM – System Development
Methodology,” Rijswijk: PANDATA, 1990.

[7] K. Buren, ”Waarom mislukken al die IT projecten,”
Persberichten.com, May 2011.

[8] R. de Jong, M. Webster, A. Bouma, and A. de Jager,
”Overheid gebaat bij business case,” Automatiseringsgids,
April 2011.

[9] T. Mulder and H. Mulder, ”Kwaliteit projectteams onder de
maat,” Automatiseringsgids, Dec. 2011.

[10] R. Glass, “The Software Research Crisis,” IEEE Software
11(6): pp. 42-47, Nov. 1994.

[11] N. Fenton, S. Lawrence Pfleeger, and R. Glass, ”Science and
Substance: A Challenge To Software engineers,” IEEE
Software, pp. 86-95, July 1994.

[12] R. Charette, ”Why software fails,” IEEE Spectrum, Sept.
2005.

[13] R. Glass, “Facts and Fallacies of Software Engineering,”
Boston: Addison-Wesley, 2010.

[14] R. van Solingen and E. Berghout, ”Goal Question Metrics,”
Berkshire: McGraw-Hill Publishing Company, 1999.

[15] B. Lohman and J. van Os, ”Praktisch lean management,”
Geldermalsen: Maj Engineering Publishing, 2010.

[16] J. van Rooyen, J. Mulder, H. Kroon vd Linde, H. Somers, and
J. van Amerongen, “Project de Baas,” Den Bosch: UTN
Publishers, 2011.

[17] B. vd Burgt and I. Pinkster, ”Succesvol Testmanagement: een
integrale aanpak,” Den Haag: ten Hagen & Stam, 2003.

[18] T. Koomen, L. van der Aalst, B. Broekman, and M. Vroon,
“TMAP Next for result driven testing,” Den Bosch: UTN
Publishers, 2006.

[19] K. Jung and G. van de Looi, “100% succesvolle IT-
projecten,” Amsterdam: Pearson Education Benelux B.V.,
2011.

[20] L. de Caluwe and H. Vermaak, ”Leren Veranderen,” Alphen
aan den Rijn: Kluwer, 2006.

[21] S. Covey, ”The Seven Habits of Highly Effective People,”
Free Press, 1989.

[22] P. Crosby, ”Kwaliteit totaal,” Deventer: Kluwer, 1993.

[23] C. Schotanus, “TestFrame,” Den Haag: Academic Service,
2008.

[24] J. Hofmans and E. Pasmans, “Quality Level Management,”
Den Bosch: UTN Publishers, 2012.

[25] R. Marselis and E. Roodenrijs, “the PointZERO vision,”
Groningen: LINE UP boek en media bv, 2012.

[26] J. van Amerongen, “softwareapplicaties: goed gebouwd en
toch niet af!?,” TNN, pp. 35-39, Jan. 2012.

[27] K. Beck, “Manifesto for Agile Software Development,”
agilemanifesto.org, 2001.

[28] R. Collaris and E. Dekker, “RUP op maat,” Den Haag:
Academic Service, 2011.

44Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 53 / 153

From Model-based design to Real-Time Analysis

Yassine Ouhammou, Emmanuel Grolleau and Michael Richard
LIAS / ISAE-ENSMA

86961, Futuroscope, France
{ouhammoy, grolleau, richardm}@ensma.fr

Pascal Richard
LIAS / University of Poitiers
86961, Futuroscope, France

pascal.richard@univ-poitiers.fr

Abstract—Real-time and embedded systems are sharply
impacted by wrong design choices detected at a very late
stage of the life-cycle. This impact is often due to timing
constraints which are related to structural and scheduling
analysis capabilities. The timing constraints analysis requires
an expertise in both design and scheduling analysis. In this
paper, we highlight some temporal analysis related difficulties.
In order to help designers and to improve the real-time
system design to be corrected at an early stage, we propose
an approach which is based on modeling oriented scheduling
analysis.

Keywords-model-based design; structure verification; schedul-
ing analysis validation.

I. INTRODUCTION

The temporal validation of real-time systems is mainly
based on the scheduling theory or model checking of the sys-
tem using a formal model (timed Petri nets, timed automata,
temporal logic, etc.). For example, the system analyst or
expert system designer can analyze the temporal behavior
of a set of tasks scheduled by a scheduling algorithm using
algebraic methods, called feasibility tests, in order to prove
that temporal constraints will be met at run-time.

The complexity of real-time systems leads to use model
driven engineering which has gained more popularity among
real-time system developers. Recently, the integration of
scheduling analysis in a model driven engineering process
has improved. On the one hand, several standardized design
languages such as the UML-MARTE [1] or AADL [2], pro-
vide sets of non-functional properties for the specification,
analysis and automated integration of real-time performance
of critical distributed computer systems. On the other hand,
many commercial and free schedulability analysis tools
provide some scheduling analysis tests in order to help
designers during the analysis phase such as MAST [3],
Cheddar [4], etc. The meta-models of those timing analysis
tools differ. Therefore, each of these tools uses a different
set of concepts to create the input models for simulation
and analysis. Despite all these standard design languages and
these analysis tools, the use of these standards for scheduling
analysis is still expensive in terms of design expertise.

In this paper, we propose a process assisting the designer
step by step in order to verify that a system structure is
coherent and respects all real-time architectural and behav-

ioral rules. Once all structural rules are respected, we help
designers to choose the feasibility tests corresponding to
their design by extracting real-time information, analyzing
it as a task model and then checking if the extracted
information respects the task model assumptions of a third-
party tool. Our approach is based on a decision tree.

The remainder of this article is organized as follows. The
next section is an overview of real-time scheduling concerns
and some related works. Section III introduces our global
process, the relevant concepts and their utilizations. Section
IV presents the analysis aspects of our approach. Finally,
Section V summarizes and concludes this article.

II. BACKGROUND AND RELATED WORK

A real-time system is interacting with a physical process
in order to insure a correct behaviour. For this, it is imple-
mented as a set of parallel, interdependent functionalities.
Parallelism is often ensured by the multitasking paradigm,
relying on a operational layer offering task scheduling.
Thus, the real-time problematic is based on three axes: the
hardware equipments, the task models and the scheduling
theory.

When validating a critical real-time system, starting from
the real task system S, a task model S’ which is a worst-
case of the real system has to be chosen. Then, the worst-
case behaviour of the task model S’ is analyzed in an
acceptable delay. All along this process, if the task model
S’ semantics is poor, then the way S is modeled leads
to pessimistic feasibility analysis. In order to decrease the
modeling gap between S and S’, several advances have
been made on the task models, like practical factors. As
examples, the multiframe models which have been proposed
for multimedia systems [5], serial communication systems
use transaction models [6] [7], self-suspension tasks [8],
precedence constraint anomalies [9], etc.

Real-time scheduling theory provides a set of scheduling
algorithms and algebraic methods called feasibility tests.
Scheduling theory has been originally studied for the basic
Liu and Layland model [10], and extended to cover more
advanced and precise task models. Usually, feasibility
tests prove that a software model using a set of hardware
resources will respect real-time requirements. The time
complexity of the analysis is a very important point: as an

45Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 54 / 153

example, testing the schedulability of periodic independent
tasks with an implicit deadline using a deadline-driven
scheduler on a single processor is a very easy problem
and requires a linear time in the number of tasks. A small
change in the hardware, software or operational context
has a big impact on the temporal analysis. For example,
with the same hypothesis, if we consider a fixed-priority
scheduling policy, in the case where the periodic tasks
are either non strictly periodic, or strictly periodic and
released simultaneously. Then, the feasibility problem is
NP-hard in the weak sense (pseudo-polynomial feasibility
test). But, if the tasks are strictly periodic and not released
simultaneously, then the feasibility problem is NP-hard
in the strong sense, while one could, for test efficiency
reasons, choose to use a pseudo-polynomial feasibility test
as a sufficient (but non-necessary) test for this problem.

In order to obtain a thin design granularity and to avoid
the over-sizing of the hardware resources of critical systems,
some research works have proposed several results in this
major, such as the sensitivity analysis [11], [12], the priority
assignment [13], and the multi-criteria optimization [14].

The architectural verification and temporal validation of
real-time systems can be difficult for system designers.
Recently some research works aim at helping designers
during the modeling phase in order to get a coherent system
architecture. Roquemaurel et al. [15] are interested just in
the architectural validation to ensure the architecture coher-
ence by using formal methods and constraint satisfaction
problems. Plantec et al. [16] have proposed a panel of
design patterns, once the system design respects design
pattern rules then a scheduling analysis corresponding to
this pattern can be be applied [16]. Peres et al. [17] have
also proposed a verification method for real-time system by
using model checking. These research studies focus on one
kind of validation (architectural requirements or temporal
requirements) of the real-time systems. Moreover, for those
which are interested in real-time scheduling, they do not
reduce the gap between the real system and the task model,
nor offer the closest scheduling model when the real system
does not correspond to an existing analyzable model.

We propose an approach based on model driven engineer-
ing in order to assist designers to validate their architecture
during the design phase and then to facilitate the choice
of the appropriate analysis during the design phase. This
approach called MoSaRT (Modeling oriented Scheduling
analysis of Real-Time systems) consists of a domain specific
language enriched by a formal language. Our goal is not to
compete with other design languages or to compete with
existing scheduling analysis tools, but we suggest MoSaRT
to cope with the modeling difficulty and to reduce the gap
between the standardized real-time languages and temporal
analysis tools.

III. MODELING ORIENTED SCHEDULING ANALYSIS

A. Brief description of MoSaRT language

MoSaRT framework is an intermediate framework be-
tween real-time design languages and temporal analysis
tools. This framework is based on the MoSaRT language
which is conceived as a domain specific modeling language
for embedded real-time systems. It is based on four pillars:
the platform, the behavior, the analysis and the functional
model. These aspects are based on the notion of viewpoint
complementarity. Each viewpoint represents a side of the
global system (see Figure 1).

Figure 1. Different views of a real-time system designed through MoSaRT
language

MoSaRT language is an instance of Ecore [18], which
is a scripting language for meta-models. Moreover, Ecore
is an implementation of the MOF (Model Object Facility)
[19] under the integrated development environment Eclipse
[www.eclipse.org] which is a well-equipped framework.

Figure 2. General structure of MoSaRT language

The architecture of MoSaRT language is organized in
various packages and sub-packages. Figure 2 shows a
global overview of the MoSaRT design language. For more
details about MoSaRT language, readers can see related

46Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 55 / 153

papers [20], [21].

B. Formal semantics for MoSaRT language

The MoSaRT meta-model uses similar concepts as
those used in the real-time system domain. For a good
understandability of structural rules (Section IV-A), this
section defines the main structural concept semantics and
their inter-relationships without introducing the real-time
properties.

Definition: Global System: In MoSaRT meta-model,
the global system element “gs” represents the real-time
system. It is characterized by the software platform Sgs,
the hardware platform Hgs and the application Fgs. Then,
gs = <Sgs, Hgs, Fgs>.

Definition: System’s software platform: The software
platform is composed of the software operators and the
software behavior. MoSaRT language contains many
software operators for modeling the tasks, the processes,
the interaction resources (remote and local), etc. In order
to ensure software operators consistency, especially tasks,
behavioral elements offer to the designers the possibility
to express the communication relationship, the precedence
relationship, the trigger mode, etc. Thus: Sgs = <SO, SB>,
where SO is a subset of software operators set SO, and SB

is a subset of software behavioral elements set SB.

Definition: Software Operators: We define some mathe-
matical notions that are used in this section:
- ∃! means there exists exactly one
- f is a total function from the set EA to the set EB ,
if ∀ a ∈ EA, ∃! b ∈ EB such that f(a) = b
- h is a partial function from EA to EB ,
if A ⊂ EA and ∀ a ∈ A, ∃! b ∈ EB such that h(a) = b
- g is a total bijection from EA to EB ,
if and only if ∀ b ∈ EB , ∃! a ∈ EA with b = g(a)
- r is a relation from EA to EB ,
if A ⊂ EA and ∀ a ∈ A, ∃ B ⊂ EB where r(a)= B
- ⊕ means “exclusive or”
We admit that:
- LCR is a set of Local Communication Resources
- RCR is a set of Remote Communication Resources
- EMR is a set of Exclusion Mutual Resources
- TA is a set of Task Activities that we define further
Then:
• IR = {ir1, ir2, ..., irn} = LCR ∪ RCR ∪ EMR, is

a set of interaction resources, where each iri denotes
an interaction resource, and LCR, RCR and EMR are
disjoint sets. Thus:
∀ iri ∈ IR, iri ∈ LCR ⊕ iri ∈ RCR ⊕ iri ∈ EMR

• ST = {st1, st2, ..., stn} is a set of Schedulable Tasks,
each task is characterized by sti = <spj , Ωi, Ξi, Ψi,

tai> where:
– belongsTo is a total function defined as:
∀ sti ∈ ST, belongsTo(sti) = spj , spj ∈ SP

– writesOn is a relation defined as: ∀ sti ∈ ST,
writesOn(sti) = Ωi, Ωi ⊆{ LCR ∪ RCR}

– readsFrom is a relation defined as: ∀ sti ∈ ST,
readsFrom(sti) = Ξi, Ξi ⊆ { LCR ∪ RCR}

– accessesTo is a relation defined as:
∀ sti ∈ ST, accessesTo(sti) = Ψi, Ψi ⊆ EMR

– representedBy is a total bijection defined as:
∀ sti ∈ ST, representedBy(sti) = tai, tai ∈ TA

• SP = {sp1, sp2, ..., spn} is a set of Space Processes,
each process is characterized by spi = <Ti, spj>
where:

– ∀ stj ∈ Ti ⊆ ST ⇒ belongsTo(stj) = spi

– inherits is a partial function defined as:
∀ spi ∈ SP, inherits(spi) = spj , spj ∈ SP

Thus, SO = IR ∪ ST ∪ SP is a set of Software Operators.

Definition: Software Behavior: Let TR is a set of Trig-
gers, and:
• TA = {ta1, ta2, ..., tan} is a set of Task Activities, each

task activity is defined as tai = <sti,trj , IAi, OAi, Λi>
such that:

– representedBy−1(tai) = sti, sti ∈ ST
– triggredBy is a partial function defined as:
∀ tai ∈ TA, triggredBy(tai) = trj , trj ∈ TR

– precededBy is a relation defined as: ∀ tai ∈ TA,
precededBy(tai) = IAi, IAi ⊆ TA and
∀ taj ∈ OAi ⊆ TA ⇒ ∃ tai ∈ precededBy(taj)

– containedBy is a total function defined as:
Λi ⊆ AS, ∀ asj ∈ Λi, containedBy(asj) = tai

• AS = {as1, as2, ..., asn} is a set of steps, each step is
defined as asi = <κi, ISi, OSi> where:

– κi ∈ K = {action, acquire, release, send, receive,
read, write} which is a set of step kinds.

– stepPrecededBy is a relation defined as:
∀ asi ∈ AS, stepPrecededBy(asi) = ISi, ISi ⊆ AS
and
∀ asj ∈ OSi ⊆ AS ⇒ asi ∈ stepPrecededBy(asj)

So, SB = TR ∪ TA ∪ AS is a set of Software Behavioral
elements.

In this subsection, we have shown just a part of some
MoSaRT elements and their relationships. We have not
introduced the real-time properties, nor how we relate the
operational model to the functional model without any
impact on the functional layer.

IV. STRUCTURAL AND SCHEDULING ANALYSIS

In object-oriented modeling, graphical models are not
sufficiently expressive to be able to express an entire precise
specification. Moreover, it is often necessary to describe
additional constraints on model instances. To specify these

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 56 / 153

constraints, formal languages have been developed. Gen-
erally, these languages use complex notations that require
mathematical knowledge. Nevertheless, clarity and simplic-
ity are among MoSaRT purposes. Moreover, MoSaRT can
be used by different actors (designers and analysts) who
are not necessarily proficient in different fields. Therefore,
MoSaRT is enriched by several rules in different severity.
It encapsulates these rules and generates just the error or
information message which can be understood easily. For
implementing structural and analysis rules, we have opted
for OCL (Object Constraint Language) [22] for two reasons.
The first one is the clarity of OCL, which is a formal
language that is conceived to be read and written easily.
The second reason is related to the meta-meta-model used,
which is Ecore [18]. Ecore language operates very well with
OCL and allows to define the constraints, the operations and
the derived properties.

A. MoSaRT structural rules

In this section, we propose the different kinds of structural
rules that must be respected in order to have a coherent
design. We have separated structural rules into three groups.
Architectural rules, vivacity rules ans safety rules. We treat
these different kinds of rules through an example.

Figure 3. Checked models: Architectural rule (a) and vivacity rule (b) are
violated

We consider a real-time system which contains two pro-
cesses, a set of tasks and a set of interactions resources (see
part (a) of Figure 3). The architectural constraints ensure
the possibility of a good utilization of all elements that are
modeled in the platform architecture. For instance, if Task1
and Task2 communicate through a local communication
resource then Task1 and Task2 must belong to the same space
process. This rule is formalized as follow:
∀ sti ∈ ST and ∀ stj ∈ ST
if (Ωi ∪ Ξi) ∩ (Ωj ∪ Ξj) 6= {}
and ((Ωi ∪ Ξi) ∩ (Ωj ∪ Ξj)) ⊂ LCR
then spsti = spstj

Listing 1 shows the implementation of this architectural
rule as an OCL invariant.

Listing 1. An expressed architectural rule in OCL
i n v a r i a n t SoLocalCommResourceRule1 :

(s e l f . oclAsType (SoCommunica t ionResource) . w r i t e r T a s k s
−>union
(s e l f . oclAsType (SoCommunica t ionResource) . r e a d e r T a s k s))
−>f o r A l l (t1 , t 2 | t 1 <> t 2 i m p l i e s t 1 . p r o c e s s = t 2 . p r o c e s s) ;

Consequently, the architecture that is shown in Figure 3
(part (a)) is not validated.

The vivacity rules ensure the correctness and complete-
ness of the global behaviour. This kind of rules is very
important especially for behavioral model. For example,
in the behavioral model of real-time system designed with
MoSaRT language, a scheduling activity must be triggered
by a time trigger or external event trigger. Else, a scheduling
activity must be preceded by another scheduling activity.
This precedence relationship can be designed as a prece-
dence synchronization or as communication relationship. So,
∀ tai ∈ TA
if @ trj ∈ TR where triggredBy(tai) = trj
then precededBy(tai) 6= {}

By translating this rule to OCL, we obtain:

Listing 2. An expressed vivacity rule in OCL
i n v a r i a n t S b T a s k A c t i v i t y R u l e 1 :
s e l f . oclAsType (S b S c h e d u l i n g A c t i v i t y) . t r i g g e r
−>i sEmpty () i m p l i e s s e l f . oclAsType (S b S c h e d u l i n g A c t i v i t y) .
i n p u t S q u e n c i n g R e l a t i o n−>notEmpty () ;

Therefore, TaskActivity1 and TaskActivity3 which are
shown in Figure 3 (part (b)) respect the vivacity rule that is
previously defined, contrariwise to TaskActivity2.

Safety rules guarantee that no erroneous behavior will
happen especially when a designer enriches the model. For
instance, if the objective of a designer is to have a detailed
design, then the designer can specify the core of a task
activity by adding steps.

Among MoSaRT safety rules, we can find the following
one:
∀ asi ∈ AS if κi = acquire, then asi /∈ stepPrecededBy(asi)

This rule means that an acquire step can not precede itself.
An “acquire step” means that task gets a semaphore in order
to access to a critical shared resource. Then, the defined rule
must be respect to ensure a safe system behavior. The Listing
3 shows the corresponding OCL rule.

Listing 3. An expressed safety rule in OCL
i n v a r i a n t S b S t e p P r e c e d e n c e R e l a t i o n R u l e 1 :
s e l f . s o u r c e S t e p . o c l I s T y p e O f (SbAcqu i r eS t ep)
i m p l i e s not s e l f . t a r g e t S t e p . o c l I s T y p e O f (SbAcqu i r eS t ep) ;

In this section, we have shown the structural rules
which must be respected during the design phase. Through
MoSaRT, the validation of a real-time system structure is
incremental. This approach has two advantages. The first
one is to cope with scaling problems. So, the verification
process stops a the first violation rule. The second advantage
is to keep the traceability, then inform the designer about the
model element that causes the invalidation of the system. In
the next section, we expose the way MoSaRT rules detect

48Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 57 / 153

the ability of a real-time system to be analyzable and then,
how it proposes the possible scheduling analysis which is
matching with the analyzable system.

B. MoSaRT scheduling analysis ability rules

The purpose of MoSaRT language is not to provide
scheduling analysis, but to help designers to verify their
systems in order to conclude about the schedulability of
their systems and to help in its dimensioning. MoSaRT
contains several scheduling analysis rules which guide de-
signers to choose the appropriate scheduling analysis tests.
Moreover, MoSaRT can also offer to a designer several
external scheduling analysis tools that provide these tests,
such as Cheddar [4], MAST [3], etc.
Each analysis test depends on the model completion phase.
For example, sensitivity analysis [11][12] is a dimensioning
technique which can be solicited at an early design phase.
Moreover, the model completion is measured by the kind of
real-time properties mentioned in a real-time system design.
For instance, a design which can be mapped to a Liu and
Lalyland task model [10] could be analyzed as a transaction
model [6] if offset-time properties were mentioned.

In this paper, we focus on scheduling analysis validation.
MoSaRT offers a set of scheduling analysis ability rules
in order to check the meta-model instance and then to
infer the task model that corresponds to this instance. In
the case where no task model corresponds to the designed
instance, MoSaRT should suggest the closest task model.
To facilitate the understanding about the manner MoSaRT
detects scheduling ability of a design, we expose that trough
a simple example. This example is based on a simple real-
time system. It is composed of three independent periodic
tasks which are executed on a processor using a fixed priority
scheduling policy. Each task is characterized by a release
date ri, a worst-case execution time Ci, a relative deadline
Di, a period Pi and a priority Prioi (the smallest value is the
highest priority). Table I summarizes these characteristics.

Task ri Ci Di Pi Prioi
Task1 0 ms 2 ms 4 ms 4 ms 1
Task2 0 ms 1 ms 4 ms 4 ms 2
Task3 0 ms 1 ms 8 ms 8 ms 3

Table I
VALUE OF TASK CHARACTERISTICS

Figure 4 shows the design of this example through
MoSaRT language. This model respects all structural rules;
then, we can apply schedulability analysis rules in order to
know the possible analysis tests which can match this model.

The scheduling analysis ability rules are a set of assump-
tions. These assumptions are collected from different task
models and they are implemented in MoSaRT language as
a set of OCL rules that are not necessarily true. These OCL

Figure 4. A simple real-time system that is designed using MoSaRT
language: software model(a), hardware model(b) and behavioral model(c)

Figure 5. A decision tree of Scheduling analysis ability rules

rules are inter dependent and they are organized as a decision
tree (see Figure 5). So, the verification of a rule requires the
accuracy of other rules. For example, MoSaRT first checks
if a hardware platform exists. If true, then it will verify if the
hardware architecture is uniprocessor, else it will verify if the
hardware architecture is multi-processor else it will deduce
the hardware architecture is distributed. We note that a tree
exploration gives the task model which corresponds to the
design or else the nearest worst-case model. For instance, the
design appearing in Figure 4 respects a set of rules which
correspond to Liu and Layland task model [10] assumptions.
Therefore, the simulation, the worst case response time
calculation and the processor utilization calculation are the
analysis tests corresponding to our design example. This

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 58 / 153

Figure 6. Result provided from Cheddar analysis tool

result does not mean that the system example is schedulable,
but the system can be analyzed by a third-party tool provid-
ing the appropriate scheduling analysis tests. Figure 6 shows
the simulation test applied by the real-time system example.
This validation can be provided by Cheddar analysis tool.

V. CONCLUSION

We presented an approach to cope with design and analy-
sis real-time system difficulty. MoSaRT is an implementation
of this approach. It is a language which helps to design, to
verify the system structure and to choose a schedulability
test. It is based on Ecore and OCL. We presented two kinds
of analysis that are based on a set of rules. In order to
ease the understanding, the structural rules and scheduling
analysis ability rules are presented through some examples.
The transformation from MoSaRT to analysis tools is done
manually. So, we are focusing on model transformation from
MoSaRT to standardized design languages and then we will
try to automatize the transformation process.

ACKNOWLEDGMENT

We thank Obeo that has provided us an academic version
of Obeo-Designer product. We used this tool to implement
our research works about the meta-modeling.

REFERENCES

[1] OMG, “The uml profile for marte: Modeling and analysis
of real-time and embedded systems,” www.omgmarte.org,
[retrieved: Sept, 2012].

[2] SAE, “Architecture analysis and design language,” www.aadl.
info, [retrieved: Sept, 2012].

[3] J. L. Medina Pasaje, M. González Harbour, and J. M. Drake,
“Mast real-time view: A graphic uml tool for modeling object-
oriented real-time systems,” in RTSS 2001, pp. 245–256.

[4] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar:
a flexible real time scheduling framework,” in SIGAda 2004,
pp. 1–8.

[5] A. K. Mok and D. Chen, “A multiframe model for real-time
tasks,” IEEE Transactions on Software Engineering, vol. 23,
pp. 635–645, 1996.

[6] J. C. Palencia and M. González Harbour, “Schedulability
analysis for tasks with static and dynamic offsets,” in RTSS
1998, pp. 26–37.

[7] A. Rahni, E. Grolleau, and M. Richard, “An efficient
response-time analysis for real-time transactions with fixed
priority assignment,” ISSE, vol. 5, no. 3, pp. 197–209, 2009.

[8] F. Ridouard, P. Richard, and F. Cottet, “Negative results
for scheduling independent hard real-time tasks with self-
suspensions,” in RTSS 2004, pp. 47–56.

[9] M. Richard, P. Richard, E. Grolleau, and F. Cottet, “Con-
traintes de precedences et ordonnancement mono-processeur,”
in Real Time and Embedded Systems, Teknea, Ed., 2002, pp.
121–138.

[10] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J. ACM,
vol. 20, no. 1, pp. 46–61, 1973.

[11] S. Vestal, “Fixed-priority sensitivity analysis for linear com-
pute time models.” IEEE Trans. Software Eng., pp. 308–317,
1994.

[12] E. Bini, M. Di Natale, and G. Buttazzo, “Sensitivity analysis
for fixed-priority real-time systems,” Real-Time Syst., vol. 39,
pp. 5–30, August 2008.

[13] N. Audsley and Y. Dd, “Optimal priority assignment and
feasibility of static priority tasks with arbitrary start times,”
1991.

[14] R. Mishra, N. Rastogi, D. Zhu, D. Moss, and R. Melhem,
“Energy aware scheduling for distributed real-time systems,”
in IPDPS 2003, p. 21.

[15] M. de Roquemaurel, T. Polacsek, J.-F. Rolland, J.-P. Bode-
veix, and M. Filali, “Assistance la conception de modles
l’aide de contraintes,” in AFADL 2010, pp. 181–196.

[16] A. Plantec, F. Singhoff, P. Dissaux, and J. Legrand, “En-
forcing applicability of real-time scheduling theory feasibility
tests with the use of design-patterns,” in ISOLA 2010, pp. 4–
17.

[17] F. Peres, P.-E. Hladik, and F. Vernadat, “Specification and
verification of real-time systems using pola,” IJCCBS, pp.
332–351, 2011.

[18] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,
EMF: Eclipse Modeling Framework. Addison-Wesley Pro-
fessional, 2008.

[19] OMG, “Meta object facility,” www.omg.org/spec/MOF/2.4.1/,
[retrieved: Sept, 2012].

[20] Y. Ouhammou, E. Grolleau, M. Richard, and P. Richard,
“Towards a simple meta-model for complex real-time and
embedded systems,” in MEDI 2011, pp. 226–236.

[21] ——, “Model driven timing analysis for real-time systems,”
in ICESS 2012, pp. 1458–1465.

[22] OMG, “Object constraint language,” www.omg.org/spec/
OCL/2.0/, [retrieved: Sept, 2012].

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 59 / 153

Automated Structural Testing of Simulink/TargetLink Models via Search-Based
Testing assisted by Prior-Search Static Analysis

Benjamin Wilmes
Berlin Institute of Technology

Daimler Center for Automotive IT Innovations (DCAITI)
Berlin, Germany

E-Mail: benjamin.wilmes@dcaiti.com

Abstract—Considering the advantages of early testing and
the importance of an efficient quality assurance process, the
automation of testing software models would be of great benefit,
in particular to the automotive industry. Search-based testing
has been applied to automate testing of Simulink models. De-
spite promising results however, the approach lacks efficiency.
Working toward a robust tool, this paper presents three static-
analysis-based techniques for assisting and improving search-
based structural testing of TargetLink-compliant Simulink
models. An interval analysis of model internal signals is used
to identify unsatisfiable coverage goals and exclude them from
the search. A further analysis determines which model inputs a
coverage goal actually depends on in order to reduce the search
space. We also propose a technique that sequences coverage-
goal-related search processes in order to maximize collateral
coverage and reduce test suite size. These additional techniques
make the search-based approach applied to Simulink more
efficient, as first experiments indicate.

Keywords-Search-Based Testing; Static Analysis; Simulink.

I. INTRODUCTION

Today, in many application areas, the creation of em-
bedded controller software relies on model-based design
paradigms. Various industries, such as the automotive in-
dustry, use Matlab Simulink (SL) [1] as the standard tool
to create and simulate dynamic models along with a code
generator, for instance TargetLink (TL) [2], in order to
automatically derive software code from such models.

As they are normally the first executable artifacts within
software development processes, SL models play an impor-
tant role in testing theory. Industrial testing practice however,
usually focuses on higher-level development artifacts, like
testing integrated software or systems as a whole. This
discrepancy has both traditional and practical reasons. On
one hand, current testing processes still require further
adaptation to the model-based paradigm. On the other hand,
companies are pressed for time in product development and
must deal with an increasing demand for innovation. This
can lead to a disregard for low-level tests and model tests in
particular. Yet focusing too one-sided on tests of higher-level
software or system artifacts poses the risk that faults may be
found late in the process, which can lead to increased costs,
that some faults can hardly be discovered on higher levels,

or that certain functionality is not tested at all.
Thus, automating the testing of software models is highly

desirable in industrial practice, particularly with regard to
what is normally the most time-consuming testing activity:
the selection of adequate test cases in the form of model
input values (test data). Search-based testing is a dynamic
approach to automating this task. It transforms the test
data finding problem into an optimization problem and
utilizes meta-heuristic search techniques like evolutionary
algorithms to solve it. Search-based testing [3] has been
studied widely in the past and has also been applied success-
fully for testing industrial-sized software systems [4]. Both
structural (white-box) and functional (black-box) testing can
be automated with the search-based approach.

Zhan and Clark [5], as well as Windisch [6], applied
search-based testing to structural test data generation for SL
models. The work of Windisch not only supports Stateflow
(SF) diagrams (which are used fairly often in SL models),
but also makes use of an advanced signal generation ap-
proach in order to generate realistic test data. While his ap-
proach has led to promising results in general, outperforming
commercial tools, it lacks efficiency when applied to larger
models. Furthermore, it shows difficulties targeting Boolean
states and tackling complex dependencies within models [7].

The work presented in this paper is a first step toward
overcoming some of these shortcomings by exploiting static
model analysis techniques before the search process actually
starts. Our scope is test data generation for TL-compliant
Simulink models. We aim to improve both the efficiency
and effectiveness of the approach by Windisch.

This paper is structured as follows: Section II introduces
search-based testing and its application to structural test-
ing of SL models. Section III presents our approach to
supporting the search-based technique by integrating three
additional analysis techniques. We present a signal range
analysis (Section III-A), which captures range information
of internal model signals, and in this way, allows partial
detection of unreachable model states. We then propose
a signal dependency analysis for the purpose of search
space reduction (Section III-B). Our third contribution is
a sequencing approach, which derives an order in which

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 60 / 153

coverage goals of a structural test are processed by the search
(Section III-C). Insight into our implementation along with
first experimental results is provided in Section IV, followed
by our conclusions in Section V.

II. BACKGROUND

A. Search-Based Structural Testing

Search-based testing [3] and its application to industrial
cases has been extensively studied in the last decade, mo-
tivated by its general scalability, in contrast to purely static
techniques like symbolic execution.

The general idea of search-based testing is pretty simple:
a test data finding problem (which surely differs in its
nature depending on the kind of testing) is transformed
into an optimization problem by defining a cost function,
called a fitness function. This function rates any test data
generated by the deployed search algorithm - usually based
on information gained from executing the test object with
it. The rating must express in as much detail as possible,
how far the test data is from being the desired test data.
An iteratively working search algorithm uses these fitness
ratings to distinguish good test data from bad, and based
on this, generates new test data in each iterative cycle. This
fully automated procedure continues until test data satisfying
the search goal(s) has been found, that is, if a fitness
rating has reached a certain threshold or until a predefined
number of algorithm iterations have been performed. Various
search algorithms have been used in the past. Due to their
strength in dealing with diverse search spaces, evolutionary
algorithms, like genetic algorithms, were often preferred [8].

Applied to functional testing, the search-based approach
is generally utilized to search for violations of a requirement.
In this case, a sophisticated fitness function needs to be
designed manually when following the standard approach.
However, when applied to structural test data generation,
fitness functions can be derived completely automatically
from the inner structure of the program to be tested.

Structural testing is commonly aimed at deriving test data
based on the internal structural elements of the test object,
e.g., creating a set of test data which executes all statements
of a code function, or all paths in the corresponding control
flow graph. Industrial standards like ISO 26262 even demand
the consideration of coverage metrics when performing low-
level tests. Search-based testing can automate this task for
various coverage criteria (like branch or condition coverage)
by treating each structural element requiring coverage as
a separate search goal, called a coverage goal (CG). Each
CG is accompanied by a specific fitness function. Wegener
et al. [9] recommend composing the fitness function of
the following two metrics: approach level (positive integer
value) and branch distance (real value from 0 to 1). Given
a test data’s execution path in the control flow graph of the
test object’s code, the approach level describes the smallest
number of branch nodes between the structural element to

be covered and any covered path element. To create a more
detailed and differing rating of generated test cases, the
branch distance reflects how far the test object’s execution
has been from taking the opposite decision at the covered
branch node, which is the closest to the structural element
to be covered. This approach is suitable for structural testing
of program code, like C or Java code.

B. Application to Dynamic Systems

As model-based development is now established in the au-
tomotive industry and practitioners have noticed opportuni-
ties to test earlier, Windisch [6] as well as Zhan and Clark [5]
have transferred the idea of search-based structural testing
from code to model level. For SL models, structural coverage
criteria similar to the ones known from code testing exist
and are commonly accepted in practice. Before addressing
the challenges of applying search-based test data generation
to SL models, we give a brief introduction to SL. SL is
a graphical data-flow language for specifying the behavior
of dynamic systems. Syntactically, a SL model consists of
functional blocks and lines connecting them, while most of
the blocks are equipped with one or more input ports as well
as output ports. The semantics of such a model results from
the composed functionalities of the involved block types,
e.g., sum blocks, relational blocks or delay functions. In
addition, event-driven or state-based functionalities can be
realized within SL models using SF blocks. A SF block
contains an editable Statechart-like automaton.

When applying search-based structural testing to SL mod-
els, two fundamental differences compared to its application
on code level arise. First, SL models describe time and state
dependent processes. Inputs and outputs of SL models, as
well as block-connecting lines, are in fact signals. In order
to enable reaching all system states, an execution with input
sequences (signals) instead of single input values is required.
Such complex test data can only be generated with common
search algorithms by compressing the data structure, as done
by Windisch [10]. His segment-based signal generation ap-
proach also considers the necessity for being able to specify
the test data signals to be generated (e.g., amplitude bounds
and signal nature like wave or impulse form). Second, the
aforementioned fitness function approach cannot be fully
adopted since SL models are data flow-oriented. There are
no execution paths because the execution of a SL model
involves the execution of every included block. Hence, a
CG-related fitness function addresses only distances to the
desired values of one or more model internal signals. For
CGs in SF diagrams however, a bipartite fitness approach is
possible [7].

Figure 1 visualizes the overall work flow of applying
search-based test data generation to structural testing of SL
models as described.

52Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 61 / 153

CG 2 CG 3 . . .

Real Test Data
(Input Signals)

Abstract Test Data
(Signal Segments) A: 5.0

W: *
T: *

A: 4.0
W: 0.5
T: st

A: 3.2
W: 1.2
T: sin

Signal

Generation

Evaluation of Generated Test Data

Model Execution

& Signal Logging

Fitness

Derivation

Distance to CG
Condition/Formula

Coverage Goal 1

Search

Algorithm

CG 4

0.56875

Figure 1. Automated search for test sequences, which fulfill coverage
goals derived from the model under test

C. Deficiencies and Potential

Search-based structural testing has been applied success-
fully to real (proprietary) SL models originating from devel-
opment projects at Daimler, e.g., a model of a windscreen
wiper controller [7]. Compared to purely random test data
generation of similar complexity, the search-based approach
results in significantly higher model coverage. Even in com-
parison with a commercial tool, the search-based approach
performs more effectively.

Despite promising results, the approach lacks efficiency.
In general, the overall runtime of the search processes for
achieving maximal model coverage increases with the size
of the model under test. Similar experiences have been
made with code-level search-based structural testing [11].
Since a single automotive SL model is often hundreds of
blocks in size, and because a test data generation process
of more than a couple of hours is undesirable, improving
efficiency of the search-based approach is vital. Apart from
the shortcomings of this approach that will be addressed
by the contributions in the following sections, there are two
other technical problems leading to a lack of efficiency. First,
the structural test data generation is performed black-box-
like, which means that the model is fed with input values
on one end while some distances for calculating fitness are
measured at some other point in the model. Any structural
information between is not considered, thus the search might
be blind to complicated dependencies in the model (cf.
[12]). Second, when targeting a Boolean state in a model, a
suitable fitness function is hard to find since a simple true or
false rating inadequately leads a search [7]. Zhan and Clark
suggest a technique called tracing and deducing [13], which
mitigates this problem in certain cases, but fails in instances
where the Boolean problem cannot be traced back in the
model to a non-Boolean one. Further work will address these
problems.

As a whole, we aim to improve the search-based approach
for structural testing of SL models so that it performs accept-
ably and reliably in industrial development environments. To

this end, we turn our attention to testing of TL-compliant
SL models since the code generator TL is widely used in
industrial practice. TL extends SL by offering additional
block types, but also makes restrictions on the usage of
certain SL constructs like block types. Nevertheless, it is
possible to adapt our ideas to pure SL usage.

III. PRIOR-SEARCH STATIC ANALYSIS

We distinguish between techniques which support search-
based structural testing (a) before the CG-related search pro-
cesses, (b) between the different search processes, (c) during
each search process, and (d) after the search processes are
done. In the following sections, three techniques belonging
to category (a) are presented. Apart from making use of an
input specification and choice of coverage criteria provided
by the user, all three techniques are fully automatic.

A. Signal Interval Analysis

In structural testing practice, achieving 100% coverage is
often not possible. One reason lies in the semantic construc-
tions precluding certain states or signal values. It might also
be that a tester specified the test data to be generated in such
a way that it prevents certain CGs from being satisfiable.
Also, SL models might be designed variably, e.g., contain a
constant block with a variable value. When such variability
is bound during execution, e.g., via configuration file, certain
model states may be unreachable.

CGs referring to unreachable states worsen the over-
all runtime and undermine the efficiency of search-based
structural test data generation since time-consuming search
processes are carried out without any hope of finding desired
test data. Therefore, we propose two techniques contributing
to automatic identification of unreachable CGs. The first one
is an interval analysis, which determines the range within
which the values of every internal model signal are. If a
signal range is in conflict with the range or value required by
a CG, this CG is unsatisfiable. We use interval analysis since
other approaches to detect infeasibility, such as constraint
solving or theorem proving [14], are currently not scalable
enough for the complex equations constituted by industrial-
sized SL models. The second technique is an analysis of
dependencies between CGs. Since this technique is mainly
used for another purpose, it is presented in Section III-C.

The code generator TL, as well as the latest version
of SL, are capable of analyzing signal ranges in order to
perform code optimizations and improve scaling or data type
selection, respectively. While those range analysis features
are limited (e.g., determining ranges of signals that are
involved in loops is not possible without user interaction)
our signal interval analysis (SIA) makes use of an input
signal specification in order to overcome such limitations
and derive more precise ranges.

As mentioned in Section II-B, a tester who uses the
search-based approach for testing SL models, as outlined by

53Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 62 / 153

[0,1] : 1

[0,4] : 0.5

[5,20] : 0.2

1

2

3

1

z
[0,300]:1

[0,300]:1

Length: 30 sec Resolution: 0.1
Input Signal

Specification

+
>

CG:

==1

[0]

*
[0,80]

Loop Analysis

Semantic-Driven Range Propagation

400

Figure 2. Example of how determining the ranges of a model’s internal
signals based on input specification and block semantics works

Windisch, is asked to specify the test data to be generated
first. This involves establishing (a) the range boundaries and
step size of each model input as well as defining (b) a
common length (in seconds) and sample rate for all input
signals. SIA starts with information (a) for a model’s input
signals and propagates the corresponding signal ranges of the
form [x, y] : q, where q (optional) is the step size, through
the whole model. Following Wang et al. [15] we also use
interval sets instead of a single interval per signal in order
to derive more accurate range information. Each propagation
step is based on the semantics of the block connecting the
signals. In this context, we derived interval semantics for
each block type of TL-compliant SL models using basic
concepts of interval arithmetic [16].

Figure 2 graphically depicts this procedure with the aid
of a simple example. Note that the model contains a loop,
initiated by a delay block with an initial value of 0. The
standard propagation procedure would be unable to continue
here since ranges are not available for all incoming signals
of the sum block. A simple, yet imprecise solution is to
set the range of the sum block’s outgoing signal to the
minimum and maximum values of the signal’s data type.
A more precise solution however, is to use the information
(b) of the signal specification in order to run a loop analysis.
From length and sample rate, the number of loop iterations
is derivable. Starting with the initial value of the delay block
a static analysis of the loop iterations is performed, resulting
in time-related range information. In order to keep the final
results clean and minimal, each signal’s ranges as well as
the time phases of ranges are combined, if possible, in each
iteration of the loop analysis.

Using range propagation and loop analysis in combina-
tion, SIA is capable of determining the ranges of all signals
contained in the model under test. In cases of blocks with un-
known semantics or unsupported blocks, the minimum and
maximum values of the outgoing signal’s data type are used.
Finally, the results of SIA are used to assess whether each
CG’s associated formula is unsatisfiable - see the exemplary

CG in Figure 2. In addition to unsatisfiable CGs, SIA can
also identify Boolean signals or discrete signals with only a
few possible different values. As described in Section II-C,
CGs related to such signals could be problematic for the
search-based approach.

B. Signal Dependency Analysis

By default, the search algorithm generates test data for all
of the model’s inputs when targeting a CG. However, there
are usually CGs whose satisfaction is, in fact, independent
of the stimulation of certain model inputs. By not taking this
into account, the search space is unnecessarily large, which
makes it more difficult for the search to find desired test
data. To raise efficiency, we include a signal dependency
analysis (SDA) to identify which model inputs each CG
actually depends on. McMinn et al. [17] investigated a
related approach, however, on code level. SDA is closely
related to a slicing approach for SL models developed in
parallel to our work [18].

At code level, such analysis is usually done by capturing
the control dependence in a graph. SL models though, as
pointed out previously, are dominated by data dependencies.
We therefore analyze the dependency of CGs on input
signals by creating a signal dependency graph (a) based on
the syntax of the model and (b) refined according to the
semantics of blocks which have multiple outgoing signals.
Focusing purely on syntax, the following principle leads to
a graph describing which signal b the value of a model
internal signal a depends on: Signal a is dominated by a
signal b if signal a is the outcome of a model block which
has signal b incoming. Some blocks with multiple outgoing
signals however, do not use every incoming signal in order
to calculate the value of a certain outgoing signal. In such
cases, the signal dependency graph is refined by removing
over-approximated dependencies.

In order to determine which model inputs a certain CG
depends on, the signal or signals, which the CG expression
refers to, are selected in the dependency graph first. By
traversing the graph up to the input signals, the set of
relevant model inputs is collected. Within the subsequent
search process for this CG, signals are generated only for
the relevant inputs - all other inputs receive a standard (e.g.,
zero valued) signal when being executed.

C. Coverage Goal Sequencing

No matter if structural testing is performed in addition to
functional (black-box) testing or purely as white-box testing,
it is usually a set of CGs that constitutes the test objective.
Remember, that for each CG a separate search needs to
be run. In Windisch’s approach, those search processes are
executed in random order. Hence, correlations between CGs
are ignored. Given CGs with the expressions s<90, s<80
and s<70, for example, it is most likely more efficient to
aim for reaching the goal s<70 first because it satisfies all

54Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 63 / 153

Coverage Goal Analysis

1. Collect all CGs of all available coverage criteria

CG 1

CG 2

. . .

2. Harmonize and simplify CG expressions, e.g.

s1>10 AND s1>4 s1>10

s2≥1 + s in [0,1]:1 s2==1

Dependancy Analysis

1. Logical Dependance between CGs

2. Semantical Dependance due to connecting blocks

s2==1 s2≠4

(incl. creation of virtual CGs for bridging between CGs)

s3==1OR

s3 s4
s4==1

Optimization Goal Sequencing

1. Reduction of Dependancy Graph according to
user selection of coverage criteria or CGs

2. Derivation of Optimization Goals from graph

CG 1 CG 4CG 9+

CG combinations single CGs

3. Sequencing based on factors such as number
of implied CGs, model depth or boolean
signals in expressions

Figure 3. Main process steps to create an efficient order for a set of coverage goals, which are processed separately by a search

other CGs at the same time. As this example indicates, the
execution order of the CG-related search processes affects
the efficiency of the whole structural test.

Other researchers in the search-based testing community
have noticed this shortcoming as well. Fraser and Arcuri [19]
advise focusing on the generation of whole test suites rather
than targeting single CGs. They recommend optimizing
multiple test suites instead of multiple test data, and also
suggest rewarding smaller test suites with a better fitness
in case two or more test suites achieve the same coverage.
Harman et al. [20], in contrast, suggest a multi-objective
search in which each CG is still targeted individually but the
number of collateral (accidentally covered) goals is included
as a secondary objective. Though facing a similar problem,
our approach differs. We keep the focus on single CGs since,
considering the complexity of the optimization problems
constituted by industrial SL models, they are often difficult
to reach and we do not want to impede the search by
burdening it with additional goals or mixed fitness values.
Instead, we propose a coverage goal sequencing approach
that creates a reasonable order in which the various CGs
are pursued. Li et al. worked out a related approach [21],
however it is outside of the search-based and SL context.
Ultimately, by maximizing collateral coverage, our approach
attempts to minimize the number of CGs that need to
be pursued. Not only is this expected to improve overall
efficiency, but the resulting test suite should also be smaller.

In this paper, we can only give a brief introduction to this
technically complex solution, as summarized in Figure 3.
First of all, the model under test is analyzed and CGs are
derived for all SL/SF-relevant coverage criteria (see [7]).
In preparation to analyzing dependencies between CGs, we
apply several harmonization and simplification steps to the
CG expressions. Note that results of SIA (Section III-A)
are used for this task as well, e.g., an expression s≥1
would be transformed to s=1 if s is a Boolean signal.
Next, possible dependencies between CG expressions are
analyzed, resulting in a set of dependency graphs. A set,
since only certain dependencies are considered in order to
limit complexity. The following CG relations are registered:
implication, equivalence, NAND, and XOR. Dependencies

of the expressions are analyzed both from a logical and a
semantical point of view. Semantical means that for each two
CGs relating to incoming or outgoing signals of the same
model block, a block-specific analysis checks if a relation
between the CGs exists. In certain cases, the block-specific
analysis adds virtual CGs as a bridge to other CGs in order
to detect further dependencies. Along the way, based on the
captured dependencies, further CGs might be detected as
unsatisfiable (see Section III-A).

Considering the user’s selection of coverage criteria or
single CGs, the graphs are minimized accordingly. Amongst
others, non-selected CGs implying selected CGs are kept.
From the graphs the final optimization goals are derived
in a two-fold way: Besides keeping each selected CG as a
single optimization goal, certain combinations of CGs are
derived as well - since a graph can contain conjunctions. In
this way, optimization goals with high collateral coverage
are added. Finally, the optimization goals are sequenced
according to several metrics, primarily by the number of
(so far unsatisfied) implied CGs, but also by their depth in
the model and the amount of Boolean signals involved in
the expressions - since such goals should be avoided given
the fitness function construction problem (see Section II-C).
Note that the pursuing order of optimization goals is updated
after each search process ends, since an optimization goal’s
number of unsatisfied implied CGs might have changed.

IV. IMPLEMENTATION AND FIRST EXPERIMENTS

The presented analysis techniques have been implemented
in the course of developing our tool TASMO [22], which
is implemented in Java and closely integrated with Matlab.
TASMO extracts model related information from Matlab
and applies transformation and reduction steps to an internal
representation of the model under test in order to focus on
the relevant parts for structural test data generation. TASMO
can also visualize the results of the presented analysis
techniques. We investigated the effect of these techniques
to structural test data generation for industrial SL/TL mod-
els. Case studies applying the whole procedure, including
running the search procedure, are part of ongoing work.
We present first experimental results of applying signal

55Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 64 / 153

interval analysis and signal dependency analysis to two SL
models, one mid-sized (model A, 147 blocks, 323 CGs) and
one large-sized (model B, 1047 blocks, 736 CGs), recently
developed at Daimler in the scope of an electric vehicle’s
propulsion strategy. Based on the input specifications, SIA
identified 17 (A) and 39 (B) infeasible CGs for which the
standard search-based approach would otherwise perform
extensive search processes. SDA detected that for each CG,
on average, only about 3.1 out of 8 (A) and 17.3 out of 32
(B) model inputs would need to be stimulated in order to
match the CG formulas. This shows how this technique can
reduce the search space distinctly - without excluding CG-
relevant search space areas. The runtime of the additional
analysis techniques was only a matter of seconds.

V. CONCLUSION AND FUTURE WORK

This paper introduces an approach to improving the per-
formance of search-based testing when applied to structural
testing of SL models. Three static techniques extend the
standard search-based approach by analyzing the model
under test before the search processes for each CG are run.
Unsatisfiable CGs are partially identified and excluded from
the search. The search space is reduced in such a way that the
search focuses solely on relevant model inputs. The separate
search processes for each CG are sequenced in order to
maximize collateral coverage, minimize test suite size, and
shorten the overall search runtime.

First experiments backed up our expectations and exten-
sive case studies will follow in the course of our proceeding
tool development. We aim to develop a prototype tool that is
applicable in industry. Further work is required to extend the
presented techniques with full Stateflow support. Targeting
the discussed shortcomings of the search-based approach,
our next main step is to work on a hybridization of the
search-based algorithm with supporting (static) techniques.

REFERENCES

[1] The Mathworks, “Matlab Simulink,” Last access: 2012-09-16.
[Online]. Available: http://www.mathworks.com

[2] dSpace, “Targetlink,” Last access: 2012-09-16. [Online].
Available: http://www.dspace.com

[3] P. McMinn, “Search-based software testing: Past, present
and future,” in Softw. Testing, Verif. and Valid. Workshops
(ICSTW), 2011.

[4] B. Wilmes, A. Windisch, and F. Lindlar, “Suchbasierter Test
für den industriellen Einsatz,” in 4. Symp. Test. im Sys.- und
Softw. Life-Cycle, 2011.

[5] Y. Zhan and J. A. Clark, “A search-based framework for
automatic testing of MATLAB/Simulink models,” J. Syst.
Softw., vol. 81, no. 2, pp. 262–285, Feb. 2008.

[6] A. Windisch, “Search-based testing of complex simulink
models containing stateflow diagrams,” in Proc. of the 1st
Int. Workshop on Search-Based Soft. Testing, 2008.

[7] A. Windisch, “Suchbasierter Strukturtest für Simulink Mod-
elle,” Ph.D. dissertation, Berlin Institute of Technology, 2011.

[8] M. Harman and P. McMinn, “A theoretical and empirical
study of search-based testing: Local, global, and hybrid
search,” IEEE Trans. on Softw. Eng., vol. 36, pp. 226–247,
2010.

[9] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test
environment for automatic structural testing,” Inform. and
Softw. Technology, vol. 43, no. 14, pp. 841–854, 2001.

[10] A. Windisch and N. Al Moubayed, “Signal generation for
search-based testing of continuous systems,” in Softw. Testing,
Verif. and Valid. Workshops (ICSTW), 2009.

[11] T. Vos, A. Baars, F. Lindlar, P. Kruse, A. Windisch, and
J. Wegener, “Industrial scaled automated structural testing
with the evolutionary testing tool,” in Proc. of the 3rd Int.
Conf. on Softw. Testing, Verif. and Valid., 2010.

[12] P. McMinn, M. Harman, D. Binkley, and P. Tonella, “The
species per path approach to search based test data genera-
tion,” in Proc. of the 2006 Int. Symp. on Softw. Testing and
Analysis (ISSTA), 2006, pp. 13–24.

