
VALID 2015

The Seventh International Conference on Advances in System Testing and

Validation Lifecycle

ISBN: 978-1-61208-441-1

November 15 - 20, 2015

Barcelona, Spain

VALID 2015 Editors

Teemu Kanstren, VTT, Finland

Birgit Gersbeck-Schierholz, Leibniz Universität Hannover, Germany

 1 / 54

VALID 2015

Forward

The Seventh International Conference on Advances in System Testing and Validation Lifecycle
(VALID 2013), held on November 15 - 20, 2015 in Barcelona, Spain, continued a series of events focusing
on designing robust components and systems with testability for various features of behavior and
interconnection.

Complex distributed systems with heterogeneous interconnections operating at different
speeds and based on various nano- and micro-technologies raise serious problems of testing,
diagnosing, and debugging. Despite current solutions, virtualization and abstraction for large scale
systems provide less visibility for vulnerability discovery and resolution, and make testing tedious,
sometimes unsuccessful, if not properly thought from the design phase.

The conference on advances in system testing and validation considered the concepts,
methodologies, and solutions dealing with designing robust and available systems. Its target covered
aspects related to debugging and defects, vulnerability discovery, diagnosis, and testing.

The conference provided a forum where researchers were able to present recent research
results and new research problems and directions related to them. The conference sought contributions
presenting novel result and future research in all aspects of robust design methodologies, vulnerability
discovery and resolution, diagnosis, debugging, and testing.

We welcomed technical papers presenting research and practical results, position papers
addressing the pros and cons of specific proposals, such as those being discussed in the standard forums
or in industry consortiums, survey papers addressing the key problems and solutions on any of the
above topics, short papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the VALID 2015 technical
program committee as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and efforts to contribute to VALID 2015. We truly believe
that thanks to all these efforts, the final conference program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the VALID 2015 organizing
committee for their help in handling the logistics and for their work that is making this professional
meeting a success. We gratefully appreciate to the technical program committee co-chairs that
contributed to identify the appropriate groups to submit contributions.

We hope the VALID 2015 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in system testing and
validation. We also hope Barcelona provided a pleasant environment during the conference and
everyone saved some time for exploring this beautiful city.

VALID 2015 Advisory Chairs

Andrea Baruzzo, Università degli Studi di Udine, Italy

Cristina Seceleanu, Mälardalen University, Sweden

 2 / 54

Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany

Mehmet Aksit, University of Twente - Enschede, The Netherlands

Amir Alimohammad, San Diego State University, USA

VALID 2015 Research Institute Liaison Chairs

Juho Perälä, VTT Technical Research Centre of Finland, Finland

Alexander Klaus, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany

Kazumi Hatayama, Gunma University, Japan

Alin Stefanescu, University of Bucharest, Romania

Vladimir Rubanov, Institute for System Programming / Russian Academy of Sciences (ISPRAS), Russia

Tanja Vos, Universidad Politécnica de Valencia, Spain

VALID 2015 Industry Chairs

Abel Marrero, Bombardier Transportation Germany GmbH - Mannheim, Germany

 3 / 54

VALID 2015

Committee

VALID Advisory Chairs

Andrea Baruzzo, Università degli Studi di Udine, Italy
Cristina Seceleanu, Mälardalen University, Sweden
Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany
Mehmet Aksit, University of Twente - Enschede, The Netherlands
Amir Alimohammad, San Diego State University, USA

VALID 2015 Research Institute Liaison Chairs

Juho Perälä, VTT Technical Research Centre of Finland, Finland
Alexander Klaus, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany
Kazumi Hatayama, Gunma University, Japan
Alin Stefanescu, University of Bucharest, Romania
Vladimir Rubanov, Institute for System Programming / Russian Academy of Sciences (ISPRAS), Russia
Tanja Vos, Universidad Politécnica de Valencia, Spain

