
VALID 2013

The Fifth International Conference on Advances in System Testing and Validation

Lifecycle

ISBN: 978-1-61208-307-0

October 27 - November 1, 2013

Venice, Italy

VALID 2013 Editors

Jos van Rooyen, Bartosz, the Netherlands

Philipp Helle, EADS Innovation Works, Germany

Pascal Lorenz, University on Haute Alsace, France

 1 / 84

VALID 2013

Forward

The Fifth International Conference on Advances in System Testing and Validation Lifecycle
(VALID 2013), held on October 27 - November 1, 2013 - Venice, Italy, continued a series of
events focusing on designing robust components and systems with testability for various
features of behavior and interconnection.

Complex distributed systems with heterogeneous interconnections operating at different
speeds and based on various nano- and micro-technologies raise serious problems of testing,
diagnosing, and debugging. Despite current solutions, virtualization and abstraction for large
scale systems provide less visibility for vulnerability discovery and resolution, and make testing
tedious, sometimes unsuccessful, if not properly thought from the design phase.

The conference on advances in system testing and validation considered the concepts,
methodologies, and solutions dealing with designing robust and available systems. Its target
covered aspects related to debugging and defects, vulnerability discovery, diagnosis, and
testing.

The conference provided a forum where researchers were able to present recent research
results and new research problems and directions related to them. The conference sought
contributions presenting novel result and future research in all aspects of robust design
methodologies, vulnerability discovery and resolution, diagnosis, debugging, and testing.

We welcomed technical papers presenting research and practical results, position papers
addressing the pros and cons of specific proposals, such as those being discussed in the
standard forums or in industry consortiums, survey papers addressing the key problems and
solutions on any of the above topics, short papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the VALID 2013 technical
program committee as well as the numerous reviewers. The creation of such a broad and high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors that dedicated much of their time and efforts to contribute to
VALID 2013. We truly believe that thanks to all these efforts, the final conference program
consists of top quality contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the VALID 2013
organizing committee for their help in handling the logistics and for their work that is making
this professional meeting a success. We gratefully appreciate to the technical program

 2 / 84

committee co-chairs that contributed to identify the appropriate groups to submit
contributions.

We hope the VALID 2013 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in system testing and
validation. We also hope the attendees enjoyed the charm of Venice.

VALID 2013 Chairs

VALID Advisory Chairs

Andrea Baruzzo, Università degli Studi di Udine, Italy

Cristina Seceleanu, Mälardalen University, Sweden

Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany

Mehmet Aksit, University of Twente - Enschede, The Netherlands

Amir Alimohammad, San Diego State University, USA

Hema Srikanth, IBM, USA

VALID 2013 Research Institute Liaison Chairs

Juho Perälä, VTT Technical Research Centre of Finland, Finland

Alexander Klaus, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany

Kazumi Hatayama, Nara Institute of Science and Technology, Japan

Alin Stefanescu, University of Pitesti, Romania

Vladimir Rubanov, Institute for System Programming / Russian Academy of Sciences (ISPRAS),

Russia

Tanja Vos, Universidad Politécnica de Valencia, Spain

VALID 2013 Industry Chairs

Abel Marrero, Bombardier Transportation Germany GmbH - Mannheim, Germany

Sebastian Wieczorek, SAP AG - Darmstadt, Germany

Eric Verhulst, Altreonic, Belgium

 3 / 84

VALID 2013

Committee

VALID Advisory Chairs

Andrea Baruzzo, Università degli Studi di Udine, Italy
Cristina Seceleanu, Mälardalen University, Sweden
Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany
Mehmet Aksit, University of Twente - Enschede, The Netherlands
Amir Alimohammad, San Diego State University, USA
Hema Srikanth, IBM, USA

VALID 2013 Research Institute Liaison Chairs

Juho Perälä, VTT Technical Research Centre of Finland, Finland
Alexander Klaus, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany
Kazumi Hatayama, Nara Institute of Science and Technology, Japan
Alin Stefanescu, University of Pitesti, Romania
Vladimir Rubanov, Institute for System Programming / Russian Academy of Sciences (ISPRAS),
Russia
Tanja Vos, Universidad Politécnica de Valencia, Spain

VALID 2013 Industry Chairs

Abel Marrero, Bombardier Transportation Germany GmbH - Mannheim, Germany
Sebastian Wieczorek, SAP AG - Darmstadt, Germany
Eric Verhulst, Altreonic, Belgium

VALID 2013 Technical Progam Committee

Fredrik Abbors, Åbo Akademi University, Finland
Jaume Abella, Barcelona Supercomputing Center (BSC-CNS), Spain
Mehmet Aksit, University of Twente - Enschede, The Netherlands
Amir Alimohammad, San Diego State University, USA
Giner Alor Hernandez, Instituto Tecnologico de Orizaba - Veracruz, México
Nina Amla, NSF, USA
César Andrés Sanchez, Universidad Complutense de Madrid, Spain
Selma Azaiz, CEA List Institute - Gif-Sur-Yvette, France
Cesare Bartolini, ISTI - CNR, Pisa, Italy
Andrea Baruzzo, Università degli Studi di Udine, Italy
Serge Bernard, LIRMM, Franmce

 4 / 84

Paolo Bernardi, Politecnico di Torino, Italy
Ateet Bhalla, Oriental Institute of Science and Technology, India
Bruno Blaškovic, Faculty of Electrical Engineering and Computing ZOEEM - CRS lab, Croatia
Mikey Browne, IBM, USA
Mark Burgin, University of California Los Angeles (UCLA), USA
Isabel Cafezeiro, Instituto de Computação - Universidade Federal Fluminense, Brazil
Luca Cassano, University of Pisa, Italy
Fouad Chedid, Notre Dame University, Lebanon
Hana Chockler, IBM Haifa Research Labs, Israel
Bruce F. Cockburn, University of Alberta - Edmonton, Canada
Maurizio M D'Arienzo, Seconda Università di Napoli, Italy
Florian Deissenboeck, CQSE GmbH/ Technische Universität München, Germany
Gülşen Demiröz, Sabanci University, Turkey
Stefano Di Carlo, Politecnico di Torino, Italy
Rolf Drechsler, DFKI Bremen, Germany
Lydie du Bousquet, J. Fourier-Grenoble I University / LIG labs, France
Kerstin Eder, University of Bristol, UK
Stephan Eggersglüß, University of Bremen / DFKI - Cyper-Physical Systems - Bremen, Germany
Khaled El-Fakih, American University of Sharjah, UAE
Leire Etxeberria Elorza, Mondragon Unibertsitatea, Spain
Eitan Farchi, IBM Haifa Research Laboratory, Israel
Michael Felderer, University of Innsbruck, Austria
Teodor Ghetiu, University of York, UK
Shalini Ghosh, Computer Science Laboratory - SRI, USA
Patrick Girard, LIRMM, France
Hans-Gerhard Gross, Delft University of Technology, The Netherlands
Bidyut Gupta, Southern Illinois University, USA
Mark Harman, University College London, UK
Kazumi Hatayama, Nara Institute of Science and Technology (NAIST), Japan
Steffen Herbold, University of Göttingen, Germany
Florentin Ipate, University of Pitesti, Romania
David Kaeli, Northeastern University - Boston, USA
Ahmed Kamel, Concordia College, USA
Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland
Zurab Khasidashvili, Intel Israel Ltd, Israel
Alexander Klaus, Fraunhofer Institute for Experimental Software Engineering - Kaiserslautern,
Germany
Weiqiang Kong, Kyushu University, Japan
Moshe Levinger, IBM Research - Haifa, Israel
João Lourenço, Universidade Nova de Lisboa, Portugal
Maria K. Michael, University of Cyprus, Cyprus
Abel Marrero, Bombardier Transportation Germany GmbH - Mannheim, Germany
Roy Oberhauser, Aalen University, Germany
Johannes Oetsch, Vienna University of Technology, Austria

 5 / 84

Nguena-Timo Omer-Landry, LaBRI/University Bordeaux 1, France
Yassine Ouhammou, ENSMA / LIAS-lab, France
Kai Pan, University of North Carolina at Charlotte, USA
Bernhard Peischl, Softnet Austria, Austria
Juho Perälä, VTT Technical Research Centre of Finland, Finland
Mauro Pezzè, Università della Svizzera Italiana, Switzerland
Miodrag Potkonjak, Univeristy of California, Los Angeles (UCLA), USA
Wishnu Prasetya, Utrecht University, The Netherlands
Paolo Prinetto, Politecnico di Torino, Italy
Henrique Rebêlo, Federal University of Pernambuco, Brazil
Eike Reetz, University of Applied Sciences Osnabrück, Germany
Filippo Ricca, University of Genoa, Italy
Auri Marcelo RizzoVicenzi, Universidade Federal de Goiás, Brazil
Goiuria Sagardui Mendieta, Mondragon University, Spain
Christian Schanes, Vienna University of Technology, Austria
Cristina Seceleanu, Mälardalen University, Sweden
Nassim Seghir, University of Oxford, UK
Sergio Segura, University of Seville, Spain
Hema Srikanth, IBM, USA
Alin Stefanescu, University of Pitesti, Romania
Mehdi B. Tahoori, Karlsruhe Institute of Technology (KIT), Germany
Nur A. Touba, University of Texas - Austin, USA
Spyros Tragoudas, Southern Illinois University Carbondale, USA
Dragos Truscan, Åbo Akademi University - Turku, Finland
Jos van Rooyen, Bartosz ICT, Netherlands
Bart Vermeulen, NXP Semiconductors - Eindhoven, The Netherlands
Arnaud Virazel, Université Montpellier 2 / LIRMM, France
Tanja E. J. Vos, Universidad Politécnica de Valencia, Spain
Stefan Wagner, University of Stuttgart, Germany
Sebastian Wieczorek, SAP Research Center Darmstadt, Germany
Lina Ye, Inria Grenoble, France
Cemal Yilmaz, Sabanci University - Istanbul, Turkey
Zeljko Zilic, McGill University, Canada

 6 / 84

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 84

Table of Contents

Model-Based MCDC Testing of Complex Decisions for the Java Card Applet Firewall
Roderick Bloem, Karin Greimel, Robert Koenighofer, and Franz Roeck

1

Enabling Interface Validation through Text Generation
Hakan Burden, Rogardt Heldal, and Peter Ljunglof

7

Efficient Elimination of False Positives Using Bounded Model Checking
Tukaram Muske, Advaita Datar, Mayur Khanzode, and Kumar Madhukar

13

State Space Reconstruction for On-Line Model Checking with UPPAAL
Jonas Rinast, Sibylle Schupp, and Dieter Gollmann

21

Formal Composition based on Roles within a Model Driven Engineering Approach
Cedrick Lelionnais, Jerome Delatour, Matthias Brun, Olivier H. Roux, and Charlotte Seidner

27

Preliminary Test Suite Reduction
Vitaly Kozyura and Sebastian Wieczorek

33

Performance Characterization of TAS-MRAM Architectures in Presence of Capacitive Defects
Joao Azevedo, Arnaud Virazel, Yuanqing Cheng, Alberto Bosio, Luigi Dilillo, Patrick Girard, Aida Todri, and
Jeremy Alvarez Herault

39

Automatic Linking of Test Cases and Requirements
Thomas Noack

45

Using Filtering to Improve Value-Level Debugging of Verilog Designs
Bernhard Peischl, Naveed Riaz, and Franz Wotawa

49

Towards an Integrated Methodology for the Development and Testing of Complex Systems
Philipp Helle and Wladimir Schamai

55

An Evaluation of Client-Side Dependencies of Search Engines by Load Testing
Emine Sefer and Sinem Aykanat

61

Compact Traceable Logging
Wishnu Prasetya, Ales Sturala, Arie Middelkoop, Jurriaan Hage, and Alexander Elyasov

66

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 84

Model-Based MCDC Testing of Complex Decisions for the Java Card Applet Firewall

Roderick Bloem1, Karin Greimel2, Robert Koenighofer1, Franz Roeck1,2

1Institute for Applied Information Processing and Communications
Graz University of Technology, A-8010 Graz, Austria

{roderick.bloem, robert.koenighofer, franz.roeck}@iaik.tugraz.at
2NXP Semiconductors Austria GmbH, Gratkorn, A-8101 Gratkorn, Austria

{karin.greimel, franz.roeck}@nxp.com

Abstract—Certification processes require the generation of
models of a design. Using Model-Based Testing, these models
can double as guides for test case generation. In this paper, we
consider Boolean formulas that model a decision to be taken by
a part of the software. We show how to use an SMT-solver to
generate test cases that fulfill the MCDC coverage criteria on
these models, in the presence of strong coupling. We show that
the approach can improve test coverage, and finds a bug in an
implementation of the Java Card Applet Firewall.

Keywords—automatic test case generation; common criteria;
java card applet firewall.

I. INTRODUCTION

Certification of security critical embedded systems at a
certain level requires that formal models of the design are
created and verified against the security requirements. The
main motivation for the work presented in this paper is to com-
plement this certification effort with systematic testing. Re-
using existing models for test case generation, we can increase
the confidence in the quality of the actual implementation at
little extra cost.

Common Criteria [5] is a typical, widely used certification
scheme. It assures that Security Functional Requirements are
met by the Target of Evaluation. It offers several Evaluation
Assurance Levels (EAL). Starting with EAL6, a formal model
is required to prove that the Security Functional Requirements
are satisfied. For complexity reasons, this proof is (typically)
carried out on the model and not on the actual implementation.
We propose to complement the certification with test cases
derived automatically from the model in order to close the
link from the security functional requirements down to the
actual implementation, as illustrated in Fig. 1. The arrow from
the model to the implementation is dashed to emphasize that
the implementation is often not derived from the model but
developed independently. Thus, it is important to perform a
conformance check, and test cases are a scalable and flexible
option.

Models of security-critical systems often contain complex
decisions, i.e., expressions evaluating to true or false. They
may express, for instance, under which circumstances a user
login should be successful or access to some resource should
be allowed. Complex decisions may directly serve as models
for stateless parts of the system (e.g., a method that checks if
some access is allowed). They may also appear as guards in

This work was supported in part by the Austrian Research Promotion
Agency (FWF) through project NewP@ss (835917).

Fig. 1: Test case generation complements certification.

transition systems modeling stateful parts of the design. Such
complex decisions are often difficult to test manually. First,
there may be complex dependencies between the different parts
of the decisions. Second, exhaustive testing is often infeasible,
but we still want to cover the “interesting” cases. Test criteria
help by defining which cases are interesting and have to be
tested and we can use them to automatically generate test
cases. The benefit of this Model-Based Testing approach is
that the models are much simpler than the implementation,
but precisely describe the various cases of interest. Also, the
model acts as a test oracle. In our setting, the model is derived
as a side-effect of the certification procedure, at no extra cost.

One widely used test criterion to measure code coverage
is the Modified Condition Decision Coverage (MCDC) [9].
It is required by the US Federal Aviation Administration for
safety critical software in aircrafts [13], and also used in many
other domains. While MCDC is mostly used to measure the
coverage of test cases with respect to the decisions in the
implementation, we will apply the criterion to generate test
cases from the decisions in the model.

In this paper, we show how to derive a test suite that
achieves MCDC on a model that consists of logical decisions.
Using a Satisfiability Modulo Theories (SMT) solver, we
obtain values for the variables used in the decision. That is,
our method not only computes the desired truth values of
the different conditions (i.e., atoms) in a decision, but it also
computes values for the (potentially non-Boolean) variables,
which can then be used as test cases. It can handle complex
interdependencies (“couplings”) between the conditions by
passing them on to the solver.

We apply our implementation in a case study of a Java Card
applet firewall. This firewall is modeled as a decision under
which access to an object is granted. Although a large set of
manually constructed tests exists, the automatically constructed
tests increase the code coverage. Using the model as a test
oracle, our test suite also detects an inconsistency between the
implementation and the specification due to an update of the
reference manual which was not implemented.

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 9 / 84

Our test case generation method can be applied directly
to testing Boolean effects in stateless systems. Our approach
can also be combined with that of [19] to obtain test cases
for systems that are modeled as transition systems, obtaining
a test suite that exercises the guards of the state transitions.

Several papers on formal modeling for high assurance
Common Criteria evaluations exist [4], [18], [7]. Both in [18]
and in [7], the Java Card firewall is modeled and a theorem
prover is used to prove that the model satisfies the access
control policy. For a Common Criteria certification it is not
necessary to formally link the model to the implementation. In
[7], the gap to the implementation is closed by manual code-
to-spec review. In contrast, we propose to close this gap by
generating test cases from the formal model and run them on
the implementation. In [16], the functional correctness of an
OS kernel is directly proven for the implementation. This gives
higher assurance of the correctness but increases the effort
tremendously. Our approach of integrating formal verification
at a high abstraction level and model-based testing at the
implementation level gives a good trade-off between assurance
and cost.

The idea of generating test cases based on formal specifica-
tions was already presented in [3]. Since then, a lot of research
has been done in this field [21], [19], [14], [22]. In [14] a
survey on testing with model checkers is given. Using model
checkers, test cases are generated by defining trap properties
in CTL formulas such that a counterexample represents a
test case. The disadvantage of this approach, however, is that
model checking can be quite resource intensive. Feeding the
guards of the transitions into an SMT-solver, as we do, is
potentially cheaper. The closest related work we are aware
of regarding test case generation is presented in [19]. The
authors compute test cases achieving MCDC on a specification
by walking through the parse trees of the decisions. Depending
on the logical operator they decide what the expression of the
subtree should evaluate to. In contrast, our method (a) does
not stop at the Boolean level but also produces values for
non-Boolean variables appearing in the decisions, and (b) can
handle complex dependencies between the different parts of
the decision.

The rest of this paper is structured as follows. Section II
introduces background and notation, and gives an example.
Section III presents our quality assurance flow based on
certification and test case generation. Section IV discusses our
case study with the Java Card applet firewall, and Section V
draws conclusions and gives ideas for future work.

II. PRELIMINARIES

A. Decisions and Specifications

Let V be a set of variables ranging over a domain D, and let
F be a set of function symbols. A term over V and F is defined
inductively as follows: (a) any variable v ∈ V is a term, and
(b) if f ∈ F is a function symbol with arity n and a1,a2, . . .an
are terms, then f (a1,a2, . . .an) is a term. For simplicity of
the presentation, we assume that all variables have the same
domain D. E.g., D could be the domain of integers or bit-
vectors of length 32. Also, all functions f ∈ F are mappings
f : D× . . .×D → D. A condition is a function mapping a
vector of terms to either true (>) or false (⊥). A decision

ϕ is defined inductively as follows: (a) every condition is a
decision, and (b) if ϕ1 and ϕ2 are decisions, then ¬ϕ1 and
ϕ1 ∨ϕ2 are decisions as well. The Boolean operators ¬ and
∨ have their usual semantics. Other Boolean operators can be
seen as shortcuts. A specification is a set S = {ϕ1,ϕ2, . . .} of
decisions.

We write CoN(ϕ) = {c1,c2, . . .} for the set of all condition
nodes in the parse tree of decision ϕ , and ϕ[c|>] (ϕ[c|⊥]) for
the decision ϕ with condition node c ∈ CoN(ϕ) replaced by
> (⊥).

B. Test Cases and Specification Coverage

A test case for a specification S = {ϕ1,ϕ2, . . .} is an
assignment t : V →D of values to all variables in V . We write
ϕ(t) or c(t) to denote the truth value (> or ⊥) of decision
ϕ or condition node c ∈ CoN(ϕ) under assignment t. A test
suite is a set T = {t1, t2, . . .} of test cases.

Let ϕ be a decision, c ∈CoN(ϕ) be a condition node, and
t : V → D be a test case. We say that c determines ϕ under t,
written det(c,ϕ, t), iff ϕ(t) 6= ϕ[c|¬c(t)](t). That is, negating
the truth value of c changes the truth value of ϕ .

Test suite T achieves Masking Modified Condition Decision
Coverage [8] on specification S iff for all ϕ ∈ S:

∃t, t ′ ∈ T : ϕ(t)∧¬ϕ(t ′) (1)

and

∀c ∈ CoN(ϕ) : ∃t, t ′ ∈ T :
c(t)∧¬c(t ′)∧det(c,ϕ, t)∧det(c,ϕ, t ′).

(2)

That is, every decision ϕ ∈ S must evaluate to true and to
false on some test. Also, every condition node c must evaluate
to true and to false while determining the truth value of ϕ .
Masking MCDC is also referred to as Correlated Active Clause
Coverage in the literature [1].

Unique cause MCDC [8] is a stricter variant. Whereas
masking MCDC allows other occurring conditions to evaluate
to different truth values for t and t ′ as long as the determination
of c is preserved, unique cause MCDC requires the conditions
to be same for both t and t ′. Expressed more formally, we say
that test suite T achieves unique cause MCDC on specification
S iff for all ϕ ∈ S:

∃t, t ′ ∈ T : ϕ(t)∧¬ϕ(t ′) (3)

and

∀c ∈ CoN(ϕ) : ∃t, t ′ ∈ T :
c(t)∧¬c(t ′)∧det(c,ϕ, t)∧det(c,ϕ, t ′)∧
∀c′ ∈ {CoN(ϕ)\c} : c′(t) = c′(t ′).

(4)

MCDC (either kind) can be calculated straightforward as
long as all conditions are independent. However, variables
may occur in more than one condition, and fixing the truth
value of some conditions may determine others. If the truth
value of one condition always flips when flipping the truth
value of another condition, then these conditions are called
strongly coupled [9]. If it flips in some but not in all cases,
they are called weakly coupled. E.g., (A > 5) and (A < 9) are
weakly coupled, whereas (A > 5) and (A ≤ 5) are strongly

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 10 / 84

Fig. 2: Example: Parse tree of a decision with test cases.

coupled. Due to coupled conditions, some test cases required
for achieving MCDC may be infeasible.

Another metric, closer to exhaustive testing, is Multiple
Condition Coverage (MCC). MCC requires that for every
decision, all possible combinations of the truth values of
its conditions are tested. This results in 2n test cases for n
conditions in a single decision.

C. Example

Fig. 2 depicts the parse tree of the decision ϕ = (x> 7∧x+
y≤ 12)∨(x< 7∧y> 5). Even though the decision is small, it is
certainly not easy to test due to couplings between conditions.
The parse tree contains four condition nodes, but from the 24 =
16 possible truth value combinations, only 8 are satisfiable.
They are listed as potential test cases t1 to t8 at the right side
of the figure.

The four test cases t2, t4, t7, t8 achieve masking MCDC as
follows. Condition node A is tested by t4 and t8: ϕ(t4) =⊥ 6=
ϕ(t4)[A|>] =>, so A determines ϕ under t4. Analogously for
t8. In the same way, B is tested by t7 and t8, C by t2 and t7, and
D by t2 and t4. However, these four test cases do not achieve
unique cause MCDC because the pairs of test cases do not
only flip the truth value of the tested condition node, but also
others.

Unique cause MCDC can be achieved by the seven test
cases t1, t2, t3, t4, t5, t6, t8. Condition node A is now tested by t3
and t8. We have that B(t3) = B(t8) =>, C(t3) =C(t8) =⊥, and
D(t3) = D(t8) = ⊥, so the truth value for the other condition
nodes remains the same when testing A. In a similar way,
condition node B is tested by t6 and t8, C by t1 and t2, and D
by t4 and t5.

III. CERTIFICATION WITH TEST CASE GENERATION

This section presents our proposed quality assurance flow,
which is based on certification and automatic test case gener-
ation. It consists of the following four steps (see also Fig. 1):

1) Construct a model of the system.
2) Prove that the model of the system satisfies the

requirements.
3) From the provenly correct model, automatically gen-

erate test cases.
4) Run the tests on the implementation.

Obviously, this flow does not give a formal proof of correctness
for the implementation. It only proves that the model is correct
with respect to the requirements. The test cases then verify that
the model has been implemented correctly.

A. Certification

For certification under high assurance levels, like Common
Criteria EAL6 or EAL7, formal models of the specification and
of the design are required at different levels of detail, depend-
ing on the level of the certification. These models describe how
the product implements certain parts of the specification. For
Common Criteria, the requirements for formal security policy
models are given in [6]. The ‘Bundesamt für Sicherheit in der
Informationstechnik’, one of the certification bodies, published
a guideline for the evaluation of security policy models [17].
The guideline suggests to use formal tools such as theorem
provers or model checkers. We use model checking because
these tools work fully automatically. A model checker takes a
formal specification and a model as input. It returns true if the
model satisfies the specification, giving a mathematical proof
of correctness. Otherwise, if the model does not satisfy the
specification, the model checker returns a counterexample [11].

We use the model checker NuSMV [10] for certification,
as described in [4] for a smart card system. NuSMV has a
proprietary modeling language, defining a finite state machine.
A model consists of state and input variables, and of transitions
defining how an input leads from one state to the next states.
The rules on the transitions can be complex logical decisions.
In the next section we will explain how to automatically
generate test cases from complex logical decisions with high
coverage.

B. Test Case Generation

We created a tool to compute a test suite T that achieves
MCDC on a specification S. It uses the SMT-solver Z3 [12] to
compute test cases as satisfying assignments of the constraints
that have to be fulfilled by the tests. The decisions of the
specification must be given in SMT-LIB2 format [2]. Our tool
builds a parse tree of the decisions so that condition nodes
can be found and replaced by > or ⊥ easily. Next, it passes
the constraints of Eq. 2 to the solver, one after the other, for
all ϕ ∈ S and c ∈ CoN(ϕ). For each satisfiable query, we
can extract a pair of test cases t, t ′ as a satisfying assignment
and add it to the test suite T . Variables which are irrelevant
for the satisfying assignment will get a value which is either
random or defined by the user. Unsatisfiable cases are reported
to the user, because they usually indicate inconsistencies or
redundancies in the decision. Before adding a new pair of test
cases, we check if T already contains test cases that satisfy
the constraints. This reduces the overall number of test cases.
Finally, the test suite T is written into a simple text file, which
can be parsed by a test adapter. Our tool supports masking
MCDC, unique cause MCDC, and MCC.

IV. CASE STUDY: JAVA CARD FIREWALL

We applied our test case generation tool to the guard
expressing the access rules in the formal model of the Java
Card applet firewall, as specified in Section 6.2.8 of the JCRE
specification, version 3 [20]. As a result, we obtain a set of
test cases satisfying the MCDC criterion with respect to the
guard in the model. Using MCDC ensures that each sub-item
of the specification independently affects the access decision.
After running the test suite it can then be assured, provided
that none of the SMT-solver calls were unsatisfiable, that every

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 11 / 84

Fig. 3: The Java Card Runtime Environment.

explicit requirement from the specification is implemented and
evaluates, for the state which is used for testing, to the expected
outcome. The generation of the test suite for the guard,
consisting of 223 conditions, takes less than a minute and
results in 205 test cases before removing duplicates and 127
test cases after the elimination. As some variables like the one
to identify the current bytecode, the current context, the object
owner and so on, occur in more than one condition, some SMT-
solver calls were unsatisfiable due to coupled conditions.

A. Java Card Applet Firewall Model

Whereas in standard Java every applet runs on its own
instance of a virtual machine, the Java Card virtual machine
must be able to deal with several (independent) applets. The
Java Card applet firewall ensures that applets cannot randomly
access data belonging to other applets, but only in restricted
cases. The applet firewall is part of the Java Card virtual
machine (JCVM) (see Fig. 3) and checks every single access
according to the JCRE specification [20].

Our model of the Java Card firewall (see Fig. 4) consists
of only two states: idle and locked. As long as the
firewall is in the idle state, it performs the required checks
for the Java Card virtual machine. If an access is denied, a
SecurityException is thrown. The JCVM then has to handle
this exception, e.g. reset a started transaction, while the applet
firewall doesn’t do anything. This situation we have modeled
by introducing the second state called locked. Conceptually,
this behavior is very simple. The difficulty for testing the
firewall stems from the very complicated decision when to
allow access.

Fig. 4: Abstract model of the Java Card applet firewall.

The access rules are modeled by two transitions. The first
transition, representing access allowed, is a self loop of the idle
state. The second transition is a deny all transition, going from
idle to locked with a lower priority. This realization ensures
that every access, which is not explicitly allowed, is denied.

The guard of the self loop is a formalization of Section 6.2.8 of
the JCRE specification [20] such that a satisfying assignment
for the formula corresponds to an access which is allowed.

Example 1: Section 6.2.8.7 of the JCRE specification [20]
specifies access rules for the bytecode athrow by saying:

• “If the object is owned by an applet in the currently
active context, access is allowed.

• Otherwise, if the object is designated a Java Card RE
Entry Point Object, access is allowed.

• Otherwise, if the Java Card RE is the currently active
context, access is allowed.

• Otherwise, access is denied.”

This can be translated into a formula

(bytecode = 7)∧
((Owner = FLAG CurrentlyActiveContext)∨
(FLAG entryPointJCREObject)∨
(FLAG CurrentlyActiveContext = 0)),

(5)

where (bytecode = 7) checks if the bytecode equals athrow,
and the remaining three lines correspond to the first three
bullets copied from the JCRE specification, with the constant
0 encoding the JCRE context. This example illustrates that
formulating the specification of the firewall is (for the most
part) rather straightforward.

B. Evaluation Setting

We compare the quality of the test cases created automati-
cally using our tool to that of the JCTCK, a hand-crafted test
suite. The hand-crafted tests are given as Java Card applets.
They test the whole implementation of the Java Card runtime
environment and not only parts of it. The test harness for
these tests simply runs the applets. In contrast to that, our
test adapter runs the test cases as module tests implemented
in C, which is the language the Java Card operating system is
programmed in. It sets up the memory as required from the
test case and calls the relevant bytecode implementation which
performs the necessary firewall checks. If access is denied, a
security exception is thrown, otherwise access was allowed.

To evaluate the code coverage for both test suites, the
functions belonging to the Java Card applet firewall were
instrumented using a code coverage tool. The code was in-
strumented in a way such that covering all instrumentations
corresponds to condition coverage plus basic block coverage.
After running the test suites, analysis can be performed on the
collected data and the code coverage can be compared.

Of course, the test cases do not only have the purpose of
covering as much code as possible, but also to check if the
applet firewall’s behavior conforms to the JCRE specification.
The provided JCTCK installs and runs the applets and the
applets themselves check if the result corresponds to the
expected outcome. The test adapter for our automatically
constructed test cases calculates the expected result, namely
either access allowed or denied, by evaluating the decision
in the model on the test case input data. If the access is
denied, a security exception is thrown by the implementation

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 12 / 84

TABLE I: Instrumentations and achieved coverage

test suite covered / total percentage
JCTCK 64/71 90%

our test suite 63/71 89%
together 68/71 96%

(a) JCTCK coverage (b) Additional coverage on the
previously uncovered code

Fig. 5: Additional coverage on previously from the JCTCK
uncovered code achieved by our test suite.

and caught by the test adapter. The test adapter finally checks
for discrepancies between occurred and expected exceptions.

Our test approach is quite different from that of the JCTCK,
so we are going to evaluate only results which are targeted
from both test adapters. Moreover, we will explicitly mention
if certain test goals can not be reached due to limitations
stemming from the type of test. One such limitation is, for
example, that a Java Card applet is restricted in its object
creation.

C. Code Coverage Results

As we consider Section 6.2.8 of the JCRE specification
as base for our test suite, we only evaluate the coverage in
the functions of the applet firewall dealing with this Chapter.
In some of the functions, the end can not be reached due to
thrown exceptions. The total number of 78 instrumentations
for the coverage is reduced by those, such that a coverage
of all remaining 71 instrumentations corresponds to 100%
coverage. After running the test suites and storing the results
for each test suite, the code coverage investigations reveal that
neither of the test suites did achieve a full condition plus basic
block coverage of 100% (see Table I). However, when using
both test suites it is possible to increase the coverage of the
JCTCK by six percent, from 90% to 96%. This means that
the automatically generated test suite covers 60% of the cases
that are missed by the JCTCK (see Fig. 5).

As there are only a few uncovered parts of the source code
(see Table II), we will now explicitly discuss every one of
them. The first condition that was not fully covered by our
automatically generated test suite was a null pointer check.
Some of the firewall functions perform a null pointer check

TABLE II: Conditions which were not fully covered

condition JCTCK our test suite
is object a null pointer - not to true
is object a global array not to true -

is object a shareable object not to false not to false
access of shareable object not to false not to false

before using the pointer. This condition is impossible for our
test suite to cover, because our test suite is generated based
on Section 6.2.8 of the JCRE specification and null pointers
are not mentioned there. Therefore, no test case is generated
targeting null pointers.

A check if the accessed object is a global array is covered
by our automatically generated test suite but not by the
JCTCK: The JCTCK was not able to make the condition in the
source code evaluate to true. The reason is that the condition is
disjuncted with a check if the object is a temporary entry point
object in the source code. As there is only one global array
in the Java Card implementation, namely the APDU buffer,
and this one is also a temporary entry point object, the short
circuit evaluation in the C semantics renders it impossible to
let the global-array-check evaluate to true. In contrast to that,
our test adapter sets up the memory as required without the
restrictions for a Java Card applet and was therefore able to
generate an object which is no temporary entry point object
but a global array.

Neither of the two test suites was able to make the checks
regarding shareable objects evaluate to false. This is due to
implementation specifics, which perform a check if the class
or interface is shareable already in the implementation of
the bytecode itself before calling the actual firewall function.
Therefore, the firewall function is only entered if the condition
evaluates to true. Note that in the implementation the firewall
is not a monolithic function isolated from the rest of the code,
but rather an optimized implementation taking advantages of
available code.

So, in summary, the only parts of the firewall which are
not covered by both test suites taken together are conditions
that can only evaluate to fixed truth values due to checks that
are made elsewhere in the code. Beside these conditions, full
condition and basic block coverage is achieved on the code
relevant for Section 6.2.8 of the JCRE specification.

D. Error Detection Results

All tests from the JCTCK relevant for the Java Card applet
firewall passed with success. From our automatically generated
test suite, however, the result of three test cases did not match
the outcome of the oracle. Two of those were false positives:
The firewall didn’t deny access to objects with some attribute
combinations because other parts of the implementation ensure
that these attribute combinations can never occur. The third
failing test case detected an actual inconsistency. It tested an
access rule from Section 6.2.8.9, namely “Otherwise, if the
object is designated a Java Card RE Entry Point Object,
access is allowed”. The result was a Security Exception,
whereas the oracle expected that the access would be allowed
because of this rule. An inspection of previous versions of
the specifications confirmed that this access rule was added to
the specification in version 2.2 [15], however, a review of the
source code showed, that this modification of the specification
was not implemented. Due to the limitations for object creation
via Java Card applets it was also not possible to create a test
case for the JCTCK which tests this behavior on the system
level, so this inconsistency remained undiscovered until now.

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 13 / 84

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an automatic test case
generation technique to achieve Modified Condition Decision
Coverage on complex logical decisions. We implemented this
approach in a test case generation tool using an SMT-solver
to compute tests as satisfying assignments for the constraints
that have to be satisfied to meet the coverage criterion. Our
approach can handle complex couplings between different
parts of the decision by delegating them to the SMT-solver.
Our test case generation method can complement certification
in the software development process by taking the existing
models and closing the link from the requirements down to
the implementation.

We evaluated our approach on an implementation of the
Java Card operating system with focus on the applet firewall.
Our tool produced only a small amount of test cases, but was
able to improve the code coverage (condition + basic block
coverage) of the existing test suite so that now all reachable
locations and cases are covered. The additional tests produced
by our tool also revealed that an update of the specification was
not implemented. This confirms that different levels of testing
are useful. System tests have to be complemented by unit
and module tests because certain scenarios cannot (easily) be
produced in the integrated system. The MCDC criterion proved
to be effective in our setting because it tests the different parts
of the decisions in isolation without producing too many test
cases.

In the future, we plan to extend our test case generation
approach and tool to deal with stateful models directly. This
will relieve the user from writing a test adapter that brings the
system into the desired state before the tests can be applied.

REFERENCES

[1] P. Ammann, A. J. Offutt, and H. Huang, “Coverage criteria for log-
ical expressions,” in International Symposium on Software Reliability
Engineering (ISSRE’03). IEEE, 2003, pp. 99–107.

[2] C. Barrett, A. Stump, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2010.

[3] G. Bernot, M. C. Gaudel, and B. Marre, “Software testing based
on formal specifications: a theory and a tool,” Software Engineering
Journal, vol. 6, no. 6, 1991, pp. 387–405.

[4] G. Beuster and K. Greimel, “Formal security policy models for smart
card evaluations,” in Annual ACM Symposium on Applied Computing
(SAC’12). ACM, 2012, pp. 1640–1642.

[5] Common Criteria for Information Technology Security Evaluation Ver-
sion 3.1 Revision 3 – Part 1: Introduction and general model, July
2009.

[6] Common Criteria for Information Technology Security Evaluation Ver-
sion 3.1 Revision 3 – Part 3: Security assurance components, July 2009.

[7] B. Chetali and Q. H. Nguyen, “Industrial use of formal methods for a
high-level security evaluation,” in International Symposium on Formal
Methods (FM’08), ser. LNCS, vol. 2404. Springer, 2008, pp. 198–213.

[8] J. J. Chilenski, “An investigation of three forms of the modified
condition decision coverage (MCDC) criterion,” DTIC Document, Tech.
Rep., 2001.

[9] J. J. Chilenski and S. P. Miller, “Applicability of modified con-
dition/decision coverage to software testing,” Software Engineering
Journal, vol. 9, no. 5, 1994, pp. 193–200.

[10] A. Cimatti et al., “NuSMV version 2: An opensource tool for symbolic
model checking,” in Computer-Aided Verification (CAV’02), ser. LNCS,
vol. 2404. Springer, 2002, pp. 359–364.

[11] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
1999.

[12] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08), ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

[13] R. T. C. for Aeronautics (RTCA), “RTCA-DO-178B: Software consid-
erations in airbone systems and equipment certification,” Dec. 1992.

[14] G. Fraser, F. Wotawa, and P. E. Ammann, “Testing with model
checkers: a survey,” Software Testing, Verification and Reliability,
vol. 19, no. 3, Sep. 2009, pp. 215–261. [Online]. Available:
http://dx.doi.org/10.1002/stvr.v19:3

[15] S. M. Inc., “Java Card TM 2.2 Runtime Environment (JCRE) Specifi-
cation,” 2006.

[16] G. Klein et al., “seL4: formal verification of an operating-system
kernel,” Communications of the ACM, vol. 53, no. 6, 2010, pp. 107–115.

[17] H. Mantel, W. Stephan, M. Ullmann, and R. Vogt, Guideline for the
Development and Evaluation of formal security policy models in the
scope of ITSEC and Common Criteria Version 2.0, December 2007.

[18] S. Motre and C. Teri, “Using B method to formalize the java card
runtime security policy for a common criteria evaluation,” in National
Information Systems Security Conference (NISSC’00), 2000.

[19] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Generating test
data from state-based specifications,” Software Testing, Verification and
Reliability, vol. 13, 2003, pp. 25–53.

[20] Oracle, “Java Card 3 Platform Runtime Environment Specification,
Classic Edition Version 3.0.4,” 2011.

[21] T. J. Ostrand and M. J. Balcer, “The category-partition method for
specifying and generating fuctional tests,” Communications of the ACM,
vol. 31, no. 6, 1988, pp. 676–686.

[22] E. Weyuker, T. Goradia, and A. Singh, “Automatically generating test
data from a boolean specification,” IEEE Transactions on Software
Engineering, vol. 20, no. 5, 1994, pp. 353–363.

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 14 / 84

Enabling Interface Validation
through Text Generation

Håkan Burden, Rogardt Heldal and Peter Ljunglöf
Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden

E-mail: burden@cse.gu.se, heldal@chalmers.se, peter.ljunglof@cse.gu.se

Abstract—To obtain the information encoded in software it
is necessary to master both the implementation languages and
the tools. This is not only a problem for managers and user
groups who have a claim in the outcome but not the necessary
training in software development to decode the implementation
- our case study shows that it is also a problem for the software
developers. In contrast, text can be understood by everyone. The
generation of textual summaries from software artifacts enables a
more accessible format for validating software. Based on findings
from interviewing practitioners in industry, we have developed
a prototype for generating natural language summaries from
component interfaces for validation purposes.

Keywords—Natural language processing; Reverse engineering;
Software components;

I. INTRODUCTION

One way of handling complexity in large-scale software
development is to decompose the system into autonomous sub-
systems that can be independently developed and maintained.
In order to successfully integrate the implemented subsystems
into a complete and well-functioning system it is necessary to
define the connecting points, the interfaces, of the subsystems
before or during the implementation [1], [2].

However, the validation of the interfaces is not trivial. For
code-centric development it requires an understanding of the
used programming languages. In a model-based approach to
software development the problem is described by Arlow et.
al. [3] as consisting of three main challenges; the necessity
to understand the modeling tools used during development,
the need to understand and interpret the models that describe
the subsystems and their interfaces as well as the underlying
paradigm of the models. So, independent of how the subsys-
tems and their interfaces are implemented their validation can
only be done by those who understand the implementation.
This excludes many of those that have a claim in the delivered
system, such as managers and user groups but it also affects
many of the system developers. In contrast, textual summaries
have the benefit that they can be consumed by all with a claim
in the developed software [4].

In an on-going study of model-driven software develop-
ment for embedded systems in large corporations we discov-
ered that the software engineers had problems with accessing
the information encoded in the models in general as well as
verifying the correctness of the interfaces in particular. To
investigate the effort needed to generate textual summaries

from the interfaces we developed a prototype solution, reusing
existing software models.

Contribution: First we describe the problem of validating
interfaces according to practitioners in industry and why NLG
is a possible solution. We then show that the generation of
textual summarisations of interfaces can be done with a limited
additional effort. The natural language generation technique
can be used for other interface specifications that belong to
the same modelling language.

Overview: The next section presents the theoretical context
of our study, while the practical details are given in Section III.
The results are found in Section IV and we finish off with a dis-
cussion and possibilities for future explorations in Section V.

II. THEORETICAL CONTEXT

We begin by explaining a few theoretical aspects concern-
ing software models and the specific methodology that we used
for generating textual summaries. Related contributions in the
area of generating textual summaries from software conclude
this section.

A. Model-Driven Engineering

One of the aims of using software models is to raise
the level of abstraction in order to capture what is generic
about a solution. Such a generic, or platform-independent [5],
[6], solution can be reused for describing the same software
independent of the platform i.e. the operating system, hardware
and programming languages that are chosen to implement the
system. The level of detail in the models then depend on if
they are to be used as sketches giving the general ideas of
the system, blueprints for manual adaptation into source code
or if they are code generators and developed with a tool that
supports the automatic model translation into source code [7].
A condition for the latter is that there is a metamodel [5],
[8] that specifies the syntactical properties of the modelling
language, just as textual programming languages like Java and
C have a syntactical specification that can be encoded in BNF
[9], [10].