[13] Y. Zhan and J. A. Clark, “The state problem for test genera-
tion in simulink,” in Proc. of the 8th Annual Conf. on Genetic
and Evolutionary Computation, 2006, pp. 1941–1948.

[14] A. Goldberg, T. C. Wang, and D. Zimmerman, “Applications
of feasible path analysis to program testing,” in Proc. of the
Int. Symp. on Softw. Testing and Analysis, 1994, pp. 80–94.

[15] Y. Wang, Y. Gong, J. Chen, Q. Xiao, and Z. Yang, “An
application of interval analysis in software static analysis,”
in IEEE/IFIP Int. Conf. on Embedded and Ubiquitous Com-
puting, vol. 2, 2008, pp. 367 –372.

[16] R. E. Moore, Interval Analysis. Prentice-Hall, 1966.

[17] P. McMinn, M. Harman, K. Lakhotia, Y. Hassoun, and J. We-
gener, “Input domain reduction through irrelevant variable
removal and its effect on local, global, and hybrid search-
based structural test data generation,” IEEE Trans. on Softw.
Eng., vol. 38, pp. 453–477, 2012.

[18] R. Reicherdt and S. Glesner, “Slicing Matlab Simulink mod-
els,” in 34th Int. Conf. on Softw. Eng., 2012, pp. 551 –561.

[19] G. Fraser and A. Arcuri, “Evolutionary generation of whole
test suites,” in 11th Int. Conf. on Quality Softw., 2011.

[20] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo,
“Optimizing for the number of tests generated in search
based test data generation with an application to the oracle
cost problem,” in Softw. Testing, Verif. and Valid. Workshops
(ICSTW), 2010, pp. 182–191.

[21] J. J. Li, D. Weiss, and H. Yee, “Code-coverage guided pri-
oritized test generation,” Inf. Softw. Technol., vol. 48, no. 12,
pp. 1187–1198, 2006.

[22] B. Wilmes, “Toward a tool for search-based testing of
Simulink/TargetLink models,” in 4th Symp. on Search Based
Softw. Eng. (Fast Abstracts), 2012.

56Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 65 / 153

Fault Detection Capabilities of an Enhanced Timing and
Control Flow Checker for Hard Real-Time Systems

Julian Wolf, Bernhard Fechner and Theo Ungerer
University of Augsburg, Germany

Emails: {wolf, fechner, ungerer}@informatik.uni-augsburg.de

Abstract—Dependability and robustness are essential re-
quirements of embedded systems. It is necessary to develop and
integrate mechanisms for a reliable fault detection. Regarding
the context of hard real-time computing, such a mechanism
should also focus on the correct timing behavior. In this paper,
we present results of the fault detection capabilities, i.e., the
fault coverage and detection latencies, of a novel timing and
control flow checker designed for hard real-time systems. An
experimental evaluation shows that more than 65 % of injected
faults uncaught by processor exceptions can be detected by
our technique – at an average detection latency of only 22.1
processor cycles. Errors leading to endless loops can even be
reduced by more than 90 %, while the check mechanism causes
only very low overhead concerning additional memory usage
(15.0 % on average) and execution time (12.2 % on average).

Keywords-Control flow checking; timing correctness; reliabil-
ity; embedded processors; hard real-time computing

I. INTRODUCTION

Most deployed systems in safety-critical areas, like the au-
tomotive and aerospace domains, are hard real-time comput-
ing systems. They must provide analyzable timing behavior,
because missing a deadline potentially causes catastrophic
consequences. The primary goal is not to optimize the
average performance, but to provide analyzability and to
determine timing guarantees [20]. If an embedded system
is intended for safety-critical applications, designers must
also guarantee that soft errors, e.g., caused by transient
faults, have negligible impact on the execution behavior. It
is necessary to integrate reliable error detection mechanisms
with low detection latency enabling an immediate reaction
to any misbehavior and possibly the execution of a fall-back
solution within the required deadlines.

In this context, we focus on errors occurring in the control
path of an embedded hard real-time processor, i.e., errors
causing timing or logical divergence from the proper control
flow. Fault injection studies show that up to 77 % [19]
of errors occurring in a computer system are control flow
errors. Regarding system errors caused by transient, non-
reproducible faults, an on-line error detection mechanism is
the only feasible solution to detect such errors.

In [23] and [24], Wolf et al. provide a detailed description
of a novel timing and control flow check mechanism. The
approach extends fine-grained on-line timing checks for hard

real-time systems by a lightweight control flow monitor-
ing technique. The instrumentation of application code at
compile-time is combined with a small hardware check unit
connected to the core verifying the correctness at run-time.

In this paper, we enhance this approach by additional
checks of a lower timing bound. Moreover, we particu-
larly focus on the fault detection capabilities of the check
mechanism. A fault injection study based on automotive
benchmarks provides additional results showing the main
benefits of the approach, i.e., a wide coverage of possible
soft errors resulting in a reduction of critical system failures,
very low fault detection latencies, and low memory and
execution time overhead.

This paper is organized as follows: Section II summarizes
related work in the field of on-line checking techniques.
Our proposed method for temporal and logical control flow
monitoring is presented in Section III. Subsequently, Section
IV shows details on implementation issues. The results
of fault injection experiments are presented in Section V.
Finally, Section VI concludes this paper and gives an outlook
to future work.

II. RELATED WORK

Several methods for control flow checking – neglecting
timing correctness – have been proposed during the last
decades, implemented in hardware or software. Accordingly,
these approaches either introduce additional hardware, like
a watchdog processor [12] performing reliability checks
during run-time [11], [15], [19], [22], or they add sup-
plementary code on software-level to perform monitoring
operations [1], [8], [14], [18]. However, both alternatives
have benefits and drawbacks as well: While hardware-
based approaches usually provoke high complexity for the
integration into a system, their advantage is a good average
performance due to less overhead concerning memory usage
and execution time. Moreover, most of these techniques do
not require changes in the executed application. Software-
based approaches on the other side are easy to integrate,
but cause significant overhead. Also, it is needed to add
redundant information to the application source code, given
that it is available. A solution for this dilemma can be the
usage of a hybrid detection technique [4], [17], combining
benefits of both hardware- and software-based approaches.

57Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 66 / 153

BBi BBj BBk ...
CHECKPOINT CHECKPOINT CHECKPOINT

... BCETj BCETkBCETi
WCETj WCETkWCETi

Figure 1. Temporal instrumentation of basic blocks

On the other hand, Paolieri and Mariani [16] introduce
a special hardware unit to support timing correctness at
system level. The developed timing-aware coverage monitor
unit is CPU-independent, but requires timing footprints of
the running task. However, this approach focuses mainly on
timing errors caused by a multi-threaded usage of commonly
used resources, but not on transient faults. The intention of
this technique is only to guarantee timing correctness while
completely neglecting logical aberrations from the proper
control flow.

III. DETECTION MECHANISM

Our hybrid timing and control flow checking mechanism
consists of two phases: In an off-line phase, the safety-
critical application is split into basic blocks (BB), i.e.,
sequences of instructions in which the execution always
begins at the first and terminates at the last instruction. These
blocks are analyzed and hardened with instrumented check-
points in the object code. In an on-line phase, a connected
hardware check unit reacts to the inserted checkpoints during
execution. If the program flow does not correspond to the
instrumented information, an error is signaled.

We separate the description of our technique into two
parts: Firstly, we explain the instrumentation and checking
mechanism only for timing errors occurring in the control
flow. Secondly, the additional part focusing on the detection
of logical control flow errors is presented.

A. Temporal Control Flow Monitoring

After splitting the code into basic blocks, we add check-
points at the beginning of each block containing information
about its timing behaviour. In detail, this timing informa-
tion consists of a lower bound symbolizing the Best-Case
Execution Time (BCET) estimate and an upper bound, the
Worst-Case Execution Time (WCET) estimate (see Fig. 1).

In the on-line phase, a specific hardware check unit
transfers the timing values to defined registers, as soon as
a checkpoint is reached. The register value symbolizing the
WCET is decremented at each following processor cycle.
When the next checkpoint is reached, the register is updated
by the next WCET value. Therefore, we can assume a timing
error, if the register is below zero. In this case, a basic
block required more cycles than the WCET analysis had
computed off-line. For checking the minimum execution
time, a counter value is set to zero at the beginning of each
basic block and is incremented at each following processor
cycle. If the counter value is lower than the instrumented
BCET bound when reaching the following checkpoint, a
timing error occurred.

BBi BBi+1 BBi+2 ...
CHECKPOINT CHECKPOINT CHECKPOINT

b c ...

a b c
Successors

BB ID

(a) Sequential basic blocks (type 00)

Jump

BBi BB2 BBi+n ...
CHECKPOINT CHECKPOINT

...

a x
Successors

BB ID ...
x

(b) Basic blocks with a jump instruction (type 00)

Branch

BBi BBi+1 BBi+n ...
CHECKPOINT CHECKPOINT CHECKPOINT

x b

a b x
Successors

BB ID ...

(c) Basic blocks with a branch instruction (type 01)

BBi BBi+1 BBi+n ...
CHECKPOINT CHECKPOINT CHECKPOINT

...

a b x

ReturnCall

x b return

...
Successors

BB ID

(d) Basic blocks with call (type 10) and return (type 11)

Figure 2. Logical instrumentation of basic blocks

B. Logical Control Flow Monitoring

If an application is split into basic blocks, their sequence
during execution is analyzable. We annotate each basic block
with a unique identifier (ID), which is added to the check-
point containing the timing bounds. In order to enable a fast
and easy check during run-time, we develop a technique to
explicitly signalize successors: Along with each ID, we store
the pre-calculated successor ID or two possible successor
IDs of this basic block. So, the hardware checker compares
in the on-line phase, if an actually executed basic block is an
allowed successor. To give a better understanding, we regard
each variation of the control flow, according to Fig. 2:

• In the sequential case (see Fig. 2(a)), we add to each
checkpoint the ID of the basic block itself and the ID
of its follower.

• In case of an unconditional (direct) jump instruction at
the end of basic block BBi in Fig. 2(b), the signalized
successor of BBi has to be updated accordingly.

• If a basic block ends with a branch or loop instruction,
we cannot distinguish off-line which path will be taken
during execution. So, basic block BBi in Fig. 2(c)
contains the IDs of both basic blocks BBi+1 and
BBi+n in a list of successors.

• Fig. 2(d) shows the instrumentation of calls and returns.
In this example, BBi+n is a function, which is called
from BBi. First, we add the ID of BBi+n as the
only allowed successor. Moreover, we append the basic
block, which should be executed after the function’s
return (in this example BBi+1). Within the function, it
is sufficient just to signal the return. This instrumenta-

58Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 67 / 153

tion mechanism also works properly for nested function
calls, if we introduce a stack memory to save multiple
return IDs.

Since coding guidelines [5] for safety-critical hard real-
time systems forbid the usage of indirect jumps and re-
cursion due to problems concerning analyzability, we can
neglect these issues in our context.

The hardware check unit, which becomes active as soon
as a checkpoint is detected during run-time, is enhanced
to interpret the instrumented values. The check unit has
to verify, if the current ID corresponds to the signalized
successor(s). Furthermore, it must save the current values
for the checking progress when the application reaches the
next checkpoint. We have to provide memory for storing at
most two successors and a stack memory for function calls,
which is dependent on the degree of function nesting.

IV. IMPLEMENTATION ISSUES

To evaluate strengths and weaknesses, we provide a
tool for code instrumentation, which is integrated into the
compilation process to enhance the assembly code of an
application by checkpoints. This output is assembled and
linked in order to get a binary that can be executed on a
processor extended by a hardware check unit. The instru-
mentation could also be implemented on binary level. This
might be useful, if application sources are not available,
which can be neglected in our case.

A. Evaluation Platform

As a baseline for the execution we use the real-time ca-
pable multithreaded two-way superscalar CarCore processor
[13]. The architecture of the CarCore is binary compatible
to the Infineon TriCore [10], which is a commonly used
microcontroller in safety-critical applications of the auto-
motive industry. Up to two instructions per cycle can be
assigned to its two pipelines (an address and a data pipeline)
consisting of a decode, execution and write back stage. Both
pipelines share the stages instruction fetch and schedule in
the front part of the processor. The processor works in-order;
instructions in both pipelines can be executed in parallel if
an address instruction directly follows a data instruction.

Our simulations are executed on a cycle-accurate Car-
Core SystemC model, which exactly implements the timing
behavior of the processor. This enables a measurement
and comparison of realistic execution times of different
applications.

B. Integration of Checkpoints

To handle the described methodology for timing and
control flow checking, we need to enhance the application
code by BCET and WCET estimates of a basic block, its
ID along with two potential Successor IDs, and a field Type
signalizing the required compare operation to the hardware
check unit (see Fig. 2 for type values). However, we can

Type ID Succ. ID BCET WCET

2 Bit 9 Bit 9 Bit 6 Bit 6 Bit

Figure 3. A 32 bit checkpoint

avoid an explicit prediction of a second ID by a constraint
on the assignment of basic block IDs: Each succeeding basic
block in the assembler code should get an ID incremented
by one (compared to its predecessor). By this, the second
possible successor in a branch is always the ID of the block
itself, incremented by one. Equally, we can implicitly define
the return ID in case of a function call. The ID of the basic
block of the return target is always the calling basic block’s
ID incremented by one.

The timing bounds are computed with an analysis tool,
which accumulates execution times of single instructions.
The instrumentation tool can be enhanced by connecting
a WCET tool providing less overestimation like the static
WCET tool OTAWA [3], which also works on the baseline
of basic blocks.

Focusing on low overhead, we choose an overall check-
point bit width of 32 bit. This allows writing a checkpoint
value to a 32 bit register of the CarCore processor, which
has to be read by the hardware check unit. The bit mask
displayed in Fig. 3 shows our implementation of a check-
point: We need 2 bit for the declaration of the checkpoint
type and 9 bit both for encoding the ID and the successor
ID. The remaining 12 bits are used for the integration of
the BCET and WCET values. This configuration allows
a representation of 512 unique basic block IDs, which is
sufficient regarding our evaluations.

To enable the check mechanism during run-time, it is
necessary to add processor instructions, which trigger the
check mechanism during execution. The CarCore processor
provides special registers, called Core Special Function
Registers (CSFRs) for hardware extensions. So, we imple-
ment the check unit to be triggered, as soon as an MTCR
(move to core register) instruction on a specific checkpoint
register is executed. For each checkpoint, we need three
instructions: first, we write the checkpoint value into a data
register (requires two instructions), then we call MTCR (one
instruction) to copy the value to the special register. Since
MTCR is an address instruction immediately following after
a data instruction, the CarCore can execute two of these
instructions in parallel, which minimizes execution time
overhead.

C. Hardware Check Unit

To perform timing and control flow checks at run-time,
we connect our hardware check unit directly to the processor
pipeline. It needs two input signals: the processor clock
and the decoded MTCR instructions including the checkpoint
values. To estimate the hardware overhead of the integrated
check unit, we transformed the SystemC code of the checker

59Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 68 / 153

to Very High Speed Integrated Circuit Hardware Description
Language (VHDL) [21] and performed a synthesis for an
Altera Stratix II Field Programmable Gate Array (FPGA)
[2]. A critical point is the stack, which is needed for the
call and return mechanism. Its size depends on the call
depth of the program. If we store the stack in an on-chip
RAM, which is cheaper than logic registers, the check unit
requires only 163 Adaptive Look-Up Tables (ALUTs) (0.5 %
compared to the overall CarCore processor) and 102 (1.0 %)
logic registers, independent of the call depth. However,
in this case we have an additional memory overhead of
(call depth ∗ 9 Bit)/8 Byte for the stack.

Currently, interrupts are neglected in our implementation.
However, it is possible to extend the stack of the hardware
check unit in order to support a kind of context change in
case of an interrupt. But this will be part of our future work.

V. EXPERIMENTAL EVALUATIONS

In this section, we focus on a detailed analysis of the
implemented timing and control flow checking technique.
In detail, we evaluate the detection coverage and latency
using simulations with fault injections and we measure the
overhead caused by the proposed mechanism. All evalua-
tions are performed on the SystemC model of the CarCore
processor, which was enhanced by the presented hardware
check unit. Moreover, we integrated an extension enabling
a systematic fault injection.

A. Benchmark Programs

We use different applications of the Embedded Micro-
processor Benchmark Consortium (EEMBC) AutoBench 1.1
benchmark suite [7]. These programs are implemented in
standard C and represent typical properties and requirements
of automotive software for embedded systems. For the
compilation, we use the HighTec GNU C/C++ Compiler
for Infineon’s TriCore (optimization level O2 enabled) [9].

B. Fault Model

Around 80 % - 90 % of hardware errors are induced by
transient faults [6]. Therefore, in this context, we focus on
transient faults in the form of Single Event Upsets (SEUs)
during operation. These SEUs, usually appearing as bit flips,
are presumed to occur in the instruction memory, since the
consequences are very heterogeneous and challenging for a
successful detection in such cases. As multiple bit faults at
a time are extremely seldom, we assume only one single
occurrence per program execution. For the fault injection
studies, we modified the fetch stage of our simulated pro-
cessor pipeline to inject bitflips. As the memory footprint
of the EEMBC benchmarks is quite low, we can iteratively
run simulations with a systematic injection of all potential
bit flips in the instruction memory. Allover, we performed
143,673 simulation runs, each containing one bit flip.

C. Fault Coverage

As a first result of our evaluation studies, we observed
that 67.0 % of injected faults cause an error, i.e., a deviation
from the correct program functionality. In 33.0 % of all
simulation runs, the injected faults showed no effects. This
mainly results from the following causes:

• Since, according to our fault model, bit flips are injected
in the fetch stage of the processor (always fetching 64
bit, i.e., up to four instructions at once), the faulty
instructions are often not executed, e.g., in case of
previously executed control flow instructions.

• The TriCore instruction set contains several unused bits
in opcodes, where a bitflip will cause no erroneous
behaviour, too.

• If a bitflip is injected inside an instruction representing
a checkpoint, a shortening of the instrumented BCET
value / an elongation of the WCET value will neither
be detected nor lead to an error.

If we focus only on injected faults leading to errors, we
can see that 28.4 % of these simulations abort due to an
exception by the processor (19.5 % illegal opcode, 8.9 %
wrong memory access). We can also neglect this part in our
following considerations, since an additional error detection
is not necessary in these cases.

In the first line (A) of Fig. 4 we can finally see the
detection coverage of our proposed check mechanism –
regarding errors, which are not caught by a processor
exception. The results show that a total of 65.3 % can be
detected: 41.1 % by logical control flow checks because of
a wrong order of IDs, 19.4 % by timing checks due to an
exceeding of the instrumented WCET estimates and 4.8 %
by timing checks due to a deviation from the BCET values.
On the other hand, 33.1 % of simulation runs terminate with
wrong results. These are mostly pure data errors, which
cannot be covered by our mechanism. Finally, we see 1.6 %
of undetected endless loops; these loops comprise multiple
basic blocks, since loops within one single basic block could
be easily detected by our temporal check mechanism.

To compare the results to a system without our check
mechanism, we also conduct a fault injection study using
the EEMBC benchmarks without modifications. As these
applications use less instruction memory due to the missing
instrumentation, a less number of different bit flips can be
injected (a total of 83,782 instead of 143,673). However,
we can see a similar percentage of 38.7 % injected faults
without any effects on the program behaviour. Regarding
the remaining 61.3 % of simulation runs, there is a somewhat
higher rate of 39.6 % of detections by processor exceptions.
This increase is caused by the low detection latency of our
check mechanism: Since several errors are detected very
early, these errors can no longer raise a processor exception
several cycles later. Focusing on errors, which are not caught
by exceptions (see Fig. 4 (B)), there would be 83.2 % of

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 69 / 153

(A) 41.1 %

Logical control flow checks

19.4 %

WCET checks

4.8 %

BCET checks

33.1 %

Wrong results Endless loops

Errors detected by check mechanism: 65.3 % Errors not detected: 34.7 %

(B) 83.2 %

Wrong results

16.8 %

Endless loops

Figure 4. Behaviour of erroneous executions with (A) and without (B) integration of the proposed detection technique (results based on injected faults
leading to errors, which are not caught by processor exceptions)

simulation runs terminating with wrong results and 16.8 %
causing an endless loop.

Finally, we can conclude that the integration of our check
mechanism reduces the number of errors leading to wrong
results by more than 60 % (from 83.2 % to 33.1 %). The rate
of errors leading to undetected endless loops even decreases
by more than 90 % (from 16.8 % to 1.6 %).

D. Detection Latency

Beside the coverage, we evaluate the latency of our
detection mechanism, i.e., the amount of processor cycles
between fault injection and error detection. Focusing on
latencies lower than 100 cycles (which make around 95 %
of all executions), we receive a distribution shown in Fig. 5.
Overall, the simulations show an average detection latency
of 22.1 processor cycles. Values resulting from logical
checks are generally lower (16.5 cycles on average) than
those resulting from timing checks (25.4 cycles on average
by BCET checks, 34.1 cycles by WCET checks). This
difference is easy to explain: While an error is detected by
logical checks directly after reaching a checkpoint with a
wrong ID, an exceeding of the allowed execution time can
only be detected when the estimated WCET bound of a basic
block was overrun. The fact that several detections in Fig. 5
have a latency of around 70 cycles is a consequence of the
call and return handling of the CarCore, which takes a high
execution time compared to other architectures.

E. Overhead

The software instrumentation of our technique provides a
higher level of reliability but causes overhead. We aim to find
an optimal trade-off between execution time and memory
overhead on the one hand and good results concerning error
detection on the other.

As described in Section IV-B, our instrumentation tech-
nique needs three processor instructions for each checkpoint.
Since the CarCore is able to execute two of these instructions
in parallel, the execution of a checkpoint usually requires
two processor cycles. Fig. 6 shows the results measured
on the selected EEMBC benchmarks; as can be seen, the
additional execution time is low, only 12.2 % in the average
case. To determine the memory overhead we compare the

0

1000

2000

3000

4000

5000

6000

7000

33 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99
Fr

eq
ue

nc
y

of
oc

cu
rr

en
ce

Latency in cycles (rounded)

Detection by logical check
Detection by tmp. check (WCET)
Detection by tmp. check (BCET)

Figure 5. Distribution of detection latencies

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

aifirf bitmnp canrdr pntrch puwmod rspeed ttsprk

O
ve

rh
ea

d

Benchmark application

Additional execution time
Increased code size

Figure 6. Overhead of EEMBC benchmarks

number of instructions with the original benchmark program
without instrumentation. Here, we can see an increased
code size of 15.0 % in the average case. Regarding the
benchmark bitmnp, we observe slightly higher results, since
this application contains lots of very small basic blocks.

VI. SUMMARY AND FUTURE WORK

In this paper, we have presented the fault detection ca-
pabilities of our hybrid hardware-software technique for the
on-line detection of control flow and timing errors. Our ap-
proach goes one step beyond related checking mechanisms:

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 70 / 153

Besides monitoring only logical correctness of the control
flow, we additionally introduce a technique to guarantee
temporal correctness, especially focusing on hard real-time
systems.

We have implemented our error detection technique for
the hard real-time capable CarCore processor. The hardware
overhead of the check unit is very low, it requires only
0.5 % of ALUTs compared to the processor core. Fault
injection experiments on automotive benchmarks prove the
effectivity of our approach: More than 65 % of injected
SEUs uncaught by processor exceptions can be detected. The
number of simulation runs terminating with wrong results
can be reduced by more than 60 %, the rate of endless loops
even by 90 % using the proposed mechanism. Furthermore,
the detection latency of our technique is very low: An
error is detected after only 22.1 cycles in the average case.
Moreover, we measured the instrumentation overhead for
several benchmarks. In our evaluations, the mean additional
execution time is only 12.2 %, while the increased code size
is around 15.0 %.

In our future work, we will further optimize the ratio be-
tween coverage, latency and the occurring overhead: In case
of a long basic block with a high WCET, a potential fault
is currently detected with high latency. This problem can be
avoided by splitting blocks and adding extra checkpoints in
the middle. On the other side, very small basic block causing
much overhead could be combined with neighboring blocks
without suffering from detection quality.

REFERENCES

[1] Z. Alkhalifa, V. Nair, N. Krishnamurthy, and J. Abraham,
“Design and Evaluation of System-Level Checks for On-Line
Control Flow Error Detection,” IEEE Trans. Par. and Dist.
Systems, vol. 10, no. 6, pp. 627–641, 1999.

[2] “ALTERA Stratix II Device Handbook, Volume 1 (ver 4.5),”
http://www.altera.com/literature/lit-stx2.jsp, 2011.

[3] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat,
“OTAWA: An Open Toolbox for Adaptive WCET Analysis,”
in Proc. 8th SEUS Workshop, 2010, pp. 35–46.

[4] P. Bernardi, L. Bolzani, M. Rebaudengo, M. S. Reorda,
F.L.Vargas, and M. Violante, “A New Hybrid Fault Detec-
tion Technique for Systems-on-a-Chip,” IEEE Trans. Comp.,
vol. 55, no. 2, pp. 185–198, 2006.

[5] A. Bonenfant, I. Broster, C. Ballabriga, G. Bernat, H. Cassé,
M. Houston, N. Merriam, M. de Michiel, C. Rochange, and
P. Sainrat, “Coding Guidelines for WCET Analysis Using
Measurement-Based and Static Analysis Techniques,” IRIT
Toulouse, Tech. Rep., 2010.

[6] E. W. Czeck and D. P. Siewiorek, “Effects of Transient Gate-
Level Faults on Program Behavior,” in Proc. 20th Int’l Symp.
Fault-Tolerant Computing (FTCS), 1990, pp. 236–243.

[7] “EEMBC AutoBench 1.1,” http://www.eembc.org/, 2011.

[8] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Vi-
olante, “Soft-Error Detection Using Control Flow Assertions,”
in Proc. 18th IEEE Int’l Symp. Defect and Fault-Tolerance
in VLSI Systems (DFT), 2003, pp. 581–588.

[9] HighTec EDV-Systeme GmbH, http://www.hightec-rt.com/.

[10] Infineon Technologies AG, TriCore 1 User’s Manual, January
2008, v1.3.8.

[11] D. Lu, “Watchdog Processors and Structural Integrity Check-
ing,” IEEE Trans. Comp., vol. 31, no. 7, pp. 681–685, 1982.

[12] A. Mahmood and E. McCluskey, “Concurrent Error Detection
Using Watchdog Processors–A Survey,” IEEE Trans. Comp.,
vol. 37, no. 2, pp. 160–174, 1988.

[13] J. Mische, I. Guliashvili, S. Uhrig, and T. Ungerer, “How
to Enhance a Superscalar Processor to Provide Hard Real-
Time Capable In-Order SMT,” in Proc. 23rd Int’l Conf.
Architecture of Computing Systems (ARCS), 2010, pp. 2–14.

[14] N. Oh, P. Shirvani, and E. McCluskey, “Control-flow Check-
ing by Software Signatures,” IEEE Trans. Reliability, vol. 51,
no. 1, pp. 111–122, 2002.

[15] J. Ohlsson and M. Rimen, “Implicit Signature Checking,”
in Proc. 25th Int’l Symp. Fault-Tolerant Computing (FTCS),
1995, pp. 218–227.

[16] M. Paolieri and R. Mariani, “Towards Functional-Safe
Timing-Dependable Real-Time Architectures,” in Proc. 17th

Int’l On-Line Testing Symp. (IOLTS), 2011, pp. 31–36.

[17] R. Ragel and S. Parameswaran, “A Hybrid Hardware–
Software Technique to Improve Reliability in Embedded
Processors,” ACM Trans. Embedded Comp. Systems, vol. 10,
no. 3, pp. 36:1–36:16, 2011.

[18] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. Au-
gust, “SWIFT: Software Implemented Fault Tolerance,” in
Proc. Int’l Symp. Code Generation and Optimization (CGO),
2005, pp. 243–254.

[19] M. Schuette and J. Shen, “Processor Control Flow Monitoring
Using Signatured Instruction Streams,” IEEE Trans. Comp.,
vol. 36, no. 3, pp. 264–276, 1987.

[20] L. Thiele and R. Wilhelm, “Design for Timing Predictability,”
Real-Time Systems, vol. 28, no. 2, pp. 157–177, 2004.

[21] “IEEE Standard VHDL Language Reference Manual,” IEEE
Std 1076-2008 (Revision of IEEE Std 1076-2002), 2009.

[22] K. Wilken and J. Shen, “Continuous Signature Monitoring:
Low-Cost Concurrent Detection of Processor Control Errors,”
IEEE Trans. Comp.-Aided Design of Integrated Circuits and
Systems, vol. 9, no. 6, pp. 629–641, 1990.

[23] J. Wolf, B. Fechner, S. Uhrig, and T. Ungerer, “Fine-Grained
Timing and Control Flow Error Checking for Hard Real-
Time Task Execution,” in Proc. 7th Int’l Symp. Industrial
Embedded Systems (SIES), 2012, pp. 257–266.

[24] J. Wolf, B. Fechner, and T. Ungerer, “Fault Coverage of
a Timing and Control Flow Checker for Hard Real-Time
Systems,” in Proc. 18th Int’l On-Line Testing Symp. (IOLTS),
2012, pp. 127–129.

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 71 / 153

Software Validation

When ‘Pure Mathematical Objectivity’ is no Longer Enough

Isabel Cafezeiro
Instituto de Computação

Universidade Federal Fluminense
Niterói/

Programa de História das Ciências e das Técnicas e
Epistemologia (HCTE-UFRJ)

Brasil
e-mail: isabel@dcc.ic.uff.br

Ivan da Costa Marques
Programa de História das Ciências e das Técnicas e

Epistemologia (HCTE-UFRJ)
Universidade Federal do Rio de Janeiro

Rio de Janeiro,
Brasil

e-mail: imarques@ufrj.br

Abstract— By focusing on systems that can be trusted to
operate as required, software validation offers a rich field to
study how far one can go with the support of mathematical
certainty, that is, to identify when evidence (a non formal
entity) must come into play to dismiss the possibility of critical
errors. First, this article highlights that the view of
mathematics as a source of accuracy supported by a purified
and rational chaining of reasoning persists until the present
days. Resorting to historical controversies of the 1970's
regarding software validation, it is possible to indicate local
(social) elements that necessarily participate in what is usually
considered 'technical' or 'objective', showing therefore that
there is no way to establish rigid or fixed boundaries delimiting
what is considered 'exact'. Regarding software correctness, the
sociotechnical approach adopted in this paper leads to a
intertwined frame where social (collaborative) mechanisms act
in ways that are inseparable from those mechanisms that are
considered 'technical' or 'objective', which are, in this case,
formal methods. This paper discusses software validation in
the light of Sociology of Mathematics and Social Studies of
Science and Technology.

Keywords- formal specification; collaborative development;
objectivity; sociology of mathematic.

I. INTRODUCTION

‘The only effective way to raise the confidence level of a
program significantly is to give a convincing proof of its
correctness’ [1]. Edsger Dijkstra, a spokesman of formal
methods for software reliability in the seventies, argued in
favor of a more rigid way to develop software, as a reaction
to the just before denounced software crisis in the 1968
Conference on Software Engineering, Garmisch, reported in
[2]. He defended that programs should be constructed 'hand-
in-hand', module by module, with their formal proof.
Dijkstra opposed his proposition to the traditional technique,
'to make a program and then to test it', which, in his view,
was an effective way to detect the presence of errors but did
not guarantee their absence. [1]

Dijkstra allied himself with a powerful partner:
mathematics. Among mathematicians, and also in the
common sense, there is a widespread culture of objectivity
and accuracy of mathematics [3], which is strong enough to

stifle dissenting voices, those sympathetic to non-formal
mechanisms [4].

A. The strengthening of mathematics to support the trust

'Why are mathematical certainty and the evidence of
demonstration common phrases to express the very highest
degree of assurance attainable by reason?' [5]

It is not the purpose of this section to present an
exhaustive historical account of the extensively expanded
relations between mathematics and trust and certainty. Much
more modestly, it brings in for discussion some historical
moments over the last few centuries where those relations
were under debate. The above quotation is a milestone: John
Stwart Mill, in 'A System of Logic' (mid-nineteenth century)
took a stand against the association of the highest degree of
safety reachable by reason 'to mathematical certainty' and
'the evidence of demonstration'. This triggered intense
objection by Gottlob Frege (Die Grundlagen der Arithmetik
– 1884) [6], today considered one of the founders of modern
logic, a spokesman for the strengthening of rationalist trend.
The 'peculiar certainty' attributed to so-called 'deductive
science' gained momentum in early twentieth century,
through the Vienna Circle, where the logical positivists,
declared their rejection to what they called theological and
metaphysical speculation [7]. At the same time, amid the
movements of mathematical foundations, in particular,
David Hilbert's formalist program came to the fore. It
conceived mathematics as a purely formal system, consisting
of symbols devoid of meaning or interpretation: 'In a sense,
mathematics has become a court of arbitration, a supreme
tribunal to decide fundamental questions — on a concrete
basis on which everyone can agree and where every
statement can be controlled.' [8] The 1930s revealed
surprises to these approaches, especially to the formalist
program, with the publication of Gödel Theorems [9], which
demonstrated the existence of statements that, although they
could be written in a formal system of a certain kind, could
not be proved in it. This exposed the inability of mathematics
to decide any mathematically expressed matter maintaining
its consistency. The publication of Gödel’s theorems put into
question the role of mathematics as a 'court of arbitration' as
envisioned in the Hilbert’s formalist program. Moreover, in

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 72 / 153

the 1940s some mathematicians have realized the need to
consider factors then considered 'extra-mathematical' for
understanding the configuration of mathematics itself. For
example, the Dutch mathematician Struik proposed a
'Sociology of Mathematics' to be concerned 'with the
influences of forms of social organization on the origin and
growth of mathematical conceptions and methods' [10].

However, it is noteworthy that in the 1970s, Dijkstra
proposed a program of mathematization of software by
mobilizing arguments in bases that were very similar to those
that David Hilbert had proposed in the formalist approach:
the effort in the pursuit of mathematical truth and accuracy
and consistency of mathematical methods. Even today, it is
to be highlighted, the discourse of the search for security and
reliability is widely supported by confidence in mathematics
and formal systems. An illustrative example can be found in
the general terms that conducted the formulation of 'The
Grand Challenge Project' in 2005 attesting an enthusiastic
view of formal methods: 'Programmers of the future will
make no more mistakes than professionals in other
disciplines. Most of their remaining mistakes will be
detected immediately and automatically, just as type
violations are detected today, even before the program is
tested. An application program will typically be developed
from an accurate specification of customer requirement; and
the process of rational design and implementation of the
code will be assisted by a range of appropriate formally
based programming tools, starting with more capable
compilers for procedural and functional programming
languages.' [11]

The Sociology of Mathematics [12][10] allows us to
question the 'objectivity' that is sought in mathematics and
formal methods, highlighting that in its own conformation,
mathematical entities are inseparably mixed with local or
temporal elements, and are therefore historically situated.
Such viewpoint takes social mechanisms for collaboration on
a par with formal methods in the validation of software
systems and reinforces the role of inductive reasoning, tests,
empirical approaches as allies in the process of software
validation.

B. Organization of the next sections

In Section II, we analyze the spreading of formal
methods as a guarantee of software correctness since the 60's
until today. In this process, we point out the inevitable
presence of personal choices and subjectivities that the
formal methods are unable to eliminate and the power of
speech that relies on a so-called 'objectivity' of mathematics
to enhance the trust in formal methods and the promise of a
software free of errors.

In Section III, we present a case study relating
mathematics and computers that reinforces the view that,
when mathematics is requested to be applied in real-world
situations, not only local issues are modified as a result of
interaction with mathematics, but also mathematics changes
as result of interactions with local issues. This view collapses
with the general conception that math is unique and
immutable as a 'language of Gods', a conception that persists
not only in common sense, but also among mathematicians
by cultural reasons. As expressed in David Hilbert's Radio
Broadcast, in 1930: 'Already Galileo declared: "To

understand nature, we must learn the language and the signs
through which nature speaks to us." But this language is
mathematics, and these signs are mathematical figures!'

In the case analyzed here, we report a new arithmetic -
one that is remodeled by requirements of a computer
hardware, what shows that in mathematics there is room for
subjectivity. This example is a contribution to the
understanding of how social elements come to be inseparable
from the setting of mathematics, becoming part of it.

Then, in Section IV we return to the subject of software
correctness. We consider arguments that emerged in the
1970s, in response to the mathematization of software. These
reactions emphasized the importance of considering social
mechanisms in the development of secure software and
software verification. These social mechanisms gain a new
dimension when we consider the new capabilities of
interaction provided by the Internet, new techniques of
software development considering collaboration and reuse
and the speed of technology nowadays. Furthermore, we also
consider a recent testimony in favor of the association
between formal methods and empirical mechanisms. These
are allies with whom formal verification can go far beyond.

We conclude this article indicating the Sociology of
Mathematics and Social Studies of Science and Technology
as emerging areas that consider the interweaving of
mathematical knowledge and social and subjective issues.
This kind of research supports mixed approaches in which
recent mechanisms of collaboration can be taken in to build
solutions to problems that were previously treated as purely
technical.

II. FORMAL METHODS FOR SOFTWARE CORRECTNESS (FROM THE
SEVENTIES TO TODAY)

It was in terms of trust in mathematics in the late 1960s
and early 1970s, when computer programs had become too
long and were used in applications involving safety-critical
situations, that the U.S. Department of Defense (DoD)
initiated a series of debates that pointed to the
mathematization of systems as a guarantee of correctness. At
that time, the aim was to create a systematic methodology for
building systems, to question the effectiveness of empirical
tests and to bet on formal specifications as a means to enable
secure programming in two ways: first, since the
specification languages are more ‘abstract’ (more distant
from the code that activates the hardware) than the
programming languages, they can be closer to the problem
domain, thus facilitating the correct understanding and ease
of expression of the solution; and, second, since the
specification languages are formal, they would be suitable to
prove properties of programs, ensuring correctness. In 1985,
the U.S. DoD published the Orange Book whose 'purpose
[was] to provide technical hardware/firm-ware/software
security criteria and associated technical evaluation
methodologies', mandatory for use by all DoD Components
in carrying out ADP (Automatic Data Processing) system.
[13]

The establishment of these kinds of standards continued.
In 1999 an arrangement of international organizations called
Common Criteria (CC) created a basis for evaluating the
security of information technology products, which then
replaced the Orange Book. The CC defined seven levels of

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 73 / 153

assurance, (EAL), establishing a degree of trust directly
proportional to an adherence to formal methods:

TABLE I. The Common Criteria Evaluation Assurance
Levels: the more formal, the more reliable.

EAL1: Functionally Tested,
EAL2: Structurally Tested,
EAL3: Methodically Tested and Checked,
EAL4: Methodically Designed, Tested, and Reviewed,
EAL5: Semiformally Designed and Tested,
EAL6: Semiformally Verified Design and Tested,
EAL7: Formally Verified Design and Tested.

The role of formal methods in the view of Common
Criteria can be understood from the report [14]: to earn
certification the developer chooses and formalizes the
properties he considers indispensable for safety, provides a
formal specification of the parts of the software he considers
critical and a proof that the chosen properties meet the
specification. The last step is then to prove that the program
is indeed a refinement (an implementation) of the given
specification, and thus meets the properties proved at the
formal level. These documents are then analyzed by the
‘evaluation authority’ – a team of specialists whose name
reveals the sense of authority provided by mathematics.

As an example, we refer to [15], which describes 'how
formal methods were used to produce evidence in a
certification, based on the Common Criteria, of a security-
critical software system'. This experience report makes clear
that even being extremely formal the process always starts
from choices, and these are inevitably subjective. As this
report shows, the software developer chooses the pieces of
code that are 'security-relevant software behavior'. He also
decides which are the properties to be proved and where to
locate the preconditions and postconditions in the code.
However, what is considered difficult in the certification
process are the formal steps, while the developer's choices
are only briefly mentioned: 'Given 1) source code annotated
with preconditions and postconditions and 2) a security
property of interest, the overall problem is how to establish
that the code satisfies the property. We developed a five-
step process for establishing the property. These five steps
are described (...)'.

As one might expect, arbitrariness, convention, and
hence ‘subjectivity’ are inevitably present in the initial
stages, when several choices are made by the developer. The
formal method is unable to eliminate subjectivity, but
propagates it stealthily throughout the entire process.

Ignoring the subjective character of choices such as those
pointed out above, and still evoking the absolute certainty in
formal methods, we can see nowadays in the CC web site
statements such as: ‘IT products and protection profiles
which earn a Common Criteria certificate can be procured or
used without the need for further evaluation’ suggesting that
formal methods are reliable enough to bypass the need of
any additional testing, and overshadowing that its role is to
provide strong evidence that the system does not contain
critical errors.

III. WHEN OBJECTIVITY IS NO LONGER ENOUGH

In software verification and validation, the criterion of
truthfulness, reliability and applicability is many times
dependent upon confidence in proofs, which, in turn, has
been historically linked to the purely deductive reasoning
(or 'the ideal of certainty achieved by mathematical proof',
in words of Hoare [16]). This does sound a bit contradictory
since, in computer science, the abstract (formal) knowledge
becomes directly embodied in computer programs, and so,
apparently makes direct contact (without intermediation)
with the 'life-world', that is, borrowing the term from
Edmund Husserl, the 'only real world, the one that is
actually given through perception, that is ever experienced
and experienceable - our every-day life-world' [17]. Thus,
inductive reasoning, tests, empirical approaches as well as
methodologies based on social collaboration appear in
programming activities side by side with formal methods, as
a way of approaching 'our every-day life-world'. Computer
programming evinces that knowledge is a situated
construction, that is, a construction strongly connected to
materialities and local issues, even when the subject is
mathematics or other technical or abstract subjects.

Let us consider the controversies around the
establishment of the IEEE Standard for Floating-Point
Arithmetic [18]. It shows the conflict between the 'objective'
arithmetic and the requirements of 'every-day life-world',
here embodied in a hardware architecture. In this struggle,
both sides change, giving rise not only to a modified
computer but, as a counterpoint of Frege's claim ('there is
nothing more objective than the laws of arithmetic' [6])
giving rise also to a modified arithmetic.

 The core issue was the confrontation of the infinite
expansion of certain real numbers and the finite size of
computational representation, which certainly requires some
form of truncation. Different algorithms were used by
different companies (IBM, Digital, HP, Intel, Texas) which
generated different results for the same purpose. A
comparison between them showed that there were many
decisions to be taken: ‘One specialist cite[d] a compound-
interest problem producing four different answers when done
on calculators of four different types: $331,667.00,
$293,539.16, $334,858.18 and $331,559.38. He identifie[d]
machines on which a/1 is not equal to a (as, in human
arithmetic, it always should be) and eπ −πe is not zero.’ [18]

The total number of digits to be adopted in the
computational representation of real numbers was a decision
that involved the complexity of the hardware being used. In
addition, other decisions would also influence hardware
design, such as the size of the sequence of digits for
representing the mantissa and exponent in the floating point
representation. Mackenzie [18] also pointed out the
mathematical arbitrariness embedded in several choices:
what should be done if the result of a calculation exceeds the
largest absolute value expressible in the chosen system, or if
it falls below the lowest? What should be done if a user
attempts a meaningless arithmetic operation such as dividing
zero by zero? In addition to producing different results in
some calculations, the lack of standardization hindered
compatibility among different computers. Thus, it was
necessary to define a standard computational arithmetic.

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 74 / 153

However, changes in the numerical representation implied
costly hardware changes and other nuisances such as lack of
compatibility with preexisting programs. Fundamental
questions persisted: these different forms of representation
configured a new arithmetic or were they just different ways
of representing the sole real arithmetic?

'Negotiating arithmetic', as Mackenzie aptly termed it,
proved to be a long process. A committee began to work in
1977 but the norm IEEE 754, Numbers Fractional Binary
Arithmetic, was not adopted until 1985. The crucial point,
highlighted by [18], is that 'there was a stable, consensual
human arithmetic against which computer arithmetic could
be judged. Human arithmetic was, however, insufficient to
determine the best form of computer arithmetic. (…) Human
arithmetic provided a resource, drawn on differently by
different participants, rather than a set of rules that could
simply be applied in computer arithmetic.'

IV. SOCIAL PROCESSES FOR SOFTWARE CORRECTNESS

Despite the strength of mathematization of software,
even in the seventies the confidence in formal methods was
not a consensus: ‘[L]et us suppose that the programmer gets
the message ‘VERIFIED.’ (. . .) What does the programmer
know? He knows that his program is formally, logically,
provably, certifiably correct. He does not know, however, to
what extent it is reliable, dependable, trustworthy, safe; he
does not know within what limits it will work; he does not
know what happens when it exceeds those limits. And yet he
has that mystical stamp of approval: “VERIFIED.” ’ [19].
Hence, subjectivity was clearly pointed out, but was
insufficient to shake the confidence that rested solely on
formal methods, and even applies today.

The dissenting voices did more than point out the
existence of a social component in the acceptance of
theorems and proofs. They argued that it is precisely the
social component that acts as a decisive factor of trust and
may lead to minimize the error conditions: 'What elements
could contribute to making programming more like
engineering and mathematics? One mechanism that can be
exploited is the creation of general structures whose specific
instances become more reliable as the reliability of the
general structure increases. This notion has appeared in
several incarnations, of which Knuth's insistence on creating
and understanding generally useful algorithms is one of the
most important and encouraging. Baker's team-programming
methodology is an explicit attempt to expose software to
social processes. If reusability becomes a criterion for
effective design, a wider and wider community will examine
the most common programming tools.'[19].

Although these ideas have not strongly echoed then, we
now see that 'expose software to social processes' seems to
be the trend in the development of secure software.
Researchers cited generally useful algorithms that took the
form of the present design patterns which are general
descriptions of how to solve a commonly occurring problem
in software design. A pattern is an unfinished algorithm that
must to be adapted to many real situations. They also cited
team programming methodologies that nowadays have been
improved by the collaborative capabilities introduced
through the Internet, in a way that a piece of code can be

constructed or examined by several hands, tending to
stability. Reusability is a key issue in the conception of
modern program environments, enabling stable codes to be
used as components in the construction of modules. Finally,
there is currently a proliferation of software development
methodologies which rely on social collaboration for secure
software development. Some examples are TDD, PBL,
social coding, pair programming. Test Driven Development
(TDD) is a programming methodology where any
functionality of a program starts from a failing test case.
Each piece of code is written to solve the test case and
overpass its failure. Problem Based Learning (PBL) is a
learning methodology that considers a realistic problem, with
all its complexity, as a way of invoking interdisciplinarity
and autonomy aiming at knowledge construction through the
design and implementation of a solution for the proposed
problem. Both TDD and PBL takes place in teams. Social
Coding are face events aiming the development or
enhancement of code in groups. Pair Programming is a
programming mechanism guided by a "pilot" trading ideas
with a "co-pilot" attended by an audience. Each of these
methodologies, among others, start from the assumption that
the collective creation, negotiation, discussion and review by
multiple agents, among other mechanisms of participation,
tend to maximize the chances of success in building a
product, especially software.

V. CONCLUSION

In the Strong Program in the Sociology of Knowledge of
the University of Edimburgh, case studies play an important
role as they bring in the complexity of the ‘life-world’
situations. The Sociology of Mathematics, a sub-area of the
Strong Program, is a field were the resistance against a
intertwined approach to mathematics is a key issue of study,
and case studies make visible this resistance. David Bloor,
one of the proponents of the Strong Program, referring to
questions involving the myth of a purified mathematics,
claimed that ‘[t]he best answer to these questions is to
provide examples of such sociological analyses’ [12].

In the line of the Sociology of Mathematics, this article
pointed out that strategies of software certification currently
in place and the tone of recent initiatives such as 'The Great
Challenge' indicate that confidence in purified mathematics
still underlies the thinking and the doing of mathematicians
and computer scientists. In the sequence, this article brings
in a case study concerning the definition of an arithmetic for
computers that makes a compelling argument about the
impossibility of achieving a purified arithmetic, that is, an
arithmetic that is not influenced by what is considered
'extra-mathematical' factors. In a attempt to have purified
mathematics as an arbiter, new elements and testimonies
have slowly emerged, destabilizing the bases of the search
for objectivity and making room for mixed heterogeneous
(extra mathematical) elements that were decisive in
establishing consensus. We thus conclude this paper by
citing two recent cases that argue in favor of hybrid
approaches, rejecting the possibility of a mathematics that,
being supposedly free of subjectivities, would provide
absolute certainty.

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 75 / 153

The first case is a recent discussion referring to a famous
phrase of the mathematician Georg Cantor: 'Je vois mais je
ne le crois pas', by which he would have expressed his
astonishment at the amazing results that he had just
discovered. According to the analyses of the mathematician
Gouvêa [20], however, this phrase was actually a response
to Dedekind who argued contrary to Cantor’s proposals. It
was an emphatic trope against his opponent’s arguments
about something that was, for Cantor, completely clear.
Gouvêa's conclusions about this case have much to do with
the discussion of objectivity and the influences of non-
mathematical factors in the configuration of what is said to
be objective. According to Gouvêa (in page 198) ‘[t]he story
was then co-opted to demonstrate that mathematicians often
discover things that they did not expect or prove things that
they did not actually want to prove.’

Sociology of Mathematics argues that mathematical
knowledge is a result of several steps of agreement within a
collective thought, in strong alignment with Gouvêa’s
assertion about subjectivity in mathematical proofs: ‘A
proof is not a proof until some reader, preferably a
competent one, says it is. Until then we may see, but we
should not believe.’

The second case is about a recent statement of Tony
Hoare, a well known knowledgeable spokesman, for the use
of formal methods to ensure program correctness. As late as
2010 Hoare felt adequate to announce a reconsideration of
his own previous words. In page 5 of [21]: 'I regarded
program testing as the main rival technology'. He reported a
join work where he could see senior researches using formal
methods not for proof but to detect program errors as much
close as possible to their occurrence in code. He then
concludes: 'Testing and proving are not rivals: they are just
two ends of a scale of techniques available to the software
engineer to collect evidence for the validity and
serviceability of delivered code.' Hoare’s testimony in a
year as recent as 2010 shows for how long inductive
reasoning, tests, empirical approaches have been (and very
likely still are) rejected as legitimate mechanisms for
software verification.

The Sociology of Mathematics bring legitimacy to
explanations of mathematical facts (such as proved
theorems) which distance themselves from explanations of a
more absolutist flavor prevailing among the majority of
mathematicians. For the Social Studies of Science and
Technology, where the universality of knowledge is
understood as a mechanism to ensure authority and science
is viewed as a local phenomenon, objectivity is addressed in
its interweaving with the social; this makes it possible that
other elements besides those considered as ‘technical’ come
into play in the composition of the facts regarded as
‘mathematical’. A closer examination of mathematical
practice shows this inevitable interweaving of knowledge,
which, however, remained invisible to the great majority
possibly because of the lack of interest in shaking the
stability of a purified body of knowledge which places
mathematics in a level of unquestionable, neutral and
universal truth.

REFERENCES

[1] E. W. Dijkstra, “The humble programmer.” Commun. ACM, vol 15,
issue 10, pp. 859-866, October 1972.

[2] P. Naur and B. Randell, Software Engineering: Report of a
conference sponsored by the NATO Science Committee, Garmisch,
Germany, pp. 7-11 October 1968.

[3] T. M. Porter, Trust in numbers: the pursuit of objectivity in science
and public life, Princeton University Press, 1995.

[4] D. A. Mackenzie, Mechanizing proof: computing, risk, and trust.
Cambridge, Mass. MIT Press. 2001.

[5] J. S. Mill, A System of Logic, Raciocinative and Inductive, Londres,
H& B Pub, 1848.

[6] G. Frege, The Foundations of Arithmetic. A logico-mathematical
enquiry into the concept of number, Harper & Brothers. New York.
2Ed, 1953.

[7] R. Carnap, O. Neurath, and H. Hahn, “La concepción científica del
mundo: el Círculo de Viena. 1929” Trad. Lorenzano, P. Presentación
de La concepción científica del mundo: el Círculo de Viena. Revista
Redes, vol.9, n. 18, pp. 103-149,2002..

[8] D. Hilbert, “On the infinite”, In: Bencerraf, P., Putnam, H. Eds.
Philosophy of Mathematics Cambridge University Press, 1984.

[9] M. Davis, The undecidable; basic papers on undecidable propositions,
unsolvable problems and computable functions, Raven Press Hewlett,
N.Y., 1965.

[10] D. J. Struik, “On the Sociology of Mathematics”, Science and
Society, New York, vol. VI, no. 1, Winter, 1942.

[11] C.A.R. Hoare and J. Misra, “Verified Software: Theories, Tools,
Experiments Vision of a Grand Challenge Project”. In B. Meyer, J.
Woodcook, eds. First IFIP TC 2/wg 2.3, VSTTE 2005, Zurich, vol
4171 of LNCS pp. 1-18, Springer, 2005.