VALID 2015 Industry Chairs

Abel Marrero, Bombardier Transportation Germany GmbH - Mannheim, Germany

VALID 2015 Technical Progam Committee

Fredrik Abbors, Åbo Akademi University, Finland
Jaume Abella, Barcelona Supercomputing Center (BSC-CNS), Spain
Mehmet Aksit, University of Twente - Enschede, The Netherlands
Amir Alimohammad, San Diego State University, USA
Giner Alor Hernandez, Instituto Tecnologico de Orizaba - Veracruz, México
César Andrés Sanchez, Universidad Complutense de Madrid, Spain
Aitor Arrieta, Mondragon Unibertsitatea, Spain
Selma Azaiz, CEA List Institute - Gif-Sur-Yvette, France
Cesare Bartolini, ISTI - CNR, Pisa, Italy
Andrea Baruzzo, Università degli Studi di Udine, Italy
Serge Bernard, LIRMM, Franmce
Paolo Bernardi, Politecnico di Torino, Italy
Ateet Bhalla, Independent Consultant, India
Mauro Birattari, Université Libre de Bruxelles, Belgium
Bruno Blaškovic, Faculty of Electrical Engineering and Computing ZOEEM - CRS lab, Croatia
Mark Burgin, University of California Los Angeles (UCLA), USA
Isabel Cafezeiro, Instituto de Computação - Universidade Federal Fluminense, Brazil
Luca Cassano, University of Pisa, Italy

 4 / 54

Jong-Rong Chen, National Central University, Taiwan
Hana Chockler, King’s College, London, UK
Bruce F. Cockburn, University of Alberta - Edmonton, Canada
Maurizio M D'Arienzo, Seconda Università di Napoli, Italy
Vidroha Debroy, Hudson Alley Software, USA
Gülşen Demiröz, Sabanci University, Turkey
Stefano Di Carlo, Politecnico di Torino, Italy
Ricardo J. Dias, NOVA-LINCS, Universidade NOVA de Lisboa, Portugal
Rolf Drechsler, DFKI Bremen, Germany
Lydie du Bousquet, J. Fourier-Grenoble I University / LIG labs, France
Kerstin Eder, University of Bristol, UK
Stephan Eggersglüß, University of Bremen / DFKI - Cyper-Physical Systems - Bremen, Germany
Khaled El-Fakih, American University of Sharjah, UAE
Sigrid Eldh, Ericsson AB, Sweden
Leire Etxeberria Elorza, Mondragon Unibertsitatea, Spain
Michael Felderer, University of Innsbruck, Austria
Teodor Ghetiu, University of York, UK
Patrick Girard, LIRMM, France
Radu Grosu, Vienna University of Technology, Austria
Bidyut Gupta, Southern Illinois University, USA
Kazumi Hatayama, Gunma University, Japan
Philipp Helle, Airbus Group Innovations, Germany
Florentin Ipate, University of Bucharest, Romania
David Kaeli, Northeastern University - Boston, USA
Ahmed Kamel, Concordia College, USA
Teemu Kanstren, VTT, Finland
Vincent Kerzerho, CNRS - LIRMM, France
Zurab Khasidashvili, Intel Israel Ltd, Israel
Alexander Klaus, Fraunhofer Institute for Experimental Software Engineering - Kaiserslautern, Germany
Weiqiang Kong, Kyushu University, Japan
Daniel Kuemper, University of Applied Sciences Osnabrück, Germany
Maurizio Leotta, University of Genova, Italy
Keqin Li, Huawei Technologies, Germany
Joao Lourenco, Universidade Nova de Lisboa, Portugal
Oded Margalit, IBM CCoE, Israel
Maria K. Michael, University of Cyprus, Cyprus
Abel Marrero, Bombardier Transportation Germany GmbH - Mannheim, Germany
Brian Nielsen, Aalborg University, Denmark
Roy Oberhauser, Aalen University, Germany
Johannes Oetsch, Vienna University of Technology, Austria
Nguena-Timo Omer-Landry, LaBRI/University Bordeaux 1, France
Yassine Ouhammou, ENSMA / LIAS-lab, France
Sachin Patel, Tata Consultancy Services, India
Bernhard Peischl, Technische Universität Graz, Austria
Juho Perälä, VTT Technical Research Centre of Finland, Finland
Mauro Pezzè, Università della Svizzera Italiana, Switzerland
Miodrag Potkonjak, Univeristy of California, Los Angeles (UCLA), USA
Paolo Prinetto, Politecnico di Torino, Italy