B. Executable and Translatable UML

Executable and Translatable UML, xtUML; [11], [12],
evolved from merging the Schlaer-Mellor methodology [13]
with the Unified Modeling Language, UML. Three kinds of

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 15 / 84

Fig. 1. The possible signals between the MicroOven and the Tester listed as
an interface.

graphical diagrams are used together with a textual Action lan-
guage. The diagrams are component diagrams, class diagrams
and state machines. The diagrams are organised hierarchically
so that state machines are found inside classes, classes inside
components and components can be recursively nested inside
other components. The Action language is then used within
the diagrams to specify their behaviour and properties. When
the models are complete with respect to behaviour and struc-
ture they can be automatically transformed into source code
through model translation.

Components: A component interacts with other compo-
nents across an interface. An interface declares a contract in
form of a set of public features and obligations but not how
these are to be implemented. The information and behaviour
of the component is only accessible through the specified
interface so that the component can be treated as a black box.
An example of two components and their interfaces is shown
in Figure 1. It consists of two components, MicroOven and
Tester where MicroOven provides an interface which Tester
depends on.

Class diagrams: For the case of this study it is sufficient
to view an xtUML class diagram as equivalent to a UML class
diagram.

State machines: In the context of xtUML, a state machine
is used to model the lifecycle of a class or an object [13]. The
transitions between the states can either be defined as internal
events or the signals defined by the interface can be mapped
onto the transitions so that the external calls change the internal
state of the component.

Figure 2 shows the lifecycle of a test object residing inside
the Tester component. From the state Initial it is possible to
reach the GenerateTimer state by the internal trigger next().
When the external trigger confirmTimer() is called the test
object is updated and the new state is ValidateTimer. Some
of the states include pseudo-code to indicate the action to be
taken when entering that state.

The semantics of xtUML state machines differ from that
of finite-state automata in that the former can interact with
their environment as by creating and deleting instances of
classes, dispatching events in other state machines and trigger
the sending of signals across interfaces etc. Also, if a trigger
event does not enable a transition it is not necessarily an error
since transition triggers can be ignored if so desired.

Action language: An important property of xtUML is
the Action language. It is a textual programming language
that is integrated with the graphical models, sharing the same

Fig. 2. The state machine in Tester describing the validation process.

metamodel [13]. Since the Action language shares the same
metamodel as the graphical models it can be used to define
how values and class instances are manipulated as well as
how the classes change their state. Thus we can find Action
language within the operations of the classes but it is also
used to define the behaviour and the flow of calls through the
interface between the components.

Model translation: Code generation is a specific case of
model translation with the aim of translating the model into
code. However, model translations can just as well be used
for reverse engineering the model into more abstract represen-
tations [14], [15]. Model translations are defined according to
the metamodel, enabling the same transformations to be reused
across domains [5], [16], just like a C compiler is defined
on the BNF grammar, not on a specific C program [9]. The
models become the code. An example of what the xtUML
transformation rules look like and how they can be used is
found in Figure 5, which will be further explained in section
III-D.

C. Related Work

Previous research has reported on both formal and informal
ways of validating the behaviour and structure of software.
Examples of formal methods for validating the interfaces are
presented by Hatcliff et. al. [17], Mencl [18] as well as Uchitel
and Kramer [19] among many. However, they all have similar
problems as those mentioned previously by Arlow et. al. [3];
formal methods require knowledge of the tools, knowledge of
the used models and their paradigm as well as knowledge of
the formal methods.

Lately there has been an increase in the attention towards
more informal possibilities for validating software. Spreeuwen-
berg et. al. [20] argue that if you want to include all stake-
holders in the development process you need to have a textual
representation of the software models that has the right level
of abstraction. In their case they generate a controlled natural
language [21] to validate candidate policy decisions for the
Dutch Immigration Office.

Another approach towards text generation from platform-
independent representations is the translation between the
Object Control Language, OCL [22], and English [23], [24].

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 16 / 84

This work was followed up by a study on natural language gen-
eration of platform-independent contracts on system operations
[25], where the contracts were defined as OCL constraints that
specified the pre- and post-conditions of system operations,
i.e. what should be true before and after the operation was
executed.

A crosscutting concern is a piece of functionality, such as
an algorithm, that is implemented in one or more components.
As a result of being scattered across the implementation they
are difficult to analyse and when changed or updated it is
difficult to estimate how the changes are going to affect the rest
of the implementation. Rastkar et. al. [26] argue that having
a natural language summary of each concern enables a more
systematic approach towards handling the changes. They have
therefor implemented a system for generating summaries in
English from Java implementations.

Sridhara et. al. [27], [28] have also generated natural
language from software implementations, in their case from
Java code. The motivation is that understanding code is both
a time consuming activity and that accurate descriptions can
summarise the algorithmic behaviour of the code and as well
as reduce the amount of code a developer needs to read for
comprehension. The automatic generation of summaries from
code mean that it is easy to keep descriptions and software
synchronized. Another approach to textual summarisations of
Java code is given by Haiduc et. al. [29]. They claim that
developers spend more time reading and navigating code than
actually writing it. Central to these publications is that they
have to have some technique for filtering out the non-functional
properties from the source code before translation into natural
language.

There are two previous publications on generating textual
descriptions from xtUML. The first describes how natural
language specifications can be generated from class diagrams
[30] while the second reports on the translation from Action
language to English [31] e.g. these publications concentrate
on generating textual summaries that describe the internal
properties of the components instead of the interaction among
components.

III. CASE STUDY

In our collaboration on model-driven engineering with
Ericsson AB, Volvo Group Trucks Technology and Volvo
Cars Corporation we encountered the problem of validating
component interfaces. During our interviews the engineers
reported that it was sometimes challenging to validate that the
interface was correctly implemented and that the information
needed for the validation could be difficult to obtain. As a re-
sponse we developed a prototype to explore the possibilities to
generate natural language summaries for validating component
interfaces while keeping the added effort to a minimum.

A. Motivation

The interviews were conducted in January 2013, stretching
into April 2013. The following interview extract illustrates the
problem of understanding the implementation by reading its
textual specification.

But we have a text document that’s about 300 or 400 pages
in total if you take all the documents. And that hasn’t been

updated for a couple of years. So this is wrong. This document
is not correct.

Another issue is that sometimes the engineers are asked to
specify the interface before they fully understand the internal
behaviour of the component being developed. This means that
defining the interface becomes guess work and subsequently
there are signals that will never be used but still be given their
share of the limited processing capacity.

Q: So do you overload the interface? Throw in a signal
just in case?

A: Yes, that is what we do. At least I do it [. . .] and then
you end up with the problem knowing which signal it is you
should actually use.

One of the other interviewees had developed a work-around
for handling that the interface specification was constantly out-
dated. The solution is to sieve through a second document after
the information that concerns the interface being developed and
translate that information into a new, temporary, specification.

We have in our requirements a list of signals used in the
requirement. Now that list is seldom updated. It’s hardly ever,
so they’re always out of date. So I don’t actually read them
anymore. I just go in through the specific sub-requirements and
I read what is asked for my functionality. This is asked. What
do I need? I need this and this. So, yeah, so I do it manually,
I guess.

As a final example of the problems concerning the valida-
tion of the component interfaces, a software architect stated
that the development tools were difficult to learn and that the
development process would be much smoother if there was an
accurate textual description of the implementation.

The tools are too unintuitive [. . .] the threshold for learn-
ing how to use them is high [. . .] but everybody knows how
to consume text.

B. Aim

Generating text from the implementation should be a suit-
able solution since it allows the textual description to always be
consistent with the implementation as well as understandable
by all those with a claim in the project.

The aim of the text generation is a textual description of
the intended usage of the interface with as little added effort
as possible. For the generation to be feasible in an industrial
setting it is beneficial if the generation rules can be maintained
and updated without requiring new skills of the engineers. At
the same time, the reuse of existing artifacts for generating the
summaries will decrease their cost.

Two paragraphs are included in the generated text, one for
the intended usage of the interface and one for the unused
signals of the interface.

C. Setup

The generation is possible due to the reuse of an existing
test model, that was adapted from Heldal et. al. [32]. They
developed an executable test model for a microwave oven, as
illustrated in Figure 1. The test model is designed to capture the
intended dialogue between the MicroOven and the user, here

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 17 / 84

Fig. 3. The Tester-model can be reused at code level through code generation.

Fig. 4. The generated text describes both the xtUML model and the generated
code.

represented by the Tester component, as well as its possible
error states and constraints. The sequence of the states and
transitions therefor follows the process of the MicroOven, with
additions for handling erroneous interactions. After the test
case is initialised the test-pattern is to generate a signal to the
MicroOven across the interface with random values for each
parameter. The MicroOven’s response is then validated before
the Tester transitions into the next state in order to generate a
new signal with random values. The test case needs to be able
to store the results of prior interactions in order to compute the
expected value in the validation states and compare that to the
given response. If there is a mis-match the test case generates
an internal fail() event and stores the resulting state so it can
be diagnosticised.

After the MicroOven-model has been validated using the
Tester-model they are both translated into platform-dependent
source code. The MicroOven is then tested again, now as
code by the Tester-code, to see that the intended behaviour of
the oven remains the same after deployment. The relationship
between the different representations of MicroOven and Tester
are depicted in Figure 3.

D. Text Generation

Figure 5 shows a fragment of the generation rules. The
rules are defined using the Rule Specification Language which
are integrated with the xtUML tools [11]. On the first row the
signals defined by the interface are selected by traversing
the concepts of the metamodel according to their relationships.
The concept C_EP refers to the executable properties of the
interface and C_AS refers to those executable properties that
are signals. The relationships between the concepts are referred
to by the unique names R4003 and R4004. Rows 3 and
4 show how the generated text is going to be physically
represented [33] as html-pages, using a table since it enables

01 .select many definedSignals related by interface -> C_EP[R4003] -> C_AS[R4004]
02 [...]
03 <table border="0">
04 <hr>Unused signals in MicroOven:</hr>
05 .assign unusedSignals = definedSignals - usedSignals
06 .if (not_empty unusedSignals)
07 .for each signal in unusedSignals
08 .invoke paramText = GetParamData
09 <tr><td><i>${signal.name}(paramText)</i></td></tr>
10 .end for
11 .else
12 All defined signals are used.
13 .end if
14 </table>

Fig. 5. An example of a model-to-text transformation using xtUML.

the representation of parallel success paths. All rows that
start with a punctuation mark are statements defined by the
transformation language while those rows that do not start with
punctuation mark define the generated text. The string value of
a variable v is obtained by getting its literal text value, ${v},
as in row nine where the signal’s name is inserted into the
table. Even if the success story only includes those signals
that are implemented in the intended usage of the MicroOven
the variable usedSignals on row five is defined by traversing
the entire state machine in order to collect all signals that are
used to implement the test case. On row eight the parameters
are converted into a textual representation, paramText, by
calling the function GetParamData, which is defined by the
translation engineer.

In the context of our study it is not relevant to mention in
what class the state machine resides that handles the interaction
across the interface. That information is excluded in the
content selection phase [34] since it is the possible interaction
across the interface, as modelled by the state machine, that is
interesting, not the internal structure of the components.

For the success path the structure of the text follows the
order imposed by the transitions of the state machine, only
considering the names of the transitions that constitute the
intended usage.

IV. RESULTS

The algorithm for navigating through the metamodel to
generate the textual summaries is on the size of 100 statements.
In comparison, a model compiler for generating Java programs
consists of 500.000 statements but that covers the entire
xtUML definition. Since the state machines and the Action
language are so intertwined with the interfaces it is not possible
to get a number for the statements needed for translating the
interfaces as such into Java. The number of statements for the
textual generation is dependent on the present content selection
and will increase if more model concepts are to be present in
the generation.

In Figure 6, an example of a generated text is shown.
It depicts the summarisation of the interface in Figure 1 as
implemented by the state machine in Figure 2. The top-half
of the web page shows the intended usage of the oven and
the bottom-half details which signals in the interface that are
unused in the implementation. The intended usage is given in
a table format where alternative usages are given on the same
row, side-by-side.

The name of the interacting component is Tester, which is
carried on to the generated text. This emphasizes that naming

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 18 / 84

Fig. 6. An example of a textual summary.

conventions will affect the readability and understanding of
generated texts when they are derived from software imple-
mentations. In this case the reading of the generated text would
have benefited of naming the testing component to User, who
it is meant to represent.

The paragraph for unused signals include setTimer(min:int,
sec:int), which represents how the interface was overloaded at
the point of specification due to the fact that it was unclear
how the MicroOven would be used. Since then the decision
was taken to specify times in seconds only but the interface was
not changed to reflect this decision. The generated text clearly
identifies that there is a mismatch between the specification of
the interface and its implementation.

Since the text is automatically generated from the source
model it is possible to have a text generated that is consistent
with the implementation whenever it is needed; e.g. when
considering the implications of adding new functionality, to
validate that new functionality conforms to the requirements
during implementation or after implementation to understand
how the software is intended to be used. This is shown in
Figure 4 where the generated text can be used both to describe
the original model or the implementation at code-level.

When the model is translated into code the information
enclosed in the model is extended with details specific to
operative system, chosen programming languages etc. in order
to enable the deployment of the generated source code on a
specific platform. This added information is then automatically
excluded in the generated text since it is not present in the
model. The benefit is that the generated text automatically
becomes a summary of the interface that focuses on its
intended usage while it abstracts away from how the behaviour
is obtained. The text can then be reused independent on how
the interface is realised on different platforms. As an example,
the position of the signal setTimer(time:int) in the sequence of
intended interactions between the oven and the user does not
depend on if C or Java is used to realise the interface.

The algorithms for generating the success stories and
to document unused signals are defined upon the xtUML
metamodel. This means that they are reusable across different
models that adhere to the metamodel, just as a compiler is
defined upon the BNF grammar of programming language and
therefor reusable across programs [9].

The structure and naming of concepts and relationships in
the metamodel is the main source of complexity in this ap-
proach to NLG. Knowing what the concepts and relationships
refer to is more challenging than how to map them into a
textual representation.

V. DISCUSSION AND FUTURE WORK

The Object Management Group are the owners of the
UML specification and the architects behind the MDA [5],
[6] approach to using UML for software development. Their
approach for defining the sequencing of the interface signals
is to develop a new model, a protocol state machine[35]. Their
solution results not only in an additional effort of developing
a new model for explaining an old one, but also relies on
the same techniques that made it difficult to verify the old
model in the first place. As an additional contribution we show
how an existing test model can be used for the same purpose
as a protocol state machine as well as the source for an NL
summary explaining the protocol of the interface.

In relation to previous work on text generation from xtUML
our approach does not rely on the understanding of complex
linguistic tools. The benefit of only using the same techniques
for NLG as for code generation is that there is no additional
training cost for companies. This makes it easier to adopt NLG
in an industrial context since the number of software engineers
with an understanding of both metamodelling and language
technology are few. The mapping of metamodel concepts
and relationships into linguistic properties will increase the
complexity of macro- and microplanning. The drawback of our
approach is the limited expressiveness of the transformation
rules. For a more varied text structure, less repetitive sentences
or for languages with a richer morphology it would be neces-
sary to apply an NLG approach that incorporates linguistic
competence. However, striking the balance between richer
NLG and what companies are prepared to invest in hiring new
competence is yet to be investigated. Our hope is that we will
be able to start a new collaboration to enable practitioners in
industry to evaluate both the generated texts and the generation
procedure. Both lines of query would help to better understand
where the balance between cost and readability lies.

Due to the time constraints of the MDE study there was
not enough time to gain access to the original models to
generate documentation within the industrial context where
the issues were found. Instead, a prototype was implemented to
show how the documentation could be generated from software
models with a minimal effort. This opens for another possible
route for the future, to further explore the possibilities of NLG
for validation purposes in an industrial context. As seen in the
related literature there is little involvement from industry to
actually use NLG for validation purposes. We believe that this
contribution can be a first step to address the problems that
engineers actually are facing and as such also open for new
ways of adapting NLG and summarisation techniques to the
engineer’s needs and context.

ACKNOWLEDGMENT

The authors would like to thank the Graduate School in
Language Technology, the Center of Language Technology and
the Software Center for funding and support as well as the
contact persons at respective company for facilitating the study.

REFERENCES

[1] A. Beugnard, J.-M. Jézéquel, and N. Plouzeau, “Making Components
Contract Aware,” IEEE Computer, vol. 32, no. 7, pp. 38–45, 1999.

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 19 / 84

[2] G. T. Heineman and W. T. Councill, Eds., Component-based software
engineering: putting the pieces together. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2001.

[3] J. Arlow, W. Emmerich, and J. Quinn, “Literate Modelling - Capturing
Business Knowledge with the UML,” in Selected papers from the First
International Workshop on The Unified Modeling Language UML’98:
Beyond the Notation. London, UK: Springer-Verlag, 1999, pp. 189–
199.

[4] D. Firesmith, “Modern Requirements Specification,” Journal of Object
Technology, vol. 2, no. 2, pp. 53–64, 2003.

[5] J. Miller and J. Mukerji, “MDA Guide Version 1.0.1,” Object Manage-
ment Group, Tech. Rep., 2003.

[6] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven
ArchitectureTM: Practice and Promise. Addison-Wesley Professional,
2005.

[7] M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2004.

[8] C. Atkinson and T. Kühne, “Model-driven development: a metamodel-
ing foundation,” IEEE Software, vol. 20, no. 5, pp. 36 – 41, September
2003.

[9] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition). Boston: Pearson
Education, Inc., 2007.

[10] M. Wimmer and G. Kramler, “Bridging Grammarware and Modelware,”
in Satellite Events at the MoDELS 2005 Conference, ser. Lecture Notes
in Computer Science, J.-M. Bruel, Ed. Springer Berlin / Heidelberg,
2006, vol. 3844, pp. 159–168.

[11] S. J. Mellor and M. Balcer, Executable UML: A Foundation for Model-
Driven Architectures. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[12] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model
Driven Architecture with Executable UMLTM. New York, NY, USA:
Cambridge University Press, 2004.

[13] S. Shlaer and S. J. Mellor, Object lifecycles: modeling the world in
states. Upper Saddle River, NJ, USA: Yourdon Press, 1992.

[14] T. Mens and P. V. Gorp, “A Taxonomy of Model Transformation,”
Electronic Notes in Theoretical Computer Science, vol. 152, pp. 125–
142, March 2006.

[15] P. Stevens, “A Landscape of Bidirectional Model Transformations,” in
Generative and Transformational Techniques in Software Engineering
II, International Summer School, ser. Lecture Notes in Computer
Science, R. Lämmel, J. Visser, and J. Saraiva, Eds., vol. 5235. Braga,
Portugal: Springer, July 2007, pp. 408–424.

[16] S. J. Mellor, S. Kendall, A. Uhl, and D. Weise, MDA Distilled.
Redwood City, CA, USA: Addison Wesley Longman Publishing Co.,
Inc., 2004.

[17] J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P. Ranganath, “Ca-
dena: An integrated development, analysis, and verification environment
for component-based systems,” in Proceedings of the 25th International
Conference on Software Engineering, L. A. Clarke, L. Dillon, and W. F.
Tichy, Eds. Portland, Oregon, USA: IEEE Computer Society, May
2003, pp. 160–173.

[18] V. Mencl, “Specifying Component Behavior with Port State Machines,”
Electronic Notes in Theoretical Computer Science, vol. 101, pp. 129–
153, 2004.

[19] S. Uchitel and J. Kramer, “A workbench for synthesising behaviour
models from scenarios,” in Proceedings of the 23rd International
Conference on Software Engineering, H. A. Müller, M. J. Harrold, and
W. Schäfer, Eds. Toronto, Ontario, Canada: IEEE Computer Society,
May 2001, pp. 188–197.

[20] S. Spreeuwenberg, J. Van Grondelle, R. Heller, and G. Grijzen, “Design
of a CNL to Involve Domain Experts in Modelling,” in CNL 2010
Second Workshop on Controlled Natural Languages, M. Rosner and
N. Fuchs, Eds. Springer, 2010, pp. 175–193.

[21] A. Wyner, K. Angelov, G. Barzdins, D. Damljanovic, B. Davis,
N. Fuchs, S. Hoefler, K. Jones, K. Kaljurand, T. Kuhn, M. Luts, J. Pool,
M. Rosner, R. Schwitter, and J. Sowa, “On controlled natural languages:
Properties and prospects,” in Proceedings of the Workshop on Controlled
Natural Language (CNL 2009), ser. Lecture Notes in Computer Science,
N. E. Fuchs, Ed., vol. 5972. Berlin / Heidelberg, Germany: Springer
Verlag, 2010, pp. 281–289.

[22] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
Your Models Ready for MDA, 2nd ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2003.

[23] R. Hähnle, K. Johannisson, and A. Ranta, “An Authoring Tool for
Informal and Formal Requirements Specifications,” in FASE 2002,
Fundamental Approaches to Software Engineering, 5th International
Conference, ser. Lecture Notes in Computer Science, R.-D. Kutsche
and H. Weber, Eds., vol. 2306. Grenoble, France: Springer, April
2002, pp. 233–248.

[24] D. A. Burke and K. Johannisson, “Translating Formal Software Spec-
ifications to Natural Language,” in 5th International Conference on
Logical Aspects of Computational Linguistics, ser. Lecture Notes in
Computer Science, P. Blache, E. P. Stabler, J. Busquets, and R. Moot,
Eds., vol. 3492. Bordeaux, France: Springer Verlag, April 2005, pp.
51–66.

[25] R. Heldal and K. Johannisson, “Customer Validation of Formal Con-
tracts,” in OCL for (Meta-)Models in Multiple Application Domains,
Genova, Italy, 2006, pp. 13–25.

[26] S. Rastkar, G. C. Murphy, and A. W. J. Bradley, “Generating natural
language summaries for crosscutting source code concerns,” in 27th
International Conference on Software Maintenance. Williamsburg,
VA, USA: IEEE, September 2011, pp. 103–112.

[27] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for Java meth-
ods,” in Proceedings of the IEEE/ACM international conference on
Automated software engineering, ser. ASE ’10. New York, NY, USA:
ACM, 2010, pp. 43–52.

[28] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting
and describing high level actions within methods,” in Proceedings of
the 33rd International Conference on Software Engineering, ser. ICSE
’11. New York, NY, USA: ACM, 2011, pp. 101–110.

[29] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the Use of
Automated Text Summarization Techniques for Summarizing Source
Code,” in WCRE, G. Antoniol, M. Pinzger, and E. J. Chikofsky, Eds.
IEEE Computer Society, 2010, pp. 35–44.

[30] H. Burden and R. Heldal, “Natural Language Generation from Class
Diagrams,” in Proceedings of the 8th International Workshop on Model-
Driven Engineering, Verification and Validation, ser. MoDeVVa 2011.
Wellington, New Zealand: ACM, October 2011.

[31] ——, “Translating Platform-Independent Code into Natural Language
Texts,” in MODELSWARD 2013, 1st International Conference on
Model-Driven Engineering and Software Development, Barcelona,
Spain, February 2013.

[32] R. Heldal, D. Arvidsson, and F. Persson, “Modeling Executable Test
Actors: Exploratory Study Done in Executable and Translatable UML,”
in 19th Asia-Pacific Software Engineering Conference, K. R. P. H.
Leung and P. Muenchaisri, Eds. Hong Kong, China: IEEE, December
2012, pp. 784–789.

[33] J. Bateman and M. Zock, “Natural Language Generation,” in The Oxford
Handbook of Computational Linguistics, ser. Oxford Handbooks in
Linguistics, R. Mitkov, Ed. Oxford University Press, 2003, ch. 15.

[34] E. Reiter and R. Dale, Building Natural Language Generation Systems.
Cambridge University Press, 2000.

[35] “OMG Unified Modeling LanguageTM(OMG UML), Superstruc-
ture,” http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/, ver-
sion 2.4.1. Accessed August 2013.

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 20 / 84

Efficient Elimination of False Positives Using
Bounded Model Checking

Tukaram Muske, Advaita Datar, Mayur Khanzode, Kumar Madhukar
TRDDC, Tata Consultancy Services,

Pune, India
{t.muske, advaita.datar, mayur.khanzode, kumar.madhukar}@tcs.com

Abstract—Software verification using abstract interpretation
is scalable but imprecise. Model checking is precise in verifying
a property but not scalable. Often, these two techniques are
combined to achieve better precision. A possible way is to analyze
a software system first by using abstract interpretation and later
eliminating the false positives using bounded model checking. This
is a time consuming process as it typically involves verifying an
assertion corresponding to each generated warning. We observe
verifying all assertions often introduces redundancy, and some
verifications may not even eliminate a false positive. In this paper,
we present an approach consisting of three techniques to make
such false positives elimination faster. Two of the techniques
identify an assertion as being equivalent to an other assertion
thus avoiding its verification. The third technique tries to identify
and skip a class of assertion verifications that will not eliminate a
false positive. Empirical results indicate that these techniques are
quite useful in reducing the number of assertions being verified
by 53%, and the false positives elimination time by 60%.

Keywords—Abstract Interpretation; Model Checking; False Pos-
itives Elimination; Data Flow Analysis.

I. INTRODUCTION

Software verification using abstract interpretation [1] has
been effective in proving the absence of runtime errors such
as Division by Zero (ZD), Array Index Out of Bound (AIOB)
and buffer overflow. It has successfully been used to verify
very large software systems, but generates too many false
warnings, commonly referred to as false positives [2]. On the
other hand, model checking is precise for property verification,
but it often faces the state explosion problem as programs
include unbounded-loops, recursions, complex data structures
[3][4]. Under these circumstances, a property verification may
not succeed and it is a concern.

There have been several attempts at combining these two
techniques to improve precision [5][6][7], i.e., to generate
fewer warnings which, in turn, would reduce the cost of their
manual review. Abstract interpretation, being light weight,
is used first and then generated warnings are processed by
a model checker to eliminate false positives [8][9]. This
processing includes generation of an assertion corresponding
to each warning and its verification using a model checker. If
an assertion is successfully verified, its corresponding warning
is a false positive and is eliminated.

This process of False Positives Elimination (FPE) is very
time consuming as each assertion needs to be verified by a
model checker, and an average assertion verification time is
significant [9][10]. Hence, there is a need to make it faster.

To the best of our knowledge, nothing has been done to
make such false positives elimination efficient. In practice, we
observe verifying all assertions often introduce redundancies,
and few verifications even may not eliminate a false positive.
We use these observations to make FPE efficient by reducing
the number of assertions being verified.

Throughout this paper:

1) we use An to denote the assertion at line n and V (An)
to denote its verification.

2) in our examples, for clarity of representation, we have
eliminated some parts of the code (like assigning non-
deterministic values to input variables, conditional pre-
processor code to include single assertion at a time).

3) we describe FPE more particularly, using CBMC (C
Bounded Model Checker) [11]. We chose CBMC for our
experimentation because we have prior experience in its
usage and it is integrated in the existing tool set [9].

Consider the motivating example in Figure 1, where each
access of an array is reported as a warning by abstract
interpretation (AIOB property), since their index values are
unknown for abstract interpretation. This example also shows
six assertions, one corresponding to each of the warnings.
Verifications of all these six assertions is not required since
some of them are redundant or non-verifiable. This is explained
as below:

1) A15 and A17 are equivalent since their assert expressions
are same and n is not modified in between. With this
equivalence, V (A17) is found redundant as it has same
result as that of V (A15). That is, if A15 is verified
successfully, warnings related to A15 and A17 will be
eliminated, else they will continue to be warnings after
FPE.

2) If Overflow-Underflow (OFUF) property is proved on the
code, V (A21) has same result as that of V (A23), because
the involved index variable has an unsigned data type.
That is, success in V (A23) guarantees success in V (A21),
whereas if V (A23) fails then V (A21) is most likely to fail.
Thus, their corresponding warnings will together be either
false positives or continue to be warnings after FPE. This
observation finds the V (A21) is redundant.

3) V (A35) and V (A39) require analysis of the unbounded
loop (run time dependent loop at line 34), and hence, these
verifications either will terminate with out of memory or
will produce an error trace depicting insufficient loop un-
winding. Please refer to Section II-A for more details on
insufficient loop unwinding by CBMC. These assertions

13Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 21 / 84

int rColors[10], gColors[10];

11. void f1(int r, int g){
12. unsigned int i = 0, n, temp;
13.
14. n = ...;
15. assert(n>=0 && n<10);
16. rColors[n] = r;
17. assert(n>=0 && n<10);
18. gColors[n] = g;
19.
20. i = ...;
21. assert(temp=i++, temp>=0 && temp<10);
22. rColors[i++] = ...;
23. assert(temp=i++, temp>=0 && temp<10);
24. gColors[i++] = ...;

}

char *str, charArr[20];

31. void f2(){
32. int i = 0;
33. ...
34. while(*str != ’ ’){
35. assert(i>=0 && i<20);
36. charArr[i] = *str;
37. i++;
38. }
39. assert(i>=0 && i<20);
40. charArr[i] = ’\0’;

...
}

Figure 1: Example and Annotation - 1

can not be verified, so are non-verifiable; we are unable
to eliminate a false positive.

We propose three techniques for efficient FPE.

1) Property Independent Redundant Assertion Identification
Technique (PI-RAIT): It partitions assertions and selects
a leader assertion for each partition such that if leader
assertion hold so does the other assertions from its parti-
tion. A partition so formed represents a set of either false
positives or the warnings together, and it requires only
the leader assertion to be verified. This technique will
put A15 and A17 in the same partition with A15 as the
leader.

2) Property Dependent Redundant Assertion Identification
Technique (PD-RAIT): It includes partitioning of asser-
tions similar in PI-RAIT, but depends on the characteristic
of a run-time property. It only differs with PI-RAIT in
the way of identifying equivalence of assertions, where
it uses property characteristics and practical observations
(code patterns) to identify the equivalence of assertions.
This technique will put A21 and A23 in the same partition
with A23 as the leader.

3) Non-Verifiable Assertion Identification Technique
(NVAIT): It includes identifying assertion verifications
which require analysis of unbounded loops and most
likely they can not be verified successfully. This
technique will identify A35 and A39 as Non-Verifiable
Assertions (NVAs).

Out of six assertions in Figure 1, these proposed techniques
identify only two assertions (A15 and A23) to be verified
and skip the other four. This makes FPE considerably faster.
We applied this approach in different FPE settings for two
automotive industry C applications and the results indicate that
these techniques reduce the number of assertions being verified
by 53% and the resultant FPE time by 60%.

We discuss in detail PI-RAIT in Section II, and PD-RAIT
and NVAIT in Section III. The implementation and empirical
results are described in Section IV. Section V presents related
work, and finally, we conclude with future work in Section
VI.

II. PROPERTY INDEPENDENT RAIT

This section discusses in detail the proposed Property
Independent RAIT (PI-RAIT) and presents an algorithm for
it.

A. CBMC

In this paper, we describe FPE and the proposed techniques
using CBMC, hence it is briefly described. CBMC is a
Bounded Model Checker for ANSI-C and C++ programs. It
takes an entry function and a property to be verified that is
expressed as an assertion. The specified entry function repre-
sents a context at which the assertion is verified and can be an
entry point of the application or any other function having
the input assertion. If an assertion holds for all execution
paths, CBMC reports verification success. If it does not hold,
generates an error trace leading to the property violation.
The verification is performed by unwinding the loops in the
program, and it is necessary for all loops to have a finite
upper bound [4]. For unbounded loops, it takes a user provided
bound (unwinding count) as an upper bound. The provided
bound should be enough to capture the program semantics, so
that the property verification is sound and complete. Further,
when the bound is not enough, it produces a trace (loop
unwinding counterexample) to demonstrate the insufficiency
of loop unwinding.

B. Reduction of Assertions in FPE: Need

Abstract interpretation usually reports a large number of
analysis warnings [4]. In a FPE process, ideally, an assertion
corresponding to each generated warning should be verified
with application entry point as the entry function. However,
it often does not scale or generates a loop unwinding coun-
terexample. To overcome this problem, a different approach
of incremental code context (context expansion) is adopted
[8]. In this approach, an assertion verification is started with
a minimal code context only, i.e., the enclosed function of the
assertion. Later, the context is incremented to the callers of
the enclosed function until one of the following holds:

1) its corresponding false positive is eliminated
2) context reaches the application entry
3) a certain time limit is achieved

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 22 / 84

FPE with code context expansion, as compared to FPEs at
function and application levels, eliminates more false positives
but involves verifying an assertion multiple times. Performing
numerous verifications for each of the generated assertion
increases FPE time even further. Hence, there is a need to
minimize the number of assertions being verified.

C. Equivalence of Assertions

We have observed that, in practice, many of the generated
warnings are similar, and hence, their corresponding assertions
are also likely to be equivalent. The code snippet in Figure 2
depicts three Zero Division (ZD) warnings and their corre-
sponding assertions. These warnings are similar, because the
denominator in each ZD warning is the same variable taking
values from the same source. They together represent a class
of false positives or an error. Hence, the added assertions are
also equivalent.

11. denom = ...;
12. if(...){
13. assert(denom != 0); r1 = n1/denom;
14. }
15.
16. assert(denom != 0); r2 = n2/denom;
17.
18. if(...){
19. assert(denom != 0); r3 = n3/denom;
20. }

Figure 2: Example and Annotation - 2

More precisely, two assertions are equivalent if -

1) their assert expressions are structurally similar and
2) the variables referred to by these assertions have the same

source for their values.

The structural similarity of expressions requires that vari-
ables used, the operators and their order of appearance in the
expression be the same. For example, given two ZD assertions
with their expressions as

• (a+ b+ c)! = 0 and (a+ b+ c)! = 0 are potentially
equivalent.

• (v+1)! = 0 and (1+v)! = 0 are not equivalent, since
operands appear in different order.

• (v1 + func())! = 0 and (v1 + func())! = 0 are not
equivalent since different calls to a function can return
different values.

D. Partitioning of Assertions

We use the equivalence of assertions to reduce the number
of FPE assertion verifications. The equivalent assertions are
put in the same partition. An assertion in a partition is tagged
as a Leader Assertion (LA) only if its successful verification
by model checker guarantees the successful verification of
other assertions in its partition. This ensures that the warnings
corresponding to assertions in a partition are regarded as
false positives when the leader of the partition is verified
successfully. In the other case, if the leader verification fails
then verification of other assertions in that partition is most

likely to fail. Essentially, the verification result of assertions in
a partition follow the verification result of the partition leader,
hence, they are referred to as Follower Assertions (FAs). If an
assertion can not be equivalent to an other assertion, it will
be the only member (LA) of its partition without having the
follower(s). Thus, in a partition there will be strictly only one
LA and any number of FAs including zero.

Using this approach, burden of eliminating a false positive
corresponding to a FA is transferred to its leader, and hence,
there is a chance that it might miss on eliminating a false
positive. This is because, there could be a scenario in which
a FA is able to identify a false positive but its leader is not.
We permit this assuming such scenarios would be very rare in
practice.

We tag an assertion A in a partition as a LA, only if all
paths reaching any other assertion (FA) also go through A.
Under this criterion, A16 is selected as a LA for the partition
of the equivalent assertions in Figure 2. Other assertion (A13

or A19), can not be tagged as a LA since there exists a path
reaching A16 but not going through it.

E. Assertions Partitioning Algorithm

We use must reachability and must liveness of assertions to
compute the LAs and associate them with their corresponding
FAs. The reaching and live assertions being computed denote
must data flow information, i.e., they represent the assertions
that are definitely reaching or definitely live from the program
points at which they appear. These must reaching (must live)
assertions are similar to reaching definitions (live variables)
[12], with assertions replacing variables and must information
replacing may. It should be noted that the assertions under
consideration are unique in themselves where they are uniquely
identified by the program points at which they appear.

1) Must Reaching Assertion (MRA): An assertion with
expression e at a program point P is a MRA at its succeeding
program point P ′ if every path coming to P ′ passes through
P and, no path segment between P and P ′ contains a l-value
occurrence of any of the r-value(s) of e. This ensures that each
execution path through P ′ also includes P .

With a slight abuse of notation, we denote a program point
of an assertion by the assertion itself. In Figure 2, A16 is a
MRA at A19. However, it is not a MRA at A13 since A13

appears before the A16. Also, A13 is not a MRA at other two
assertions since there exists a path that does not go through
A13 but reaches to them (A16 and A19).

2) MRAs Data Flow Formalization: We present the data
flow formalization for MRAs computation at procedure level
using forward information flow. It considers one run-time
property at a time while computing MRAs, for example, MRAs
for partitioning of ZD and AIOB assertions are computed
separately. The equations below are shown for a node n in a
control flow graph [13], where n denotes either an assignment
statement or an expression controlling the flow.

Inn =

 ∅ n is the entry node⋂
p ε predecessors(n)

Outp otherwise (1)

Outn = Genn + (Inn −Killn(Inn)) (2)

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 23 / 84

Genn =

{
{A} n has an assertion A

∅ otherwise
(3)

Killn(X) =

killInfo(X,n) n modifies at
least one variable

∅ no variable is
modified by n

(4)

killInfo(X,n) =

{A ∈ X | (usedV ars(A) ∩modifiedV ars(n)) 6= ∅} (5)

usedV ars(A) = r-values from assertion A (6)

modifiedV ars(n) = l-values from program statement n
(7)

In the above formalization,

• Inn represents the MRAs flowing in to n, i.e., at the
start of n, whereas Outn represents the MRAs flowing
out (at the exit) of n.

• Inn equation (1) uses intersection because the flow
information being computed is a must information.

• information flowing in at a point is computed using
the information flowing out of its predecessors. This
is because we compute the flow information in the
forward direction.

• MRAs information is generated only at program points
having assertions while kill information is computed
at each variable modification point.

• Inn equation (1) indicates that MRAs are computed
at procedure level. This equation will need a change
if the MRAs are to be computed at the application
level. The change is required to incorporate the effect
of calling contexts and function call points.

3) Must Live Assertion (MLA): An assertion with expres-
sion e at a program point P is a MLA at its preceding program
point P ′ if every path coming out of P ′ also passes through
P and, no path segment between P ′ and P contains a l-value
occurrence of any of the r-value(s) of e. This ensures each
execution path having P ′ on it, also includes P .

In Figure 2, A16 is a MLA at A13. However, it is not a
MLA at A19 since A19 does not precede A16. Also, A19 is not
a MLA at the other two assertion points (A16 and A19) since
there exists a path that does not go through A19 but reaches
them.

4) Data Flow Formalization for MLAs: The formalization
for MLAs computation will be similar to that of MRAs. The
only change here is the direction of information flow which
is backward in case of MLAs. In order to account for this
change, we change the Inn and Outn equations as under.
Outn and Inn denote the MLAs being computed at the exit
and start of a program point n respectively.

Outn =

 ∅ n is the exit node⋂
s ε successors(n)

Ins otherwise (8)

Inn = Genn + (Outn −Killn(Outn)) (9)

5) Computation of LAs and FAs: Once MRAs and MLAs
are available at each program point of an application, identi-
fication of partitions with their associated LAs becomes easy.
We denote the MRAs at the exit of a program point n (flowing
out of n) as MRAs(n), and the MLAs at its start (flowing
in at n) as MLAs(n). Assertions A and A′, with their assert
expressions as e and e′ respectively, form elements in the same
partition if e and e′ are structurally similar and one of the
following hold:

1) A ∈ (MRAs(A′)∪MLAs(A′)). In this case, A′ will be
a FA and A can be its leader.

2) A′ ∈ (MRAs(A) ∪MLAs(A)). In this case, A will be
a FA and A′ can be its leader.

An assertion A can be selected as a leader of a partition if
for every other assertion A′ in the partition, A ∈MRAs(A′)∪
MLAs(A′). If more than one assertion in a partition qualify
to be a leader, one of them is randomly selected as the leader.

F. Assertions Partitioning: Limitation

11. denom = ...;
12. if(...){
13. assert(denom != 0); r1 = n1/denom;
14. } else {
15. assert(denom != 0); r3 = n3/denom;
16. }

Figure 3: Limitation scenario of PI-RAIT

The usage of MRAs and MLAs to identify LAs sometimes
does not partition the assertions which are equivalent but not
definitely reachable from one another. Examples of this are
A13 and A15 in Figure 3. In spite of being equivalent, they
will not be partitioned together because there will not be a
MRA or a MLA available at an assertion point from another
assertion.

III. PD-RAIT AND NVAIT

This section discusses the details of PD-RAIT and NVAIT,
and presents an algorithm for both.

A. PD-RAIT

We have observed that, often, there are large number of
assertions whose verification result follows the verification
result of some other assertion, and they do not fall under the
same partition during PI-RAIT. For instance, in Figure 1, A21

and A23 will not be identified as equivalent by PI-RAIT, even
though the result of V (A21) follows that of V (A23). We use
this characteristic peculiar to AIOB warnings to reduce the
number of assertion verifications by partitioning them in a way
similar to PI-RAIT.

1) Partitioning of AIOB assertions: In Figure 1, the need
is to identify A23 as a leader and A21 as its follower. This will
require backward analysis. Therefore, we use MLAs (as in PI-
RAIT) to partition the AIOB assertions. The only change here
is in the way MLAs are computed. The rest of the algorithm

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 24 / 84

to identify the LA and its associated FAs remains the same as
in PI-RAIT.

We describe the change required in MLAs computation
using the same example in Figure 1. We denote the MLAs at
the exit of a program point n as Out(n), and the MLAs at the
start of n as In(n). In PI-RAIT, A23 ∈ Out(A21) but A23 /∈
In(A21) because A23 gets killed at A21. This kill of A23 omits
the association of A21 (follower) with A23 (leader). In PD-
RAIT, we avoid such a kill computation. With this change,
A23 ∈ In(A21) and using PI-RAIT algorithm these will get
partitioned together with A23 as the leader.

We skip the data flow formalization of MLAs computation
in this technique due to lack of space. It is to note that this
algorithm does not consider the MRAs for their partitioning.
This approach can not be applied to partition the assertions
associated with the AIOB warnings including a pre/post unary
decrement operator or a signed data-type variable in their in-
dexes. It is possible to refine the PD-RAIT technique to handle
these limitation scenarios, but we do not do it as such scenarios
are very rare in practice. Also, we do not apply this technique
for ZD as its warnings with such patterns are very rare. Further,
it can not be applied to partition overflow-underflow assertions
since the relationship in verification results of LA and FAs can
not be guaranteed.

int *ptr1, **ptr2;
#define NULL 0

void f(...) {
...