[12] D. Bloor, Knowledge and social imagery. Chicago: University of
Chicago Press, 1976/1991.

[13] Department of Defense Standard. Department of Defense Trusted
Computer System Evaluation Criteria. DoD 5200.28-STD, Dec, 1985
av. at http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
[retrieved:September,2012]

[14] Common Criteria for Information Technology Security Evaluation
Part 3: Security assurance components July 2009 Version 3.1
Revision 3. CCMB- 2009-07-003:229.

[15] C. L. Heitmeyer, “On the role of Formal Methods”, Electronic Notes
in Theoretical Computer Science, vol 238, pp. 3–9, 2009.

[16] C.A.R. Hoare, “How did software get so reliable without proof?”
FME'96: Industrial Benefit and Adv. in Formal Methods, vol. 1051 ,
pp. 1-17, 1996.

[17] E. Husserl, The crisis of European sciences and transcendental
phenomenology; an introduction to phenomenological philosophy.
Evanston: Northwestern University Press, 1954/1970.

[18] D. A. Mackenzie, Negotiating Arithmetic, Constructing Proof. In: D.
Mackenzie Ed. Knowing Machines - Essays on Technical Change.
Cambridge, MA: The MIT Press, 1996.

[19] R. A. De Millo, R. J. Lipton, and A. J. Perlis, Social Processes and
Proofs of Theorems and Programs, Commun. ACM vol 22, pp. 271-
280, 1979.

[20] F. Q. Gouvêa, “Was Cantor surprised?”, The Mathematical
Association of America, Monthly vol 118, pp. 198-209, 2011.

[21] C. A. R. Hoare. “Testing and proving, hand-in-hand” TAIC PART'10,
L. Bottaci and G. Fraser Eds. Springer-Verlag, Berlin, Heidelberg, pp.
5-6, 2010.

67Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 76 / 153

A Software Quality Framework for Mobile Application Testing

Yajie Wang, Ming Jiang, Yueming Wei

China Telecom Corporation Limited Beijing Research Institute

Beijing, China

Email: {wangyj, jiangming, weiym}@ctbri.com.cn

Abstract-With the explosion of mobile applications, all

application providers expect to work out a popular mobile

service. There are two features of a popular mobile service:

adapting for mobile device’s diversity and achieving high user

satisfaction. For Quality Assurance (QA) testers, the former

feature brings heavy testing workload and the latter claims

testers try their best for good quality and good usability of the

service. Therefore, improving work efficiency and test

completeness are critical for mobile application QA testers. In

this paper, a test framework for mobile applications is

proposed, which aims to help QA testers work with high

efficiency and contribute to good products with nice user

experience. Moreover, a case applying this framework is

presented for validating it.

Keywords-Quality assurance; QA Tester; Mobile application;

Usability

I. INTRODUCTION

At present, with the development of wireless networks
and the popularization of mobile devices, mobile
applications become more and more popular [1][2]. The
traditional desktop software developers are putting
considerable effort into the development of the mobile
applications gradually. Also, telecom operators are caring
more about the increase of business profits obtained from
mobile applications and try their best to seek some “killer”
mobile applications. With the rapid growth of mobile
applications market, demands on software quality rises
rapidly. The applications are expected to be stable, be quick
response and have good UI experiences [3][4]. To satisfy
these requirements, project team members, including
software designer, developer, tester, project leader and QA
member [5] should work together. Everyone should take
special care of the characteristics of mobile applications and
assure the typical quality of them in their working phase. In
this paper, we focus on mobile software quality [5][6] only
from the view of test and validation.

Most test concepts and principles of desktop software can
be adopted in mobile application testing [2]. However, there
are some obvious differences between software for mobile
devices and desktop software [3]. The characteristics of
mobile device and the complex application scenario of using
applications cause the difference. As another point of view,
adapting for mobile device’s diversity and achieving high
user satisfaction [4] are critical factors of a successful
application. In desktop software, the PC, browser,
connection, and context of use are so standard that even

researchers do not realize or remember to mention them
affecting software quality and user experience [7]. The
traditional test schema is not appropriate. There should be
new approaches and concerns fitting to these differences.
Therefore, as QA testers, we make extra emphasis on these
aspects: the mobile devices features and diversity, usage
scenario in real life and user experience.

This paper proposes a systematic framework for
improving software quality of mobile applications by
analyzing the characteristics from all its aspects and from
multiple perspectives. This paper is comprised of five
sections. In Section II, we give an overview of the
framework and make a brief description of its components.
Section III is dedicated to describing the implementation of
the components. In Section IV, a case study is presented to
valid the framework. Section V concludes this paper with a
summary and outlines the field of research for future work.

II. TEST FRAMEWORK ARCHITECTURE

An optimal quality assurance system for mobile software
means to work in an accurate and efficient way, and to
submit products with high user satisfaction. The framework
proposed in the paper is composed of four components: a
mobile devices information system, a defect system for
mobile applications, an aggregation of key test scenarios and
a mechanism for usability test.

A mobile devices

information system

A defect system for

mobile applications

An aggregation of key

test scenarios

A mechanism for

usability test

For high quality

and good user

experience

For high work

efficiency

A test

framework

for quality

of mobile

apps

Figure 1 Architecture of the framework
The first two parts contribute to providing an accurate

and efficient working condition. The mobile devices
information system includes a device database and a real
device management system. The database and the
management system can be accessed by the whole team
members. To QA testers, the database is an effective support
to choose test objects and to make contrasting test plan for
different devices; at the same time, the real device
management system assists testers to find available devices

68Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 77 / 153

as early as possible. The defect system for mobile
applications is distinguished from an ordinary defect system.
It defines some special types of defects and some special
attributes of a defect, which are peculiar to mobile
applications. QA testers apply the defect system to
accurately describe defects they found and then make it easy
to be understood and dealt with among every team of the
project.

The last two parts are dedicated to giving users high
satisfaction. According to the characteristics of mobile
device, the complex usage scenario of mobile applications
and the problems easy to be neglected in mobile software
testing, an aggregation of key test scenarios is defined. It
collects five parts: test scenarios related to resource
limitation [3], test scenarios related to imitating real usage
activities, test of the server portion of the application, test of
those related to charge, privacy and legacy [3], and test for
good user experience. Only a mobile application verified
from these five aspects can be called a valid application, not
just being a software meeting service logic. A mechanism for
usability test [4] describes an effective way to have a
usability test. It is used by QA tests to gain usability
challenge and advice from outside the application’s working
team, most of which are greatly valuable contributions.

III. IMPLEMENTATION OF THE FRAMEWORK

In this section, the implementation of four components
comprising this framework is described in detail.

A. Structuring a Mobile Devices Information System

Diversity of mobile devices makes great difference to
mobile application development and test. Unlike traditional
desktop software, a good mobile application should be
adapted for various devices. Large amount of work was
spent on the adaption. Creating a device database to keep
track of device information is a great way to improve work
efficiency.

Here “database” generally refers to anything from a
Microsoft Excel spreadsheet to a little SQL database [3], or
any other software or system, if practicable. Scale of the
database can vary according to the company’s scale and cost.
Devices information can be stored in the database during the
requirements phase of a project or later as a change in project
scope [3]. A record for a mobile device should at least
include the following items:

 Important device technical specification details
(screen resolution, OS version, hardware details,
supported media formats, input methods, localization,
any optional features, etc.)

 Any firmware upgrade or modification information,
especially those related to hardware modifications.

 Any known bugs and important limitations with the
device.

In addition, the information of how to get actual testing
device (such as available from real device library, purchased
or loaned through manufacturer or carrier loaner programs)
is suggested to be recorded in the database.

For real device management, two aspects are highlighted.
One is implementing a library check-in and check-out

system. Team members can reserve devices for testing and
development purposes. It facilitates sharing devices across
teams, and then improves work efficiency greatly. The other
is defining what device is a “clean” device [3] and how to
return to the same starting state. At present, there is no good
way to “image” a device; however, it is a basic testing policy
for QA testers. There are some common ways, such as a
specific uninstall process, some manual clean-up, or
sometimes a factory reset. If the detailed operation steps are
recorded, testers will save much time for learn and trial.

So, how do QA testers use the device information system?
First, they analyze the similarity of devices and divide them
into different groups, for example, grouping by the platform
OS. Next, they choose the target devices according to the
actual project and make test plan. Besides primary function,
test priority and special test scenarios for every device
should be included in the test plan. Then, QA testers use the
real device management system to get the real devices
rapidly. Finally, execute the test.

B. Building a Defect System for Mobile Applications

Almost all defects for desktop software may occur on
mobile applications. Some typical defaults are program
crashing and unexpected terminations, inadequate input
validation, features not functioning expected, responsiveness
problems and poor usability issues. We redefine the term
defect for mobile applications from a larger range which not
only includes these typical defects. Some types of defects
typical on mobile applications are highlighted:

 Using too much disk space/memory on the device,
not releasing memory or resources appropriately.

 Usability issues related to input methods, font sizes,
and cluttered screen real estate. Cosmetic problems
that cause the screen to display incorrectly [3].

 Application “not playing nicely” on the device [3],
such as not compatible with other applications,
overusing network resources, incurring extensive
user charges, etc.

 Not handling private data securely. This includes not
ensuring data safety of mobile device and server, or
not guaranteeing safety of data transmission on
network.

 Application not conforming to the third-party
agreements, such as Android SDK license agreement
(if involved), Google Maps API term (if involved),
or any other terms if applied to the application.

Most defect tracking systems can be customized to work
for the test of mobile applications. Whatever a system is
adapted; there are some important defect attributes to be
encompassed in the system, for the purpose of clarifying a
mobile software defect. These attributes are:

 The application version information, language, and
so on.

 Device configuration and state information including
device type, platform version, network state, and
carrier information.

 Steps to reproduce the problem. The steps should be
described exactly using predefined standardized

69Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 78 / 153

terms, such as clear versus back, click versus tap,
and so on.

 Device screenshots, which can be taken through
screenshots software developed for mobile devices.

C. Defining an Aggregation of Key Test Scenarios

1) Resource limitations of mobile applications
Although mobile devices experience a massive gain in

performance in recent years [2], resource limitation is still a
topic we have to talk about. These limitations include
devices limitations and network limitations. Devices
limitations vary in terms of memory, processing power,
screen type, battery level, storage capacity, platform version,
input method, etc., network limitations vary in terms of
accessibility and bandwidth.

To stand-alone applications, most core functions run in
local memory, so testing of these applications often focuses
on the limitations of the device itself. To network-driven
applications, it provides a lightweight client on the device
but relies on the network to provide a good portion of its
content and functionality, so besides devices limitation, we
also should focus network limitations when testing of these
applications.

2) Imitating real usage activities
QA testers should try doing anything impossible on the

mobile device, or imitating some “strange” activities when
testing the application. We divide these activities into two
aspects: whether compatible with other programs and how to
deal with accidents.

In the real world, your application is only one of many
installed on the device. You should check whether the
software works well together with other device functions or
applications. You should consider many things. Will your
application rely on other service or content provider? Will
your application act as a service or content provider? After
all, the recommended way is to install some other most
popular applications on the device and use them really,
which can reveal integration issues that don’t mesh well with
the rest of the device.

Testers need to imitate real use scenarios to decrease the
probability of problems found in real use. Testers must verify
the common events of operating system interrupt, such as
calls received, message arriving, device shutdown, etc. In
addition, testers should be creative to produce certain types
of events. For example, for a game, test low battery warning
popping up when playing the game. Another example, for an
application related to LBS (Location Based Service), step in
an elevator without signal when using the application. In
sum, the more you consider, the less potential problems will
remain.

3) Server and service testing
Testers often focus on the client portion of the mobile

application. In fact, most applications depend on a server or
remote service to operate. If so, make sure thorough server
and service testing is part of the overall test plan-not just the
client portion implemented on the device.

Some fundamental tests, such as performance test and
security test, should be covered for the application server. On
this basis, QA testers should make special concern on the

problems related to server upgrade, maintenance or service
interruptions, because users always expect applications to be
available any time. Testers should test if the users are
notified when the service is unavailable and if the
applications work well when the server is upgraded.

4) Related to charge, privacy and legacy
QA testers should test if an application complies with

policies, protocols and agreements which the application
must meet. These common agreements (if applicable) are
Android License Agreement Requirements, Mobile
Carrier/Operator Requirements (if applicable) and
Application Certification Requirements, etc. There are some
general and import rules in these agreements for QA concern:
do not interfere with device phone and messaging services;
do not break or exploit the device hardware and firmware; do
not abuse or cause problems on operator networks.

Protection of private user data is always included in the
above agreements. If your application accesses or uses
private data, it is a good way to include an End User License
Agreement [3] and a Privacy Policy with your application.
Testers will check if this information is stored in plain text,
and if it is transmitted without any safeguard.

If an application would cause the user to incur any fees,
testers should test if the charge information is striking
enough, if the delivery occurs when the user pays, otherwise
the entire transaction is rolled back.

5) For good user experience
The first concern is installation and upgrade. QA testers

should test installation on devices with low resources. If the
application is available from the marketplace, you should test
installation online or with the downloaded media. When a
new version of the platform is released, you must re-test your
application before your users are upgraded.

The second is user interface experience. QA testers may
be check if screens is filled sparingly, if size graphics
appropriately, and if the keys, clicks and glides are
convenient.

The third is stability and responsiveness [8]. QA testers
should test if the application start up fast and resume fast, if
users are informed during long operations by using progress
bars, and if resource consumption is reasonable.

 Finally, do not forget to test features that are not readily
apparent to the user, such as the backup/restore services, the
sync features, and the help information.

D. Establishing a Mechanism for Usability Test

It is well known that good user experience is crucial for
successful mobile applications. We just talked about test for
good user experience, which is mainly a reference for your
company’s own QA testers to do some related tests. In this
section, we introduce a mechanism for usability test which is
different with the above mentioned. It is a combination of
laboratory tests and field tests [9]. Laboratory tests are
traditional way for usability tests, which are usually
conducted in usability test laboratories, consisting of e.g. a
living room or office-like area connected to a monitoring
area with a one-way mirror [9]. While it is also concerned
that laboratory evaluations do not simulate the context where
mobile devices are used and lack the desired ecological

70Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 79 / 153

validity [9]. Interruptions, movement, noise, multitasking etc.
that could affect the users’ performance are not present in
laboratory tests [9]. Therefore, field tests are worthwhile for
mobile applications.

Both laboratory tests and field tests are through watching
people actually use the application. They have several same
key points in their procedures.

One is selecting of participated users. Generally,
representative users are more likely to experience the same
problems as the people who actually use the application [4].
So people who are representative of the target users
conveniently, please do it. However, it isn’t quite as
important as it may seem, because many of the most serious
usability problems are related to things like navigation, page
layout, visual hierarchy, and so on problems that almost
anybody will encounter [4]. So it’s not always necessary and
much more time-consuming and costly to find actual users.
Whatever, it is very vital that the recruiter should be with
reasonable common sense who’s comfortable taking. We not
only want to observe the user’s action, but also want to know
why to take the action.

Another is compiling test scenarios list. A good
description should clarify the things you want them to try to
do. Remember not to use research (unless search is being
tested, of course) in the steps [4]. A pilot test of test
scenarios should be done to find anything not clear in the
scenario.

During the test, the observer should try to get the
participants to externalize their thought process [4], and give
neutral prompt to participants when encountering difficulties.
Also, observers should be guaranteed to be able to observe
the participant’s action and words thoroughly.

Last, the debrief should take place as soon as possible
after the test sessions, while what happened is still fresh in
everyone’s mind. Every observer can present their problems.
These problems are summarized and arrayed by severity.
Finally the top serious problems are chosen to be concerned
primarily.

The greatest difference between laboratory tests and field
tests is the context within which people uses the application.
As a result, the time needed by field tests is more consuming.
In general, when performing a user interface evaluation of
mobile applications, laboratory tests can give sufficient
information to improve the user interface and interaction of
the system [9], not less than those found by field tests. While
the field test method is suitable for situations where not only
interaction with a system is tested, but also user behaviors
and environment are examined [9]. In addition,
confidentiality of the application or device in the industry
often drives the decision towards the laboratory testing;
especially in the beginning of the development cycle [9].

IV. CASE STUDY: TEST OF MOBILE APPLICATION OF

QUESTIONNAIR SURVERY USING THIS FRAMEWORK

This section presents how the framework can be used in
the mobile application of questionnaire survey.

We already have structured a devices database using
MySQL and had some real devices in our test lab. This
application was designed only for mobile phones of Android

platform. Using the database information, QA testers choose
two devices: MOTO XT800 with Android 2.0 and
SAMSUNG I929 with Android 2.3. When designing the test
plan, core function of the application are mainly filling the
survey, submitting the survey, redeeming points and reviews;
then additional test cases are designed because these two
devices are customized by china telecomm; finally, several
cases are designed for every device separately aiming at the
differences introduced by different mobile OS version.
According to a rough estimate, using the device system, we
shorten the time for designing the whole test plan about 35%.

A defect system using software BugFree [10] has been
built. The defects defined in Section III have been recorded
in the defect tracking system. All team members can access
the defect system. We also have received positive feedback
about the convenience and the clarity by using the defect
system.

We tested scenarios according to key points described in
Section III. The application consumed a small quantity of
local system resources, so no fatal problems were found
about resources limitations. As for server testing, we found
that if the service was closed unexpected and the client tried
to connect the server, there was no obvious notification and
the client kept waiting state. As to imitating real usage, an
important question was found, that was while a survey was
submitted, an incoming call failed. This phenomenon was
obviously unreasonable. About charge and legal related field,
the application is free; so, the test was simple and no
problems were found. In user experience case, it was found
that, in some survey, there were so many items that users had
to turn pages for too many times if each page only for each
item.

We invited six students to do usability test. As a final
result, two reasonable advices were presented; first, the
participants hoped to append progress bar or progress
indicator in every page if the survey had many pages, so that
the progress could be known at any time, and second,
besides UC browser and Opera mobile web browser we used
in the test, it was expected that QQ mobile browser [11],
which is very popular in China, was adopted.

V. CONCLUSION AND FUTURE WORK

In this paper, a framework for QA testers to test mobile
applications was proposed. This framework provides a
helpful method to solve the question of heavy workload
bought by mobile device’s diversity and defines a specific
defect system for mobile services to describe problems more
accurately. Through our preliminary test practices, they are
validated to be effective to shorten the time for designing test
plan and preparation, and improve communication efficiency.
Also, the framework suggests a set of test scenarios to be
attended to particularly and highlights a mechanism for
usability test. The benefit for product quality from them are
proved in our test.

As future work, the framework should be applied in more
testing of mobile applications. We should collect much more
statistics to prove the benefit of the framework for mobile
applications test. Also, we should refine and extend every
part of the framework.

71Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 80 / 153

REFERENCES

[1] V. L. L. Dantas, F. G. Marinho, A. L. da Costa, and R. M. C.
Andrade, “Testing Requirements for Mobile Applications”,
Computer and Information Sciences, 2009. ISCIS 2009. 24th
International Symposium on, Sept. 2009, pp. 555-560,
doi:10.1109/ISCIS.2009.5291880.

[2] D. Franke and C. Weise, “Providing a Software Quality
Framework for Testing of Mobile Applications”, 2011 Fourth
IEEE International Conference on Software Testing,
Verification and Validation, Mar. 2011, pp. 431-434, doi:
10.1109/ICST.2011.18.

[3] S. Conder and L. Darcey, “Android Wireless Application
Development (2nd edition)”, Addison-Wesley, 2011.

[4] S. Krug ,“Rocket surgery made easy”, New Riders, 2010.

[5] N. S. Godbole, “software quality assurance principles and
practice”, Alpha Science Intl Ltd, 2004.

[6] C. Woody, N. Mead and D. Shoemaker, “Foundations for
Software Assurance”, 2012 45th Hawaii International
Conference on System Sciences, Jan. 2012, pp. 5368-5374,
doi: 10.1109/HICSS.2012.287.

[7] V. Roto, “Web Browsing on Mobile Phones-Characteristics
of User Experience”, Doctoral Dissertation, TKK
Dissertations 49, Espoo 2006.

[8] R. Hoekman Jr., “Designing the Obvious: A Common Sense
Approach to Web & Mobile Application Design (2nd
Edition)”, New Riders Press, 2010.

[9] A. Kaikkonen, T. Kallio, A. Kekäläinen, A. Kankainen, and
M. Cankar, “Usability Testing of Mobile Applications: A
Comparison between Laboratory and Field Testing”, Journal
of Usability Studies, Issue 1, Vol. 1, Nov. 2005, pp. 4-16.

[10] http://www.bugfree.org.cn/ [retrieved: September, 2012].

[11] http://mb.qq.com/ [retrieved: September, 2012].

72Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 81 / 153

Variability Management in Testing Architectures for Embedded Control Systems

Goiuria Sagardui, Leire Etxeberria and Joseba A. Agirre
Computer and Electronics department
Mondragon Goi Eskola Politeknikoa

Loramendi 4, Mondragón (Gipuzkoa), Spain
Email: {gsagardui, letxeberria, jaagirre}@mondragon.edu

Abstract— In recent years, embedded systems have
substantially increased their presence both in industry and in
our everyday lives. Hence, more and more effort is being
dedicated to the development of such systems. Since embedded
systems involve computation that is subject to physical
constraints, the development and validation of software for
such systems becomes a challenge. Moreover, the validation of
the embedded system within the environment increases the
complexity and cost of testing, so many efforts are being
devoted to perform testing activities from early phases of the
development. Testing by simulation of the system and its
environment is one of the most promising approaches to
reduce testing costs. In this paper, we present a proposal based
on model-based testing and variability management and
integrated in Simulink for ensuring the correctness of a
embedded control software. Variability management of
configurations helps managing different simulation
environments and allows less costly and time-consuming
testing.

Keywords - testing architecture; variability management;
simulation.

I. INTRODUCTION

Embedded systems are engineering artifacts involving
computation that is subject to physical constraints. The
physical constraints arise through two kinds of interactions
of computational processes with the physical world: (i)
reaction to a physical environment, and (ii) execution on a
physical platform [1]. Concentrating on software, embedded
system software characterizes itself, among others, by
heterogeneity, distribution (on potential multiple and
heterogeneous hardware resources), ability to react
(supervision, user interfaces modes), criticality, real-time and
consumption constraints [2]. The need to consider all these
factors in concert makes the development of software for
embedded systems a complex endeavour.

However, not only development poses a significant
challenge. Due to its complexity, the validation of embedded
software also becomes a cumbersome task. Embedded
software needs to cater for the variability on both the
physical environment and the physical platform it is executed
on apart from testing the software itself.

Moreover, when we consider that embedded systems are
often part of safety-critical systems (e.g., aviation or railway
systems), the validation of the software becomes essential
[3], which also raises testing cost.

Model Driven Engineering (MDE) is a paradigm that
promises a reduction in testing efforts. Models become the
central asset of the development so testing can be started
from early phases. Model-, software-, processor-, and
hardware-in-the-loop (MiL, SiL, PiL, and HiL) tests; called
X-in-the-loop tests provide four testing configurations [4].
“The model, software, processor, and hardware terms refer to
the different target system configurations in the testing
environment, each of which adds value to the verification
process” [4].

The MiL tests the model along with the plant model that
simulates the physical environment signals. For SiL testing,
the model of the MiL is replaced with the corresponding
software code. This source code can be autogenerated from
the model. PiL tests the source code executed on the target
processor machine. For HiL testing, the software is
integrated with the real software infrastructure and deployed
in the hardware processor or microcontroller. The
environment around the system is still a simulated one, but
the plan model is replaced by a dedicated hardware setup
specially designed for the simulation [4].

Each of the configurations has a different focus from the
validation point of view and following them allows detecting
errors early when they are easier to correct and to validate
incrementally different aspects of the system (functionality,
performance, etc.). Functionality and system behavior can be
tested at MiL and SiL level. Tests on PiL level can reveal
faults that are caused by the target compiler or by the
processor architecture [5]. HiL level is to reveal faults in the
low-level services and in the I/O services [5]; and to confirm
the real-time functionality and performance [4].

Embedded software for control systems usually has to
run in different environment conditions, and has to control
different number or/and types of sensors and actuators. This
increases the complexity of testing even in early phases of
the development. Testing the control system in different real
scenarios is very costly and time-consuming.

Taking into account variability in different aspects of the
validation from early testing architectures allows reducing
the testing complexity by considering all the possible
variants both in software, tests and the environment from
simulation. This ensures an increased coverage of the testing
in early phases of the development and a correct selection of
the most risky scenarios for testing the final system.

This paper proposes a systematic approach to X-in-the-
Loop validation considering the variability in the testing

73Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 82 / 153

architecture. The proposed variability management can be
reused along the testing process (MiL, SiL and PiL).

Simulink [6] was chosen as the simulation framework to
simulate the real environment in which software should be
integrated.

The paper is structured in the following way: Section II
presents the background and the state of the art, Section III
discusses about variability in testing architecture, Section IV
presents the variable simulation model and, to finish,
conclusion and future work are stated in Section V.

II. BACKGROUND

This section provides a brief introduction to the
background.

A. Embedded Systems Engineering

The function of Systems Engineering is to guide the
development of complex systems, understanding system as a
set of interrelated components working together toward some
common objective [7]. Embedded systems are a particular
type of system, where the system is embedded in its
enclosing device (e.g., elevators). There is an essential
difference between embedded and other computing systems
that makes their engineering particularly challenging. Since
embedded systems involve computation that is subject to
physical constraints, the separation of computation
(software) from physicality (platform and environment) does
not work for embedded systems. Instead, the design of
embedded systems requires a holistic approach that
integrates hardware design, software design, and control
theory in a consistent manner [1].

B. Model-based System Engineering

“Model-based Systems Engineering (MBSE) is the
formalized application of modeling to support system
requirements, design, analysis, verification and validation
activities beginning in the conceptual design phase and
continuing throughout development and later life cycle
phases” [8]. “MBSE is part of a long-term trend toward
model-centric approaches adopted by other engineering
disciplines, including mechanical, electrical and software”
[8]. In the particular case of software, MBSE can be seen as
part of Model Driven Engineering (MDE), a software
development paradigm where models are the central element
in the development process [9]. Hence, following MDE,
systems software does not only serve as documentation, but
can also be used to generate code or be executed for
validation purposes.

C. Variability Management

Variability is the ability to change or customize a system
[10]. Variability can also be understood as modifiability (to
allow variation or evolution over time) and configurability
(variability in the product space) to get a set of related
products or different configurations [11]. Variability and its
management are key aspects not only in software product
lines, but in other systems such as embedded systems. Many
variability modeling techniques have been developed.
Several of the approaches are based on feature modeling, one

of the most used technique for variability modeling:
[12][13][14], etc. There are other approaches that are based
on use cases [15] or approaches that use both feature models
and use cases such as [16] and [17]. Other approaches model
variation points such as [18][19] and [20]. There are also
approaches that integrate variability in ADLs (Architecture
Description Languages) such as Koalish [21] and [22].
Several techniques use UML (Unified Modelling Language)
that is the de facto notation standard in industry for software
modelling. UML profiles or extensions to UML are proposed
to introduce variability [23][24][25], etc.

 [26] presents an approach for managing variability in
Simulink models using Pure:variants for Simulink. Another
approach that addresses variability in Simulink models is the
approach for model-based embedded software product lines
of [27][28][29]. [30] also addresses variability in Simulink.

All these approaches address variability in Simulink
models. However, the focus is on managing the variability in
model-based embedded systems and product lines.

Our approach is more oriented towards testing and how
to manage variability in a test architecture; a Simulink model
is used for implementing a test architecture. In addition to
the variability in the simulation environment represented in
the Simulink model, variability in the Software under test
and test specifications is also considered.

Regarding variability management during validation,
[31] defines a software product line for validation
environments, to support variability in those environments
and to be able to test different applications in different
domains and technologies.

III. VARIABILITY IN TESTING ARCHITECTURES

Testing architectures are the base for a systematic testing
process. By defining the testing architecture from initial
phases, we ensure a correct definition of the tests and a
reutilization of them along the lifecycle.

We have defined the testing architecture in Simulink [6].
Simulink is a commercial tool for modeling, simulating and
analyzing multidomain dynamic systems that is integrated
into the MatLab programming environment. Its primary
interface is a graphical block diagramming tool and a
customizable set of block libraries [6]. Simulink block
diagrams define time-based relationships between signals
and state variables. Signals represent quantities that change
over time and are defined for all points in time between the
block diagram's start and stop time. The relationships
between signals (input and output) and state variables are
defined by a set of equations represented by blocks [32].

A testing architecture can be structured in four key
elements; each element and the implementation of those
elements using a Simulink model is explained:

-Sources: the inputs are the test cases to execute on the
system under test. A test case is a set of conditions or
variables under which a tester will determine whether an
application or software system is working correctly or not. In
Simulink, test cases will define the set of signals that
determine the simulation of the environment in which the
system has to run (plant). Usually a mixture of both signals
and plants ensures a correct X-In-The-Loop simulation

74Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 83 / 153

-System-Under-Test (SUT): at early phases of the
development, the SUT is a model of the system. Then the
code of the system can be simulated (S-Function in
Simulink) and in final stages of development, the code can
be tested within the running platform. The software can be
developed following an Software Product Line (SPL)
methodology or as a single system. A Software Product Line
is a set of software-intensive systems, sharing a common,
managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed
from a common set of core assets in a prescribed way [33].
In this type of development, variability of the software is
instantiated at design time so the final software will have the
functions for the concrete configuration in which the
software will run. When the development follows a single
system development, it usual to have configurable software.
In this case, the software has all the functions in all
configurations, but by defining the values of some
parameters, the software will execute as expected in each
configuration.

-Metrics: the metrics automatically analyze the test
results for each test case. In Simulink, one can use
verification blocks associated with the output signals to
decide automatically on the correctness of the results of the
test.

-Test Control: In Simulink, it is a block that controls the
order of the test cases.

A. Case study: Door management control

The proposed approach has been applied in a door
management control system of an elevator. This system
controls the opening and closing of the doors (that include
sensors, motors, etc.).

The behavior of the control is specified using a state
machine where the states (Idle, Open, Opening, Closing,
Closed) and actions to be applied in each state are defined.
This state machine has been specified using Iar Visual State
tool [34] and the code has been automatically generated. This
code has been introduced in the Simulink model that
implements the testing architecture as a block (an S-function,
a computer language description of a Simulink block).

In Figure 1, the testing for the door management control
is described:

 Test sequences indicate the values of signals
over time. These sequences are automatically
generated from abstract behaviour models of the
software that are annotated with time aspects.

 Software-Under-Test is automatically generated
from models in Iar Visual State and transformed
to SFunction for integrating in Simulink.

 Model is simulated and results (output signals
over the time) are obtained. These results are
used to compare with expected ones.

Test sequences automatically
generated from models

1

Simulation results

3

Software‐Under‐Test: generated
with Iar VisualState and
integrated as SFucntion

2

SFunction

Figure 1. Simulation Environment

The simulation environment (the plant model that

simulated the physical environment signals) is valid only for
one concrete configuration. One of the factors that add more
complexity to testing of embedded software is the diversity
of environments in which software can execute. Embedded
software usually execute under different configurations. It
can be connected to different number of devices, etc. There
is a need to manage the variability in validation environment
due to: number and type of sensors, number and type of
actuators, communication mechanisms, etc.

In order to identify and model the environments in which
software should be validated, a feature model can be used.
A feature model is an and/or tree of different features. A
feature as “a prominent or distinctive and user-visible
aspect, quality, or characteristic of a software system or
systems” [12]. Features can be mandatory, optional or
alternative. Features are an effective way of identifying the
variability (and the commonality) among different products
in a domain. Moreover, features are a effective means of
communication among stakeholders and are a intuitive way
of expressing the variability [35] as features are distinctive

75Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 84 / 153

characteristics or properties of a product that differ from
others or from earlier versions.

The feature model contains the different elements that
should be considered when validating the software
depending on sensors, actuators, etc. of each configuration.
Some of the most relevant are:

 Different types of doors: Software must be
validated with different types of Doors:
articulated, non-articulated, etc.

 Different number of doors: Software must be
validated with one, two, three Doors. Doors can
operate independently or not.

 Different floor configuration: floors can have
different door configuration: depending on the
floor, doors require different behaviour.

 Different sensors: Optional obstacle and
presence sensor and optional limit switch.

Figure 2. Feature model for validation

Feature model containing the variability can be modelled

as a form in MatLab or using some specific tool for
variability management, such as pure::variants for Simulink.
To perform validation taking into account this variability, it
is necessary to manage the variability in the following
aspects of the simulation environment:

 Configuration of the Software-Under-Test. A
.xml file is automatically generated from
variability management form and indicates the
initialisation of the SUT for a concrete
configuration.

 Modelling of the simulation environment: In
Simulink, variability is on relations and blocks
that are required for simulation. Simulation
elements are contained in a library and are
connected automatically guided by the
variability form in order to create the simulation
model for a configuration.

 Tests’ specification: As not all the
configurations require the same requirements
for testing, variability in tests should be taken
into account too. Depending on the
configuration some functionalities are not active
or even, same functionalities could differ on
required response time.

The next section details this variable simulation model.

IV. VARIABLE SIMULATION MODEL

Simulation model includes the simulation of both
mechanicals elements and software that manages these
elements. Including variability in the simulation models
allows representing different configurations in which
software will run. This way it is possible to validate the
system taking into account different configurations in a less
costly and time-consuming way. The software is integrated
as a block in the model and is connected to the blocks
representing the mechanicals elements. Running the model
provides the simulation of the real system.

In order to get an effective simulation of different
configurations, variability management has been included in
Simulink. For this purpose, a variability form has been
developed in MatLab asking for the information that
represents the configurations: number and types of doors,
etc.

This information is used to develop dynamically the
simulation model of the configuration to be validated. In
order to develop the simulation model dynamically we have
created a library with the elements that can appear in the
simulation model: doors, code block, etc. Code is executed
for creating the simulation model with the features selected
in the variability form. See Figure 3 for simulation model
creation for a configuration containing two doors of
NormalType.

Figure 3. MatLab code for dynamic simulation model creation

This way, by selecting values in the variability form, we
obtain automatically simulation models that are specific for
the configuration we want to prove (See Figure 4). The same
test architecture is used and test cases may be also adapted
and reused as test cases will be also developed taking into
account variability. Thus, we obtain the advantage of getting
simulation models for different configurations with a
reduced cost. Therefore, tests could be easily performed in
different configurations obtaining greater test coverage of the
embedded system. In an initial development stage, the
simulation models may be automatically generated in an
exhaustive way to test all configurations. In later stages and
during maintenance, the generation of simulation models
may be used to test new configurations.

76Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 85 / 153

Figure 4. Instantiation of the testing architecture for an configuration

V. CONCLUSION AND FUTURE WORK

This paper has described a simulation environment for
embedded software based on model based testing and
variability management and using Simulink as simulation
tool. As embedded software usually runs under different
configurations, it is costly to test the software under real
conditions. Variability management of configurations helps
automating the simulation environment. This way, validation
is simplified and intensive testing can be performed.

In the case study, a variability management form has
been developed in MatLab. This option has been adequate
for our purpose, but as complexity increases it is
recommended to use a tool specific for variability
management. Pure::Variants is a tool integrated with
Simulink that could be adequate for this purpose [26]. Or, the
variability management approach for Simulink proposed by
[27][28][29] can be also used for plant instantiation part.
Those approaches can be used in a complementary way for
variability management and instantiation of the Simulink
models (plant). Those approaches are not oriented to manage
variability in validation architectures, but in general in
Simulink models, so they do not cover some specific needs
such as the configuration of Sfunctions in Simulink,
generation of test sequences, etc., that our approach covers.

It is always difficult to establish the coverage of the tests,
more when multiple configurations have to be validated.
Although tests cover 100% of transitions we can not ensure
that all configurations have been tested. In this case,
variability instantiation has been done manually. In order to
get a greater coverage, it is highly recommended to automate
the variability selection, generating the simulation

environment for all the configurations sequentially. Next
steps include analysing the feasibility of this option and the
coverage that is got this way.

The paper has focused on the simulation phase. However,
once a system has been validated in Simulink, software is
integrated in the real system. Test architecture and variability
management should be reused in subsequent phases. Our
next actions will consider the generation of tests from the
model for running in the software using python test scripts
[36].

ACKNOWLEDGMENT

This work is co-supported by the Basque Government
under grants UE2011-4 (COMODE Project). The project has
been developed by the embedded system group supported by
the Department of Education, Universities and Research of
the Basque Government.

REFERENCES
[1] T. A. Henzinger and J. Sifakis. “The Embedded Systems Design

Challenge,” In 14th International Symposium on Formal Methods
(FM 2006), Hamilton, Canada, volume 4085 of Lecture Notes in
Computer Science, pp. 1–15. Springer, 2006.

[2] OMG. “UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems”. Formal Specification, November 2009.
Online at: http://www.omg.org/spec/MARTE/1.0/PDF. [retrieved:
September, 2012].

[3] J. A. Stankovic. “Strategic Directions in Real-time and Embedded
Systems”. ACM Computing Surveys, 28, pp. 751–763, December
1996.

[4] H. Shokry and M. Hinchey. “Model-Based Verification of Embedded
Software”, IEEE Computer, vol. 42, no. 4, pp. 53-59, April, 2009

[5] E. Bringmann and A. Krämer. “Model-based Testing of Automotive
Systems” pp. 485–493, 2008 International Conference on Software
Testing, Verification and Validation, ICST, 2008.

[6] Simulink webpage. http://www.mathworks.com/products/simulink/.
[retrieved: September, 2012].

[7] A. Kossiakoff and W. N. Sweet. Systems Engineering. Principles and
Practice. Addison Wesley, 2003.

[8] International Council on Systems Engineering (INCOSE). “Systems
Engineering Vision 2020”. Technical Report INCOSE-TP-2004-004-
02, INCOSE, September 2007.

[9] R. France and B. Rumpe. “Model-Driven Development of Complex
Software: A Research Roadmap”. In Workshop on the Future of
Software Engineering (FOSE 2007), at ICSE 2007, Minneapolis,
Minnesota, USA, pp. 37–54, 2007.

[10] J. Van Gurp, J.Bosch, and M. Svahnberg. “On the notion of
variability in software product lines”. In WICSA ’01: Proceedings of
the Working IEEE/IFIP Conference on Software Architecture
(WICSA’01), Washington, DC, USA, 2001. pp. 45-54. IEEE
Computer Society.

[11] S. Thiel and A. Hein. “Systematic integration of variability into
product line architecture design”. In SPLC 2: Proceedings of the
Second International Conference on Software Product Lines, pp. 130–
153, London, UK, 2002. Springer-Verlag.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. “Feature-
oriented domain analysis (foda) feasibility study”. Technical Report
CMU/SEI-90-TR-21, November 1990.

[13] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley Professional, June 2000.

[14] K. Czarnecki, S. Helsen, and U. W. Eisenecker. “Staged
configuration using feature models”. In Robert L. Nord, editor, SPLC,

Generic Testing
Architecture

Testing Architecture
for a configuration

Signal selection Plant instantiation Sfunction configuration

77Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 86 / 153

volume 3154 of Lecture Notes in Computer Science, pp. 266–283.
Springer, 2004.

[15] G. Halmans and K. Pohl. “Communicating the variability of a
software-product family to customers”. Software and System
Modeling, 2(1): pp. 15–36, 2003

[16] M. Eriksson, J. Börstler, and K. Borg. “The pluss approach - domain
modeling with features, use cases and use case realizations”. In
J. Henk Obbink and Klaus Pohl, editors, SPLC, volume 3714 of
Lecture Notes in Computer Science, pp. 33–44. Springer, 2005.

[17] T. von der Maßen and H. Lichter, “Requiline: A requirements
engineering tool for software product lines”. In 5th International
Workshop on Product Family Engineering, PFE5, Proceedings, 2003,
pp. 168-180.

[18] H. Gomaa and D. L. Webber. “Modeling adaptive and evolvable
software product lines using the variation point model”. In HICSS
’04: Proceedings of the Proceedings of the 37th Annual Hawaii
International Conference on System Sciences (HICSS’04) - Track 9,
p. 90268.3, Washington, DC, USA, 2004. IEEE Computer Society.

[19] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line
Engineering : Foundations, Principles and Techniques. Springer,
September 2005.

[20] M. Becker. “Towards a general model of variability in product
families”. In Proceedings of the 1st Workshop on Software
Variability Management, 2003.

[21] T. Asikainen, T. Soininen, and T. Männistö. “A koala-based approach
for modelling and deploying configurable software product families”.
In Frank van der Linden, editor, Software Product-Family
Engineering, 5th International Workshop, PFE, Revised Papers,
volume 3014 of Lecture Notes in Computer Science, pp. 225–249.
Springer, 2003.

[22] A. van der Hoek. “Design-time product line architectures for any-
time variability”. Sci. Comput. Program., 53(3), pp.285–304, 2004.

[23] H. Gomaa. Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Addison Wesley,
2004.

[24] M.s Clauß. “Modeling variability with uml”. In Proceedings of
GCSE2001. Young Researchers Workshop, 2001.

[25] T. Ziadi, L. Hélouët, and J.M.c Jézéquel. “Towards a uml profile for
software product lines”. In Software Product-Family Engineering, 5th
International Workshop, PFE 2003, Siena, Italy, November 4-6,
Revised Papers, pp. 129–139, 2003.

[26] C. Dziobek, J. Loew, W. Przystas, and J. Weiland. “Model diversity
and variability - handling of functional variants in simulink-models”.
Elektronik automotive, February 2008, pp.33-37.

[27] A. Polzer, D. Merschen, A. Botterweck, G. Pleuss, J. Thomas, S.
Hedenetz, and B. Kowalewski. “Managing complexity and variability
of a model-based embedded software product line”. Innovations in
Systems and Software Engineering (ISSE), 8, pp.35–49, 2011.

[28] G. Botterweck, A. Polzer, and S. Kowalewski. “Using higher-order
transformations to derive variability mechanism for embedded
systems”. 2nd International Workshop on Model Based Architecting
and Construction of Embedded Systems (ACESMB 2009)
atMoDELS 2009, Vol-507, pp. 107 – 121, Denver, Colorado, USA,
September 2009.

[29] G. Botterweck, A.s Polzer, and S Kowalewski. “Variability and
evolution in model-based engineering of embedded systems”. In 6.
Dagstuhl-Workshop Model-Based Development of
EmbeddedSystems (MBEES 2010), pp. 87–96, Dagstuhl, Germany,
February 2010.

[30] D. Beuche and J. Weiland. “Managing flexibility: Modeling binding-
times in simulink”. In Proceedings of the 5th European Conference
on Model Driven Architecture - Foundations and Applications,
ECMDA-FA ’09, pp. 289–300, Berlin, Heidelberg, 2009. Springer-
Verlag.

[31] B. Magro, J. Garbajosa, and J. Pérez. “A software product line
definition for validation environments”. In Proceedings of the 2008

12th International Software Product Line Conference, SPLC ’08, pp.
45–54, Washington, DC, USA, 2008. IEEE Computer Society.

[32] Modeling Dynamic Systems, web page,
http://www.mathworks.es/es/help/simulink/ug/modeling-dynamic-
systems.html. [retrieved: September, 2012].

[33] P. Clements and L. Northrop. Software Product Lines - Practices and
Patterns. Addison-Wesley, 2001.

[34] IAR VisualState, Web page. http://www.iar.com/en/Products/IAR-
visualSTATE/, [retrieved: September, 2012].

[35] K. Lee, K. C. Kang, and J. Lee. “Concepts and guidelines of feature
modeling for product line software engineering”. In ICSR-7:
Proceedings of the 7th International Conference on Software Reuse,
pp. 62–77, London, UK, 2002. Springer-Verlag.

[36] Python official webpage. http://www.python.org/. [retrieved:
September, 2012].

78Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 87 / 153

GUI Failure Analysis and Classification
for the Development of In-Vehicle Infotainment

Daniel Mauser
Daimler AG

Ulm, Germany
daniel.mauser@daimler.com

Alexander Klaus
Fraunhofer IESE

Kaiserslautern, Germany
alexander.klaus@iese.fraunhofer.de

Ran Zhang
Robert Bosch GmbH
Leonberg, Germany

ran.zhang@de.bosch.com

Linshu Duan
AUDI AG

Ingolstadt, Germany
linshu.duan@audi.de

Abstract—Modern automotive infotainment systems have
sophisticated graphical user interfaces, leading to various
challenges in software testing. Due to the enormous amount
of possible interactions, test engineers have to decide which
test aspects to focus on. In this paper, we examine what
types of failures can be found in graphical user interfaces
for automotive infotainment systems and how frequently they
occur. A hierarchical classification for failures has been de-
veloped based on common concepts in software engineering,
such as Model-View-Controller and Screens. More than 3,000
failures, found and fixed during the development of automotive
infotainment systems at Audi, Bosch and Mercedes-Benz, have
been analyzed. Results show that 62% of reports describe
failures related to high and low level behavior, 25% of reports
describe failures related to contents and 6% of reports describe
failures related to design.

Keywords-failure reports; domain specific failures; GUI
based software; in-vehicle infotainment system.

I. I NTRODUCTION

In modern automotive infotainment systems the graphical
user interface (GUI) is an essential part of the software.
The so-called HMIs (human machine interface) provide the
system functionality to the user, whether it be the radio
system, the navigation, or system functionality, such as the
tire pressure monitoring system. According to Robinson and
Brooks [1], a GUI “is essential to customers, who must
use it whenever they need to interact with the system”.
Additionally, they “found that the majority of customer-
reported GUI defects had major impact on their day-to-day
operations, but were not fixed until the next major release”
[1]. As automotive infotainment GUIs are built into a car,
there is no easy possibility to upgrade the system or to
buy a new release, which renders the situation for such
systems even worse. Additionally, when the system does
not work correctly, drivers may get distracted from driving.
Therefore, special attention has to be drawn on finding and
fixing defects during development.

Figure 1 shows an example of a screen in an HMI. It
consists of a menu at the top of the screen, where all
available applications, e.g., navigation or audio, can be
accessed. Each application consists of an application area
at the middle of the screen, where the actual content is

Figure 1. Example for a graphical user interface of the Mercedes-Benz
infotainment system COMAND

displayed (here: information about the radio station and the
song played) and a sub menu for content specific options at
the bottom (here: “Radio”, “Presets”, “Info”, etc.). The HMI
is operated via a central control element (CCE) allowing the
user to set the selection focus by rotating or pushing the CCE
in a direction, and to activate options by pressing it down.
This interaction concept is common in modern in-vehicle
infotainment systems.

GUI based software, especially in the automotive domain,
is becoming more and more complicated - often, documents
with more than 2,000 pages are written to describe all the
functionality [2]. The reasons are the growing amount of
functions, which form more and more complex systems, as
well as the usage of more advanced graphical views and
elements (e.g., complicated animations or 3D-elements).

When testing GUIs, sequences of system interactions
are performed and the system reaction is compared to the
specified reaction in each step. It is obvious that for such
complicated systems, not all possible combinations can be
tested, and thus it is necessary to focus testing activities
on certain failure types. To be able to choose strategies
accordingly, several questions need to be answered:

• What types of failures can be found in GUI based
software today? Is it possible to build a classification
of these types?

• What are frequent failures in current GUI software?
Which are common, which are rare?

The article is structured as follows. In Section 2, we
discuss related work and show why we need to create a
new classification scheme. Section 3 describes our approach

79Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 88 / 153

for creating a scheme, which is then presented in Section
4. Section 5 discusses the results of our work. The article
ends with a discussion of the approach and future work in
Section 6.

II. RELATED WORK

In the literature, various types of defect classifications can
be found. However, many of them lack the practical usage
and empirical data in the form of distributions of defects
into the scheme, and thus it is hard to tell whether they are
a valuable addition. Other schemes for classification are used
frequently, or at least once. For our study, we concentrate on
those latter ones, and discuss why they are not fully suited
for our means. As described above, our context is black-box
testing of a GUI for automotive infotainment systems.

IBM created the so-called Orthogonal Defect Classifica-
tion (ODC) [3]. Since then, many companies have applied
this approach. It consists of several attributes, such as
triggers, defect types, impact, and others. A GUI-section
is included in the ODC Extensions V5.11. It contains
triggers, such as “Design Conformance”, “Navigation”, and
“Widget/GUI Behavior”. Compared to our classification (see
Section 4), some of the triggers match to our categories, but
not fully: “Navigation” is represented by “Screen Transition”
and “Widget Behavior”, which also maps to the “Widget
Behavior” trigger. Our “Design” category maps to “Icon
Appearance” and “Design Conformance”, while “Input De-
vices” are not covered by us. All in all, the scheme would
be spread across three levels of our classification.

Another scheme, which contains several categories for
GUI-related issues, was made by Li et al. [4]. It consists
of 300 categories, and is based on the ODC, but adapted for
black-box testing. It contains, e.g., categories for GUIs in
general, and for GUI control [4]. The GUI-related categories
do not fully fit, for example, there is a “Title bar” category,
but our systems do not have title bars, as desktop software
does. This scheme is created for regular desktop software,
as it also classifies keyboard or mouse related faults. Due to
the differences between desktop software and our systems,
we decided not to adapt this scheme.

Børretzen and Dyre-Hansen [5] created a scheme, which
is also based on the ODC. They target industrial projects. A
GUI fault category is included, but not further segmented.
The rationale for this is that, although “function and GUI
faults are the most common fault types”, they are most
often not severe, and thus, not as critical as other categories
[5]. This seems to be a contradiction to what was stated
in the introduction, but the criticalities of certain typesof
faults are subject to the application domain. As stated in the
introduction, in our application domain they are very critical,
and therefore, we focus on them to assure software quality.

Hewlett-Packard created a scheme based on three cate-
gories: origin, type, and mode [6]. Origin refers to where
the defect was introduced, the type can, e.g., be logic,

computation, or user interface. The mode refers to whether
something was missing, unclear, wrong, changed, or done
in a better way now. This scheme also does not differentiate
the various types of GUI-related failures.

Another well-known scheme has been developed by
Beizer [7]. The main categories are “requirements, fea-
tures and functionality, structure, data, implementationand
coding, integration, system and software architecture, and
testing” [7, p. 33], each having three levels of subcategories.
The scheme is very detailed, but there is no GUI-related
category.

An adaption of this scheme for GUI contexts has been
created by Brooks, Robinson and Memon [8]. The authors
emphasize that “defining a GUI-fault classification scheme
remains an open area for research” [8]. They simplified
Beizer’s scheme to create a two level classification and
added a subcategory for GUI-related issues, “to categorize
defects that exist either in the graphical elements of the GUI
or in the interaction between the GUI and the underlying
application” [8]. However, all of our failures would fit into
that category, and thus, we cannot use this scheme.

There also exists a fault classification scheme for auto-
motive infotainment systems [9], however, this scheme is
based on the network communication, and thus, it cannot
be used for our purposes of classifying software based GUI
failures. This scheme differs between hardware and software,
but does not differentiate the different possibilities of issues
in the software enough: “software based system faults can
be computational, data management and interface faults” [9].
This scheme again has many categories not usable by us, and
does not include different GUI-related categories.

Ploski et al. [10] studied several schemes for classifica-
tion, including approaches not presented here. Since there
was no matching scheme, we did not present them here.

Another approach has been created by the IEEE [11].
However, this approach is not very detailed, and just lists
a number of attributes to be filled out for each defect. But
the standard includes a scheme for distinguishing between
defects and failures. A defect is “an imperfection or defi-
ciency in a work product that does not meet its requirements
or specifications”, while a failure is “an event, in which a
system or system component does not perform a required
function within specified limits” [11]. So, when a defect
is present, and we perform GUI testing, we can observe
failures. They are caused by defects in the code, but since
we test by using the GUI, and not the code (i.e., black box),
what we can observe is the behavior, and this is why we do
not create a defect but a failure classification scheme.

The classification schemes available do not meet our
requirements. Since we employ block-box testing of GUIs,
we cannot use any code-related categories or schemes. We
focus only on GUI-related failures. The schemes presented
in [6][7] and [9] do not have GUI-related categories and
because of this, they cannot be used by us. Others ([3][5][8])

80Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 89 / 153

have GUI-related categories, but still do not meet very
well to our purposes. The scheme presented in [4] has
many GUI-related categories, but for desktop software. Due
to the differences of desktop and automotive infotainment
GUIs, we did not adapt it because we would then have to
either delete or change most of the categories. Therefore,
we created our own failure classification scheme. After
describing the approach we used, the categories of our
scheme are explained in Section 4.

III. M ETHODOLOGY

For this research, we analyzed databases of existing failure
reports. The data was collected during the development of
state of the art automotive infotainment systems. Testers
executed the System Under Test (SUT) manually, based on
specification documents, and used failure reporting tools to
keep records of anomalies. The reports were handed over
to developers who then rechecked and fixed the software.
In this context, failures are defined as mismatch between
the SUT and an explicit GUI specification, which can be
observed while operating the system. Any implicit require-
ments, such as general standards or guidelines, are not
subject of the study. Only reports that were accepted as
failures by both testers and developers were accounted.
Failures that are not referring to the GUI were sorted out.

For this study, Audi, Bosch and Mercedes-Benz provided
failure data. Hence the analyzed reports represent a broad
variety of contexts as they stand for different infotainment
systems (Audi MMI, Mercedes-Benz COMAND and sev-
eral projects, developed at Bosch), different steps in the
development process as well as different test strategies, test
personnel and test environments. In total, more than 3,000
reports were analyzed. One third of the reports have been
used as training data to construct the failure classification
which then was fine-tuned using the remaining reports as
test data.

As preparation of the analysis, the reports were exported
to an Excel document with one line for each report. Fur-
thermore, reports that describe more than one failure have
been split up in one line for each failure. Redundant reports
that describe exactly the same failure as already considered
ones were removed. The following information per report
was relevant for the analysis:

A Report ID identifies the reports uniquely. In theTitle
testers describe the essence of the report. TheProblem
description is a detailed statement on (a) the required setup
of the system under test, (b) the actions that lead to the
failure, (c) the behavior or result that has been observed,
(d) a description, what should have been displayed instead
and (e) how this failure could be bypassed. If failures were
ambiguous or hard to describe, screen shots were added.
Table I shows simple examples of reports.

We analyzed this data iteratively by hand to develop a
classification by clustering similar failures. To determine the

Table I
EXAMPLES OF THE ANALYZED GIVEN FAILURE REPORTS

ID Title Problem description
4711 Inserted music CDs Setup: Any state

are not played auto- Actions: Insert music CD
matically Observed result: Nothing happens

Expected result: System should display
CD play screen
Reference: R0026679
Workaround: Navigate to CD play
screen manually

4712 Cell phone icon on Setup: Connect cell phone
call screen obsolete Actions: Navigate to Call screen

Observed result: Placeholder icon for
cell phones is displayed
Expected result: Correct icon is dis-
played
Reference: R0026672
Workaround: —

similarity of failures, the classification is based on concepts
and patterns used in software engineering. For example, the
top level failure classes arebehavior, contents, anddesign,
according to the well-established Model-View-Controller
[12] design pattern. The structure of the classification and
related separation criteria are presented in Section 4.

A classification is needed that gives a good overview and
is flexible to extend for comprehensiveness. This should
be achieved by a hierarchical structure. As indication, how
many hierarchy levels have to be applied and whether
one category could be subdivided reasonably or several
categories should be combined, we defined the following
requirements for the failure classes: To scale the scope
of each classification level, an initial analysis of the data
indicates the necessity to limit the percentage of the lowest
level to 10% of the total numbers of failures. To develop a
clear and easy to use structure, the number of categories on
every level has to be 2 in minimum and 5 in maximum.

IV. FAILURE CLASSIFICATION

In this section, the GUI failure report classification is
described. Table II gives an overview of the entire classifica-
tion, including the failure distribution. As mentioned above,
the top level follows the Model-View-Controller pattern [12],
as this pattern proved to be an adequate abstraction for
GUI based software.Controllers (here:behavior) abstract
the observable behavior, indicating how input is processed.
Models (here:contents) define all contents that are displayed
by the system.Views (here: design) describe layout and
appearance of the contents to be displayed. As the SUT
was tested as a black box, the MVC pattern is not intended
to represent the actual software structure or to relate any
failures to implemented software modules.

In order to avoid enforced classifications of reports to
existing classes, one category “to be categorized” (TBC) has
been created. As for other categories, on the lowest level the
TBC failure class is limited to 10% of the total number of

81Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 90 / 153

Figure 2. Screen example: Telephone application

failures. Classifying more failures than that limit as TBC
would indicate, that the definition of an additional failure
class is necessary.

A. Behavior

The top level failure classbehavior contains all failure
reports describing that stimuli to the SUT do not result in
the specified output. In order to subdivide this failure class,
common abstractions in GUI development were applied:

Screens[13][14] represent the current state of the GUI
displayed. This state is defined by the options available
to the user. Figure 1 shows the radio screen, where the
current radio station and the song playing are displayed.
The options provided allow users to change waveband (FM
option) or adjust the sound setting (Sound option). Screens
are structured based on elementary GUI elements, so called
widgets. Widgets are either primitive (label, rectangle, etc.)
or complex, meaning that they are a composition of primitive
or again complex widgets. An example for widgets in Figure
1 would be the horizontal list in the top end that contains
button widgets for all available applications, such as “Navi”,
“Audio” or “Tel” (i.e., phone). In this classification, the
concepts of screens and widgets are used to differentiate
micro behavior that affects single elements on the display
(e.g., iterating list entries) and macro behavior that changes
the entire context of use.

1) Widget Failures:The GUIs of the automotive infotain-
ment systems analyzed mainly use various types of lists to
present options to the user. To activate an option, those lists
set a focus by turning or pushing the CCE and pressing the
CCE once the option wanted is focused. Potential failures
might be that the wrong option is focused on start or that
the focus changes not as specified. An example would be
that every time the main menu is entered, the element in the
middle should be focused automatically. A failure would
exist, if the first element would be focused instead. Those
failures are considered as deficientwidgets focuslogic.
Subcategories areinitial focus (the wrong option is focused
when a list is entered),implicit focus (the focus has to be
reset due to changing system conditions) orexplicit focus
(the user resets the focus by turning or pushing the CCE).

For widgets, often additional behavior is specified. One
example might be alphabetic scrolling to allow the user to

Table II
THE DISTRIBUTION OFFAILURES

1. level 2. level 3. level 4. level distr.
TBC - - - 7.6 %

Behavior

Screen missing - 5.8 %
Transition extra - 2.9 %

(Σ: 17.9%) wrong - 9.2 %
Pop-up missing - 3.6 %

Behavior extra - 3.2 %
(Σ: 11.7%) priority - 0.5 %

wrong - 4.4 %
screen missing 2.4 %

composition extra 0.9 %
(Σ: 5.4%) wrong 2.1 %

options missing 2.2 %
Screen offer extra 1.3 %

(Σ: 61.5%) Structure (Σ: 5.4%) wrong 1.0 %
(Σ: 13.8%) order 0.9 %

option missing 1.6 %
gray-out extra 1.0 %

(Σ: 3.0%) wrong 0.4 %
Behavior missing 5.1 %

(Σ: 14.7%) extra 0.9 %
Widget wrong 8.7 %

(Σ: 18.1%) focus initial 0.9 %
(Σ: 3.4%) implicit 1.5 %

explicit 1.0 %

Contents

missing 1.2 %
design time incomplete 0.3 %
(Σ: 5.9%) extra 0.5 %

Text wrong 3.9 %
(Σ: 15.1%) missing 2.2 %

run time incomplete 1.1 %
(Σ: 9.2%) extra 1.0 %

wrong 4.9 %
missing 0.4 %

design time extra 0.1 %
(Σ: 0.8%) wrong 0.2 %

Animation others 0.1 %
(Σ: 25.1%) (Σ: 1.8%) missing 0.4 %

run time extra 0.1 %
(Σ: 1.0%) wrong 0.3 %

others 0.1 %
design time missing 1.5 %

Symbols (Σ: 2.9%) extra 0.2 %
& Icons wrong 1.2 %

(Σ: 8.2%) run time missing 2.2 %
(Σ: 5.3%) extra 1.0 %

wrong 2.1 %

Design

color - - 1.0 %
font - - 0.4 %

dimension - - 0.7 %
(Σ: 5.8%) shape - - 0.4 %

position - - 2.7 %
other - - 0.6 %

jump to a subgroup of list entries starting with one specific
letter. Reports describing that such behavior is eithermissing
(specified behavior is not implemented),wrong (instead of
specified behavior, behavior not specified is implemented) or
extra(behavior not specified is implemented), are considered
as deficientwidget behavior.

2) Screen Structure Failures:In this failure class, reports
are clustered describing the logic to determine the widget ob-
jects the screens contain and what data they hold. In automo-
tive infotainment systems, the availability of options depends

82Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 91 / 153

on numerous conditions, such as available devices (e.g.,
radio tuner available, connected mobile phones, etc.), the
current environmental conditions (e.g., car is moving faster
than 6 km/h) or even previous interactions (e.g., activating
route guidance). These conditions affect, whether options
are displayed but cannot be selected (gray-out mechanism)
or whether options are listed at all. Failure reports describing
that the options are displayed incorrectly are considered as
deficientoption offeror option gray-out. The subclassscreen
compositionclusters failures related to deficient setup of
widgets on screen. Subclasses of this category arewrong
widget (the wrong widget is displayed),extra widget (an
unspecified widget is displayed) ormissing widget(widgets
that are specified are absent).Screen structurefailures are
distinguished from thewidget behaviorcategory as follows:
the former represents erroneous selection of widgets such
as horizontal or vertical lists, whereas the latter clusters
failures of widget behavior itself, such as the scrolling logic
or widget state change.

3) Screen Transition Failures:As described above,
screens represent one special usage context. The failure
classscreen transitionclusters failures occurring when those
usage contexts change. One indication for a screen transition
is that the widget composition and the displayed options are
replaced. With Figure 1 and Figure 2, a screen transition
is demonstrated: first, the Radio screen is shown; with
activating the option “Tel”, the context changes to the
telephone screen of the infotainment system. Subclasses of
this category aremissing transitions(a specified transition
does not take place),extra transitions(a transition that is
not specified takes place) orwrong transitions(instead of
screen A, screen B is displayed).

4) Pop-up Behavior Failures:With automotive infotain-
ment systems, messages are often overlaid over the regular
screen (Pop-up mechanism). Those messages inform users
about relevant events or change of conditions. For example,
those messages might state that the car has reached the
destination of an active route guidance or that hardware has
heated up critically. Subcategories aremissing(the pop-up is
not displayed although the respective conditions are active),
extra (pop-up appears although the respective conditions are
not active) andwrong (instead of pop-up A, pop-up B is
displayed). Additionally, with the pop-up mechanism the
priority system is important: a pop-up with higher priority
always has to be displayed on top of pop-ups with lower
priority. Those failures are clustered in the subclasspriority.

B. Contents Failures

The next top level category is related to contents. The
separation criterion is the type of the content:symbols &
icons, animations, or text. In Figure 1, a contents failure
would be, if the button for the “Audio” application would
have been labeled incorrectly with “Adio” or the globe
symbol in the upper right corner of the screen would be

a placeholder. In this classification, we distinguish content
that is known atdesign time(e.g., the labels of available
applications) and content that cannot be defined untilrun
time (e.g., displaying the names of available Bluetooth
devices). For each of those content types, subclasses for
wrong, missingandextra contenthave been defined.

This category might be confused with the screen structure
failure class in the behavior sub tree. For example, a failure
report describing that the second button in the main menu
is “Blind Text” instead of “Audio” could be categorized as
contentsor option provisionfailure. If pressing the button
still leads to a screen transition to the Audio context, the
report is considered as deficient contents. If another context
is displayed, for example the telephone screen, it would be
a deficient option provision.

C. Design Failures

The last top level category clusters reports, which describe
design failures. This includescolor (e.g., focus color is
red instead of orange),font (e.g., text font is Times New
Roman instead of Arial),dimension(e.g., a button is higher
or broader than specified),shape (e.g., a button should
be displayed with rounded instead of sharp edges) and
position(e.g., a label of a button is centered instead of left-
aligned). As design failures often were described vaguely,
a subcategory forother design failures was defined. Am-
biguous descriptions were, for example, that wrong arrows,
wrong Cyrillic letters or a wrong clock were observed. As it
became obvious early, that a low percentage of reports were
categorized as design failures, no additional work has been
done to clarify this category.

V. D ISCUSSION

The requirements defined in Section 3 were met for most
failure classes. We intended to cover at least 90% of all
defect reports analyzed. Only 7.6% of the reported failures
had to be classified as “to be categorized”. Furthermore, we
intended to limit the percentage of the classes on the lowest
level of the hierarchy to 10%. This could be achieved as
well: with 9.2%, the largest category wasbehavior- screen
transition - wrong. We intended to allow only 2-5 categories
on each hierarchy level. This could not be realized for the
design category (6 subclasses). However, due to a very small
number of failures classified as design related (5.8%), we did
not consider it necessary to restructure this category.

Further, we answered the question, what types of failures
are frequent in current GUI software. The results show that
the majority (61.5%) are failures related to behavior. This
points out the complicated macro and micro behavior in
modern infotainment systems. Most of the failure reports
are related to missing or wrong individual widget behavior
(13.8%), as well as missing or wrong screen transitions
(15.0%). The content category is the second biggest top level
failure class (25.1%), with erroneous text being the biggest

83Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 92 / 153

subcategory (15.1%). The majority (9.2%) is not known until
run time. Explanations are (a) that in most infotainment
systems information is mainly displayed textually and (b)
that testing texts is easier for human testers than comparing
symbols or animations in detail. Very few failures (5.8%)
describe erroneous design. One explanation might be, that
design is hard to test manually. For example, it is a problem
to differentiate shades of colors by eye. In addition, most
design errors are less critical and might even not be recog-
nized by users. Therefore, testing design might not be of
high priority to test planners.

VI. CONCLUSION AND FUTURE WORK

In this paper, we answered the question what types of
failures can be found in GUI based infotainment systems
in the automotive domain today. A failure classification has
been developed and applied to more than 3,000 failure re-
ports created during the development of modern automotive
infotainment systems at AUDI, Bosch and Mercedes-Benz.
62% of the reports describe failures related to high and
low level behavior, 25% of the reports describe failures
related to contents and 6% of the reports describe failures
related to design. We support not only testers, but the entire
GUI development process by pointing out pitfalls leading to
gaps between the specification and the implementation. The
classification indicates, what aspects need special attention
in specification documents and might need to be described
more explicitly than is usual today. For roles responsible for
the implementation of GUI concepts, this work points out
aspects that might be ambiguous and need clarification.

In future research, the suggested classification might be
scaled by reducing the maximum percentages of lowest level
categories. Thus, some categories have to be differentiated
further and additional failure classes have to be defined.
Moreover, additional parameters such as “failure criticality”,
“predicted number of affected users” or “costs for testing”
could be added to the classification. Those aspects are
not in focus at the current stage and might influence the
choice of test strategies significantly. One could then focus
or prioritize testing on those types of failures, which are
most critical, based on the frequency and these additional
parameters. For this, coverage criteria and prioritization
techniques are currently examined, to check, which of them,
if any, may be used for our purposes. This classification
could be applied to future automotive infotainment systems
to analyze change of the failure focus.

ACKNOWLEDGMENT

The authors would like to thank Krishna Murthy Murlid-
har, Sven Neuendorf and Jasmin Zieger for their contribu-
tions. The research described in this paper was conducted
within the project automotiveHMI. The project automo-
tiveHMI is funded by the German Federal Ministry of Eco-
nomics and Technology under grant number 01MS11007.

REFERENCES

[1] B. Robinson and P. Brooks, “An initial study of customer-
reported gui defects,” inSoftware Testing, Verification and
Validation Workshops, 2009. ICSTW’09. International Con-
ference on. IEEE, 2009, pp. 267–274.

[2] C. Bock, “Model-driven hmi development: Can meta-case
tools do the job?” inSystem Sciences, 2007. HICSS 2007.
40th Annual Hawaii International Conference on. IEEE,
2007, pp. 287b–287b.

[3] R. Chillarege, “Orthogonal defect classification,”Handbook
of Software Reliability Engineering, pp. 359–399, 1999.

[4] N. Li, Z. Li, and X. Sun, “Classification of software defect
detected by black-box testing: An empirical study,” inSoft-
ware Engineering (WCSE), 2010 Second World Congress on,
vol. 2. IEEE, 2010, pp. 234–240.

[5] J. Børretzen and R. Conradi, “Results and experiences from
an empirical study of fault reports in industrial projects,”
Product-Focused Software Process Improvement, pp. 389–
394, 2006.

[6] R. Grady,Practical software metrics for project management
and process improvement. Prentice-Hall, Inc., 1992.

[7] B. Beizer, “Software system testing techniques,”New York:
Van Norstrand Reinhold, 1990.

[8] P. Brooks, B. Robinson, and A. Memon, “An initial charac-
terization of industrial graphical user interface systems,” in
Software Testing Verification and Validation, 2009. ICST’09.
International Conference on. IEEE, 2009, pp. 11–20.

[9] M. Kabir, “A fault classification model of modern automotive
infotainment system,” inApplied Electronics, 2009. AE 2009.
IEEE, 2009, pp. 145–148.

[10] J. Ploski, M. Rohr, P. Schwenkenberg, and W. Hasselbring,
“Research issues in software fault categorization,”SIGSOFT
Software Engineering Notes, vol. 32, no. 6, pp. 1–8, Novem-
ber 2007.

[11] “Standard classification for software anomalies,”IEEE Std
1044-2009 (Revision of IEEE Std 1044-1993), pp. C1 –15, 7
2010.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design
Patterns. Reading, MA: Addison Wesley, 1995.

[13] S. Stoecklin and C. Allen, “Creating a reusable gui compo-
nent,” Softw. Pract. Exper., vol. 32, no. 5, pp. 403–416, Apr.
2002.

[14] J. Chen and S. Subramaniam, “Specification-based testing for
gui-based applications,”Software Quality Journal, vol. 10, pp.
205–224, 2002.

84Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 93 / 153

A Holistic Model-driven Approach to Generate U2TP Test Specifications Using
BPMN and UML

Qurat-ul-ann Farooq∗, Matthias Riebisch†
∗Department of Software Systems / Process Informatics, Ilmenau University of Technology

98684 Ilmenau, Germany
{qurat-ul-ann.farooq}@tu-ilmenau.de

†Department of Informatics, University of Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

riebisch@informatik.uni-hamburg.de

Abstract—Testing process-based information systems is cost
intensive and challenging due to rapid technological advance-
ment and increasing complexity of processes. A number of
existing process-based test generation approaches use process
code for test generation. They operate on lower levels of ab-
straction and start the test activity later in the development cy-
cle, which is not feasible. Other model-based testing approaches
focus only on the individual behavior of a process. They do
not consider the structural aspects and process interactions;
thus, are not able to capture different test views. In this
paper, we present a model-driven test generation approach
that uses UML class and component diagrams to model
the structural aspects, and BPMN collaboration diagrams
to model the collaborative behavior of business processes.
Models from both views are used as input to generate the test
specifications, which are expressed as of UML 2 Testing profile
(U2TP) elements. To identify the correspondences between the
process structure, behavior and the test view, we analyze the
semantics of UML, BPMN, and U2TP. We developed mapping
rules to realize these correspondences for the generation of
U2TP test specifications from UML and BPMN models. Our
mapping rules are implemented as model transformations using
the VIATRA model transformation framework. We illustrate
the approach using an example scenario to demonstrate its
applicability.

Keywords-MDA; Model-driven Testing; BPMN; U2TP; Busi-
ness Process Test Generation.

I. INTRODUCTION

Testing enterprise software systems is essential to ensure
the quality of the systems supporting the underlying busi-
ness processes. However, due to the increasing complexity
of processes and rapid technological advancement, testing
requires high effort and huge investments. Furthermore,
early testing is required to save project costs. This can be
achieved by deriving the test specifications from the process
design specifications. However, most of the existing business
process-based testing approaches use low level artifacts
for test generation, such as process code or web service
description language (WSDL) [1][2][3][4], which is often
not available in the early phases of software development.

To deal with this issue, Model-driven testing (MDT) [5]
for enterprise business processes has been introduced [6][7].

It enables the test generation from the high level process
models instead of process code; thus, enabling testing ac-
tivity in the early phases of the development life cycle.
This results in reduced costs and cross platform portability
of the test suites. Model-driven testing uses the concept of
model transformations to transform the platform independent
design models into platform independent test suites. Later,
concrete test specifications or test code can be generated
from these test models [5]. Hence, to support the model-
driven test generation for process-based information sys-
tems, there are three major requirements; (1) the availability
of a platform independent process modeling language, (2)
the availability of a test modeling language to support test
visualization and documentation, and (3) the support for
model transformations for the test generation.

In this paper, we present a model-driven test genera-
tion approach for process-based information systems. To
meet the first requirement, the artifacts required to model
different views of process-based information systems are
to be analyzed [8]. These different system views include
the Process View, Resource/Structure View, Behavior View,
and the User Interface view [8][9]. The existing model-
based testing approaches in the literature only focus on the
behavioral view of the processes for the test generation.
However, the information from other system views can
also be used to generate parts of the test specification.
For example, the structural system view can be modeled
using the UML class diagram and component diagram. The
information about the system structure can be obtained from
these models to generate the test architecture and test data
[10].

In our approach, to model the process and behavior view
we use BPMN collaboration diagrams, while modeling the
structural view of the system using the UML component and
class diagrams. Both UML and BPMN are standards from
the Object Management Group (OMG)[11], [12]. We use
the process modeling guidelines from the UML-based Web
Engineering (UWE) [13] approach and the Service Oriented
Architecture Modeling Language (SoaML) [14].

85Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 94 / 153

To fulfill the second requirement, which is support for
the test modeling, we use U2TP [10], which is also a
test modeling standard from OMG. U2TP covers several
important test modeling issues, such as, modeling the Test
Architecture, Test Behavior, Test Data, and Test Time. In
this paper, we focus primarily on the generation of U2TP
test architecture and test behavior for business process-
based testing. Finally, to support the third requirement, we
identify the correspondences between the design artifacts
and test models and develop the mapping rules using these
corresponding elements. These mappings are defined by an-
alyzing the semantics of the BPMN collaboration diagrams,
UML class and component diagrams, and the U2TP test
models. The mapping rules are implemented in the form
of model transformations. We used Viatra Transformation
Control Language (VTCL), which is a model transformation
language provided by the VIATRA model transformation
framework [15] for the implementation of our transforma-
tions. The rest of this paper is organized as follows.

Section II discusses the related work and analyzes the
strengths and weaknesses of business process-based test-
ing approaches. Section III provides an overview of our
approach. Section IV discusses our model-driven test case
generation approach in detail and also presents the mapping
rules for the test generation. Section V conferes the imple-
mentation details and Section VI illustrates the application
of the approach on an example scenario. Finally, Section
VIII concludes the paper and discusses the future directions
of our work.

II. RELATED WORK

Most of the process-based test generation approaches de-
rive the test cases from the process code. These approaches
either generate test paths directly from the code, based on
data and control flow information [16], [17], or translate the
code into formal specifications languages like Petri-nets [2],
[3], [18], to perform the model checking and test derivation.
One of the major disadvantages of these approaches is that
the tests cannot expose the deviations from the functional
specifications, as the tests are directly derived from the code.
Moreover, the testing activity can only be started after the
development is complete, which increases the cost as well
as the time allocated to the testing phase.

Werner et al. [4] use the WSDL process specifications
for the test generation. They only consider the interfaces of
the processes; thus, generate only black box test cases from
them and do not consider the internal control flows or data
flows of the system.

There are a few approaches focusing on model-based test
generation for process-based systems. Bakota et al. [1] use
a graph like notation for the process specification, where the
nodes of the graph represent activities with distinct input and
output parameters. The category partition method is used
to derive test data for individual activities. They generate

the test paths based on the data values and then convert
them into the test frames. The approach presents interesting
concepts but targets only the data-based process specification
languages. The process models in BPMN support many
additional activity types and events and they should also
be considered during the test generation.

Heinecke et al. [19] present an approach for test genera-
tion, where a process is specified using activity diagrams.
However, like Bakota et al, Heinecke et al. also do not
support event-based process specifications for the test gen-
eration. The major distinctions of our approach from the
approaches of Heinecke et al. and Bakota et al. are that we
not only support events and various activity types during
the test generation, we also use the concept of holistic
modeling and test generation. Thus, we focus not only on the
behavioral aspects, but also consider the structural aspects
of the tests during the test generation.

Yuan et al. [7] present a model-driven test generation
approach for process-based systems. Our approach is also
using the same foundations as Yuan et al., however, their
work is only an initial idea and lacks details regarding the
test generation activities and the rules. Moreover, their work
focuses only on the test architecture generation and lacks
the test behavior generation aspect.

The model-based test generation approaches for testing
business processes discussed in this section, do not consider
a holistic view of the system during the test generation
and rely only on behavioral artifacts, such as graphs or
activity diagrams. However, as discussed earlier, the artifacts
representing different views of a process-based system can
provide input to generate different test views and thus,
should be considered during the test generation. In the next
section, we present our holistic model-driven approach that
uses the artifacts from the structural, behavioral and process
views of the system for the test generation.

III. OVERVIEW OF THE APPROACH

To perform effective model-based testing of process-
based systems, the first step is to select an appropriate
modeling methodology, and model the system architecture
and business processes. After that, a quality assurance (QA)
analyst can review the models for testability. This includes
checking the models for completeness and validating any
constraints required to generate the test specification. In the
next step, a test generation tool can generate abstract test
specifications using these models. We discuss these steps in
detail in the following subsections.

A. Business Modeling using UWE and SoaML

As discussed earlier, we model the system architecture
and the processes using the UWE [13] and SoaML [14]
approaches. Since the focus of this paper is on the test
generation by analyzing process interactions and structural

86Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 95 / 153

aspects of the system, we briefly discuss the artifacts we use
from these approaches and their specifics.

The UWE approach originally uses an activity like model
to model the processes. However, instead of using that, we
use BPMN collaboration diagrams and process diagrams to
model the behavior of interacting and atomic processes. To
model the structural aspects of the system, we use the UML
class diagram. Using the UWE approach, each process itself
is modeled as a class with a stereotype «ProcessClass» and
the data and resources of the system are modeled as classes
with a stereotype «entity». From the SoaML approach, we
use the component models to define the high level structure
of process-based systems.

As discussed earlier, once the models are complete, they
should be analyzed for testability. Testability is an important
property of the model because a less testable model can
results in poor test cases. The testability requirements of
our approach are discussed in the following.
→ Completeness: The artifacts used as input are complete

and all the processes have their corresponding struc-
tures defined in the corresponding UML class diagram.

→ Since handling of multiple entry and exit points is
complex, we restrict a collaboration diagram to exactly
one start and end node within one pool to reduce
additional complexity

→ To ease the testing, we restrict each Pool in the collab-
oration diagram, to have a corresponding component in
the component diagram with well defined interfaces for
access. A lane can map to a process class or a service
class in the UML class diagram.

Once the models are complete and reviewed by a QA
expert for testability, they can be used to generate the test
specifications. In the next section, we discuss the foundations
of our model-driven test generation approach, and in the later
sections we elaborate the approach in more detail.

B. The Abstract Test Specification Generation

As discussed earlier, we use U2TP for the specification of
the test architecture and test behavior. The following tasks
are to be performed for model driven test generation using
our approach.

1) Generate the test architecture by analyzing the struc-
tural system models, which are in our case UML class
and component diagrams.

2) Transform the test architecture into a class diagram to
support the test visualization.

3) Generate the test behavior from BPMN collaboration
models in the form of test paths. These test paths can
be constructed using path analysis algorithms from the
graph-based test generation approaches using a certain
coverage criterion.

4) In the next step, the generated paths are transformed
into UML activity diagram paths. This transformation

satisfies the second requirement stated in the introduc-
tion section of this paper. At this stage the tester can
analyze each individual test path and add the additional
information, such as test verdicts etc.

Test data can also be generated by using process constraints
and data resources defined in the structural models; however,
the test data generation is out of scope of the current
paper. In the next section, we discuss our model-driven test
generation process and the above discussed tasks in detail .

IV. THE MODEL-DRIVEN TEST GENERATION PROCESS

To generate the test specifications, we adapted the classic
model-driven test generation process by Dai et al. [5]. This

Transformation
PIT PIM

U2TP Test Architecture

U2TP Test Behavior

UML Class & Component Diagram

BPMN Collaboration Diagram

Figure 1. The Example Software Architecture of a Banking Example

process involves the transformation of a platform indepen-
dent model (PIM) into a platform independent test model
(PIT). The upper part of Figure 1 shows this pattern from
Dai et al. [5], where a PIM model is transformed to a PIT
model.

The lower part of Figure 1 shows our adaptation of the
process for the generation of U2TP test architecture and test
behavior using UML and BPMN models. The test models
in U2TP should cover the structural and behavioral aspects
of the test system. These aspects can be derived from the
structural and behavioral specification of the system. To do
this, we transformed the platform independent UML class
and component diagrams representing the structure and re-
sources of the processes into U2TP test architecture models.
For the test behavior generation, the platform independent
BPMN Collaboration diagrams and process diagrams are
transformed into U2TP test behavior, which represents the
abstract platform independent test specification.

To define these transformations, the mapping relations
between the elements of source and target languages are
to be identified. We identify these mapping relations by
analyzing the correspondences between the relevant ele-
ments of these languages. The elements and semantics of
the UML class and component diagrams, BPMN process and
collaboration diagrams, and U2TP test models are defined
in their respective meta-models[11], [12], [10].

We define the mapping relations in the form of mapping
rules. In principle, a mapping rule realizes a mapping
relation that represents a correspondence between the rel-
evant source model and the target model of a particular
transformation.

87Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 96 / 153

We define a mapping rule as a 4 tuple (Source Element,
Target Element, Rule Preconditions, Rule Postconditions),
where the Source Element is an element of the source
PIM model, i.e., UML or BPMN, and the Target Element
is an element in the target PIT model, i.e., U2TP. The
Preconditions define any constraints for the execution of the
rule and the Postconditions define the changes in the state of
the target test models, such as the addition of new elements.
An example of such a rule is presented in Listing 1. In the
next subsections, we discuss both U2TP test architecture and
test behavior generation activities, and the mapping rules we
developed to define the transformations in detail.

A. Generation of U2TP Test Architecture

The test architecture is a representation of the structural
aspects of a test system. To define the test architecture,
U2TP provides several elements. These elements are: System
Under Test (SUT), Test Arbiter, Test Scheduler, Test Context,
and Test Components. To specify the test architecture to
test a process, these elements are required to be specified.
For this purpose, we analyze the elements representing the
process structure and derive the test structure from these
elements.

Source Element : C las s , T e s t package : CDSA

Target Element : C las s , A s s o c i a t i o n : CDTA

P r e c o n d i t i o n s :
1 . ∃Class.C ∈ CDSA

2 . ∃ S t e r e o t y p e . P r o c e s s C l a s s ∈ C
3 . ∃ U2TP . T e s t P a c k a g e (TP | TP ∈ CDTA);
4 . C ∈ TP
5 . ∃ BPMN. C o l l a b o r a t i o n Diagram (CD | CD ∈ C);
P o s t c o n d i t i o n s :
6 . ∃Class.T ∈ CDTA

7 . T . Name=C . Name
8 . ∃ S t e r e o t y p e . SUT ∈ T
9 . ∃Dependency.Import.A ∈ CDTA

1 0 . A ∈ TP,A ∈ T

Listing 1. A Mapping Rule for SUT

To represent the test architecture, U2TP proposes the UML
class diagram notation with stereotypes for the U2TP ele-
ments. We refer to the class diagram representing the test
architecture as CDTA, and the class diagram representing
the system architecture as CDSA in the our mapping rules.
In the following, we discuss, how we derived the test
architecture elements from the UML class and component
diagrams, which represent the system structural aspects.

In the UWE process modeling approach, a class cor-
responding to a collaborative process is represented by a
stereotype «ProcessClass». Since a Process Class defines
the process representing interactions between several par-
ticipants, it is a candidate class for testing the collaborative
process. This means that this class can be treated as a system
under test or process under test. Hence, we map each Class
with a stereotype «ProcessClass» in the CDSA to a System
under Test (SUT) in the CDTA. This mapping is realized
by the mapping rule presented in Listing 1.

According to the rule, there are three preconditions in the
Preconditions part. The first precondition (Line 1 and 2)
states that a class named C with the stereotype «Process-
Class» should exist in the system architecture class diagram
CDTA. The second precondition (Line 3 and 4) indicates
that a corresponding Test Package should be present in the
test architecture class diagram, and the third precondition
(Line 5) ensures that a BPMN collaboration diagram is
present that corresponds to the process class C. The presence
of a test package is required due to the reason that each test
related element of a particular process class is packaged into
one particular test package for better test organization [5].

In the postcondition part, a type Class T with a stereotype
«SUT» corresponding to the class C is created in the test
architecture class diagram CDTA (Line 6, 7, and 8). Since
elements of a test package require the SUT for the test
execution [5], an import dependency A is created between
the test package TP and the SUT class T (Line 9 and 10).

To map the other elements in the test architecture, such
as the Test Context and the Test Components, we developed
mapping rules like the one shown Listing 1. The rules to
generate the test components are more complex as they
require additional information from the UML component
diagram and the BPMN collaboration diagram. Due to the
space limitations, it is not possible to include all of these
rules in the paper; however, a subset of these rules is
available on our website for additional reading[20]. After
establishing the mappings for the U2TP test architecture,
the next step is to develop the mappings to generate U2TP
test behavior, which is explained in the next section.

B. Generation of U2TP Test Behavior from BPMN Collab-
oration Diagrams

In this section, we discuss our test behavior generation
process and the mapping rules we developed for the test
behavior generation. Our test behavior generation process
comprises of two major tasks; the generation of test paths
from BPMN collaboration diagrams, and the transformation
of these test paths into UML activity diagram test cases. The
generation of the test paths is dependent on the selected
coverage criteria. However, the activity of mapping the
test paths onto the activity diagram test cases should be
independent of the coverage criteria and test path generation
strategies. So that it can be reused with different coverage
criteria and path generation activities. To enable such reuse,
we split our test generation process into three sub activities,
as depicted in Figure 2.

According to Figure 2, the first activity prepares the
BPMN collaboration diagram for test path generation by
extending it with some information required by the path
extraction algorithms. The algorithm we use in this work
uses the distance information for the selection of test paths.
Thus, the distance of each node from the end node is
computed, and the nodes are annotated with this information.

88Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 97 / 153

Extend Model with Distance

BPMN Collaboration Diagram

Extended Collaboration Diagram

Generate Test Paths Transform Test paths

Test Paths Activity Diagram Tests

Coverage Criteria Test Architecture

Figure 2. Test Behavior Generation Activities

The output of this activity is a diagram extended with
distance information. In the second activity, the test paths
are extracted from the extended collaboration diagram based
on some coverage criterion. In this paper, we use the branch
coverage criterion, which is further explained in the next
subsection. Finally, during the third activity, the generated
paths are transformed into UML activity diagrams to support
the visualization and test documentation.

In U2TP, the test behavior can be specified using either the
UML sequence diagrams or the UML activity diagrams. In
this work, we selected the UML activity diagram notation for
the test behavior specification due to its natural similarity to
the process specifications. As discussed earlier, the mapping
activity to map the test paths onto UML activity diagrams
is independent of the test path generation activity; thus,
it can be reused with multiple coverage criteria. In the
following subsections, we discuss the test path generation
and the details of mapping the test paths onto UML activity
diagrams.

1) Generate Test paths: To enable the test path generation
from BPMN collaboration diagrams, we use the branch
coverage criterion. This criterion covers all the gateways
in the diagram for all possible outcomes, and covers each
loop once. For computing the test paths, we first compute
the shortest path in the collaboration diagram by using the
Dijkstra algorithm [21]. The reasons for using the Dijkstra
algorithm for computing the shortest path first is that in
our test suite, the first test case will always contain the
shortest execution path. In the case of limited testing budget,
execution of this test case can provide the confidence about
at least one process path execution with the minimum cost
overhead.

For the calculation of other paths in the diagram we use
a Depth First Search (DFS) algorithm with backtracking
[22]. The reason for selecting the DFS is its ability to
cover all the branches of a graph by visiting all child nodes
of a node and to backtrack, when the end node or an
already visited node is found. When a node is added to
a path, all the information of the node is also copied. If
the node corresponds to a send, receive, or service task, the
information about the related pools is also copied with that
task. BPMN collaboration diagrams can contain parallelism
by using the parallel gateways in the diagram. To deal with
it, one of the simplest strategies can be to place all the
branches of the gateway in a sequential order [1]. However,
more complex execution strategies can exist. We are treating
all the branches of a parallel gateway as one test case and

defer the decision of their execution strategies to the concrete
test generation activity. After the generation of the test paths,
the next activity is to map each test path onto a UML activity
diagram, which is discussed in the next section.

2) Transform Test Paths to UMLAD: The transformation
of the test paths extracted in the previous steps to a UML
activity diagram requires the identification and definition
of mappings between the elements of BPMN collaboration
diagram and UML activity diagram. These mappings can be
identified by analyzing the constructs of BPMN collabora-
tion diagram and the corresponding elements in the UML
activity diagram. Based on these correspondences, we de-
velop the mapping rules, which realize the correspondences
or mapping functions.

Source Element : C o l l a b o r a t i o n : Message S t a r t Event
Target Element : A c t i v i t y : I n i t i a l Node , Accep tEven tAc t ion ,

S i g n a l E v e n t , C o n t r o l f l o w
P r e c o n d i t i o n s :
∃ BPMN. Pool (X)∨ BPMN. Lane(X);
∃BPMN. E v e n t S t a r t M e s s a g e (Start | Start ∈ X);
∃UML. A c t i v i t y P a r t i t i o n (AP | AP ∈ X);
P o s t c o n d i t i o n s :
∃ UML. I n i t i a l N o d e (I | I ∈ AP);
∃ UML. A c c e p t E v e n t A c t i o n (a c c e p t | a c c e p t ∈ AP , name (a c c e p t)

=name (S t a r t) + ’ A c c e p t A c t i o n ’) ;
∃ UML. O u t p u t P i n(OP | OP ∈ accept);
∃ UML. T r i g g e r (t r i g g e r | t r i g g e r ∈ a c c e p t , name (t r i g g e r) =

name (S t a r t) + ’ T r i g g e r ’) ;
∃ UML. S i g n a l E v e n t (te | te ∈ trigger);
∃ Con t ro lF low(cf | cf(I, accept));

Listing 2. An excerpt of the Mapping Rule for Message Start Event

BPMN collaboration diagrams comprise of a set of start,
end, and intermediate nodes, tasks and activities, pools
and lanes, control flows and message flows, gateways, and
several data elements. A mapping function or mapping rule
is required to be defined between each of these elements and
their corresponding activity diagram elements.

In the following, we provide an example of a mapping
rule that maps a start event in BPMN collaboration diagram
to the corresponding activity diagram elements. The start
and end nodes in a BPMN collaboration diagram can be
mapped to the Initial Node and Final Node in the UML
activity diagram. However, BPMN collaboration diagrams
have many different types of start and end nodes, such as,
Message Start Event, Empty Start Event, Timer Start Event,
and many others. Since the UML activity diagram has only
one Initial Node type, it can be mapped to only one type
of start event in BPMN collaboration diagrams, i.e., Empty
Start Event. For the remaining events, more complex patterns
are required to be identified in the UML activity diagrams.

An example of such event is the Message Start Event.

89Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 98 / 153

The mapping rule for the Message Start Event is depicted
in Listing 2. According to Listing 2, a Message Start Event
can be mapped to an Initial Node followed by an Accept
event Action in a UML activity diagram. The preconditions
stated in the preconditions part specify that in the BPMN
collaboration diagram, either a Pool or a Lane X exists and
the Message Start Event belongs to that Pool/Lane. The next
precondition is that an Activity partition exists corresponding
to the Pool/Lane X . We map a Pool or a Lane in the BPMN
collaboration diagram to an ActivityPartition element in the
UML activity diagram. This ActivityPartition is a container
for other elements such as Tasks, Events and ControlFlows
in the activity diagram.

The postcondition part is rather complex. It states that an
Initial Node in the UML activity diagram is created, which
is followed by an AcceptEventAction. The trigger of this
action is a Signal Event. A Control Flow is added between
the Initial Node and Accept Event Action to maintain the
sequential dependency between both. Due to the space
limitations, it is not possible to discuss all the elements and
their respective mapping rules in this paper. However, Table
I depicts a subset of the mappings between the elements of
BPMN collaboration diagram and UML activity diagram.
A complete set of mapping rules is available at our project
website [20]. After each test path is mapped to an activity

Table I
MAPPING SUBSET:COLLABORATION ONTO ACTIVITY DIAGRAM

Collaboration Elements Activity Elements

Pool ActivityPartition

SequenceFlow ControlFlow

Gateway DecisionNode

EmptyTask/None Action

SendTask when target is a non-service
Task or Pool

SendSignalAction

SendTask when target is a service Task CallOperationAction

ReceiveTask AcceptEventAction

A Task calling a ServiceTask CallOperationAction

EmptyStartEvent/EmptyEndEvent InitialNode/FinalNode

diagram, the test case definitions are added to the Test
Context class as test operations in the test architecture class
diagram. The interface of these operations can be generated
by analyzing input data required by each path.

V. TRANSFORMATION IMPLEMENTATION USING VIATRA

We implemented our test generation approach and the
mappings using the model transformation framework VIA-
TRA [15]. VIATRA provides a rule-based language VIATRA
Textual Command Language (VTCL) for the implementation
of model transformation rules. The rule-based structure of
VIATRA makes it suitable for the implementation of our
mapping rules.

The basic construct of VTCL is a Graph Transformation
Rule (GT-Rule). A GT-Rule is comprised of a precondition

part, a postcondition part and an action part. When a
precondition pattern of a GT-Rule is matched in the source
model, it creates an image of the postcondition pattern in the
target model. Our mapping rules can be seen as an abstract
form of a GT-Rule and are easily translatable to the concrete
executable GT-Rules. The models we use to implement
the transformations conform to the meta-models of UML,
BPMN, and U2TP.All the meta models are implemented as
Eclipse plugins using the EMF framework [23].

g t r u l e s i n g l e P o o l (i n o u t Pool , i n o u t A c t i v i t y) ={
p r e c o n d i t i o n p a t t e r n i s P o o l (Pool) ={
bpmn . metamodel . bpmn . Pool (Pool) ;
neg f i n d i s L a n e I n P o o l (Pool , Lane) ; }

p o s t c o n d i t i o n p a t t e r n m a t c h P a r t i t i o n T o P o o l (VisKind ,
P a r t i t i o n , Pool , A c t i v i t y , S t r i n g) ={

bpmn . metamodel . bpmn . Pool (Pool) ;
uml . metamodel . uml . A c t i v i t y P a r t i t i o n (P a r t i t i o n) in

A c t i v i t y ;
uml . metamodel . uml . V i s i b i l i t y K i n d (VisKind) in P a r t i t i o n ;
uml . metamodel . uml . NamedElement . name (NamedElem , P a r t i t i o n

, S t r i n g) ;
uml . metamodel . uml . NamedElement . v i s i b i l i t y (Vis , P a r t i t i o n

, VisKind) ; }
a c t i o n {

rename (P a r t i t i o n , name (Pool)) ;
s e t V a l u e (VisKind , " p u b l i c ") ; } }

Listing 3. An excerpt of the GT-Rule in VTCL

Listing 3 presents a GT-Rule for the mapping “Pool maps
to ActivityPartition”, as depicted in the first row of Table
I. The graph transformation rule, “singlePool” shown in
Listing 3 takes a Pool and an Activity as input. The input
Activity is the base element of the activity diagram meta-
model. The rule singlePool consists of a precondition pattern
and a postcondition pattern. The precondition pattern states
that Pool is an element in the BPMN meta-model. The
second line of the precondition pattern checks if there is
a lane inside the pool or not. The postcondition pattern
creates an ActivityPartition inside the element Activity, and
instantiates its properties. In the action part of the GT-Rule,
name of the Pool is assigned to the created ActivityPartition,
and the property “visibilitykind” is specified as public. A
prototype Eclipse plug-in implementing the transformations
is available at our project website[20].

VI. CONCEPT ILLUSTRATION BY EXAMPLE

To illustrate the applicability of our approach, we in-
troduce an example credit request scenario and apply our
approach on it. The left side of Figure 3 depicts an excerpt
of the class diagram of the credit request application. The
diagram contains a class HandleCreditRequestProcess with
a stereotype «ProcessClass». A part of the collaboration di-
agram corresponding to this process class is depicted on the
right hand side of Figure 3. Figure 4 represents the U2TP test
architecture class diagram. The class HandleCreditRequest-
Process with the stereotype «SUT» represents the system
under test, and is derived by applying the mapping rule in
Listing 1. The SUT class has an import dependency to the
test package financial.credit.handlecreditrequestprocess.test

90Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 99 / 153

Figure 3. An Excerpt of the Credit Request Collaboration and Component Architecture

financial.credit.handlecreditrequestprocess.test

<<TestCase>> +testPath1()
<<TestCase>> +testPath2()
<<TestCase>> +testPath3()
<<TestCase>> +testPath4()
<<TestCase>> +testPath5()
<<TestCase>> +testpath6()

<<TestContext>>
HandleCreditRequestProcessTC

+startHandleRequestProcess()

<<TestComponent>>
CustomerTestComp

+approveCreditAgreementMock()
+reviewcreditRequestMock()

<<TestComponent>>
CreditAuthorisationOfficerTestComp

+CreditHistoryManagerServiceMo...
+creditHistoryVerificationServiceM...

<<TestComponent>>
CreditHistoryManagerTestComp

+CreditRatingServiceMock()

<<TestComponent>>
RatingServiceProviderTestComp

<<SUT>>
HandleCreditRequestProcess

<<import>>

Figure 4. The Credit Request Test Architecture

as defined in the postcondition of the mapping rule in Listing
1.

The classes with the stereotype TestComponent shown
in Figure 4 are the test components, which are required
to test the process HandleCreditRequestProcess. These test
components are derived from the Pools and Lanes of the col-
laboration diagram and their corresponding structural spec-
ifications defined in the class and component diagrams.Due
to the limited space, these pools are not shown in the
collaboration illustrated by Figure 3.

An example test component in Figure 4 is the CreditHisto-
ryManagerTestComp, which is responsible of processing the
message calls sent by the tasks GetCreditHistory and Save-
CreditRequest in the HandleCreditRequestProcess. The test
components are derived from the pools receiving the mes-
sages.The test component CreditHistoryManagerTestComp
mocks the two services CredithistorymanagerService and
CredithistoryVerificationService. These services are shown
as service classes in the class diagram shown in figure 3.
The test package also contains the Test Context class and
the required test components. The test context class contains
six test cases, which are generated by applying the test
generation steps explained in the Section IV-B. One of such

test paths is depicted with the bold control flow in Figure 3.
The UML activity diagram test case corresponding to this
test path is depicted in Figure 5.

In the activity diagram, the service tasks are assigned
to CallOperationAction, send tasks are assigned to the
SendSignalAction, and receive tasks are assigned to the
AccepteventAction.These mappings are consistent with the
mappings shown in Table I. The sent and received messages
are assigned to the ports of the respective actions in the UML
activity diagram test case. For the sake of simplicity, no data
flows were shown in figure 3, and no ActivityPartitions are
shown in the test case shown in Figure 5.

VII. ACKNOWLEDGMENT

We thank Stefan Gross for developing the prototype
discussed n section V as part of his masters thesis.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a holistic model-driven test
generation approach for testing business process-based infor-
mation systems. For the test generation, first we transform
the elements of UML class and component diagrams into
U2TP test architecture elements. After that, we generate
the test behavior by transforming the BPMN collaboration
diagrams into test paths and then transforming these test
paths into U2TP activity diagram test cases. To do this,
we analyzed the elements of BPMN collaboration diagrams,
UML class and component diagrams, and U2TP test models
to identify the corresponding elements and then developed
mapping rules based on them. We implemented the mapping
rules in a prototype, using model transformations provided
by the VIATRA framework. One of the benefits of our
approach is that we used models for the test generation as
well as the test specification, which results in support for
early testing and better test documentation. A limitation of
our work is that at present we do not support the test data
by analyzing the data elements in the BPMN models and
their corresponding structures. However, this is part of our
ongoing work and we plan to address this issue in the future.

91Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 100 / 153

getCreditHistory
(CreditHistoryManagerTestComp::creditHistoryVerificationServiceMock)

getCreditRatings
(RatingServiceProviderTestComp::CreditRatingServiceMock)

RejectCreditRequest

NotifyCreditRequester

SaveCreditRequest

m11

m10

m9

m8

ReceiveCreditRequest

m13

m12

m1

CF19

CF18

CF17

CF20:rating.value<minThreshhold

CF3

CF2

CF1

Figure 5. A Test path of the Credit Request Process as UML Activity
Diagram Test Case

REFERENCES

[1] T. Bakota, A. Beszédes, T. Gergely, M. I. Gyalai, T. Gy-
imóthy, and D. Füleki, “Semi-automatic test case generation
from business process models,” 11th Symposium on Program-
ming Languages and Software Tools, 2009.

[2] J. Garcia-Fanjul, J. Tuya, and C. de la Riva, “Generating test
cases specifications for BPEL compositions of web services
using SPIN,” in Proceedings of the International Workshop
on Web Services: Modeling and Testing, 2006, pp. 83–94.

[3] Y. Zheng, J. Zhou, and P. Krause, “A model checking
based test case generation framework forweb services,” in
Proceedings of the International Conference on Information
Technology, 2007, pp. 715–722.

[4] E. Werner, J. Grabowski, S. Troschutz, and B. Zeiss, “A
TTCN-3-based web service test framework,” in Workshop on
Testing of Software - From Research to Practice, 2008.

[5] Z. Dai, “An approach to model-driven testing: Functional and
real-time testing with UML 2.0, U2TP and TTCN-3,” Ph.D.
dissertation, TU Berlin, 2006.

[6] A. Stefanescu, S. Wieczorek, and A. Kirshin, “MBT4Chor: a
Model-Based testing approach for service choreographies,” in
Model Driven Architecture - Foundations and Applications,
2009, pp. 313–324.

[7] Q. Yuan, “A model driven approach toward business process
test case generation,” 10th International Symposium on Web
Site Evolution, pp. 41–44, 2008.

[8] M. Penker and H. Eriksson, Business Modeling With UML:
Business Patterns at Work, 1st ed. Wiley, Jan. 2000.

[9] D. Auer, V. Geist, W. Erhart, and C. Gunz, “An integrated
framework for modeling Process-Oriented enterprise appli-
cations and its application to a logistics server system,”
in 2nd International conference on Logistics and Industrial
Informatics, Sep. 2009, pp. 1 –6.

[10] OMG, “UML2 Testing Profile,” OMG Docment
Formal/ptc/2011-07-20, Object Management Group, July
2005. [Online]. Available: http://www.omg.org/spec/UTP/1.0/

[11] ——, “Business Process Model and Notation (Beta 2),”
Object Management Group, June 2010. [Online]. Available:
http://www.omg.org/spec/BPMN/2.0/Beta2/PDF/

[12] ——, “UML 2.0 superstructure specification,” OMG
document formal/2007-02-03, Object Management Group,
2007. [Online]. Available: http://www.omg.org/docs/formal/
07-02-03.pdf

[13] N. Koch, A. Kraus, C. Cachero, and S. Meliá, “Integration of
business processes in web application models,” J. Web Eng.,
vol. 3, no. 1, pp. 22–49, 2004.

[14] A. Sadovykh, P. Desfray, B. Elvesaeter, A.-J. Berre, and
E. Landre, “Enterprise architecture modeling with SoaML
using BMM and BPMN - MDA approach in practice,” in
6th Central and Eastern European Software Engineering
Conference, 2010, pp. 79 –85.

[15] VIATRA2, “Viatra2, visual automated model
transformations framework,” Availabe at:
http://www.eclipse.org/gmt/VIATRA2/, June 2011.

[16] J. Yan, Z. Li, Y. Yuan, W. Sun, and J. Zhang, “BPEL4WS
Unit Testing: Test Case Generation Using a Concurrent Path
Analysis Approach,” in 17th International Symposium on
Software Reliability Engineering, 2006, pp. 75 –84.

[17] Y. Yuan, Z. Li, and W. Sun, “A graph-search based approach
to bpel4ws test generation,” in International Conference on
Software Engineering Advances, 2006, p. 14.

[18] W.-L. Dong, H. Yu, and Y.-B. Zhang, “Testing BPEL-based
web service composition using high-level petri nets,” in 10th
IEEE International Enterprise Distributed Object Computing
Conference, 2006, pp. 441 –444.

[19] A. Heinecke, T. Griebe, V. Gruhn, and H. Flemig, “Business
process-based testing of web applications.” ser. Lecture Notes
in Business Information Processing, vol. 66, 2010, pp. 603–
614.

[20] “B2u project website,” Available at: http://www.theoinf.tu-
ilmenau.de/ qurat/B2UProject/subsite/index.htm, Last Ac-
cessed: 09.11.2012, 2012.

[21] J. Sneyers, T. Schrijvers, and B. Demoen, “Dijkstras algo-
rithm with fibonacci heaps: An executable description,” in
20th Workshop on Logic Programming, 2006, pp. 182–191.

[22] B. Awerbuch, “A new distributed depth-first-search algo-
rithm,” Information Processing Letters, vol. 20, no. 3, pp.
147 – 150, 1985.