11. ptr1 = *ptr2;
12.
13. assert(ptr1!=NULL); arr[0] = *ptr1++;
14. assert(ptr1!=NULL); arr[1] = *ptr1++;
15. assert(ptr1!=NULL); arr[2] = *ptr1++;

}

Figure 4: DNP Assertions Example

Figure 4 presents another example for the Dereference of
a Null Pointer (DNP) to illustrate the application of the PD-
RAIT algorithm is property specific. The PD-RAIT algorithm
used to partition the AIOB assertions can not be used for
partitioning of these DNP assertions because successful veri-
fication of V (A15) does not guarantee the same for V (A13).
However, it can be observed that if A13 is verified successfully,
the successful verification of V (A14) and V (A15) is ensured.
Thus, these assertions can be partitioned together with A13

tagged as a LA. It is intuitive that, such leader identification
includes forward analysis, and hence, MRAs should be used
instead of MLAs.

B. Non-Verifiable Assertions Identification Technique

Verification of an assertion by CBMC includes analysis
of a provided entry function and the functions that are called
directly or indirectly from the entry function. It uses a provided
bound (unwinding count) for the unbounded loops during
their unrolling. In the absence of this input (unwinding count)
CBMC keeps unrolling the loop and eventually out of memory.
When the input bound is not insufficient, it results into an

unwinding assertion counterexample. This verification does not
contribute in eliminating a false positive and is needless.

In practice, an application includes unbounded loops whose
bound is determined only at the run-time. We present a few
examples of the unbounded loops as follows:

1) an infinite loop such as while(1), for(; ; ;).
2) a loop in which a bound variable in its terminating

condition takes values from library system calls.
3) a loop whose terminating condition is run-time dependent

like ∗ptr! =‘\0’ and the string(s) pointed by ptr gets its
content during run-time through fgets(ptr).

If an assertion is control or data dependent on any of the
above unbounded loops, then it is a NVA. An assertion A
is control or data dependent on a loop l if A is dependent
on a statement belonging to l. In Figure 1, A35 and A39 are
the NVAs. This is because, each of them is control and data
dependent on the unbounded loop starting at line 34. We skip
the verification of these NVAs to make FPE faster.

We use the following algorithm to compute the NVAs:

1) Identify a set of unbounded loops (denoted as LUB) used
in the application. Loop termination analysis [14][15] can
be used for this purpose.

2) For each assertion A and an entry function fe,
a) Identify the loops in fe on which A is control or data

dependent. Program dependence graph [16] can be used
for this purpose. We denote this set of loops as L.

b) If (L ∩ LUB) 6= ∅ then A is a NVA in the context of
fe.

It must be noted that the identification of an assertion as
NVA is always with respect to an entry function. Further, this
approach might wrongly mark an assertion as a NVA even if
it is not. This, in turn, may make the FPE imprecise.

IV. IMPLEMENTATION & EXPERIMENTS

This section covers the implementation details and exper-
iments performed for the proposed FPE.

A. FPE Implementation

We implemented the proposed techniques in TCS Embed-
ded Code Analyzer (TECA) [17] to eliminate false positives
from the analysis warnings generated by it. TECA is a static
analysis tool to verify C source code. We used the framework
shown in Figure 5 to implement the proposed techniques. A
short description of each of the component in the framework
is provided below.

1) Static Analyzer: A static analysis tool (TECA) that
performs verifications for properties AIOB, ZD, DNP, OFUF,
etc. on input C code and reports safe, unsafe and warnings
program points.

2) Code Annotator: This component annotates the source
code to generate assertion corresponding to each warning
produced by a static analysis tool.

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 25 / 84

Figure 5: FPE Implementation Framework

3) Redundant/Non-Verifiable Assertions Identifier: We im-
plemented the PI-RAIT, PD-RAIT and NVAIT as separate
components, and use them in succession to get maximum
benefit out of these techniques.

i. PI-RAIT: It implements the MRA and MLA formalizations
in context and flow sensitive way at function level to parti-
tion the input set of assertions based on their equivalence.
Further, it updates the analysis warnings report to reflect
the association of LAs and their FAs.

ii. PD-RAIT: This component implements property specific
PD-RAIT to partition the LAs computed by PI-RAIT.
It does not analyze the FAs from PI-RAIT component
since their analysis in this component would be redundant.
Similar to PI-RAIT, it also updates the warnings report for
its computed LAs and their FAs.

iii. NVAIT: It receives the PD-RAIT LAs and computes the
NVAs from them. We used simple pattern based tech-
niques to identify the unbounded loops in an application
and did not use any complex loop termination analysis.
In this component, due to lack of time, we used must
reachability of unbounded loops instead of control or data
dependency, to check if an assertion is a NVA.

4) Assertions Verifier: This component comprises mainly
of a model checker (CBMC), and it optionally includes other
tools implementing techniques such as code slicing [18],
loops abstractions [9] to scale the model checker. The actual
false positives elimination is performed by this component.
It eliminates warnings (false positives) corresponding to a
LA and its FAs when the LA is verified successfully. If the
verification fails or times out, its corresponding warning is

not eliminated. This component allows FPE in three different
settings:

1) FPE at a Function level (Ffpe),
2) FPE at an Application level (Afpe), and
3) FPE using a Code context expansion (Cfpe).

In Cfpe, assertions verifier component communicates with
NVAIT component to check if the assertion being verified with
an entry function is a NVA, and on finding the assertion as a
NVA, its further verifications are skipped.

B. Experiments and Observations

We selected two embedded applications, one of 40 KLOC
representing an automobile battery control module and another
of 80 KLOC representing a smart card management system.
Both the applications were verified for AIOB and ZD prop-
erties using abstract interpretation, and false positives were
eliminated in three FPE settings - Ffpe, Afpe and Cfpe. During
our FPE experiments, we used-

1) 200 seconds time out for a CBMC verification.
2) sliced code with respect to generated assertion for its

verification.
3) machine with Intel Core 2 Duo 2.33 GHz processor, 2

GB RAM configuration and having Windows XP SP3.

In Table I, we present details of the CBMC verification
results for Ffpe and Afpe settings without applying any of the
proposed techniques (PI-RAIT, PD-RAIT and NVAIT). These
results indicate that Ffpe outperforms Afpe in terms of num-
ber of successful verifications. Also, there is a considerable
number of unwinding counterexamples for these applications.

The results obtained for different combinations of the
proposed techniques in each FPE setting are shown in Table
II. For a FPE setting, it presents-

a. |Ain|, where Ain indicates a set of assertions those are
verified by the CBMC.

b. |Efp|, where Efp is a set of false positives eliminated.
c. Tfpe representing the time taken ([Hours:Mins]) to verify

assertions from Ain. It does not include the time spent in
the code slicing.

In Table II, we also present the time taken in minutes (TR)
by a combination of the proposed techniques in a FPE setting.
In our experiments, we applied PD-RAIT to AIOB only (and
not for ZD). Following are the few observations from Table
II.

1) In a setting, TR is very less as compared to Tfpe, and
this does not add any performance overhead in the FPE.

2) Among the FPE settings, the false positives eliminated
are maximum in Cfpe and minimum in Afpe.

3) Equivalent assertions found by PI-RAIT and PD-RAIT
techniques, are more for AIOB compared to the ZD, and
hence, the FPE time reduction is more for AIOB.

4) On an average, the PI-RAIT and PD-RAIT techniques
have reduced 13.55% and 26.5% of FPE time respectively
without compromising on the false positives eliminated.
It indicates, although FPE with PI-RAIT and PD-RAIT is
conservative in eliminating the false positives, in practice
there is no miss on false positives eliminated.

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 26 / 84

TABLE I: Distribution of CBMC Verification Results

Application Property Setting |Ain|
CBMC
Timeouts

Verification
Successful

CBMC
Trace

Unwinding
Assertions

CBMC
Failures

Battery
Control
Module

Ffpe 430 13 107 238 71 1
AIOB Afpe 430 0 1 0 429 0

Ffpe 47 6 5 16 20 0
ZD Afpe 47 0 0 0 47 0

Smart Card
Management
System

Ffpe 314 5 13 231 65 0
AIOB Afpe 314 42 0 0 250 0

Ffpe 54 0 24 22 8 0
ZD Afpe 54 26 12 0 7 9

TABLE II: FPE Experiment Results

Application Property Techniques TR
Ffpe Afpe Cfpe

|Ain| |Efp| Tfpe |Ain| |Efp| Tfpe |Ain| |Efp| Tfpe

Battery
Control
Module

- - 430 107 04:11 430 1 04:14 430 270 13:45
AIOB PI-RAIT ≈ 1 301 107 03:01 301 1 03:03 301 270 10:37

PI-RAIT + PD-RAIT ≈ 1 196 107 01:50 196 1 01:53 196 270 06:47
PI-RAIT + PD-RAIT + NVAIT ≈ 3 157 105 01:22 7 1 00:11 157 265 05:29

- - 47 5 01:06 47 0 00:29 47 8 02:16
ZD PI-RAIT ≈ 1 37 5 01:02 37 0 00:29 37 8 01:39

PI-RAIT + NVAIT ≈ 2 22 2 00:16 0 0 00:00 22 5 00:41

Smart Card
Management
System

- - 314 13 01:45 314 0 09:38 314 22 29:13
AIOB PI-RAIT ≈ 1 229 13 01:17 229 0 07:34 229 22 22:53

PI-RAIT + PD-RAIT ≈ 2 177 13 01:03 177 0 06:43 177 22 19:14
PI-RAIT + PD-RAIT + NVAIT ≈ 2 165 12 00:59 116 0 03:53 165 20 19:03

- - 54 24 00:14 54 12 00:41 54 29 01:28
ZD PI-RAIT ≈ 1 53 24 00:14 53 12 00:41 53 29 01:25

PI-RAIT + NVAIT ≈ 2 50 24 00:13 26 10 00:24 50 29 01:24

5) On an average, the NVAIT technique has reduced the
FPE time by 38.91% with the identification of 32.54%
of assertions as NVAs, but it has compromised on 1.3%
of false positives. This indicates that NVAIT makes FPE
efficient as well as imprecise.

6) The application of all the three techniques, on an average,
reduces the |Ain| and Tfpe, respectively by -
• 53.37% and 61% in Ffpe setting.
• 82.37% and 71.4% in Afpe setting.
• 53.37% and 43% in Cfpe setting.

7) NVAIT technique when applied in Afpe setting to battery
control module, found all the assertions as the NVAs. The
reason was traced to the inclusion of typical while(1)
loop implemented in main function of an embedded
application.

V. RELATED WORK

There are a number of techniques that combine static
analysis with model checking to improve its precision. These
techniques differ in a way these two are combined. Brat et
al. [5] do this in such a way that static analysis component
iteratively exchanges information with the model checker.
The partial order information computed by static analysis is
used by model checker for its state space reduction, and the
aliasing information from model checking is used to refine
the results of static analysis. Fehnker and Huuck [6] analyze
the counterexamples generated through model checking by
using abstract interpretation to learn new facts and refine the
abstraction. This continues until a warning is either proved to
be a bug or spurious.

Rödiger [19] combines data flow analysis and model
checking to improve the security vulnerability detection. The
vulnerable code statements are found based on invalidated
user inputs and they are model checked to eliminate false
positives or produce a readable counterexamples. Junker et
al. [7] present an abstraction refinement technique to auto-
matically find and eliminate the false positives. It is achieved
by iteratively computing the infeasible sub-paths using SMT
solvers and refining the models. Wang et al. [20] and Tsitovich
[21] present techniques among the others that combine static
analysis and model checking.

The techniques described above, combining static analysis
and model checking, focus only on improving analysis preci-
sion. Further, these are difficult to use when static analysis is
performed by widely used commercial tools (like Polyspace
and Coverity) since it needs changes in the tool’s back-end
analysis. Post et al. [8] and Darke et al. [9] try to overcome
this limitation by using model checking to eliminate the false
positives produced by the static analysis tools. Of these two
techniques, [8] presents an approach to eliminate the false
positives generated by Polyspace, where it uses incremental
context expansion to do so.

A major drawback of these two techniques ([8][9]) is
that they generate and verify an assertion corresponding to
each static analysis warning and, hence, involve numerous
verification calls to a model checker. While we also generate
an assertion corresponding to each of the output warning,
we avoid verifying each assertion. We partition the generated

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 27 / 84

assertions and verify only one representative assertion from
a partition, so that all the false positives in the partition are
eliminated at once. We employ two techniques - one dependent
on the property being verified and the other independent of
it. Further, we try to skip a class of non-verifiable assertions
before we pass it to a model checker.

VI. CONCLUSION AND FUTURE WORK

In our experiments, we have found an abundance of redun-
dant assertions in FPE. Our techniques helped in minimizing
the verification calls to a model checker and, in turn, made the
FPE faster. The property-dependent and property-independent
RAITs marked 45% of the assertions as the followers. This
is because there are multiple equivalent assertions in certain
code regions and they often fall under the same partition.
Eliminating the false positive corresponding to the leader of
the partition eliminates all the false positives corresponding to
the followers as well. This allows us to skip the verification
of followers. Although we eliminated false positives conserva-
tively in our approach, it was never the case in our experiments
that we failed at eliminating one. The results of PD-RAIT
technique indicate that using code-pattern based approach to
partition assertions can be quite useful in reducing the FPE
time. This is because these patterns are widely used.

The identification of NVAs based on unbounded loops,
using NVAIT, is quite effective in minimizing the FPE time
(led to an average reduction of 38.91%). There are many
unbounded loops in an application and the need to verify an
assertion dependent on them gets eliminated. This approach,
being conservative, may find an assertion as a NVA even if it is
not. That is to say, it might wrongly mark a verifiable assertion
as a NVA that could have possibly eliminated a false positive.
This explains the trade-off between precision and performance
of FPE using this technique.

Our experiments depict that the reduction in FPE time is
dependent on property being verified and the context at which
false positives are eliminated. Although the experiments are
performed on embedded domain applications written in C, we
expect similar benefits on other domain applications as well
due to common coding practices. These techniques can be
extended further to verify properties in applications coded in
other languages too.

We plan to experiment further with NVAIT technique
replacing CBMC by SATABS [22]. We are also exploring a
technique to make FPE more efficient by identifying assertions
whose verifications are more likely to generate counterexam-
ples.

REFERENCES

[1] P. Cousot and R. Cousot, “Basic concepts of abstract interpretation,”
in Building the Information Society, ser. IFIP International Federation
for Information Processing, R. Jacquart, Ed. Springer US, 2004,
vol. 156, pp. 359–366. [Online]. Available: http://dx.doi.org/10.1007/
978-1-4020-8157-6 27

[2] D. Engler, “Concur 2005 - concurrency theory,” M. Abadi and
L. de Alfaro, Eds. London, UK, UK: Springer-Verlag, 2005, ch. Static
analysis versus model checking for bug finding, pp. 1–1. [Online].
Available: http://dx.doi.org/10.1007/11539452 1

[3] R. Jhala and R. Majumdar, “Software model checking,” ACM Comput.
Surv., vol. 41, no. 4, 2009.

[4] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of
automated techniques for formal software verification,” Trans. Comp.-
Aided Des. Integ. Cir. Sys., vol. 27, no. 7, pp. 1165–1178, Jul. 2008.
[Online]. Available: http://dx.doi.org/10.1109/TCAD.2008.923410

[5] G. Brat and W. Visser, “Combining static analysis and model
checking for software analysis,” in Proceedings of the 16th IEEE
international conference on Automated software engineering, ser. ASE
’01. Washington, DC, USA: IEEE Computer Society, 2001, pp. 262–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=872023.872568

[6] A. Fehnker and R. Huuck, “Model checking driven static analysis for the
real world: designing and tuning large scale bug detection,” Innovations
in Systems and Software Engineering, vol. 9, no. 1, pp. 45–56, 2013.
[Online]. Available: http://dx.doi.org/10.1007/s11334-012-0192-5

[7] M. Junker, R. Huuck, A. Fehnker, and A. Knapp, “Smt-based false
positive elimination in static program analysis,” in ICFEM, 2012, pp.
316–331.

[8] H. Post, C. Sinz, A. Kaiser, and T. Gorges, “Reducing false positives
by combining abstract interpretation and bounded model checking,” in
ASE, 2008, pp. 188–197.

[9] P. Darke, M. Khanzode, A. Nair, U. Shrotri, and R. Venkatesh, “Precise
analysis of large industry code,” in Software Engineering Conference
(APSEC), 2012 19th Asia-Pacific, vol. 1, 2012, pp. 306–309.

[10] K. Vorobyov and P. Krishnan, “Comparing model checking and static
program analysis: A case study in error detection approaches,” in
International Workshop on Systems Software Verification (SSV’10),
2010.

[11] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2004), ser. Lecture Notes in Computer Science,
K. Jensen and A. Podelski, Eds., vol. 2988. Springer, 2004, pp. 168–
176.

[12] U. Khedker, A. Sanyal, and B. Sathe, Data Flow Analysis:
Theory and Practice. Taylor & Francis, 2009. [Online]. Available:
http://books.google.co.in/books?id=9PyrtgNBdg0C

[13] F. E. Allen, “Control flow analysis,” SIGPLAN Not., vol. 5, no. 7,
pp. 1–19, Jul. 1970. [Online]. Available: http://doi.acm.org/10.1145/
390013.808479

[14] A. Tsitovich, N. Sharygina, C. Wintersteiger, and D. Kroening, “Loop
summarization and termination analysis,” in Tools and Algorithms
for the Construction and Analysis of Systems, ser. Lecture Notes
in Computer Science, P. Abdulla and K. Leino, Eds. Springer
Berlin Heidelberg, 2011, vol. 6605, pp. 81–95. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-19835-9 9

[15] A. Bradley, Z. Manna, and H. Sipma, “Termination analysis of integer
linear loops,” in CONCUR 2005 Concurrency Theory, ser. Lecture
Notes in Computer Science, M. Abadi and L. Alfaro, Eds. Springer
Berlin Heidelberg, 2005, vol. 3653, pp. 488–502. [Online]. Available:
http://dx.doi.org/10.1007/11539452 37

[16] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Trans. Program.
Lang. Syst., vol. 9, no. 3, pp. 319–349, Jul. 1987. [Online]. Available:
http://doi.acm.org/10.1145/24039.24041

[17] “TCS Embedded Code Analyzer (TECA),” [retrieved: October, 2013]
http://www.tcs-trddc.com/trddc website/scripts/project detail.php?lab=
SWRD&project id=53,.

[18] A. D. Lucia, “Program slicing: Methods and applications,” in SCAM,
2001, pp. 144–151.

[19] W. Rödiger, “Merging static analysis and model checking for improved
security vulnerability detection,” Masters, 2011. [Online]. Available:
http://www.xn--wolfrdiger-icb.de/publication/roediger2011security.pdf

[20] L. Wang, Q. Zhang, and P. Zhao, “Automated detection of code
vulnerabilities based on program analysis and model checking,” in
SCAM, 2008, pp. 165–173.

[21] in Logic Programming, ser. Lecture Notes in Computer Science,
M. Garcia de la Banda and E. Pontelli, Eds., 2008, vol. 5366, pp. 822–
823.

[22] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “SATABS: SAT-
based predicate abstraction for ANSI-C,” in Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2005), ser. Lecture
Notes in Computer Science, vol. 3440. Springer Verlag, 2005, pp.
570–574.

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 28 / 84

State Space Reconstruction for On-Line Model Checking with UPPAAL

Jonas Rinast, Sibylle Schupp
Institute of Software Systems

Hamburg University of Technology, Hamburg, Germany
Email: {jonas.rinast,schupp}@tuhh.de

Dieter Gollmann
Security in Distributed Applications

Hamburg University of Technology, Hamburg, Germany
Email: diego@tuhh.de

Abstract—On-line system verification requires the efficient
reconstruction of the state space a model checker generates. This
paper proposes an approach to reconstruct the current state
of models of real-time systems, implements it in the Uppsala
and Aalborg model checker (UPPAAL) and thus renders on-line
model checking in UPPAAL possible. On-line model-checking can
be employed if parameters of models need to be adjusted to real-
world values in case models are inaccurate. Applications include
closed-loop patient monitoring and care taking as patient models
commonly fail to accurately model all interactions in the human
body and thus cannot provide good long-term estimates to ensure
the patient’s safety. We exploit use-definition chains in state
space transformations to reduce the amount of reconstruction
transformations. During testing the method reduced the amount
of transformations by 42% on average over all experiments.

Keywords—State Space Reconstruction; On-line Model Check-
ing; UPPAAL

I. INTRODUCTION

Medical treatment facilities have grown to rely significantly
on medical devices for monitoring and treatment. Most devices
are still operated manually today and need to be configured,
maintained, and supervised by a care taker. Recently, closed-
loop monitoring and treatment of patients became a research
topic as experience shows that human errors are prevalent.
Patient-in-the-loop systems try to autonomously assess the
patient’s state using a monitoring device and if necessary treat
the patient automatically, e.g., via a remote infusion pump.
Such a system must clearly be shown to cause no harm to
the patient. Safety must be ensured to prevent harm from
the patient not only during normal operation but also in case
emergency situations arise.

Model checking is a well developed technique to verify that
a system model conforms to its specification and thus may be
applied to show the safety of such system. However, to make
meaningful conclusions about the system’s behavior it is nec-
essary to have detailed and accurate models of the individual
components of the system. In the medical domain, the model
checking approach is therefore severely hampered if the patient
needs to be modeled accurately, e.g., to make estimates on a
drug concentration in the patient. Generally, a patient model
is likely to be inaccurate as the physiology of human beings
is complex and varies between individuals, e.g. blood oxygen
and heart rate depend on the patients condition. A generalized
model will always miss individual characteristics. Patient-in-
the-loop systems thus could be proved safe with such models
but might still put patients at risk.

On-line model checking is a recent model-checking variant
that relaxes the need for models to be accurate far into the

future. On-line model checking provides safety assurances
for short time frames only and renews these assurances
continuously during operation. Appropriate models for the
system thus only need to be correct for the short time frame
they are used in. The renewal of safety assurances then is
carried out on models adapted to the current system state to
ensure the system’s safety for the next time window. This on-
line approach thus allows safety assessment at all times and
provides means to react before safety violations occur.

A model adaptation step first needs to create an ini-
tialization sequence that recreates the previous model state
before adjusting single values. The reconstruction is necessary
to allow the simulation of the model to continue from the
state it was interrupted in. This paper presents an automated
state reconstruction approach for the Uppsala and Aalborg
model checker (UPPAAL) that eliminates the need for custom
reconstruction procedures for every application. The developed
reconstruction method serves as a base for an on-line model
checking interface with UPPAAL as the underlying verification
engine.

Naively, the state space can be reconstructed by executing
the same transition sequence that was used to create the state
in the beginning. However, if the simulation has already run a
significant time the executed transition sequence is likely to be
long and only continues to grow over time. A more direct way
to the desired state space is needed to keep the reconstruction
process fast and on-line model checking feasible. For our
reconstruction approach we adopted use-definition chains to
eliminate transformations that have no effect on the final
state space. Such transformations occur when their results are
overwritten before they are read. Our reconstruction method
has been applied to seven different test models. The method
always correctly reconstructed the original state space while
yielding a reduction of the executed transformations in the
range from 23% to 84%.

Interestingly our on-line model checking interface could
not only be used to automatically carry out on-line model
checking. The interface also allows generic dynamic adaptation
of model parameters and thus could be used with parameter
learning algorithms or for calibrating the model.

The rest of the paper is organized as follows: Section II
shortly introduces model checking, on-line model checking,
and the model checker UPPAAL. Section III first provides nec-
essary information on UPPAAL’s state space and its transfor-
mations and then explains our reconstruction approach. Section
IV presents our evaluation results. Section V gives an overview
on related literature and, lastly, Section VI summarizes the
paper and suggests further research.

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 29 / 84

II. ON-LINE MODEL CHECKING

This section shortly introduces model checking and its on-
line variant, on-line model checking. The technique is shown
by way of example using the model checker UPPAAL; for a
formal specification of UPPAAL see [1].

Generally, the model checking approach explores the state
space of the given system model in a symbolic fashion to
check whether the state space satisfies certain properties. Such
properties are mostly derived from a requirement specification
for the system, e.g., one could check whether or not a certain
system state is actually reachable. The modeling and property
languages vary greatly depending on the model-checking tool.
Tools for various programming languages coexist with dedi-
cated tools that support their own modeling language. Dedi-
cated tools often use finite state automata as a base formalism
for their models. UPPAAL is such a well-established, dedicated
model checking tool, which was jointly developed by Uppsala
University, Sweden, and Aalborg University, Denmark [2], [3].
It is based on the formalism of timed automata: an extension of
finite state automata with clock variables to allow modeling of
time constraints. A finite state automaton defines a transition
system by defining locations and edges that connect these
locations. Edges are fired to execute a transition from one
location to another. The system state in this case is the current
location of the automaton and the possible valuations of the
clock variables.

Figure 1 shows the example model that will be used to
demonstrate the proposed state space reconstruction method.
The model consists of three locations, Init, Inv, and Count,
where Init is the initial location indicated by the double
circle. The model uses two variables: x, a clock variable,
and c, a bounded integer variable. Clock variables are special
variables that synchronously advance indefinitely unless they
are bounded by one or more invariants on the current locations.
The location Inv has such an invariant, x <= 2, to bound the
clock x, thus the value of x in Inv can be any value between
its value when it entered the location and 2. The model
has a single transition from the initial location to Inv. This
transition is annotated with a guard, x >= 3, and an update,
x = 0, c = 0. Guards are used to enable and disable edges
depending on the current state. Here, the clock x needs to be
greater or equal to 3 for the edge to be enabled. Only then
can it be fired and a transition occurs. Indeed, as there is no
invariant on x on the initial location the edge is enabled for
values greater or equal to 3. Upon firing of the edge the update
is executed: the clock x and the bounded integer c are both
reset to 0. The edge from Count to Inv is nearly identical to the
previous edge: when x is greater or equal to 3 the edge may be
fired but x is reset to 1 instead of 0 and c is not modified. As
a consequence, the value of x in Inv is between 0 and 2 when
the location is first entered and between 1 and 2 on every
subsequent visit. The transition between Init and Count has
no guard and shows that an update may consist of a complex
expression: the update c = (c + 1) % 7 increases c by 1
modulo 7.

As explained in the introduction, model checking relies
on accurate long term models. On-line model checking is
a variant of classic model-checking that eliminates the need
for such models and thus may be applied when such models
are unavailable. It reduces the modeling error by periodically

x <= 2

x = 0,
c = 0

x = 0,
c = (c + 1) % 7InvInit Count

x = 1x >= 3

x >= 3

Figure 1. UPPAAL Model Example

adjusting the current state to the observed real state, e.g.,
by setting a model value to the exact value measured by a
sensor attached to a patient. For example, if we consider the
model in Figure 1 one could assume that the counter variable
c is modeling some patient’s parameter. If that parameter in
reality occasionally jumps the model is inaccurate and needs
to be adjusted by setting c to the correct value. On-line model
checking performs the adjustments and thus the jumps do not
need to be modeled accurately. Note that errors may still be
present in the system under on-line model checking but the
method predicts them in advance to react to them. On-line
model checking requires the model analysis to finish before
the next update interval. Though the main work is done by the
model checker the reconstruction still consumes some time,
which our method reduces compared to the naive automatic
reconstruction approach.

III. STATE SPACE RECONSTRUCTION

In this section, we summarize the required information on
UPPAAL’s state space in Subsection III-A. Then, Subsection
III-B presents our state space reconstruction process.

A. UPPAAL’s State Space and its Transformations

UPPAAL’s state space can be divided into three parts: the
time state, the location state, and the data state. The location
and the data state are straightforward: every data variable is
assigned exactly one value for the data state and the location
state consists of the current location vector, i.e., a vector that
contains the current location for every automaton instance.
The time state is more complicated as it needs to capture all
possible valuations for every clock in the model as well as
all relations between the clocks. Difference bound matrices
(DBM) are a common and simple representation method for
such time states [1], [4]. By introducing a static zero clock in
addition to all the clocks in the model (C0 = C ∪ 0, C the set
of all clocks) all necessary clock constraints can be written in
the form x − y � n where x and y are clocks (x, y ∈ C0), �
is a comparator (� ∈ {<,≤}), and n is an integer (n ∈ Z).
A value in a difference bound matrix then is a tuple of an
integer and a comparator (n, �), n ∈ Z, � ∈ {<,≤} or
the special symbol ∞, which indicates no bound. An order on
the entries is given by (n,�) < ∞, (n1,�1) < (n2,�2)
if n1 < n2, and (n,<) < (n,≤). Addition is defined as
follows: (n,�)+∞ =∞, (m,≤)+(n,≤) = (m + n,≤), and
(m,<)+(n,�) = (m+ n,<). A difference bound matrix thus
contains one bound, either including or excluding, for every
pair of clocks M = ({Z× {<,≤}} ∪ ∞)|C0|×|C0|.

As an example a clock constraint system with two clocks
a and b and the constraints a ∈ [2, 4), b > 5, and b− a ≥ 3 is
transformed to the canonical constraints a−0 < 4, 0−a ≤ −2,

22Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 30 / 84

b − 0 < ∞, 0 − b < −5, a − b ≤ −3, and b − a < ∞. The
matching DBM is

0 a b[]
0 0 (−2, ≤) (−5, <)
a (4, <) 0 (−3, ≤)
b ∞ ∞ 0

During simulation of an UPPAAL model its transitions are
repeatedly executed. Every transition generally has multiple
effects on the time state and each such effect corresponds to a
transformation of the difference bound matrix that represents
the current time state. The following summary lists the DBM
transformations necessary to traverse the state space [4]:

• Clock Reset A clock reset is performed when an
edge is fired that has an update for a clock variable
(x = n). A clock reset sets the upper and lower
bound on the clock x to the given value and depending
constraints, i.e., constraints on a clock difference in-
volving x are adjusted. This corresponds to modifying
the matrix row and column for the clock x.

• Constraint Introduction A constraint introduction is
performed if either a firing edge has a guard on a
clock or an invariant on a clock is present in a current
location and the bound is more restrictive than the
current constraint on the involved clock. In that case
the relevant matrix entry is set to the new constraint
and for all other entries in the matrix it is checked
whether the new bound induces stricter bounds.

• Bound Elimination Bound elimination is performed
when a new location is entered. All bounds on clock
constraints of the form c − 0 < n are removed,
i.e., the upper bounds on clocks are removed. Bound
elimination is equivalent to setting the first matrix
column except the top-most value to ∞.

• Intersection An intersection is performed if a state is
constrained by multiple constraints. In that case all
constraints are applied individually and their results
are intersected to obtain the final result. Intersecting
multiple DBMs is achieved by finding the minimum
value for every matrix entry from all intersecting
matrices.

• Urgency Introduction An urgency introduction is per-
formed if an urgent or committed location is entered or
an entered location has an outgoing, enabled transition
that synchronizes on an urgent channel. Unlike the
previous transformations, urgency is a modeling con-
struct specific for UPPAAL to prevent time from pass-
ing. An urgency introduction is semantically equiv-
alent to introducing a fresh clock on the incoming
edge and adding a new invariant on that clock with a
bound of 0 to the location. An urgency introduction
thus can be derived from a clock reset and a constraint
introduction.

Returning to the example model (Figure 1) the individual
transitions can now be broken down into their respective
transformations. The initial location Init induces a bound elim-
ination on the initial state where all clocks are set to zero. The

transition from Init to Inv yields a constraint introduction for
the guard (x >= 3) and a subsequent clock reset (x = 0,
c = 0). The reset of the bounded integer c is ignored here
as c is part of the data state. The location Inv results in a
bound elimination and a following constraint introduction to
accommodate the invariant (x <= 2). The transition from Inv
to Count simply induces a single clock reset transformation
before the location Count eliminates the bound on the state
space again. Lastly, the transition from Count to Inv introduces
the same kind of transformations as the transition from Init to
Inv: both perform a constraint introduction and a clock reset.
The values computed for the clock variable x are as follows:

1) Location Init
a) Initial: x = 0
b) Bound Elimination: x ∈ [0,∞)

2) Transition Init −→ Inv
a) Constraint Introduction: x ∈ [3,∞)
b) Clock Reset: x = 0

3) Location Inv
a) Bound Elimination: x ∈ [0,∞)
b) Constraint Introduction: x ∈ [0, 2]

4) Transition Inv −→ Count
a) Clock Reset: x = 0

5) Location Count
a) Bound Elimination: x ∈ [0,∞)

6) Transition Count −→ Inv
a) Constraint Introduction: x ∈ [3,∞)
b) Clock Reset: x = 1

7) Location Inv
a) Bound Elimination: x ∈ [1,∞)
b) Constraint Introduction: x ∈ [1, 2]

B. Reconstructing UPPAAL States

In many models a large number of previous transitions do
not have an impact on the current state space. In the example
model (Figure 1) this behavior can be observed: in the location
Count the clock x is in the range [0,∞). This valuation was
completely created by the clock reset of the ingoing edge
and the bound elimination of the location itself. Previous
state space transformations do not have any influence on the
valuation of x. Therefore, instead of executing the transition
sequence Init −→ Inv −→ Count totaling 7 transformations
only 3 transformations are required. The introduction of a new
initial state and the direct transition to Count with an update
x = 0 is sufficient to recreate the state space.

During reconstruction it is thus beneficial to exploit the
fact that effects of certain state space transformations are
overwritten by subsequent transformations. The key idea of our
approach is the construction of use-definition chains to identify
transformations that may be removed. A use-definition chain is
a data structure that provides information about the origins of
variable values: for every use of a variable the chain contains
definitions that have influenced the variable and ultimately lead
to the current value. Our idea is to adapt the definition-use
chain technique from static data flow analysis on a program’s
source code to the state space reconstruction: every entry in
the model’s difference bound matrix is treated as variable and
thus is observed for uses and modifications. DBM entries are

23Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 31 / 84

only modified by applying a state space transformation on the
DBM. We thus analyzed the read and write access to matrix
entries for every transformation to derive the use-definition
chains where the transformations are the basic operations.

In the following, our reconstruction approach is presented
using the clock reset transformation as a leading example.
First, we discuss the derivation of use-definition chains from
the transformation. Then we lay out the use of reference
counters as a memory structure to identify removable transfor-
mations. Lastly, we give a short overview on model synthesis
based on the shortened transformation sequence. Altogether
the adaptation of the use-definition chain approach to the
reconstruction process results in the following steps:

1) Initialization Canonize model by introducing general
starting points for later synthesis, extract necessary
information from the model.

2) Simulation Select transitions in the model according
to intended behavior, execute and store them. Simul-
taneously break them down into matching state space
transformations and apply them internally to con-
struct the use-definition chains of the transformations.
Remove unnecessary transformations on-the-fly using
reference counters for the transitions derived from the
use-definition chains.

3) Synthesis Group the sequence of reduced transforma-
tions to form transitions and add the transitions to a
newly created model obtained from the original one.
Match the last transition to the current location state
and update the data state on that transition.

Starting points for the reconstruction algorithm are the
algorithms for the original transformations. Figure 2 lists as
an example an algorithm for the clock reset transformation on
the difference bound matrix D according to Johan Bengtsson
[4]. Examination of the algorithm yields that all values in the
row and column that are associated with the reset clock are
written and all values in the top-most row and left-most column
are read: lines 3 and 4 of the algorithm write Dij and Dji and
read Di0 and D0i. Note that index j is always greater than 0
as it is a real clock and not the 0-clock. Therefore, the reset
transformation creates a use for every value in the top-most
row and left-most column and a definition for every value in
the row and column for the clock in question. Taking into
consideration that the value Djj will always evaluate to zero
and no definition needs to be generated we construct a modified
algorithm that captures the definitions and uses generated by
the transformation. Figure 3 shows the modified algorithm.
It has an additional parameter T , which is a matrix that
contains the transformations that are responsible for the current
DBM values. Additionally to the functionality of the original
algorithm the new algorithm updates this matrix and creates
the necessary definition and use information: in lines 6 and 7
we store that the reset transformation uses the transformations
T0i and Ti0 and lines 8 and 9 update the matrix to show the
reset transformation is now responsible for the values Dji and
Dij .

We designed the transformation matrix data structure for
the use-definition chains to allow on-the-fly removal of unnec-
essary transformations: as soon as a transformation is overwrit-
ten in the matrix a following transformation cannot have a de-
pendency on that transformation. Thus, the transformation may

1: procedure RESET(D, xj = m)
2: for i← 0, n do
3: Dji ← (m,≤) +D0i

4: Dij ← Di0 + (−m,≤)
5: end for
6: end procedure

Figure 2. Reset Transformation Algorithm [4]

1: procedure RESET(D, T , xj = m)
2: for i← 0, n do
3: if i 6= j then
4: Dij ← Di0 + (−m,≤)
5: Dji ← (m,≤) +D0i

6: Use(T0i)
7: Use(Ti0)
8: Tji ← this
9: Tij ← this

10: end if
11: end for
12: end procedure

Figure 3. Modified Reset Transformation Algorithm

be directly removed if no intermediate transformation depends
on it. If intermediate transformations exist the transformation
can be deleted as soon as those are removed. To accurately
track needed transformations the data structure uses reference
counters: every transition is assigned a counter to indicate
how often it is referenced and every transformation updates
this counter. The benefit of the on-the-fly removal is reduced
memory usage for the data structure and shorter processing
time during transformation execution.

We analyzed all relevant DBM transformations for their
reads and writes and adapted the algorithms to update the
transformation matrix and the reference counters accordingly.
Special attention had to be given to the intersection algorithm:
if two transformations are applied to a DBM and only one
of them writes a certain value but the previous value is the
stronger bound the transformation that did not modify the
matrix is responsible for the resulting entry. This behavior
needs to be introduced during the intersection algorithm as
the original transformation only creates relations for entries it
can potentially modify. Also the reference counters have to be
propagated accordingly. We encapsulate read-write relations
of transformations in special linker objects such that other
transformations may influence them later on and the effects
of the transformation on the data structure may be deferred to
appropriate times to manage the reference counters.

The synthesis of the actual UPPAAL model from the cal-
culated transformation sequence has to take into consideration
that UPPAAL allows a single automaton to be instantiated
multiple times with possibly different parameters. During ini-
tialization of the reconstruction we therefore analyze the model
definitions for automaton instantiation and save the relevant
parameters. Also, as the location space needs to be correctly
reconstructed an automaton that is instantiated multiple times
has multiple initializations transitions for every instantiation.
We use a single bounded integer variable in conjunction
with appropriate guards to correctly order these transitions.
Another important aspect of the synthesis step is that the
model initialization needs to be self-contained, i.e., the ini-

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 32 / 84

c = 1, __uoi_edges = 0
__uoi_c?

INITIALIZED

__uoi_edges == 0

UOI_INIT

x = 0,
c = (c + 1) % 7

x = 0,
c = 0

x = 1

x = 0, __uoi_edges++
x <= 2

InvInit

Count

UOI_INIT_Process

__uoi_c!

x >= 3

__uoi_edges == 0

x >= 3

Figure 4. Reconstructed example model

TABLE I. EVALUATION RESULTS

Model
Transitions Transformations

Before After Reduction Before After Reduction
2doors 100 65.89 34.1% 364.7 254.46 30.2%
bridge 100 68.21 31.8% 188.39 144.09 23.5%

train-gate 100 66.18 33.8% 320.09 214.17 33.1%
fischer 100 91.27 8.7% 345.33 249.46 27.7%

csmacd2 100 100 0% 709.71 434.19 38.8%
csmacd32 75.58 75.58 0% 1818.6 327.49 79.7%

tdma 100 68.16 31.8% 719.88 240.11 66.6%

2doors 1000 627.9 37.2% 3722.3 2612.9 29.8%
bridge 1000 641.3 35.9% 1882.8 1436.4 23.7%

train-gate 1000 606.1 39.4% 3200.1 2194.1 31.4%
fischer 1000 853 14.7% 3455.3 2486.8 28%

csmacd2 1000 1000 0% 7238.1 4375.5 39.5%
csmacd32 619.6 619.6 0% 22491.1 2540.3 84%

tdma 1000 663.1 33.7% 6446.3 2651.5 58.9%

tialization of multiple automata needs to finish synchronously
to prevent parts of the model from advancing prematurely.
As the initialization transitions per automaton may differ in
length we employ a broadcast channel to synchronize the last
transition to the original model. We use these final transitions
to initialize the data variables as well. In case global variables
are present an additional init automaton is introduced for
their initialization. Figure 4 shows the reconstruction model
(right) for the example model (Figure 1) after 2 transitions.
The additional initialization automaton (left) sets the global,
bounded integer c to 1. The clock x is set to 0 and the
location is correctly initialized to Count after an initial first
transition. The reconstructed model only needs to execute
a single transition in contrast to the original model, which
uses two, to reach the correct state. For transformations the
reconstructed model uses 3 time state transformations while
the original model needs 7.

IV. EVALUATION

We evaluated our use-definition reconstruction method by
applying it to seven different UPPAAL models and comparing
it to the naive reconstruction approach. The models 2doors,
bridge, train-gate, and fischer are part of the UPPAAL example
model suite. The csmacd models and tdma were taken from
case studies. We ran two test sets for every model. The first
test executed 100 times 100 random transitions of the model
before reconstructing the state. The second test set executed
1000 random transitions 10 times. For the csmacd32 model it
was not always possible to execute the maximum number of
transitions during simulation as the model exhibits deadlock
states. Table I shows our evaluation results. In the top half the
results of the first test set and in the bottom half the results
of the second test set are shown. All values are averages over
the respective test runs but their variances are small. In our

experiments the reduction of transformations is between 23%
and 84% while the reduction of transitions is between 0%
and 39.4%. This difference mainly stems from the fact that to
delete a single transition all induced transformations need to
be removed. However, our model synthesis algorithm still is
unoptimized and sometimes produces unnecessary transitions.
In cases where the transition reduction is higher than the
transformation reduction the removal of transformations made
it possible to merge multiple transitions. Interestingly, the cs-
macd models contain use-definition chains spanning the whole
simulation, which prevent removal of transitions though many
transformations are irrelevant to the state. Future work will
need to address this issue, e.g., by also evaluating concrete state
values. Regarding total execution time, our adjustments have a
small impact as the model checking procedure consumes most
of the time. Also, compared to the model checking part our
approach scales well with the complexity of the used models.

V. RELATED WORK

The on-line model checking approach our reconstruction
method is complementing and thus closest to has recently
been proposed by Li et al. [5], [6]. They employ a hybrid
automata model to ensure correct usage of a laser scalpel
during laser tracheotomy to prevent burns to the patient. Yet,
the necessary model initialization and reconstruction step is a
custom solution and is not presented in detail. In the context of
on-line model checking with UPPAAL, the UPPAAL variant
UPPAAL Tron has been developed [7]. UPPAAL Tron is an
on-line testing tool that can generate and execute test cases
on-the-fly based on a timed automata system model. While
the tool focus lies on input/output testing using a static system
model the fact that the underlying model is an UPPAAL model
means that our reconstruction approach might be beneficial
for tests when the system model is inaccurate or still needs
to be developed. Other related work falls in two categories:
different ways to use or implement on-line model checking,
and different ways to optimize state space exploration and
representation in model checkers.