[23] EMF, “Eclipse Modeling Framework ,” Last Accessed:
09.11.2012. [Online]. Available: http://www.eclipse.org/
modeling/emf/?project=emf

92Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 101 / 153

Diagnosability Analysis for Self-observed
Distributed Discrete Event Systems

Lina YE and Philippe DAGUE
Univ Paris-Sud, LRI, CNRS

Email: lina.ye@lri.fr, philippe.dague@lri.fr

Abstract—Diagnosability is a crucial property that determines,
at design stage, how accurate any diagnosis algorithm can be
on a partially observable system and, thus, has a significant
impact on the performance and reliability of complex systems.
Most existing approaches assumed that observable events in the
system are globally observed. But, sometimes, it is not possible
to obtain global information. Thus, a recent work has proposed
a new framework to check diagnosability in a system where each
component can only observe its own observable events to keep
the internal structure private in terms of observations. However,
the authors implicitly assume that local paths in components
can be exhaustively enumerated, which is not true in a general
case where there are embedded cycles. In this paper, we get
some new results about diagnosability in such a system, i.e.,
what we call joint diagnosability in a self-observed distributed
system. First, we prove the undecidability of joint diagnosability
with unobservable communication events by reducing Post’s
Correspondence Problem to an observation problem. Then, we
propose an algorithm to check a sufficient but not necessary
condition of joint diagnosability. Finally, we briefly discuss about
the decidable case with observable communication events.

Index Terms—diagnosis; joint diagnosability; finite state ma-
chine.

I. INTRODUCTION

Over the latest decades, with more performance require-
ments imposed on the complex systems, they are subject to
more errors. However, it is unrealistic to detect faults manually
for such systems. Automated diagnosis mechanisms are thus
required for large distributed applications. Generally speaking,
diagnosis reasoning aims at detecting possible faults explain-
ing the observations. The efficiency of diagnosis reasoning
depends on system diagnosability, which is a crucial property
that determines at design stage how accurate any diagnosis
algorithm can be on a partially observable system. The systems
we discuss here are Discrete Event Systems (DES).

Some existing works analyzed diagnosability in a central-
ized way ([1], [2], etc.), i.e., a monolithic model of a given sys-
tem is hypothesized, which is unrealistic due to combinatorial
explosion of state space. This is why very recently distributed
approaches began to be investigated ([3], [4], etc.), relying
on local objects. However, all these approaches assumed that
observable events in the system are globally observed. But
sometimes it is not possible to obtain global information. Then,
Ye et al. [5] has proposed a new framework to check diagnos-
ability in a system where each component can only observe its
own observable events to keep the internal structure private in
terms of observations. However, the authors implicitly assume

that local paths can be exhaustively enumerated, which is not
true in a general case where there are embedded cycles. In this
paper, we generalize this work to get some new results about
the diagnosability of what we call self-observed distributed
systems, where observable events can only be observed by
their own component.

We make several contributions in this paper. First, we extend
diagnosability of globally observed systems to what we call
joint diagnosability of self-observed systems and then to prove
its undecidability with unobservable communication events.
Secondly, we propose an algorithm for testing a sufficient
condition, where we obtain pairs of local trajectories in the
faulty component, such that for each pair only one trajectory
contains the fault but both have the same observations, and
then check their global consistency through two phases. We
provide the proof that it is a sufficient condition and point
out why it is not necessary. Thirdly, the decidable case where
communication events are observable is discussed.

II. PRELIMINARIES

In this section, we model self-observed distributed DES and
then recall joint diagnosability features [5].

We consider a self-observed distributed DES composed of a
set of components {G1, G2,..., Gn} that communicate by com-
munication events, where each component can only observe
its own observable events. Such a system is modeled by a set
of finite state machines (FSM), each one representing the local
model of one component. The local model of a component Gi

is a FSM, denoted by Gi = (Qi,Σi, δi, q
0
i), where Qi is the

set of states; Σi is the set of events; δi ⊆ Qi×Σi×Qi is the set
of transitions; and q0i is the initial state. The set of events Σi is
partitioned into four subsets: Σio , the set of locally observable
events that can be observed only by their own component Gi;
Σiu , the set of unobservable normal events; Σif , the set of
unobservable fault events; and Σic , the set of communication
events shared by at least one other component, which are the
only shared events between components. Figure 1 depicts a
self-observed distributed system with two components: G1

(left) and G2 (right), where the events Oi denote locally
observable events, the event F denotes an unobservable fault
event, the events Ui denote unobservable normal events and
the events Ci denote communication events.

We denote the synchronized FSM of components G1, ..., Gn

by ∥(G1, ..., Gn), where the synchronized events are the
shared events between components and any one of them

93Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 102 / 153

X0 X1 X2 X3

X4

X5

O1

C1 O1 F

U1

O2

O1
C2

O2

Y0 Y2

Y3

Y4

O3

O3C1

O4
O5

C2

X6

C2

Y1
U2

Fig. 1. A system with two components G1 (left) and G2 (right).

always occurs simultaneously in all components that define it.
The global model of the entire system is implicitly defined as
the synchronized FSM of all components based on their shared
events, i.e., communication events. However, the global model
will not be calculated since in a self-observed distributed
system, the global occurrence order of observable events is
not accessible. In the following, we call subsystem of G
the synchronization of a subset of components of G, i.e.,
∥(Gs1 , ..., Gsm), where {s1, ...sm} ⊆ {1, ...n}. One compo-
nent or the entire system can be considered as a subsystem.

Given a system model G = (Q,Σ, δ, q0), the set of words
produced by the FSM G is a prefix-closed language L(G)
that describes the normal and faulty behaviors of the system.
Formally, L(G) = {s ∈ Σ∗|∃q ∈ Q, (q0, s, q) ∈ δ}, where the
transition δ has been extended from events to words. In the
following, we call a word of L(G) also a trajectory in the sys-
tem G and a sequence q0σ0q1σ1... a path in G, where σ0σ1...
is a trajectory and for all i, we have (qi, σi, qi+1) ∈ δ. Given
s ∈ L(G), we denote the post-language of L(G) after s by
L(G)/s and denote the projection of s to observable events of
G (resp. Gi) by P (s) (resp. Pi(s)). We adopt the assumption
in [3], i.e., the projection of the global language on each local
model is observable live, i.e., there is no unobservable cycle
in any component. For the sake of simplicity, our approach is
shown for only one fault, which can be extended to the case
with multiple faults by running one time for each fault. Next
we rephrase reconstructibility introduced in [7].

Definition 1: (Reconstructibility). Given a system G that is
composed of several subsystems, i.e., G = ∥(Gs1 , ..., Gsm),
a set of trajectories in these subsystems is said to be recon-
structible with respect to G if it is obtained by projection on
this set of subsystems of a trajectory in G.

If there is no common communication event between two
subsystems, then any trajectory in one subsystem and any one
in the other subsystem are reconstructible.

For the sake of consistency, now we rename what is called
cooperative diagnosability in [5] as joint diagnosability. We
denote a trajectory ending with the fault f by sf .

Definition 2: (Joint diagnosability). A fault f is jointly
diagnosable in a self-observed distributed system G with
components {G1, ...Gn}, iff

∃k ∈ N, ∀sf ∈ L(G), ∀t ∈ L(G)/sf , (∀i ∈
{1, ..., n}, |Pi(t)| ≥ k)⇒ (∀p ∈ L(G)

(∀i ∈ {1, ..., n}, Pi(p) = Pi(s
f .t))⇒ f ∈ p).

Joint diagnosability of f means that for each faulty trajectory
sf in G, for each extension t with enough locally observable
events in all components, every trajectory p in G that is
equivalent to sf .t for local observations in each component
should contain in it f . In other words, the fault can be detected
after finite non bounded trajectory prolongation in at least

S0

O1

C2
SFK+1

C1

SFK

CK

F

C1

Z1

C2

Z2

CK

ZK

S1

S2

SK

SK+1

O1

O1

C1

C2

CK

C1

V1

C2

V2

CK
VK

T0

T1

O2

T2
A2

TK+1

A1

TK

AK

TK+2
O2

A1

C1

A2

C2

AK

CK

S 1F

SF2 SFK+2SK+2

Fig. 2. A system with two components G1 (top) and G2 (bottom) for proving
undecidability of joint diagnosability.

one component. In a self-observed system, we call a pair of
trajectories p and p′ satisfying the three conditions a (global)
indeterminate pair: 1) p contains f and p′ does not; 2) p
has arbitrarily long local observations in all components after
the occurrence of f ; 3) ∀i ∈ {1, ..., n}, Pi(p) = Pi(p′). Here
arbitrarily long local observations can be considered as infinite
local observations. Now we have the following theorem [5].

Theorem 1: Given a self-observed distributed system G, a
fault f is jointly diagnosable in G iff there is no (global)
indeterminate pair in G.

III. UNDECIDABLE CASE

To discuss about joint diagnosability, we consider two cases:
communication events being unobservable and observable. We
first consider the general case, i.e., communication events
being unobservable.

Theorem 1 implies that checking joint diagnosability boils
down to check the existence of indeterminate pairs that
witnesses non joint diagnosability. Inspired from [6], where
undecidability of joint observability is proved by reducing
the Post’s Correspondence Problem (PCP) to an observation
problem, we discuss first about whether joint diagnosability is
decidable or not.

For the sake of simplicity, we give now a simplified proof
for undecidability of joint diagnosability.

Theorem 2: Given a self-observed distributed system where
communication events are unobservable, checking joint diag-
nosability of a given fault is undecidable.

Proof:
1) PCP: given a finite alphabet Σ, two sets of words
v1, v2, ..., vk and z1, z2, ..., zk over Σ, then a solution to PCP is
a sequence of indices (im)1≤m≤n with n ≥ 1 and 1 ≤ im ≤ k
for all m such that vi1vi2 ...vin = zi1zi2 ...zin .
2) Now consider the example depicted in Figure 2, where
the system is composed of two components G1 and G2. In
G1, each one of V i, i ∈ {1, ..., k}, and each one of Zi, i ∈
{1, ..., k}, denotes a sequence of observable events all different
from O1, C1, ..., Ck are unobservable communication events,
F denotes a fault event and O1 is an observable event. In G2,
each one of Ai, i ∈ {1, ..., k}, denotes an observable event dif-
ferent from O2, C1, ..., Ck are unobservable communication
events and O2 is an observable event. Then the observations
in G1 can be described as V i1V i2...V inO1∗ without fault or

94Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 103 / 153

Zi1Zi2...ZinO1∗ with fault, where ∀ij , j ∈ {1, ..., n}, ij ∈
{1, ..., k}. In G2, the observations are Ai1Ai2...AinO2∗. In
this system, the occurrence of the fault can be confirmed by
the observation of O1.
3) Without the observation of O1, the local observations are
wO1+ for G1 and Ai1Ai2...AinO2∗ for G2, where w =
V i1V i2...V in when there is no fault or w = Zi1Zi2...Zin
when there is a fault. Clearly, if PCP has a solution, i.e.,
∃(im)1≤m≤n such that V i1V i2...V in = Zi1Zi2...Zin, we
have two trajectories p and p′ such that the observations of p in
G1 are V i1V i2...V inO1+, which is a trajectory without fault,
while the observations of p′ in G1 are Zi1Zi2...ZinO1+,
which is a trajectory with a fault. And both p and p′ have
the same observations for G2, i.e., Ai1Ai2...AinO2∗. Thus
we get that p and p′ have the same observations for both G1

and G2, i.e., V i1V i2...V inO1+=Zi1Zi2...ZinO1+ for G1

and Ai1Ai2...AinO2∗ for G2, then the fault is not jointly
diagnosable.
4) On the other hand, if the fault is not jointly
diagnosable, then we obtain at least one indetermi-
nate pair, denoted by p and p′ such that the pro-
jection of p on G1 is Ci1V i1Ci2V i2...CinV inO1∗,
on G2 is Ai1Ci1Ai2Ci2...AinCinO2∗ and that of p′
on G1 is Cj1Zj1Cj2Zj2...CjmZjmFO1∗ and on G2

is Aj1Cj1Aj2Cj2...AjmCjmO2∗. From the fact that p
and p′ have the same observations for G2, we get
Ai1Ai2...AinO2∗ = Aj1Aj2...AjmO2∗ and thus we have
m = n and i1 = j1, ..., in = jn. And then from the same
observations of p and p′ on G1, we get V i1V i2...V inO1∗ =
Zi1Zi2...ZinO1∗, i.e., V i1V i2...V in = Zi1Zi2...Zin, which
means that there is a solution for PCP.
5) The above proves that the existence of a solution for PCP
is equivalent to that of a fault being not jointly diagnosable.
Since PCP is an undecidable problem, then checking joint
diagnosability is undecidable.

There are two major differences between joint diagnosabil-
ity in our framework and joint observability in [6]. One is that
the former assumes that local observers are attached to local
components that are synchronized by common communication
events to get a global model while the latter separates arbi-
trarily the observable events in the global model into several
sets. The other one is that joint diagnosability consists in
separating infinite trajectories while joint observability consists
in separating finite ones. Thus, if any communication event
is assumed to be unobservable, joint diagnosability checking
boils down to infinite PCP. But this one has also been proved
to be undecidable [8], which gives the result.

IV. SUFFICIENT ALGORITHM

We have proved that joint diagnosability with unobservable
communication events is undecidable. We can nevertheless
propose an algorithm to test a sufficient condition, which is
still quite useful in some circumstances. We first construct the
local diagnoser from a given local model to show fault infor-
mation for any local trajectory. Then, we show how to build a
structure called local twin plant to obtain original information

about indeterminate pairs (also called local indeterminate pairs
in the following), based on the local diagnoser. The next step
is to check the global consistency, i.e., to check whether the
local indeterminate pairs can be extended into (global) indeter-
minate pairs, whose existence testifies non joint diagnosability.
Actually, our algorithm remains trivially applicable when the
assumption of unobservability of communication events is
partially relaxed, i.e., in the most general case where some
communication events are observable and others unobservable.

A. Original diagnosability information

To check the existence of indeterminate pairs, in the dis-
tributed framework, we use the structure called local twin
plant defined in [2]. In particular, the considered fault is
assumed to only occur in one component, denoted by Gf .
Then the local twin plant for Gf contains original information
of indeterminate pairs: actually this twin plant is a FSM that
compares every pair of local trajectories to search for the pairs
with the same arbitrarily long local observations, but exactly
one of the two containing a fault, which are local indeterminate
pairs. First, we define delay closure operation with respect to
a subset Σd of Σ to preserve only the information about the
events in Σd.

Definition 3: (Delay Closure). Given a FSM G =
(Q,Σ, δ, q0), its delay closure with respect to Σd ⊆ Σ is
{Σd

(G) = (Q,Σd, δd, q
0) where (q, σ, q′) ∈ δd iff ∃s ∈

(Σ\Σd)
∗, (q, sσ, q′) ∈ δ.

We now describe how to construct the local diagnoser of a
given component, based on which we build the local twin
plant. Given a local model, we get a modified one by attaching
fault label, denoted by l ∈ {N,F}, where N for normal and F
for fault, to each state. In other words, before the occurrence
of the fault, each state is labeled with label N and, after its
occurrence, with label F .

Definition 4: (Local diagnoser). Given a local model Gi, its
local diagnoser Di is obtained by operating the delay closure
with respect to the set of communication events and observable
events on the modified model: Di = {Σio∪Σic

(Gm
i), where

Gm
i is the modified version of Gi.
Based on the local diagnoser, the corresponding local twin

plant is obtained by synchronizing the local diagnoser with
itself based on the locally observable events, allowing one to
obtain all pairs of local trajectories with the same observations
to search for local indeterminate pairs. To simplify this syn-
chronization, the two identical local diagnosers, denoted by
Dl

i (left instance) and Dr
i (right instance), can be reduced as

follows: Dl
i is obtained by retaining only paths with at least

one fault cycle and Dr
i is obtained by retaining only paths with

at least one non-fault cycle. This reduction keeps all original
diagnosability information since what we are interested in are
only local indeterminate pairs. However, this reduction is only
applicable for the local diagnoser of the faulty component
Gf ; for other components, the local twin plant is obtained
by synchronizing the non reduced left instance and the non
reduced right instance since there is no fault information. Since
this synchronization is based on observable events Σio , the

95Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 104 / 153

X0 N

X4 N

X2 NX1 N X3 F

O1

L:C1 O1 O1

O2 L:C2

X0 N

X1 N

X5 N X3 N

O1

O1 R:C2

R:C1 O2

X0 N

X0 N

X0 N

X1 N

X4 N

X5 N

X2 N

X5 N

X2 N

X3 N

X3 F

X3 N

X1 N

X0 N

X2 N

X5 N

X2 N

X3 N

X3 F

X3 N

O1

O1

R:C1 L:C2 R:C2

R:C2L:C1

O2 O1

O1O1

Fig. 3. Two reduced instances of the diagnoser for G1 (top) and part of the
corresponding local twin plant (bottom).

non-synchronized events are distinguished by the prefix L or
R: in Dl

i (Dr
i), each communication event c ∈ Σic from Di is

renamed by L : c (R : c). The names of all locally observable
events are left unchanged.

Definition 5: (Local twin plant). Given a local diagnoser
Di for the component Gi, the corresponding local twin plant
is a FSM, denoted by Ti = Dl

i∥Dr
i , where the synchronized

events are locally observable events in Gi.
Each state of a local twin plant is a pair of local diagnoser
states providing two possible diagnoses with the same local
observations. Given a twin plant state ((ql, ll)(qr, lr)), if the
considered fault f ∈ ll ∪ lr but f /∈ ll ∩ lr, which means that
the occurrence of f is not certain up to this state, then this state
is called an ambiguous state with respect to the fault f . An
ambiguous state cycle is a cycle containing only ambiguous
states. In a local twin plant, if a path contains an ambiguous
state cycle with at least one locally observable event, then
it is called a local indeterminate path, which corresponds
to a local indeterminate pair. Note that local indeterminate
paths contain original diagnosability information and can be
obtained only in the local twin plant of the component Gf .
If a local indeterminate pair can be extended into a global
indeterminate pair, then we say that its corresponding local
indeterminate path is globally consistent. Figure 3 shows the
left and right instances of the local diagnoser for the faulty
component G1 of Figure 1 (top) as well as a part of the
corresponding local twin plant (bottom). Clearly, in the local
twin plant, we have local indeterminate paths since they have
ambiguous state cycles with observable events.

B. Global consistency checking

Joint diagnosability verification consists in checking the
existence of globally consistent local indeterminate paths,
whose existence proves non joint diagnosability. To do this, we
have to check the global consistency of the corresponding left
trajectories of the local indeterminate paths in the local twin
plants as well as that of their corresponding right trajectories,
shortly called left consistency checking and right consistency
checking.

Definition 6: (Left (Right) consistent plant). Given a
subsystem GS composed of components Gi1 , ..., Gim and
their corresponding local twin plants Ti1 , ..., Tim , to obtain a
left (right) consistent plant with respect to the subsystem GS ,
denoted by T l

f (T r
f), we perform the following two steps:

1) Distinguish right (left) communication events between
local twin plants by renaming them with the prefix of
component ID. For example, R:C2 (L:C2) in the local twin
plant of G2 is renamed as G2:R:C2 (G2:L:C2).

X0 N

X0 N

X0 N

X1 N

X4 N

X5 N

X2 N

X5 N

X2 N

X3 N

X3 F

X3 N

X1 N

X0 N

X2 N

X5 N

X2 N

X3 N

X3 F

X3 N

O1

O1

G1:R:C1 L:C2 G1:R:C2

G1:R:C2

L:C1

O2 O1

O1O1

Y0 N

Y0 N

Y3 N

Y0 N

Y2 N

Y1 N

Y2 N

Y2 N

Y4 N

Y4 N

Y2 N

Y4 N

L:C1 O5

G2:R:C2O4

O3

L:C2

O5

Z0

Z1 Z2 Z3 Z4 Z5 Z6

Z7 Z8 Z9 Z10 Z11 Z12 Z13

L:C1
O1 O3 G1:R:C2 O5 O1

O1L:C2O4O2
G1:R:C1

G1:R:C2 G2:R:C2

O5
O1, O5

O5
O1, O5

Fig. 4. Part of the renamed local twin plants for G1 and G2 (top) and part
of the left consistent plant T l

f (bottom).

2) Synchronize the renamed local twin plants with the
synchronized events being the common left (right)
communication events, which works because observable
events do not intersect between components and non-
synchronized right (left) communication events are
distinguished by the prefix of component ID.

From definition 1, we know that in the left (right) consistent
plant with respect to a subsystem GS , each path p corresponds
to a set of paths pi1 , ..., pim in the local twin plants of all
components in GS such that the set of left (right) trajectories
of pi1 , ..., pim are reconstructible with respect to GS . For our
example, the bottom part of Figure 4 shows a part of the left
consistent plant T l

f , which is obtained by synchronizing the
renamed local twin plant of G1 and that of G2 (top part of
Figure 4) based on the common left communication events.

C. Algorithm

Algorithm 1 presents the procedure to verify a sufficient
condition of joint diagnosability. As shown in the pseudo-
code, algorithm 1 performs as follows. Given the input as
the set of component models, the fault F that may occur
in the component Gf , we initialize the parameters as empty,
i.e., Gl

S (Gr
S), the subsystem for the left (right) consistency

checking. The procedure of the algorithm can be separated
into two parts: left consistency checking (line 3-12) and right
consistency checking (line 13-24).

Left consistency checking begins with the local twin plant
construction of Gf , the subsystem Gl

S being now Gf (line
3-4). When both the left consistent plant T l

f with respect to
the current left subsystem Gl

S and DirectCC(G, Gl
S) are not

empty (line 5), where DirectCC(G,Gl
S) is the set of directly

connected components to Gl
S (a directly connected component

being one sharing at least one common communication event
with the subsystem), the algorithm repeatedly performs the
following steps to further check left consistency.
1) Select one directly connected component Gi to the subsys-
tem Gl

S and construct its local twin plant Ti (line 6-7).
2) Synchronize T l

f with Ti to obtain left consistent plant for
this extended subsystem based on common left communication
events (line 8). To do this, non-synchronized right communica-
tion events are distinguished by the prefix of component ID.
3) Update the subsystem Gl

S by adding Gi and reduce the
newly obtained T l

f by retaining only paths with ambiguous
state cycles containing observable events for all components
in Gl

S (line 9-10).

96Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 105 / 153

Algorithm 1 Sufficient algorithm
1: INPUT: the system model G = (G1, ..., Gn); the fault F

and the faulty component Gf

2: Initializations: Gl
S ← ∅ (subsystem for left consistency

checking); Gr
S ← ∅ (subsystem for right consistency

checking)
3: T l

f ← ConstructLTP (Gf)

4: Gl
S ← Gf

5: while T l
f ̸= ∅ and DirectCC(G,Gl

S) ̸= ∅ do
6: Gi ← SelectDirectCC(G,Gl

S)
7: Ti ← ConstructLTP (Gi)
8: T l

f ← T l
f∥Ti

9: Gl
S ← Add(Gl

S , Gi)
10: T l

f ← RetainConsisPaths(T l
f)

11: if T l
f = ∅ then

12: return ”F is jointly diagnosable in G”
13: else
14: T r

f ← AbstractRight(Gf , T
l
f)

15: Gr
S ← Gf

16: while T r
f ̸= ∅ and Gl

S ̸= Gr
S do

17: Gi ← SelectDirectCC(Gl
S , G

r
S)

18: T r
f ← T r

f ∥AbstractRight(Gi, T
l
f)

19: Gr
S ← Add(Gr

S , Gi)
20: T r

f ← RetainConsisPaths(T r
f)

21: if T r
f = ∅ then

22: return ”F is jointly diagnosable in G”
23: else
24: return ”Joint diagnosability cannot be determined”

If the left consistent plant T l
f is empty, then there is no

local indeterminate path that corresponds to a set of paths
in the local twin plants of all components in the subsystem
such that their left trajectories are reconstructible (definition
1), which implies the non existence of a globally consistent
local indeterminate path. In this case joint diagnosability
information is returned (line 11-12). Otherwise, if T l

f is not
empty (line 13), then we proceed to check right consistency of
the corresponding paths in T l

f that have been already verified
to be left consistent in the whole system.

Right consistency checking begins with the function
AbstractRight(Gf , T l

f) (line 14), which performs delay
closure with respect to right communication events and ob-
servable events of Gf . Then the subsystem Gr

S is assigned
as Gf (line 15). When the right consistent plant T r

f for the
current right subsystem Gr

S is not empty and Gl
S ̸= Gr

S (line
16), we repeatedly perform the following steps to check right
consistency in an extended subsystem (since left consistency
checking does explore all connected components, for right
consistency checking we only consider the subsystem Gl

S

instead of the whole system).
1) Select a directly connected component Gi to Gr

S from Gl
S

(line 17).
2) Perform the function AbstractRight(Gi, T l

f), which has
been described as above, and then synchronize with T r

f based

on the common right communication events (line 18). To do
this, we rename the right communication events by removing
the prefix of component ID, e.g., Gi:R:C2 renamed as R:C2.
3) Update the subsystem Gr

S by adding Gi and reduce the
newly obtained T r

f by retaining only paths with ambiguous
state cycles containing observable events for all components
in Gr

S (line 19-20).
If the right consistent plant T r

f is empty, then there is no
local indeterminate path that corresponds to a set of paths
in the local twin plants such that their left trajectories and
right trajectories are reconstructible respectively, i.e., there is
no globally consistent local indeterminate path. In this case,
the algorithm returns joint diagnosability information (line
21-22). Otherwise, if T r

f is not empty, we cannot determine
whether the fault is jointly diagnosable or not. Then the
algorithm returns indetermination information (line 23-24). In
other words, empty left consistent plant T l

f or empty right
consistent plant T r

f is a sufficient condition but not a necessary
condition of joint diagnosability.

Theorem 3: In algorithm 1, if the left consistent plant T l
f or

the right consistent plant T r
f is empty, then the fault is jointly

diagnosable, but the reverse is not true.
Proof: :

(⇒) Suppose that T l
f or T r

f is empty and that the fault
is not jointly diagnosable. From non joint diagnosability,
it follows that there exists at least one globally consistent
local indeterminate path. Since global consistency of a local
indeterminate path implies both left consistency and right
consistency, from algorithm 1 we know that, after left and
right consistency checking, this local indeterminate path must
correspond to a path both in T l

f and in T r
f . Thus neither T l

f

nor T r
f is empty, which contradicts the assumption.

(:) Now we explain why non emptiness of both T l
f and

T r
f does not necessarily imply that the fault is not jointly

diagnosable. Suppose that T l
f is not empty and that it contains

two paths, denoted by ρ1 and ρ2, corresponding to two
local indeterminate paths. ρ1 corresponds to a set of paths
ρ1i , 1 ≤ i ≤ n in the local twin plants of all components
and ρ2 corresponds to a set of paths ρ2i , 1 ≤ i ≤ n in all
local twin plants. Now suppose that the right trajectories of
the set of paths ρ1i , 1 ≤ i ≤ n are not reconstructible and the
same for that of the set of paths ρ2i , 1 ≤ i ≤ n. It follows
that the two local indeterminate paths cannot be extended into
global indeterminate pairs and thus are not globally consistent.
Then we further suppose that the right trajectories of the set
of paths ρ11, ..., ρ

1
n−1, ρ

2
n are reconstructible or the same for

the set of paths ρ21, ..., ρ
2
n−1, ρ

1
n. In this case, from algorithm

1, it follows that finally the right consistent plant T r
f is not

empty. Now both T l
f and T r

f are not empty but there is no
globally consistent local indeterminate paths, i.e., the fault is
jointly diagnosable.

Now, we illustrate on our example the fact that the
condition is not necessary. The top part of Figure 5 shows
the results of performing delay closure with respect to
right communication events and observable events both for

97Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 106 / 153

Z0

Z2 Z4 Z6

Z7 Z8 Z11 Z13

O1
G1:R:C2

O1O2
G1:R:C1

G1:R:C2

O1

O1

Z0

Z3 Z5

Z9 Z12

O3
O5

O4 G2:R:C2

O5

O5

O1

Z0

Z0

Z2

Z0

Z2

Z9

Z4

Z12

O1 O4 R:C2
Z6

Z12

O1

O5
O1,O5

Fig. 5. FSM after delay closure on the left consistent plant (Figure 4) for
G1 and G2 (top) and part of the right consistent plant (bottom).

G1 and G2 on the left consistent plant depicted in Figure
4. Then, to check right consistency, we rename again the
right communication events by removing the component
ID such that they can be synchronized. The bottom part of
Figure 5 shows a part of the right consistent plant, which
is not empty. Now, both left and right consistent plants are
not empty, but this does not imply the existence of global
indeterminate pairs that witnesses non joint diagnosability.
Actually, the part of the left consistent plant depicted here
corresponds to two local indeterminate pairs in G1 with
their corresponding left consistent pairs in G2, i.e., one local
indeterminate pair is ((C1.O1.F.O1∗), (O1.C2.O1∗)) in G1

with its left consistent pair ((C1.O3.O5∗), (O3.U2.O5∗))
in G2 and the other local indeterminate pair is
((O2.U1.C2.F.O1∗), (C1.O2.C2.O1∗)) in G1 with
its left consistent pair ((O4.C2.O5∗), (O4.C2.O5∗))
in G2. While the right consistent plant shown here
corresponds to one local indeterminate pair in G1, which is
((C1.O1.F.O1∗), (O1.C2.O1∗)), with its right consistent
pair in G2, i.e., ((O4.C2.O5∗), (O4.C2.O5∗)). Thus, we
can see that the same local indeterminate pair does not
correspond to the same consistent pair in G2 in the left
consistent plant and in the right consistent plant, which means
that this local indeterminate pair cannot be extended into a
global indeterminate pair. Our algorithm gives indeterminate
information for joint diagnosable systems that satisfy the
following condition: for any set of paths including one path
in the local twin plant of each non faulty component and one
local indeterminate path in that for faulty component, if they
are left consistent and right consistent respectively, then their
corresponding local trajectories in the components cannot
constitute an indeterminate pair through synchronization. Our
illustrated example is quite tricky to show the possibility of
indeterminate decision given by our algorithm for a joint
diagnosable system. However, in reality, a system satisfying
the above condition is quite rare and thus this algorithm can
be applicable for a large number of complex systems.

V. DECIDABLE CASE

We have proved the undecidability of joint diagnosability
with unobservable communication events. If we assume their
observability, then this problem becomes decidable. Because
when any communication event is observable, in the local twin
plant, we obtain all pairs of local trajectories with the same
observations, including the same observable communication
events. Thus, each path in the local twin plant corresponds to
a pair of local trajectories with the same sequence of com-
munication events. It follows that, during global consistency

checking, the separate checkings for left and right consistency
becomes now only one checking. While in algorithm 1, the
checking into two separate phases is the reason why it gives
only a sufficient but not necessary condition. Actually, the ob-
servability of communication events makes joint diagnosability
equivalent to classical diagnosability since only one checking
for global consistency implies the same global occurrence
order of observations for global indeterminate pairs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider self-observed distributed systems
where observable events can only be observed by their own
component and thus the distributed and private (w.r.t. obser-
vation) nature of real systems is taken into account. Then, we
prove the undecidability of joint diagnosability checking when
communication events are unobservable, before proposing an
algorithm to test a sufficient condition. We start from local
indeterminate paths and then we check both in sequence left
consistency and right consistency. Due to the observation-
privacy, the global occurrence order of observable events
between different components is not known, which is taken
into account through constructing left and right consistent
plants separately. For computational complexity, as distributed
diagnosability approaches with globally observable events,
in the worst case, our algorithm has polynomial complexity
in the number of system states and exponential complexity
in the number of system components. But our approach is
more autonomous thanks to distributed observations. Then we
briefly discuss the decidable case where communication events
are observable. There is a gap between these two cases as the
unobservable case is undecidable and the observable case is
decidable. Next interesting work is to investigate where is the
frontier between the two cases, i.e., to study the decidability of
joint diagnosability for partial observability of communication
events.

REFERENCES

[1] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Diagnosability of discrete event systems,” in IEEE
Transactions on Automatic Control, 1995, pp. 40(9):1555–1575.

[2] S. Jiang, Z. Huang, V. Chandra, and R. Kumar, “A polynomial time algo-
rithm for diagnosability of discrete event systems,” in IEEE Transactions
on Automatic Control, 2001, pp. 46(8):1318–1321.

[3] Y. Pencolé, “Diagnosability analysis of distributed discrete event sys-
tems,” in Proceedings of 16th European Conference on Articifial Intelli-
gence ECAI’04, Valencia, Spain, August 2004, pp. 43–47.

[4] A. Schumann and Y. Pencolé, “Scalable diagnosability checking of event-
driven systems,” in Proceedings of 20th International Joint Conference
on Artificial Intelligence IJCAI-07, Hyderabad, India, 2007, pp. 575–580.

[5] L. Ye and P. Dague, “Diagnosability analysis of discrete event systems
with autonomous components,” in Proceedings of 19th European Confer-
ence on Artificial Intelligence ECAI-10, Lisbon, Portugal, August 2010,
pp. 105–110.

[6] S. Tripakis, “Undecidable problems of decentralized observation and
control,” in 40th IEEE Conference on Decision and Control, Orlando,
Florida, December.

[7] R. Cori and Y. Métivier, “Recognizable subsets of some partially abelian
monoids,” Theoretical Computer Science, vol. 35, pp. 179–189, 1985.

[8] V. Halava and T. Harju, “Undecidability of infinite post correspondence
problem for instances of size 9,” Theoretical Informatics and Applica-
tions, vol. 40, pp. 551–557, 2006.

98Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 107 / 153

A Combined Formal Analysis Methodology and Towards Its Application to
Hierarachical State Transition Matrix Designs

Weiqiang Kong
Graduate School of IS&EE,
Kyushu University, Japan.

weiqiang@qito.kyushu-u.ac.jp

Leyuan Liu
Graduate School of IS&EE,
Kyushu University, Japan.
leyuan@f.ait.kyushu-u.ac.jp

Hirokazu Yatsu
Graduate School of IS&EE,
Kyushu University, Japan.

hirokazu.yatsu@f.ait.kyushu-u.ac.jp

Akira Fukuda
Graduate School of IS&EE,
Kyushu University, Japan.
fukuda@ait.kyushu-u.ac.jp

Abstract—Interactive theorem proving and model checking
are known as two formal verification techniques that have
complementary features and aims, but overlapping application
areas. In this paper, we investigate a procedure (methodology)
called Combined Falsification and Verification (CFV), by which
the benefits of both interactive theorem proving and model
checking could be enjoyed for formal analysis of software
systems against invariant properties. We have been developing
a SMT-based Bounded Model Checker called Garakabu2 for
falsification of HSTM designs. Interfaces necessary for enabling
the procedure CFV is planned to be introduced into Garakabu2
for providing an auxiliary functionality for users of Garakabu2
who are experts in formal methods.

Keywords-Interactive theorem proving; Bounded Model
Checking; Invariant Properties; State Transition Matrix.

I. INTRODUCTION

As software systems grow in scale and functionality,
there is an increasing demand that these systems should be
reliable. This is especially the case for those systems that
are safety-critical ones, such as banking systems, railway
systems and aircraft guidance systems, in which subtle errors
can cause fatal losses in economy and lives. One way of
improving reliability of software systems is by using formal
verification, which are mathematically-based techniques for
specifying and verifying systems.

Interactive theorem proving [1] and model checking [2]
are known as two formal-verification techniques that have
complementary features and aims, but overlapping applica-
tion areas. The main different characteristics between them
lie with the aspects of state space (infinite vs. finite), automa-
tion (limited vs. fully), and counterexample (not automatic
vs. automatic). There are no hard-and-fast answers to the
priority of one to the other. It is a common consensus that
the two techniques are equally effective and maintainable on
the whole for complex applications, while each technique
has specific strengths and weaknesses. By combining them,
attempts have been made to enjoy the best of both worlds,
but no comprehensive understanding exists.

In this paper, we pursue a better understanding about
the combination of the two techniques through a specific
combination that the OTS/CafeOBJ method [3] is backended
with Maude model checkers [4]. Specifically, we focus

on how the counterexamples automatically generated by
model checkers can help the interactive inductive verification
technique of theorem proving for invariant properties.

Particularly, regarding how to combine the two tech-
niques, we have previously proposed a procedure called
Induction-Guided Falsification (IGF) in [5]. IGF is a proce-
dure that can reveal logical errors (i.e., falsification) lurking
in the specifications for theorem proving as early as possible
by employing model checking during the interactive induc-
tive verification of invariant properties. As an extension of
IGF with respect to verification, we investigate a procedure
called Combined Falsification and Verification (CFV). CFV
is a more general procedure that combines interactive induc-
tive verification of invariant properties with model checking,
which is supposed to be followed by human verifiers.

We have been developing a SMT-based [6] Bounded
Model Checking (BMC) [7] tool called Garakabu2 [8], [9]
for formal analysis of designs specified in Hierarchical State
Transition Matrix (HSTM) [10], a set of State Transition
Matrices organized in a hierarchical structure. HSTM has
been widely accepted and used by particularly Japanese
embedded software industry, and been adopted as the mod-
eling language of commercial model-based tools. However,
one issue is that Garakabu2 only conducts falsification due
to that only a bounded state space is checked with BMC.
We plan to implemented interfaces necessary for enabling
the procedure CFV, and thus, make Garakabu2 usable for
conducting formal analysis of HSTM designs with both
interactive theorem proving and model checking.

The paper is organized as follows. Section II introduces
preliminary knowledge. Section III first reviews IGF and
then proposes the procedure CFV. Section IV investigates
briefly the feasibility/possibility of introducing CFV into
Garakabu2, and Section V concludes the paper.

II. PRELIMINARY

The procedures IGF and CFV are proposed and de-
scribed based on the combination of the OTS/CafeOBJ
method (for interactive theorem proving) and Maude Model
Checkers. In this section, we informally review these two
methods/techniques, while refer readers to [3] and [4] for

99Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 108 / 153

their respective formal details. We use a simple mutual
exclusion algorithm using a queue to demonstrate how to use
the OTS/CafeOBJ method, and respectively, the Maude LTL
model checker to specify and verify invariant properties. The
pseudo-code executed by each process i repeatedly can be
described as follows:

l1 : put(queue, i);

l2 : repeat until top(queue) = i

critical section;
cs : get(queue);

queue is the queue of process IDs shared by all pro-
cesses. put(queue, i) puts a process ID i into queue at the
end, get(queue) deletes the top element from queue, and
top(queue) returns the top element of queue. Each iteration
of the loop at label l2 is supposed to be atomically processed.
Initially each process i is at label l1 and queue is empty.

A. The OTS/CafeOBJ Method

The OTS/CafeOBJ method [3] is a modeling, specification
and verification method. In the OTS/CafeOBJ method, a
system to be verified is first modeled as an observational
transition system (OTS), a transition system that can be
straightforwardly written in terms of equations. The OTS is
then written in CafeOBJ [11] as a behavioral specification
(Some basic data types used in the OTS, such as Nat and
Int are described as general algebraic specifications, which
are imported in this behavioral specification).

The OTS/CafeOBJ specification of the sample mutual
exclusion algorithm consists of three data type modules
(with the names LABEL, PID and QUEUE) and one OTS
module (with the name QLOCK). The three data type mod-
ules define sorts Label, Pid and Queue, respectively. We
show module LABEL as an example and the other two are
defined similarly. Label is written in CafeOBJ as:

mod! LABEL {
[Label]
ops l1 l2 cs : -> Label
op _=_ : Label Label -> Bool {comm}
var L : Label
eq (L = L) = true . eq (l1 = l2) = false .
eq (l1 = cs) = false . eq (l2 = cs) = false .

}

In the module LABEL, [Label] is the declaration of
the sort Label; l1, l2 and cs are declared constants; L is
a declared variable. Note that operator _=_ is the equality
predicate for sort Label.

The OTS module specifies behaviors (state transitions)
of the algorithm. The sort denoting states of the OTS is
declared as Sys. The operators denoting the observers and
transitions are declared as follows (where ‘--’ marks the
rest of the line as a comment):

-- observers
bop pc : Sys Pid -> Label

bop queue : Sys -> Queue

-- transitions
bop want : Sys Pid -> Sys
bop try : Sys Pid -> Sys
bop exit : Sys Pid -> Sys

Pid, Label and Queue are the sorts denoting process
IDs, labels and queues of process IDs, respectively. The cor-
responding data type modules (LABEL, PID and QUEUE)
defining these three sorts are imported in the OTS module.

Let I, J be CafeOBJ variables for Pid, and S be a
CafeOBJ variable for the hidden sort Sys of the OTS.
Operator try is defined with the following equations:

-- for try
op c-try : Sys Pid -> Bool
eq c-try(S,I)

= (pc(S,I) = l2 and top(queue(S)) = I) .
--
ceq pc(try(S,I),J)

= (if I = J then cs
else pc(S,J) fi) if c-try(S,I) .

ceq queue(try(S,I)) = queue(S) if c-try(S,I) .
ceq try(S,I) = S if not c-try(S,I) .

c-try(S,I) denotes the effective condition of the
transition try, which checks whether process I’s label is
l2 and the top element of the queue is equal to I. If the
effective condition is satisfied, the transition try will be
executed, and the execution will change the return value of
observer pc to cs if the two processes I and J are the same.
The execution of transition try does not change the return
value of observer queue. If the effective condition does not
hold, the state is not changed, which is described by the last
equation. The other two operators want and exit could
be defined with CafeOBJ equations in a similar way, which
are not shown here.

In the OTS/CafeOBJ method, the verification of invariant
properties is mainly done by structural induction, which
means that what we need to do is to show firstly that the
predicate to be proven invariant holds on any initial state
(called the base case), and then to show that the predicate
is preserved by execution of all transitions of the OTS
(called the inductive case). In each inductive case, the case
is usually split into multiple sub-cases with basic predicates
(equations) declared in the CafeOBJ specification.

B. Maude Model Checker

Maude [4] is a high-performance language and system
supporting both equational and rewriting logic computation
for a wide range of applications. An important feature of
Maude is that it has model checking facilities such as the
search command and the Maude LTL model checker.

The basic units of Maude specifications are modules.
There are two kinds of modules: functional modules and
system modules. Maude functional modules define data
types and operations on them by means of equational theo-
ries. System modules specify the initial model of a rewrite

100Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 109 / 153

theory, which are essentially transition systems. A rewrite
specification has rule statements: crl [Label] T1 => T2

if C1 /\ C2 /\ ... /\ Ck, in addition to the contents
of functional modules. The condition part can be omitted if
it is true. For a finite system, Maude search command
explores all possible execution paths from the starting term
(that represents an initial state) for reachable states satisfying
some property.

C. A Specification Translation Method

We have proposed in [12] a way of translating CafeOBJ
specifications for OTSs (the OTS/CafeOBJ specifications)
into Maude specifications of a kind of rewriting transition
systems for Bounded OTSs (the RWTS/Maude specifica-
tions). Bounded OTSs are the extension of OTSs to make it
possible for the model checkers to explore a finite reachable
state space of an OTS for counterexamples. To express
the OTS/CafeOBJ expressible invariant properties in Maude
forms, we have also proposed a simple way to generate
Maude search commands from OTS/CafeOBJ formulas
for invariant properties. We have proved that the proposed
way of translation is sound with respect to counterexamples,
namely that for any counterexample reported by Maude
model checkers for the translated RWTS/Maude specifi-
cations, there exists a corresponding one in the original
OTS/CafeOBJ specifications. We refer readers to [12] for
translation details.

III. THE PROCEDURE OF COMBINED FALSIFICATION
AND VERIFICATION (CFV)

In this section, we first give a brief review of the pro-
cedure Induction Guided Falsification (IGF) [5], and then
introduce our proposed procedure – Combined Falsification
and Verification (CFV), an extension of IGF.

A. A Review of Induction Guided Falsification (IGF)

As mentioned above, in the OTS/CafeOBJ method, al-
though some invariant properties may be proved by rewriting
and/or case splitting only, the generally used verification
technique for proving invariant properties is structural in-
duction [3]. The general procedure of structural induction
is that: first, checking the base case, to show whether the
state predicate to be proven invariant holds on any initial
state, and second, checking the inductive case, to show
whether the state predicate is preserved by the execution of
any transition of the system. During proving the inductive
case, we may have to discover and use other state predicates
(called auxiliary state predicates) to strengthen the inductive
hypothesis. Finding suitable state predicates to strengthen
the inductive cases may be the most critical and difficult
part of formal verification using theorem proving.

Structural induction works well when a state predicate to
be proven invariant is indeed an invariant. However, it is
quite often that we are trying to prove some state predicates

that are essentially not invariants. Following structural induc-
tion, the usual way to know that a state predicate p under
proving is not an invariant, is to show that p does not hold
on any initial state, or to find some auxiliary state predicate,
which is needed to prove p, but does not hold on any initial
state. However, to find such an auxiliary state predicate,
a lot of proof efforts are usually needed to manifest the
problem. Such proof efforts can be extremely painful. Thus
it is preferable that there exists some way, by which finding
out errors lurking in the specifications can be easier and as
earlier as possible.

Induction Guided Falsification (IGF) is a procedure that
can reveal logical errors lurking in the specifications for
theorem proving (falsification) as early as possible by em-
ploying model checking during the inductive verification of
invariant properties, and the inductive verification can be
used to reduce the state space needed for model checking to
search a counterexample. The key concept that IGF lies on is
necessary lemmas, which are obtained by applying effective
case splits.

Definition 1: Effective case splits and Necessary lemmas.
Consider proving a state predicate p to be invariant (i.e.,
to show p(υ) holds in any reachable state υ ∈ RS)
by structural induction on the set of all reachable states
RS . In an inductive case where a transition τy1,...,yn is
taken into account, basically all we have to do is to prove
P (υc, cl1 , . . . , clα) ⇒ P (τc1,...,cn(υc), cl1 , . . . , clα), where
υc is a constant denoting an arbitrary state and each ck is
a constant denoting an arbitrary value of data type Dk. We
suppose that a proposition q1∨ . . .∨qL is a tautology, where
each ql is in the form Ql(υc, c1, . . . , cn, cl1 , . . . , clα). The
case characterized by ql is called a sub-case with respect to
the inductive case. If the truth value of P (υc, cl1 , . . . , clα) ⇒
P (τc1,...,cn(υc), cl1 , . . . , clα) can be determined assuming
each ql, then q1∨ . . .∨qL is called an effective case split for
this inductive case. Moreover, if the truth value is false, then
∀υ : RS . ∀y1 : D1, . . . , yn : Dn, ∀xl1 : Dl1 , . . . , xlα : Dlα .
¬Ql(υ, y1, . . . , yn, xl1 , . . . , xlα) is called a necessary lemma
of p(υ).

Note that this necessary lemma can surely make the induc-
tive case true. If this necessary lemma is an invariant, then
it means that the arbitrary state characterized by the sub-case
is not reachable, and thus the false case is discharged and p
is possibly an invariant; otherwise if this necessary lemma
is not an invariant, then it means that the arbitrary state
characterized by the sub-case is reachable, and thus p is not
an invariant.

The procedure IGF is constructed based on two
lemmas as its theoretical foundations. In the following,
let q(υ) be ∀y1 : D1, . . . , yn : Dn, ∀xl1 : Dl1 , . . . , xlα :
Dlα . ¬Q(υ, y1, . . . , yn, xl1 , . . . , xlα), and let ql be
Q(υc, c1, . . . , cn, cl1 , . . . , clα) where υc is a constant
denoting an arbitrary state and each ck is a constant

101Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 110 / 153

denoting an arbitrary value of Dk.

Lemma 1: Let ∀υ : RS . q(υ) be a necessary lemma
of ∀υ : RS . p(υ). If there exists a counterexample
ceq ∈ CXS,q and depth(ceq) = N , then (1) ceq ∈ CXS,p,
or (2) there exists a counterexample cep ∈ CXS,p such that
depth(cep) = N + 1.

Lemma 2: If CX S,p is not empty and
depth(cemin

S,p) = N + 1 , then there exists a necessary
lemma ∀υ : RS .q(υ) of ∀υ : RS .p(υ) such that CXS,q is
not empty and depth(cemin

S,q) = N .

Following the theories described in the above two
lemmas, especially in lemma 2, we know that if a state
predicate p to be proven invariant has counterexamples,
then we can surely find and systematically construct some
necessary lemmas. In turn, to prove these constructed
necessary lemmas, if they do hold on any initial states,
it is surely that we can find and systematically construct
other necessary lemmas, and so on. As with this recursive
process goes on, the depths of counterexamples of these
necessary lemmas decrease. And from Lemma 1, we can
conclude that if counterexamples exist for some necessary
lemma, then p has counterexamples. This relieves us from
traversing all needed necessary lemmas until we found one
does not hold on any initial state.

Definition 2: Procedure IGF.
Input: an OTS and a state predicate p to be proven invariant.
Output: Success or Fail.

1. P := {p} and Q := ∅.
2. Repeat the following until P = ∅.

(a) Choose a state predicate q from P and P := (P−{q}),
where q ∈ min-level(P).

(b) Model checking q in a finite reachable state space.
If found a counterexample, terminate and return Fail.

(c) Prove ∀υinit : I. q(vinit).
If it reduces to false, terminate and return Fail.

(d) Find a set G of necessary lemmas such that
∀υ.[((

∧
g∈G g(υ))∧q(υ)) ⇒ ∀τy1,...,ynq(τy1,...,yn(υ))]

reduces to true.
(e) Q := Q∪ {q} and P := P ∪ (G −Q).

3. Terminate and return Success.

The basic idea of the procedure IGF is that: whenever
trying to prove a state predicate, which is either the state
predicate concerned (say p) or a constructed necessary
lemma, model checking it first. Since model checking only
checks a finite reachable state space, we use structural
induction to prove p even if model checking did not find any
counterexample. The falsifying and verifying is conducted
in a breadth-first order with respect to the proof tree (to be

introduced later), which is guaranteed by selecting a state
predicate of minimal level in each loop described in step
2.(a).

B. The Algorithm of CFV

We have proved in [5] that IGF is sound and complete
with respect to falsification, and is sound but not complete
with respect to verification. This implies that IGF may work
well for proving a state predicate with counterexamples,
namely that for falsifying it. But in the situation that a given
state predicate is indeed an invariant (no counterexample),
the procedure may not terminate and successfully prove the
state predicate due to using necessary lemmas as the only
way to strengthen inductive hypothesis.

As an extension of IGF for enhancing the verification
capability, Combined Falsification and Verification (CFV)
is a more general procedure that aims at both falsification
and verification. The main difference between the proce-
dures IGF and CFV lies on using what kind of lemmas
to strengthen the inductive hypothesis. In the procedure
IGF, we always construct and use necessary lemmas to
strengthen inductive hypothesis, but in the procedure CFV,
we systematically use some other stronger lemmas (we say
a state predicate p is stronger than another q if p ⇒ q)
that may be more simple and appropriate, and until no such
stronger lemmas suffice to strengthen inductive hypothesis,
the necessary lemmas are used at last, which are the weakest
lemmas.

The algorithm of the procedure CFV is shown in Defi-
nition 3. Basic idea of the procedure CFV is almost same
as the procedure IGF. But since the state predicates used
to strengthen the inductive hypothesis are sometimes not
necessary lemmas, we need to consider more (rather than
directly concluding that the state predicate concerned is not
an invariant, as done in IGF) when a counterexample is
reported for a state predicate, or the state predicate does
not hold on any initial state, because in both cases, what we
know is only that the state predicate itself is not an invariant.

The key operation or function in the procedure CFV
is process. When a counterexample is found by model
checking for a state predicate, or the state predicate does not
hold on any initial state, operation process is called and it
returns different values according to the category of the state
predicate. The possible output of operation process is either
F, which means the procedure CFV should be terminated
and return Fail; or (X,Y), where X denotes a set of state
predicates that are not appropriate or correct and should
be removed from P and Q, and Y denotes a set of state
predicates that are possibly appropriate or correct and should
be added to P .

The primary part (except the details of the operation
process) of the verification procedure CFV can be repre-
sented as a flow chart as shown in Figure 1.

102Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 111 / 153

We now explain the basic idea of the procedure CFV by
using some examples. Assume a tree-like structure shown
in Figure 2.(a) that represents the proof of a state predicate
p. The tree structure is rooted, unordered, and labeled.
The tree is supposed to be constructed using a breadth-
first manner. The root of the tree is p, and all the other
offspring nodes are constructed lemmas (state predicates)
to strengthen certain inductive hypothesis for proving their
respective parent nodes (state predicates), where the nodes
with superscript n are necessary lemmas and those without
superscript n are not necessary lemmas.

Assume that we find a counterexample for state predicate
z by model checking, or z does not hold on any initial state,
which means that z is not an invariant. Since z is not a
necessary lemma (without the superscript n), the procedure
CFV will then use a systematical way (to be introduced later)
to generate and use another state predicate, say s instead of
z, to strengthen an inductive hypothesis (characterized by
the label l8) to prove rn2 , which is shown in Figure 2.(b).
And the state predicate z (and also all its children nodes, if
any) will be removed from P and Q, and s will be added
to P .