Qi et al. propose an on-line model checking approach
to evaluate safety and liveness properties in C/C++ web
service systems [8]. Their focus lies on consistency checks
for distributed states to debug a system from known source
code. Reconstruction is not an issue because the source code is
static during execution. Easwaran et al. use a control-theoretic
approach to the general runtime verification problem [9]. They
introduce a steering component featuring a model to predict
execution traces. Their approach uses a fixed prediction model
while our reconstruction is for adapting inaccurate models.
Sauter et al. address the prediction of system properties using
previously gathered time series of measurements, e.g., taken
by sensors [10]. They propose a split into an on-line and an
off-line computation and to precompute expensive parts of
the prediction step to reduce on-line work load. While their
scenario of adapting using sensor measurements is applicable
to our medical scenario with inaccurate patient models they
focus on the verification load problem while we address
the model inaccuracy. Harel et al. propose usage of model
checking during the behavior and requirement specification
step during development. Instead of interactively guiding the
system to derive requirements a model checker executes the
model and generally finds more adequate requirements. While

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 33 / 84

their approach employs on-line model checking their goal
thus lies on early requirement development. In contrast our
approach is useful in adaptation of deployed systems to ensure
safety. Arney et al. present a recent patient-in-the-loop case
study for automatic monitoring and treatment where UPPAAL
and Simulink models were developed to verify safety questions
beforehand [11]. They monitor heart rate and blood oxygen
levels of the patient and automatically control drug infusion
via a remote pump. On-line model-checking could benefit this
scenario as currently a generalized patient model is employed
and drug absorption rates may vary per patient.

Alur and Dill introduced timed automata and the under-
lying theory in 1994 [12] and Yi et al. developed the first
implementation of the model-checker UPPAAL shortly after
[13]. Many improvements have been made to the model-
checking approach over the years. Larsen et al. proposed
symbolic and compositional approaches to reduce the state-
space explosion problem [14]. Partial order reduction on the
state space was employed by Bengtsson [15]. Larsen et al.
reduced memory usage on-the-fly using an algorithm that
exploits the control structure of models [2], [16]. Further
memory reductions were achieved by Bengtsson et al. with
efficient state inclusion checks and compressed state-space
representations [17]. Behrmann et al. provide an overview on
current functionality and the usage of UPPAAL [3]. They also
provide a more detailed presentation of UPPAAL’s internal
representations [18]. For a summary on timed automata, the
semantics, used algorithms, data structures, and tools see [1].
Bengtsson’s PhD thesis provides more in-detail information on
difference bounded matrices [4].

VI. CONCLUSION AND FUTURE WORK

In this paper we addressed the problem of state recon-
struction of UPPAAL models in the context of on-line model
checking. Our reconstruction method uses use-definition chains
to track influence of individual transformations on the state
space during model simulation. With the chains constructed
and the additional use of reference counters we are able
to identify and remove transformations in the transformation
sequence that do not have an impact on the final state space.
A prototype implementation was developed and compared to
the naive reconstruction approach, which does not remove
any transformations. Seven UPPAAL models from different
sources were analyzed and our approach reduced the amount
of transformations necessary for reconstruction by 23% to 84%
and reduced model transitions by up to 39.4%.

In general, the proposed reconstruction method still yields
infeasible reconstruction sequences for real-time on-line model
checking as the reconstruction sequence length still grows
over time. A reconstruction sequence of constant length is
desirable to ensure real-time properties. Future research thus
could focus on further optimizing the proposed reconstruction
method. For example, the proposed method currently only
relates transformations according to read and write accesses.
Concrete variable values are not taken into account. Transfor-
mations that produce the same values could be removed, but
are currently not. Experience during development has shown
that such transformations occur often especially in periodic
use-definition chains that arise due to cycles in the model.

Removal of them could improve the reconstruction sequence
significantly by breaking such cycles.

REFERENCES

[1] J. Bengtsson and W. Yi, “Timed Automata: Semantics, Algorithms and
Tools,” in Lectures on Concurrency and Petri Nets, J. Desel, W. Reisig,
and G. Rozenberg, Eds. Springer Berlin Heidelberg, 2004, ch. 3, pp.
87–124.

[2] K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Efficient verification
of real-time systems: compact data structure and state-space reduction,”
in Real-Time Systems Symposium, San Francisco, CA, USA, 1997, pp.
14–24.

[3] G. Behrmann, A. David, and K. G. Larsen, “A Tutorial on Uppaal
4.0,” Department of Computer Science, Aalborg University, Aalborg,
Denmark, Tech. Rep., 2006.

[4] J. Bengtsson, “Clocks, DBMs and States in Timed Systems,” Ph.D.
dissertation, Uppsala University, 2002.

[5] T. Li et al., “From offline long-run to online short-run: Exploring a new
approach of hybrid systems model checking for mdpnp,” in 2011 Joint
Workshop on High Confidence Medical Devices, Software, and Systems
and Medical Device Plug-and-Play Interoperability (HCMDSS-MDPnP
2011), 2011.

[6] T. Li et al., “From Offline toward Real-Time: A Hybrid Systems Model
Checking and CPS Co-design Approach for Medical Device Plug-and-
Play (MDPnP),” in Proceedings of the 3rd ACM/IEEE International
Conference on Cyber-Physical Systems - ICCPS ’12. Beijing, China:
IEEE, April 2012, pp. 13–22.

[7] A. Hessel et al., “Testing real-time systems using UPPAAL,” in Formal
Methods and Testing, R. M. Hierons, J. P. Bowen, and M. Harman,
Eds. Springer Berlin Heidelberg, 2008, pp. 77–117.

[8] Z. Qi, A. Liang, H. Guan, M. Wu, and Z. Zhang, “A Hybrid Model
Checking and Runtime Monitoring Method for C++ Web Services,”
in 2009 Fifth International Joint Conference on INC, IMS and IDC.
Seoul, South Korea: IEEE, 2009, pp. 745–750.

[9] A. Easwaran, S. Kannan, and O. Sokolsky, “Steering of Discrete Event
Systems: Control Theory Approach,” Electronic Notes in Theoretical
Computer Science, vol. 144, no. 4, 2006, pp. 21–39.

[10] G. Sauter, H. Dierks, M. Fränzle, and M. R. Hansen, “Light-weight
hybrid model checking facilitating online prediction of temporal prop-
erties,” in 21st Nordic Workshop on Programming Theory, NWPT 09,
vol. 2, Lyngby, Denmark, 2009.

[11] D. Arney et al., “Toward patient safety in closed-loop medical device
systems,” in Proceedings of the 1st ACM/IEEE International Conference
on Cyber-Physical Systems - ICCPS ’10. Stockholm, Sweden: ACM
New York, NY, USA, 2010, pp. 139–148.

[12] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, no. 2, 1994, pp. 183–235.

[13] W. Yi, P. Pettersson, and M. Daniels, “Automatic verification of real-
time communicating systems by constraint-solving,” in 7th International
Conference on Formal Description Techniques, D. Hogrefe and S. Leue,
Eds., 1994, pp. 223–238.

[14] K. G. Larsen, P. Pettersson, and W. Yi, “Compositional and symbolic
model-checking of real-time systems,” in Real-Time Systems Sympo-
sium, Pisa, Italy, 1995, pp. 76–87.

[15] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi, “Partial order reductions
for timed systems,” in CONCUR’98 Concurrency Theory, D. Sangiorgi
and R. de Simone, Eds. Springer Berlin Heidelberg, 1998, pp. 485–
500.

[16] K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Compact Data
Structures and State-Space Reduction for Model-Checking Real-Time
Systems,” Real-Time Systems, vol. 25, no. 2-3, 2003, pp. 255–275.

[17] J. Bengtsson, “Reducing memory usage in symbolic state-space ex-
ploration for timed systems,” Department of Information Technology,
Uppsala University, Uppsala, Sweden, Tech. Rep. May, 2001.

[18] G. Behrmann et al., “UPPAAL Implementation Secrets,” in Formal
Techniques in Real-Time and Fault-Tolerant Systems, W. Damm and
E.-R. Olderog, Eds. Oldenburg, Germany: Springer-Verlag Berlin,
2002, pp. 3–22.

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 34 / 84

Formal Composition Based on Roles within a Model Driven Engineering Approach

Cédrick Lelionnais
Jérôme Delatour

and Matthias Brun
ESEO-TRAME

Angers, FRANCE
{cedrick.lelionnais,jerome.delatour,matthias.brun}@eseo.fr

Olivier H. Roux
and Charlotte Seidner

IRCCyN - Université de Nantes
École Centrale de Nantes

Nantes, FRANCE
{olivier-h.roux,charlotte.seidner}@irccyn.ec-nantes.fr

Abstract—Faced with the increasing complexity of Real-
Time Embedded Systems, Model Driven Engineering offers the
possibility of developping frameworks in which transformations
are used to generate either executable code or formal models.
However, these transformations themselves are generally not
formalized. Correctness of transformations could therefore be
called into question. This paper proposes a formalization of a
transformation step, namely: the composition of formal fragments
describing the behavior of a real-time system. These fragments
are described using an extension of the classical Time PetriNets,
where the notion of roles was added to perform the composition
of the fragments. This formalization increases confidence in
transformations.

Keywords—Model Driven Engineering, Real-time operating sys-
tems, Behavioral modeling, Transformation, Verification,Time Petri
Nets, Application deployment

I. I NTRODUCTION

Real-Time Embedded Systems (RTESs) increasingly sur-
round us in various domains (aircrafts, automotive sector,cell
phones, robotics, etc.). RTES engineers are confronted with the
challenge of developing more complex, higher quality systems,
with shorter development cycles at lower costs. Model Driven
Engineering (MDE) [7] helps engineers to develop frameworks
for partially automating the development of RTESs. Thanks to
transformations, those frameworks produce either executable
code or formal models from high-level descriptions of RTESs.

However, many frameworks do not consider the description
of Real-Time Operating Systems (RTOSs) [4]. RTOSs have
indeed an impact on the behavior of RTESs. In addition,
in spite of the fact that the behavior of RTOSs starts to
be considered, transformations have often been implemented
within frameworks without formalization. Correctness of the
transformation could therefore be called into question. Confi-
dence in those frameworks could also be reduced.

The general approach presented in this paper aims to create
a formal model of the whole system deployed on a RTOS.
This approach was thought regardless of the intended RTOS.
To do this, a transformation process is currently in progress to
compose several behavioral fragments, each one describinga
part of this system. Those fragments come from a model of
the targeted RTOS, which is considered through the process
execution. However, composition rules must be chained in a
right sequence in order to avoid any ambiguity. As a basis of
the construction, the use of roles formally identify connection
points, which will be used as a glue of the system parts.

This paper is divided into the following sections. Section 2
refers briefly to the frameworks chosen for this contribution.

The latter is presented in Section 3, highlighting both the
deployment process and the use of roles. Section 4 deals
with Time Petri Nets (TPNs) as translation formalism. A
new syntax is then defined formalizing the composition of
TPNs based on roles. Relying on this definition, Section 5
formalizes the construction of an application deployment in
TPN. Consequently, the benefits and limits of this approach
are discussed in Section 6. Finally, we conclude in Section 7.

II. RELATED WORKS

A first presentation of related works in conjunction with
the consideration of RTOSs has already been presented in a
previous contribution [4]. For this reason, frameworks in line
with the consideration of RTOSs will only be presented here.

We have opted for frameworks in which the intervention
of each stakeholder has been made more flexible. Indeed, the
domain skills (RTOSs structure, transformations, deployments
choice, etc.) are correctly separated with these frameworks.
This has been made possible thanks to an explicit approach,
which consists in considering each RTOS description without
modifying the transformation rules. This strategy offers the
possibility to capitalize most descriptions in a generic way.
Furthermore, other works [3] [4] are based on the behavioral
consideration of RTOSs. These contributions search for refin-
ing models of applications deployed on RTOS with the aim of
verifying properties.

We can note the MARTE UML profile [8] in which
the Software Resource Modeling (SRM) approach [12] has
been integrated. With SRM, RTOSs can be modeled using
stereotyped concepts from the real-time software domain. For
another example, Software Execution Platform Inside Tools
(SExPIsTools) is involved in the tooling of development pro-
cesses. Real-Time Embedded Platform Modeling Language
(RTEPML) [2] was developped in this sense, with the aim
of defining concepts dedicated to the real-time domain for
modeling RTOSs.

However, as introduced previously, the processes imple-
mented in those frameworks have not yet been formalized. We
have therefore decided to carry on developping SExPIsTools
by experimenting the formalization.

III. C ONTEXTUALIZATION IN A MDE APPROACH

This section is divided into two parts. The first part presents
the SExPIsTools framework and the language RTEPML [2].
This presentation details the notion of role, which is used for
the composition of behavioral descriptions. The second part
specifies the language adopted for formalizing.

27Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 35 / 84

A. SExPIsTools Framework

SExPIsTools (Figure 1) allows to generate code from high-
level descriptions [2] to several RTOSs. The RTOS description
(i.e., the Platform Description Model) is a parameter of the
generic transformation made possible thanks to the notion
of role. A role explicitly establishes a relationship between
abstract concepts of RTOSs (i.e., the notion of task), their
properties (priority of task) and their services (creationor
destruction of task). The transformation rules rely on both
concepts and roles. For each Platform Description Model,
translation of roles is given in the Application Programming
Interface (API) of the targeted RTOS. The descriptions are
realized by the modeling language RTEPML.

Fig. 1: SExPIsTools Process within MDE Context

RTEPML has been extended [4] to describe RTOSs be-
havior in a formal way. The purpose of formalizing was to
allow model-checking. For each concept and service of the
RTOS, a formal description (called fragment) is given. The
transformation process leads to the composition of fragments.
To facilitate this composition, some roles were added.

B. Choice of formal language

We have chosen TPNs [6] [1] to translate behavioral
fragments because we need a formalism which expresses
models with synchronism and parallelism for multitasking.
Lastly, RTOSs imply time constraints. The chosen formalism
needs to have clocks to represent time evolution.

IV. TPN COMPOSITION BASED ONROLES

In order to compose fragments in TPN, we have projected
roles on those fragments. To perform the composition, we have
decided to assign roles to places. The interest of such a method
is to merge places [11] [10], which are the connection points
of the system that must be modeled in TPN.

In this section, TPNs with roles are firstly defined. The
definition of the instanciation of TPN with roles is then given.
Finally, the composition of TPNs is highlighted through a
synchronization formalism based on roles.

A. TPNs

TPNs are a timed extension of classical Petri nets. Infor-
mally, to each transition of the net is associated an implicit
clock and an explicit time interval. The clock measures the
time since the transition has been enabled and the time interval

is interpreted as a firing condition: the transition may fire if
the value of its clock belongs to the time interval.

Definition 1 (TPN): A TPN is a tuple T =
〈P, T,Pre,Post, m0, Is〉 where:

• P is a finite non-empty set ofplaces;

• T is a finite non-empty set oftransitions;

• Pre : P ×T → N is thebackward incidencefunction;

• Post : P × T → N is the forward incidencefunction;

• m0 : P → N is the initial marking of the net;

• Is : T → N × (N ∪ {+∞}) assigns astatic time
interval to each transition.

A marking of T is an application fromP to N. Let m be
a marking ofT . Then, for any placep ∈ P , we say thatp
containsm(p) tokens. A transitiont ∈ T is said to be enabled
by the markingm if ∀p ∈ P,m(p) ≥ Pre(p, t). This is denoted
by t ∈ enabled(m). For any intervalIs, we denote byIs

↓ the
smallest left-closed interval with lower bound0 that contains
Is. For each transitiont there is an associated clockxt. We
consider valuations on the set of clocks{xt|t ∈ T } and we will
slightly abuse the notations by writingv(t) instead ofv(xt).

Let m be a marking of the net andt a transition in
enabled(m). Let m′ be the marking obtained fromm by
firing t. Let m′′ be the intermediate markingdefined by
∀p,m′′(p) = m(p)−Pre(p, t). A transitiont′ is newly enabled
by the firing oft from m, and we notet ∈ ↑enabled(m, t) if
t′ ∈ enabled(m′) \ enabled(m′′) ∪ {t}

The operational semantics of the TPNT =
〈P, T,Pre,Post, m0, Is〉 is defined by the time transition
systemST = (Q, q0,→) such that:

• Q = N
P × R

T
≥0

• q0 = (m0,0)

• →∈ Q×(T∪R≥0)×Q is the transition relation includ-
ing a discrete transition and a continuous transition.

◦ The discrete transition is defined∀t ∈ T by
(m, v)

t∈T
−−→ (m′, v′) iff:

t ∈ enabled(m);
∀p ∈ P,m′(p) = m(p) − Pre(p, t) +
Post(p, t);
v(t) ∈ Is(t);
∀k ∈ [1, |T |], v′k(tk) =
{

0 if tk ∈ ↑enabled(m, t)

vk(tk) otherwise

◦ The continuous transition is defined by

(m, v)
d∈R≥0
−−−−→ (m, v + d) iff ∀t′ ∈

enabled(m) , ∀0 < d′ ≤ d, (v + d′)(t′) ∈
I↓s (t

′).

Definition 2 (TPN with roles):A TPN with roles is a tuple
N = 〈T , R, λ〉 where:

• T is a TPN,

• R is a finite set of roles,

• λ : P → R ∪ {⊥} is the function assigning a role to
a place and⊥ denoting that no role is assigned to a

28Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 36 / 84

place. Hereafter, some notations and properties of this
function are enumerated :

1) Pλ = {p ∈ P | λ(p) 6= ⊥} is the set of places
with role.

2) λ\Pλ
: Pλ → R is an injective function;

3) λ−1 : R ∪ {⊥} → P ∪ {∅} such that

∀r ∈ R, λ−1(r) =

{

p if λ(p) = r

∅ otherwise
λ−1(⊥) = ∅

The operational semantics of the TPN with rolesN =
〈T , R, λ〉 is the same as that of TPN. Indeed, the use of roles
within the definition of TPN does not impact its semantics.

B. Instanciation of TPN with roles

As seen previously, some fragments of TPN are instan-
ciated before being composed. In order to distinguish the
fragments to compose, all roles in a same fragment must be
renamed according to the name of the instance.

Let N be the TPN to instanciate andx the label given to
the instance. The renaming function⇁ is a function fromR
to Ri where assigned roles are involved in parameters.

Definition 3 (Instanciation of TPN with roles):The
instanciation ofN with m renamings is denoted by

Ni = Ins(N , x) = N r1 ⇁ r1 x
. . .
rm ⇁ rm x

with m = |R| , ∀j ∈ [1,m] , rj ∈ R, rj x ∈ Ri and∀k ∈
[1,m], k 6= j → rk 6= rj

C. TPNs Synchronization based on roles

In order to synchronize some TPNs, we must precise the
definition of the composition of TPNs, which will be based
on roles assigned to places. LetN1, . . . ,Nn be n TPNs with
Ni = 〈Pi, Ti,Prei,Posti,m0i , Isi , Ri, λi〉 such that∀k 6= k′ ∈
[1, n] =⇒ Tk ∩ Tk′ = ∅ andPk ∩Pk′ = ∅. The composition
N = 〈P, T,Pre,Post,m0, Is, R, λ〉 of the previous TPNs with
roles will be denoted byN = N1||N2|| . . . ||Nn. Linked to
this composition, we define a function leading to the merging
of places whose assigned roles will be taken into account in
parameters.

The merging function֒→ is a partial function from(R1 ∪
{•})× (R2 ∪ {•})× · · · × (Rn ∪ {•}) → P ×R where• is a
special symbol used when a TPN is not involved in a particular
merge of the global system. We then extend the definition of
the assigning inverse function withλ−1(•) = ∅

The composition ofn TPN with m merging is denoted by
(

N1|| . . . ||Nn

)

(r1
1
, . . . , r1

n
) →֒ (p1, r1)

. . .
(rm

1
, . . . , rm

n
) →֒ (pm, rm)

with ∀i ∈ [1, n], ∀j ∈ [1,m] , rji ∈ Ri, rj ∈ R andpj ∈ P ,
and∀k ∈ [1,m], k 6= j ⇒ rki 6= r

j
i

We will subsequently use the following notations:

• Let P
merged
i ⊆ Pi be the set of places of the net

Ni merged by the composition. FormallyPmerged
i =

⋃

∀j∈[1,m]

{λ−1
i (rji)}

• Let P →֒ ⊆ P be the set of places of the netN ob-
tained by the merging. FormallyP →֒ =

⋃

∀j∈[1,m]

{pj}

Definition 4 (Composition of TPNs with roles):The com-
position of then TPN Ni with the merging֒→ denoted by:

N =
(

N1|| . . . ||Nn

)

(r1
1
, . . . , r1

n
) →֒ (p1, r1)

. . .
(rm

1
, . . . , rm

n
) →֒ (pm, rm)

is defined by:

• R =

(

⋃

∀i∈[1,n]

(

Ri\
⋃

∀j∈[1,m]

{rji }
)

)

∪

(

⋃

∀j∈[1,m]

{

rj
}

)

;

• P =

(

⋃

∀i∈[1,n]

Pi \ P
merged
i

)

∪ P →֒;

• T =
⋃

∀i∈[1,n]

Ti;

• λ : P → R is defined by:
◦ ∀p ∈ P \P →֒ meaning that∃i such thatp ∈ Pi

thenλ(p) = λi(p)
◦ ∀pj ∈ P →֒, meaning thatp is the result of a

merging,λ(pj) = rj

• Pre : P ×T → N is defined∀p ∈ P and∀t ∈ Ti ⊆ T
by

Pre(p, t) =

Prei(p, t) if p ∈ P \ P →֒ andp ∈ Pi

Prei(p
′, t), if

p ∈ P →֒ andp′ ∈ Pi

(. . . , rki , . . .) →֒ (p, λ(p))

λi(p
′) = rki

0 otherwise.

• Post : P×T → N is defined∀p ∈ P and∀t ∈ Ti ⊆ T
by

Post(p, t) =

Posti(p, t) if p ∈ P \ P →֒ andp ∈ Pi

Posti(p
′, t), if

p ∈ P →֒ andp′ ∈ Pi

(. . . , rki , . . .) →֒ (p, λ(p))

λi(p
′) = rki

0 otherwise.

• m0 : P → N is defined∀p ∈ P by:

m0(p) =

m0i(p) if p ∈ P \ P →֒ andp ∈ Pi

n
∑

i=1

m0i

(

λ−1(rki)
)

if

{

p ∈ P →֒

(rk1 , . . . , r
k
n) →֒ (p, λ(p))

• Is : T → I is defined∀t ∈ T by: Is(t) = Isi(t) if t ∈
Ti

As an example,N =
(

N1||N2||N3

)

(r1, r2, •) →֒ (p, r)

is the parallel composition of the 3 TPNs, i.e.,N1, N2 and
N3, where the placep1 ∈ P1 such thatλ1(p1) = r1 and the
placep2 ∈ P2 such thatλ2(p2) = r2 are merged. The name
of the place obtained by this merging inN is p ∈ P and its
role is λ(p) = r ∈ R.

Property 1 (Associativity):The composition of TPNs with
roles is associative in the following sense:

(

N1||N2||N3

)

(r1, r2, r3) →֒ (p, r)

=

(

(

N1||N2

)

(r1,r2) →֒(p12,r12)
||N3

)

(r12,r3) →֒(p,r)

29Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 37 / 84

=

(

N1||

(

N2||N3

)

(r2,r3) →֒(p23,r23)

)

(r1,r23) →֒(p,r)

Property 2 (Commutativity):The composition of TPNs
with roles is commutative:

(

N1||N2

)

(r11 , r12) →֒ (p1, r1)

. . .

(rk1 , rk2) →֒ (pk, rk)

=

(

N2||N1

)

(r12 , r11) →֒ (p1, r1)

. . .

(rk2 , rk1) →֒ (pk, rk)

V. CONSTRUCTION AND ILLUSTRATION

The definitions presented above will help the formal con-
struction of behavioral models in TPN. This construction
will serve as a basis of the transformation process within
SExPIsTools framework (Figure 1). To better understand the
concepts involved in this construction, we must specify the
major categories of concepts in RTEPML [2]. At the moment,
three of them were selected from a behavioral point of view:
concurrent resources (i.e., tasks, interruptions, alarms, etc.),
interaction resources (i.e., semaphores, message queues,shared
data, events, etc.) and routines (i.e., application code).For the
sake of clarity, the construction has deliberately been splitted
into four composition operations. The overall construction is
a sequence of four operations.

A construction example in TPN is provided to illustrate
the method. Figure 2 presents some TPN fragments instanti-
ated with roles (in boxes), prepared for construction. Every
operation details the fragments involved in the composition.
The mergeable places are represented in double circle and
those ready to be merged are connected by a hook-dotted arc
with the number of the construction. The roles are assigned
to the right above of places. The whole model is describing
a monoprocessor applicationProc with two periodic tasks
Task1 andTask2 sharing the same semaphoreSem1.

a) Construction for each routine:The routines serve
as executive body of concurrent resources. They consist of
an ordered sequence of call services. The list of services
considered in RTEPML is not exhaustive at the moment. The
instructions described in TPN are: activation and termination
of task, acquisition and release of semaphore and waiting,
notification and inhibition of event.

Let n be the number of call services described follow-
ing: {NS1,NS2, . . . ,NSn} such that∀i ∈ [1, n],NSi

=
Ins(NS , Si) with NS the TPN describing a service. The
routine construction then impliesn − 1 compositions, each
one havingmj mergings of places withj ∈ [1, n − 1]. The
construction of a routine instanceNR is given by (1).

Illustration 1 (See Figure 2):In accordance with
NR, ∀l ∈ [1, 2], NTasklBody is built from TPNs
{NGetl(Sem1),NReleasel(Sem1),NTerminatel(Taskl)}. This
sequence describes in the order, an acquisition ofSem1, a
release ofSem1 and a termination ofTaskl.

b) Construction for each entry point of a concurrent
resource: Each resource points to a routine described byNR

previously formed. Only one operation composesNR with
NCλ = Ins(NC , Cλ). NC is the TPN describing a concurrent
resource. The construction of a concurrent resource instance
with its executive bodyNCR is given by (2) form mergings.

Illustration 2 (See Figure 2):In accordance withNCR,
∀l ∈ [1, 2], NTaskl withBody is built composingNTaskl

with
its entry pointNTasklBody.

c) Construction for concurrent resources:At this stage,
concurrent resources must be attached together with the aim
of being scheduled by the same processor.

Let qC be the number of concurrent resources with their
composed executive bodies such that∀iC ∈ [1, qC], each
resource is described byNCRiC

in accordance withNCR

previously formed. The construction then impliesqC −1 com-
positions, each one havingmjC mergings withjC ∈ [1, qC−1].
The construction ofNW is given by (3).

Illustration 3 (See Figure 2):In accordance withNW ,
NwithoutProc is firstly composed ofNTask1 withBody and
NTask2 withBody.

d) Global construction with processor and interaction
resources:Note that the processor is also a shared resource.
It will therefore be considered as an interaction resource.

Let qI be the number of interaction resources consid-
ered such that∀iI ∈ [1, qI], each resource is described
by NIiI

= Ins(NI , IiI) with NI the TPN describing an
interaction resource. Each interaction resource is composed
with NW previously formed. The global construction then
implies qI compositions, each one havingmjI mergings with
jI ∈ [1, qI]. The global compositionNG is given by (4).

Illustration 4 (See Figure 2):In accordance withNG,
NDeployedApplication is finalized by composingNwithoutProc,
NSem1 andNProc.

VI. B ENEFITS AND L IMITS

The use of TPNs with roles and the composition based on
roles has allowed to detect several errors within the SExPIs-
Tools transformation process. Those errors were bad transfor-
mation rules between concepts and roles, bad descriptions of
the behavioral fragments.

That has also clarified the chaining of the transformation
rules. As a result, a part of the transformation prototype has
been rewritten. This approach has increased the confidence in
SExPIsTools framework and its generated formal models.

Although SExPIsTools can consider several RTOSs, we
have only defined fragments for OSEK/VDX [9] in TPN.
Moreover, some complex real-time mechanisms, such as pri-
ority ceiling protocol or special queues of message box show
the limits of the expressiveness of TPNs. For this reason, we
could not model those mechanisms.

VII. C ONCLUSION

An approach has been presented to build a formal model of
RTESs taking into account a RTOS description. A new defini-
tion has extended the modeling in TPN to compose fragments
with roles. The formalized composition will be used as a basis
of the transformation process. The process implementation
in SExPIsTools is in progress. The framework integrates a
modeling language called RTEPML designed to describe the
behavior of RTOSs. During the process running, only the
description of the target execution platform is considered.

The main idea of this process is to maintain a genericity of
implementation. Composition rules introduced in this paper are
independant of any RTOSs thanks to role notion. This notion
is an essential point of our strategy and brings an advantage
in relation to other existing approaches. Future prospectsare
scheduled in order to take into account other RTOS descrip-
tions. Another important point is the consideration of more

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 38 / 84

NR =

(

(

(

NS1 ||NS2

)

(end S1, start S2) →֒ (SS1→S2
,⊥)

(r2
S1

, r2
S2

) →֒ (p2
S2

, r2
S2

)

. . .

(r
m1
S1

, r
m1
S2

) →֒ (p
m1
S2

, r
m1
S2

)

||NS3

)

(end S2, start S3) →֒ (SS1S2→S3
,⊥)

(r2
S1S2

, r2
S3

) →֒ (p2
S3

, r2
S3

)

. . .

(r
m2
S1S2

, r
m2
S3

) →֒ (p
m2
S3

, r
m2
S3

)

. . . ||NSn

)

(end Sn−1, start Sn) →֒ (SS1S2...Sn−1→Sn
,⊥)

(r2
S1S2...Sn−1

, r2
Sn

) →֒ (p2
Sn

, r2
Sn

)

. . .

(r
mn−1
S1S2...Sn−1

, r
mn−1
Sn

) →֒ (p
mn−1
Sn

, r
mn−1
Sn

)

(1)

with ∀k ∈ [1,mj] andn ≥ 2 if k ≥ 2 thenrkS1...Sj
= rkSj+1

NCR =
(

NCλ
||NR

)

(start Cλ, start S1) →֒ (S, ⊥)
(end Cλ, end Sn) →֒ (E, ⊥)

(r3
Cλ

, r3
R

) →֒ (p3
R

, r3
R

)

. . .

(rm
Cλ

, rm
R

) →֒ (pm
R

, rm
R

)

(2)

with ∀k ∈ [1,m] if k ≥ 3 thenrkCλ
= rkR

NW =

(

(

NCR1
||NCR2

)

(processor CR1, processor CR2) →֒ (PCR1→CR2
, processor Proc)

(r2
CR1

, r2
CR2

) →֒ (p2
CR2

, r2
CR2

)

. . .

(r
m1
CR1

, r
m1
CR2

) →֒ (p
m1
CR2

, r
m1
CR2

)

. . . ||NCRqC

)

(processor CRqC−1, processor CRqC
) →֒ (PCR1...CRqC−1→CRqC

, processor PROC)

(r2
CR1...CRqC−1

, r2
CRqC

) →֒ (p2
CRqC

, r2
CRqC

)

. . .

(r
mqC−1
CR1...CRqC−1

, r
mqC−1
CRqC

) →֒ (p
mqC−1
CRqC

, r
mqC−1
CRqC

)

(3)

with ∀kC ∈ [1,mjC] andqC ≥ 2 if kC ≥ 2 thenrkC

CR1...CRjC
= rkC

CRjC+1

NG =

(

(

NW ||NI1

)

(r1
P

, r1
I1

) →֒ (p1
I1

, r1
I1

)

. . .

(r
m1
P

, r
m1
I1

) →֒ (p
m1
I1

, r
m1
I1

)

. . . ||NIqI

)

(r1
PI1...IqI−1

, r1
IqI

) →֒ (p1
IqI

, r1
IqI

)

. . .

(r
mqI
PI1...IqI−1

, r
mqI
IqI

) →֒ (p
mqI
IqI

, r
mqI
IqI

)

(4)

with ∀kI ∈ [1,mjI] andqI ≥ 1, rkI

PIjI−1
= rkI

IjI

complex RTOSs mechanisms. The use of high-level Petri Nets
such as Scheduling TPNs [5] is also planned.

Finally, a more long-term goal is planned to check the cor-
rectness of the transformation. A formal comparison between
an application model projected on a more abstract platform
and a deployed application model generated by SExPIsTools
could allow this verification.

REFERENCES

[1] M. Boyer and O.H. Roux, “On the compared expressiveness of arc, place
and transition time Petri nets,” Fundamenta Informaticae,August. 2008,
pp. 88(3):225-249.

[2] M. Brun and J. Delatour, “Contribution on the software execution
platform integration during an application deployment process,” First
Topcased Day, Toulouse, February. 2011.

[3] W. El Hajj Chehade, A. Radermacher, S. Gérard, and F. Terrier, “De-
tailed Real-Time Software Platform Modeling,” Software Engineering
Conference (APSEC), 17th Asia Pacific, November. 2010, pp. 108-117.

[4] C. Lelionnais, M. Brun, J. Delatour, O.H. Roux, and C.Seidner, “Formal
Behavioral Modeling of Real-Time Operating Systems,” ICEIS(2) -
Proceedings of the 14th International Conference on Enterprise Infor-
mation Systems (Special Session on Model Driven Development for
Information Systems: Techniques, Tools, and Methodologies - MDDIS
2012), Wroclaw, Poland: June. 2012, pp. 407-414.

[5] D. Lime and O.H. Roux, “Formal verification of real-time systems
with preemptive scheduling,” Journal of Real-Time Systems, Springer,
February. 2009, pp. 41(2):118-151.

[6] M. Merlin, “A study of the recoverability of computing systems,”
PhD dissertation, Univ. of California, Department of Information ans
Computer Science, Irvine, 1974.

[7] J. Miller and J. Mukerji, “Model Driven Architecture (MDA) Guide,
version 1.0.1.,” Technical report, Object Management Group, June. 2003.

[8] Object Management Group (OMG), “UML Profile for Modelingand
Analysis of Real Time and Embbeded systems (MARTE), version1.1.,”
Technical report, June. 2011.

[9] OSEK/VDX Group, “OSEK/VDX Operating System Specification, ver-
sion 2.2.3.,” Technical report, February. 2005.

[10] F. Peres, B. Berthomieu, and F. Vernadat, “On the composition of
Time Petri Nets,” Discrete Event Dynamic Systems, September. 2011,
pp. 21(3):395-424.

[11] F. Taı̈ani, M. Paludetto, and J. Delatour, “Composing real-time objects:
a case for Petri nets and Girard’s linear logic,” Object-Oriented Real-
Time Distributed Computing, ISORC-2001. Proceedings. Fourth IEEE
International Symposium on, May. 2001, pp. 298-305.

[12] F. Thomas, S. Gérard, J. Delatour, and F. Terrier, “Software Real-Time
Resource Modeling,” Embedded Systems Specification and Design Lan-
guages, Lecture Notes in Electrical Engineering, SpringerNetherlands,
2008, pp. 10:169-182.

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 39 / 84

ENABLE

enabling Task1

CLOCK

ACTIV ATION

activation Task1

SUSPENDED

terminatedState Task1

[inc; inc]

increment

TRIGGER

[period; period]

cycle

TRIGGER

[0; 0]

resuming

TRIGGER

READY

activatedState Task1

[0; 0]activation

TRIGGER
PROCESSOR

processor Task1

resumedState Task1

RUNNING

start Task1

START

[0; 0]TRIGGER

end Task1

END

NTask1

NTask1 withBody

ENABLE

enabling Task2

CLOCK

ACTIV ATION

activation Task2

SUSPENDED

terminatedState Task2

[inc; inc]

increment

TRIGGER

[period; period]

cycle

TRIGGER

[0; 0]

resuming

TRIGGER

READY

activatedState Task2

[0; 0] activation

TRIGGER
PROCESSOR

processor Task2

resumedState Task2

RUNNING

start Task2

START

[0; 0] TRIGGER

end Task2

END

NTask2

NTask2 withBody

end Sem1

END

count Sem1

FREE

discount Sem1

BUSY

start Sem1

START

[0; 0]

TRIGGER

[0; 0]bypass

TRIGGER

NGet1(Sem1)

end Sem1

END

count Sem1

FREE

discount Sem1

BUSY

start Sem1

START

[0; 0]

TRIGGER

[0; 0] bypass

TRIGGER

NGet2(Sem1)

end Sem1

END

count Sem1

FREE

discount Sem1

BUSY

start Sem1

START

[0; 0]

TRIGGER

[0; 0] bypass

TRIGGER

NRelease1(Sem1)

end Sem1

END

count Sem1

FREE

discount Sem1

BUSY

start Sem1

START

[0; 0]

TRIGGER

[0; 0]bypass

TRIGGER

NRelease2(Sem1)

PROCESSOR

processor Task1

end Task1

END

resumedState Task1

RUNNING

terminatedState Task1

SUSPENDED

start Task1

START

[0; 0]

TRIGGER

NTerminate1(Task1)

PROCESSOR

processor Task2

end Task2

END

resumedState Task2

RUNNING

terminatedState Task2

SUSPENDED

start Task2

START

[0; 0]

TRIGGER

NTerminate2(Task2)

NTask1Body NTask2Body

PROCESSOR

processor Proc
NProc

count Sem1

FREE

discount Sem1

BUSY

NSem1

NDeployedApplication

(a)

(a)

(a)

(a)

(a) (a)

(a) (a)

(b) (b)

(b) (b)

(b) (b)

(b) (b)

(b)(b)

(c)

(c)

(c)

(d)

(d)

(d)

Fig. 2: Deployed application of semaphore sharing composedin TPN

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 40 / 84

Preliminary Test Suite Reduction

Vitaly Kozyura and Sebastian Wieczorek
SAP AG

Darmstadt, Germany
v.kozyura;sebastian.wieczorek@sap.com

Abstract—Test suite reduction is an activity which
reduces test suites while maintaining their coverage
properties. This problem is equivalent to the set cover-
ing problem and therefore NP-complete. Many strate-
gies for solving the problem are known. They are usually
applied to minimizing the number of action calls within
a given test suite for a certain coverage goal. While
some algorithms like branch and bound compute an
exact minimal solution, other algorithms like the greedy
approach compute an approximation for the minimal
set of actions. In this work, we deal with the problem of
efficient test suite reduction in industrial practice. For
this purpose, we introduce the concept of preliminary
test suite reduction. Its aim is to reduce redundancy
in test suites before starting the actual reduction. In
the paper, we further describe experimental results
that give implication on how the proposed technique
can reduce the runtime of test suite reduction in the
industrial practice.

Keywords—MBT; test suite reduction; industrial case
study.

I. Introduction

Automatically generating tests suites from formal spec-
ifications as advertised by model-based testing (MBT)
is regarded as a potential innovation leap in industrial
software quality assurance. Most MBT approaches are
running in two phases. In the first phase, vast amounts
of test cases are generated for an inserted model until
coverage of model entities is achieved. In the second phase,
a subset of these test cases is selected with the aim to
preserve the targeted coverage and therefore the assumed
fault-uncovering capabilities [1]. This activity is called test
suite reduction.

Fig. 1 represents a test model, that will be used as
a running example in order to illustrate the reduction
techniques. The test model is given in form of a finite state
machine. The states are depicted as circles and the actions
as named arrows. q0 is a start state and the state with two
nested circles is an end state. A valid test is a sequence
of actions starting in q0 and ending in the end state. As
the coverage criteria we choose to cover all action names.
Please note that in practice the execution of actions may
be constrained by input and system data and may have
additional side effects on data apart from state changes [2].
How side effects may be handled later on during test case
execution is sketched in Section V-A.

Assuming that a model checking technique (breadth-
first search) is used for the test generation in phase one,

Fig. 1. Running Example.

the following test suite may be obtained:

[ab, df, aab, aaab, acab, acdf, cdef].

It can be noted that the derived test suite covers all action
names, but it is not the minimal test suite (measured by
the overall number of actions). How this test suite can
be reduced, while preserving action name coverage will be
discussed in the consequent sections.

The problem of test suite reduction is largely discussed
in the literature. There are papers, where the general test
suite reduction activity is described [3], [4]. Further work
on how to apply 0/1-Integer linear programming to the test
suite reduction problem [5] or how to improve the Greedy
heuristics [6], [7], [8] can be found. In [9], [10] there are
approaches using multi-objective optimization functions,
whereas in [11] an approach based on genetic algorithms is
introduced. Some empirical results for test suite reductions
have been reported in [12].

This paper is motivated by the problem of efficient test
suite reduction. We introduce a preliminary test suite re-
duction technique, aiming to reduce the runtime of the test
suite reduction procedure and investigate its applicability
to test suite reduction in the industrial practice of MBT.

First, we provide the industrial context for test suite
reduction (Section II), then we describe the test suite
reduction problem in detail (Section III). In this paper,
we consider two existing approaches to the test suite
reduction problem: approximative technique (described on
the example of a greedy algorithm [13]) and the technique
searching for an exact solution (described on the example
of a branch and bound algorithm [14]).

In Section IV, we define the concept of preliminary test
suite reduction. In essence, the goal of applying preliminary
reduction is to make the overall activity of test suite

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 41 / 84

reduction more efficient. In Section V we provide a few
experimental results in order to illustrate the proposed
technique and also to discuss its applicability for practical
test suite reduction. Section VI concludes the paper.

II. Industrial Context

In the software industry, model-based test automation
is one of the most promising approaches for increasing the
efficiency of testing. Various commercial vendors emerged
that offer tools and consulting, maintain user groups, and
organize industrial conferences. Although the various com-
peting commercial tools utilize alternative test generation
concepts like model checking, theorem proving, or random
walks, the overall process of producing test suites is similar.
It consists of two phases:

1) Test suite generation - deriving test cases from the
model, usually until test coverage is reached.

2) Test suite reduction - calculating a subset of test cases
that maintains test coverage.

Especially in industrial settings, the second phase is in-
dispensable, because of the significant manual effort associ-
ated with test case concretization [15]. This transformation
from abstract test cases to executable test scripts usually
follows the keyword-driven testing principles. Keyword-
driven testing uses keywords in the test cases, in addition
to data. Each keyword corresponds to a fragment of a test
script (the adapter code), which allows the test execution
tool to translate a sequence of keywords and data values
into executable tests [1].

Generated test suites usually contain a large number of
redundant test cases, that would unnecessarily increase the
concretization effort. For example, the initially generated
test suite given in Section I contains 7 test cases and 23
actions. However, various subsets of the given test suite
exist that are preserving the defined coverage of all action
names. As to be shown in Section III, the optimal solution
only contains 2 test cases and 6 actions.

The most common reasons for redundancy in test suites
are the presence of loops in the test model as well as multi-
ple occurrences of equal action names. The given example
contains both. Further, some test generation approaches
deliberately continue to create test cases despite the fact
that the computed test suite already meets the coverage
criteria. Often, this enables better reduction results, as it
increases the variety of test cases.