We now assume that the state predicate z is a necessary
lemma (denoted by zn shown in Figure 3.(a)), and we know
z is not an invariant by either model checking or checking
any initial state, then the procedure CFV will try to find,
in its parent list, the nearest state predicate to zn that is
not a necessary lemma (assume this state predicate is x),
and try to generate and use other lemmas, instead of x, to
strengthen the inductive hypothesis denoted by label(x). Let
us see the example in Figure 3.(a), since the nearest state
predicate to zn that is not a necessary lemma is q2, then
we know that q2 should be replaced by some other state
predicates. Note that since q2 is also used to strengthen the
inductive hypothesis characterized by l4 to prove qn1 , then
the procedure will construct two lemmas, say s1 and s2, to
strengthen the inductive hypothesis characterized by l4 and
l2, which is shown in Figure 3.(b). The state predicate q2
and all its recursive children nodes should be removed from
P and Q, and the two newly constructed state predicate s1
and s2 will be added to P .

As another example, let us see Figure 4 (see below). If
we find a counterexample for the state predicate zn, or zn

does not hold on any initial state. Since zn is a necessary
lemma, and there exists a parent list of zn, say rn2 qn2 , where
any state predicate in this list is a necessary lemma. Then
the procedure CFV is terminated and returns Fail, which
means that the state predicate p to be proven invariant is not
an invariant. This situation is exactly same as the procedure
IGF, which is based on the theory defined in Lemma 1.

After introducing the procedure CFV, another thing left
unexplained is how the procedure systematically constructs
other state predicates when a state predicate, which is not
a necessary lemma, is not appropriate, as mentioned in

p q
n

2

r1

q3

r
n

2

r
n

3

q1

q
n

2

z
n

level 0 level 1 level 2 level 3

ce

ce
ce

ce

l
1

l
2

l
3

l
4

l
5

l
6

l
7

l
8

Figure 4. The third sample tree of proving p with CFV

the above examples. To explain this, let us first see more
exactly what is the form of a sub-case. The sub-case is
characterized by a set of equations, say E. When CafeOBJ
system reduces to false for this sub-case, a necessary lemma
in the form ¬(

∧
e∈E e) can be constructed. Note that from

this set of equations E, we can also systematically construct
other state predicates, and each such state predicate is in
the form ¬(

∧
e′∈E′ e′), where E′ ∈ 2E , and these state

predicates are stronger than the necessary lemma since
¬(

∧
e′∈E′ e′) ⇒ ¬(

∧
e∈E e). Basically, all of these state

predicates are candidates that can be used, instead of the
necessary lemma, to strengthen inductive hypothesis. How-
ever, only if they satisfy two conditions, they become the
real candidates that will be used by the procedure CFV. The
first condition is of course they should be able to make the
inductive case true; and the second condition is that by
model checking them, no counterexample should be found.

Let us consider proving ∀υ : RS . p(υ) is an invariant. In
an inductive case denoted by a transition τy1,...,yn , CafeOBJ
system returns false for a sub-case characterized by a set
of equations e1, e2, e3, e4. Then all the lemmas we can
construct from these equations are shown below:

One equation ¬e1, ¬e2, ¬e3, ¬e4
Two equations ¬(e1 ∧ e2), ¬(e1 ∧ e3), ¬(e1 ∧ e4)

¬(e2 ∧ e3), ¬(e2 ∧ e4), ¬(e3 ∧ e4)
Three equations ¬(e1 ∧ e2 ∧ e3), ¬(e1 ∧ e2 ∧ e4)

¬(e1 ∧ e3 ∧ e4), ¬(e2 ∧ e3 ∧ e4)
Four equations ¬(e1 ∧ e2 ∧ e3 ∧ e4)

After the procedure CFV filtered some of them according
to the two conditions, CFV will use the remaining lemmas
to strengthen the inductive cases in an order from “One
equation” to “Four equations”, and the “Four equations”
lemma is the necessary lemma.

IV. TOWARDS FORMAL ANALYSIS OF HSTM DESIGNS
WITH THE PROCEDURE CFV

Hierarchical State Transition Matrix (HSTM) [13] is a
table based modeling language for developing designs of
software systems. A HSTM design, namely a design devel-
oped with HSTM, consists of multiple STMs organized in
a hierarchical structure. Each STM models a component of
the design in the form of a table and specifies behaviors

103Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 112 / 153

of the component when certain events are dispatched in
certain states. A simple sample STM is shown below for
demonstration purpose. The informal meaning of the STM is
that: the STM has two states S1 and S2; there are two events
e1 and e2 that may happen to the STM; if, for example, e1
is dispatched when the STM is in states S1, action1 will
be executed and then the STM switches to states S2. The
other cells have similar meanings.

S1 S2

e1
S2 S1

action1 action2

e2
S2 S1

action3 action4

HSTM has been widely accepted and used by particularly
Japanese embedded software industry, and has been adopted
as the modeling language of commercial model-based tools
such as ZIPC [10]. However, despite of its popularity,
there is still lack of mechanized formal verification supports
for conducting rigorous and automatic analysis to improve
reliability of HSTM designs. Based on this need, we have
been developing a HSTM model checker called Garakabu2
[8], [9].

Garakabu2 implements SMT-based [6] Bounded Model
Checking (BMC) [7] algorithms for verification of HSTM
designs. In addition, specific considerations for its practical
usabilities for non-experts in formal methods have been
taken into account during its development. However, one
issue is that Garakabu2 only conducts falsification due to that
only a bounded state space is checked with BMC. This is
sufficient for normal users like software engineers who wish
to explore bugs in HSTM designs. But for expert users like
those who have sufficient knowledge on inductive theorem
proving, it may be desirable that verification functionality
(i.e., proving correctness) is also available in Garakabu2.

Due to the fact that each STM is essentially a state
transition system and a HSTM is just a set of STM organized
in a hierarchical structure, it is possible that a HSTM
design could be represented with OTS and thus be formally
analyzed with the procedure CFV. One key issue in using
CFV to analyze HSTM designs is to translate a HSTM
design into an OTS (which is to be specified in CafeOBJ
specification). This is not difficult since a parser for HSTM
designs has been implemented in Garakabu2 and is ready to
be used. We have been formalizing the translation rules from
HSTM designs into OTSs and the details will be reported
in another opportunity.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we first briefly reviewed the procedure
IGF [5], and then described our proposed procedure CFV,
which is an extension of IGF for both falsification and
verification of systems specified in CafeOBJ specification
(with OTS as the background concept). Note that although

the proposed procedure CFV relies on some specific features
of the OTS/CafeOBJ method and Maude model checkers, it
may be revised and extended to combinations of inductive
verification techniques of other theorem proving and other
model checking techniques while remaining the basic idea
of the procedure.

Furthermore, we simply investigated the possibility of
applying the procedure CFV to formal analysis of HSTM
designs. We have been formalizing translation rules from
HSTM designs into OTSs. In the future, we plan to imple-
ment this translation in Garakabu2, and implement interfaces
to connect Garakabu2 with CafeOBJ and Maude systems,
by which Garakabu2 could be used by formal methods
experts for conducting formal analysis of HSTM designs
with both interactive theorem proving and model checking
by following the CFV procedure.

REFERENCES

[1] J. Mseguer, M. Palomino, and N. Martı́-Oliet, “Equational
abstractions.” in CADE, 2003, pp. 2–16.

[2] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT
Press, 1999.

[3] K. Ogata and K. Futatsugi, “Proof Scores in the
OTS/CafeOBJ Method,” in FMOODS 2003, ser. LNCS, vol.
2884. Springer, 2003, pp. 170–184.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and C. Talcott, Maude 2.0 Manual: Version 2.1,
March 2004.

[5] K. Ogata, M. Nakano, W. Kong, and K. Futatsugi, “Induction-
Guided Falsification,” in ICFEM 2006, ser. LNCS, vol. 4260.
Springer, 2006, pp. 114–131.

[6] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, Handbook
of Satisfiability. IOS Press, 2009, vol. 185, ch. 26, pp. 825–
885.

[7] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in 5th TACAS. Springer, 1999, pp.
193–207.

[8] W. Kong, N. Katahira, M. Watanabe, T. Katayama,
K. Hisazumi, and A. Fukuda, “Formal verification of software
designs in hierarchical state transition matrix with SMT-based
bounded model checking,” in 18th APSEC. IEEE CS, 2011,
pp. 81–88.

[9] W. Kong, T. Shiraishi, N. Katahira, M. Watanabe,
T. Katayama, and A. Fukuda, “An SMT-based approach to
bounded model checking of design in state transition matrix,”
IEICE Transactions on Information and Systems, vol. E94-
D(5), pp. 946–957, 2011.

[10] CATS Co., Ltd., Japan, “ZIPC v10,” www.zipc.com, [re-
trieved: October 2012].

[11] R. Diaconescu and K. Futatsugi, CafeOBJ Report, ser.
AMAST Series in Computing. World Scientific, 1998, no. 6.

[12] W. Kong, K. Ogata, T. Seino, and K. Futatsugi, “A
Lightweight Integration of Theorem Proving and Model
Checking for System Verification,” in APSEC 2005. IEEE
CS, 2005, pp. 59–66.

[13] M. Watanabe, “Extended hierarchy state transition matrix
design method,” in CATS Technical Report, 1998.

104Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 113 / 153

Definition 3: Procedure CFV.
Input: an OTS and a state predicate p to be proven invariant.
Output: Success or Fail.

1. P := {p} and Q := ∅.
2. Repeat the following until P = ∅.
(1) Choose a state predicate q from P and P := (P − {q}), where q ∈ min-level(P).
(2) Case [Model checking q in a finite reachable state space] of:

(a) Counterexample: case [process(p, q)] of:
(I) F, then terminate and returns Fail.
(II) (X,Y), then Q := (Q−X), P := ((P −X) ∪ (Y −Q)).

(b) No counterexample, case [prove ∀υinit : I. q(vinit)] of:
(I) reduces to false, case [process(p, q)] of:

(1◦) F, then terminate and returns Fail.
(2◦) (X,Y), then Q := (Q−X), P := ((P −X) ∪ (Y −Q)).

(II) reduces to true, then G := valid(q); Q := Q∪ {q}; P := P ∪ (G −Q).
3. Terminate and return Success.

where:

process(m,n):
Input: two state predicates m and n.
Output: either F or a tuple (X,Y), where X and Y are two sets of state predicates.

1. X := ∅ and Y := ∅.
2. Case [n = m] of:
(1) true, then terminate and return F.
(2) false, case [n is a necessary lemma] of:

(a) true, then case [(parentList(n) = ∅) ∨ (∃List ∈ parentList(n), where any
node in List is a necessary lemma)] of:

(I) true, then terminate and return F.
(II) false, then For each List ∈ parentList(n) do

(1◦) X := X ∪ childrenSet(z), Y := Y ∪ tc-valid(previous(z), z),
where z is the nearest state predicate in List to n that is
not a necessary lemma;

(2◦) return (X,Y).
(b) false, then

(I) X := {n} ∪ childrenSet(n);
(II) For all z ∈ parent(n) do

(1◦) Y := Y ∪ tc-valid(z, n);
(2◦) return (X,Y).

valid(m) = {G | ∀v : Υ.[((
∧

g∈G g(v)) ∧m(υ)) ⇒ ∀τy1,...,yn : T . m(τy1,...,yn(v))]}.

tc-valid(m,n) = n′, where under the case denoted by label(n), which includes the inductive case denoted by a transition
τy1,...,yn := lt(label(n)), and a sub-case denoted by lc(label(n)), such that: ∀υ : Υ.[n′(υ)∧m(υ) ⇒ m(τy1,...,yn(υ))]
reduces to true.

105Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 114 / 153

start to prove p is an invariant

select an element from ,

model checking

ce?

check base case on init

holds?

prove inductive cases and find a

set of lemmas , and

check

empty?

Fail and terminate

Success and terminate

No

No

Yes

No

Yes

Yes

process(,)

output

F

(X,Y)

Figure 1. Flow chart representation of the procedure CFV

p q2

r
n

1

q3

r
n

2

r
n

3

q
n

1

q2

z

n

l
1

l
2

l
3

l
4

l
5

l
6

l
7

l
8

level 3 level 2 level 1 level 0

p q2

r
n

1

q3

r
n

2

r
n

3

q
n

1

q2

s

l
1

l
2

l
3

l
4

l
5

l
6

l
7

l
8

level 1 level 2 level 0 level 3

 (a) (b)

Figure 2. A sample tree of proving state predicate p with CFV

p q2

r
n

1

q3

r
n

2

r
n

3

q
n

1

q2

z
n

l
1

l
2

l
3

l
4

l
5

l
6

l
7

l
8

level 1 level 2 level 0 level 3

(a)

p

q3

r
n

3

q
n

1

s1

l
1

l
2

l
3

l
4

l
7

level 1 level 2 level 0

s2

(b)

Figure 3. Another sample tree of proving state predicate p with CFV

106Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 115 / 153

Model Checking Executable Specification for Reactive Components

Bruno Blašković
Faculty of Electrical Engineering and Computing

Zagreb, Croatia
Email: bruno.blaskovic@fer.hr

Abstract—Finding design errors in the earliest phase of
software developments is still challenging area of research. This
paper deals with model checking of executable specification.
Executable specification is introduced as C program. After
that, C program is transformed into an input model for the
Spin model checker. At the end, an example for the Zune30
bug is presented.

Keywords-executable specification; reactive component; soft-
ware model checking; model transformation

I. INTRODUCTION

Telecommunication network software system can
be modeled as the set of hierarchically connected
communicating finite state automata (FSA). The basic unit
of behavior is reactive component, modeled as FSA and
referred as model M in this paper. FSA is implemented
in C language subset. Such approach provides executable
specification for component behavior analysis. In this
paper, analysis is focused on component model checking.
Executable specification can also serve as starting point
for test cases definition, component simulator and target
code skeleton generation. Component quality assurance is
provided through safety (“Bad things will never happen”)
and liveness (“Good things will eventually happen”)
properties verification.

If property do not hold, component exhibits illegal
behavior. Model checking approach define the model and
check the properties of the model by means of assertions
(invariants) and temporal logic formulas. In the case of
illegal behavior, model checker provides counterexamples.
Counterexample consists of a set of actions that describe
paths (sequence of actions) to the errors.

FSA transitions describe dynamic behavior: C instructions
are abstractions for internal actions like method calls or
external actions like message sending/receiving events.
There are no pointers or arrays in C code yielding
straightforward translation; there is always the same FSA
with different syntax representation.

First, designer defines FSA as C program. After that,
C program is transformed to the form suitable for model
checking. In short, FSA is designer’s viewpoint about
component behavior.

In order to model check or verify component
behavior additional commands like assertions

(assert(<condition>)) and labels are included
into the program source. If all assertions are true, or if they
are never false, program satisfies “liveness” property. The
problem is where to put assertions: false assertion are hard
to detect because that part of the code can be unreachable.
Even the more, desired behavior can include another kind
of assertions that can be true “many times”, “infinitely
often” or “only once”. Such “assertions” are expressed
with Linear Time Logic (LTL) formula. In Section VI-A,
an example of linear time logic formula usage is presented.

Labels are used to check regular behavior and illegal
behavior, respectively. Program is “safe” if “error” labels
are always be unreachable, and “end” labels are eventually
reachable. Program testing will not find all false assertions,
so additional efforts are required. Model checker Spin
has built–in facilities to detect assertion violations and
unreached labels. In this paper we use model checker
Spin to find unreached “end–state” and “non–progress”
loops. Spin can also check concurrent errors from the
specification. We expect separate study in order to extend
specification with concurrent issue and to improve the
abstraction for unbounded data values. Another set of
problems are space–time limits. Space time limits are
known as state explosion problem, because number of
states grows exponentially. If only part of the system,
consisting of several components is under consideration,
state explosion problem can be under control.

This paper is organized as follows. After Introduction, in
Section II related work is described. Scope and motivations
are in Section III and theoretical background is presented in
Section IV. After that, sketches of ψ–algorithms for model
transformations are introduced in Section V. Description
of a C source to the Promela code is in Section VI. The
results of an experiment are given in Section VI-A, and, at
the end, are conclusion and further research directions.

II. RELATED WORK

First, we introduce three approaches where specification
in various formalism is translated into an model for model
checkers. The origin of formal specification with Statechart
is introduced by Harel in [1]. Statechart is an extension
of FSA. Every statechart user defines specific properties
that are hard to express in unique specification language,
because statechart have no unique and clear semantic.

107Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 116 / 153

Object–oriented statechart semantic based on Statemate tool
is formalized as labeled transition system in [2]. Graphic
editing tool TCM can produce output to SMV, NuSMV
and KRONOS model checkers. Bharadwaj and Heitmeyer
[3] uses SCR (Software Cost Reduction) tabular notation
as specification language. SCR specifications is transformed
into an input model for Spin and SMV model checker. In
all mentioned approaches [1] [2] [3], model definition phase
prepares specification for model checkers. Our approach
uses FSA encoded in C language. With such an approach,
we avoid problems with semi–formal statechart semantic and
the usage of specification languages outside UML set of
diagrams.

Translating C programs to Promela [4] is another ap-
proach that checks C programs. A similar approach exists in
[5] where Promela model is extended with direct inclusion
of C code. Both approaches [4] and [5]) addresses C–code
model checking. Our approach targets model checking of
specification modeled as C program.

In [6] [7], cbmc C program model checker is described.
C source is abstracted as Boolean program that is checked
with satisfiability (SAT) tool. Our approach uses model
extractor that is the part of cbmc. Extracted FSA follows
BNF definition for FSA introduced later in Figure 4. We
find this combination of tools useful because cbmc extracts
models and Spin can check properties expressed in linear
time temporal logic. At the end of this Section, the model
checking fundamentals are introduced in [8]. Explicit state
model checker Spin with industrial strength experience is
described in [9]. Spin modeling language is called Promela.

III. SCOPE AND MOTIVATION

It is well known fact that design errors like deadlock
states, non–progress loops, illegal program termination, and
message buffers overflow must be discovered as early as
possible during the software life cycle. This paper is fo-
cused on executable specification analysis and the model
transformation of executable specification to Promela model.
For that purposes an illustrative example regarding zune30
bug has been selected from [10]. In our case, real scale
example were components for e–Invoice service where an
infinite loop has been discovered. Zune30 bug example
has similar features as find in real scale examples, like
unreached code or infinite loop. Similar piece of code with
“small” programming mistake in telephone switch software
canceled 50% of 133 million long distance calls.

The approach introduced within the paper bridges the gap
between the tools capable of finding design errors and semi–
formal specification. Usual approach for system specification
is textual or semi–formal form, using UML or SDL+MSC
diagrams. This paper starts from the C language model
M as executable specification of state–transition system. It
is designers responsibility to provide component model as

much as possible close to the original. For that purpose,
C language specification uses only small part of C lan-
guage constructs that have direct implementation in Promela,
because there is no need for pointers, complex data–type
structures or arrays. After translation to Promela model, Spin
[9] builds pan validator where checking procedures take
place. Besides that, after model checker has proved desired
properties, executable specification can be transformed to
code skeleton (target language implementation).

Another possibility is to model specification as statechart
and directly transform to the model that can understand
the model checker. This approach yields several design
inconsistencies:

− the semantic for a Statechart model of specification and
the semantic of Promela model for the same specification
is in general case different because specification can be
interpreted in different ways,

− introducing executable specification as an intermediate
representation (Figure 3.) provides the “simulator” for
real application yielding information about overall system
semantic and behavior, avoiding design inconsistencies,

− target code and model checking results are inconsistent
without executable specification.

Instructions from the C language executable specifications
are transitions that represents the real system behavior. Sin-
gle transition is model or abstraction that describe method
call, indivisible sequence of method calls, FSA execution
or network of connected FSA executions. Although the
model M , in most cases, describes single FSA, we can easily
compose communicating FSA to the single higher level
FSA using asynchronous product of FSA. Asynchronous
product of FSA is built in feature of Spin (for details see
[9] Appendix A). Each FSA is separate process in Promela
model. Generic modelM for reactive component or generic
FSA or proces from Promela are syntactically different but
semantically equivalent basic building block for component
specification and definition. Transition tM from Figure 3.
describes the position of executable specification within
the generic model, models behavior and unify transition
semantic between all models. Each transition has the same
form as Mealy FSA but with extended transition semantic
(1).

input event

output action
(1)

Input events are:

− guards, control–flow instructions, i.g., if
− message receiving events

Output events are:

- message sending events,
- method calls,
- assignments,
- call of another FSA or FSA network.

108Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 117 / 153

IV. THEORETICAL BACKGROUND

Theoretical background is based on model M transfor-
mations [11] and consists of the following parts :
(1) “Triptych” environment for two–phase model transfor-

mations (Figure 2): (1) from high–level specification or
requirements to executable specification and (2) from
executable specification to verification (Promela–prml)
or (2) to implementation code.

(2) model M for generic reactive component (Figure 3).
Component is finite state automaton (FSA) with C lan-
guage or Promela proctype construct representation,

(3) C program as executable specification (Section V-C).
Executable specification can also be tested like any piece
of C code,

(4) Mtr model transformation as framework for model
checking executable specification (Figure 1),

(5) ψ algorithms for Mtr model transformations. Due to
restricted instruction set in C specification, model trans-
formations are simple Perl scripts.

We perform model checking for model M for property ϕ.
Our approach follows usual approach [8] for model checking
as described in Equation 2:

MFSA |= ϕLTL (2)

A model M is an executable specification expressed as
state–transition system or more precisely as extended FSA
(eFSA). Extended FSA models:
− single eFSA,
− network of communicating FSA (cFSA),
− hierarchical network of communicating eFSA (hcFSA).
There is no universal approach for model checking exe-
cutable specification. That means every domain is specific
regarding designers or users requirements. As a conse-
quence, we focus our attention to reactive software com-
ponents generic model M (Figure 3) as the basic building
block for FSA, extended FSA (eFSA), communicating FSA
(cFSA) and hierarchical FSA (h(cFSA)).

From initial state s0 (Figure 3) transition to initiates
the component. There are two possible end states, regular
(end_OK) and illegal (end_NOK), respectively.

Regular behavior is abstracted within the single transition
tM. As previously said tM can abstract the behavior of
cFSA or h(cFSA). Illegal behavior is executed within t¬M
transition. In regular cases FSA returns to initial state s0 with

Mω
C

ψ2:2fg;fg2prml Mπ
prml

ψ1Mα
spec

Figure 1. Model transformation sequence

tOK transition while in illegal cases FSA returns to initial
state with tNOK transition (represented with dashed line on
Figure 3), respectively. Following Equation 2. we introduce

model M as triple in Floyd–Hoare logic and properties ϕ
for safety and liveness:

M≡ 〈{INV pre} code {INV post}〉 −→ 〈ϕ ≡ ♦ � np 〉
(3)

Introduced linear time logicformula is checked with the pan
analyzer of model checker Spin [9]. Executable specification

<exeutable-spei�ation>

<prml>

ψ2:2fg;fg2prml

ψ1

<spei�ation>

<ode>

Figure 2. Triptych

is derived from top level semi–formal specification as de-
scribed on Figure 2. (<specification> labeled circle).
Top level specification (Mspec on Figure 1.) is transformed
to executable specification with ψ1 algorithm. In this paper

<end_OK>
end_n_2_17<end_NOK>

tM

s0:<start>

tOK
tNOK

t0

t¬M

Figure 3. eFSA generic model M for Reactive Component

we focus our attention on translation of an executable
specification to the Promela model. Promela model is the
input to Spin model checker suitable for analysis of property
ϕ from 3.

Code generation and transformation to executable speci-
fication are not the subject of this paper. The sequence of
model transformation is summarized on Figure 1. In order
to unify syntax representation for all internal FSA model
transformation BNF representation is introduced in Figure
4.

V. ψ-ALGORITHMS

First, we introduce the definition of ccfg–c control flow
graph. We shall refer ccfg simply as control flow graph
cfg. A cfg is triple (S, T, L) where:

S set of states si, si ∈ S;
T (or −→) is the set of transitions such that T ⊆

S × L× S
L is labeling functions (assign C instruction to the

label lj , l ∈ L

109Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 118 / 153

1

2 <eFSA> ::= <header> <body> | <comment>
3 <header> ::= [h|H] (.)* ’\n’
4 <comment> ::= # (.)* ’\n’
5 <body> ::= <keyw> <records>
6 <records> ::= <record> ’\n’
7 <record> ::= <fields> <separator>
8 <fields> ::= ’[\w-_\(\)]’+
9 <separator> ::= ’\s’+ | ’\t’+ | ’:’ | ’,’

10 <keyw> ::= INIT | STATES | LABELS |
11 TRANSITIONS} | FINAL | SL | LT
12

Figure 4. BNF for M FSA

Control flow graph cfg follows previously mentioned BNF
syntax for eFSA, cfg derived from C source is presented
in lisp–like form as the set of state–label pairs and the set
of state–arrow–next-state triples, respectively:

(si, lj)

(si −→ si+i)

A. ψ2–c to cfg

This algorithm (c2cfg) is model extraction [7] for C
program. We use goto-cc model extractor introduced in
[6].

B. ψ2–cfg to prml

Control flow graph translation to Promela model
(cfg2prml) algorithm consists of the following steps:
(1) substitute arrow → with label:

(si → si+i) −→ (si lj si+i)
(2) abstract label lj : lj −→< lj >: abstraction is already

in C source.
(3) ∀si ∈ S substitute si with Promela if block or label

abstraction
(4) ”End of function” → end

ψ2–cfg to prml translation is realized asPerl script.

C. Example

As an example we present model M of Zune30 bug. C
program has been taken from [10] and translated to Mprml

Promela model. This C program serves as executable
specification model. Similar models Mspec of executable
specification are derived from semi formal specification of
distributed web applications, business processes and control
software. For inputs like 366, 10593 zune30.c program
enter endless loop. Assertion from line 15 with Q1:
label is never executed in C program, yielding no assert–
violation:

"MC C source for zune30"
1

2 /* BUG: issue ./zune30 366, 10593 */
3 /* and have endless loop */
4

5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <assert.h>
8

9 int zune30(int days) {
10

11 int year = 1980;
12 while (days > 365) {
13 if ((year % 4) == 0){
14 if (days > 366) {
15 Q1: assert(1);
16 days = days - 366;
17 year = year + 1;
18 }
19 /* else { */
20 /* } */
21 }
22 else {
23 days = days - 365;
24 year = year + 1;
25 }
26 }
27 printf("%d\n", year);
28 return 1;
29 }
30

After transformation C source (MC) is translated to Promela
model (Mprml). Analysis of Promela model Mprml gives
the sequence of instructions that raise undesired behavior.

"Mπ
prml: the Promela model"

1

2 int UNKNOWN;
3 int year;
4 int days;
5 int cprntf;
6 int cgoto;
7 int creturn;
8 int cassertif;
9 int cassertFALSE;

10 int cassertTRUE;
11

12 active proctype acz() {
13

14 #if DAYS
15 days=DAYS;
16 #endif
17

18 n_2_0: UNKNOWN=0; -> goto n_2_1;
19

20 n_2_1: year = 1980; -> goto n_2_2;
21

22 n_2_2:
23 if
24 :: !(days > 365) -> goto n_2_15; //true
25 :: (days > 365) -> goto n_2_3; // false
26 fi;
27

28 n_2_15: cprntf=1 -> goto n_2_16;
29

30 n_2_3:
31 if
32 :: !(year % 4 == 0) -> goto n_2_12; // true
33 :: (year % 4 == 0) -> goto n_2_4; // false

110Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 119 / 153

34 fi;
35

36 n_2_16: creturn=2 -> goto end_n_2_17;
37 n_2_12: days = days - 365 -> goto n_2_13;
38

39 n_2_4:
40 if
41 :: !(days > 366) -> goto n_2_11; // true
42 :: (days > 366) -> goto n_2_5; // false
43 fi;
44

45 n_2_13: year = year + 1 -> goto n_2_14;
46 n_2_11: cgoto=3 -> goto n_2_14;
47

48 n_2_5:
49 if
50 :: cassertif=4 -> goto n_2_8; //true
51 :: cassertif=5 -> goto n_2_6; //false
52 fi;
53

54 n_2_14: cgoto=6 -> goto n_2_2;
55 n_2_8: cassertFALSE=7 -> goto n_2_9;
56 n_2_6: cassertTRUE=8 -> goto n_2_7;
57 n_2_9: days = days - 366 -> goto n_2_10;
58 n_2_7: cgoto=9 -> goto n_2_9;
59 n_2_10: year = year + 1 -> goto n_2_11;
60

61 end_n_2_17: skip; // End of Function
62 }
63

Next section will explain transformation from C source to
Promela model.

VI. MODEL TRANSFORMATION: FROM C TO Promela

Model transformation is performed following the theoret-
ical concepts from the Section IV and Figure 1. The first
step is call to goto-cc that implements transformation of
C source to control flow graph cfg. (Mω

cfg −→ Mω
cfg).

Transformation is implemented in ψ:c2cfg algorithm.
Vertexes from Figure 5 are executable instructions and

edges are “connections” between instructions, respectively.
Nodes are assignments like year=year+1 or if state-
ments (for example: if(days >365). In real situations
additional assignments are method calls. We assume that
methods are safe and live, thus always return desired values.
That means methods have assume-guarantee property that is
checked separately.

The result of the transformation is coded in lisp–like
syntax:
"Mω

cfg cfg for zune30 in lisp--like syntax"
1

2 SL
3 (n_2_0 UNKNOWN)
4 (n_2_1 "year = 1980;")
5 (n_2_2 "!(days > 365)?")
6 (n_2_15 "PRINTF("%d\n",year)")
7 (n_2_3 "!(year % 4 == 0)?")
8 (n_2_16 "return 1;")
9 (n_2_12 "days = days - 365;")

10 (n_2_4 "!(days > 366)?")

UNKNOWN

year = 1980;

!(days > 365)?

PRINTF(&"%d\n"[0], year);

true

!(year % 4 == 0)?

false

return 1; days = days - 365;

true

!(days > 366)?

false

End of Function

year = year + 1;

Goto

true

days = days - 366;

false

Goto

year = year + 1;

Figure 5. C Control flow graph cfg for zune30 example

11 (n_2_17 "End of Function")
12 (n_2_13 "year = year + 1;")
13 (n_2_11 Goto)
14 (n_2_5 "!(_Bool)1?")
15 (n_2_14 Goto)
16 (n_2_8 "Assert(FALSE)")
17 (n_2_6 "(void)0;")
18 (n_2_9 "days = days - 366;")
19 (n_2_7 Goto)
20 (n_2_10 "year = year + 1;")
21

22 LT
23 (n_2_0 -> n_2_1)
24 (n_2_1 -> n_2_2)
25 (n_2_2 -> n_2_15 true)
26 (n_2_2 -> n_2_3 false)
27 (n_2_15 -> n_2_16)
28 (n_2_3 -> n_2_12 true)
29 (n_2_3 -> n_2_4 false)
30 (n_2_16 -> n_2_17)
31 (n_2_12 -> n_2_13)
32 (n_2_4 -> n_2_11 true)
33 (n_2_4 -> n_2_5 false)
34 (n_2_13 -> n_2_14)
35 (n_2_11 -> n_2_14)
36 (n_2_5 -> n_2_8 true)
37 (n_2_5 -> n_2_6 false)
38 (n_2_14 -> n_2_2)
39 (n_2_8 -> n_2_9)
40 (n_2_6 -> n_2_7)
41 (n_2_9 -> n_2_10)
42 (n_2_7 -> n_2_9)
43 (n_2_10 -> n_2_11)

For example, vertexes n_2_1 is assignment for C statement
year=1980 and transitions between vertexes are triples
(n_2_1 −→ n_2_2), respectively.

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 120 / 153

acz S1

S2

days = -(36)

S4

UNKNOWN = 0

S10

year = 1980

S12

(!((days>365)))

S18

((days>365))

S20

cprntf = 1

S22

(!(((year%4)==0)))

S28

(((year%4)==0))

S52

creturn = 2

S53

(1)

S0

-end-

S30

days = (days-365)

S32

(!((days>366)))

S38

((days>366))

S40

year = (year+1)

cgoto = 6

cgoto = 3

S42

cassertif = 4

S44

cassertif = 5

S46

cassertFALSE = 7 S48

cassertTRUE = 8

S50

days = (days-366)

year = (year+1)

cgoto = 9

Figure 6. FSA for Promela model Mπ
prml

After that, algorithm ψ2:cfg2prml is applied, resulting in
Promela model Mπ

prml as presented in Section. V-C. The
algorithm translates control flow graph to Promela code
Mπ

cfg −→Mπ
prml . The Promela model is another invariant

form of Mπ
C model, Figure 6 visualize it as an finite

state automaton. Spin‘s verifier pan has options that enable
visualization of Promela models as automaton.

There are significant difference from cfa from figure
5, instructions lj are placed on transition labels and many
instructions have abstracted form < lj >, for example,
assert is replaced with cassertif=4 abstracted form.

Next step is Promela model analysis of liveness and safety
properties.

A. Experiment result analysis

The analysis of Promela model from Section V-C yields
the following results:
− there are unreached portions of code
− there are endless loops
In order to achieve this results two verifier runs are required:
− Non–progress cycles (loops) are detected with linear

temporal logic formula: ♦�np_, where np_ is Promela

built–in variable for marking the progress of global
system state status. In our example, formula is false
producing counterexample with non–progress cycle.

− unreached instruction from Promela model (“dead–
code”) is standard built–in function into the pan verifier.

The output from the pan verifier is counterexample with
the path to the error. Each row presents the line number
of instruction from the Promela model presented in Section
V-C. Non–progress loop is sequence of instructions with line
numbers 24 32 40 45 53 24 32 40 . . .

"non-progres loops"
1

2 z30.ltg.prml:14 [days = 366]
3 days = 366
4 z30.ltg.prml:17 [UNKNOWN = 0]
5 z30.ltg.prml:19 [year = 1980]
6 year = 1980
7 <<<<<START OF CYCLE>>>>>
8 z30.ltg.prml:24 [((days>365))]
9 z30.ltg.prml:32 [(((year%4)==0))]

10 z30.ltg.prml:40 [(!((days>366)))]
11 z30.ltg.prml:45 [cgoto = 3]
12 cgoto = 3
13 z30.ltg.prml:53 [cgoto = 6]
14 cgoto = 6
15 spin: trail ends after 16 steps
16 year = 1980
17 days = 366

Counterexample pointing unreached code use pan verifier
built in options for unreached code detection. Each row
presents the line number of unreached instruction from
Promela model presented in Section V-C (27, 35, 36, 44,
. . .).

"unreached end--state"
1

2 unreached in proctype z30
3

4 z30.ltg.prml:27, "cprntf = 1"
5 z30.ltg.prml:35, "creturn = 2"
6 z30.ltg.prml:36, "days = (days-365)"
7 z30.ltg.prml:44, "year = (year+1)"
8 z30.ltg.prml:44, "year = (year+1)"
9 z30.ltg.prml:49, "cassertif = 4"

10 z30.ltg.prml:49, "cassertif = 5"
11 z30.ltg.prml:54, "cassertFALSE = 7"
12 z30.ltg.prml:55, "cassertTRUE = 8"
13 z30.ltg.prml:56, "days = (days-366)"
14 z30.ltg.prml:57, "cgoto = 9"
15 z30.ltg.prml:58, "year = (year+1)"
16 z30.ltg.prml:61, "-end-"
17 (11 of 53 states)

VII. CONCLUSION AND FURTHER WORK

We have presented model checking of specification as
software model checking for C language.

We find that Spin model checker is feasible solution
because Spin finds deadlocks, unreached code, assertion
violations, invalid end states, and analyze linear time log-
icformula. In the same time, executable specification can be

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 121 / 153

analyzed, tested as every C program. Our approach avoids
complex and long term development of model extractor with
tools like CIL. Another benefit is the application of linear
time logicformula on C specification. Usual approach puts
assertions in the code in the place according to the designer’s
discretion. Sometimes it is necessary that assertion is true
to “some point in the future infinitely often” which can
be expressed as temporal logic formula. With our approach
linear time logic formula is the part of Promela model and
consequently also the part of C specification. State explosion
and designer mistakes during specification definition are still
problems that needs improvements. “Designers will never
use it” syndrome is always the problem when introducing
development paradigms.

Further work will focus on more rigid data–types consis-
tency check. That requires formal development of abstract
data structures. In most cases, such data structures are
defined over infinite domains so further refinements should
avoid infinite data domains, or introduce data abstractions.

Besides Spin, the comparison with other model checkers,
like Petri net tools, could improve verification. Model check-
ers search for solutions within finite space, the improvement
of model checking with unbounded parameters (days in our
example) yields: M(days) |= ϕ.

Bounded model checking [12] and the usage satisfiability
modulo theory (SAT [13] and SMT [14]) solvers are the
promising research direction.

Automated code generation from executable specifica-
tion is another possible direction for research. The most
promising is TDD “Test Driven Development” because code
skeleton is populated with test case commands.

REFERENCES

[1] D. Harel, “Statecharts in the making: a personal account,”
in Proceedings of the Third ACM SIGPLAN History of
Programming Languages Conference (HOPL-III). San
Diego, California: ACM, 9-10 June 2007, pp. 1–43.

[2] R. Eshuis, D. N. Jansen, and R. Wieringa, “Requirements-
level semantics and model checking of object-oriented stat-
echarts.” Requirements Engineering, vol. 7, no. 4, pp. 243–
263, 2002.

[3] R. Bharadwaj and C. L. Heitmeyer, “Model Checking
Complete Requirements Specifications Using Abstraction,”
Automated Softwware Engineering, vol. 6, no. 1, pp. 37–68,
1999.

[4] K. Jiang, “Model Checking C Programs by Translating C to
Promela,” Master’s thesis, Uppsala Universitet, Department
of Information Technology, 2009.

[5] G. J. Holzmann, “Logic Verification of ANSI-C Code with
SPIN,” in SPIN Model Checking and Software Verification,
ser. Lecture Notes in Computer Science, K. Havelund,
J. Penix, and W. Visser, Eds., vol. 1885, 7th International
SPIN Workshop. Stanford CA USA: Springer, August
2000, pp. 131–147.

[6] “CBMC is a Bounded Model Checker for ANSI-C,”
(last time visited July, 5th2012). [Online]. Available:
http://www.cprover.org/cbmc

[7] E. Clarke, D. Kroening, and F. Lerda, “ A Tool for Check-
ing ANSI-C Programs ,” in Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2004)
, ser. Lecture Notes in Computer Science, K. Jensen and
A. Podelski, Eds., vol. 2988. Springer, 2004, pp. 168–176.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled, Model
Checking. The MIT Press, January 1999.

[9] G. Holzmann, Spin model checker, the: primer and reference
manual, 1st ed. Addison-Wesley Professional, 2004.

[10] W. Weimer, S. Forrest, C. L. Goues, and T. Nguyen,
“Automatic program repair with evolutionary computation,”
Commun. ACM, vol. 53, no. 5, pp. 109–116, 2010.

[11] A. Metzger, “A systematic look at model transformations,” in
Model-Driven Software Development, S. Beydeda, M. Book,
and V. Gruhn, Eds. Springer Berlin Heidelberg, 2005, pp.
19–33.

[12] Armin Biere and Alessandro Cimatti and Edmund M. Clarke
and Ofer Strichman and Yunshan Zhu, “Bounded Model
Checking,” Advances in Computers, vol. 58, pp. 117–148,
2003.

[13] Biere, Armin and Heule, Marijn J. H. and van Maaren,
Hans and Walsh, Toby, Ed., Handbook of Satisfiability, ser.
Frontiers in Artificial Intelligence and Applications. IOS
Press, February 2009, vol. 185.

[14] Armando, Alessandro and Mantovani, Jacopo and Platania,
Lorenzo, “Bounded model checking of software using SMT
solvers instead of SAT solvers,” Int. J. Softw. Tools Technol.
Transf., vol. 11, no. 1, pp. 69–83, Jan. 2009.

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 122 / 153

Software Architectural Drivers for Cloud Testing

Etiene Lamas, Luiz Alberto Vieira Dias, Adilson Marques da Cunha
Computer Science Division

Aeronautics Institute of Technology, ITA

Sao Jose dos Campos, Brazil

{etiene, vdias, cunha}@ita.br

Abstract—This paper focuses on the research issues that Cloud

Computing imposes on Software Testing. For this purpose,

Cloud Testing can be defined as a Software Testing method

based on Cloud Computing technology. Software Testing has

been an important component within the development process.

In order to face the rapid growth of Cloud Computing,

Reference Architectures provide a simple and organized

environment for applications development. The outage on

Cloud Services must be considered an exception not a rule.

This research emphasizes the complexity of Cloud Testing, in

order to prevent services disruption, as it happened, for

example, with the Amazon in April 2011. This research aims to

investigate, design, implement, and propose key Software

Architectural Drivers for Cloud Testing, focusing on

monitoring the quality. Cloud Testing integration may allow

monitoring products and services with efficient deliverables.

The main advantage that arises from these proposed drivers is

the provision of Cloud Testing Reference Architectures to be

applied in practice. The main contribution of software

architectural drivers is the quantitative monitoring of quality

for both end products and services.

Keywords-cloud testing; software architectural drivers;

testing of cloud services; testing of cloud products; reference

architectures

I. INTRODUCTION

In general, Cloud Computing changes the way
Information Technology (IT) services are delivered. To
monitor these changes, Cloud Testing can be defined as a
Software Testing method based on Cloud Computing
technology [1].

Parveen and Tilley [2] show that not all applications are
suitable for testing in the Cloud and nor all types of testing
are suitable for the Cloud.

The outage on Cloud Services must be considered an
exception not a rule. This research emphasizes the
complexity of Cloud Testing, in order to prevent services
disruption, as it happened, for example, with the Amazon in
April 2011 [3]. This research aims to investigate, design,
implement, and propose key Software Architectural Drivers
for Cloud Testing (SADCT), focusing on monitoring quality.
Thus, an investigation about the generic and the specific
theory has been conducted.

The drivers proposed by the authors for Reference
Architectures (RAs) are set in order to quantitative monitor
Quality of Products (QoP) and Quality of Services (QoS) in
the Cloud. The main advantage arising from these proposed

drivers is to provide Cloud Testing Reference Architectures
to be applied in practice. The main problem is how to
monitor and evaluate quantitatively the quality of the Cloud
Testing. The main contribution of software architectural
drivers is the quantitative monitoring of quality for both end
products and services.

This article is organized as follows. Section 2 introduces
Reference Architectures. Section 3 describes basic Cloud
Computing concepts. Section 4 emphasizes the importance
of Cloud Testing and presents the testing of Cloud Services.
Section 5 specifies the Cloud Testing Reference
Architectures. Section 6 proposes its key architectural
drivers. Section 7 includes a Proof of Concept (PoC) study.
Finally, Section 8 highlights some conclusions and future
works.

II. REFERENCE ARCHITECTURES

In order to face the rapid growth of Cloud Computing,

Reference Architectures provide a simple and organized

environment for applications development.

A Reference Architecture (RA) is the generalized

architecture of several end systems that share one or more

common domains. The Reference Architecture defines the

common infrastructure to the end systems and also the

interfaces of components that will be included in the end

systems. The Reference Architecture is then instantiated to

create software architecture of a specific system [4].

The principles governing the design and evolution of a

system and also the relationships between their components

and the environment can be found in a Reference

Architecture, which represents its fundamental organization

[5].

To facilitate the understanding of the operational

intricacies in Cloud Computing, the overview of its

Reference Architecture will be presented in the following

section.

III. BASIC CLOUD COMPUTING CONCEPTS

Given the rapid growth in its use, it is necessary to define
Cloud Computing and Cloud Computing Reference
Architectures.

114Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 123 / 153

A. Cloud Computing Definition

According to the National Institute of Standards and
Technology (NIST) [6], Cloud Computing consists of service
models, deployment models, and essential characteristics.

This definition is widely accepted as a valuable
contribution toward providing a clear understanding of
Cloud Computing technologies and Cloud Services.

It provides a simple and unambiguous taxonomy of three
service models available to Cloud Consumers: Software as a
Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS).

It summarizes the four deployment models describing
how the computing infrastructure that delivers these services
can be shared: Private Cloud, Community Cloud, Public
Cloud, and Hybrid Cloud.

Finally, the NIST definition also provides a unifying
view of five essential characteristics that all Cloud Services
exhibit: on-demand self-service, broad network access,
resource pooling, rapid elasticity, and measured service [6].

The three service models identified by the NIST, i.e.,
SaaS, PaaS, and IaaS, offer to the consumers different types
of service management operations and expose different entry
points into Cloud Systems.

B. Cloud Computing Reference Architecture

The overview of the NIST Cloud Computing Reference

Architecture [7] is a logical extension to the NIST

Definition of Cloud Computing.

According to Liu et al. [7], it is a generic high-level

conceptual model that is an effective tool for discussing the

requirements, structures, and operations of Cloud

Computing. Also, according to [7], it defines a set of actors,

activities, and functions that can be used in the process of

developing cloud computing architectures. It describes five

major actors with their roles and responsibilities, using the

newly developed Cloud Computing Taxonomy. The five

major participating actors are: (i) Cloud Consumer - a

person or organization that maintains a business relationship

with, and uses service from, Cloud Providers; (ii) Cloud

Provider - a person, organization, or entity responsible for

making a service available to interested parties; (iii) Cloud

Broker - an entity that manages Cloud Services; (iv) Cloud

Auditor - a party that can conduct independent assessment

of Cloud Services; and (v) Cloud Carrier - an intermediary

that provides connectivity and transport of Cloud Services.

Each actor is an entity (a person or an organization) that

participates in a transaction or process and/or performs tasks

in Cloud Computing [7].

The NIST Cloud Computing Reference Architecture [7]

focuses on the requirements of “what” Cloud Services

provide, not on “how to” design solutions and

implementations.

In order to improve the quality of Cloud Services, the

interactions between the actors in Cloud Testing scenarios

will be discussed in the following section.

IV. TESTING OF CLOUD SERVICES

Software Testing has been an important component

within the development process. This paper focuses on the

research issues that Cloud Computing imposes on Software

Testing.

The architecture described by Blokland and Mengerink

[8] consists of detailed risks that may occur when one starts

using Cloud Computing, grouped into themes. Next to these

risks, in their book, there are sets of test measures. Some

measures do exist, like load testing, but polished to fit the

new needs for applying performance testing in the Cloud.

The important asset of [8] is the link made from each

individual risk to the different measures needed to cover the

risk.

According to Blokland and Mengerink [8], there are also

new measures that stretch the definition of test, like test in

production. These measures are new because they are Cloud

specific and present the complexity of testing in the Cloud.

It should be emphasized that some aspects of quality can

be tested “on live” and it is very wise to continuously test

them, because of the ever-changing situation in the Cloud

Environment.

Testing activities must continue even after the system

has gone live. But, there are other aspects that should be

‘more traditionally’ tested, before a new version of the

system is put into the live Cloud Environment. Testing is

not done only under the main implementation phases (Unit

Testing; Integration Testing; System Testing; and

Acceptance Testing) as it used to be, but it will be done also

during selection (when the Cloud Services are selected). The

criteria for selection are chosen for mitigating risks.

Because once in Cloud production everything might

change, it is needed to continuously test the software under

production. Some measures are specific for the Cloud, like

how to deal with rules and regulations in different countries

[7], like Migration Testing.

When software is running “in house”, most of the

failures are under control; but when “in the Cloud”

everything is different, because failures are not under

control any more. Due to the mutability of the Cloud

Environment, it is necessary to verify if the services are still

working after the deployment. The testing under production

will validate the functionalities in this environment.

V. CLOUD TESTING REFERENCE ARCHITECTURE

Architectural Drivers are defined as the major quality
attribute goals that shape the Cloud Reference Architectures
[9]. This research aims to investigate, design, implement,

115Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 124 / 153

and propose key Software Architectural Drivers for Cloud
Testing, focusing on monitoring quality.

Aiming to understand Reference Architecture roles for
Cloud Testing, Figure 1, adapted from [10], presents the
interaction of the software tester role (Cloud Tester) with
the Cloud Environment specified for this research. Figure 1
also highlights those that provide and consume services.

Notice that IaaS supports PaaS that, in turn, supports
SaaS.

The main characteristics that distinguish Cloud Testing
from regular Software Testing are related to risks across all
three layers of the Cloud stack (IaaS, PaaS, and SaaS), as
seen in Figure 1. It is important to keep this basic stack in
mind as the building blocks of the Cloud Computing
system.

Figure 1. The Reference Architecture roles for Cloud Testing.

The Cloud Provider is responsible for providing,
managing, and monitoring the entire structure to the solution
of Cloud Computing, freeing the Cloud Tester and the Cloud
Consumer from these types of liability. To do this, the Cloud
Provider provides services for Cloud Consumers.

According to Veras [10], this organization in roles helps
to define the actor and their different interests on Cloud
Computing. Actors can assume different roles at the same
time, according to their interests, and only the Cloud
Provider supports all three functions of Cloud Services (IaaS,
PaaS, and SaaS). From the viewpoint of interaction, among
the three functions of service, IaaS provides computing
resources (hardware or software) to PaaS. In its turn, PaaS
provides resources, technologies, and tools for the
development and the delivery of services to be implemented,
becoming available as SaaS.

It is important to mention that an organization that
provides Cloud Services needs does not necessarily provide
all three-service functions. That is, a Cloud Provider can
provide the option IaaS without necessarily also providing a
PaaS [10].

This actor/role-based model is intended to serve the
expectations of the stakeholders by allowing them to
understand the overall view of roles and responsibilities, in
order to assess and assign risks [7].

VI. THE KEY ARCHITECTURAL DRIVERS

According to Kazman et al. [9], the project manager
describes what business goals are motivating the
development effort and hence what will be the primary
Architectural Drivers (e.g., high availability, time to market,
or high security).

Aiming to understand the key architectural drivers for
Cloud Testing Reference Architecture, the purpose of
Figure 2, suggested by the authors, is to provide the
guidance for the Cloud Testers to acquire knowledge on all
needed testing categories.

Some proposed drivers for Cloud Testing Reference
Architectures were based on traditional concepts that allow
products with recognized quality (QoP), and another
proposed drivers, specific for the Cloud, that allow better
quality for Cloud Services (QoS).

These drivers were defined based on concepts from the
traditional testing management environment, as seen in the
bottom side of Figure 2, and also on concepts and elements,
for the Cloud Testing management environment, as seen in
the upper side of Figure 2.

A. Traditional testing management environment

The most important concepts for traditional test

management environment can be clustered in two groups.

The first group of concepts involves a set of definitions to

support the Cloud Testing with Noncloud standards. These

definitions relate to the guidelines for Software product

Quality Requirements and Evaluation (SQuaRE) [11] and

the appropriate breadth and depth of test documentation.

The second group of concepts involves a set of methods

supporting Cloud Testing with Noncloud methodologies.

These definitions relate to effective methods for Software

Testing [12] and these specific methods are listed below.

The authors suggest the use of an Agile Software

Development Methodology, in order to deliver as much

quality software as possible, within a series of short time

boxes called Sprints, which last about a month. This

methodology is characterized by short, intensive, and daily

meetings involving the whole developers’ team [13]. Agile

is iterative and incremental. This means that the testers must

test each increment of coding as soon as it is finished [14].

Finally, the second group of concepts involves also a set

of techniques supporting Cloud Testing with Noncloud

techniques. These are related to functional and structural

techniques for Software Testing. These groups are:

a) Noncloud Standards: In this group of drivers, as

seen in the bottom left side of Figure 2, the standards

ISO/IEC 25000 named Software product Quality

116Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 125 / 153

Requirements and Evaluation (SQuaRE) should be applied

[11], and the IEEE Std 829-2008, named IEEE Standard for

Software and System Test Documentation, should be also

applied [15]; and

b) Noncloud Testing Methodologies and Techniques:

In this group of drivers, in the bottom right side of Figure 2,

traditional phased software agile methodologies and

effective methods for Software Testing should be applied.

Traditionally, most of the test effort occurs after the

requirements have been defined and the coding process has

been completed. But, in the Agile approaches [14], most of

the test effort is on-going. Newer development models, such

as Agile, often employ Test Driven Development (TDD)

and place an increased portion of the testing in the hands of

the developer, before it reaches a formal team of testers. In a

more traditional model, most of the test execution occurs

after the requirements have been defined and the coding

process has been initiated [14]. Also, in this group of

drivers, in the bottom right side of Figure 2, the techniques

can be divided into functional and structural. The main

functional system testing techniques are: (i) Requirements -

system performs as specified; (ii) Regression - verifies that

anything unchanged still performs correctly; (iii) Defects

Handling - defects can be prevented or detected, and then

corrected; (iv) Manual support - the people-computer

interaction works; (v) Control - controls reduce system risk

to an acceptable level; and (vi) Parallel - old system and

new system run and their results are compared to detect

unplanned differences [12]. The main structural testing

techniques are: (i) Stress - system performs with expected

volumes; (ii) Execution - system achieves desired level of

proficiency; (iii) Recovery - system can be returned to an

operational status after a failure; (iv) Operations - system

can be executed in a normal operational status; (v)

Compliance - system is developed in accordance with

standards and procedures; and (vi) Security - system is

protected in accordance with the importance to organization

[16].

Figure 2. Software Architectural Drivers for Cloud Testing (SADCT).

B. Cloud Testing management environment

The most important concepts and elements for the Cloud
Testing management environment can be clustered in five
groups. The first group is a set of definitions to support the
Cloud Testing with standards. These are related to adoption,
development, and provision of testing and security for Cloud
Computing. The second group is the set of best practices
supporting Cloud Testing with collaboration and relevant
factors. These are related to the Cloud Environment and
essential characteristics for Cloud Services. The third group
is a set of techniques supporting Cloud Testing with
challenges. These are related to the testing techniques. The
fourth group is a set of concepts supporting Cloud Testing
with architectural principles. These are related to the
technologies comprised in the Cloud Infrastructure. In the
Cloud, not all applications are equally created. Finally, the
fifth group is a set of steps supporting Cloud Testing with
strategy for porting applications to the Cloud. These steps are
related to Cloud Migration strategies. These groups are:

a) Cloud Standards: In the grey group of drivers, in

Figure 2, the NIST Definition of Cloud Computing should

be applied [6]; the NIST Guidelines on Security and Privacy

in Public Cloud Computing should be applied [16]; the

NIST Cloud Computing Synopsis and Recommendations

should be applied [17]; and the NIST Cloud Computing

Reference Architecture should be also applied [7]. The

logical step to take after the formation of the NIST Cloud

Computing definition is to create an intermediate reference

point from where one can frame the rest of the discussion

about Cloud Computing and begin to identify sections in the

Reference Architecture in which standards are either

required, useful, or optional [7];

b) Testing Factors, Collaboration, and Best Practices

for the Cloud: In the yellow group of drivers, in Figure 2, it

is important to mention that testing for Cloud-based

applications presents its own specific challenges.

Understanding how these applications are structured goes a

long way in designing and executing appropriate test plans

for them. These tests are done in addition to the usual Unit;

Integration; System; Acceptance, and Performance. For

example, the Performance should be achieved in the Cloud

by testing for bandwidth, connectivity, scalability, and

quality of the end-user experience. When testing Cloud

applications, it is needed to validate and verify specific

Cloud functionalities such as redundancy, failover, and

performance scalability. Also, in the yellow group of

drivers, suggested by the authors, it is important to mention

that the Cloud provides an environment that supports global

collaboration and knowledge sharing, as well as, group

decision-making. Shared sites can be easily set up,

replicated, and torn down as needed to meet the

collaboration requirements of a given project. For

collaboration, the best practices are to: (i) continuously

monitor from users’ perspective and end-user response time;

(ii) implement end-to-end diagnostics; (iii) design for fault-

tolerance; and (iv) load test to determine the breaking point.

117Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 126 / 153

For performance, the best practices are to: (i) understand

where all bottlenecks are; (ii) mitigate bottlenecks; (iii) test

performance for understanding normal and peak load to

baseline “normal”; and (iv) continuously monitor

performance from users’ perspective. For scalability, the

best practices are to: (i) architect for elasticity; (ii) use an

elastic platform to scale services and data; (iii) isolate

functions to scale them separately; (iv) implement a Cloud

bursting strategy for load balancing between Clouds [17];

(v) automate scaling to quickly scale-up and down; and (vi)

execute the load test in your application;

c) Testing techniques: In the green group of drivers,

in Figure 2, Kannan [18] exemplifies challenges for: (i)

browsers testing; (ii) service provisioning/de-provisioning

testing; (iii) distributed Cloud Testing; (iv) multi-tenancy

testing; (v) Cloud Portability Testing; among others. Cloud-

based software applications have some additional

characteristics compared to Noncloud-based ones. These

pose additional challenges but with a systematic and

comprehensive approach to test planning, to be

appropriately handled;

d) Cloud infrastructure and architectural principles:

In the pink group of drivers, in Figure 2, also suggested by

the authors, it is important to mention that Cloud

infrastructure should never go down for a day. Clouds are

characterized by various technologies including: (i)

virtualization (hypervisor); (ii) automation; (iii) monitoring;

and (iv) service portal/service catalog. Currently, there are

Cloud architectural principles for high availability: (i)

monitoring; (ii) fault tolerance; and (iii) fixable.

e) Migration strategies: In the blue group of drivers,

in Figure 2, it is important to mention that in the Cloud, not

all applications are created equal, and some are completely

wrong for the infrastructure model. To make the right

decision about which applications to move, it is needed a

solid migration strategy. It is also needed to consider the

application portfolio and the business requirements to

prevent problems such as poor application performance and

latency, data leakage, or issues with compliance or other

regulations [19]. Here is how to develop a foolproof strategy

for moving the right applications to the cloud, which starts

by outlining clear objectives, then focuses on your

application portfolio’s characteristics and business

requirements to determine the best fit. These steps ensure

that moving to the Cloud will be possible.

VII. PROOF OF CONCEPT (POC)

A Proof of Concept (PoC) is an exercise to test a design
idea or assumption. Software developers tend to utilize PoCs
instinctively when they experiment with technology.

The presented drivers could be used in a PoC to quantify
the quality monitoring throughout the key Software
Architectural Drivers for Cloud Testing (SADCT). This will
be elaborated using the Multi-Attribute Global Inference of
Quality (MAGIQ) technique for Software Testing [20]. The

MAGIQ technique uses Rank Order Centroids (ROC) [21] to
convert system comparison drivers into normalized numeric
weights, and then computes an overall measure of quality as
a weighted (by comparison drivers) sum of system ratings.

The PoC was applied to an academic project named
“Fraud Detection and Unauthorized Access (FDUA)”,
developed at the Brazilian Aeronautics Institute of
Technology (Instituto Tecnologico de Aeronautica - ITA)
aiming to evaluate the feasibility of the Software
Architectural Drivers for Cloud Testing propositions.

Given the FDUA Test Scenario and the Software
Architectural Drivers for Cloud Testing Hierarchical
Diagram, as seen in Figure 3, suggested by the authors, the
students (Cloud Testers), all seasoned testers, were asked to
rank the Software Architectural Drivers for Cloud Testing
items.

At this point, the Software Architectural Drivers for
Cloud Testing Hierarchical Diagram was performed as a
hierarchical decomposition of the proposed Software
Architectural Drivers for Cloud Testing by using MAGIQ
technique for Software Testing [20].

In the MAGIQ analysis technique, after the attributes of
the systems under evaluation have been determined, rank
order centroids are used to assign relative weights to each
comparison attribute [20].

The Cloud Testers examine the comparison attribute set
at each level of the hierarchical decomposition of the
attributes, and ranks the Software Architectural Drivers for
Cloud Testing in the set from most important to least
important, and then assigns relative weights to each Software
Architectural Drivers for Cloud Testing using rank order
centroids [21].

For each item, the Cloud Testers should assign a weight
(in the range 0 to 1), which will be composed with the
MAGIQ coefficients, in order to evaluate quantitatively QoP
and QoS.

Figure 3. The SADCT Hierarchical Diagram.

118Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 127 / 153

Numerically, the quality of Cloud Testing is obtained by
Software Architectural Drivers for Cloud Testing.

Equation (1), proposed by authors, quantitatively
monitors the quality of Cloud Testing:

SADCT = QoP + QoS. (1)

Figure 4. The Q1 Results.

The drivers for traditional concepts will focus on Quality
of Products (QoP), and the additional drivers, specific for the
Cloud, will focus on the Quality of Services (QoS).

VIII. POC RESULTS

The Proof of Concept (PoC) was applied in four different
Agile Testing Quadrants or phases (Q1, Q2, Q3, and Q4) of
the Cloud Testing [14].

Figure 4, suggested by the authors, is a data sheet in
order to calculate values for Quality of Products (QoP) and
Quality of Services (QoS), applied to the Software
Architectural Drivers for Cloud Testing, as in (1):

a) Q1 – In the Unit Testing, the results are obtained

through the calculations from the data sheet presented in

Figure 4. Summarizing, the value for the obtained Software

Architectural Drivers for Cloud Testing is 0.910, because

QoP is 0.719 and QoS is 0.191;

b) Q2 – In the Integration Testing, the results are

obtained through similar calculations. Summarizing, the

value for the obtained Software Architectural Drivers for

Cloud Testing is 0.715, because QoP is 0.563 and QoS is

0.151;

c) Q3 – In the System Testing, the results are obtained

through similar calculations. Summarizing, the value for the

obtained Software Architectural Drivers for Cloud Testing

is 0.830, because QoP is 0.682 and QoS is 0.149; and

d) Q4 – In the Acceptance Testing, the results are

obtained through similar calculations. Summarizing the

value for Software Architectural Drivers for Cloud Testing

obtained is 0,901 because QoP is 0,226 and QoS is 0,675.

Figures 5 and 6, suggested by the authors, show
numerically the Quality of Products (QoP) and Quality of
Services (QoS) for each Cloud Testing phases.

Figure 5. The QoP Results for each Cloud Testing phases.

Figure 6. The QoS Results for each Cloud Testing phases.

IX. CONCLUSION AND FUTURE WORK

This research has provided the investigation, design, and
implementation of some key Software Architectural Drivers
for Cloud Testing, focusing on monitoring the quality for
both end products and services.

119Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 128 / 153

The Software Architectural Drivers for Cloud Testing,
proposed by the authors, was evaluated through priorities
and weights assigned to them, by seasoned testers. Other
drivers could have been included and theirs effects measured
for Cloud Testing. However, in this research, the proposed
drivers have been proved appropriated, based on the above
criteria.

The drivers, prioritized and weighted by experts, have
allowed the quantitative monitoring of quality on Cloud
Testing.

As a result of this research, it was obtained a way to
numerically calculate the quality of Cloud Testing.

From this research, it is possible to evaluate the influence
of each Software Architectural Drivers for Cloud Testing, by
prioritizing and weighting each driver. It is also possible to
measure the influence of each individual driver on the overall
quality of Cloud Testing, by assigning it a numerical value.

Within the Cloud, the test must start earlier (in a very
early stage); the test scope is widened because of its
nonfunctional requirements; and the test must never stop
(due to the fact that there are a lot of continuous services to
be performed and also due to constant environment changes).
This assures that the software is tested thoroughly.

The authors recommend the continuation of this research
in the Cloud Production. A question that arises from this
work is: “Software Architectural Drivers for Cloud Testing
in production can be applied?”

The answer to this question can be obtained through
further experiments.

As future works, it is suggested the application of these
drivers into other experiments and a statistical in-depth
evaluation about its effects on Cloud Testing.

This would foster better QoS, as end products, by
fulfilling some existing gaps of knowledge within the Cloud
Computing environment.

REFERENCES

[1] W. Jun and F. Meng, “Software Testing Based on Cloud Computing,”
International Conference on Internet Computing and Information
Services, 2011.

[2] T. Parveen, and S. Tilley, “When to Migrate Software Testing to the
Cloud?,” In proc. 2nd International Workshop on Software Testing in
the cloud (STITC), 3rd IEEE International Conference on Software
Testing, Verification and Validation (ICST), April 2010, pp. 424-427.

[3] A.W.S. Team, “Summary of the Amazon EC2 and Amazon RDS
Service Disruption,” Amazon Web Services [Online]. Available:
<http://aws.amazon.com/pt/message/65648/> 10.18.2012.

[4] B. Gallagher, "Using the Architecture Tradeoff Analysis Method to
Evaluate a Reference Architecture: A Case Study," Software
Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, Technical Note CMU/SEI-2000-TN-007, 2000.

[5] B.Batke and P. Didier, “The importance of Reference Architecture in
Manufacturing Networks,” CIP Networks Conference, 2007.
Available:<http://www.odva.org/Portals/0/Library/CIPConf_AGM/O
DVA_12_AGM_The_Importance_of_Reference_Architectures_Didie
r_Batke.pdf> 10.18.2012.

[6] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
SP 800-145, National Institute of Standards and Technology's, U.S.,
2011.

[7] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf,
“NIST Cloud Computing Reference Architecture,” SP 500-292,
National Institute of Standards and Technology's, U.S., 2011.

[8] K. Blokland and J. Mengerink, “Cloutest®: Testen van
cloudservices,” Uitgeverij Tutein Nolthenius, 2012.

[9] R. Kazman, M. Klein, and P. Clements, "ATAM: Method for
Architecture Evaluation," Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, Technical Report
CMU/SEI-2000-TR-004, 2000.

[10] M. Veras, “Virtualização: Componente Central do Datacenter,”
Brasport, Sérgio Martins Oliveira, 2011.

[11] ABNT, “NBR ISO/IEC 25000. software quality requirements and
evaluation,” Associação Brasileira de Normas Técnicas, 2008.

[12] W. E. Perry, “Effective Methods for Software Testing,” N.Y.: Wiley,
2006.

[13] M. Cohn, "Succeeding with Agile: Software Development Using
Scrum," Addison-Wesley Professional, 2009.

[14] L. Crispin and J. Gregory, “Agile Testing: A Practical Guide for
Testers and Agile Teams,” Addison-Wesley Professional, 2009.

[15] IEEE Std 829-2008, “IEEE Standard for Software and System Test
Documentation,” Institute of Electrical and Eletronics Engineerd,
2008.

[16] W. Jansen and T. Grance, “Guidelines on Security and Privacy in
Public Cloud Computing, “ SP 800-144, National Institute of
Standards and Technology's, U.S., 2011.

[17] L. Badger, T. Grance, R. Patt-Corner and J. Voas, “Cloud Computing
Synopsis and Recommendations - SP800-146,” National Institute of
Standards and Technology's (NIST), 2012.

[18] N. Kannan, “Ten tests for software applications in the cloud,”
SearchCloudComputing, TechTarget, Inc. 275 Grove St. Newton,
MA 02466, 2011.

[19] M. Laverick, “Private Cloud e-zine,” vol. 1, SearchCloudComputing,
TechTarget, Inc. 275 Grove St. Newton, MA 02466, 2011.

[20] J. D. McCaffrey, “Using the Multi-Attribute Global Inference of
Quality (MAGIQ) Technique for Software Testing,” Information
Technology: New Generations, 2009. ITNG '09. Sixth International
Conference on, 2009, pp. 738-742.

[21] J. Jia, G. W. Fischer and J. S. Dyer, “Attribute weighting methods and
decision quality in the presence of response error: a simulation
study,” Journal of Behavioral Decision Making, 1998, vol. 11, no. 2,
pp. 85-105.

120Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 129 / 153

Optical Link Testing and Parameters Tuning with
a Test System Fully Integrated into FPGA

Anton Kuzmin, Dietmar Fey
Department of Computer Science,
Chair of Computer Architecture

Friedrich-Alexander-University Erlangen-Nuremberg, Germany
{anton.kuzmin,dietmar.fey}@informatik.uni-erlangen.de

Abstract—Development, characterization and performance op-
timization of systems utilizing FPGAs with high-speed serial
transceivers to implement optical links with 1 to 10 Gbps
data rate is a complex task and it poses several challenges
for design engineers. In this paper, an effective approach is
presented designed to address these challenges based on the use
of diagnostic features implemented in the transceivers and a
soft-IP microcontroller system instantiated in the FPGA. The
use of the soft-IP controller allows a single-point access to the
control and diagnostic interfaces of all components forming the
link. Combined with computational capabilities and a high-level
programming language interpreter running on the soft-IP CPU
inside the FPGA, it enables extensive optical link performance
evaluation without relying on any additional test and mea-
surement equipment and significantly shortens debugging and
testing times. The implementation demonstrates the feasibility
and effectiveness of the proposed approach to utilization of on-
chip diagnostic capabilities.

Index Terms—Optical fiber communication; Transceivers;
FPGA; Microcontrollers; Embedded software

I. INTRODUCTION

Modern applications including rich media content transport,
on-the-fly image processing, high bandwidth data acquisition
for experimental physics, and high performance computing,
require ever increasing serial communication data rates. At
the same time, latency requirements remain strict and sig-
nificantly limit possibilities for error correction and there-
fore call for a lower number of acceptable errors in the
communication channel. FPGA devices with integrated high-
speed serial transceivers and optical interconnects provide a
very efficient and flexible platform for implementing such
demanding applications and can be found in an increasing
number of systems. Various examples and applications of
optical interconnects could be found in [1]–[5].

One of the major challenges is a parameter tuning of the
various components forming an interconnect to achieve the
lowest possible probability of bit errors. The problem is that
accurate measurements at low error probabilities require very
long times even at high data rates to accumulate statistics
for a given confidence level while the parameter optimization
space is relatively big. Additional complications arise from the
fact that various components of the link have very different
interfaces for setting parameters. In most cases, they are
supported by proprietary tools with limited functionality for
automatically tuning link parameters. The application of these

tools often requires a connection of the system to external
test and measurement equipment. The limitations associated
with its usage become increasingly severe with a tighter
integration between the FPGA and the optical transceiver
blocks as recently proposed by Li et al. [6]. This level of
integration makes electrical signals between the FPGA and
optical transceiver practically inaccessible for external test
equipment.

This paper presents an effective approach designed to ad-
dress challenges associated with the testing, parameter tun-
ing and performance monitoring of optical interconnects in
FPGA-based systems. The approach is based on the use of
a soft-IP controller embedded into the FPGA to perform two
major tasks: link performance measurements and control of
parameters of the different components forming the link.

The paper has the following structure. In the first sec-
tion, an example of utilization of FPGA built-in transceiver
diagnostic capabilities is presented and the key differences
in the approach chosen by the authors are outlined. In the
subsequent section an overall inter-FPGA transceiver-based
serial link structure is shown followed by brief description of
its components and their respective configurable and tunable
parameters. Then, a Bit Error Ratio (BER) [7] is introduced as
an integral characteristic of link performance. An optimized
algorithm for obtaining an accurate BER scan plot (bath-tub
curve) is described. It can be used for indirect eye diagram
width measurement by introducing a phase shift into a signal
sampling point inside the receiver. The eye diagram width may
serve as an indicator of the link performance and is used as a
target function for the link parameter optimization.

Implementation aspects of the FPGA-based optical link test
system are then discussed in the next parts of the paper
along with the obtained link performance measurement results.
Comparison of the measured BER levels for different optical
modules confirms the validity of the implemented test system.

The factors limiting a wider adoption of the approach
presented, possible ways to address them and directions for
further research and development work are discussed in the
concluding section.

II. RELATED WORK

Usage of FPGA for testing communication channels has
been previously described. For instance, in [5] an implementa-

121Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 130 / 153

CM PLL

S
e

ri
a

liz
e

r

N
−

to
−

1

S
e

ri
a

liz
e

r

8
B

/1
0

B

E
n

c
o

d
e

r

T
x
 P

h
a

s
e

F
IF

O B
y
te

User’s
logic

User’s
logic

Optical Transmitter Optical Receiver

TIADriver

VCSEL PIN Diode

FPGA

Integrated Transceiver (Receiver part)

FPGA

Integrated Transceiver (Transmitter part)

PMAPCS

Clock

N
−

b
it
 D

a
ta

C
D

R

PCSPMA

D
e

s
e

ri
a

liz
e

r

1
−

to
−

N

W
o

rd

A
lig

n
e

r

D
e

s
k
e

w

D
e

c
o

d
e

r

8
B

/1
0

B

D
e

s
e

ri
a

liz
e

r

B
y
te

F
IF

O

F
IF

O

R
x
 P

h
a

s
e

1/N

N
−

b
it
 D

a
ta

Rx PLL Clock

Fig. 1. Simplified inter-FPGA serial optical link structure.

tion of the Bit Error Ratio Tester (BERT) based on the Alera’s
Stratix II GX transceivers is presented and compared with a
commercial stand alone tester. It is shown that the results
obtained with the FPGA implementation comply with the
results of the stand alone tester. However, the implementation
still utilizes external equipment to control the test system and
to collect the measurement results.

This paper, while similar in overall approach to the one
proposed by Xiang et al. [5], presents notable improvements
in several areas. The most important of these is the implemen-
tation of a functionally complete test system inside the FPGA.
Additionally the flexibility of the implemented system allows
extension of its hardware and software components to support
interfaces for monitoring and controlling the parameters of the
various components of the link without external equipment.
Another improvement presented in this paper is an adaptation
of eye-width as a link performance indicator instead of a raw
BER. The eye-width can be measured significantly faster at
low bit error probabilities with the aid of diagnostic circuitries
integrated into the transceivers and therefore is more efficient
as a target function for the parameter space exploration and
link performance optimization.

III. OPTICAL LINK STRUCTURE

A block diagram of an optical digital communication link
is shown in Figure 1. The link data path consists of a trans-
mitter, an electro-optical converter (VCSEL with its driving
circuits), an optical fiber, a photo detector (PIN diode and
transimpedance amplifier) and a receiver. The transmitter and
receiver are further divided into a Physical Coding Sublayer
(PCS) and a Physical Medium Attachment (PMA) sublayer.

The PCS blocks are responsible for byte serializa-
tion/deserialization, byte ordering, rate matching, and 8B/10B
encoding/decoding. All these functions are essential for the
implementation of a reliable digital data channel. However, in
this work, we concentrate on the physical layer performance
measurements leaving the problems related to the coding
sublayer out of the scope of the research.

The transmitter part of the transceivers integrated into the
FPGA allows the tuning and run-time changes of several pa-
rameters. Among them are clock multiplication phase-locked
loop (PLL) dividers and bandwidth, output driver common
mode voltage, differential voltage output swing and preem-
phasis aimed at reducing the negative effects of inter-symbol
interference. The receiver part, in turn, has the following
tunable blocks and parameters: on-chip termination, adaptive
equalization, decision feedback equalization, receiver input

common mode voltage and gain. These blocks have a crucial
impact on the signal quality on the input of the Clock and
Data Recovery (CDR) circuitry, but their influence cannot be
measured directly because the signal after these stages is not
physically available outside the chip and cannot be connected
to external measurement equipment. The CDR block provides
a built-in diagnostic support circuitry to facilitate assessment
of the signal quality on its input.

The hardware interfaces, which are necessary to change
all the transceiver’s parameters and to access the diagnostic
circuits, are available to the logic programmed into the FPGA.
Chip and design software vendors provide tools to access these
interfaces, however their use requires a connection between the
development workstation with CAD software and the FPGA.
The electro-optical components of the link have their own
sets of tunable and monitoring parameters, such as driver
and receiver power levels, VCSEL modulation and offset
currents, temperatures and thermal compensation coefficients,
signal power detected at the receiver input, etc. Access to
these features is implemented through another set of vendor-
specific interfaces and also requires a development workstation
with a connection to the target system. Such connections
may be not feasible in the embedded system while access to
the interfaces is still highly desirable or even required. This
problem may be addressed by integration of IP cores for all
required management interfaces into the system instantiated in
the FPGA.

The flexibility of a soft-IP microcontroller system inside
the FPGA allows the implementation of a single-point access
to the management interfaces of all the components forming
the link. Combined with built-in link diagnostic capabilities
controlled by the same microcontroller system it results in a
complete test system that enables link performance testing and
parameter tuning without relying on any external equipment.
Additionally it is available not only during development and
testing of the system but also after its deployment.

IV. LINK PERFORMANCE INDICATORS

Two link operation quality indicators are introduced in this
section along with a description of an algorithm used by the
authors to measure “eye-width” with the transceiver’s built-in
diagnostic circuits.

A. Bit Error Ratio

The integral quality of operation of a serial link is charac-
terized by its Bit Error Ratio (BER): a ratio of the number
of bits received with errors to the total number of bits

122Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 131 / 153

transmitted through the link: BER = Nerr/N . This ratio is
used for both measured and actual values. A BER is usually
measured with a special piece of test equipment, so called Bit
Error Ratio Tester. It consists of a data pattern generator, a
reference quality receiver, a digital comparator and counters
for transmitted bits and errors. The flexibility of an FPGA
allows to implement all blocks of a bit error ratio tester in
programmable logic in the FPGA itself.

The measured value approaches the actual BER in the
limit: limN→∞Nerr/N = pe. It is not possible for BER
measurement to transmit an infinite number of bits since it
would require an infinite measurement time and a way to
measure the BER with a given accuracy is required. For
practical application it is often enough to know that the BER is
below some threshold with a given confidence while its actual
value is irrelevant. As the literature shows (for instance, in [8]),
if more than N0 bits were transfered during the test with no
errors detected, then with probability α the actual BER is less
than pe:

N ≥ N0 =
1

pe
ln

1

1− α
This number of bits (N0) sets a lower limit on the test

duration when no errors are observed. At a data rate of 5 Gbps
it takes approximately 10 minutes to reach a 95% confidence
that BER is lower than 10−12, for the BER level of 10−15 it
would require almost a week. The long runtime required makes
it impractical to use the BER directly as a target function
for the link parameters optimization. It would take enormous
amount of time to find an optimum in the parameter space even
if only a small fraction of all possible parameter combinations
yielded a bit error ratio lower than 10−12.

B. Eye-Width and its Measurement

The quality of a signal may be analyzed by evaluating its eye
diagram: a picture on an oscilloscope display resulting from
observing a transmission of a pseudo-random binary sequence
with properties representative of the physical layer encoding
used in the link. The width and height of an opening of the
central part of the diagram (“eye”) serve as indicators of the
signal quality and may be used as target functions for the
link parameter tuning. However, the signal on the input of the
receiver CDR unit is not available for direct measurements.
Therefore built-in diagnostic circuitries of the receiver should
be utilized.

Serial transceivers integrated into the Altera Stratix IV GX
FPGAs include special circuitry that facilitates measurements
of the eye opening on the input of the CDR block [9]. The
circuitry allows shifting of a sampling point of the signal
from its optimal position in the center of the unit interval
(UI) under external control. Then bit error ratio is measured
for each phase offset. For sampling points close to the center
of the eye opening, there will be no significant increase in
the bit error ratio. For sampling points closer to the signal
slopes the number of observed errors will gradually increase.
Finally, in the area of the signal edge crossing widened by a

10-1210-1110-1010-910-810-710-610-510-410-310-210-1100

BE
R 1

23 3

0.4 0.2 0.0 0.2 0.4
Relative phase offset (UI)

0.4

0.2

0.0

0.2

0.4

Si
gn

al
 V

ol
ta

ge
 (V

d
if
f)

Fig. 2. “Bath-tub” curve scan algorithm and reconstructed eye diagram.

jitter, a receiver will not be able to achieve synchronization
with its input signal resulting in the observed bit error ratio of
0.5. From these measurements of the BER at signal sampling
points distributed through the UI the eye opening and jitter
characteristics of the signal may be deduced [8].

The key benefit of this approach is that the conclusion re-
garding the signal quality and, therefore, link parameters, may
be reached by a number of BER measurements with different
phase offsets through the UI instead of one at the optimal
sampling point. However, each of these measurements needs
to achieve a given confidence level at a much higher target
BER and, therefore, requires significantly shorter runtime.

An algorithm implementing this approach can be further op-
timized to reduce the number of required BER measurements
at the center of the eye opening, where the bit error ratio
is low. These measurements take up most of the time and
effectively provide no useful information. Several approaches
to such optimization are described in [8].

Figure 2 illustrates the behavior of the modified algorithm
implemented by the authors and shows an eye-diagram re-
constructed from the measurements. As a first step (marked
with 1 in the figure) an initial scan through the entire unit
interval is performed with high target BER (10−7). From these
measurements, an approximate location of the eye boundaries
is determined. At the second stage the BER is measured at the
center of the eye opening to make sure that the target BER
level (10−12) is achievable at the close-to-optimal sampling
point (2). Then, the BER is measured at sample points from the
eye opening boundaries detected during the first scan towards
the center to determine points where the target BER level is
achieved (3). The distance between these points (eye-width)
serves as a measure of the signal quality at the input of the
receiver CDR unit and may be used as a target function for
the link parameters’ tuning.

The described algorithm for eye-width measurements re-
duces the number of BER samplings within the eye opening.
For the diagram shown in Figure 2, it took only 55 minutes

123Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 132 / 153

32

...
SFP+

1

FPGA SFP+

Coax cablesCoax cables MMF

Fig. 3. Experimental system and loopback configurations.

to collect all the data. An exhaustive UI scan under the
same conditions takes 150 minutes but provides no additional
information on the link operation.

V. TEST SYSTEM IMPLEMENTATION

To confirm the usefulness of the approach described to the
optical link testing and parameter tuning and to create a base
set of tools to be used in future projects, e.g., in an FPGA-
based HPC system exploiting high speed optical interconnects,
the authors implemented a prototype system. The system
consists of hardware, a set of IP blocks, embedded software
and development tools and facilitates debugging, testing and
evaluation of the components. A photo of the assembled
system hardware is shown in Figure 3 and components of the
system are described in the following sections.

A. Hardware Platform

The system is based on the Altera Stratix IV GX FPGA
(EP4SGX230KF40C2) installed on a TerasIC DE4 board.
Through an adapter board with SMA connectors and a set of
coaxial cables the DE4 board is connected to SFP+ evaluation
boards hosting optical transceiver modules. Hot-pluggable
SFP+ transceivers used in the system provide duplex LC-
type optical connectors for the Multi-Mode Fiber. Management
interface of the transceiver modules (I2C) is accessible from
the FPGA and is used for the monitoring of their parameters.

The highly modular construction of the hardware platform
enables experimentation with different components and link
configurations. During development and validation of the
system several loopback configurations were used as shown
in the diagram on Figure 3. The shortest possible one is an
electrical loopback connecting the FPGA transmitter output
signals directly to the input of the receiver (1). The second
tested configuration uses a single optical transceiver with its
input and output connected via a Multi-Mode Fiber (MMF)
loopback (2). The length of the fiber loop used in the tests
ranged from 15 cm to 15 meters. This loopback configuration
is the closest to an actual optical link where the signal passes

through one electro-optical and one opto-electrical conversion
and a single fiber segment.

The most elaborate loopback configuration tested utilizes
two transceiver modules and an electrical loopback on the
“remote” side of a duplex fiber link (3). While this link exceeds
configurations, which would be found in practical applications
it is still interesting as it allows an easier separation of
influence on the signal quality from different components of
the link and serves as a model of a less favorable environment
with longer links and a higher number of interconnects along
the signal path.

The transceivers available in Stratix IV GX FPGA provide
an on-die scope capable of 1/32 unit interval resolution at
data rates up to 6.5 Gbps [9]. Comparable technology is
available in the transceivers integrated into the Xilinx Virtex-6
FPGA family. As an additional feature these transceivers are
capable of a vertical scan of an eye-diagram [10], however
this functionality has not yet been explored by the authors so
far.

B. System-on-Programmable Chip and IP Cores

The architecture of a soft-IP microcontroller system in-
stantiated in the FPGA is shown in Figure 4. The system
consists of the following main blocks: NIOS II CPU core
with a small on-chip ROM containing boot code, a controller
for external SRAM and FLASH, UART for communication
with a control terminal, cores for the test pattern generator
and checker, interfaces to access the transceiver configuration
and diagnostic features, I2C master cores for connection to
the management interface of the SFP+ modules. The entire
system utilizes only a small fraction of the available FPGA
resources: the logic utilization is 3%, and available memory
and DSP blocks are used for less than 1%.

The IP cores forming the system were taken from three
sources. The first one is the library supplied by the FPGA
vendor (Altera in this case). The cores are optimized for a
specific FPGA architecture, but no source code is provided
and the cores are not available on FPGAs from other vendors.
The second source of IP cores for the system is a collection of
free and open cores hosted on the OpenCores site [11]. These
cores are provided under free licenses and their source code is
available. This makes it possible to implement these cores in
systems on different FPGA architectures. The price for such
flexibility is the time and effort required for integration and
adaptation, and the required time and effort is generally greater
than for FPGA vendor supplied IP cores.

These two sources of IP cores, while covering most of the
functionality, still do not provide several crucial interfaces
required in order to access transceiver configuration and di-
agnostic interfaces. These missing parts were created by the
authors by means of custom HDL development as the third
source of IP blocks, and this required most effort.

Since the IP cores from different sources have different
interfaces their integration into a working system is a technical
problem in itself and required the development of “adapter”

124Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 133 / 153

...

Lua interpreter

Low level h/w drivers

...

H/w init and code loader

Control & Test Modules
Lua

C

On−chip
ROM SRAM

On−chip

UART
Memory

controller

FLASH SRAM

Test pattern

Checker

Test pattern

Generator
Transceiver

Av−to−WB
bridge

IIC

SPI

Configuration

controller
NIOS II

Avalon bus

Wishbone bus

Control
Terminal

Fig. 4. Test System-on-Programmable Chip (SoPC) architecture.

modules. The two primary on-chip interconnects used in the
system are Avalon [12] and WISHBONE [13].

Overall, a combination of the readily available blocks (both
proprietary and free) and those developed in-house proved to
provide a reasonable and time efficient way of implementing
the prototype system.

C. Embedded Software

The monitoring and control of all blocks forming the optical
link, BER testing and processing of the test results are handled
by an embedded software running on the NIOS II soft-IP CPU
instantiated in the FPGA.

Low level software to access all hardware interfaces is
implemented in the C programming language and its func-
tionality is made available to the Lua interpreter. Lua, as is
stated on its web-site [14], “is a powerful, fast, lightweight,
embeddable scripting language”. These properties make it very
attractive for a wide range of applications including game
development, mobile devices and embedded software [15]. A
tight integration with C and an interactive interpreter facilitate
an efficient development of diagnostic, testing and debugging
software for embedded hardware systems.

Availability of an ANSI C compiler and a basic C run-time
library are the only requirements to port Lua to a new platform
and it was extremely easy to get an early prototype running
on NIOS II. The efforts invested in the porting and support
of Lua interpreter on the soft-IP microcontroller system in the
FPGA were rewarded in the flexibility of the resulting system
and increased development productivity.

Access to the interactive environment is very useful during
embedded hardware development and debugging as it saves
a lot of time in the edit-compile-load-run development cycle.
Since the “hardware” itself is a soft-IP system instantiated in
the FPGA this time saving becomes even more important: on
the one hand, the system is malleable and experimental and
includes design errors, on the other hand traditional software
development cycle is complicated by a separate FPGA design
flow with longer iterations. With this additional complexity
an availability of tools facilitating quick experiments and tests
running directly on the target platform is a key factor for
effective development. Our experience shows that Lua fits

this role perfectly and allows rapid localization of the design
errors both on the hardware and software levels. All the link
configuration and BER measurement software in the system
are implemented as a set of Lua modules.

VI. MEASUREMENT RESULTS

Measurements on the test system were performed for data
rates in a range from 1 to 5 Gbps with various loopback
configurations. The SPF+ module used in most experiments
is the Avago AFBR-703SDDZ. The module is capable of data
rates up to 10 Gbps and, as expected, performs excellently
in the tested data rate range. Even with the most demanding
loopback configuration the eye diagram opening for the 10−12

BER level is approximately 40% (80 ps) of the unit interval
(200 ps at 5 Gbps).

Several data patterns with different spectral characteristics
were used in the experiments. Two test patterns that specifi-
cally check the link performance at the edges of its frequency
band are the Low Frequency (LF) and High Frequency (HF)
patterns. The other test patterns are Pseudo-Random Binary
Sequences (PRBSx) generated by a linear feedback shift
register with the length x. The lengths of 7, 15, 23, and 31 bit
were used. The test results show slight dependency on the data
pattern used, however detailed analyses of this dependency
have not yet been yet performed.

To validate the test system and confirm that the measure-
ment results adequately represent link quality an SFP module
with a lower maximum data rate has been used: Finisar
FTLF8524P2BNL. According to its documentation the module
is capable of data rates up to 4.25 Gbps. Experiments show
that up to this limit it demonstrates BER ≤ 10−12, also the
eye width is smaller than that with the Avago module. The
bathtub scan results for both modules at 5 Gbps are shown in
the Figure 5. This data rate is outside of the specified range for
the Finisar module and this is clearly visible from the diagram:
even in the vicinity of the ideal sampling point BER does not
achieve 10−7 level.

The results obtained allow the conclusion that the developed
test system provides reliable data on the optical link perfor-
mance and may be used to compare different link implemen-
tations and to tune parameters of the link. The comparison of

125Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 134 / 153

0.4 0.2 0.0 0.2 0.4
Relative phase offset (UI)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

BE
R

Module
pilot scan at 1e-9
Finisar FTLF8524P2BNL
Avago AFBR-703SDDZ

Fig. 5. Comparison of “bath-tub” curves for two SFP modules at 5 Gbps.

the measurement results obtained with different data patterns
may provide additional information that could be useful for
optimizing link performance.

VII. CONCLUSION AND FUTURE WORK

The implementation clearly demonstrated the feasibility and
effectiveness of the proposed approach to utilization of the on-
chip diagnostic capabilities of FPGAs with high-speed serial
transceivers. The use of the soft-IP controller instantiated in
the FPGA allows a single-point access to the control and
diagnostic interfaces of all components forming the link.
Combined with computational capabilities and a high-level
programming language interpreter running inside the FPGA, it
enables extensive optical link performance evaluation without
relying on any additional test and measurement equipment and
significantly shortens the system debugging and testing times.
As an additional benefit all the implemented functionality is
still available in the deployed system and may be used for
remote monitoring and diagnostics.

Several factors limit a wider application of this approach.
One of the most critical is the utilization of FPGA vendor
specific IP cores. To use the test system on an FPGA from
a different vendor these blocks should be replaced with
their functional equivalents available on the other platform,
but supporting different system variants would increase the
effort required. A more efficient approach is to replace the
vendor specific IP cores with free and open-source equivalents
available on all target platforms.

The most complex and important block in the system
specific to the Altera platform is the NIOS II CPU core and its
replacement with one of the free CPU cores is considered by
the authors to be the next step in the project. The remaining
proprietary cores (test data pattern generator and checker,
external bus controller, UART) are expected to be easier to
replace and do not require toolchain and embedded software
porting effort. The replacement of the IP blocks available only
on one FPGA architecture with portable ones will make it
possible to reuse the test system on different FPGAs and
boards and will facilitate direct comparison of the optical
modules and built in FPGA transceivers across them.

Another area for improvement is the automated integration
of separate IP blocks from different sources into a system.
Vendor specific tools have progressed notably in this area in
recent years, however they are still limited with regard to
support of “foreign” IP cores. On the other hand, while efforts
have being made to provide similar functionality for free and
open-source cores, the tools that have emerged so far are not
well integrated in the FPGA and embedded software design
flows.

Detailed analysis of the dependencies between the test
loopback configurations, data patterns, transceiver parameters
and observed eye-diagram is required to develop effective
algorithms for link parameters tuning. This work provides
efficient tools for these researches and demonstrates their
feasibility.

The listed tasks are aimed at improving the implemented test
system itself. The other step planned is to apply the system
to the characterization and parameter optimization of the 12-
channel parallel optical links built with IPtronics low-power
VCSEL driver and TIA arrays or emerging MiniPOD optical
modules. The developed blocks are planned to be used in a
reconfigurable research HPC system with optical interconnects
currently under development.

REFERENCES

[1] A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter,
“Exploitation of optical interconnects in future server architectures,”
IBM Journal of Research & Development, vol. 49, no. 4/5, p. 755,
July/September 2005.

[2] S. Nakagawa, Y. Taira, H. Numata, K. Kobayashi, K. Terada, and
M. Fukui, “High-Bandwidth, Chip-Based Optical Interconnects on
Waveguide-Integrated SLC for Optical Off-Chip I/O,” in Electronic
Components and Technology Conference, 2009, pp. 2086–2091.

[3] B. E. Lemoff, M. E. Ali, G. Panotopoulos, E. de Groot, G. M. Flower,
G. H. Rankin, A. J. Schmit, K. D. Djordjev, M. R. T. Tan, W. Gong,
R. P. Tella, B. Law, and D. W. Dolfi, “Parallel-WDM for multi-Tb/s
optical interconnects,” in Lasers and Electro-Optics Society (LEOS)
IEEE Meeting. Agilent Technologies Laboratories, 2005, pp. 359–360.

[4] O. Liboiron-Ladouceur, H. Wang, A. S. Garg, and K. Bergman, “Low-
Power, Transparent Optical Network Interface for High Bandwidth Off-
Chip Interconnects,” Optics Express, vol. 17, pp. 6550–6561, 2009.

[5] A. C. Xiang, T. Cao, D. Gong, S. Hou, C. Liu, T. Liu, D.-S. Su,
P.-K. Teng, and J. Ye, “High-Speed Serial Optical Link Test Bench
Using FPGA with Embedded Transceivers,” in Topical Workshop on
Electronics for Particle Physics (TWEPP), 2009, pp. 471–475.

[6] M. P. Li, J. Martinez, and D. Vaughan. Transferring High-Speed
Data over Long Distances with Combined FPGA and Multichannel
Optical Modules. [Online]. Available: http://www.altera.com/literature/
wp/wp-01177-AV02-3383EN-optical-module.pdf [retrieved: March,
2012].

[7] G. Breed, “Bit Error Rate: Fundamental Concepts and Measurement
Issues,” High Frequency Electronics, pp. 46,48, January 2003.

[8] M. Müller, R. Stephens, and R. McHugh, “Total Jitter Measurement
at Low Probability Levels, Using Optimized BERT Scan Method,” in
DesignCon. Agilent Technologies, 2005.

[9] W. Ding, M. Pan, T. Tran, W. Wong, S. Shumarayev, M. Peng Li,
and D. Chow, “An On-Die Scope Based on a 40-nm Process FPGA
Transceiver,” in DesignCon. Altera Corporation, 2010.

[10] RocketIO Transceiver User Guide, Xilinx, Inc., 2007.
[11] [Online]. Available: http://opencores.org/ [retrieved: October, 2012].
[12] Avalon interface specifications. [Online]. Available: http://www.altera.

com/literature/manual/mnl avalon spec.pdf [retrieved: May, 2011].
[13] Wishbone B4. WISHBONE System-on-Chip (SoC) Interconnection

Architecture for Portable IP Cores. [Online]. Available: http://cdn.
opencores.org/downloads/wbspec b4.pdf [retrieved: October, 2012].

[14] [Online]. Available: http://www.lua.org/ [retrieved: October, 2012].
[15] R. Ierusalimschy, Programming in Lua. Lua.org, 2006.

126Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 135 / 153

Data Model Based Test Case Design

Model-driven Information System Testing

Federico Toledo Rodríguez

Abstracta

Montevideo, Uruguay

e-mail: ftoledo@abstracta.com.uy

Beatriz Pérez Lamancha

Software Testing Center,

University of the Republic,

Montevideo, Uruguay

e-mail: bperez@fing.edu.uy

Macario Polo Usaoloa

Alarcos Research Group,

University of Castilla-La Mancha,

Ciudad Real, Spain

e-mail: macario.polo@uclm.es

Abstract—Software testing is a challenging task, but frequently

the time is wasted in interactions between development team

and testing team due to simple errors related with the data

structure and neither with the complex business rules. That

highlights that it is very important to verify that the

application can handle correctly the data structure and the

data types, and for this we consider to generate test cases based

on the data model. We are developing a framework to generate

executable test cases from a data model, to test information

systems that use databases. In this article, we will present the

test case design approach, based on the data model, in order to

verify the correctness of the application layers that manage it.

Keywords-test data; information system testing; model driven

testing; automated test case generation

I. INTRODUCTION

The design of many applications starts with a conceptual
modeling which is then used to define the database schema
and the classes’ structure of the domain tier of the
application to be developed. Domain classes are then
enriched with both methods to deal with the business goals,
and with methods to deal with the persistence of their
instances. Considering that the database structure is well
designed, according to the requirements and the performance
needs, then, it is necessary to verify that the application layer
over it can manage correctly the particularities of the defined
structure. Moreover, the same database structure could be
accessed by different applications, such as a Web application
for the customers, a desktop application as a backend, or a
layer exposing Web Services in order to provide an
integration mechanism with other systems. Thus, there is a
correspondence between the logic components (e.g. classes,
servlets and services) and the data structures (generally in a
relational database). As the basic operations to manipulate
data structures are the CRUD operations (create, read,
update, delete) and almost any business method changing the
state of a persistent instance will do a call to a CRUD
operation, we will pay special attention on these methods on
each entity.

Model-Driven Testing (MDT) [1] implies the automatic
test case generation from models through model
transformation. Our methodology follows a model-driven
testing approach to automatically generate test cases from

the data model, obtained from the database metadata. The
generated test cases permit to verify the correctness of the
CRUD operations of the entities defined in the system,
according with certain coverage criteria. The methodology is
supported with a framework that is based in the most
important standards, mainly in the Unified Modeling
Language (UML) [2].

In this article, we present how we design the test cases
for information systems with databases. In Section II, the
general framework is introduced. Then, in Section III, we
present the main contribution of this article which is the test
case design strategy. Section IV shows the state of the art
regarding with test cases generation for database-driven
applications. Finally, Section V draws some conclusions and
future lines of work.

II. FRAMEWORK FOR INFORMATION SYSTEM TESTING

The methodology has three main phases (Figure 1). Each
step we fits into different standards mainly from the Object
Management Group (OMG), especially UML, in order to use
general UML modeling tools. These three phases are:

 Phase 1: Reverse Engineering. Initially some
reverse engineering techniques and tools are used in
order to obtain the corresponding data model, from
the physical schema of the database.

 Phase 2: Model to Model Transformation. The
data model is processed looking for certain patterns
and then generating automatically test cases for each
pattern through model transformations. As a result,
test cases for the data structures are generated, thus
obtaining a test model.

 Phase 3: Model to Text Transformation. Last but
not least, the test models are transformed into test
code, obtaining executable test cases.

In order to represent the data model we use the UML
Data Modeling Profile (UDMP) [3], that is an UML class
diagram extension developed by IBM to design databases
using UML, with the expressive power of an entity-
relationship model. It defines concepts at a physical level and
architecture (Node, Tablespace, Database, etc.), and the ones
required for the database design (Table, Column, etc.).
Several proposals use this profile to model the database
structure [4-6].

127Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 136 / 153

For more detail on the framework, refer to [7]. In the
following section, we focus on the test case design that is the
most important part of the design of the second phase.

III. DATA MODEL CENTERED DESIGN

Given that in our case we generate test cases from a
UDMP class diagram corresponding to the system data
model, we will consider some coverage criteria as adequate
to those artifacts, as for example some of the proposed by
Andrews et al. [8] UML class diagrams:

 Class Attribute (CA): the test suite should make
use representative values for each attribute in each
class.

 Association end Multiplicity (AEM): the test suite
should make use every representative pair of
multiplicities for the associations of the model.

These coverage criteria were designed for the context of
testing a method or use case, where an object oriented model
defines the behavior of the system. In our case we will apply
the criteria for a data model instead of an object model, so
we adjusted some aspects in order to make it applicable. The
most important consideration is that the operations that we
will be testing are create, read, update and delete of each
entity. This is important to determine the oracle, because the
expected results of these operations are well-known. Another
consideration related with the multiplicity of the
associations: according with the definitions given in the
foreign keys we could have different kinds of association
multiplicities, and for each one we have to considerate a
special situation about the boundaries of the association end
multiplicities.

To apply these criteria the framework will generate test
cases to cover these situations for every substructure of the
data model that matches any of the criterion, what means that
for each class it will generate test cases according with CA

criterion and for each association will generate test cases
according with AEM criterion.

We designed the patterns, and the corresponding test
cases to be generated, according with the characteristics of
the relations and tables involved. In the rest of this section
we present an initial design for patterns with one table, two
tables and three, describing the different situations and the
test cases that will be generated in order to reach the defined
coverage criteria.

A. One-table Patterns

First, we designed test cases to test the most basic
patterns: based on one table, which means to pay special
attention to the attributes and the different combinations of
their representative values, according to CA criterion.

For each attribute we can categorize in valid data and
invalid data, according with the data type obtained from the
column metadata, and from business rules (extracted for
example from the Check constraints defined in the database).
This way, we are defining representative test data for each
attribute. In this step, we define categories and values for
each one, even considering boundaries. For instance,
according with the example of the Figure 2 (one table to
store the name, id and age of people), the table Persons has
an integer attribute age, and imagine that it is defined a check
that verifies that the value is greater than zero, then, a set of
interesting values could be: {-100, -1, 0, 1, 100}. Another
interesting example is related with varchar variables, as the
id attribute of Persons, as it is defined with a length of 50,
we could try with a string with 50 or fewer characters, and
one with more.

Once we have interesting values for each column, we
combine them with pair-wise algorithms, using our own tool
called CTWeb [9]. By this way we obtain a reduced set of
tuples with higher probability to find errors. If we take the
Cartesian product of the different interesting values, as
suggested by Andrews et al. for the CA criteria, we will have
too many values, so, we decided to reduce the test set by this
way.

If any of the different attributes’ values used by the test
case is invalid, the expected result is a fail. If we test the
create operation then we have to check that the instance was
not created, and if all the values were valid, the expected
result is a pass, and we should check that the instance was
created correctly with the values used in the parameters. The

same with the update operation, if all the input values are
valid, we have to check that the values were updated, and if

Figure 1 - Methodology and framework

Figure 2 – Example with one table

128Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 137 / 153

any of the input values were invalid, we have to check that
the operation failed, and all the attributes in the database
keep their original value.

The interesting operations are create, read, update and
delete for each entity. The read operations are used to give
support to the validation actions: if any assert fail, the error
could be in the tested operation or in the read operation.
Regarding update operation, there will be one for each
attribute. Taking into account the previous considerations,
we will apply the CRUD pattern [10] to considerate the
whole life cycle of an instance, which implies to test the
operation in the sequences that can be obtained expanding
the regular expression: C · R · (Ui · R)* · D · R, where the Ui
represents each operation that updates a different attribute.
This is equivalent to generate test sequences according to the
state machine presented in Figure 3, where there is an
invocation to read operation in each state, in order to verify
that the actual state is the expected.

Applying the CRUD pattern to the example of the entity
Person we could generate the following test sequence:

1. Create Person
2. Read Person
3. Update Id Person
4. Read Person
5. Update Age Person
6. Read Person
7. Update Full Name Person
8. Delete Person
9. Read Person / should fail
Note that the final state of the database is the same one

than the initial, what is convenient in order to have
independent test cases: the execution order does not affect
the expected result.

The same test sequence, which is the test behavior, can
be executed with different test data, that it is going to be
stored in a separated structure of the test model called data
pool. This is known as data-driven testing approach [11],
and the main advantage is that we can add easily new test
cases just adding new rows to the data pool, indicating new
interesting situations to cover with the data inputs. Therefore,

the data pool will have the combination of the representing
values, obtained from CTWeb.

B. Two-table Patterns

For this pattern, we will show as an example the one of
Figure 4: the table Journal stores the different journals
relating the editor responsible, whose information is stored in
the table Persons.

Regarding the data inputs, we apply in each table the
same process that for one table, except for those attributes
included in the foreign key: first we define representative
values and then we combine them with CTWeb in order to
fill the data pools. For the foreign keys, we will have into
account the AEM criterion, what means that we will try to
associate instances in a way that covers the different
representative multiplicities. The association ends of two
tables (a referencing and a referenced table) could have
multiplicity of 0..1 (in the referenced table side if the foreign
key allows nulls, or in the referencing table side if the
foreign key is unique), 1 (in the referenced table side if the
foreign key does not allow nulls) or 0..* (in the side of the
referencing table). Therefore, we can have the following
combinations:

 0..1 → 0..1

 0..1 → 1

 0..* → 0..1

 0..* → 1
We are only considering the ones that can be

implemented in a database schema with foreign keys,
because for example the relation 1 → 1 it is not possible to
implement with foreign keys between two tables.

The example of Figure 4 corresponds with the last
situation: 0..* → 1, from Journal to Person.

For each situation, we want to cover AEM criterion, and
for this it is necessary to test associating entities with
representative multiplicities, what is the boundaries of the
defined ranges. For this, we consider to try each instance
associated with 0, 1 and 2 instances of the other table. We
consider that associating two instances is good enough to test
the multiplicity “*”.

According with this idea, different states of the database
are defined, and considering the example of Figure 4 some
of these states are:

 One journal referencing one person (rel.: 1 – 1)

 Two journals with the same person (rel.: 2 – 1)

 One person that is not referenced (rel.: 1 – 0)
As we have 3 possibilities (0, 1 and 2) for each

association end, we have 9 combinations. Some of these

Figure 4 – Example with two tables

Figure 3 - State machine for 1 table

129Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 138 / 153

combinations are invalid according with the relation, as for
example: in a relation 0..1 → 0..1, we cannot associate 2
registers with the same register of the other table. So, the
expected result is defined by the validity of the data inputs
and the validity of the number of instances to associate
according with the foreign key.

The operations of create, update and delete force a
change in the database state, only when we execute them
with valid data. If we execute them with invalid data then the
state should not change. The update operation also includes
the update of the foreign key, considering that the valid data
is the existing keys in the referenced table and invalid data
when it does not, and similarly for create operation (it is
interesting to test the creation of a Journal which references
a Person that does not exist). If the foreign key has more
than one attribute, it is necessary to considerate the update of
them in the same operation.