In industrial practice, various additional sources of
redundancy may exist that are not connected to the model
structure or test generator. For example, it is often the
case that after initial thorough testing, test suites with
reduced coverage requirements are created to lower the
execution runtime of regression tests. In order to avoid the
effort of test re-generation and especially the potential test
concretization of additional test cases, usually the already
generated and used test suite is reduced again. Also, the
merging of generated test suites with manually designed
or legacy test cases often occurs in practice.

III. Test Suite Reduction

As described, for a provided model the obtained test
suite can contain a very large number of test cases. Aim
of the test suite reduction is to select a subset, which
preserves the targeted coverage and therefore the assumed
fault-uncovering capabilities. This activity can be formu-
lated like follows [7]:

Given: A test suite TS, a set of test case require-
ments r1, r2, ..., rn that must be satisfied to provide the
desired testing coverage of the program, and subsets of
TS, T1, T2, ..., Tn, one associated with each of the ri’s such
that any one of the test cases tcj belonging to Ti can be
used to test ri.

Problem: Find a representative set of test cases from
TS that satisfies all of the ri’s.

The test suite reduction problem can be considered as
a hitting set problem — the problem of finding the hitting
set having minimum cardinality, which is equivalent to the
set cover problem and is known to be NP-complete [16].
The standard way of solving the hitting set problem is a
restatement into a 0/1-Integer linear program. Afterwards,
this can either be exactly solved by using a technique like
branch and bound algorithm or approximately, for example
by applying different variations of Greedy heuristics [17],
[13]. In the following, both approaches are described.

A. Greedy Algorithm

We use a classical implementation of the Greedy algo-
rithm which has already been known for some time. Even
though the Greedy algorithm computes an approximation,
[13] showed that the result cannot become arbitrarily bad.
In fact the upper bound for the performance guarantee
only depends on the number of requirements.

The algorithm iteratively constructs subsets TSi ⊆ TS,
which will produce a complete test suite after termination
of the algorithm. Until all requirements are met, the
algorithm does the following: It computes the set of all
test cases, for which the number of additional action calls
is maximal. Then, it picks one of these (tc) at random.
This test case is afterwards added to TSi+1 = TSi ∪ {tc}
and the requirements are updated appropriately.

The algorithm has a linear time complexity O(|TS|)
with respect to the size of a test suite |TS| to be optimized.

Using a greedy algorithm on the initially generated
test suite of the example given in Section I, the following
reduced test suite can be obtained, containing 3 test cases
and 10 actions:

[acdf, ab, cdef].

B. Branch and Bound Algorithm

In order to find an exact solution to the test reduction
problem, we use the branch and bound variation (Balas-
algorithm) described in [14], which allows one to compute
an optimal result.

The algorithm identifies all possible subsets of TS =
{tc1, . . . , tcm} with arrays (n1, . . . , nm). Here ni = 1

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 42 / 84

means, that tci is part of the subset, while ni = 0 means,
that it is not. To check these arrays systematically, they are
organized as a binary tree. At the root node, no decisions
have been made, whereas any node on level i represents a
certain choice of the first i bits. The node (n1, . . . , ni) is
identified with the test suite {tcj : nj = 1}. During the
so-called pruning, it is checked for each constructed node
if this node can be safely discarded from the tree.

In worst case, the algorithm has an exponential run
time with respect to the size of a test suite |TS| to be
optimized.

In the case of using a branch and bound algorithm
on the initially generated test suite of the example given
in Section I, the following reduced test suite is obtained,
containing 2 test cases and 6 actions:

[ab, cdef].

IV. Preliminary Reduction

As described, test suite reduction is necessary because
initially generated test suites usually contain far more test
cases than necessary to achieve certain coverage goals. On
the other side, also test suite reduction itself may be a
costly operation. As discussed in Section III, the runtime
of test suite reductions can vary from linear to exponential
depending on how exact the solution should be. As test
engineers expect fast feedback from test automation tools,
e.g. in order to not loose their focus, each runtime improve-
ment for test suite reduction retaining the exactness of the
solution can be very valuable from the practical point of
view.

In this section, we would like to introduce the concept
of preliminary removing redundancy in an initial test suite
in order to reduce the runtime of the actual reduction
procedure. The proposed preliminary reduction is applied
before the actual optimization procedure starts. We define
prelimiary redundancy as follows.

Definition: Given a test suite TS, we say that the test
case tc is redundant if there exists another test case tc′ with
|tc′| ≤ |tc| and for each requirement ri it holds ri(tc) ⇒
ri(tc

′).

Following algorithm can be used in order to delete the
redundant test cases from the test suite before starting the
actual test suite reduction.

Algorithm: Our preliminary reduction procedure com-
pares the test cases from TS with each other and deletes
all redundant test cases. This results in a time complexity
of O(|TS|2).

Applying the above definition to the example from
Section I, a given test case is redundant if another test
case with equal or less actions exists that covers at least
the same action names. For instance, the test aaab is
redundant because |ab| < |aaab| while both cover the same
set of action names. The test suite obtained after applying
the preliminary reduction to the example consequently is

[ab, df, acab, acdf, cdef].

As mentioned before, the greedy algorithm has a linear
run time complexity, whereas the branch and bound algo-
rithm has an exponential run time complexity with respect
to the size of a test suite |TS| to be optimized. Based
on this information, the decision should be to always use
preliminary reduction when constructing an exact minimal
set of test cases and to never use it when constructing an
approximative solution. However, in practice there are two
factors, which can influence this decision:

• The typical regions of the test suite sizes and the
grades of the run time complexity curves in these
regions for each reduction algorithm.

• The typical rate of redundancy in the considered
test suites.

Combining this two factors can lead to the situations
where either it would not be reasonable to use preliminary
reduction at all (also when constructing an exact minimal
set of test cases) or where it would be reasonable to use it
even when constructing an approximative solution to the
test suite reduction problem.

After being able to construct examples for all these
situations, we decided to check the applicability of pre-
liminary optimization for both exact and approximative
approaches to the test suite reduction problem in the
industrial practice. The purpose is to derive a practically
applicable guidance on the basis of the experiments with
typical test suites from the industrial context.

V. Experimental Results

In this section, we present experimental results illus-
trating the applicability of preliminary reduction technique
for optimizing the test suite reduction procedure. We start
with a description of the industrial testing setup: how test
models are constructed and how the tests are generated.
Then, we provide the experimental results and discuss
the usability of preliminary reduction in the industrial
practice. Finally, possible threats to validity are described.

A. Test Setup

The testing approach we consider in this paper lever-
ages a keyword-driven testing framework, as described
in [18]. A model editor is implemented on top of the frame-
work in order to facilitate an automated test generation.
Test models are represented by transition state machines
enhanced with data flow and global data.

As an input for the experiments, we have collected a
number of test models, which were designed on the basis
of industrial case studies. These test models were created
for system testing. In practice, system testing is based on
high-level usage scenarios and business requirements that
have been defined by business analysts or customers. UI-
based testing is most appropriate to carry out the tests, as
the system should be validated as a whole and only using
access points that are available to the prospect user.

Keyword-based testing for UI is mostly done by uti-
lizing capture/replay functionality, which is provided by

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 43 / 84

standard test automation tools. These tools are monitor-
ing user interactions on the interface that can reproduce
the execution of the recorded sequence of events. These
captured scripts commonly allow data flexibility by ex-
changing the concrete values (used during capturing) with
variables that can be initialized independently.

Further, the recorded scripts can be combined in so-
called scenarios. A scenario is a sequence of recorded
scripts working on a predefined set of data. Global vari-
ables are used in scenarios to organize the data flow. Their
function is to store output values of a captured script and
make it available as input for another. In Fig. 2 an example
of the described data flow is given. The value of the local
output variable A.out of Script A is written to the global
variable X and later mapped to the local input variable
B.in of Script B.

Fig. 2. Data flow in a scenario.

In order to allow a calculation of an exact minimal
test suite and further to get realistic statements for the
context of our work, most of the chosen samples are
small- or intermediate-sized (I-IX). We also included one
interesting border case example (NA), which is too large
to be optimized with algorithms of the branch and bound
type.

All computations were performed on an AMD Opteron
(tm) Quad Core with 2.60 GHz and 32 Gigabytes of RAM.

B. Selected Results

In Table I and Table II, we present selected results
of our experiments demonstrating the applicability of the
preliminary reduction for an approximative and an ex-
act construction of the reduced test suite. In Table I,
we compare approximating greedy algorithm with and
without preliminary reduction and in Table II we do the
comparison for the branch and bound algorithm. The
tables have the following columns: number of an example
(Example), size of a test suite to be optimized (|TS|),
size of a test suite obtained after preliminary reduction
(|TS|(PR)) , and the run time for the each algorithm with
and without preliminary reduction (Time(PR) / Time).
The time is measured in seconds.

C. Discussion

As it can be seen in Table I and Table II, the pre-
liminary reduction does not improve the approximative
greedy algorithm, except for one border case (NA), where
the optimal test suite (containing 3 test cases) is already

TABLE I. Greedy algorithm with and without
preliminary reduction.

Example |TS| |TS|(PR) Time Time(PR)
I 15 14 0,06 0,08
II 32 32 0,07 0.12
III 41 41 0.08 0.14
IV 45 24 0,09 0,16
V 120 120 0,10 1,05
VI 132 111 0,62 2,12
VII 289 203 1,36 7,63
VIII 512 336 3,67 20,13
IX 625 402 4,83 44, 37
NA 3160 3 32,13 3,57

TABLE II. Branch and bound algorithm with and
without preliminary reduction.

Example |TS| |TS|(PR) Time Time(PR)
I 15 14 0,06 0,07
II 32 32 3,66 3,67
III 41 41 9,05 9,06
IV 45 24 0,13 0,11
V 120 120 77,49 77,50
VI 132 111 268,78 155,14
VII 289 203 511,02 403,71
VIII 512 336 1353,37 810,81
IX 625 402 1733,16 886,95
NA 3160 3 - 3,59

obtained from 3160 test cases after the preliminary re-
duction. In contrast, branch and bound algorithms, which
have exponential complexity, perform already better for
the size of the fourth example (IV) if using the preliminary
reduction.

This means that in the industrial practice the most
challenging test suites are located in the size region, where
there is enough redundancy to make preliminary reduction
an efficient technique.

In order to better understand the presented results, we
also provide scatter diagrams representing the ratios for
speedup or slowdown in the run time for the examples I-IX
(Fig. 3). For each diagram on the x-axis, there are numbers
of tests in the test suites and on the y-axis there are the
corresponding ratios between run times with and without
preliminary reduction (Time(PR)/Time). The thick hor-
izontal lines define the areas where Time(PR)/Time = 1,
i.e., the preliminary reduction brings neither advantages
nor disadvantages from the run time perspective. The skew
lines (trend lines) represent the correlations between the
test suite size and the runtime ratio described above.

From the presented diagrams, it can be seen that in the
case of approximative test suite reduction it is not only
unsuitable to use preliminary reduction, but the drawback
is increasing with the growing size of test suites. Otherwise,
for the branch and bound algorithm the trend line shows
that the value of using preliminary reduction grows with
the growing size of test suites.

It can be seen that it is not always reasonable to apply
it for small test suites, but the larger the test suites get
the more beneficial it is to apply the preliminary reduction
technique. From the practical point of view, the test suites
of medium or large size are crucial with respect to run
time, whereas for small test suites the possible slowdown
is usually not critical.

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 44 / 84

Fig. 3. Relative runtime diagrams.

Therefore, as a bottom line we deducted the following
from the experiments:

For the industrial practice, it is recommended to use the
preliminary reduction each time a (near) optimal solution
for the test suite reduction problem is computed.

D. Threats to Validity

We realize that a number of experiments in the area
of UI-based MBT cannot serve as a proof of applicability
for the whole industrial area of MBT. However, we believe
that the presented results can be generalized to the prac-
tical testing of high-level usage scenarios, where UI-based
testing is the most commonly used approach.

VI. Conclusion

In this paper, we introduced the concept of prelim-
inary test suite reduction and studied how eliminating
redundant test cases can accelerate the test suite reduction
algorithms.

We further described the industrial context of MBT
and provided a collection of common reasons for the exis-
tence of the redundancy in test suites. The applicability of
preliminary test suite reduction for the industrial practice
of MBT is shown, based on a number of experiments from

UI-based testing, which is a common way of testing the
high-level scenarios.

We applied the preliminary optimization technique to
two classical solutions of the test suite reduction problem,
namely the branch and bound algorithm, which computes
an exact solution in exponential time, and the greedy
heuristic, which yields the best approximation possible
in polynomial time. In the paper, we presented selected
experimental results, which have shown that the approach
pays off for branch and bound algorithms, but is rather
inefficient for greedy algorithms.

From our industrial experience in MBT, we know that
redundancy in the test suite is a common issue which
affects test efficiency on various levels. Therefore, it can
be an important aspect in practice to apply preliminary
optimization in case a (near) optimal solution for the test
suite reduction problem should be computed.

References

[1] M. Utting and B. Legeard, Practical model-based testing, a tools
approach. Morgan Kaufmann, 2007.

[2] S. Wieczorek, A. Stefanescu, and I. Schieferdecker, “Test data
provision for ERP systems,” in Proc. of Int. Conf. on Software
Testing (ICST’08). IEEE Computer Society, 2008, pp. 396–
403.

[3] T. Y. Chen and M. F. Lau, “Dividing strategies for the op-
timization of a test suite,” Information Processing Letters,
vol. 60, pp. 135–141, 1996.

[4] A. J. Offutt, J. Pan, and J. M. Voas, “Procedures for reducing
the size of coverage-based test sets,” in In Proc. Twelfth Int.
Conf. Testing Computer Software, 1995, pp. 111–123.

[5] H. S. Wang, S. R. Hsu, and J. C. Lin, “A generalized optimal
path-selection model for structural program testing,” Journal
of Systems and Software, vol. 10, no. 1, pp. 55 – 63, 1989.

[6] R. Gupta and M. L. Soffa, “Compile-time techniques for im-
proving scalar access performance in parallel memories,” IEEE
Trans. Parallel Distrib. Syst., vol. 2, pp. 138–148, April 1991.

[7] M. J. Harrold, C. Unwersity, R. Gupta, and M. L. Soffa, “A
methodology for controlling the size of a test suite,” ACM
Transactions on Software Engineering and Methodology, vol. 2,
pp. 270–285, 1993.

[8] T. Y. Chen and M. F. Lau, “A new heuristic for test suite
reduction,” vol. 40, no. 5-6, pp. 347–354+, 1998.

[9] J. Black, E. Melachrinoudisl, and D. Kaeli, “Bi-criteria models
for all-uses test suite reduction,” in Proceedings of the 26th
International Conference on Software Engineering, ser. ICSE
’04. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 106–115.

[10] S. Yoo and M. Harman, “Pareto efficient multi-objective test
case selection,” in Proceedings of the 2007 international sympo-
sium on Software testing and analysis, ser. ISSTA ’07. New
York, NY, USA: ACM, 2007, pp. 140–150.

[11] N. Mansour and K. El-Fakih, “Simulated annealing and genetic
algorithms for optimal regression testing,” Journal of Software
Maintenance, vol. 11, pp. 19–34, January 1999.

[12] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong,
“Empirical studies of test-suite reduction,” Journal of Software
Testing, Verification, and Reliability, vol. 12, pp. 219–249, 2002.

[13] V. Chvatal, “A greedy heuristic for the set-covering problem,”
Mathematics of Operations Research, vol. 4, no. 3, pp. 233–235,
1979.

[14] J.W. Chinneck, “Practical Optimization: A Gentle Introduc-
tion,” http://www.sce.carleton.ca/faculty/chinneck/po.html,
2003, chapter 13.

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 45 / 84

[15] S. Wieczorek, A. Stefanescu, and I. Schieferdecker, “Model-
based integration testing of enterprise services,” in Proc. of
Testing: Academic & Industrial Conference - Practice and re-
search techniques (TAICPART’09). IEEE Computer Society,
2009, pp. 56–60.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman,
1979.

[17] V. V. Vazirani, Approximation algorithms. Springer, 2001.

[18] S. Wieczorek and A. Stefanescu, “Improving Testing of Enter-
prise Systems by Model-Based Testing on Graphical User Inter-
faces,” in 2010 17th IEEE International Conference and Work-
shops on Engineering of Computer-Based Systems. IEEE,
2010, pp. 352–357.

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 46 / 84

Performance Characterization of TAS-MRAM Architectures
in Presence of Capacitive Defects

João Azevedo, Arnaud Virazel, Yuenqing Cheng,
Alberto Bosio, Lugi Dilillo, Patrick Girard, Aida Todri

LIRMM – University of Montpellier 2 / CNRS
Montpellier, France

e-mail: {azevedo, Virazel, cheng, bosio, dilillo, girard,
todri}@lirmm.fr

Jérémy Alvarez-Hérault
CROCUS Technology

Grenoble, France
e-mail: jherault@crocus-technology.com

Abstract—Magnetic Random Access Memory (MRAM) is an
emerging memory technology. Among existing MRAM
technologies, Thermally Assisted Switching (TAS) MRAM
technology offers several advantages such as selectivity, single
magnetic field and high integration density. In this paper, we
analyze the impact of capacitive defects on the TAS-MRAM
performance. Electrical simulations were performed on a 16-
words TAS-MRAM architecture enabling any sequences of
read/write operations. Results show that writing operations may
be affected by these defects. Especially, we demonstrate that
some capacitive defects may have a local (single cell) impact on
the functionality of TAS-MRAM while others, even if there is an
effective coupling, do not change the functional operation. These
results will be further used to develop effective test algorithms
targeting faults related to actual defects that may affect TAS-
MRAM architecture.

Keywords–non-volatile memories; spintronics; TAS-MRAM;
capacitive defects; fault modeling; test.

I. INTRODUCTION
Nowadays, Non-Volatile Memories (NVMs) are more and

more integrated in consumer applications. Though widely used,
Flash memories still have several drawbacks such as high
supply voltage requirement, low speed and susceptibility to
reliability issues due to high electric field for programming
operations. On the other hand, Magnetic Random Access
Memory (MRAM) is an emerging technology with high data
processing speed, low power consumption and high integration
density compared with Flash memories. Moreover, this
memory technology is non-volatile with fair processing speed
and reasonable power consumption when compared to Static
RAMs (SRAMs). MRAM probably is the closest to an ideal
“universal memory” and thus may be used as NVM as well as
SRAM and DRAM according to the 2011 International
Technology Roadmap for Semiconductors (ITRS) [1].

MRAMs have the potential to mitigate almost all Flash
related issues but they are prone to defects as any other kind of
memory. Only few papers on MRAM testing can be found in
the literature, and target mainly Field Induced Magnetic
Switching (FIMS) MRAM technologies. Su et al. [2] present
the Write Disturbance Fault (WDF) model, a fault that affects
data stored in Toggle MRAM cells due to the amount of
magnetic field applied during write operations on neighboring
cells. Su et al. [3] identified two new faults related to the
magnetic junction behavior and called Multi-Victim Fault
(MVF), in which a cluster of cells can easily change their
magnetization state due to process variations, and Kink Fault

(KF), in which the hysteresis loop shrinks because of its
relation with cell shape, thus changing MTJ resistivity.

A thorough investigation and deep analysis must be done
for testing MRAMs memories. In [4] and [5], resistive-open
and resistive-bridge defect analyses are presented for TAS-
MRAM architectures. These studies have revealed the
importance of electrical analyses of defects that may impact the
performance of TAS-MRAMs.

In this paper, we complete these studies by considering
parasitic coupling, i.e., capacitive defects. Parasitic coupling
between adjacent interconnect lines is a major limiting factor in
deep-submicron ICs due to the injection of noise from
switching lines to neighboring lines [6]. The trend of increasing
the integration level of ICs has a negative impact on
interconnect performance. The cross section is smaller in the
scaling-down process increasing the line’s resistance. In order
to reduce resistance while maintaining high horizontal
interconnect density, the aspect ratio is larger than “1”
increasing the coupling capacitance. In addition, the effective
capacitance increases as the spacing between lines decreases,
which causes an increase in the delay related to the RC
constant. Moreover, crosstalk between lines due to mutual
capacitance and inductance becomes worse.

In this context, we fully characterize the impact of
capacitive defects on the TAS-MRAM performance.
Considered defects were selected based on the layout structure
of the TAS-MRAM array. Simulations were performed in a
TAS-MRAM architecture supporting any read/write sequences.
Results show that capacitive defects have almost no impact on
read operations. Conversely, write operations are affected by
capacitive defects depending on the size and location. Such
results will be helpful to define an efficient test algorithm to
fully test TAS-MRAMs.

The rest of the paper is organized as follows. Section II
provides the fundamentals and background on MRAM
technologies. The proposed TAS-MRAM architecture is
described in Section III. The capacitive defect analysis is
provided in Section IV. Section V concludes the paper.

II. MRAM TECHNOLOGIES
MRAMs are Spintronic devices that store data in Magnetic

Tunnel Junctions (MTJs). A basic MTJ device is usually
composed of two FerroMagnetic (FM) layers separated by an
insulating layer, as shown in Figure 1. One of the FM layers is
pinned and acts as a reference layer. The other one is free and
can be switched between, at least, two stable states. These

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 47 / 84

states are parallel or anti-parallel with respect to the reference
layer. When the MTJ is in the parallel state, it offers the
minimum resistance (Rmin) while the maximum resistance
(Rmax) is obtained when anti-parallel. The difference between
Rmin and Rmax, quantified by the Tunnel Magneto Resistance
(TMR), is high enough to be sensed during the read operation.

Figure 1. MTJ in parallel and antiparallel states

A read operation consists in determining the MTJ’s
magnetization state and can be performed by voltage or current
sensing across the MTJ stack. A CMOS sense amplifier is used
to retrieve the stored bit information. High TMR allows simple
and stable sense amplifiers, improving reading accuracy [7].

Magnetization dynamics describes how the magnetization
goes from one point of equilibrium to another one. This
evolution of the magnetization in terms of time and space
under a local effective field can be described by the Landau-
Lifshitz-Gilbert equation (1):

𝜕𝑚
𝜕𝑡

= −
𝛾

1 + 𝛼!
𝑚×𝐻!"" −

𝛾𝛼
1 + 𝛼!

𝑚× 𝑚×𝐻!"" (1)

where 𝑚 is the unit vector along the magnetization of the free
layer, 𝛾 is the gyromagnetic ratio, 𝛼 is the Gilbert damping
constant and 𝐻!"" is the effective magnetic field.

A write operation can be performed using magnetic fields
or spin polarized current and depends on MRAM technologies:
FIMS (Field Induced Magnetic Switching), Toggle Switching,
TAS (Thermally Assisted Switching) and CIMS (Current
Induced Magnetic Switching).

Thermally Assisted SwitchingTM is an alternative
switching method for MRAMs. In the scheme proposed by
Spintec [8] and industrialized by Crocus Technology, the MTJ
is modified by inserting an Anti-FerroMagnetic (AFM) layer
that pins the storage layer while below its blocking temperature
(𝑇!) that can be calculated by (2).

𝑇! =
𝐾𝑉

𝑘! ln 𝜏!𝑒
!"
!!!

(2)

where 𝐾 is the effective anisotropy constant, 𝑉 is the device
volume, 𝑘! is the Boltzmann constant and 𝜏! is the attempt
time.

In AFM materials, the magnetic moments of atoms are
aligned in a regular pattern, neighboring spins pointing in
opposite directions. This organization vanishes above 𝑇! and
the material becomes paramagnetic. When MTJ’s temperature
rises above 𝑇!, the storage layer is freed and can be reversed

under the application of a small magnetic field provided by a
single field-line. The magnetic field is maintained beyond the
heating voltage pulse to ensure the correct pinning of the
storage layer.

TAS approach offers several advantages compared to
predecessors MRAM technologies. The selectivity problem is
reduced since only heated MTJs are able to switch and all other
MTJs hold their stable state as they remain below their
blocking temperature. Although TAS-MRAM needs an
additional heating current, this current is much smaller than the
current used to generate the second magnetic field in FIMS-
MRAM technology. The integration density is improved due to
thermal stability and the need of only one field-line. Finally, as
the free layer can be pinned to any stable state, multi level logic
can be achieved [9]. TAS-MRAM is for the moment the most
promising MRAM solution as it mitigates most drawbacks
from its predecessors.

III. TAS-MRAM ARCHITECTURE
Figure 2 shows the TAS-MRAM architecture we have

developed for our study. The organization is done in a square
matrix that has 2MR rows and 2NC columns, for a total storage
capacity of 2MR+NC bits per page, where MR and NC are the
numbers of bits used to specify the row and column address,
respectively. In our case study, MR and NC are equal to 2 and
the number of pages is 4; hence, the storage capacity is 64 bits
(16 words of 4 bits). Each cell in the array is connected to one
of the row-lines, called word-lines, and connected to one of the
column-lines, called bit-lines. A particular set of MTJs can be
accessed for a read or write operation by selecting its word-line
and bit-line. There is only one field-line that connects all MTJs
serially row by row passing through all pages in this
architecture.

During a read operation, the read driver applies a small
voltage that generates negligible heat to both the selected MTJ
and a reference MTJ. The reference MTJ is halfway between
the high and low resistance values. The resistance difference is
then sensed to determine the stored data in the selected MTJ.

A write operation is performed as follows:
• Initially, the write driver applies a voltage to heat the

selected MTJ above its 𝑇! (about 150 °C).
• Next, the field-line driver applies a current to generate

the data zero magnetic field. While the MTJ is cooled
down below 𝑇!, the magnetic field is maintained.

• Then, the field-line driver inverses the current
direction and the MTJ is heated again to perform the
write 1 operation, if needed. When the MTJ reaches
room temperature, the writing procedure is
accomplished.

This approach allows writing “logic 0” and “logic 1” in one
cycle to different MTJs sharing the same field-line. Note that, a
Write 1 operation (denoted W1) consists of applying both
field-line current polarities (magnetic field for “data 0” and
then magnetic field for “data 1”), while a Write 0 operation
(denoted W0) consists of applying only one field-line current
polarity (magnetic field for “data 0” only). These writing
procedures are inspired by Flash programming procedures

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 48 / 84

where a write operation (write 1) is always preceded by an
erase operation (write 0).

Figure 2. TAS-MRAM architecture

Electrical simulations were performed using the TAS-MTJ
model developed by Spintec [9]. This model is based on the
physical equations of the MTJ and is calibrated with respect to
the targeted TAS-MRAM technology. Moreover, this model is
compiled in C language and is compatible with the Spectre
simulator of the standard Cadence design suite [10].

Table I summarizes simulated fault-free characteristics of
MTJ1,1,1 (MTJi,j,k with i ⇒ page number, j ⇒ row number and
k ⇒ column number) in the second page, second column and
second line of the TAS-MRAM architecture shown in Figure 2.
The first column gives the four possible operations R0, R1, W0
and W1. The next five columns provide all the MTJ’s
parameters:

• V – Voltage level at the MTJ interface.
• I – Current passing through the MTJ during read or

write operations.
• R – Resistance of the MTJ.
• T – Temperature of the MTJ during operations.
• M – Magnetization state that is related to the angle

between the two ferromagnetic layers. The parallel
magnetization state is represented ideally by
“1 ⇒ logic 0” and the anti-parallel magnetization state
by “-1 ⇒ logic 1”. The magnetization state is
correlated to the resistivity of the MTJ.

Finally, the last column gives the sensing voltage (S) during
read operation only. The two resistive states of the MTJ are
1.48kΩ for Rmin and 2.80kΩ for Rmax during read operation.
In normal operation the sensing voltage (S) is around 165mV
for Rmin and 254mV for Rmax. During write operations, the
current that passes through the MTJ is high enough to heat its
temperature above the blocking temperature, i.e., 193°C for

W0 and 193/183°C for W1. The MTJ’s resistivity is different
during read and write operations even if the magnetization state
is the same. This is due to the voltage applied to the MTJ as
well as its operating temperature.

TABLE I. MTJ1,1,1 CHARACTERISTICS UNDER READ/WRITE OPERATIONS

Operation
MTJ1,1,1 parameters

S (mV)
V (mV) I (uA) R (kΩ) T (°C) M

R0 111.49 74.89 1.48 31.16 1 165.67
R1 202.35 72.11 2.80 34.26 -1 254.49
W0 745.32 606.59 1.22 193.18 1 n.a.

W1 745.32
863.09

606.59
542.63

1.22
1.59

193.18
183.75 -1 n.a.

Figures 3 and 4 show temperature profiles for W0 and W1
operations performed on a 16-bit fault-free TAS-MRAM
memory page, respectively. Note that, MTJs are written row by
row from MTJx,0,0 to MTJx,3,3. We observe that temperature
rises twice during each write cycle in W1 operations and rises
only once per cycle in W0 operations. This behavior is
expected according to the writing scheme previously described.

Figure 3. 16-bit W0 fault-free temperature profiles

Figure 4. 16 bits W1 fault-free temperature profiles

IV. CAPACITIVE DEFECT INJECTION
The capacitive defect injection in TAS-MRAM architecture

is depicted in Figure 5. Capacitive defects are inserted between
interconnect lines based on the TAS-MRAM array layout as
follows:

• C1: MTJ’s bottom metal – Field-line
• C2: Field-line – Word-line
• C3: Word-line – Word-line
• C4: Word-line – MTJ’s bottom metal

Note that all resistive parameters are not represented in
Figure 5 but are all taken into account in models (lines,
transistors, drivers) used for electrical simulations.

TAS-MRAM performance is affected by these capacitive
defects in several ways. In the following sub-sections, we show
a complete analysis of how these four capacitive defects impact
the TAS-MRAM performance. Simulations were performed
using the following write sequences:

25

150

M
TJ
_x
00

M
TJ
_x
01

M
TJ
_x
02

M
TJ
_x
03

M
TJ
_x
10

M
TJ
_x
11

M
TJ
_x
12

M
TJ
_x
13

M
TJ
_x
20

M
TJ
_x
21

M
TJ
_x
22

M
TJ
_x
23

M
TJ
_x
30

M
TJ
_x
31

M
TJ
_x
32

M
TJ
_x
33

0

500

0

750

500uA

750mV

150°C

25°C

25

150

M
TJ
_x
00

M
TJ
_x
01

M
TJ
_x
02

M
TJ
_x
03

M
TJ
_x
10

M
TJ
_x
11

M
TJ
_x
12

M
TJ
_x
13

M
TJ
_x
20

M
TJ
_x
21

M
TJ
_x
22

M
TJ
_x
23

M
TJ
_x
30

M
TJ
_x
31

M
TJ
_x
32

M
TJ
_x
33

0

500

0

750

500uA

750mV

150°C

25°C

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 49 / 84

• 0W0: W0 operation performed on a MTJ that
initially contains “logic 0”. There is no transition in
this sequence.

• 1W0: W0 operation performed on a MTJ that
initially contains “logic 1”. This sequence
corresponds to a falling transition.

• 0W1: W1 operation performed on a MTJ that
initially contains “logic 0”. This sequence
corresponds to a rising transition.

• 1W1: W1 operation performed on a MTJ that
initially contains “logic 1”. This sequence allows
verifying the W1 operation since it applies both
field-line current polarities.

a)

b)

Figure 5. Capacitive defects injection
a) layout extraction and b) electrical modeling

For each capacitive defect, the capacitance range varies
from the typical value to 10x the typical value. Larger
capacitance sizes are unrealistic from process variations point
of view. In those cases, other defect types, such as bridging
defects, may appear.

A. MTJ bottom – Field-line (C1)
The current that passes through the MTJ is responsible for

heating the device above its blocking temperature during write
operations. This current is also important to retrieve the MTJ’s
logic state during read operations.

Tables II and III summarize the simulated characteristics of
MTJ1,1,1 and MTJ1,1,x in the presence of a capacitive defect
located between bottom metal of MTJ1,1,1 and field-line labeled
as C1. Gray lines represent typical C1 capacitance size. From
these data, we observe that only MTJs sharing the same bit-line
are barely affected by this defect when the defect size is up to
1fF. Consequently, there is no observed faulty behaviors for
the considered defect range, i.e., from typical value to 10x the
typical value.

TABLE II. MTJ1,1,1 CHARACTERISTICS UNDER WRITE OPERATIONS

Operation C1 (fF) V (mV) I (uA) R (kΩ) T (°C) M

0W0
0.10 746.38 605.99 1.23 191.52 1

1.00 746.36 605.91 1.23 191.58 1

1W0
0.10 744.68 606.92 1.22 194.09 1

1.00 744.63 606.85 1.22 194.18 1

0W1
0.10 746.37

863.96
606.00
542.15

1.23
1.59

191.52
182.55 -1

1.00 746.35
863.87

605.92
542.12

1.23
1.59

191.58
182.54 -1

1W1
0.10 744.64

862.99
606.93
542.66

1.23
1.59

194.11
183.93 -1

1.00 744.66
862.99

606.85
542.54

1.23
1.59

194.18
183.99 -1

TABLE III. MTJ1,1,X CHARACTERISTICS UNDER WRITE OPERATIONS

Operation C1 (fF) V (mV) I (uA) R (kΩ) T (°C) M

0W0
0.10 746.45 606.00 1.23 191.45 1

1.00 747.09 605.96 1.23 190.83 1

1W0
0.10 744.70 606.94 1.22 194.07 1

1.00 745.24 606.96 1.22 193.68 1

0W1
0.10 746.44

864.01
606.00
542.10

1.23
1.59

191.45
182.33 -1

1.00 747.12
864.43

605.95
540.93

1.23
1.59

190.79
179.95 -1

1W1
0.10 744.68

863.22
606.96
542.57

1.23
1.59

194.06
183.67 -1

1.00 745.35
864.94

607.04
541.95

1.23
1.59

193.64
181.54 -1

In Figure 6, we show temperature profiles for W1

operations performed in one memory page under C1=1fF
barely affecting the MTJs sharing the same bit-line (MTJ1,0,1,
MTJ1,2,1 and MTJ1,3,1). Note that MTJs are written row by row
from MTJ1,0,0 to MTJ1,3,3. In addition, a non-catastrophic
coupling effect is observed between MTJ1,1,1 and MTJ1,0,1,
MTJ1,2,1 and MTJ1,3,1.

Figure 6. 16 bits W1 under capacitive defect (C1=1fF) temperature profile

B. Field-line – Word-line (C2)
Tables IV and V summarize the simulated characteristics of

MTJx,1,0 and MTJx,2,0 under a capacitive defect located between
field-line and word-line “1” labeled as C2. Simulations were
performed using write sequences previously described.

In Figure 7, we show temperature profiles for W1 operation
performed in one memory page under C2=10fF. This defect
adds an extra delay when selecting/deselecting the affected
word-line. If the defective word-line is half-selected, then
operations performed on an MTJ on this word-line may be
corrupted. Secondly, if the defective word-line remains
partially selected when operations are applied elsewhere in the

25

150

M
TJ
_1

00

M
TJ
_1

01

M
TJ
_1

02

M
TJ
_1

03

M
TJ
_1

10

M
TJ
_1

11

M
TJ
_1

12

M
TJ
_1

13

M
TJ
_1

20

M
TJ
_1

21

M
TJ
_1

22

M
TJ
_1

23

M
TJ
_1

30

M
TJ
_1

31

M
TJ
_1

32

M
TJ
_1

33

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 50 / 84

TAS-MRAM array, then operations performed on a non-
defective word-line may also be corrupted.

TABLE IV. MTJX,1,0 CHARACTERISTICS UNDER WRITE OPERATIONS

Operation C2 (fF) V (mV) I (uA) R (kΩ) T (°C) M

0W0
1.00 748.67 604.77 1.23 188.12 1

10.00 769.01 572.79 1.23 128.30 1

1W0
1.00 746.68 605.83 1.22 191.28 1

10.00 880.12 516.44 1.70 137.35 -1

0W1
1.00 748.67

864.50
604.77
541.85

1.23
1.59

188.12
181.52 -1

10.00 769.01
767.92

572.79
593.69

1.23
1.59

128.30
163.63 -1

1W1
1.00 746.64

863.49
605.86
542.41

1.23
1.59

191.29
183.18 -1

10.00 880.12
872.92

516.44
536.88

1.23
1.59

137.35
168.87 -1

TABLE V. MTJX,2,0 CHARACTERISTICS UNDER WRITE OPERATIONS

Operation C2 (fF) V (mV) I (uA) R (kΩ) T (°C) M

0W0
1.00 749.26 604.46 1.23 187.23 1

10.00 773.40 589.91 1.23 147.24 1

1W0
1.00 747.62 605.36 1.22 189.79 1

10.00 882.29 530.52 1.70 152,90 -1

0W1
1.00 748.90

864.58
604.63
541.82

1.23
1.59

187.77
181.42 -1

10.00 769.79
867.45

591.87
541.63

1.23
1.59

153.26
171.08 -1

1W1
1.00 747.32

863.68
605.50
542.28

1.23
1.59

190.30
182.89 -1

10.00 882.29
870.03

530.51
538.82

1.23
1.59

152.90
173.52 -1

Figure 7. 16 bits W1 under capacitive defect (C2=10fF) temperature profile

The selection of word-line “1” is delayed in the presence of
C2 as can be seen in the operation performed on MTJx,1,0. Next
three operations performed on MTJx,1,1, MTJx,1,2 and MTJx,1,3
that share same word-line work properly as word-line “1” is
fully selected. The operation performed on MTJx,2,0 has an
undesired behavior as C2 delays the word-line “1” de-
selection. Regardless defective word-line selection or de-
selection only 1W0 sequence is not correctly performed. Such
faulty behavior is modeled by a TF0 (Transition Fault 1 to 0).

C. Word-line – Word-line (C3)
Tables VI and VII summarize the simulated characteristics

of MTJx,1,0 and MTJx,2,0, respectively, in presence of a
capacitive defect located between word-line “1” and word-line
“2” labeled as C3. Simulations were performed using write
sequences previously described.

TABLE VI. MTJX,1,0/ X,3,0 CHARACTERISTICS UNDER WRITE OPERATIONS

Operation C3 (fF) V (mV) I (uA) R (kΩ) T (°C) M

0W0
1.00 749.16 604.51 1.23 187.38 1

10.00 755.41 576.71 1.23 147.72 1

1W0
1.00 747.10 605.60 1.22 190.58 1

10.00 864.84 519.58 1.70 155,94 -1

0W1
1.00 749.16

864.77
604.50
541.71

1.23
1.59

187.37
181.30 -1

10.00 755.42
853.37

576.70
546.17

1.23
1.59

147.71
169.08 -1

1W1
1.00 747.05

863.63
605.66
542.29

1.23
1.59

190,57
183.02 -1

10.00 864.85
869.09

519.57
538.41

1.23
1.59

155.93
173.94 -1

TABLE VII. MTJX,2,0 CHARACTERISTICS UNDER WRITE OPERATIONS

Operation C3 (fF) V (mV) I (uA) R (kΩ) T (°C) M

0W0
1.00 758.25 599.58 1.23 173.55 1

10.00 0 0 - 27.00 1

1W0
1.00 755.70 600.49 1.22 177.40 1

10.00 0 0 - 27.00 -1

0W1
1.00 758.24

867.51
599.59
540.31

1.23
1.59

173.55
177.15 -1

10.00 0
744.38

0
531.97

-
1.39

27.00
92.59 1

1W1
1.00 755.75

866.08
600.51
540.96

1.23
1.59

177.41
179.40 -1

10.00 0
862.29

0
477.05

-
1.80

27.00
100.78 -1

In Figure 8, we show temperature profiles for W1

operations performed in one memory page under C3=10fF.
This defect adds an extra delay when selecting/deselecting both
defective word-lines.

Figure 8. 16 bits W1 under capacitive defect (C3=10fF) temperature profile

As observed for C2, the selection of word-line “1” is
delayed in the presence of C3 (operation performed on
MTJx,1,0). Next three operations performed on MTJx,1,1,
MTJx,1,2 and MTJx,1,3 that share same word-line work properly
as their word-line is fully selected. The operation performed on
MTJx,2,0 has an undesired behavior as C3 delays both word-line
“1” de-selection and word-line “2” selection. Next three
operations performed on MTJx,2,1, MTJx,2,2 and MTJx,2,3 work
properly. The operation performed on MTJx,3,0 has an undesired
behavior as C3 delays the word-line “2” de-selection. In
addition to 1W0 operations, 0W1 operations are not correctly
performed in presence of C3. Such faulty behavior is modeled
by both TF0 and TF1 (Transition Fault 0 to 1).

25

150

M
TJ
_x
00

M
TJ
_x
01

M
TJ
_x
02

M
TJ
_x
03

M
TJ
_x
10

M
TJ
_x
11

M
TJ
_x
12

M
TJ
_x
13

M
TJ
_x
20

M
TJ
_x
21

M
TJ
_x
22

M
TJ
_x
23

M
TJ
_x
30

M
TJ
_x
31

M
TJ
_x
32

M
TJ
_x
33

25

150

M
TJ
_x
00

M
TJ
_x
01

M
TJ
_x
02

M
TJ
_x
03

M
TJ
_x
10

M
TJ
_x
11

M
TJ
_x
12

M
TJ
_x
13

M
TJ
_x
20

M
TJ
_x
21

M
TJ
_x
22

M
TJ
_x
23

M
TJ
_x
30

M
TJ
_x
31

M
TJ
_x
32

M
TJ
_x
33

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 51 / 84

D. Word-line – MTJ’s bottom metal (C4)
Table VIII summarizes MTJ’s simulated characteristics in

presence of a capacitive defect located between word-line “1”
and MTJ’s bottom metal labeled as C4.

TABLE VIII. MTJS CHARACTERISTICS UNDER WRITE OPERATIONS

Operation C4 (fF) V (mV) I (uA) R (kΩ) T (°C) M

0W0
0.10 746.38 605.99 1.23 191.51 1

1.00 746.34 605.92 1.23 191.60 1

1W0
0.10 744.69 606.90 1.22 194.09 1

1.00 744.66 606.69 1.22 194.20 1

0W1
0.10 746.37

863.95
605.99
542.13

1.23
1.59

191.52
182.55 -1

1.00 746.33
863.79

605.92
542.53

1.23
1.59

191.61
182.71 -1

1W1
0.10 744.67

862.94
606.92
542.68

1.23
1.59

194.10
183.95 -1

1.00 744.63
862.97

606.71
542.66

1.23
1.59

194.20
184.00 -1

In Figure 9, we show temperature profiles for W1

operations performed in one memory page under C4=1fF.

Figure 9. 16 bits W1 under capacitive defect (C4 =1fF) temperature profile

These electrical simulations show that C4 defect does not
impact the functional operations of the TAS-MRAM.