With all these considerations, we defined a state
machine, with the different states and transitions already
described. The test cases that we design for this kind of
patterns are based on the state machine coverage, for
example trying to reach all paths, or all states and transitions.
Figure 5 shows an excerpt of the state machine for the
example with Journals and Persons, and from this excerpt
we present a possible test sequence generated from it
(remember that after each operation there is a Read to verify
the expected state):

1. Create Journal (without association) / should fail
2. Read Journal
3. Create Person
4. Read Person
5. Update Person (for each attribute)
6. Read Person
7. Create Journal with Person
8. Read Journal
9. Update Journal (for each attribute)

10. Read Journal
11. Update Person (for each attribute)
12. Read Person
13. Create Journal with Person (rel.: 2 – 1)
14. Read Journal
15. Delete Journal
16. Read Journal
17. Delete Person / should fail
18. Read Person
19. Delete Journal
20. Read Journal
21. Delete Person
22. Read Journal
Note that also, in this case we preserve at the end of the

test case execution the original state of the database. On the
other hand, this criterion subsumes the previous with one
table, because the states of the table Person are part of the
states of this pattern, and all the transitions of the first
example are also included in this one. That means that if we
find and generate test cases for a two tables’ relation, it is not
necessary to worry about generating test cases for each table
apart.

C. Three-table Patterns

In the previous subsection, we are not including a type of
binary relation at a conceptual level, which are the many to
many relations, because at a database level it is implemented
with three tables: two tables with the data of the entities, and
another auxiliary table to store the relations, referencing the

Figure 6 - Example with 3 tables

Figure 5 - Excerpt of the State Machine for Journal and Person

130Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 139 / 153

primary keys of the entities, defining its own primary key as
the addition of the primary keys’ attributes. Also, could be
more attributes in the auxiliary table to store data related
with the association. Paying attention to Figure 6, we can see
the relation between Authors and Articles, where the same
author can have many articles, and the same article can have
many authors. The relation table ArticleAuthor has some
attributes to store information about the relation between the
Article and Author, for example indicating if this this author
is corresponding author for this article.

This particular case imposes some considerations. We
should add some valid states to the previous state machine,
including association ends: 2 – 1 and 1 – 2, and 2 – 2. Also,
the update of the relation table has two foreign keys,
therefore there will be two special update operations that
have to consider to reference valid (existent) and invalid
(inexistent) tuples in the referenced tables.

In this example is interesting to mark something else that
is that the tester has the possibility to add extra information
to the data model, in order to validate some aspects of the
logic that cannot be represented in the database schema. In
the relation between Article and Author, perhaps it does not
make sense to have an article without any authors, but this
cannot be implemented in the schema, it must be managed in
the logic, therefore, we want to check it. So, after the reverse
engineering process we could modify the data model in order
to generate test cases that can verify this kind of situations,
just changing the association end multiplicity from “0 – *” to
“1 – *”.

IV. RELATED WORK

Regarding test data generation for systems with
databases, Tuya et al. [12] define a coverage criteria based
on SQL queries, applying a criteria similar to Modified
Condition/Decision Coverage [13] but considering the
conditions of FROM, WHERE and JOIN sentences,
generating test data to cover this criterion. There are some
approaches (from Haller et al. [14] and Emmi et al. [15])
where the code coverage criteria are extended in order to
consider the embedded SQL sentences, generating database
instances to cover the different scenarios proposed as
interesting. Arasu et al. [16] propose to specify in some way
the expected results of each SQL included in the test, and
then they can generate test data to satisfy this specification.
The proposal from Chays et al. [17], called AGENDA, takes
as input the database schema and categorized test data given
by the user, whereby generates test cases and initial database
states, and validating after the test case execution the outputs
and the final database state. Neufeld et al. [18] generate
database states according to the integrity restrictions of the
relational schema, using a constraint solver. As far as we
know, many proposals for test data generation exist, but none
of them focuses on automated test model generation using
model transformations.

There are various proposals to generate test cases
automatically from UML models, as the ones described by
Offut et al. [19] and Brucker et al. [20], but as far as we
known, only Fujiwara et al. [21] proposed a special
consideration for information systems with databases. In this

work, they propose to generate test cases considering a UML
class diagram to represent the data model, and another to
represent the screens. The data restrictions (foreign keys,
relations between data inputs and database fields, etc.) and
pre and post conditions of the methods under test are
represented with Object Constraint Language (the OMG’s
standard rules definition language). The whole test model
must be specified manually, and therefore, maintained. The
test cases generated are centered on the given restrictions,
while in our proposal we pay attention on the data model
automatically obtained, without maintenance costs.

V. CONCLUSION AND FUTURE WORK

This paper has presented a method for test case design
based on the data model, what is useful for our framework to
test information systems with databases. From a well-
designed database we can validate, with few extra effort, that
the logic that manages the structures does it correctly.

This approach could be applied for any kind of system
that uses a data base. We are developing the first group of
patterns in order to put it into practice and validate our ideas,
and to compare with other approaches. We believe that we
can save time and effort detecting many errors before to
deliberate a version to the testing team. Doing so, we can let
a tester concentrate in the hard and more interesting task of
testing the complex business rules of a system.

Another important point within the future work is related
with complex objects types for the columns, as well as
complex rules taken from checks or from the source code.

We also want to validate the scalability of the idea. For
each entity it is necessary to implement some adaptation
layer, but then the test cases executes completely
automatically, independently of the amount of patterns
defined.

Moreover, as a future work, we plan to experiment with
different kind of model-driven development tools, as
GeneXus [22] or OOH4RIA [23], because this kind of tools
generate the system code from data models in a structured
way, what could permit us to generate automatically the
adaptation layer, in order to generate executable test cases
with no extra cost.

ACKNOWLEDGMENT

This work has been partially funded by the Agencia
Nacional de Investigación e Innovación (ANII, Uruguay), by
DIMITRI project (Desarrollo e Implantación de
Metodologías y Tecnologías de Testing, TRA2009_0131,
Spain) and by MAGO/Pegaso project (Mejora Avanzada de
Procesos Software Globales, TIN2009-13718-C0201,
Spain).

REFERENCES

[1] P. Baker, Z.R. Dai, J. Grabowski, O. Haugen, I. Schieferdecker, and

C. Williams, Model-Driven Testing: Using the UML Testing Profile.

2007: Springer-Verlag New York, Inc.

[2] OMG. Unified Modeling Language. 1997 [retrieved: october, 2012];

Available from: http://www.uml.org/.

131Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 140 / 153

[3] D. Gornik, UML Data Modeling Profile. 2002, IBM, Rational

Software.

[4] S. Yin and I. Ray. Relational database operations modeling with

UML in AINA'05: Advanced Information Networking and

Applications. 2005. Vol. 1 pp. 927-932.

[5] G. Sparks, Database modeling in UML, in Methods & Tools. 2001.

pp. 10-22.

[6] K. Zieliriski and T. Szmuc, Data modeling with UML 2.0. Software

engineering: evolution and emerging technologies, 2006. Vol. 130:

pp. 63.

[7] F. Toledo, B.P. Lamancha, and M.P. Usaola. Towards a Framework

for Information System Testing - A model-driven testing approach in

ICSOFT. 2012. Rome, Italy.

[8] A. Andrews, R. France, S. Ghosh, and G. Craig, Test adequacy

criteria for UML design models. Software Testing, Verification and

Reliability, 2003. Vol. 13 (2): pp. 95-127.

[9] M.P. Usaola and B.P. Lamancha. CTWeb. [retrieved: october, 2012];

Available from: http://alarcosj.esi.uclm.es/CombTestWeb/.

[10] T. Koomen, L. van der Aalst, B. Broekman, and M. Vroon, TMap

Next, for result-driven testing. 2006: UTN Publishers.

[11] M. Fewster and D. Graham, Software test automation: effective use of

test execution tools. 1999: ACM Press/Addison-Wesley Publishing

Co.

[12] J. Tuya, M.J. Suárez-Cabal, and C. De La Riva, Full predicate

coverage for testing SQL database queries. Software Testing

Verification and Reliability, 2010. Vol. 20 (3): pp. 237-288.

[13] J.J. Chilenski and S.P. Miller, Applicability of modified

condition/decision coverage to software testing. Software

Engineering Journal, 1994. Vol. 9 (5): pp. 193-200.

[14] K. Haller. White-box testing for database-driven applications: A

requirements analysis. 2009: ACM, pp. 13.

[15] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation

for database applications in ISSTA'07: Software Testing and

Analysis. 2007, pp. 151-162.

[16] A. Arasu, R. Kaushik, and J. Li. Data generation using declarative

constraints in International conference on Management of data.

2011: ACM, pp. 685-696.

[17] D. Chays and Y. Deng. Demonstration of AGENDA tool set for

testing relational database applications. 2003: IEEE Computer

Society, pp. 802-803.

[18] A. Neufeld, G. Moerkotte, and P.C. Loekemann, Generating

consistent test data: Restricting the search space by a generator

formula. The VLDB Journal, 1993. Vol. 2 (2): pp. 173-213.

[19] J. Offutt and A. Abdurazik, Generating tests from UML

specifications. «UML»’99—The Unified Modeling Language, 1999:

pp. 76-76.

[20] A. Brucker, M. Krieger, D. Longuet, and B. Wolff, A specification-

based test case generation method for UML/OCL. Models in

Software Engineering, 2011: pp. 334-348.

[21] S. Fujiwara, K. Munakata, Y. Maeda, A. Katayama, and T. Uehara,

Test data generation for web application using a UML class diagram

with OCL constraints. Innovations in Systems and Software

Engineering, 2011: pp. 1-8.

[22] Artech. GeneXus. 1988 [retrieved: october, 2012]; Available from:

http://www.genexus.com

[23] S. Meliá, J. Gómez, S. Pérez, and O. Díaz. A model-driven

development for GWT-based Rich Internet Applications with

OOH4RIA. 2008: Ieee, pp. 13-23.

132Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 141 / 153

A Model-Based Approach to Validate Configurations at Runtime

Ludi Akue, Emmanuel Lavinal, Michelle Sibilla
IRIT, Université de Toulouse

118 route de Narbonne
F31062 Toulouse, France

Email: {akue, lavinal, sibilla}@irit.fr

Abstract—Dynamic reconfiguration is viewed as a promising
solution for today’s large scale and heterogeneous comput-
ing environments. However, considering the critical missions
networked systems support, dynamic reconfiguration cannot
be achieved unless the accuracy of its behaviors is guar-
anteed. For that reason, dynamic reconfiguration solutions
should provide validation capabilities to ensure the correctness
and the safety of reconfiguration activities. Current solutions
mainly address use-case specific configuration validation or
fail to handle the additional operational validity requirements
induced by dynamic reconfiguration. In this paper, we describe
a model-based approach for validating configuration changes
at runtime. The approach is based on MeCSV, a metamodel
that allows a platform and vendor-independent specification
of a reference model, that is, the configuration schema of the
managed system as well as constraints that should be respected
for structural consistency and operational compliance. We
provide an overview of the MeCSV language and demonstrate
the feasibility of this approach using a messaging platform case
study.

Keywords-dynamic reconfiguration; configuration validation;
configuration specification; model-based approach.

I. INTRODUCTION

The self-management vision has gained a lot of mo-
mentum in networked systems management where it is
viewed as a promising solution for today’s large scale and
heterogeneous computing environments management. This
vision consists mainly in endowing managed systems with
self-adaptation capabilities to maximize their usability [1].

Regardless of the management functional domains (e.g.,
fault, performance, security), dynamic reconfiguration activi-
ties are the principal means through which self-management
is carried out. However, dynamic reconfiguration capabili-
ties should not endanger the system’s operation, otherwise
they would nullify the expected benefits: reconfiguration
validation is one of the fundamental issues that conditions
dynamic reconfiguration effectiveness [2]. Consequently,
management systems should support online validation to
guarantee the correctness and the safety of reconfiguration
activities.

This paper complements previous work on defining a
framework for dynamic reconfiguration validation. In [3],
we argued that runtime reconfiguration validation should go
beyond traditional structural sanity checks to further assess
the safety of candidate configurations regarding operational

conditions at hand. For example, when a max request size is
erroneously set smaller than the current number of requests
sent to a process, it can introduce some inconsistencies thus
compromise the system’s operation. In other words, in the
matter of self-configurable systems, prevailing operational
states can invalidate the suitability of a runtime produced
configuration no matter its structural correctness. Conse-
quently dynamic reconfiguration validation should consider
an operational applicability validation which consists of
validating proposed configuration changes against the cur-
rent system’s operational state to test the suitability of its
deployment.

In this paper, we present a model-based approach for con-
figuration specification that enables a platform-independent
validation of configuration modifications at runtime.

The approach is based on a metamodel we develop named
MeCSV (Metamodel for Configuration Specification and
Validation). MeCSV implements appropriate constructs that
allow vendors or operators to define their own reference
model that every valid configuration instance should con-
form to, independently from management platforms and
configuration protocols in use.

Indeed, MeCSV provides an intermediate high-level lan-
guage that resolves the heterogeneity of configuration in-
formation and semantics. It also includes rule specification
features to define different types of constraints to be val-
idated dynamically on specific configurations produced at
runtime. Finally, MeCSV incorporates constructs to repre-
sent monitored data of interest that will serve to assess the
operational compliance of a given configuration instance.

In particular, one novelty of the metamodel is to include
the capability to express both offline and online constraints.
The former allows operators to define structural integrity
rules while the latter allows them to define rules to be en-
forced regarding operational conditions, necessary to ensure
the operational validity of produced configurations.

The remainder of the paper is structured as follows:
Section II presents related work and Section III includes
a case study that will be used throughout the article to
illustrate usage examples of the MeCSV metamodel. Section
IV introduces the validation approach we propose, built upon
the MeCSV metamodel whose core constructs are described
in Section V. Finally, Section VI describes implementation

133Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 142 / 153

details of a prototype experiment and Section VII concludes
the paper and identifies future work.

II. RELATED WORK

The need for configuration representation standards and
configuration automation are growing concerns regarding
the complexity of the configuration management of today’s
large-scale and heterogeneous systems [4], [5]. Our work is
at the junction of these two topics as the MeCSV metamodel
enables a generic and vendor-independent configuration
specification and runtime validation which is a prerequisite
for configuration automation as well as self-configuration.

Most related work proposes platform-dependent data
models that principally provide structural integrity checks
of functional configuration parameters [2], [6], [7], [8] and
consider to a lower extent the validation of non-functional
configuration parameters whose values depend on ongoing
operational conditions (e.g., QoS, resources utilization). The
novelty of our approach is to provide a language that is
designed specifically for dynamic validation, it addresses
both structural and operational validity.

The DMTF Common Information Model (CIM) [9] and
the YANG data modeling language [10] include construc-
tions to model configuration data. CIM provides partic-
ularly SettingData and the OCL qualifier constructs that
can be used to indicate configurations and constraints to
be respected, however, these elements are close to manual
configuration, thus not flexible for a runtime reconfiguration
environment. YANG provides a flexible data modeling lan-
guage with means to specify structural constraints that will
be enforced at runtime. However, YANG is specific to the
Network Configuration Protocol (NETCONF) [11].

Our work also relates to PoDIM, a high-level language
that allows to describe configurations as well as express
the structural constraints that should be respected during
managed objects creation and modification [7]. Even though
they also define a high-level language for configuration
specification, the two approaches are different since PoDIM
is used to generate valid configurations (from rules defined
by an administrator) whereas we validate configurations
produced by existing management systems. In contrast to
PoDIM, we also addresses the operational compliance issue.

Configuration validation is also addressed as a Constraint
Satisfaction Problem [12], [13]. Nevertheless, the considered
constraints are structural and static and their satisfaction
does not consider the operational environment that can
condition the applicability of generated configurations. A
runtime validation is still required to assert the operational
compliance of generated configurations regarding runtime
conditions variations.

III. USE CASE

This section introduces a Message-oriented Middleware
(MOM) use case on which the examples given throughout
the following sections will be based.

MOM systems are profitable to integrate heterogeneous
and distributed applications seamlessly by making use of
messaging servers to mediate communications between
them. One other advantage is that by adding a management
interface, an operator can monitor and manage the sys-
tem’s performance, reliability and scalability without losing
function. Validating a MOM system’s runtime evolving
configurations is a suitable scenario for the evaluation of
the approach we propose. The formalisms we will rely on
respect the JORAM MOM configuration description [14].

A JORAM platform provides the following configurable
features: message servers that route and deliver messages,
destinations that are physical storages supporting either a
point to point messaging (queue) or a “publish/suscribe”
messaging (topic), connection factories used to enable client
connections to the message servers according to used con-
nection protocols (e.g., TCP).

Figure 1 presents the distributed JORAM platform confi-
guration example that will be used in Section VI (recon-
figurations scenarios). It consists of three servers S0, S1,
S2 respectively providing queue-type destination (Qa, Qb,
Qc, Qd and Qe) and TCP connection services to client
applications.

Configuring this example platform consists in configuring
each server, that is setting servers’ local parameters (e.g.,
identifier, name, hostname) and the configuration parameters
of the hosted elements (services, connection factories and
destinations).

 Server S1

JNDI

Server S2

Qd

Qc

Qe

 Server S0

Qa

Qb

Clients

Clients

Clients

Figure 1. Use case system architecture

The following requirements are considered for the purpose
of the case study:

• Configuration structure: It should respect the platform’s
architecture and the relationships between the configu-
ration parameters. (Req1)

• Naming service: Connection factories and destinations
should be accessible via a naming service i.e., the plat-
form should provide an accessible JNDI service where
the administered objects should be stored. (Req2)

• Memory optimization: The queue memory should not
run low in memory, i.e., the queue should not be loaded
at more than 80% of its maximum capacity. (Req3)

134Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 143 / 153

IV. CONFIGURATION VALIDATION APPROACH

The goal of our work is to provide means to enable
an automatic configuration validation in self-configurable
systems. Concretely, we want to build a validation system
capable of automatically asserting the correctness and safety
of configuration data at runtime, that is checking that con-
figuration values remain within authorized bounds and do
not compromise intended service behavior. To meet this
objective, we follow a model-based approach in which we
define a lightweight, yet consistent metamodel that provides
constructs for a vendor neutral configuration data description
and a constraint-based validity enforcement.

Runtime Configuration Validation

Managed Elements

 Management System

Monitor

Plan

Execute

Analyze

Knowledge
Base

Runtime Validation

<<uses>>

ConstraintsConstraintsConstraintsConstraints

Reference Model

MeCSV Metamodel

<<conformsTo>>

Configuration
Structure

State
Parameters

 Validation
Requests

Validation
Notifications

Modeling artifacts

Operational state
acquisition

Figure 2. Proposed model-based configuration validation approach

The aim of this metamodel is first, to allow operators
to specify their system’s configurations thanks to appropri-
ate constructs and rules; second, to enable the automatic
validation of runtime proposed configurations against this
model independently of both management platforms and
configuration protocols.

As depicted in the upper part of Figure 2, the metamodel
we propose is used to specify a Reference Model that
every possible configuration of the target system should con-
form to. This reference model includes the configuration’s
structure (configuration parameters) as well as the different
constraints every valid configuration should respect. The
novel aspect of these constraints is to cover both structural
integrity and operational applicability validation:

• Structural integrity validation checks the correct struc-
ture and composition of configuration parameters
in terms of authorized values and consistent cross-
components dependencies. For example, checking that
a host-address configuration parameter exists and is
well formed according to the IPv4 or IPv6 format.

• Operational applicability validation checks if the con-
figuration fulfills the runtime operational conditions.
For instance, assessing that Req3 still holds after a

configuration modification. This type of validation re-
quires the knowledge of the current runtime context.
The reference model thus includes the concept of state
parameters for the acquisition of necessary monitored
data.

Note that the reference model is to be defined by the hu-
man operator according to system and management require-
ments. Then, it will be used at each dynamic reconfiguration
decision to verify produced configuration instances.

The reference model can also be modified, for example
with the addition, removal or modification of constraints or
configuration elements at any time during the management
system’s life cycle if needed.

The process for validating proposed configurations at
runtime will work as follows: the reconfiguration decision
function of the management system (the Plan block in the
lower part of Figure 2) will interact with the runtime con-
figuration validation. Every produced configuration instance
will be dynamically checked against the reference model
and be consequently validated structurally and operationally
before deployment.

V. MECSV OVERVIEW

This section presents the salient features of the metamodel
depicted in Figure. 3. MeCSV has been formally specified
as a UML profile [15] to ease the usage of the MeCSV
language and benefit from the abundance of UML modelers.

A. Configuration Data Description

Configuration data are generally described in some confi-
guration files where their structure is specified through the
setting of some configuration properties with appropriate
values and options. Additionnally, bindings between sys-
tem’s elements need to be reflected in their configurations,
for example, the coordination of the server’s hostname
value with the machine’s hostname value. This part of the
metamodel represents subsequents concepts to do so.

1) Configuration Parameter: represents quantifiable con-
figuration parameters of managed elements; their expression
defines the configuration data structure. For example, a
message server’s identifier or hostname information.

2) Configuration: acts as a container for configuration
parameters allowing to coordinate them and to group them in
categories. For example, a configuration file can be modeled
as a single Configuration, or for more flexibility, divided into
multiple Configurations.

3) Configuration Dependency: represents bindings be-
tween two configuration elements meaning a configuration
parameter of one configuration references a whole or a part
of the other configuration. Typically, a server’s hostname
references its host machine’s name information.

135Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 144 / 153

Figure 3. Core of the UML profile for the MeCSV metamodel

4) Configuration Composition: allows to divide a main
configuration into partial configurations. For example, a
message server’s configuration is split into message services,
connection factories and destinations sub-configurations. It
means that the complete server’s configuration is the collec-
tion of its local configuration parameters and its associated
sub-configurations.

5) Configuration Metadata: allows to specify metadata
for configuration lifecycle management. For instance, one
could want to tag specific configurations as default or initial.
Another example is the visited metadata used in the
JORAM platform to mark deployed configurations.

B. Connection to the Monitoring Framework

As our work targets a global management environment
where the managed system is both observable and recon-
figurable, we provide constructs to represent information
about managed elements as well as their monitored state.
A knowledge of the monitored state is required to guide
reconfigurations and to assert the operational compliance of
proposed configurations.

1) Managed element: represents the notion of managed
element commonly defined in several management informa-
tion models. A common pattern is to separate managed ele-
ments representation from configuration modeling, managed
elements containing monitoring-oriented information.

2) State Parameter: models the traditional operational
state attributes like operational status, statistical data, in
sum, any monitored information. Enabling the access to their
values is required to process online constraints. The number
of pending messages or current active TCP connections are
examples of state parameters.

In our approach, Managed Element and State Parameter
are the necessary management building blocks for confi-

gurations and runtime constraints definition. Their values
are supposed to be provided by an existing monitoring
framework. They are considered as read-only elements.

C. Configuration Validity Enforcement

Defining a configuration data structure does not suffice to
guarantee the validity of formulated configuration instances;
the following elements allow to define the constraints that
configuration instances should respect.

1) Constraint: represents the restrictions that must be
satisfied by a correct specification of configurations accord-
ing to the system’s architecture and management strategies.
Req1, Req2 and Req3 are examples of high-level level
constraints limiting the range of allowable configuration
parameters values. They will be translated into low-level
constraints that can be enforced at runtime.

The Constraint element is subtyped into offline and online
constraints to support the specificities of the two types of
configuration validation.

2) Offline Constraint: represents structural integrity,
that is rules for architectural compliance. They can be
checked either beforehand at design time or during runtime
and do not involve any check against monitored data.
The following OCL expressions are examples of offline
constraints derived from Req1: self.jndiName<>null,
serverId−>include(parent.serverId)= true. The
first expression ensures that a queue has a registered name
and the second guarantees that a queue is associated with a
valid server.

3) Online Constraint: defines rules for the operational
applicability enforcement. Online constraints use state
parameters values to assess the operational compliance of
configuration data. They are necessarily checked at runtime.
self.nbMaxMsg>80% ∗ self.arrivalsCounter,

136Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 145 / 153

JNDIServer−>include(operationalStatus= ON)
are examples of online constraints expressed in OCL.
The former is a translation of Req3, the latter is derived
from Req2 and ensures that the configuration of the system
includes a running JNDI service. They can only be evaluated
against the current value of a queue’s message load and the
operational status of the naming service respectively.

Constraints also have a “constraint level” attribute to
modulate their strictness together with an “active” attribute
to activate or deactivate them depending on the operational
context and management strategies (e.g., critical vs non-
critical).

D. Usage Example

Figure 4 illustrates an application of the MeCSV UML
profile to the modeling of a message queue according to
specified Req1, Req2 and Req3 in Section III.

Figure 4. Excerpt of the reference model for a message queue

This reference model contains the configuration structure
of a message queue, the offline and online constraints that
should be respected and depending state parameters.

VI. EXPERIMENT

This section presents a prototype implementation of the
approach applied to the MOM system configuration in Sec-
tion III. The underlying objective is to evaluate the ability of
MeCSV to serve as a formal specification notation, namely
whether a MeCSV reference model can suffice to enable a
runtime configuration validation.

Configuration
Generator

Monitoring
Module

Constraint
Checker

Configuration
Datastore

Reference Model

Constraint
Base

?? ? ?

configuration validation
data acquisition
reference model artefacts

Managed System

Figure 5. Architecture of a prototype implementation

A. Methodology

The prototype is constituted of three components that
interact automatically as shown in Figure 5:

1) Architecture:

• A configuration generator: it outputs configuration in-
stances according to defined reconfiguration scenarios.

• A monitoring module: it updates operational state met-
rics according to given monitoring scenarios.

• A constraint checker: it checks related configuration
elements against the reference model. This constraint
checker is specifically designed to interpret MeCSV
constructs. It can thus process any given configuration
data defined with the MeCSV language.

2) Implementation Details: The prototype was developed
in Java:

• Each MOM system’s element (i.e., servers, destina-
tions,...) has two corresponding Java class represen-
tations for its monitoring and its configuration view.
For instance, a message server is implemented through
a Server class containing its state attributes and a
ServerConfig class for its configuration attributes.

• The code of the configuration view is generated from
the defined reference model thanks to MeCSV UML
profile.

• Constraints are implemented as test functions. Their
evaluations consist in appropriate method calls on re-
lated constrained elements.

3) Scenarios:
Reconfigurations scenarios: they covered typical per-

formance tuning activities: the addition and removal of
servers, the platform is scaled up and down (from a cen-
tralized configuration of a single server to a distributed
one made of three servers: Figure 1) and the modification
of queues’s configuration parameters to adjust the memory
usage, especially the variation of its maximum capacity.

Common structural flaws (missing mandatory values,
omitted dependencies) are introduced programmatically into
generated configurations to test the constraint-checking.

Monitoring scenarios: they covered operational sta-
tuses variations as generally observed in case of service fail-
ure or communication lost as well as performance decrease
through message load variations than can possibly impact
the platform’s memory usage.

4) Execution: The runtime configuration generator perio-
dically produces a new configuration instance and sends it
to the constraint checker for validation while the monitoring
module arbitrarily updates operational state values according
to monitoring scenarios. The constraint checker evaluates
input configurations by calling appropriate test functions.
The constraint checker returns an OK message (no found
errors) or a list of violation errors.

137Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 146 / 153

B. Discussion

Thanks to the metamodel, we described a MeCSV re-
ference model of the use case system that comprised the
system configuration schema, state data of interest and
offline and online constraints that should be respected.
A provided configuration generator produced configuration
instances that were evaluated by a prototype constraint-
checker. Since those configuration data are expressed using
the MeCSV language, the constraint-checker seamlessly
processed them and tested them against the available set
of constraints. Violations were detected and reported during
the execution of the different scenarios.

This preliminary experiment shows that the approach we
propose is feasible. As long as there is a defined MeCSV
reference model of the managed system, and that its runtime
candidate configurations as well as its monitored data can be
exported using the MeCSV format, our constraint-checker
can be plugged in the related management system and
perform an automatic and platform-neutral configuration
validation.

Yet several points remain to clarify before practical usage:
• The design of the constraint checker: we are currently

studying runtime OCL formats and compilers [16], [17]
and their performance on scalable architectures.

• The interpretation of violation errors: one issue is the
expressiveness of violation errors in order to guide the
re-formulation of a new candidate configuration. This
aspect can be included in the definition of a protocol
between the reconfiguration decision and the validator.

VII. CONCLUSION AND FUTURE WORK

Dynamic reconfiguration is an important issue if we are
to build large, complex and heterogenous systems with an
acceptable level of reliability. However, dynamic reconfigu-
ration decisions should be validated before their application
in order to guarantee the system’s accurate operation.

This paper presented a model-based approach that aims
to enforce the validity of runtime configuration changes. We
have shown that configuration validation at runtime goes
beyond structural correction checks to further verify the
operational consistency of configuration modifications.

We proposed a metamodel (MeCSV) that provides plat-
form and vendor neutral constructs for the specification of a
system’s reference model that is the system’s configuration
schema including structural and runtime constraints that
should be respected. A dedicated constraint-checker can
then consume the defined reference model and automatically
validate output configurations against it.

MeCSV has been implemented as a UML profile and a
preliminary experiment validates the feasibility of its usage
to enable online configuration validation.

Future work intend to carry on our experiments on com-
mon systems to consolidate the genericity of our approach.
Moreover, we are working on a complete framework to

support the metamodel with an adequate runtime constraint
checker.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The Vision of Autonomic
Computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] I. Warren, J. Sun, S. Krishnamohan, and T. Weerasinghe,
“An Automated Formal Approach to Managing Dynamic
Reconfiguration,” in ASE’06: Inter. Conference on Automated
Software Engineering, 2006, pp. 37–46.

[3] L. Akue, E. Lavinal, and M. Sibilla, “Towards a Validation
Framework for Dynamic Reconfiguration (short paper),” in
IEEE/IFIP International Conference on Network and Service
Management (CNSM), 2010, pp. 314–317.

[4] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why
do internet services fail, and what can be done about it?” in
Proceedings of the 4th conference on USENIX Symposium on
Internet Technologies and Systems, ser. USITS’03, 2003, pp.
1–1.

[5] P. Anderson and E. Smith, “Configuration tools: working
together,” in Proceedings of the 19th conference on Large
Installation System Administration Conference, 2005.

[6] A. V. Konstantinou, D. Florissi, and Y. Yemini, “Towards
Self-Configuring Networks,” in DANCE’02: DARPA Active
Networks Conference and Exposition, 2002.

[7] T. Delaet and W. Joosen, “PoDIM: A Language for High-
Level Configuration Management,” in LISA, 2007, pp. 261–
273.

[8] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell,
A. Lain, P. Murray, and P. Toft, “The SmartFrog Configuration
Management Framework,” SIGOPS Oper. Syst. Rev., vol. 43,
pp. 16–25, 2009.

[9] “CIM Schema version 2.29.1 - CIM Core,” june 2011.
[10] M. Bjorklund, “YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF),” Internet
Engineering Task Force (IETF), RFC 6020, october 2010.

[11] R. Enns, “NETCONF Configuration Protocol,” Internet Engi-
neering Task Force (IETF), RFC 6241, december 2006.

[12] T. Hinrichs, N. Love, C. J. Petrie, L. Ramshaw, A. Sahai, and
S. Singhal, “Using Object-Oriented Constraint Satisfaction for
Automated Configuration Generation,” in DSOM, 2004, pp.
159–170.

[13] L. Ramshaw, A. Sahai, J. Saxe, and S. Singhal, “Cauldron: a
policy-based design tool,” in Policies for Distributed Systems
and Networks, 2006. Policy 2006. Seventh IEEE International
Workshop on, 2006, pp. 113–122.

[14] “Java (TM) Open Reliable Asynchronous Messag-
ing website,” september 2011. [Online]. Available:
http://joram.ow2.org/

[15] “OMG Unified Modeling Language (OMG UML), Super-
structure V2.1.2,” november 2007.

[16] M. Gogolla, M. Kuhlmann, and F. Büttner, “A Benchmark
for OCL Engine Accuracy, Determinateness, and Efficiency,”
in Proceedings of the 11th international conference on Model
Driven Engineering Languages and Systems, 2008, pp. 446–
459.

[17] C. Avila, A. Sarcar, Y. Cheon, and C. Yeep, “Runtime
Constraint Checking Approaches for OCL, A Critical Com-
parison,” in SEKE, 2010, pp. 393–398.

138Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 147 / 153

Applying an MBT Toolchain to Automotive Embedded Systems: Case Study Reports

Fabrice Ambert∗, Fabrice Bouquet∗†, Jonathan Lasalle∗, Bruno Legeard† and Fabien Peureux∗†
∗FEMTO-ST Institute / DISC department - UMR CNRS 6174

16, route de Gray, 25030 Besancon, France.
{fambert, fbouquet, jlasalle, fpeureux}@femto-st.fr

†Smartesting R&D Center
18, rue Alain Savary, 25000 Besancon, France.
{bouquet, legeard, peureux}@smartesting.com

Abstract—This paper illustrates the use of a Model-Based
Testing approach from SysML test model using four com-
plementary automotive case studies. The purpose of these
experiments is to give an empirical evidence of the reliability
and to show the suitability of this tooled approach for the
validation of embedded mechatronic systems (systems mixing
software and hardware aspects). The experimented toolchain,
based on the Model-Based Testing principles, reuses well-
known and effective existing tools in order to obtain an end-
to-end toolchain from the modeling step to the execution of
the concrete test cases derived from the initial test model. This
fully automated toolchain and the four automotive case studies
are introduced, and automation feedback is discussed.

Keywords-Model-Based Testing; Automotive Embedded Systems;
Case Study Report.

I. INTRODUCTION

The growing complexity and intensive use of software em-
bedded systems, combined with constant quality and time-
to-market constraints, entail the implementation of high-
performance and effective system validation strategies. Since
functional testing is a strategic activity for software quality
assurance, it creates new challenges for engineering practices
in this domain. To address this activity, we propose to
apply Model-Based Testing (MBT) approach to complete the
manual test cases executed during the software integration,
which often relies on manual, repeated and tedious efforts.

During the last decade, Model-Based System Engineer-
ing (MBSE) methodologies have emerged on the sharing
and standardisation of embedded software technologies [1].
These approaches put a strong emphasis on the use of
models at different steps of the system specification to
increase the quality of the software design process. In
this context, testing against original expectations can be
done using Model-Based Testing approach [2]. MBT is a
particular type of software testing techniques in which test
cases are automatically derived from a high-level model,
which describes the expected behavior of the System Under
Test (SUT). MBT is an increasingly used approach that has
gained much interest in recent years. Today, it is getting
closer and closer to an industrial reality: theoretical concepts
(and associated tools) to derive test cases from specifications
are indeed now mature enough to be applied in many

application areas [3]. However, MBT approaches have still to
provide a better degree of automation, especially to translate
the generated test cases into executable test scripts in order
to shorten the testing time and increase the global time-to-
market [4].

The global picture of an MBT process is shown in Fig-
ure 1. The first step of this approach consists in specifying
a model that captures the functional behavior of the SUT.
From this specification, a tool automatically generates test
cases, which can be seen as an abstract execution trace of
the system. These test cases are abstract because they are
defined at the same abstraction level as the model repre-
senting the SUT. Afterwards, from the abstract test cases, a
concretization step allows to produce, test scripts that can
be directly executed either on a simulation platform of the
system, or directly on the concrete system. The automation
of such test generation process is a strategic issue, since
it can replace the (so current) manual development of test
cases, which is known as costly and error-prone [5].

Figure 1. Model-Based Testing process.

In this paper, we illustrate the use of an MBT toolchain,
providing an automated and repeatable process, dedicated
to embedded and mechatronic systems, including real-time
and continuous executions. We discuss the results using
concrete case studies in order to show the effectiveness and
the suitability of this end-to-end tooled MBT solution, but
the relevance of the test cases is not discussed in this paper.

139Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 148 / 153

This paper is organized as follows. Section 2 presents an
overview of the MBT toolchain, and defines each step of the
test generation and execution process. Section 3 introduces
four case-studies, conducted to evaluate the reliability of our
tooled approach. Section 4 synthesizes our experience and
gives feedback about automation issues. Finally, Section 5
gives conclusions and outlines our future work.

II. DESCRIPTION OF THE TOOLCHAIN

In this section, we briefly describe the toolchain im-
plementing the MBT approach. This toolchain has been
initially developed during the French project VETESS (from
September 2008 to August 2010) and experimented during
the last three years. The resulting MBT toolchain is based on
the Smartesting MBT process [6], which has been adapted
to address the specific testing needs and requirements of
the automotive domain. To achieve this goal, it takes, as
input, test models specified using the SysML [7] language,
from which specific model coverage criteria have been
created to generate dedicated test cases for embedded system
validation. Concerning technical issues, we have developed
a toolchain providing a full automated MBT solution from
the test model to the execution of the generated test cases on
the targeted SUT. This toolchain has been achieved by using
the open-source and Eclipse-based modeling tool Topcased,
the test generation engine Smartesting Test DesignerTM ,
and the test manager and execution environment (dedicated
to embedded systems Clemessy TestInView platform). To
ensure a fully automated process, interfaces between these
tools have been developed. Before introducing the overall
toolchain, each tool is now briefly described in the next
subsections. A more detailed presentation of this toolchain
is available in [8].

A. SysML modeling with Topcased

UML is widely used as a modelling support in industrial
context and is today the main specification language for
object modelling. Recently, to provide sufficient features to
make it useful for systems engineers, SysML profile has
been created. Even if SysML is a recent modeling language,
it is on the rise in the industrial domain to specifically
address system engineering issues. Thus, several modeling
tools already support SysML models, such as Topcased,
which means Toolkit in OPen-source for Critical Application
and SystEms Development. We have decided to use this
tool because it provides a SysML editor based on the UML
metamodel (and therefore compliant with the OMG UML
standard and the SysML metamodel, derived from the OMG
SysML Profile).

More precisely, the test model is specified on the basis
of a subpart of SysML notation called SysML4MBT [9]. A
SysML4MBT model contains at least one Block Definition
Diagram to represent the static view of the system (with
blocks, associations, compositions, enumerations, properties,

operations, signals, flow ports, etc.), at least one Inter-
nal Block Diagram to formalize interconnections between
blocks, and at least one Statemachine diagram to specify the
dynamic view of the system. In addition, Object Constraint
Language (OCL) [10] expressions are associated to the
SysML block operations and state diagram transitions to
provide the expected level of formalization and precisely
describe the dynamical behaviors of the system. Indeed,
OCL is an unambiguous language that allows formally to
express essential behavioral aspects of the SUT. That is why
the combination of OCL and the object-oriented graphical
model is known as a good practice to model the exact service
the system has to do.

B. Test generation with Smartesting Test DesignerTM

Smartesting company has released an Eclipse-based
tooled MBT solution to generate and manage functional
tests from behavioral models specified in UML/SysML.
Basically, automatic test generation algorithm carries out
a systematic coverage of all behaviors of the test model
by applying All-Transitions criterion. Moreover, to address
the specificities of embedded systems, tests also cover each
couple of receipt/sending signals: for each sending event
and each corresponding receipt event, the coverage of the
succession of the sending event and the receipt event is
guaranteed.

Each test corresponds to a sequence of operations (or
events) taking the form of a 3-part structure: a first subse-
quence places the system in a specific context (preamble) to
exercise the test goal, a second subsequence invokes the be-
havior to be tested (test goal), and finally a last subsequence
allows to return in the initial state so that test cases can be
executed automatically in one single sequence. It should be
noted that this 3-part structure can be completed by one or
more observation function calls, which allow observing the
system state at any time during the test execution (to make
the verdict assignment more relevant). Indeed, the precise
meaning of SysML4MBT permits to simulate the execution
of the model, and thus use it as an oracle by predicting the
expected output of the SUT.

The generated abstract test cases are finally exported into
XML proprietary files from which the generated test cases
are translated into specific languages or environments.

C. Test execution with Clemessy TestInView

TestInView (TIV) [11] is a test execution platform based
on a National Instruments hardware architecture (NI Test-
Stand) [12]. It is designed to generate and acquire simple
or complex electric signals and to import mathematical
models (as Matlab/Simulink) that simulate the behavior of
an item of equipment that is absent from its future working
environment. This platform can be used to describe the
test sequences, execute them and automatically assess the
expected results.

140Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 149 / 153

D. Overview of the toolchain

The built toolchain is depicted in Figure 2. The associated
test process is defined as follows:

1) A SysML test model, specifying the SUT, is built
using Topcased.

2) This SysML model is translated into a SysML4MBT
model, which is exported to Test DesignerTM .

3) Test DesignerTM automatically generates abstract test
cases from the model by applying coverage criteria,
and produces the expected behavior of the SUT.

4) The generated test cases and expected outputs are
then exported into TestInView platform. During this
step, a manually-designed mapping table concretizes
the abstract generated test cases into concrete scripts.

5) Finally, Clemessy TestInView platform allows to auto-
mate the test case execution on a simulated system or
on a physical test bench. It also manages the verdict
assignment by comparing automatically the execution
results to the expected ones.

Figure 2. Overview of the MBT toolchain

The next section introduces the case studies used to
illustrate how this MBT toolchain has been successfully
applied to automotive embedded systems.

III. CASE STUDIES

We now present four case-studies that have been used
to experiment the MBT toolchain presented in the previous
section. The goal of this work was to empirically show that
such a tooled approach using SysML notation is suitable
within the automotive embedded system context. The two
first case-studies (front lightings and seat control system)
can be seen as preliminary toy examples: they have been
conducted to experiment only the modeling and the test
generation process. The next two case-studies (front wiper
and steering column) have been used to validate the entire
toolchain from modeling to execution of the generated test
cases (using either simulation framework or physical test
bench). The functional scope of each case study is given.
Metrics about the model structure are summarized in Table I
on page 6. These data and the effort to conduct the case
studies are discussed in Section 4.

A. Front Lightings

The first case study concerns the study of a car front
lighting system. This system allows to put the dipped lights
and full lights on and off. Unlike traditional lighting systems,
we replaces the control stick by a tactile panel (also called
control panel). This panel is composed of a dynamic screen
(variable display) and a tactile surface. In the initial state,
the panel and the lights are turned off. When the ignition is
turned on, all lights stay turned off and the control panel is
started. Two functionalities become then available: light on
dipped lights or flash lights. Two different area are therefore
displayed on the control panel screen. If we choose to light
on dipped lights, other functionalities are ready for use: light
on full lights, light off dipped lights or flash lights. If the
user lights on full lights, dipped lights are automatically light
off. From this new state, it is always possible to flash lights.

This case study proposes a system with quite simple
communications (see Figure 3) but offers a quite complex
statemachine by the number of possible fireable transitions.

Figure 3. Internal Block Diagram of the front lightings case study

This model has generated 41 test targets that are covered
by 11 abstract test cases. Since we did not have concrete
test bench for this case study, it has been used to adjust our
approach on modeling and test generation parts.

B. Seat control

The second case study was carried out on part of the
electronic control of a car driver seat management (the
specification of this case study is provided by [13]). As for
the previous case study, neither a test bench, nor a simulator
were available to execute generated tests. So, this case study
has been also useful to validate the two first parts of the
toolchain: modeling and test generation.

As shown in Figure 4, this system is composed of six
motors (LA, FH, RH, SD, B and HR) that allow to change
features of the seat. Each motor has a maximum amplitude.
All motors can turn on in two different ways (PLUS and
MINUS). They are divided in two groups: the first one
containing LA, FH and RH motors, the other one containing
SD, B and HR motors. We assume that, in a given time, only
one motor can be running in a given group. Priorities are
associated to each motor: if a higher priority motor is turned
on during a lower priority motor is running, this second one
is temporarily turned off in order to run the first one.

141Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 150 / 153

Figure 4. Seat control system

This example describes a continuous system: variations of
the seat features are synchronized by a clock. The amplitude
of motors is thus represented as an amount of clock ticks.
The block definition diagram of this model is composed
of one block for the buttons that activate motors (called
command), one block for each motor and one block for
the clock management. For instance, the statemachine of
the command block is depicted in Figure 5.

Figure 5. Statemachine of the command block of the seat control model

The global model contains 42 signals sendings and 48
signal receipts. The test generation strategy generated 130
test targets, which are covered by 78 abstract test cases.

C. Front Wiper

The third case study specifies a wiper system of a car.
Modeled functionalities are drying up with different speeds
(low, high and intermittently) and a window cleaning with
drying up. In this system, a lot of mecatronic parts are
considered: the serial link, the CAN bus and the EEPROM
memory. Then, the model contains more transitions than
previously (91 transitions shared by 12 parallel statemachine
diagrams) and communications are much more complex.
Thereby, 189 abstract test cases have been generated to cover
the 233 targets derived from the SysML test model.

These generated test cases have been concretized and
exported to the TestInView platform. As shown in Figure 6,
tests have been executed on a simulation model (designed
using Matlab). The result of the test execution on the
simulator has been automatically compared to the expected
result predicted by the SysML test model.

Figure 6. TIV simulation GUI of the front wiper system

D. Steering Column

The steering column case study aims to analyze the
behaviors of a car steering column. A major issue of this
last case study concerns the strong continuous feature of
this system (its state is always evolving), which cannot be
trivially abstracted. Indeed, variation of the steering column
depends on complex mathematical formula and cannot be
modelled using a SysML4MBT model, which describes
only discrete actions. Because of these limitations, our
approach consists in modelling the environment of the SUT
in a discrete manner, and in deferring the management
of continuous time issues at the concretization step. Thus,
for this case study, statemachine diagrams are not used to
represent behaviors of the SUT, but to represent behaviors
of its environment. So, the road plots are modeled, and the
expected values of the SUT are computed in a latter step by
simulation (see Figure 7). Then, the testing process consists
in comparing the values obtained using simulation against
the values observed in the concrete system.

Figure 7. Tests execution for continuous systems

The SysML model represents road characteristics with
blocks that are linked to the steering column (defining the
black box SUT). Figure 8 depicts one of the 61 generated
test cases. Perpendicular lines separate the different steps of
the road. A flat road is represented by gray line, a downhill
part by light gray line, an ascending part by black lines, and
finally the various banking by arrows.

142Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 151 / 153

Figure 8. Graphical test generated for the steering column case study

Since the generated test cases do not allow to calculate
the expected values (road plots do not give the status of
the steering column), it is then necessary to execute the
generated tests on a simulated Matlab version (Figure 9), and
thus compare these results to the execution on the physical
test bench (Figure 10). This comparison has been automated
using the TIV framework. The execution of such scenario
on this test bench is available at the end of the video in [14].

Figure 9. Simulator GUI of the steering case study

Figure 10. Physical test bench of the steering case study

IV. EXPERIMENT SYNTHESIS AND FEEDBACK

The four case studies, presenting a growing complexity
in terms of model expressiveness and behavioral aspects
(see Table I), have shown that Model-Based Testing from
SysML can be successfully applied to several aspects of
automotive embedded system domain. This tooled approach
leads to great benefits to generate automatically test cases
by ensuring a given model coverage and generating a very
large number of test cases from a simple model. Moreover,
for any change in the model, it offers the capacity to re-
generate and re-execute the test cases automatically. As
illustrated in Table I, the test generation time was always
trivial in comparison to the time spent to write the model.
Indeed, the complexity of the test models being reasonable,
test generation tools, such as Test DesignerTM , are now
mature enough to be efficient in terms of generation time
and model coverage rate. However, with more complex and
larger systems, a risk of combinatorial explosion during test
case generation may occur.

In addition, it should be noted that our MBT process
(that relies on a discrete representation of the SUT) can be
nevertheless relevant even if the SUT refers to continuous
issues (eg. steering column example) that cannot easily be
abstracted (such as seat control example). In this specific
context, the test model can be used to describe the dynamic
of the SUT environment, meaning how the SUT can be
stimulated by its environment (and not how it evolves
against these stimuli). The expected behaviors of the SUT
are computed latter, during the concretization step of the
process, which then appears more complex than a simple
mapping between abstract and concrete data.

Whatever the configuration may be, these experiments
have shown that more than 50% of the time is consummed
to manually design and manage the mapping table, which
gives the relation between the concepts of the abstract test
cases and the concrete sequences to be executed on the real
system. The difficulty of this task often comes from the
real-time features of the concrete system, and the need to
synchronize all the operation calls of the test cases. The map-
ping between abstract and concrete notions has been clearly
identified as the key point to make the automation of the
concretization step manageable and reliable in an industrial
context. This issue is not due to our technologies: previous
works using other MBT tools have already underlined this
rough step [15].

Finally, on the basis of this fully automated toolchain,
new experiments are necessary to determine more precisely
the scalability of our MBT approach. Moreover, real-life
experiments with more complex and larger test models
should be conducted to study in a deeper way the relevance
of the generated test cases (our study was mainly focused
on feasibility).

143Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

 152 / 153

Lightings Seat control Wiper Steering

Sys
M

L
mod

el
Blocks 4 9 15 9

Connectors / sends / receipts 8/14/10 24/42/48 26/58/65 10/25/20
Statemachines 3 8 12 6

States per statemachine [2,5,5] [8,1,3,3, [1,1,1,1,1,2, [2,4,3,6,3,4]
3,3,3,3] 17,10,2,2,2,2]

Transitions per statemachine [2,8,8] [18,1,8,8, [2,3,2,4,1,3, [3,8,4,5,9,8]
8,8,8,8] 52,16,2,2,2,2]

Test results Targets 41 130 233 106
Tests 11 78 189 61

Effo
rt

Modeling 99% 97% 40% 30%
Test generation 1% 3% 4% 2%
Concretization 50% 61%
Test execution 6% 7%

Table I
SYNTHESIS OF EXPERIMENT RESULTS

V. CONCLUSION AND FUTURE WORK

This paper reported on results applied to the automotive
system using an MBT toolchain prototype that automates
the generation of executable test scripts from SysML test
models. This prototype is based on existing tools that have
been adapted and customized to achieve testing process
automation: this prototype indeed offers an integrated ap-
proach and continuous process. Several case-studies have
been successfully experimented and have showed that this
toolchain is suitable and can gain benefits within automotive
embedded system validation. However, the manual design
and customization of the translation of the abstract test cases
into concrete ones clearly appeared to be a pain. To provide
a better degree of automation of this step, we intend to
manage real-time issues at the earliest stage of the process,
directly in the SysML model. To address this issue, we want
to investigate the use of the UML MARTE profile [16]; this
feature will allow to model and manage real-time constraints
in the test model. In this way, the generated test cases will
naturally consider the real-time requirements of the SUT,
and thus will simplify the customization of the mapping
table. Moreover, this extension will permit to define new
test generation strategies, focusing on real-time issues.

REFERENCES

[1] J. Estefan, “Model-Based Systems Engineering (MBSE)
Methodologies,” MBSE Initiative and INCOSE Group, Sur-
vey INCOSE-TD-2007-003-01.B, June 2008.

[2] M. Utting and B. Legeard, Practical Model-Based Testing -
A tools approach, Morgan and Kaufmann, Eds. Elsevier
Science, 2006, ISBN 0 12 372501 1.

[3] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy
of model-based testing approaches,” Software Testing,
Verification and Reliability, [retrieved: November, 2012].
[Online]. Available: http://dx.doi.org/10.1002/stvr.456

[4] A. Dias-Neto and G. Travassos, “A Picture from the Model-
Based Testing Area: Concepts, Techniques, and Challenges,”
Advances in Computers, vol. 80, pp. 45–120, July 2010.

[5] H. Zhu and F. Belli, “Advancing test automation technology to
meet the challenges of model-based software testing,” Journal
of Information and Software Technology, vol. 51, no. 11, pp.
1485–1486, 2009.

[6] F. Bouquet, C. Grandpierre, B. Legeard, and F. Peureux,
“A test generation solution to automate software testing,”
Proceedings of the 3rd Int. Workshop on Automation of
Software Test (AST’08), pp. 45–48, May 2008.

[7] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide
to SysML: The Systems Modeling Language. Morgan
Kaufmann, 2009, ISBN 9780123743794.

[8] J. Lasalle, F. Peureux, and F. Fondement, “Development of
an automated MBT toolchain from UML/SysML models,”
ISSE, Special issue of the Int. NASA Journal on Innovations
in Systems and Software Engineering, vol. 7, no. 4, pp. 247–
256, September 2011.

[9] J. Lasalle, F. Bouquet, B. Legeard, and F. Peureux, “SysML
to UML model transformation for test generation purpose,”
Proceedings of the 3rd Int. Workshop on UML and Formal
Methods (UML&FM’10), November 2010.

[10] J. Warmer and A. Kleppe, The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1996, ISBN
0 201 37940 6.

[11] “Clemessy,” http://en.clemessy.com/expertise/innovations/
article/?tx ttnews[tt news]=9, [retrieved: November, 2012].

[12] “TestStand,” http://www.ni.com/teststand/, [retrieved:
September, 2012].

[13] M.-A. Peraldi-Frati, C. André, and J.-P. Rigault, “UML et
le paradigme synchrone : Application à la conception de
contrôleurs embarqués,” RTS’2002, pp. 71–89, March 2002.

[14] “VETESS project,” http://lifc.univ-fcomte.fr/vetess/, [re-
trieved: November, 2012].

[15] E. Dustin, T. Garrett, and B. Gauf, Implementing Automated
Software Testing: How to Save Time and Lower Costs While
Raising Quality. Addison Wesley, 2009, ISBN 0321580516.

[16] O. M. Group, “UML Profile for MARTE, draft revised
submission,” OMG, OMG document number realtime/07-03-
03L4.1, April 2007.

144Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Powered by TCPDF (www.tcpdf.org)

 153 / 153

http://www.tcpdf.org