V. CONCLUSION AND FUTURE WORK
In this paper, we have analyzed the impact of capacitive

defect on the TAS-MRAM performance. Capacitive defect
locations were extracted from the layout of the TAS-MRAM
array and are simulated on a 16-words architecture enabling
any sequences of read/write operations. Results have shown
that writing operations may be affected by these coupling

defects. Especially, we have demonstrated that some capacitive
defects behave as transition faults while others, even if there is
an effective coupling, do not change the functional operation of
the TAS-MRAM. As future work, we plan to use these
analyses results to guide the test phase by providing effective
test algorithms targeting fault related to actual defects that may
affect TAS-MRAM architectures.

ACKNOWLEDGMENT
This work has been funded by the French national research

agency under the framework of the ANR-10-SEGI-007 EMYR
(Enhancement of MRAM memory Yield and Reliability)
project.

REFERENCES
[1] Semiconductor Industry Association, “International technology

roadmap for semiconductors (ITRS),” 2011.
[2] C.L. Su, C.W. Tsai, C.W. Wu, C.C. Hung, Y.S. Chen, and M.J.

Kao, “Testing MRAM for Write Disturbance Fault,” in Proc. of
IEEE International Test Conference, pp. 277-288, 2006.

[3] C.L. Su, R.F. Huang, and C.W. Wu, “MRAM Defect Analysis
and Fault Modeling,” in Proc. of IEEE International Test
Conference, pp. 124-133, 2004.

[4] J. Azevedo, A. Virazel, A. Bosio, L. Dilillo, P. Girard, A. Todri,
G. Prenat, J. Alvarez-Herault, and K. Mackay, “Impact of
Resistive-Open Defects on the Heat Current of TAS-MRAM
Architectures,” in Proc. of Design Automation and Test in
Europe, pp. 532-537, 2012.

[5] J. Azevedo, A. Virazel, A. Bosio, L. Dilillo, P. Girard, A. Todri,
G. Prenat, J. Alvarez-Herault, and K. Mackay, “Impact of
Resistive-Bridge Defects in TAS-MRAM Architectures,” in
Proc. of IEEE Asian Test Symposium, 2012.

[6] X. Aragones, J.L. Gonzalez, F. Moll, and A. Rubio, “Noise
Generation and Coupling Mechanisms in Deep-Submicron ICs,”
IEEE Design & Test of Computers, vol. 19, no. 5, pp. 27-35,
Sept.-Oct. 2002.

[7] D.D. Tang and Y.J. Lee, “Magnetic Memory – Fundamentals
and Technology,” Cambridge University Press, UK, 2010.

[8] M. El Baraji et al., “Dynamic Compact Model of Thermally
Assisted Switching Magnetic Tunnel Junctions,” Journal of
Applied Physics, vol. 106, n° 12, 2009.

[9] W. Guo, “Compact Modeling of Magnetic Tunnel Junctions and
Design of Hybrid CMOS/Magnetic Integrated Circuits,” Ph.D.
Thesis at Institut Polytechnique de Grenoble, 2010.

[10] Cadence Inc., Spectre, User Guide 2008.

25

150

M
TJ
_x
00

M
TJ
_x
01

M
TJ
_x
02

M
TJ
_x
03

M
TJ
_x
10

M
TJ
_x
11

M
TJ
_x
12

M
TJ
_x
13

M
TJ
_x
20

M
TJ
_x
21

M
TJ
_x
22

M
TJ
_x
23

M
TJ
_x
30

M
TJ
_x
31

M
TJ
_x
32

M
TJ
_x
33

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 52 / 84

Automatic Linking of Test Cases and Requirements

Thomas Noack
Berlin Institute of Technology

Daimler Center for Automotive IT Innovations (DCAITI)
Berlin, Germany

E-Mail: thomas.noack@dcaiti.com

Abstract—The paper proposes a 3-layered method which
automatically creates trace links between test cases and reused
requirements (test-links). While the first layer automates the
manual test-link reuse, subsequent layers apply elaborate filter
mechanisms. More specifically, Case-Based Reasoning is used
in the third layer for detecting scenarios where test-link reuse
is questionable. The proposed 3-layered method is explained
with the help of a clarifying example.

Keywords-Reuse; Requirements; Test cases; IBM DOORS

I. INTRODUCTION

Daimler uses the V-Model to manage methods and tools
which guide the development process. Each vehicle series
project passes the V-Model from the requirements stages
over implementation to the test stages. The vertical integra-
tion defines which stages are performed by internal engineers
and which stages are performed by external suppliers. Due to
the low vertical integration in the automotive domain many
engineers nowadays work mainly with engineering artifacts
which are located in the upper stages of the V-Model. These
artifacts are system requirements, test cases and trace links
between them. The actual implementation is often done by
suppliers.

Each new vehicle series inherits engineering artifacts from
previously completed vehicle series projects. That means,
reuse takes place from a source to a destination. The
observation of the Daimler development process revealed
several interesting facts. The reuse direction is horizontal
from a source V-Model instance to a destination V-Model
instance. Reusing system requirements is done by copying
and adapting the requirements specification. Interestingly,
test case reuse is not done via copying in practice. Instead, it
is done by setting thousands of test-links from the existing
test cases to the copied and adapted system requirements.
This paper introduces a method to automate the complex
task of setting the test-links between test cases and reused
system requirements.

The paper is structured as follows: Firstly the Daimler
specific DOORS R©[1] modules and their interaction are in-
troduced. After that the 3-layered method to reuse test-links
is presented. The paper continues with a minimal example
and related work. In the conclusion section, comments are
made and future work is drawn.

II. DOORS R©MODULES IN THE UPPER V-MODEL

Daimler uses DOORS R©for requirements and test engi-
neering. DOORS R©manages specification documents in so
called modules. Figure 1 shows the modules in the upper
V-Model stages of the Daimler development process. The
proposed method focusses on the relationship of the three
following modules.

A. System Requirements Specification (SRS)
A vehicle is described by many SRS - one SRS for one

system. Examples for systems are Wiper Control or Outside
Light Control. The main engineering artifacts in SRS are
vehicle functions. Examples for vehicle functions are wash
windshield or activate turn-signal right. Each vehicle func-
tion is refined by specific (non-)functional requirements.

B. Test Specification (TS)
Test cases are the engineering artifacts in TS. A test case

is characterized by test actions, pre- and pass conditions,
assignments to test levels, test goals and many other proper-
ties. Test cases link to the corresponding requirements they
verify. Each SRS has at least one corresponding TS.

C. Test Concept (TC)
The TC contains the test plan which defines, what must

be tested when for which purpose. The test plan artifacts
are: test object type (What?, e.g., vehicle function), test level
(When?, e.g., vehicle integration test) and test goal (Which
purpose?, e.g., correct interaction on interfaces). The TC
defines which test-links must exist between TS and SRS in
order to fulfill the test plan. Therefore, each test case in the
TS is classified according to the test plan artifacts.

SRS TS

TC

Figure 1. DOORS R©modules in the upper V-Model

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 53 / 84

Analyze

modules

Set

test-links

Analyze

test-links

3 layers

each has
3 phases

1
2

3

Transitive test-link reuse

• System Requirements
Specification (SRS)

• Test Specification (TS)

TC-Driven test-link filtering

+ Test Concept (TC)

+ Classified test cases

2
Case-Based test-link filtering

+ Case Base

3 1

Figure 2. 3-layered method to reuse test-links

III. 3-LAYERED METHOD TO REUSE TEST-LINKS

This section describes the proposed 3-layered method for
automating the reuse of test-links between TS and SRS.
Figure 2 depicts the layers of the method.

Each layer consists of the same three phases. The spe-
cific tasks of each phase differ depending on the layers
characteristics as indicated in Figure 3. A subsequenting
layer enhances the phases of its predecessor with additional
tasks. The general tasks performed in the three phases are
as follows.

• Analyze modules: Extract information from the SRSSrc

(Source), SRSDst (Destination), TS and TC.
• Set test-links: Set links from TS to SRSDst on the basis

of the above analysis results.
• Analyze test-links: Assess the links and highlight the

link status in SRSDst and in TS.
The first layer can be directly integrated into the Daim-

ler development process because the process stipulates the
existence of the involved modules SRSSrc, SRSDst and TS.

Source SRS Destination SRS

Link: VERIFIES Link: VERIFIES

Test

Specification

Link: REUSE

Test Concept Case Base

Known link

Unknown link

Layer 2 Layer 3 Layer 1

Test plan

artifacts

Similar former

reuse cases

Figure 3. DOORS R©modules needed by the layers

In Figure 3, the filled boxes and link arrows show the
minimal reuse situation presumed by the first layer. When
a new vehicle series project is launched, requirements are
reused by copying the complete SRSSrc module. The re-
sulting SRSDst is then adapted to the requirements of the
new vehicle series. While the test-links from TS to SRSSrc

do exist, the test-links from TS to SRSDst do not exist. The
first method layer automatically sets the not existing test-
links and highlights the link status in SRSDst.

The TC shown in the lower right corner of Figure 3 is
the additional module needed by the second layer. The TC
defines which test-links must exist in order to fulfill the test
plan. The connection between TC and TS is established by
classifying the test cases within TS according to the test plan
artifacts of TC. By the virtue of taking test plan artifacts into
account, the resulting test-links and highlighted requirements
are much more comprehensive compared to the linking and
highlighting of the first layer.

The Case Base shown in the lower left corner of Fig-
ure 3 is the additional module needed by the third layer.
Case-Based Reasoning relies on two assumptions [2]: (1)
similar problems have similar solutions and (2) similar
problems occur continuously. Transfered to test reuse, these
assumptions mean that (1) similar reuse situations result
in similar reuse decisions and (2) similar reuse situations
occur continuously. The cases of a Case Base are structural
representations of previously applied knowledge [3]. Reuse
knowledge is represented by differences between previous
SRSSrc, SRSDst, TS and TC. The benefit of Case-Based
filtering is that typical situations, which disable test-link
reuse, can be recognized automatically.

Discussions with Daimler engineers led to an interesting
conclusion. Case-Based Reasoning can, in the given context,
only be used to detect situations, where test-link reuse is
not possible. If, for example, the interface specification of
a destination requirement changed, it can be assumed that a
integration test case probably must be reviewed. On the other
hand, it can not be automatically assumed that a test-link can
be reused only because the interfaces did not change.

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 54 / 84

The layers and its phases are described as follows.

A. First layer: Transitive test-link reuse

1) Analyze modules: If a requirement is reused in
SRSDst, it has a reuse-link to the corresponding requirement
in SRSSrc. The textual similarity between each source and
destination requirement is calculated and stored in SRSDst.
New and heavily adapted requirements of SRSDst have no
reuse-links to SRSSrc.

2) Set test-links: Test-links are reused transitively. That
means, if a test case in TS verifies a requirement in SRSSrc

and if this requirement has been reused by a requirement in
SRSDst, then the test case in TS also verifies the requirement
in SRSDst. If the destination and source requirement are
textually identical, the test-link is reused. Otherwise, it must
be reviewed by the test engineer in the next phase.

3) Analyze test-links: After the test-links have been set in
the previous phase, SRSDst is analyzed. Three scenarios can
occur for each destination requirement: (a) it is identical to
the source requirement and hence a test-link can be reused
directly (b) it has been changed slightly and, therefore, the
test-link must be approved by the engineer (c) it has no test-
link because either it has been changed heavily or it is a new
requirement or the source requirement has no test-links.

B. Second layer: Test-Concept-Driven test-link filtering

1) Analyze modules: Based on the analysis of the TC,
a 3-dimensional test plan cube is constructed. The cube
dimensions are the test plan artifacts: test object type, test
level and test goal. An example of a cube cell would be the
triple (vehicle function, integration test, verify interface).

2) Set test-links: This phase enhances the first layer with
a filtering mechanism enabled by the cube. In particular, the
necessity of the test case is examined by passing the test case
classification to the cube. Only if a test case is considered
as needed by the cube, i.e., as needed to verify a test goal
for a test object type on a test level, the test-link is set.

3) Analyze test-links: While the first layer can only
make statements about the pure existence of test-links the
second layer also considers test plan artifacts. Therefore,
for each destination requirement the following more detailed
scenarios arise: (a) a test case for a specific test object type
is missing (b) a test case for a specific test goal is missing
and (c) a test case for a specific test level is missing.

C. Third layer: Case-Based test-link filtering

1) Analyze modules: In this most sophisticated layer,
Case-Based Reasoning (CBR) is utilized to filter test-links
based on previous reuse experience. More specifically, a
current reuse situation is constructed for each potentially
reusable test-link by extracting relevant information from
SRSSrc, SRSDst, TS and TC. The situations are then
converted into structural case representations to enable sim-
ilarity search in the next phase.

2) Set test-links: For each constructed current reuse
situation, a similar case in the Case Base is searched.
Therefore, similarity measures, as shown in [4], are applied.
If a similar negative reuse case, i.e. where link reuse has
been questionable, is found for a current test-link, its reuse
possibility is also marked as questionable.

3) Analyze test-links: The third layer extends the previous
layers with additional analysis possibilities with respect to
not reusable test-links. For each classifying property more
fine-grained scenarios arise, e.g., (a) interface has been
changed thus an integration test case is questionable or (b)
safety relevance has been changed thus a safety test case is
questionable.

IV. EXAMPLE

Figure 4 depicts an example to show the application of
all three layers. The following subsections describe, how the
3-layered method extends the current module landscape.

A. Current state of the modules

Currently, SRSDst, SRSSrc and TS are stipulated by the
Daimler development process. While the TC has been rolled
out lately, the Case Base is a new module which only exists
conceptually. The SRS modules in Figure 4 contain the
textual requirements SrcX and DstX and columns of their
properties.The TS contains test cases which trace link to
SRS modules.

B. Reuse relationship between SRSSrc and SRSDst

Src1+2 in SRSSrc and Dst1+2 in SRSDst are in a reuse
relationship. Since Dst1 has not been changed textually, it
is 100% similar to Src1. Dst2 has been modified in order
to adapt the changed needs of a new vehicle series. The
textual similarity of Dst2 and Src2 is 80%. For further
considerations we assume that 80% is within the borders
of the reuse threshold. Dst3 has changed heavily and the
reuse relationship to Src3 could not be detected technically.
Dst4 is a new requirement.

C. Transitive reuse of test-links

The test cases TestX in TS have test-links to the require-
ments SrcX in SRSSrc. These test-links between Src1+2 and
Test1+2 are reused to link to the corresponding requirements
Dst1+2 in SRSDst. While the test-link between Test1 and
Dst1 has been reused directly, the test-link between Test2
and Dst2 must be reviewed because the requirements Dst2
and Src2 are not identical. The test-link between Dst3 and
Test3 is not set because Dst3 and Src3 have no reuse-link.

D. TC and classified test cases in TS

The TC stipulates that each test object of the type vehicle
function must be verified on integration (Int) and system
(Sys) test level. The test goal functionality must be verified
by both, integration and system test. Correct interaction on
interfaces has to be verified on the integration test level

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 55 / 84

Case Base Test Specification (TS)

Destination SRS Source SRS Test Concept (TC)

Figure 4. Minimal example (DOORS R©module state after running layer 3)

only. The test cases in the TS are classified by the test plan
artifacts test goal and test level. Test3 verifies the test goal
configurability. Because this test goal is not considered by
TC, a potential test-link from Test3 would not be set.

E. Case Base

The requirements Src2 and Dst2 have a common property:
Interface. While Src2 has an interface to the system [’Sys
1’], the system dependencies of Dst2 are [’Sys 1’, ’Sys 2’].
This current reuse situation is transformed to a case.

The search in the Case Base returns the case Interface
changed, which is identical to the current reuse situation.
The reuse decision Review of the case is applied to the
current situation between Test2 and Dst2.

V. STATE OF THE ART

There are two possible sources from which reused test
cases can originate: they come from already existent test
cases or have been generated from reused test models.
Because this work is located in the upper V-Model stages it
clearly focusses on the first possible source.

Three works mainly inspired the 3-layered method. Gep-
pert et al. describe, how textual test cases can be transformed
to product line test cases [5]. Nebut et al. propose a
requirement-based approach for testing product families [6].
They generate textual test cases from the so called Use Case
Transition System, which is formed by trace links between
Use Cases. Minor and Hanft use Case-Based Reasoning for
reusing test cases by analyzing textual similarity [7].

VI. CONCLUSION AND FUTURE WORK

This Work in Progress paper proposed the basic function-
ality of a 3-layered method which has been developed for
supporting the industrial test case reuse process pragmati-
cally. The first method layer has been piloted successfully in

the automotive domain with real specification modules from
the Wiper Control System and the Rain Closing System.
Implementation details and field study results of each layer
follow in future publications.

The proposed method does not only exclusively sup-
port the automotive domain. It is located in the upper V-
Model stages and thus can be applied generally to each
environment, where test cases and system requirements are
connected by test-links.

REFERENCES

[1] IBM, “Rational DOORS,” http://www-03.ibm.com/software/
products/us/en/ratidoor/ [Last access: 19/06/2013].

[2] D. B. Leake, “CBR in Context : The Present and Future,”
in Case-Based Reasing: Expericences, Lessons and Future
Directions. MIT Press, 1996, ch. 1, pp. 1–35.

[3] R. Bergmann, J. Kolodner, and E. Plaza, “Representation in
Case-Based Reasoning,” The Knowledge Engineering Review,
vol. 20, pp. 209–213, 2006.

[4] F. Brosius, “Distanz- und Ähnlichkeitsmaße (engl.: Distance
and Similarity Measures),” in SPSS 21. mitp, 2013, ch. 31,
pp. 693–709.

[5] B. Geppert, J. Li, F. Rössler, and D. M. Weiss, “Towards Gen-
erating Acceptance Tests for Product Lines,” in Proceedings of
the 8th International Conference on Software Reuse, Madrid,
Spain, 2004, pp. 35–48.

[6] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel, “A
Requirement-based Approach to Test Product Families,” in
Proceedings of the 5th International Workshop on Software
Product-Family Engineering, Siena, Italy, 2003, pp. 198–210.

[7] M. Minor and A. Hanft, “The life cycle of test cases in a
CBR system,” Advances in Case-Based Reasoning, pp. 455–
466, 2000.

48Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 56 / 84

Using Filtering to Improve Value-Level Debugging of Verilog Designs

Bernhard Peischl

Softnet Austria

Graz, Austria

bernhard.peischl@soft-net.at

Franz Wotawa

 Institute for Software Technology, TU Graz

 Graz, Austria

franz.wotawa@ist.tuGraz.at

Naveed Riaz

Shaheed Zulfikar Ali Bhutto Institute

Islamabad, Pakistan

n.r.ansari@szabist-isb.edu.pk

Abstract— In this article, we report on novel insights in model-

based software debugging of hardware description languages

(HDLs). Our debugging model allows one for exploiting failing

and passing test cases by incorporating Ackermann constraints.

This article reports on an empirical evaluation of the introduced

models. The evaluation of our approach on the well-known

ISCAS 89 benchmarks concerning single and dual-fault diagno-

ses clearly indicates that incorporating passing test cases into

fault localization improves considerably the accuracy of the ob-

tained diagnosis candidates.

Keywords – hardware/software debugging, model-based

debugging, source-level debugging, fault localisation

I. INTRODUCTION

This article reports on the most recent results in software
debugging of Verilog designs. It is a major extension to pre-
vious research work that primarily reports on fault localization
in Very High Speed Integrated Hardware Description Lan-
guage (VHDL) [1]. Verilog [2], has a formal semantics and
thus, it is amendable to research in verification and debugging,
e.g., its synthesis semantics is formally specified in Gordon
[3].

Most of the research in verification deals with the detec-
tion of faults and does not address the fact that debugging in-
volves locating and correcting the fault. In detecting faults
(software/hardware testing), we make use of numerous test
cases for more than two decades. In the recent past, numerous
test cases have been employed for localizing faults, e.g., in
terms of employing spectrum-based diagnosis [4, 5, 6, 7, 8].

Spectrum-based techniques, however, allow one for logi-
cal reasoning at the level of dependencies and do not consider
the semantics of the language in terms of value-level models.
Consequently, there is a lack of research dealing with multiple
test cases in conjunction with value-level models taking into
account language semantics. This is noteworthy as we do have
well-founded techniques that allow for considering whole test
suites and – as shown in this article – there is solid empirical
evidence that taking into account test suites improves the fault
localization capabilities considerably.

Over the last 25 years, the Artificial Intelligence commu-
nity has developed a framework for system diagnosis called
model-based diagnosis (MBD). This framework is extremely
general and covers a broad range of capabilities, including the
isolation of faulty components and the handling of multiple
fault locations [9, 10]. Harnessing these techniques in soft-
ware engineering tools, may help considerably to master the
development of complex circuits and software-enabled sys-
tems.

Since its well-founded theory, we rely on MBD, and em-
ploy the ISCAS 89 benchmark suite [11] to demonstrate the
practical applicability of our novel models. Relying on an ex-
haustive evaluation, our insights clearly indicate that the in-
corporation of test suites (rather than only single test cases as
for example in [12]) considerably contributes to locate accu-
rately the root cause for detected misbehavior. According to
our empirical evaluation using the ISCAS 89 benchmarks,
with a couple of failing test cases (up to 5), we can exclude
almost 94 percent of the statements and expressions of being
faulty. By leveraging passing test cases, we can further rule
out around half of the remaining 6% of the potentially errone-
ous code. In this article, we show how to incorporate passing
test cases. In contrast to previous articles addressing this issue,
we report on our most recent empirical evaluation on the
ISCAS 89 benchmarks regarding the proposed filtering algo-
rithm.

The next section gives a brief introduction to simulation,
test and debugging of HDLs and afterwards (Section III), we
discuss the debugging of sequential circuits. In Section IV, we
show how to exploit passing test cases. Section V reports on
practical experiences and the evaluation of the approach and
Section VI concludes this article.

II. SIMULATION, TEST AND DEBUGGING

In designing circuits, a designer starts with an initial spec-
ification that primarily captures the functional requirements
for the circuit being designed. Usually, this is followed by a
detailed design on the register transfer level (RTL). Both de-
signs are executable and thus are amendable to automated ver-

49Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 57 / 84

ification. In general, the RTL design is verified very thor-
oughly in terms of testing and various other analysis tech-
niques, e.g., hazard analysis. Since there is a fixed window for
start of production, these verification steps are typically con-
ducted under time pressure and thus, the time for debugging –
detecting, localizing, and repairing the misbehavior – is a crit-
ical process measure.

Typically, the design process iterates through several
steps: Design and programming is followed by a simulation of
the circuit. The outcome of the simulation is compared to the
specification, that is, it is checked whether the waveform
traces on a higher abstraction level (the specification) deviate
from the waveforms obtained from the test run on the RTL
level. Previous research work, carried out in the VHDL do-
main, gives an intuitive understanding on how to leverage
MBD for fault localization in HDL designs1.

According to a study conducted at IBM Haifa, 50 to 80
percent of the overall development is attributed to verification
activities, and localization and correction amounts to 35 per-
cent of the design cycle [13]. Thus, particularly under local or
temporal separation of the design and the test team, the auto-
mation of fault localization (and correction) is a sustainable
topic for ongoing and future R&D work as it contributes to
make the development process more efficient.

III. DEBUGGING SEQUENITAL VERILOG DESIGNS

The semantics of Verilog has been analyzed rigorously,
and thus provides the necessary theoretical underpinning in
language semantics and circuit synthesis. Gordon [3] provides
a formal description of various semantic interpretations of
Verilog like event-semantics and trace-semantics. In event-se-
mantics (which is the semantics employed for fine-grained
simulations), the change of a variable necessitates the recalcu-
lation of depending procedures.

In contrast to that, the trace semantics of Verilog computes
solely the quiescent states at the end of a simulation cycle. For
computing these quiescent values, each procedure is evaluated
only once per cycle [3]. Procedures are evaluated in an order
such that a procedure is not evaluated until all its driving pro-
cedures have been evaluated. In other words, the outputs of a
procedure are computed only when all its inputs are known (or
already computed). So, we build up our representation of the
design by starting with processes solely dependent on known
inputs and variables (e.g., the primary inputs, including
clock). Afterwards, the outputs of these processes are attached
to the list of already known inputs and variables. This process
continues until all the procedures in the design are levelized
[12]. In this way, we build up a chain of procedures and their
inputs and outputs, thus allowing for an evaluation of all the
variables used in the design at the end of the simulation cycle.

Synchronous sequential circuits change their states and
output values at discrete instants of time, which are specified
by the rising and falling edge of a clock signal. In other words,
synchronous sequential circuits consist of multiple cycles. In
electrical engineering, sequential circuits are often viewed as
a sequence of connected combinational circuits. This can be
done by selecting some connections and splitting them in two

separated connections. One is the input and one the output.
The output of a stage of a specific cycle is connected to the
corresponding input of the next cycle.

We have adopted the same idea for providing an appropri-
ate debugging model for sequential designs. Our representa-
tion can be broken into two phases, one in which latches
change state, and one in which all the combinational blocks
are evaluated. We effectively break the design at latches by
treating the outputs of the latches as they were inputs and in-
puts of the latches as they were outputs.

In our representation, we first identify variables that we
have to synthesize into latches. By splitting these variables
and treating them as additional inputs and outputs, we ensure
that our representation remains acyclic. Then, we levelize the
graph according to the levelization strategy discussed above.
Thus, we receive a sequence of procedures depicting the data
flow from the given primary inputs to the primary outputs.
Our next step is to unroll the sequential circuits to incorporate
multiple cycles (input sequence length). We assume that we
know the number of unrollings to be performed in advance.
After the levelization of all the procedures, we create the com-
ponent-connection model. This component-connection model
[9, 10] represents our model at level 1 (cycle no. 1). For every
component C, we attach a timestamp i during the creation of
the model to ensure a unique identification. Thus Ci represents
the instance of component C at cycle i. Thus, we make n cop-
ies of every component involved, where n is the total number
of cycles or unrollings. So we create n instances for each com-
ponent.

Diagnosis problem: A diagnosis problem considering circuit

unrolling over n cycles is a triple (SD, COMP,OBS) where

ni

iSDSD
..1

 where SDi is the system descry. for cycle i (1)

ni

iCCOMP
..1

 where Ci are the components in cycle i (2)

and

ni

iOBSOBS
..1

 and OBSi denote the obs. in cycle i. (3)

The above given definition captures a diagnosis model for
a single test case (of length n). Given this definition, the diag-
nosis problem considering a test suite is given as follows:

Diagnosis problem, test suite: Given a test suite comprising

the test cases TC1, TC2, …, TCk. Let the system description

SDj be the system description considering test case TCj and

let
j

iC be the instance of component C at cycle i in test case

number j. Correspondingly, the sets j

iOBS denote the obser-

vations in cycle i of test case TCj. The diagnosis problem

(SD*, COMP*, OBS*) considering this test suite is given as

follows:

50Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 58 / 84

kj
j

n

j

jj

j

CABCAB

CABCABSD
SD

..1 2

10*

)}(.......)(

)()({

nikj

j

iCCOMP
..0,..1

*

nikj

j

iOBSOBS
..1,..1

*

As passing testcases do not cause a logical contradiction,
we do not obtain conflicts from passing testcases considering
the diagnosis model for a test suite (SD*, COMP*, OBS*).

IV. EXPLOITING PASSING TESTCASES

To illustrate the potential of using passing test cases to lo-
cate the root cause for detected misbehavior we continue with
a simple example.

assumption in1 in2 out inter verdict

AB(not), AB(xor) 1 0 1 0 fail

AB(not), AB(xor) 0 0 1 1 pass

Figure 1 illustrates a part of a circuit an exclusive or and a
NOT gate together with a passing and failing test case. We
further assume that the circuit is faulty, that is, our test suite
has identified misbehavior and we obtain both components
(the exclusive OR and the NOT gate) as possible diagnosis
candidates.

Suppose we have the test cases given in Figure 1. Consid-
ering the first (failing) test case in the first line, and assuming
the NOT gate to be abnormal but the exclusive OR gate to be
correct, we can deduce that signal inter becomes 0. However,
under the same assumption, the passing test case in line 2,
forces the value of inter to become 1. We immediately see that
the NOT gate is required to map the signal inter to 0 and to 1
for the same input value in2=0. Obviously, no deterministic
component can fulfill this requirement. Thus, the NOT gate
can no longer be considered as a valid diagnosis candidate. To
our best knowledge, the authors of [14] were the first who
used this idea for discriminating diagnosis candidates. Unfor-
tunately, the article gives no further insights whether the tech-
nique can be employed in practice as the authors do not pro-
vide an empirical evaluation to evaluate scalability and the im-
provement with respect to accuracy.

In the following, we propose an extension to that which,
under absence of structural faults, allows one for taking ad-
vantage of passing test cases. As passing test cases does not
yield to additional conflicts, we capture the specific infor-
mation about diagnoses in terms of Ackermann constraints
[22, 23]. By adding these consistency constraints we incorpo-
rate the fact that the same combination of input values applied
to a deterministic component C produces the same output for

every instance of C. This allows for exploiting the many test
cases that typically do not reveal a fault. The system descrip-
tion with Ackermann constraints SDA is given as follows:

System description with Ackermann constraints: Let TCp

be a set of passing test cases form a test suite TC, let in(Ci)

={
1

Cii , …,
m

Cii } denote the inputs of component Ci, let

out(Ci)={
1

Cio ,…,
n

Cio } denote the outputs and let SD* denote

the system description of a diagnosis problem considering a

test suite. The system description with Ackermann con-

straints SDA is given by,

where, i≠j and i,j denote indices of the passing test cases.

As we will show in the next section, Ackermann constraints

increase the complexity of the model considerably.

Therefore, we used a post processing technique proposed by

the authors of [21]. As shown at the end of this section, fil-

tering allows one for iteratively applying the Ackermann con-

straints to the obtained diagnoses. Instead of compiling the

constraints into the debugging model, we apply the con-

straints in terms of a dedicated post-processing phase.

Filtering refers to discarding certain diagnoses by taking ad-

vantage of further test cases TCi. A diagnosis Δ states that

}\|)({ COMPCCABTCSD i
is con-

sistent. This implies that there is a replacement, that is, there

exists a function replace(C) for every component C
that allows for repairing the program for the given test case.

The function replace(C) allows for producing the correct out-

put values for the considered test case. However, considering

a test suite such a replacement does not exist for all test cases

in the test suite TC necessarily.

Since all components COMP \ Δ are assumed to behave cor-

rectly, we can compute the input values in(C) and out(C) for

every component C from Δ (employing forward propaga-

tion). According to this computed input/output relation, the

component C may be required to map the same input- to dif-

ferent output values. This corresponds to an inconsistency

and the specific diagnoses AB(C) is not repairable wrt. the

specific test case. As there is no function replace(C) as stated

previously, the component C can be removed from the set of

diagnosis candidates. In this vein, we evaluate the Acker-

mann constraints in an iterative way by checking for different

input values for a certain output value.

Figure 1: Passing and failing testcases and part of a circuit.

(4)

(5)

(6)

p

cj

p

ci

n

p

l

cj

l

ci

m

liA

AA

ooiiCABCON

CONSDSD

 11

*

)(

, (7)

(8)

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 59 / 84

Algorithm 1 (Filtering): Let Δ denote a set of diagnosis can-

didates and let TS be a test suite.

1. For all D Δ do

2. For all test cases TCi TC do

a. Let iDi denote the input values and let oDj

denote the output values of component D by assum-

ing }\|)({)(DCOMPCCABDAB

b. If there exits i,j, i≠j, such that

then remove D from Δ

3. return Δ

Claim: Algorithm 1 applies the Ackermann constraints

CONA to a set of single-diagnosis candidates.

After applying Algorithm 1 to the set of single-fault diagnosis

candidates, there is no component D at which we obtain dif-

ferent input values for a certain output value. Thus, we con-

clude that

Algorithm 1 (Figure 2) thus imposes the Ackermann con-

straints on the set of single-fault diagnosis candidates. There-
fore, for our approach evaluation we therefore took advantage
of the filtering algorithm presented previously.

V. PRACTICAL EXPERIENCES AND EVALUATION

With a series of our most recent experiments we pursue
the goal to evaluate the discriminating capabilities of several
test cases on sequential circuits, the response time (and thus
the computational complexity on a technical level) and the ef-
fect of the filtering technique.

We conducted our experiments on a Dell Power Edge
1950 II - 2x Quad Core with 2.0 GHz and 10GB of RAM. For
computing diagnoses, we relied on the extension of Reiter’s
algorithm described in [15]. Note that, for the efficient com-
putation of diagnoses, we convert the rules capturing the lan-
guage semantics (discussed in [16]) into a specific Horn-like
encoding [17]. As the computation of conflict sets is a time
critical issue, the (minimal) conflict sets are computed accord-
ing to the procedure explained in [17].The diagnosis engine
and the proposed extension are implemented in the Java pro-
gramming language.

Our debugging tool parses the Verilog code, builds up the
model as described in this article and converts a test suite to
the logical representation [16]. Afterwards, the tool computes
diagnosis candidates in increasing order of cardinality and vis-
ualizes the results by highlighting the corresponding state-
ments, expressions or operators.

A. Time Complexity of Computing Diagnosis

For our empirical evaluation, we use a Horn-like encoding
of the rules presented herein. By relying on this encoding we

make use of an efficient procedure to compute all minimal
conflicts [17]. From the obtained conflicts, we retrieve diag-
noses by computing the minimal hitting sets in increasing or-
der, where for practical purposes, primarily single- and dou-
ble-fault diagnoses are of interest. In general, searching for all
diagnoses has a worst time complexity of the order
O(|MODES|*|COMP|s), where |MODES| is the number of
fault modes, |COMP| is the number of components and s is the
maximal size of the diagnoses [18]. Since we use two fault
modes (AB(C) and AB(C)) and search for single and dou-
ble fault diagnoses, our worst time complexity is of the order
O(|COMP|2). Note that we consider the components in every
cycle as independent and thus the number of components in-
creases with the length of the test case. However, the average
running time complexity is much better because diagnoses
with smaller size (particularly single-fault diagnoses) are
more likely than diagnoses with bigger size. For example,
finding all single diagnoses is of order O(|COMP|) assuming
the decision procedure can be executed in unit time.

B. Test Suite Generation

We obtained the test suite by injecting a single-fault (re-
spectively a dual-fault for the second series of experiments)
into the RTL design. Afterwards, we identified the faults in
terms of running a simulation until we obtained five test cases
revealing the introduced fault. In some (rare) cases, for exam-
ple for the circuit s444, we were not able to find five test cases
and stopped this process earlier (see Figure 3). The faults are
introduced in a random way by picking a statement from every
circuit and replacing this statement by another statement. That
is, for every circuit, we replaced an arbitrary statement with a
structurally equivalent statement (same no. of input parame-
ters). For example, in a specific circuit we randomly selected
a NOR statement and replaced it by an AND statement. Fur-
thermore, we implicitly removed/added negations as we sub-
stituted a logical statement by the negated counterpart (e.g.,
NAND by AND vice versa). These error types are not neces-
sarily complete wrt. functional errors, but as they are believed
to be common in the design process, we capture the most com-

)()(,, 11

p

Dj

p

Di

n

p

l

Dj

l

Di

m

l ooiijiji

)()(,, 11

p

Dj

p

Di

n

p

l

Dj

l

Di

m

l ooiijiji

)()(,, 11

p

Dj

p

Di

n

p

l

Dj

l

Di

m

l ooiijiji

DjDiDjDi ooii

Figure 3: No. of obtained single-fault diagnoses for the ISCAS 89

benchmark (4 cycles).

Figure 2: Exploiting passing testcases via filtering.

(9)

(10)

(11)

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 60 / 84

mon scenarios [20]: (1) Mistakenly replacing one gate by an-
other gate with the same number of inputs and (2) incorrectly
adding or removing a gate.

All empirical evaluations are conducted on the Verilog
RTL version of the ISCAS 89 benchmark suite [11]. Further,
the gate-level representations of the ISCAS 89 benchmarks
have been used to obtain the correct waveform traces since our
simulator allowed only for simulation of gate-level circuits. A
detailed analysis including the results for the specific circuits
can be found in [16]. In the following, we summarize the ma-
jor results. In this article, we summarize the work presented in
[16] and present novel results regarding the incorporation of
passing tests alongside with first empirical results.

C. Empirical Evaluation and Discussion

 In our experimental setting, we assumed that an engineer
only knows the correct values of the primary inputs for every
simulation cycle and the outputs at the end of the final simu-
lation cycle. That is, the traced variables correspond to the pri-
mary inputs vin for every instant of time (vin, valin, t), t=1..n,
together with the primary outputs (vout, valout, n) at time n
and thus, the observations are given in terms of the primary
input variables for every cycle and the primary output varia-
bles at the end of the simulation cycle (i.e., at time point n,
where n is the length of the test case). To evaluate the impact
of the temporal unfolding of the circuit, we conducted exper-
iments with four and eight simulation cycles relying on the
well-known ISCAS 89 benchmark suite.
 First, the figures underpin the findings discussed in previ-
ous research papers [19]. The number of single diagnoses be-
ing obtained depends from both, the concrete test case being
applied and the structural complexity of the program being
considered. Second, as Figures 3 and 4 illustrate – even with
only a couple of test cases (in our case up to 5) – the number
of obtained diagnoses can be reduced significantly when com-

pared to the experiment with solely a single test case. Re-
markably, the random fault introduced in circuit s510 yields
to a significant number of diagnoses and thus higher response
times when compared to the remaining circuits. It appears that

(1) the structural complexity, (2) the specific error being in-
troduced and the (3) specific test cases identifying the intro-
duced faults result in a (at least in relation to the other circuits)
computationally expensive problem. On average, we obtained
74(123) single-fault diagnoses and 44(70) faulty lines in the
source code when unfolding the circuit for 4(8) instances of
time. Remarkably, a designer can exclude over 90 percent of
the source code from being faulty (93,6 percent for 4 cycles
and 92,5 percent for 8 cycles of unfolding).

 Figure 5 outlines further empirical results. We obtained
these results from the ISCAS 89 benchmark suite considering
dual-fault diagnoses as well. When considering dual-fault di-
agnoses, the no. of diagnosis candidates does not necessarily
decrease monotonically with the increasing set of test cases.

However, our experiments revealed that for most of the
circuits, the obtained number of fault candidates decreases
monotonically with an increase in the size of the test suite.
Together with the results for single-fault diagnoses, this gives
empirical evidence that the additional cost in the running
time, pays off in terms of a higher accuracy in the obtained

diagnosis candidates. In [15], we present novel algorithms and
an analysis on scalability and the corresponding running
times.

Figure 4: No. of obtained single-fault diagnoses (ISCAS 89, 8 cycles).

Figure 5: No. of obtained dual-fault diagnosis (ISCAS 89, 4 cycles).

Figure 6: No. single-fault diagnoses when using the filtering algorithm

(4 cycles).

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 61 / 84

Figure 6 summarizes the results on a further series of ex-
periments incorporating the filtering algorithm. To our best
knowledge, the filtering approach has never been subject to an
empirical evaluation. When compared to Figure 3, one can see
that exploitation of passing test cases contributes to accurately
isolate the real cause of misbehavior.

VI. CONCLUSION

In this article, we briefly discuss the simulation-driven de-
sign process with hardware description languages (HDLs) and
point out the importance of fault localization techniques. Af-
terwards, we introduce a model extension that allows one for
exploiting failing and passing testcases. Failing testcases re-
sults in conflicts, and thus it contributes to locate the fault in
an accurate manner. To exploit the numerous passing test
cases, we introduce Ackermann constraints and establish a re-
lationship to the filtering technique proposed earlier. Our em-
pirical evaluation on the ISCAS 89 benchmark suite demon-
strates that the proposed technique is practically feasible and
considerably contributes to locate the real cause of misbehav-
ior. According to our experiments using the ISCAS 89 bench-
marks, on average, we can exclude almost 94 per cent of the
statements and expressions from being faulty making use of
up to 5 failing test cases per circuit. By leveraging passing test
cases, we are able to rule out around half of the remaining 6
per cent of the potentially erroneous code. These results moti-
vate research on value-level models for debugging HDL de-
signs. Future research should apply the proposed techniques
to even bigger circuits (e.g., using more recent benchmarks,
etc.) and investigate the relationship between filtering and
Ackermann constraints under presence of multiple-fault diag-
noses.

REFERENCES

[1] Z. Navabi, VHDL Analysis and Modeling of Digital Systems,
McGraw-Hill, New York, 1993.

[2] IEEE Standard Verilog Language Reference Manual LRM Std
11364-1995, Institute of Electrical and Electronics Engineers,
Inc. IEEE, 1995.

[3] M. J. C. Gordon, “Relating event and trace semantics of
hardware description languages”, The Computer Journal,
45(1), 2002, pp. 27–36.

[4] R. Abreu, P. Zoetewei, van A. J. C. van Gemund, “On the
Accuracy of Spectrum-based Fault Localization”, Testing:
Academic and Industrial Conference Practice and Research
Techniques - MUTATION, 2007, TAICPART-MUTATION
2007, vol., no., 10-14 Sept. 2007, pp. 89-98.

[5] B. Baudry, F. Fleurey, Y. Le Traon, “Improving test suites for
efficient fault localization”, In Proceedings of the 28th
international conference on Software engineering (ICSE '06),
ACM, New York, NY, USA, 2006, , pp. 82-91.

[6] D. Hao, L. Zhang, T. Xie, H. Mei, and Jia-Su Sun, 2009,
“Interactive fault localization using test information”, J.
Comput. Sci. Technol. 24, 5, September 2009, pp. 962-974.

[7] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, M. I. Jordan,
“Scalable statistical bug isolation”, In Proceedings of the 2005
ACM SIGPLAN conference on Programming language design
and implementation (PLDI '05), ACM, New York, NY, USA,
2005, pp. 15-26.

[8] Y. Yu, James, A. Jones, M. J. Harrold, “An empirical study of
the effects of test-suite reduction on fault localization”, In
Proceedings of the 30th international conference on Software
engineering (ICSE '08). ACM, New York, NY, USA, 2008, pp.
201-210.

[9] R Reiter, A theory of diagnosis from first principles, Artif.
Intell. 32, April 1987, pp. 57-95.

[10] J. de Kleer, A. K. Mackworth, R. Reiter, “Characterizing
diagnoses”, In Proceedings of the National Conference on
Artificial, Intelligence (AAAI), Boston, Aug. 1990, pp. 324–
330.

[11] F. Brglez, D. Bryan, K. Kozminski, “Combinational Profiles of
Sequential Benchmark Circuits”, IEEE International
Symposium on Circuits and Systems, 1989, pp. 1926-1934.

[12] B. Peischl and F. Wotawa, “Automated Source-Level Error
Localization in Hardware Designs”, IEEE Design and Test of
Computers, January/February, 2006, pp. 8-19.

[13] G. Auerbach, M. Moulinn, B. Jobstmann, R. Bloem, A.
Cimatti, M. Roveri, PROSYD: Property-Based System Design,
Deliverable 2.1/1, May 2005, PROSYD Technical Report,
FP6-IST-507219.

[14] O. Raiman, J. de Kleer, V. Saraswat, and M. Shirley,
“Characterizing non-intermittent faults”, In Proceedings
AAAI, Anaheim, Morgan Kaufmann, July 1991, pp. 849–854.

[15] B. Peischl, N. Riaz, F. Wotawa, “Advancements in Automated
Debugging of Verilog Designs”, Submission to the Applied
Artificial Intelligence Journal in preparation.

[16] B. Peischl, N. Riaz, F. Wotawa, “Automated Debugging of
Verilog Designs”, International Journal of Software
Engineering and Knowledge Engineering (IJSEKE), Sept.
2012, Vol. 22, No. 5, World Scientific, pp. 695-724.

[17] B. Peischl and F. Wotawa, “Computing Diagnosis Efficiently:
A Fast Theorem Prover for Propositional Horn Theories”, In
Proceedings of the 14th International Workshop on Principles
of Diagnosis (DX-03), Washington DC, June 2003, pp. 175-
180.

[18] F. Wotawa, Applying Model-Based Diagnosis to Software
Debugging of Concurrent and Sequential Imperative
Programming Languages, PhD thesis, Technische Universität
Wien, 1996.

[19] G. Friedrich, M. Stumptner, F. Wotawa, “Model-based
diagnosis of hardware designs”, Artif. Intell. 111(1-2), 1999,
pp. 3-39.

[20] D. Nayak, D. M. H. Walker; “Simulation-based design error
diagnosis and correction in combinational digital circuits”,
VLSI Test Symposium, Proceedings of the 17th IEEE Test
Symposium (VIS 99), 1999, pp. 70-79.

[21] F. Wotawa, “Debugging hardware designs using a value-based
Model”, Applied Intelligence, 16(1), 2002, pp. 71–92.

[22] W. Ackermann, Solvable Cases of Decision Problems, North
Holland, 1954.

[23] S. Staber, G. Fey, R. Bloem, and R. Drechsler, “Automatic
fault localization for property checking”, In E. Bin, A. Ziv., and
S. Ur, editors, Second International Haifa Verification
Conference (HVC 2006), Haifa, Israel, October 2006,
Springer-Verlag, LNCS 4383, pp. 50-64.

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 62 / 84

Towards an Integrated Methodology for the Development and Testing of Complex
Systems

Philipp Helle, Wladimir Schamai
EADS Innovation Works

Hamburg, Germany
Email: {philipp.helle,wladimir.schamai}@eads.net

Abstract—This paper reports on a framework for the devel-
opment and testing of complex systems. The framework provides
a meta-model for the description of systems at different levels
of abstraction which is used as a basis for the combination of
model-based testing (MBT) techniques for automated test case
generation with executable requirement monitors that continu-
ously observe the status of the System under Test (SuT) during
test execution. The overall goal is to reduce the total development
and testing effort for complex systems. This is accomplished by
enabling a high degree of automation and reuse of engineering
artefacts throughout the systems engineering lifecycle.

Keywords—Model-based Systems Engineering, Model-based
Testing, Monitor-based Testing, SysML.

I. INTRODUCTION

The ever-increasing complexity of products has a strong
impact on time to market, cost and quality. Products are
becoming increasingly complex due to rapid technological
innovations, especially with the increase in electronics and
software even inside traditionally mechanical products. This
is especially true for complex, high value-added systems in
the aerospace and automotive domain - the methodology
was developed and is therefore embedded in an aeronautic
context but generally is independent of a specific domain
- that are characterized by a heterogeneous combination of
mechanical and electronic components. System development
and integration with sufficient maturity at entry into service
is a competitive challenge in the aerospace sector. Major
achievements can be realized through efficient system testing
methods.

”Testing aims at showing that the intended and actual
behaviours of a system differ, or at gaining confidence that
they do not. The goal of testing is failure detection: observable
differences between the behaviours of implementation and
what is expected on the basis of the specification”[1].

The typical testing process is a human-intensive activity
and as such it is usually unproductive and often inadequately
done. It requires human test engineers to manually write test
cases. A test case contains a series of test inputs and expected
results. Nowadays, the test execution especially on lower levels
of testing is largely automated. Nevertheless, this process
is cumbersome and costly. Therefore, testing is one of the
weakest points of current development practices. According
to the study in [2] 50% of embedded systems development
projects are months behind schedule and only 44% of designs
meet 20% of functionality and performance expectations. This
happens despite the fact that approximately 50% of total
development effort is spent on testing [2], [3]. This shows the

importance and desirability of reducing test effort by advances
in the testing methodologies.

Testing needs to be applied as early as possible in the
lifecycle to keep the relative cost of repair for fixing a
discovered problem to a minimum. This means that testing
should be integrated into the lifecycle model so that each phase
in the development contributes to the verification of the product
as Figure 1 shows. Laycock claims that ”the effort needed to
produce test cases during each phase will be less than the
effort needed to produce one huge set of test cases of equal
effectiveness on a separate lifecycle phase just for testing”[4].

Fig. 1: Envisaged process change

This paper reports on a framework to further automate
the system testing process. It is a continuation of the work
earlier reported in [5]. The framework provides a meta-model
for the description of systems on different layers of abstrac-
tion and combines model-based testing (MBT) techniques for
automated test case generation based on a whitebox SysML
model of the system with executable requirement monitors
that continuously observe the status of the System under Test
(SuT) during test execution. The overall goal is to achieve a
high degree of automation and reuse of engineering artefacts
throughout the systems engineering lifecycle.

Paper structure: First we present background information
on SysML, MBT and monitor-based testing (Section II) before
we will explain the methodology in detail (Section III). Finally,
we propose a number of ideas for future research (Section IV)
and close with a summary of the current status (Section V).

II. BACKGROUND

This section provides background information on SysML,
Model-based testing, Monitor-based testing and related work.

A. SysML

The Unified Modeling Language (UML) [6] is a stan-
dardized general-purpose modelling language in the field of
software engineering and the Systems Modeling Language
(SysML) [7] is an adaptation of the UML aimed at systems
engineering applications. Both are open standards, managed

55Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 63 / 84

and created by the Object Management Group (OMG), a
consortium focused on modelling and model-based standards.

SysML is not a methodology, i.e., it does not define
what steps need to be performed in what order and which
diagrams should be used for which step. Estefan [8] provides
an overview of existing methodologies used in industry, some
of which use UML-based languages. SysML is a graphical
modelling language, i.e., diagrams are used to create and
view model data. However, the graphical representation is
decoupled from the actual model data. The model data and its
graphical representation are typically stored in different files
in UML/SysML tools.

Neither UML nor SysML define complete model execution
semantics in their core specification. This is different from
modelling and simulation languages, such as Modelica [9],
which specify the syntax (textual notation) as well as the
execution semantics. However, work is underway to resolve
that [10], [11], [12]. In the mean time, SysML tool suppliers
often provide their own execution semantics [13], so it is
possible to include action code into models, generate code
from the models and then execute them.

B. Model-based testing

The term MBT is widely used today with slightly different
meanings. Surveys on different MBT approaches can be found
in [1], [14], [15]. The most simple one is that ”Model-based
testing (MBT) relates to a process of test generation from
an SuT model by application of a number of sophisticated
methods”[16].

Model-based testing is a variant of testing that relies on
explicit behaviour models that encode the intended behaviour
of a system and possibly the behaviour of its environment.
The use of explicit models is motivated by the observation
that traditionally, the process of deriving tests tends to be
unstructured, barely motivated in the details, not reproducible,
not documented, and bound to the creativity and expertise
of single engineers. The idea is that the existence of an
artefact that explicitly encodes the intended behaviour can help
mitigate the implications of these problems [1].

Intensive research on MBT and analysis has been con-
ducted in recent years, and the feasibility of the approach has
been successfully demonstrated, e.g., in [17], [16]. Yet, Boberg
[18] shows that most studies apply model-based testing on
the component level, or to a limited part of the system while
only few studies focus on the application of the technique on
the system or even aircraft level. The main difference being
that the goal of a system integrator such as Airbus is not
to produce code but to provide a high quality specification
that can be handed over for implementation to a supplier.
Giese [19] explains that this slow adoption is not only due
to scalability reasons but he also claims that ”to benefit from
formal verification and early simulation, a model must be
precise and detailed with respect to all aspects that are the
subject of verifiation. This can usually be carried out in the
detailed design phase at the earliest”[19].

A major distinction between the different available MBT
approaches can be made by looking at the source of the gener-
ated test cases [19]. Some approaches rely on separate explicit

test models that are disjunct from the system or specification
model, as depicted by Figure 2 while other approaches don’t
make that distinction and generate test cases from the defined
system behaviour as shown by Figure 3.

The usage of explicit test models reflects the different
objective (validation vs. solution) and point of view (tester
vs. implementer) in creating a test model rather than a spec-
ification model [20]. A test model is a model representing
all possible stimulations of input of the system interacting in
various usage contexts and normally also includes verification
points stating what is a correct response from the system to
an input and what not. It thereby follows a tester’s view who
also has to think of how to combine the possible input stimuli
of a system to achieve a high confidence in its correctness.

The main benefit of this approach is the degree of inde-
pendence it naturally entails between the generated test cases
and the system. The generated test cases can thus be used
directly to test any form of the SuT, either a model or the
implementation. Additionally, as the test model is not a part
of the design it can be optimised for validation and verification
purposes thereby increasing the chance to uncover defects that
are outside the focus of the design artefacts [19]. A drawback
of the approach is that there are two models that have to be
kept consistent with the requirements at all time which requires
further effort.

Fig. 2: Model-based testing using explicit test models

One example for an approach that does not rely on explicit
models is the work from Lettrari [21] that is the basis for
the commercially available IBM Rational Rhapsody Automatic
Test Generator (ATG) tool. Test cases are generated from
a behaviour model of the SuT using model coverage as
test selection criteria. Automated test case generation uses
constraint based symbolic execution of the model and search
algorithms.

The main benefit is that the approach does not require the
creation and maintenance of a separate test model. On the
other hand, since the test case generation is not guided by a
test engineer it cannot distinguish between ”good” and ”bad”
test cases. The only goal for the generator is to achieve a high
degree of model and/or code coverage by generating stimuli
that force the executable system model to visit all states and
transitions and call all functions of the system’s components.
Furthermore, there is no independence between the generated
test cases and the system model. This means that the test cases
cannot be used to test the model they were generated from if
the test success criteria is that the observed behaviour and the
test case behaviour are the same.

56Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 64 / 84

Fig. 3: Model-based testing using design/specification models

C. Monitor-based testing

The idea for formalizing a natural language requirement
statement into a requirement monitor is similar to the monitor
concept used in runtime verification [22], [23]. Like in runtime
verification, the main purpose of the requirement violation
monitor is to detect requirement violations without intervening
into the analyzed system. A more formal definition states, that
”Runtime verification is the discipline of computer science that
deals with the study, development, and application of those
verification techniques that allow checking whether a run of a
system under scrutiny satisfies or violates a given correctness
property”[22].

Runtime verification itself deals with the detection of
violations of correctness properties. Thus, whenever a violation
is observed, it typically does not influence or change the
programs execution, say for trying to repair the observed
violation. Checking whether an execution meets a correctness
property is typically performed using a monitor. In its simplest
form, a monitor decides whether the current execution satises
a given correctness property by outputting either yes/true or
no/false [22].

D. Related Work

In [24], Artho et. al. propose a method for combining test
case generation and runtime verification for software systems.
In their framework they combine automated test case genera-
tion, which is based on a systematic exploration of the input
domain of the tested software system using a model checker
that is extended with symbolic execution capabilities with
runtime verification techniques, that monitor execution traces
and verify them against properties expressed in a temporal
logic notation. They include further capabilities for the analysis
of concurrency errors, such as deadlocks and data races. The
paper also provides a description of the application of the
method using a NASA rover controller.

While similar on an abstract level, our work differs from
the work by Artho et. al. in some major points. Firstly, the
test oracles are written as temporal logic formulas whereas
we use SysML for both the modelling of the system as well
as the requirement monitors. Secondly, the test scenarios are
generated based on a definition of all possible inputs using a
model checker, whereas we generate the test scenarios from a
whitebox model of the system under test.

III. METHODOLOGY FOR DEVELOPMENT AND TESTING
OF COMPLEX AIRCRAFT SYSTEMS

This section provides a description of our methodology in
terms of the overall concept, the underlying metamodel and
the envisaged process.

A. Concept

Our methodology combines monitor- and model-based
testing to test the system model and the resulting system. Our
aim is to achieve a high degree of reuse of artefacts from
early development stages at later development stages and a
high degree of automation throughout the process. Since we
consider multiple levels of abstraction in our metamodel it
is necessary to provide means which can verify a model at
any abstraction level or the final product without the need for
redeveloping the verification means for each verification stage.
To this end, we use executable requirement monitors, which
can be built very early on as soon as the first requirements
are defined and which can be adapted easily for verifying the
models or the product. Also, these monitors can be reused for
testing different variants and/or design alternatives.

Figure 4 provides an overview of the main artefacts in-
volved and their relations.

A requirement monitor is an exectuable model representing
one requirement that, at any point in time, indicates the
requirement violation status. The status should be enumerated
with at least the following values:

• Not evaluated (default value), to indicate that the
requirement has not been evaluated yet. Typically, this
means that a necessary precondition has not been met
yet.

• Not violated, to indicate that no violation has hap-
pened and implying that the requirement has been
evaluated.

• Violated, to indicate a violation of the requirement and
implying that the requirement has been evaluated.

This enumeration is referred to as three-valued semantics in
[22] with the literals inconclusive, false and true respectively.

The monitor status can be obtained from a monitor at
any point in time and can change between not evaluated,
not violated and violated in any possible way. Following this
approach, the status of the individual reuqirement monitors that
are instantiated during one test can be used in aggregation to
derive the test verdict. Removing the test verdict from the test
cases will enable the reuse of test cases, that we now call test
scenarios, for the verification against several requirements.

The task of converting the natural language statement into
a formal language will require a correct interpretation of the
requirement statement and the ability to translate the meaning
into a model that expresses exactly the same. The general
systematic way for deriving a monitor from natural language
requirement is as follows:

1) Read the requirement statement
2) Identify properties that can be quantified either by

explicit numbers or by logical conditions

57Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 65 / 84

3) Identify pre-conditions (if any), which must be satis-
fied before the requirement can be evaluated

4) Express when the requirement is violated and when
not

Neither a particular design of the system nor scenarios are
needed for formalizing a requirement. The resulting monitor
can be used for the verification of any design alternative of the
system using any scenario. Generally, the task of formalizing a
requirement into a requirement monitors can be accomplished
in many different ways using different formalisms. We decided
to use SysML for the task because using the same notation for
design and testing artefacts enables integrated development and
testing without the need for additional tools or data converters.

We drive the tests using scenarios that we generate from
the system models using MBT technology. Since we derive
the test verdict from the requirement monitors independently
from the system model we can use the scenarios derived from
the system model to actually verify the system model as well
as the final product.

Fig. 4: Model-based testing using monitors

B. Meta-model

For our purpose, we extended the already established meta
model for functional and systems architecture modeling [25]
to allow a distinction between the functional, logical and the
technical architecture of the system as depicted by Figure 5.

Fig. 5: Levels of abstraction

The main rationale for the distinction between these differ-
ent layers is reusability. Between different aircraft programmes
the functional architecture of a system is quite stable whereas

the implementation can differ drastically. For a given aircraft
programme the logical architecture is fixed quite early but
different technical implementations might be considered and
compared in trade studies. Ideally, we can now reuse the same
functional architecture that is mature and proven and derive
different logical and even more possible technical implemen-
tations that satisfy these functional needs.

The functional architecture, consisting of functions and
data exchanges via functional dependencies is mapped to a
logical system architecture, consisting of logical components
that are instances of logical component classes and logical
links between these components. This logical architecture can
then in turn be mapped to the technical architecture of the
system, which contains technical components, i.e., devices, and
technical connectors, i.e., cables that connect the components.
As can be seen from Figure 6 the relations between the ele-
ments in the different modelling layers allow a full traceability.
This is crucial especially for maintaining the consistency of the
models after changes.

Fig. 6: Meta-model for current approach

While the modelling of the functional architecture in our
approach is purely descriptive, the logical and the technical
system architecture models are fully executable. Typically, the
complexity of the models increases from the functional over
the logical to the technical model. This is mainly due to two
reasons: Firstly, when following this top down approach for
systems modelling the level of abstraction decreases, which
in turn increases the level of detail and complexity. Secondly,
most aircraft systems require a certain degree of redundancy
to abide by the safety constraints. A fact which is normally
not considered during the functional analysis, only partly in
the logical design but has the most impact on the technical
architecture.

C. Process

The overall process underlying our methodology is straight
forward and consists of the following steps:

1) Formalize requirements: create a violation monitor
for each requirement

2) Build system models
3) Generate test scenarios from system models using

MBT
4) Prepare the test environment: instantiate the monitors

of the requirements that can be tested using the

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 66 / 84

available scenarios and connect them to the SuT
(models or real hardware) appropriately

5) Execute tests: run all defined scenarios
6) Evaluate tests: aggregate the individual statuses of the

requirement monitors that were active during a test
to derive a test verdict

IV. FUTURE WORK

This section provides a couple of topics for current or
future work for extending the approach described in this paper.
Apart from extensions to the framework, we are also working
on the application of the methodology for a concrete industrial-
based use case to validate the framework.

A. Combination of model-based testing and model-based anal-
ysis

Dijkstra’s famous aphorism holds that tests can only show
the presence of errors not their absence [26]. Analysis tech-
niques, e.g., model checking can be used to proof required
characteristics of a system. Model-based analysis (MBA) and
testing are complementary quality assurance techniques since
static and dynamic analysis provide altogether different types
of information: typically, static analysis provides general in-
formation about a model of the system while dynamic testing
provides specific information about the system under test itself.
Substantial quality and cost improvement can be obtained
when they are systematically applied in combination.

One example for such a combination of MBT and MBA
is the application of MBA in form of a model checker to
improve the completeness of a test suite generated from a
whitebox model using MBT as Figure 7 shows. The problem
that is addressed by this method is that the automatic test
scenario generator does not always achieve to generate a
test suite with 100% coverage (coverage for this scenario
means model/code coverage). At the moment, manual effort
is required to complete a test suite to achieve 100% coverage.
This manual effort can be replaced by the application of a
model checker. If a test case generator manages to cover 95
out of 100 states of a model using test scenarios then we can
write properties that check the reachability of the remaining
five states. If the model checker manages to reach a state then
the proof trace provided by the model checker can be directly
added to the test suite as a new test scenario. If the model
checker cannot find a solution for reaching a state then the
model needs to be adapted.

Fig. 7: Combination of model-based testing and model-based analysis

B. Combination of test scenarios obtained from different
sources

Evluation of different MBT approaches and tools in the
recent past, e.g., [27], [28] showed, that each tool has specific

strengths and weaknesses and almost none of them can replace
additional manual test scenario creation completely. If we use
more than one test scenario generation approach and if we
allow test scenario generation at different levels of abstraction
as Figure 8 shows, then there is a high probability that the
resulting test suite contains a high amount of redundant test
scenarios. In order to test efficiently, especially when we are
in the phase of hardware testing where a test run is much
more expensive than a test run on a model, the redundancy
in the test suite must be reduced to find an optimal test suite.
Adaptation of previous work, e.g., [29], on that topic to our
overall development and testing approach is currently being
investigated.

Fig. 8: Optimal test suite from different sources

C. Automated model-composition and results evaluation

The creation of models that integrate requirement monitors,
a SuT system model and scenarios, i.e., the finding of suitable
combinations of system model, scenarios and requirements,
can be automated. Such a combined test model consists of one
system model, which can be logical or technical, one scenario
that can stimulate the design alternative and a set of require-
ments, which can be tested using the selected scenario. To
automate the process further information is needed to evaluate
the suitability of a combination of a test scenario and a design
model, a test scenario and a requirement or a requirement and
a system model. An approach for encoding this information
and thereby enabling the automated composition of such test
models is presented in [30]. Combining this approach with
the one presented here is ongoing work. Additionally, running
the tests, post-processing of the test results, and presenting
the verification results appropriately can also be done in an
automated fashion.

V. CONCLUSION

We presented a framework for an integrated development
and testing approach of complex systems. The main driver
behind this development was the need for more efficient
testing. This was succesfully achieved by increasing the degree
of reusability of engineering artefacts and automation of the
testing process in the following way:

• Reusability
◦ Explicit modelling of different architecture lev-

els enables reuse of architectures.

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 67 / 84

◦ Requirement monitors can be reused for testing
different architecture levels as well as the real
hardware product.

◦ Removing verdicts from test cases allows using
the same test scenario for testing multiple
requirements. Additionally, testing a require-
ment in different test scenarios increases the
confidence in the conclusions drawn from the
test results.

• Automation
◦ Executable requirement monitors allow auto-

mated test verdict derivation.
◦ Generation of scenarios using MBT.
◦ Automated test execution of formal test sce-

narios.

The approach requires, as most model-based approaches,
a frontloading of effort, a personnel shift and a different
education of the involved people compared to the current state
of practice. While evidence suggests that, through the high
degree of reuse and automation, the effort for model-based
testing is only slighly higher than the one for traditional testing
[31] the adoption of the presented approach in an industrial
environment nevertheless requires a rethinking of traditional
roles and process steps.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agreement
no. 269335 (ARTEMIS project MBAT) and from the German
BMBF.

REFERENCES

[1] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches,” Software Testing, Verification and Reliabil-
ity, vol. 22, no. 5, pp. 297–312, Aug 2012.

[2] V. Encontre, “Testing embedded systems: Do you have the GuTs for it,”
IBM: http://www.ibm.com/developerworks/rational/library/459.html,
Nov 2003.

[3] A. Helmerich et al., “Study of Worldwide Trends and R&D Programmes
in Embedded Systems in View of Maximising the Impact of a Technol-
ogy Platform in the Area,” European Commission: http://www.artemis-
austria.net/uploads/media/FAST final-study-181105 en.pdf, Nov 2005.

[4] G. Laycock, The theory and practice of specification based testing.
Department of Computer Science, University of Sheffield, 1993.

[5] P. Helle and W. Schamai, “Specification model-based testing in the
avionic domain - Current status and future directions,” in Proc. Sixth
Workshop on Model-Based Testing (MBT 2010), ser. ENTCS, vol. 264,
no. 3, 2010, pp. 85 – 99.

[6] Object Management Group, “OMG Unified Modeling Language (OMG
UML), v2.3,” 2010.

[7] ——, “OMG Systems Modeling Language (OMG SysML), v1.2,” 2008.
[8] J. Estefan, “Survey of Model-Based Systems

Engineering (MBSE) methodologies,” INCOSE:
http://www.incose.org/productspubs/pdf/techdata/mttc/
mbse methodology survey 2008-0610 revb-jae2.pdf, 2008.

[9] P. Fritzson and V. Engelson, “Modelica - a unified object-oriented
language for system modeling and simulation,” in Proc. European
Conference on Object-Oriented Programming (ECOOP98). Springer,
1998, pp. 67–90.

[10] B. Selic, “The less well known UML,” in Formal Methods for Model-
Driven Engineering, ser. LNCS, M. Bernardo, V. Cortellessa, and
A. Pierantonio, Eds. Springer, 2012, vol. 7320, pp. 1–20.

[11] Object Management Group, “Semantics Of A Foundational Subset For
Executable UML Models (FUML, v.1.0),” 2011.

[12] ——, “Concrete Syntax For A UML Action Language: Action Lan-
guage For Foundational UML (ALF), v1.0.1 beta,” 2013.

[13] D. Harel and H. Kugler, “The Rhapsody Semantics of Statecharts
(or, on the executable core of the UML),” in Integration of Software
Specification Techniques for Applications in Engineering, ser. LNCS,
H. Ehrig et al., Eds. Springer, 2004, vol. 3147, pp. 325–354.

[14] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

[15] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner,
Model-Based Testing of Reactive Systems: Advanced Lectures (Lecture
Notes in Computer Science). Springer, 2005.

[16] J. Zander-Nowicka, Model-based testing of real-time embedded systems
in the automotive domain. Fraunhofer FOKUS, Berlin, 2009.

[17] T. Bauer, H. Eichler, A. Rennoch, and S. Wieczorek, Model-based
Testing in Practice - Proc. 2nd Workshop on Model-based Testing in
Practice (MoTiP 2009). University of Twente, The Netherlands, 2009.

[18] J. Boberg, “Early fault detection with model-based testing,” in Proc.
7th ACM SIGPLAN workshop on ERLANG. New York, NY, USA:
ACM, 2008, pp. 9–20.

[19] H. Giese, G. Karsai, E. A. Lee, B. Rumpe, and B. Schatz, Model-Based
Engineering of Embedded Real-Time Systems, ser. LNCS. Springer,
2010, vol. 6100.

[20] H. Le Guen, F. Valle, and A. Faucogney, Model-Based Testing -
Automatic Generation of Test Cases Using the Markov Chain Model.
Wiley, 2012, pp. 29–81.

[21] M. Lettrari, “Using abstractions for heuristic state space exploration
of reactive object-oriented systems,” in FME 2003: Formal Methods.
Springer, 2003, pp. 462–481.

[22] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–
303, 2009.

[23] J. Levy, H. Saı̈di, and T. E. Uribe, “Combining monitors for runtime
system verification,” ENTCS, vol. 70, no. 4, pp. 112–127, 2002.

[24] C. Artho et al., “Combining test case generation and runtime verifi-
cation,” Theoretical Computer Science, vol. 336, no. 2, pp. 209–234,
2005.

[25] P. Helle, “Automatic SysML-based safety analysis,” in Proceedings
of the 5th International Workshop on Model Based Architecting and
Construction of Embedded Systems, ser. ACES-MB ’12. New York,
NY, USA: ACM, 2012, pp. 19–24.

[26] E. W. Dijkstra, “The humble programmer,” Communications of the
ACM, vol. 15, no. 10, pp. 859–866, 1972.

[27] M. Shafique and Y. Labiche, “A systematic review of model based
testing tool support, Technical Report SCE-10-04,” Carleton University:
http://squall.sce.carleton.ca/pubs/tech report/TR SCE-10-04.pdf, 2010.

[28] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos,
“A survey on model-based testing approaches: a systematic review,” in
Proc. 1st Workshop on Empirical Assessment of Software Engineering
Languages and Technologies (WEASELTech’07). ACM, 2007, pp.
31–36.

[29] G. Fraser and F. Wotawa, “Redundancy based test-suite reduction,” in
Fundamental Approaches to Software Engineering, ser. Lecture Notes
in Computer Science, M. Dwyer and A. Lopes, Eds. Springer, 2007,
vol. 4422, pp. 291–305.

[30] W. Schamai, P. Fritzson, C. J. J. Paredis, and P. Helle, “ModelicaML
value bindings for automated model composition,” in Proc. 2012
Symposium on Theory of Modeling and Simulation - DEVS Integrative
M&S Symposium, ser. TMS/DEVS ’12. Society for Computer
Simulation International, 2012, pp. 31:1–31:8.

[31] T. Bauer, F. Böhr, and R. Eschbach, “On MiL, HiL, statistical testing,
reuse, and efforts,” in 1st Workshop on Model-based Testing in Practice
(MoTiP 2008). Fraunhofer, 2008, pp. 31–40.

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 68 / 84

An Evaluation of Client-Side Dependencies of Search Engines

by Load Testing

Emine Sefer, Sinem Aykanat

TUBITAK BILGEM YTKDM

Kocaeli, Turkey

emine.sefer@tubitak.gov.tr

sinem.aykanat@tubitak.gov.tr

Abstract— Nowadays, web based large-scale systems, such as

search engines, are widely used. The popularity of search

engines created a new environment in which the applications

need to be highly scalable due to the data tsunami generated by

a huge load of requests. In this context, the main problem is to

validate how far the web applications especially search engines

can deal with the load generated by the clients. Load testing, in

general, refers to the practice of accessing the system behavior

under load. In this paper, we study on search engine

performances’ dependencies related to network bandwidth and

Internet browsers in aspect of load testing. We observed that

search engines’ speed is dependent on Internet browsers and

network bandwidth.

Keywords-search engine; load testing; Internet browser;

network bandwidth.

I. INTRODUCTION

Web-based applications are widely used nowadays
because of their advantages, such as cross-platform without
distribution and installation of software on thousands of
clients, easy to be used and managed, etc. Therefore, web-
based applications need to scale to thousands of concurrent
users. To assure the quality of these systems, load testing is a
required testing procedure in addition to conventional
functional testing procedures, such as unit and integration
testing [1].

Load testing, in general, refers to the practice of accessing

the system behavior under load [1]. The load testing aims to

identify and isolate system bottlenecks, tune application

components, predict system scalability, and make judgments

on system architecture or design, while performance models

are used in analyzing the performance and scalability

characteristics of the system under study [2].

In the literature, there are various load testing studies for

web-based applications, using different technologies. One of

these studies is conducted by A. Habul and E. Kurtovic.

Their study presents a methodology for load testing an Ajax

application [3]. Another study is about performance

comparison between different web-based application

architectures which are .NET and Java EE [4]. One of them

is for peer-to-peer applications [5].

In this paper, we aim to present basic load testing

approach for web applications with high intensity of use.

Search engine applications are at the top of these

applications.

From a user perspective, the client-side performance is

more important than server performance. So, the client-side

performance is considered for load testing in this study.

Seeking client-side performance, response time, error rate,

CPU usage and memory consumption are taken into

consideration. These metrics are interpreted for two

criterion, including bandwidth and browser for search

engines by HP LoadRunner, which is a performance and

load testing tool.

The paper starts by giving information on load testing

and load testing metrics, then introduces testing

environment. In fourth section, load testing results are

given. Finally, the results obtained in this research are

discussed.

II. LOAD TESTING

A. Load Testing

The analyze of the performance of the web-based system
can be achieved using load testing and/or performance
modeling approaches. Load testing is carried out to
determine a system’s behavior under both normal and
expected peak load conditions. It helps to identify the
maximum operating capacity of an application such as any
bottlenecks and determine which element is causing
degradation.

B. Load Testing Metrics

1) Response Time: Response time is a time defined by

interval between client request and response from server.

Response time is the key software performance metric for

server-client applications.

2) Error Rate: Error Rate is the mathematical

calculation that produces a ratio of unanswered requests to

all requests. The percentage reflects how many responses

are HTTP status codes indicating an error on the server, as

well as any request that never gets a response. Error Rate is

a significant metric because it measures “performance

failure” in the application. It tells how many failed requests

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 69 / 84

are occurring at a particular point in time of your load test

[7].

3) Client-side Resource Utilization (CPU Usage and

Memory Consumption)

CPU usage is the amount of CPU time used by the Web

Service while processing the requests and memory

consumption is the amount of memory used by the Web

Service while processing the requests.

III. TEST ENVIRONMENT

To measure dependencies of the search engine according

to the intended use, a simple scenario was chosen. Scenario

steps are provided below:

 Open browser

 Enter search engine address

 Type “wikipedia” query string

 Click search button

 Click “http://www.wikipedia.org/” address

The scenario contains three transactions that are opening

search engine, searching and redirection to Wikipedia. It has

been run for 1000 concurrent users for all cases. Concurrent

users mean that all of users send their requests to the server

at the same time.

This scenario was run for three search engines that are

Google, Yandex and Bing according to two criteria, which

are network bandwidth and Internet browsers. These

Internet browsers are Google Chrome, Internet Explorer,

Mozilla Firefox versions of which are supported HP

LoadRunner. For the other case, two different network

bandwidth values were selected: 1.5 Mbps (Asymmetric

Digital Subscriber Line-ADSL) and 10 Mbps. Windows

Performance Monitor application is used to measure CPU

and RAM usage ratios.

Testing environment consists of a PC hardware that runs

LoadRunner 11.5 testing tool. The technical characteristics

of this PC are:

 Intel i5 CPU @3.2 GHz

 4 GB RAM

 64-bit operating system

 Windows 7 Professional

IV. EXPERIMENTAL RESULTS

In this study, in order to compare dependencies of search

engines, load test scenario was run on two different cases.

These are Internet browser and network bandwidth.

A. Internet Browser

The reason for choosing the browser is to understand

whether speed of search engines depends on Internet

browser or not.

Load test results of selected search engines are given in

Table I, Table II and Table III for different browsers.

LoadRunner computed average response times of each

transaction and we computed average response time that are

given in Tables I-III as linear average of three transactions

for each Internet browser.

TABLE I. BING PERFORMANCE COMPARISON

Bing
Search Engines

Google Chrome IE Mozilla Firefox

CPU 15% 13% 11%

RAM 38% 36% 40%

Average

Response
Time (s) 2,547 1,946 2,359

Error Rate 0,122 0,002 0,007

a. At 10 Mbps network bandwidth

TABLE II. YANDEX PERFORMANCE COMPARISON

Yandex
Search Engines

Google Chrome IE Mozilla Firefox

CPU 23% 15% 12%

RAM 38% 33% 33%

Average

Response

Time (s) 2,102 2,101 1,979

Error Rate 0,0003 0 0,0003

a. At 10 Mbps network bandwidth

TABLE III. GOOGLE PERFORMANCE COMPARISON

Google
Search Engines

Google Chrome IE Mozilla Firefox

CPU 22% 22% 20%

RAM 39% 39% 40%

Average
Response

Time (s) 3,368 3,417 3,143

Error Rate 0 0 0

a. At 10 Mbps network bandwidth

In Table I, load test results for Bing are shown.

According to Table I:

 In terms of the use of PC resources, it is observed that

Bing used CPU at least on Mozilla Firefox.

 In terms of the use of average response time, it is been

observed that Bing was the fastest search engine

running on IE.

 It is observed that errors in Bing are arised respectively

due to the server and timeout period (LoadRunner

timeout period: 120 s.).

In Table II, load test results for Yandex are shown.

According to Table II:

 In terms of the use of PC resources, it is observed that

Yandex used the least CPU on Mozilla Firefox.

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 70 / 84

 In terms of the use of average response time, it is

observed that Yandex was the fastest search engine

running on Mozilla Firefox.

In Table III, load test results of Google are shown.

According to Table III:

 In terms of the use of average response time, it is

observed that Google was the fastest search engine

running on Mozilla Firefox.

As a result, with regard to above statements, it can be

considered that search engines’ performance depend on

Internet browser.

B. Network Bandwitdh

Network bandwidth used by the Internet user determines

the speed of download and upload and is a parameter

considered in the load test.

At first, widely used by the Internet users for network

bandwidth ADSL (1.5 Mbps) is selected. Secondly, for

putting forward dependence of search engines to network

bandwidth, 10 Mbps, nearly ten times ADSL is selected.

The comparisons of 10 Mbps and ADSL for search

engines are shown in the following tables.

We computed average response time that are given in

Tables IV-VI as linear average of three transactions’

average response times by LoadRunner for each Internet

browser.

TABLE IV. BING PERFORMANCE COMPARISON

Bing

Internet Browsers

Chrome IE Firefox

ADSL

10

Mbps ADSL

10

Mbps ADSL

10

Mbps

CPU 14% 15% 14% 13% 14% 11%

RAM 39% 38% 36% 36% 39% 40%

Average

Response

Time (s) 3,117 2,547 2,921 1,946 3,04 2,359

TABLE V. YANDEX PERFORMANCE COMPARISON

Yandex

Internet Browsers

Chrome IE Firefox

ADSL

10

Mbps ADSL

10

Mbps ADSL

10

Mbps

CPU 25% 23% 28% 15% 26% 12%

RAM 38% 38% 44% 33% 36% 33%

Average
Response

Time (s) 2,405 2,102 2,416 2,101 2,35 1,979

TABLE VI. GOOGLE PERFORMANCE COMPARISON

Google

Internet Browsers

Chrome IE Firefox

ADSL

10

Mbps ADSL

10

Mbps ADSL

10

Mbps

CPU 22% 22% 21% 22% 22% 20%

Google

Internet Browsers

Chrome IE Firefox

ADSL

10

Mbps ADSL

10

Mbps ADSL

10

Mbps

RAM 40% 39% 30% 29% 40% 40%

Average
Response

Time (s) 3,7 3,368 3,466 3,417 3,731 3,143

In Table IV, it is observed that the decrease in network

bandwidth only caused an increase in response time. In

other words, we could say that Bing is slowed down when

bandwidth is reduced.

In Table V, it is shown that when network bandwidth is

reduced, CPU utilization of Yandex increased in IE and

Firefox browsers. Also, it is observed that an increase in

network bandwidth caused lower RAM usage by Yandex in

IE and lower response times in all browsers.

In Table VI, it is observed that the decrease in network

bandwidth only caused an increase in response times.

As a result, in terms of PC resource usage and speed,

Yandex depends on network bandwidth. In terms of speed,

Google and Bing browsers can be considered to be

depended on network bandwidth.

C. Comparing Search Engines in Point of Transactions

The scenario contains three transactions that are opening

search engine, searching and redirection to Wikipedia. The

comparison of the transactions is given in Table VII.

We computed average response time that are given in

Table VII as linear average of three Internet browsers’

average response times by LoadRunner for each

transactions.

 The curves of variation of transactions’ response time

due to elapsed time for Google, Yandex and Bing are given

in Fig. 1, Fig. 2, and Fig. 3, respectively.

TABLE VII. TRANSACTION PERFORMANCE COMPARISON

Average

Response

Time (s)

Transactions

Opening Search

Engine

Searching

Redirecting

Bing 4,058 0,682 2,11

Yandex 2,995 1,467 1,720

Google 1,036 0,794 8,412

a. At 10 Mbps network bandwidth

According to opening search engine transaction, Google

can be considered the fastest search engine. For searching

transaction, it is observed that Bing and Google are faster

than Yandex. By redirecting transaction, Google is said to

be the slowest search engine. The reason for Google’s slow

redirecting is when user clicks the link, Google firstly send

user their own servers to get information for their ranking

algorithms and then provide the connection to selected link.

63Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 71 / 84

V. CONCLUSION AND FUTURE WORK

In this paper, we aimed at presenting search engine
performances’ dependencies on network bandwidth and
Internet browsers. We evaluated client-side performance of
search engines for load testing.

As a result of load testing, it is observed that search
engines’ performance depend on Internet browser and
Google is the least dependent on Internet browsers.

As network bandwidth increases, the utilization of PC
resources by search engines decreases and speed of search
engines increases as expected. However, usage of PC
resources by Yandex increases. In this instance, Yandex is
the most dependent on network bandwidth.

In future study, in addition to client-side load testing, it is
planned to evaluate the behavior of the server during load
testing.

ACKNOWLEDGMENT

The authors would like to thank Software Testing and
Quality Evaluation Center (YTKDM in Turkish) of
Scientific and Technological Research Council of Turkey
(TUBITAK in Turkish) for funding this study.

REFERENCES

[1] J. A. Meira, E. C. d. Almeida, Y. L. Traon, and G. Sunye,
"Peer-to-peer Load Testing," Proc. IEEE Fifth International
Conference on Software Testing, Verification and Validation
(ICST), April 2012, pp. 642 – 647, doi:
10.1109/ICST.2012.153.

[2] O. Hamed and N. Kafri, "Performance Testing for Web Based
Application Architectures (.NET vs. Java EE)," Proc. First
International Conference on Networked Digital Technologies
(NDT), July 2009, pp. 218 – 224 doi:
10.1109/NDT.2009.5272178 .

[3] A. Habul and E. Kurtovic, "Load Testing an AJAX
Applications," Proc. 30th International Conferenece on
Information Technology Interfaces (ITI 2008), June 2008, pp.
729-732, doi: 10.1109/ITI.2008.4588501.

[4] B. Beizer, Software System Testing and Quality Assurance,
2nd ed., Van Nostrand Reinhold, 1894, pp. 218-250.

[5] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora,
"Automatic Identification of Load Testing Problems," Proc.
IEEE International Conference on Software Maintenance
(ICSM 2008), Sept.-Oct. 2008, pp. 307-316, doi:
10.1109/ICSM.2008.4658079.

[6] P. Yunming and X. Mingna, “Load Testing for Web
Applications,” Proc. 1st IEEE International Conference on
Information Science and Engineeering (ICISE), Dec. 2009,
pp. 2954-2957, doi: 10.1109/ICISE.2009.720.

[7] http://loadstorm.com/load-testing-metrics/, 2013.

Figure 1. Opening search engine transaction response time.

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 72 / 84

Figure 2. Searching transaction response time.

Figure 3. Redirection to Wikipedia transaction response time.

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 73 / 84

Compact Traceable Logging

I.S.W.B. Prasetya, Ales Šturala, Arie Middelkoop, Jurriaan Hage, Alexander B. Elyasov
Dept. of Inf. and Comp. Sciences, Utrecht Univ.

Utrecht, the Netherlands
Email: ales.sturala@hotmail.com, {A.Elyasov,S.W.B.Prasetya,J.Hage}@uu.nl, amiddelk@gmail.com

Abstract—Logging is a commonly employed technique to
gather information about the dynamic behaviour of a program.
The resulting logs can be analysed to derive statistics, infer
models, to diagnose failures, and used for testing. Balancing
the cost of logging (in terms of I/O time and disk usage)
and the benefits of increasing logging details is a challenging
task. In this paper, we present a source code transformation
scheme that converts the given program with ordinary logging
to enhance it with tracing information, and at the same time
significantly reduces the size of the generated logs by applying
a form of binary encoding. Decoders are generated to interpret
the logs and establish how the executions that produced them
flowed through relevant decision branches in the program.
This paper describes the transformation for sizeable subset of
sequential Java, including its complicated control structures.
As a proof of concept, we have implemented a prototype.

Keywords-software logging; logging; software tracing; tracing.

I. Introduction

With the rise of complexity of modern applications, it
becomes impossible to fully anticipate their behavior prior
to deployment. Many applications employ logging to provide
diagnostic information about their dynamic behavior. It pro-
vides means to at least diagnose erroneous and unexpected
behavior after the fact [1], [2], [3], and may even allow us to
reconstruct the original execution. Other kinds of informa-
tion can also be learned from logs, e.g., usage statistics,
usage patterns [4], code coverage, profiling information,
potential security breaches [5], and even behavior models
and specifications [6], [7], [8]; the latter also imply that test-
cases can thus be learned from logs as well.

Clearly, the information that can be extracted from logs ul-
timately depends on what is exactly logged. Ideally, given a
program P, we want to generate executable and reproducible
logs. Such a log can be interpreted (executed) to drive an
execution of P, and will at least reproduce the same log.
Being able to re-execute allows common debugging tools
to be employed to diagnose the log. Unfortunately, most
logs are not executable, let alone reproducible. A traceable
log allows us to infer how P’s execution flowed when it
produced the log. It is a weaker property (than executability),
but the inferred information can still be useful for error
diagnosis. However, the amount of information that must
be stored in the logs to make them traceable is substantial,
which ultimately slows down application execution, and

leads to very large files.
Saving can be gained by not logging pieces of text, but

instead encoding them as a (short) binary/bitstring that refers
to the location in the program that produced it. Essentially,
these bitstrings can be considered as indices into an array
of log comments. Our contribution is as follows. We present
a new binary encoding scheme. The basic idea is to choose
this bitstring, such that so that it also encodes a fragment
of control flow, and thus providing tracing information
without costing us (many) additional bits –note that whatever
representation we use, I/O overhead and disk usage can still
be further reduced by post-compressing the resulting logs.
Our approach works by transforming the statements of the
original program, so that they produce the bitstrings that
encode their control flows. The transformation also produces
the corresponding decoders to interpret the produced bit-
strings and reconstruct normal logs, enhanced with tracing
information. The produced bitstring logs are significantly
more compact; in our experiments, they are 2.5 - 40 times
smaller than normal logs, while enhancing the logs (after
decoding) by a factor of 3 - 11. The transformation-based
approach also implies that our logging scheme is transparent
to the programmers: they can in principle write their logging
code as they always do, after which our transformation will
extend them for free.

The problem is however non-trivial. Modern programming
languages support a whole range of control constructs, e.g.,
switches and breaks, which trigger a non-standard execution
flow that is hard to encode faithfully. We also have to deal
with exceptions and external call-backs; they dynamically
disrupt the normal execution flow, and thus disrupt the
encoding. In this paper, we will address some of these
constructs. As a proof of concept, we have built a prototype
implementing the approach in Java. It covers more constructs
than those mentioned here.

This paper is structured as follows. Section II defines
what kind of tracing information we want to add. Section
III explains the basic idea of our transformation-based
approach. Section IV explains the transformation of basic
control structures, such as while, but also switch and break.
Exceptions and external call-backs are handled separately in
Section V. Section VI shows some experiment results of our
prototype. Section VII discusses related work. Section VIII
concludes and mentions future work.

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 74 / 84

II. Logging and Traceability

As an example, let us consider the program in Figure 1,
consisting of just a single method, for sending some hello
greetings. For logging, the primitive to use is log(s, v); it
writes the pair (s, v) to the log, where s is a descriptive
string, and v is a value. The string s is static (its value does
not depend on the program’s state), whereas v is a dynamic
value. The variant log(s) can be used if we have no dynamic
value to log.

1 void h e l l o (i n t i) {
2 whi le (i >0) {
3 i f (d e c i d e (i)) {
4 l o g ("Sending...") ;
5 send ("hello world") ; }
6 i f (even (i)) i = i / 2 ;
7 e l s e i −− ;
8 }

9 l o g ("Done,i=" , i) ;
10 }

Figure 1. The method hello.

An example of a log produced by the program is shown
below:

Sending...Sending...Sending...Done,i=0

This log does not really tell us how the execution went
through the program. Obviously, we can extend the logging
to also trace the flow of control. But how can we do this
without excessively increasing the overhead? Furthermore,
we also notice that most characters in the above log actually
belong to static strings. As suggested in Section I, they can
be compacted, but can we combine compaction with tracing?

Let us first define what kind of tracing information we
want to add. Let P be a single threaded target program. To
help us defining our concepts, imagine GP to be P’s total
control flow graph (CFG). If e is an edge in G, m→n denotes
its pair of source and target.

We assume that every node in GP has at most one call
to log(..) (else we split the node). Such a node is called
a logging node. An edge leading to such a node is called
a logging edge. GP’s initial nodes are assumed to be non-
logging.

Given an execution of P, its history is an imaginary log
obtained as follows: (1) when the execution passes a logging
edge e that calls log(s, v), we append the tuple (line(e), s, v)
to the history, where line(e) is the line number of e in P; (2)
when the execution passes a non-logging edge f we append
line(f). Histories represent logging enhanced with maximum
tracing information. Because the overhead to actually log
them is usually too large, we will only log partial histories;
but which edges are useful to be included?

A sibling of an edge e = m→n is another edge m→n′ in
GP with the same source, but a different target. A branch
is an edge that has siblings. A path in GP is a sequence σ
of edges, such that σi and σi+1 are two connecting edges in
GP, with the same direction. A full path is a finite path that

starts from an initial node of GP and ends in a terminal node
(or a node marked as an end-node if P is intended to run
forever). An edge e can reach another edge f if there is a
full path with [e, f] as a subsequence. It can avoid f if there
is a full path that passes e, but [e, f] is not a subsequence
of this path. A branch e is an attractor of f if it can reach
f , and it has a sibling d that can avoid f . Conversely, d is a
distractor of f if it can avoid f and it has a sibling that can
reach f . So, an attractor always has at least one distractor
as a sibling, and vice versa.

Let us, at least for now, decide to log this kind of edges:
Definition 1: An edge is log-relevant if it is either: (1)

a logging edge, (2) an attractor of a logging-edge, or (3) a
distractor of a logging-edge. �

So, a log-relevant edge is either itself a logging edge,
or a branch that has been decisive towards reaching or not
reaching a logging edge.

Note that passed attractors and distractors cannot in gen-
eral be inferred back from the normal log (the one without
tracing information). For example:

i f (g) {
i f (h) re turn ;

}

l o g (s)

The two else-branches above are two attractors towards
reaching log(s). When we see s in the log, we cannot from
s itself tell which attractor was taken.

We also want to note that in a language with exceptions
the above definition of log-relevance may become impracti-
cal; we will return to this issue later.

III. Transformation, the Basic Idea

We will first transform P to its so-called tagged version
	P, and deploy the latter. Rather than producing a normal
log, 	P produces a binary trace (or simply trace) which is a
bitstring interspersed by 〈v〉 values. The transformation also
constructs decoders, which are later used to decode/interpret
the produced trace to reconstruct the corresponding normal
log, enhanced with human-readable tracing information. The
latter log is called enhanced log.

To minimize the amount of logged data, in 	P we
suppress the logging of static strings. So, calls to log(s, v)
in P are replaced by log(v) in 	P, and calls to log(s) are
removed. The decoders will later reconstruct them from the
given trace.

Definition 2: A decision node m is a node with outgoing
branches. Such a node is log-decisive if it has an outgoing
branch e that is an attractor of some logging-edge f (which
also implies that e has a distractor as a sibling). �

For example, the guard of the while and the first if in
Figure 1 are log-decisive. The guard of the 2nd if is not.

In 	P we ’tag’ all log-decisive nodes m. Some additional
code is injected in m: (1) to assign a unique bitstring to each
outgoing edge of m, and (2) writes this bitstring to the trace

67Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 75 / 84

when the edge is passed. So, if m only has two branches,
then a single bit is sufficient to distinguish them. In Figure
2 we show the tagged version of the program in Figure 1.

void h e l l o (i n t i) {
whi le (t a g (i >0)) {

i f (t a g (d e c i d e (i))) {

send ("hello world") ;
i f (even (i)) i = i / 2 ; e l s e i −− ;
} ;
l o g (i)
}

Figure 2. The tagged version of hello.

The function tag(e) evaluates the Boolean expression e and
returns the value; but as side effect it also writes the bit 1
to the log if e is true, and else 0. Effectively, this performs
the tagging as meant above.

Notice that the static strings have been removed. Calls to
log(s, v) are converted to log(v) that writes 〈v〉 to the trace.
The execution that previously produced the log shown below
Figure 1 now produces the following trace:

1111110〈0〉

The above string encodes which log-relevant edges were
passed by the execution. The string is given to a decoder to
produce the corresponding enhanced log. The decoder for
hello is shown in Figure 3.

void dec he l lo () {
whi le (pop (3 , 9))

i f (pop (4 , 6))
emi t (5 , "Sending...") ;

emi t (9 , "Done,i=") }

Figure 3. hello’s decoder.

The original control flow of P is reflected by the decoder.
We also include relevant line numbers information into the
decoder. For each log-decisive node v in P (let’s assume it
only has two branches), the corresponding decision node v′

in the decoder calls pop(t, f). This pops the current bit b in
the given trace. This bit tells us which branches of v that P
took. The method pop(t, f) simply returns the same bit, and
this causes the decoder to follow the same branch at v′. The
t and f are line numbers of v’s branches in P; and they will
be printed to the log accordingly by the decoder as tracing
information.

Calls to log(s, v) or log(s) at line k in P are translated to
emit(k, s) in the decoder. When executed, it consumes the
current 〈v〉 in the trace, if there is any; then writes either
(s, v) or just s to the enhanced log, and decorating it by the
line number k.

Other details of P are not carried over to the decoder.
Applying the decoder in Figure 3 to the above example

trace produces the following enhanced log:
[Hello:2][Hello:3][Hello:4]@Sending...
[Hello:2][Hello:3][Hello:4]@Sending...
[Hello:2][Hello:3][Hello:4]@Sending...
[Hello:2][Hello:9]@Done,i=<0>

Once such a log is created, another tool could be written
to actually step through the source code in an IDE, by
following the tracing information.

Things can however get more complicated. The decoder
above will actually be incorrect if decide(i) also does log-
ging, or if it throws an exception. Further adjustments are
thus still needed. The next section describes the transforma-
tion in more details.

IV. Basic Transformations
More generally, P may have multiple methods. Only log-

relevant methods need to be tagged, and for each such
method a matching decoder should be generated. In the
sequel, we will use the term ’statement’ and ’expression’
interchangeably. For a statement S , 	S denotes its tagged
version, and]S the corresponding decoder.

Recall that we want to tag log-decisive nodes. To decide
which nodes are log-decisive, we do not actually want to
construct GP, since such a graph can be pretty large and is
cumbersome to work with. We prefer to implement the trans-
formation in a syntax directed way. We, therefore, decide
the tagging based on the log-relevance of the corresponding
statement, which is calculated syntactically:

Definition 3: A statement S is log-relevant, denoted by
S∈L, if it contains a call to log(..) or a call to a log-relevant
method. �.

Definition 4: A method m is log-relevant, denoted by
S∈L, if its body contains a call to log(..) or a call to a
another log-relevant method. �

The transformations are described by a set of transforma-
tion rules, which are denoted as the example in (1).

val/var
v

v ε
v is a constant or variable (1)

The rule is named val/var, and specifies how constants
and variables are transformed. The result of the transforma-
tion is a pair, as specified under the line; the left specifies
the resulting tagged version, and the right one specifies the
decoder. So, the rule above says that a constant or variable
v is copied to the tagged program, but is removed (denoted
by ε) from the decoder.

The rule to transform a whole method m is shown in (2).
Only log-relevant m’s need to be transformed. The decoder is
another method named dec m(). It has no formal parameter,
though implicitly it takes a trace as its input.

mdefL
def m(e1...ek) S

def m(e1...ek) 	 S def dec m()]S
m∈L (2)

Some of the rules to transform the body S are shown
in Figure 4. They only deal with standard constructs; more
complex constructs are discussed later.

The rule log causes the logging of the static string s to be
suppressed in the tagged version. The decoder on the other
hand, does emit(l, s), where l is the line number of the call
log(s, v) in the original program.

68Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 76 / 84

log
log(s, v)

log(v) emit(linenr, s)

ifN
if (e) S

if (e) S]e
S<L

ifL
if (e) S

if (tag(e)) 	 S]e ;
if (pop(lt, l f))]S

S∈L

assign
e1 = e2

	e1 = 	e2]e1;]e2
seq

S ; T
	S ;	T]S ;]T

conjN
e1 && e2

	e1 && e2]e1
e2<L

conjL
e1 && e2

	e1 && 	 e2]e1 ;
if (pop(l1, l2))]e2

e2∈L

Figure 4. Transformation rules for standard constructs.

Rules ifL and ifN deal with the if(e) S structure (if-then).
If S is log-relevant, then the then-branch is an attractor
(of a logging node), so we have to tag the corresponding
decision point (ifL). Else both branches of the if-then are
neither an attractor nor distractor, and thus we should not
tag the decision point (ifN). Note that the transformation is
also recursively applied to e, since it may call a log-relevant
method.

The rules for assignment (Assign) and sequential compo-
sition (seq) are straightforward. Unary expressions op e, and
binary expressions e1 rop e2 where rop is an arithmetic or
relational operator do not induce implicit control branching.
Therefore, their rules are similar to assignments. Logical
operators are more involved. The semantics of e1 && e2 in
Java specifies that e2 is not evaluated if e1 turns out to be
false (short-circuiting). This matters for the control-flow, in
particular when e2 is log-relevant. The rules conjN and conjL
deal with this. Other operators with implicit branching, such
as ||, and ?: can be treated analogously.

A. Method call and polymorphism

If a statement S calls a log-relevant method m, its decoder
]S should also call the decoder of m. The rules to handle
method calls are shown in (3) and (4).

callL
call m(e1...ek)

call m(e1... 	 ek)]e1; ...;]ek;
call dec mD()

m∈L (3)

callN
call m(e1...ek)

call m(e1... 	 ek)]e1; ...;]ek
m<L (4)

If the method has a receiver, we treat it as its first
argument (so, we write m(x, y) instead of x.m(y)).

However, to also handle polymorphism, these rules have
to be extended. We will explain this with an example;
consider the following program:

Pe r s on p = g e t P e r s o n () ;
p.work () ;

Suppose Person has K number of subclasses that override
work(). The decoder of the above statement will now have
to figure out which variant of dec work it has to call. The
obvious case is when neither Person’s work() nor its variants
are log-relevant. Then the call p.work() is not log-relevant,
and we can use callN to handle it.

In other cases, the decision cannot in general be made
statically. To handle this, we assign Person’s work() and its
variants a unique variant-number id in the range [0. . .K].
The call p.work() is instrumented such that it checks at the
run time which variant is called, and it writes bits(id) to the
trace, where id the variant number and bits(id) returns its
unsigned bits representation.

For example, suppose only Student overrides Person’s
work(), and at least one of them is log-relevant. The decoder
of the above statement first reads the encoded variant number
and then, it interprets it to call the correct variant:

code = b i t s2num (pop () , pop ()) ;
sw i t ch (code) {

case 0 : P e r so n .dec work () ; break ;
case 1 : S t u d e n t .dec work () ; break ;

B. Jump-over

m() { i f (a) x++ ;
i f (ok) re turn ;
l o g ("not ok") }

Figure 5. A method with a jump-over.

Consider the example in Figure 5. Since the then-parts
of both conditionals are not log-relevant, the rule ifN will
not tag the corresponding decision nodes, resulting in these
tagged version and decoder:

m() { i f (a) x++ ;
i f (ok) re turn ; }

dec m () { emi t (3 , "not ok") ; }

This decoder is however incorrect, because it always
produces “not ok”, whereas the original m may not do so.

The problem arises from the rule for transforming se-
quential composition (SEQ): it assumes normal control flow.
That is, any execution of S ; T always executes the T -part.
Under this assumption, no edge in S can become an attractor
or distractor of a logging-edge in T . Consequently, when
transforming S we do not need to care about the log-
relevance of T . However, statements like return, break,
and continue (we call them jump-over statements) break this
assumption. Note that not all jump-overs in S can actually be

69Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 77 / 84

distractors of a logging-edge in T , and calculating which of
them are, introduces some overhead. We will instead redefine
S∈L (Definition 3):

Definition 5: A statement S is directly log-relevant, de-
noted by S∈L0, if it contains a call to log(..), or a call
to a log-relevant method (as in the old definition of ”log-
relevant” statement). �

Definition 6: A statement S is log-relevant, denoted by
S∈L, if either (1) S∈L0, or (2) it is a part of a log-relevant
method and one of these holds:

2a) S contains a return.
2b) S is a part of a directly log-relevant switch and S

contains a break.
2c) S is a part of a directly log-relevant loop and S

contains a break or a continue.
�

With this new definition, the previous example will give
the following tagged version and correct decoder:

m() { i f (a) x++ ;
i f (t a g (ok)) re turn ; }

dec m () { i f (pop (2 , 3) re turn ;
emi t (3 , "not ok") ; }

Consider S ; T in a log-relevant method m. The new
definition of log-relevance presumes that if an edge e in
S is an attractor to a return node in S , it will also be a
distractor of a logging edge in T . This is only true if T has a
logging edge. We have a similar situation in while(g){S ; T }
if S contains a break or continue. This means that if T
actually has no logging edge, we will end up logging some
edges that are actually not log-relevant. But at least we do
not miss one (so, the change above is safe).

Some rules need to be added as well; jump-overs change
the flow of control, so they need to be copied to the decoder.
These are in (5); bc is either break or continue.

brc
bc

bc bc
ret

return e
return 	 e]e; return

(5)

C. Switch statement
An if statement has two branches. So, when tagging it,

one bit suffices to encode the choice between them. A switch
statement may have N branches, with N ≥ 2. This can be
dealt with as follows. We overload the function tag(e) to also
take a bitstring as argument. It returns nothing, and writes the
bitstring to the trace. We tag the k-th branch by tag(bits(k))
where bits(k) is the bitstring (of length n = 2log(N)) that
encodes the number k.

The absence of break in a switch branch requires a special
treatment though. The control flow would implicitly ”fall
through” to the next branch. Consider this example:

sw i t ch (day) {
case 6 : l o g ("sat")
case 7 : l o g ("weekend") ; break ;
d e f a u l t : l o g ("work") ; break ; }

If we just treat switch analogously to if, we would get
the tagged version and decoder shown in Figures 6 and 7.

sw i t ch (day) {
case 6 : t a g (FF) ;
case 7 : t a g (FT) ; break ;
d e f a u l t : t a g (TF) ; break ; }

Figure 6. An incorrectly tagged fall-through switch.

i n t code = b i t s2num (pop () , pop ()) ;
sw i t ch (code) {

case 0 : emi t (2 , "sat") ;
case 1 : emi t (3 , "weekend") ; break ;
case 2 : emi t (4 , "work") ; break ; }

Figure 7. The decoder for a fall-through switch.

The decoder correctly consumes two bits. However, if
day = 6 the tagged version will fall through and incorrectly
produces four bits. The issue can be solved in two ways.
One solution involves remembering the number of times a
switch execution falls through; e.g., x times. The decoder
must then consume n+x∗n bits, and discard the last x∗n
bits. However, this involves quite a bit of bookkeeping. A
much simpler solution, the one that we follow, is to simply
duplicate the switch, in which the first of the duplicates
executes a single call to tag for each case, and the second
implements the original logic (but without the tags). This
results in the tagged version in Figure 8, to be used with the
decoder in Figure 7.

sw i t ch (day) {
case 6 : t a g (FF) ; break ;
case 7 : t a g (FT) ; break ;
d e f a u l t : t a g (TF) ; break ; }

sw i t ch (day) {
case 6 : ;
case 7 : break ;
d e f a u l t : break ; }

Figure 8. Correctly tagged fall-through switch.

D. Loops

Consider first the following straight forward proposal to
transform a while-loop:

while (e) S
while (tag(e)) 	 S]e ;

while (pop(lt, l f))
{]S ;]e }

e∈L ∨
S∈L

We can see it as the loop-version of the ifL rule. The
reader may notice that unlike ifL now we also apply the
transformation when only the guard is log-relevant. This is
correct: the branch that goes into the loop’s body would still
be an attractor of the edge that goes from the body’s end
back to the guard. In contrast, in an if(e) S , the then-branch
cannot be an attractor if S is not log-relevant.

The above rule is however incorrect if the loop contains
a jump-over. Let us consider the example below; suppose
decide∈L.

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 78 / 84

whi le (d e c i d e (i)) { l o g ("hi") ; c o n t in u e ; }

The resulting tagged version and decoder:

whi le (t a g (d e c i d e (i))) { c o n t in u e ; }

dec dec ide () ;
whi le (pop ()) {

emi t (1 , "hi") ; c o n t in u e ;
dec dec ide () ;

}

The decoder incorrectly produces the logs from decide
exactly once, whereas the original loop can do this multiple
times. The correct rule is shown in (6).

loopL
while (e) S

while (tag(e))
	S

while (true) {
]e ;
if (pop(lt, l f))

break ;
]S }

e∈L ∨
S∈L (6)

If the loop is not log-relevant, it is removed from the
decoder, as shown in (7).

loopN
while (e) S

while (e) S ε
e<L ∧ S<L (7)

The transformations for do-while and for-loops are a
bit more elaborate, although they follow the same general
idea [9]. Note however, that simply treating do S while(e)
as S ; while(e) S does not work if S contains a jump-over.

E. Loop compaction

The above tagging scheme for loops is still problematical.
Consider this example:

i =0 ;
whi le (i <n)

i f (i ==999) l o g ("special") ; i ++ ;
}

Recall that we have required to also log distractors of log-
relevant node (Def. 1). For the above loop, this means that
every iteration always logs at least one bit, despite the fact
that most, if not all, of its iterations will not actually produce
any call to log(...). This can spam a very long bitstring, to
eventually produce at most one static string in the enhanced
log. To avoid this, we choose to discard the trace produced
by an iteration if it does not actually pass any logging node.
This is done by the following loop compaction algorithm.

There is a global stack Lstack. Elements of this stacks are
pairs (i, z) where i is a so-called loop-ID, and z is a buffer
where we can temporarily save a trace-fragment.

1) Every log-relevant loop H is instrumented such that
when the loop is entered, a unique loop-ID lid is
created. The id is created fresh every time the loop
is entered, to distinguish between different invocations
of the loop.

2) Whenever the guard g of H is evaluated, and it
evaluates to true (so, a new iteration is about to start),
a new buffer z is created, and the pair (lid, z) is pushed
into Lstack. We maintain the following invariant:

The traces buffered in Lstack never pass a log-
ging node.

So, when the execution of H cycles back to its guard,
we can remove (lid, z) and all pairs above it from
Lstack.

3) tag(e) will write to the buffer at the top of Lstack,
unless this stack is empty. Then it will write the bit
directly into the trace file.

4) a call to log(v) breaks the above invariant. So, we
dump all buffers in Lstack (from bottom to top) to
the trace file. And then clear the whole stack. From
this point on tag and log will write directly to the trace
file, until an iteration push a new (lid, z) into Lstack.

5) Because a loop may terminate through a jump-over,
there may be some residual bits left in Lstack. The
next logging node will cause these residual bits to be
dumped into the trace file.

Using this scheme, the previous loop will produce a trace
where it appears as if the loop immediately does the 999-th
iteration, and then it exits.

F. Recursion

Recursions can cause a similar bits-spamming problem
as loops. The above loop compaction algorithm exploits the
property that every iteration of a loop returns to the loop’s
guard. On the other hand, a recursive function that calls itself
multiple times (such as the example below) does not have a
natural analogous of the ’loop-guard’ concept. So, the above
compaction scheme cannot be re-applied for recursions.

What we do is to wrap each recursive call with a dummy
single iteration, e.g:

f i b (n) {
i f (n==0) { re turn 0 ; }
i f (n==1) { re turn 1 ; }
i f (n>=10) { l o g ("This may be too big") ; }
i n t a , b ;
i n t i =0 ; whi le (i <1) { a = f i b (n−2) ; i ++ ; }

i =0 ; whi le (i <1) { b = f i b (n−1) ; i ++ ; }
re turn a+b ;

}

This has the effect that if a recursive call to f ib does
not pass a logging node, it will not produce any tracing
information either. Else, the execution from the first call to
f ib up to the logging node will be traced.

V. Exceptions

In most programming languages, many types of expres-
sions can potentially throw an exception. In terms of con-
trol flow, such an expression introduces implicit branching,
with one implicit normal branch that corresponds to the
instruction’s normal execution, and one or more implicit

71Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 79 / 84

exceptional branches that correspond to jumps to exception
handlers. A typical program contains a lot of such implicit
edges. Consider for example:

x++ ; a . x = x ; . . . ; l o g ("here") ;

The two assignments before log can throw an exception.
The corresponding implicit exceptional branches are dis-
tractors of the log(..) statement, the assignments themselves
become attractors. According to Definition 1, we have to log
them as well. This would mean that a normal execution (one
that does not throw any exception) that leads to a log(..)
statement would generate additional tracing information
belonging to all implicit distractors it passes; and there are
many of them. This is too verbose! When an execution
throws an exception, we are indeed usually interested in
the corresponding tracing information. But when it does not
throw any exception, we are much less interested in knowing
which exceptions and which handlers it thus by-passed.

So, implicit normal branches are not going to be logged.
We would want to log log-relevant implicit exceptional
branches; but this is problematical for a different reason. To
log these edges would mean that we have to instrument all
subexpressions in P that can potentially throw an exception.
The overhead would be unacceptable. To make it practical,
we decide to only log the destination nodes; thus, the excep-
tion handlers. Thus, our logs can reveal which exceptions
have been thrown, but not the specific subexpression that
threw them.

l o g ("Preparing") ;
t r y {

p r e p a r e () ;
t r y { x = r e c e i v e () ; l o g ("Received") ; }
ca tch (ExcA a) { l o g ("Ouch") ; }
ca tch (ExcB b) { x=−1 ; }

}

ca tch (E x c e p t i o n e) { }
l o g ("Done") ;

Figure 9. A try-catch statement.

Consider the example in Figure 9; assume that prepare
and receive are not log-relevant. An exception handler h is
logged if there is a log-relevant implicit exceptional edge e
that goes to it (this can only be the case if e is a distractor or
attractor of another log-relevant edge). This is the case for
all handlers above. In general, in try t catch h1 catch h2...,
if t or one of the hk is log-relevant, then all handlers in the
construct will be either an attractor or distractor, and thus
have to be logged.

Now, consider first the following proposal of a tagged
version of the statement in Figure 9; logE(e) is used to log
a thrown exception:

t r y {

p r e p a r e () ;
t r y { x = r e c e i v e () }
ca tch (ExcA a) { logE (a) ; }
ca tch (ExcB b) { logE (b) ; x=−1 ; }

}

catch (E x c e p t i o n e) { logE (e) ; }

Suppose the execution throws an ExcA. Indeed, this will
be logged. The idea is to extend the decoder so that upon
reading the logged exception it will replay it, and thus
duplicate the original flow of control. However, just from
the logged exception the decoder will not be able to infer
whether the exception was thrown before the second try or
in the second try, which is important to decide to which
handler the control should flow.

To determine the right moment to replay the exception,
we will do progress counting. A global variable τ : int is
introduced for this purpose. The method logE(e) will now
additionally log the value of τ; so in principle, now the
decoder has the information to decide when it is the right
moment to replay an exception.

The method tick() will be used to increase τ by one.
We only need to tick when P passes points that matter for
logging:

1) To distinguish if a logged exception is thrown before
or inside a (log-relevant) try-catch structure, we tick
just before we enter the structure.

2) To distinguish if a logged exception is thrown inside or
after a try/catch/finally-section of a (log-relevant) try-
catch structure, we tick when we reach the section’s
end.

3) For a similar reason, tag/pop, and log/emit implicitly
call tick().

This results in the tagged version in shown Figure 10.

t i c k () ;
t r y {

p r e p a r e () ;
t i c k () ;
t r y { x = r e c e i v e () ; t i c k () ; }
catch (ExcA a) { logE (a) ; t i c k () ; }
catch (ExcB b) { logE (b) ; x=−1; t i c k () ; }
t i c k () ; }

ca tch (E x c e p t i o n e) { logE (e) ; t i c k () ; }

Figure 10. Correctly tagged try-catch statement.

t i c k () { check () ; t a u++ ; }

Figure 11. Decoder’s tick() also checks exception maturity

The counting of the progress should also be reflected in
the decoder. That is, whenever the tagged version calls tick(),
a tick() should be added at the corresponding place in the
decoder. Furthermore, pop and emit implicitly calls tick() to
match the same calls in tag and log. The decoder’s version
of tick() is slightly different, as shown in Figure 11. Before
it increases its progress counter (τ), it checks whether the
current item in the trace is a pair (e, t), representing an
exception thrown at time t. If t is equal to the the current
value of τ, we say that the exception e has matured. The
decoder should then consume (e, t) from the trace and replay

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 80 / 84

e by throwing it. Else, (e, t) is not consumed an the decoder
simply proceeds to its next statement.

The resulting decoder is shown in Figure 12.

emi t (1 , "Preparing") ;
t i c k () ;
t r y {

t i c k () ;
t r y { emi t (4 , "Received") ; t i c k () ; }
ca tch (ExcA a) { emi t (5 , "Ouch") ; t i c k () ; }
ca tch (ExcB b) { t i c k () ; }
t i c k () ; }

emi t (9 , "Done") ;
ca tch (E x c e p t i o n e) { t i c k () ; }

Figure 12. Correct decoder for the try-catch statement.

The full transformation rule is shown in (8). It is for the
case when the try-block is log-relevant. Else it will not be
transformed.

trycatch
try S catch(e) T finally U

tick();
try { 	S ; tick() }
catch(e) {

logE(e) ;
	T ; tick() }

finally { 	U ; tick() }

tick() ;
try {
]S ; tick() }

catch(e) {
]T ; tick() }

finally {
]U ; tick() }

S∈L ∨
T∈L ∨
U∈L

(8)

Additional handlers are transformed in the same way.
However, when only the finally-part is log-relevant, we do
not actually need to log the handlers (to add logE there).

We also have to deal with uncaught exceptions. Such an
exception will escape all handlers in the program (and then
causes the program to crash). Such an exception is almost
always log-relevant, so we need to log it as well, so that the
decoder knows when to stop its current execution. To do so
the body of the top-level entry point method (e.g., main)
need to be wrapped by a fake catch-clause that catches any
exception and rethrows it; the transformed version will then
add the needed call to logE.

A. Untraced Call-backs

Most programs use standard libraries and other external
libraries. When P calls an external method, this method
may in turn call back to some method m in P. The latter
may perform logging. During decoding, we have to ensure
that dec m is called. Normally, this is the responsibility of
m’s caller’s decoder, ensuring that the original execution is
faithfully imitated. The problem is that external libraries can
not be assumed to have been exposed to our transformation;
therefore, it has no decoder and thus, nobody will call
dec m. We call such a call back (to m) an untraced call.

It turns out that the solution we had to deal with excep-
tions (Section V) can be reused. Let us suppose it is possible
to intercept untraced calls to m at the runtime. When such
a call comes, we treat it as if an Untracedm exception has
occurred, and log it (along with the current value of the

progress counter). The name of the called method (m) is
encoded in the name of the exception. The decoder will
then be able to infer when this happened, and furthermore,
it knows where to jump to proceed.

To be able to intercept untraced calls, we rename all log-
relevant methods with fresh names; e.g., m(x) to mz. In the
target application, all calls to m are accordingly modified to
calls to mz. Then we re-introduce the method m(x) with the
same signature, defined as in Figure 13.

m(x) {
logE (new U n t r a c e d m ()) ;
mz (x) ; / / c a l l t h e o r i g i n a l m

}

Figure 13. Wrapper to intercept untraced calls to m.

External methods that call to the original m will still call
it with its old name, and thus will call the new m above. So,
there we can code the logic of the interception, as shown
above.

VI. Proof of Concept

As a proof of concept we built a prototype implementing
the transformation discussed before. All Java control struc-
tures, except labelled break and continue, are handled We
use Eclipse Java Development Tools (JDT) that allows Java
source code to be analyzed and transformed at the abstract
syntax tree (AST) level.

So far we assumed that the program P only has a single
top-level entry point, e.g., its main method. This does
not work for logging, e.g., a GUI application. Such an
application is event driven: when a user interacts with it,
e.g., by clicking on a button, it generates an ’event’, and
the corresponding event handler is executed. Each handler
acts thus as a top-level entry point. In our implementation,
it is possible to annotate multiple methods as top-level. A
’full execution’ means an execution of a top-level method
m, from its start to its end. Each full execution generates a
separate trace file, e.g., named log m timestamp.txt. From
such a name we can infer back to which decoder the file
must be given. The trace is actually split into two log files:
a blog m.txt file containing the pure bitstring part of the
trace, and a evlog m.txt file containing dynamic values and
thrown exceptions. This allows the bitstring to be stored
more compactly.

To validate that our approach works, we try it on a number
of examples, listed in Table I. LOCS is the total lines of code
(comments and white lines are not counted). TrT test suite is
a set of classes consisting of various logged statements that
we use to test our implementation. Reversi is a small a GUI-
based program implementing a game of the same name. This
program has multiple top-level entry points. Nanoxml is an
open source small XML parser. Barred is an open source
file archiver. Except for the Trt test suite, these programs
do not actually do any logging. We artificially add logging

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 81 / 84

statements, by converting most comments to calls to log(s)
or log(s, v).

Table I Some Statistics

#class #methods LOCS
TrT test suite 33 59 629
Reversi 4 30 473
Nanoxml 25 285 3321
Barred 21 45 2075

We then run the examples on several sample inputs and
compare the resulting logs and the logs that we would get if
we do not apply our transformation. The results are shown
in the table below.

Table II Results

org (KB) tr enh DVR CR ER
TrT test suite 3.3 1.3 24.1 0.27 0.39 7.3
Reversi 29.6 7,5 87.6 0.09 0.16 3.0
Nanoxml 268 101 3054 0.18 0.38 11.4
Barred 29.2 1.4 111 0 0.05 3.8

Above, tr and ehc express the size, in KB, of the trace
file and enhanced log. It is calculated by counting the
number of characters; every character is counted as two
bytes. The org is the size of the original logging fragments
in ehc. CR = tr/org is the obtained compaction ratio, and
ER = enh/org is an indication of the enhancement factor.
So, the compaction factor of 0.38 for Nanoxml means that
our generated trace is 0.38× smaller than what we would
get from normal logging, whereas its enhancement factor
of 11.4 means that after decoding we enrich the normal log
with tracing information, roughly by 11.4×. The above way
to calculate ER is indeed debatable. One may point out that
we should instead compare the amount of raw information
the logs carry. But this is also not very useful: the trace
file can be thought as a minimal representation the raw
information that the corresponding enhanced log embodies;
but not even a tool can read a trace file without decoding
it first. Enhanced logs produced by our implementation are
intended to readable by human and parsable by tools. So
they do contain some verbosity, but we did try to minimize
it (e.g., we did not blow them up to HTML); so, comparing
them to the size of the original logs seems reasonable. DVR
is the ratio of the amount of logged dynamic values in the
normal log. The above results indicate that higher DVR will
decrease the compaction ratio, which is to be expected since,
unlike static strings, dynamic values have to actually be
logged.

We expected that the run time overhead would be less
compared to normal logging, because we would have to do
less I/O. However, in our experiments this does not turn out
to be the case, as shown in the table below for the Nanoxml
and Barred examples. #calls is the total number of calls to
the log function, and OV is the resulting total time overhead
in ms; ovc is the average overhead per number of call, and
ovs is the average overhead per KB of logged data in the
original log. These numbers indeed suggest that the overhead

is quite small, but ideally those numbers should be negative.
We believe that the implementation can still be improved by
choosing more clever data structures in our implementation.

Table III Time overhead

#calls OV (ms) ovc ovs
Nanoxml 5335 320 0.06 1.19
Barred 660 277 0.42 9.55

With respect to the conclusions suggested by the above
results, the following are the threats to their validity.

1) Logging statements were artificially added; as said, by
converting comments to calls to log. This resulted in
quite intensive logging. A program with real logging
may log with different intensity. In particular, when
a program logs less frequently, it can be expected to
also have more attractors/distractors between logging
nodes. This affects CR negatively, but improves ER.
DVR also matters; higher DVR affects CR negatively,
without improving ER.

2) The amount of logging investigated was at most in
the order of hundreds of KBs. In particular, we did
not investigate large scale logging (e.g., in the order
of GBs).

VII. RelatedWork

Most work in logging has been focused on providing
logging infrastructure for various software technologies.
Many modern programming languages already come with
logging libraries. These provide functions we can use to
log messages. They often have a notion of ’logging level’
to control the verbosity of the generated logs. There are
also alternative libraries such as the Log4x family [10]
that provide, e.g., improved APIs or improved performance.
Apache Commons Logging offers a set of common logging
APIs so that the implementation of the logger can be
decoupled and replaced easily. Some SDKs, such as the
Google Web Toolkit (GWT) for developing web applications
may also come with its own logging library, specialized to
the kinds of applications that they target. Most logs, e.g.,
web servers logs or OS logs, are semi structured [11], where
for example types of events and their time stamps can be
distinguished, but further information about them are often
described in free style strings. Obviously, the more refined
the structure is, the more viable they are for analysis. Some
debuggers produce deeply structured logs [12]. FITTEST
testing framework comes with PHP and Flash loggers that
produce deeply structured logs [13], which are used to feed
its model and oracle inference tools [8], [14].

Logging statements can be manually added into a pro-
gram, or automatically inserted through program transforma-
tion. For example, this can be done by specifying the logging
as a separate ’aspect’, which is then weaved into the target
program using an AOP tool like AspectJ [15], or using a
special log instrumentation tool such as ABCi for Flash [16].

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 82 / 84

Or, we can use a generic program transformation tool such
as Stratego [17]. Our approach can be seen as adding another
layer of transformation. Our implementation is ad hoc, using
JDT. In retrospect, using a tool like Stratego might have been
a better choice, as it allows the transformation to be specified
and composed more abstractly.

VIII. Conclusion & FutureWork

We have presented a new log encoding scheme. The
approach works by transforming the source code of the
target program, to make its control flow statements to log
bitstrings encoding their flows of control. The produced
logs are significantly more compact than traditional logging,
while at the same time, when decoded they enhances the
resulting normal logs with substantial tracing information.
To reconstruct the logs, decoders are needed; they are
produced by the same transformation above.

A prototype implementing the approach has been built and
tested on some real life programs. The results show 0.05 -
0.4 compaction ratio (2.5 - 20 times more compact), and 3
- 11 enhancement factor.

Future work. We want to investigate if the tracing in-
formation can be further enhanced, e.g., by logging runtime
types of relevant objects. In theory, if such information is
enumerable, the enumeration allows them to be compactly
encoded, and thus the logging overhead is minimum.

We want to investigate if the logging scheme can be
extended to multi-threaded programs. We believe that our
scheme can be straightforwardly tweaked such that each
thread writes to its own trace file (which is also good
to maintain concurrency). However, when interpreting the
resulting logs, we still want to infer what the temporal
relations are between entries in the logs of different threads
(e.g., does this entry e1 from the thread T1 occurs before e2
from T2?). Time stamping every bit in the trace is obvious
not acceptable. However, we can log the time whenever T1
manages to obtain a lock c, and when it releases it again.
Because two threads cannot at the same time obtain the same
lock, this will at least allow us to infer the happen-before
relation between the threads.

We want to investigate if the logging scheme can be made
more flexible by being able to dynamically turn on and
off its tracing mode. Currently, it always produces tracing
information, whether we want it or not. One situation where
it would be useful to turn off tracing is when a loop/recursion
spam too much tracing bits, despite the compaction scheme
that we have applied. Turning tracing off is actually quite
easy. However, the decoders relies on the tracing information
to be able to correctly do their work. So, when a fragment
of the trace is suppressed, the decoders have to be made
smarter so that they can fill in the missing fragment on their
own, so that they at least are able to continue decoding the
rest of the trace.

Acknowledgment. This work is funded by the EU
FITTEST project No. 257574.

References

[1] J. H. Andrews, “Testing using log file analysis: tools, meth-
ods, and issues,” in Procd. 13th IEEE Int. Conf. on Automated
Software Engineering, 1998, pp. 157–166.

[2] J. H. Andrews and Y. Zhang, “Broad-spectrum studies of
log file analysis,” in Procd. 22nd Int. Conf. on Software
Engineering, 2000, pp. 105–114.

[3] H. Barringer, A. Groce, K. Havelund, and M. Smith, “Formal
analysis of log files,” AIAA Journal of Aerospace Computing,
Information and Communications, 2010, pp. 365–390.

[4] S. Pachidi, “Software operation data mining: techniques to
analyse how software operates in the field,” Master’s thesis,
Dept. Inf. & Comp. Sciences, Utrecht Univ., 2011, IKU-
3317153.

[5] K. Kowalski and M. Beheshti, “Improving Security Through
Analysis of Log Files Intersections,” I. J. Network Security,
vol. 7, no. 1, 2008, pp. 24–30.

[6] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic genera-
tion of software behavioral models,” in Procd. of the 30th int.
conf. on Software engineering. ACM, 2008, pp. 501–510.

[7] D. Tu, R. Chen, Z. Du, and Y. Liu, “A Method of Log
File Analysis for Test Oracle,” in Scalable Computing and
Communications; Eighth International Conference on Embed-
ded Computing, 2009. SCALCOM-EMBEDDEDCOM’09.
International Conference on. IEEE, 2009, pp. 351–354.

[8] L. Mariani, A. Marchetto, C. D. Nguyen, P. Tonella, and
A. I. Baars, “Revolution: Automatic evolution of mined
specifications,” in ISSRE, 2012, pp. 241–250.

[9] A. Sturala, “Record-based Logging,” Master’s thesis, Dept.
Inf. & Comp. Sciences, Utrecht Univ., 2011, ICA-3324192.

[10] C. Gulcu, “Log4j delivers control over logging,” Java World,
2000.

[11] A. Schuster, “Introducing the Microsoft Vista event log file
format,” digital investigation, vol. 4, 2007, pp. 65–72.

[12] M. Auguston, “A Program Behavior Model Based on Event
Grammar and its Application for Debugging Automation,” in
AADEBUG, 2nd Int. Workshop on Automated and Algorith-
mic Debugging, 1995, pp. 277–291.

[13] I. S. W. B. Prasetya, A. Elyasov, A. Middelkoop, and J. Hage,
“FITTEST log format (version 1.1),” Dept. of Inf. and Comp.
Sciences, Utrecht Univ., Tech. Rep. UU-CS-2012-014, 2012.

[14] I. S. W. B. Prasetya, J. Hage, and A. Elyasov, “Using sub-
cases to improve log-based oracles inference,” Dept. of Inf.
and Comp. Sciences, Utrecht University, Tech. Rep. UU-CS-
2012-012, 2012.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold, “An Overview of AspectJ,” in ECOOP’01,
2001, pp. 327–353.

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

 83 / 84

[16] A. Middelkoop, A. Elyasov, and I. S. W. B. Prasetya, “Func-
tional instrumentation of ActionScriptPrograms with ASIL,”
in Implementation and Application of Functional Languages,
ser. LNCS, vol. 7257, 2011, pp. 1–16.

[17] E. Visser, “Stratego: A language for program transforma-
tion based on rewriting strategies,” in Rewriting Techniques
and Applications, 12th International Conference, RTA 2001,
Utrecht, The Netherlands, May 22-24, 2001, Proceedings, ser.
LNCS, vol. 2051, 2001, pp. 357–362.

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

Powered by TCPDF (www.tcpdf.org)

 84 / 84

http://www.tcpdf.org