 5 / 54

Henrique Rebêlo, Federal University of Pernambuco, Brazil
Eike Reetz, University of Applied Sciences Osnabrück, Germany
Oliviero Riganelli, University of Lugano, Switzerland
Goiuria Sagardui Mendieta, Mondragon University, Spain
Christian Schanes, Vienna University of Technology, Austria
Cristina Seceleanu, Mälardalen University, Sweden
Nassim Seghir, University of Oxford, UK
Sergio Segura, University of Seville, Spain
Vipul Shah, Tata Consultancy Services, India
Alin Stefanescu, University of Bucharest, Romania
Mehdi B. Tahoori, Karlsruhe Institute of Technology (KIT), Germany
Nur A. Touba, University of Texas - Austin, USA
Spyros Tragoudas, Southern Illinois University Carbondale, USA
Jos van Rooyen, Bartosz ICT, Netherlands
Miroslav N. Velev, Aries Design Automation, USA
R. Venkatesh, Tata Consultancy Services, India
Bart Vermeulen, NXP Semiconductors - Eindhoven, The Netherlands
Arnaud Virazel, Université Montpellier 2 / LIRMM, France
Tanja E. J. Vos, Universidad Politécnica de Valencia, Spain
Stefan Wagner, University of Stuttgart, Germany
Hironori Washizaki, Waseda University, Japan
Kristian Wiklund, Ericsson AB / Mälardalen University, Sweden
Lina Ye, CentraleSupélec, Gif sur Yvette, France / LRI, Univ. Paris-Sud 11, France
Cemal Yilmaz, Sabanci University - Istanbul, Turkey
Zeljko Zilic, McGill University, Canada

 6 / 54

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 54

Table of Contents

An Experimental Comparative Study of Fault-Tolerant Architectures
Imran Wali, Arnaud Virazel, Alberto Bosio, and Patrick Girard

1

Mobile Application Validation through Virtualization
Cyril Dumont, Steven Enten, Fabrice Mourlin, and Laurent Nel

7

Variability in Test Systems: Review and Challenges
Aitor Arrieta, Goiuria Sagardui, and Leire Etxeberria

14

Automatic Test Set Generator with Numeric Constraints Abstraction for Embedded Reactive Systems: AUTSEG
V2
Mariem Abdelmoula, Daniel Gaffe, and Michel Auguin

22

Identifying Error-prone Transactions in Enterprise Applications
Pavan Kumar Chittimalli, Sachin Patel, and Vipul Shah

30

Automatic Falsification of Java Assertions
Rafael Caballero, Manuel Montenegro, Herbert Kuchen, and Vincent Von Hof

35

RDTA – Repository Driven Test Automation A new look into reuse of test automation artifacts
Dani Almog, Hadas Chassidim, Shlomo Mark, and Yaron Tsubary

41

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 54

An Experimental Comparative Study of Fault-Tolerant Architectures

Imran Wali, Arnaud Virazel, Alberto Bosio, Patrick Girard
LIRMM – University of Montpellier / CNRS

Montpellier, France
e-mail: {wali, virazel, bosio, girard}@lirmm.fr

Abstract—This paper provides a comparative study based on
experiments performed on four similar fault-tolerant
architectures intended to reduce errors caused due to faults in
combinational logic parts of microelectronic circuits and
systems. The compared merits include area, power,
performance and fault tolerance capability. The experimental
results show that the improved Hybrid Fault-Tolerant
Architecture can handle transient faults as effectively as
Partial-TMR and exhibits permanent fault tolerance capability
similar to that of Full-TMR. It offers 11.8% and 20.5% power
saving compared to Partial and Full-TMR respectively.
Furthermore, it can handle the fault accumulation effect better
than TMR, hence an ideal candidate for low-power long
duration mission-critical applications.

Keywords-fault tolerant architecture; fault tolerance
capability assessment.

I. INTRODUCTION
Complementary metal-oxide semiconductor (CMOS)

device scaling is posing reliability challenges to future
microelectronic circuits and systems [1]. Other alternative
and evolutionary technologies are also facing reliability
issues in their early development life cycles. Design
architects must address the concern of preventing reliability
from becoming a bottleneck for the development of high-
performance, low-power systems, through the use of fault-
tolerant techniques.

These techniques are commonly used to tolerate on-line
faults, i.e., faults that appear during the normal functioning
of the system, irrespective of their transient or permanent
nature [2]. They use redundancy, i.e., the property of having
spare resources that perform a given function and tolerate
faults in the combinational [3]-[5] and/or sequential [6]-[9]
part of the circuit. These techniques are generally classified
by the type of redundancy used. Basically, three types of
redundancy are considered: information, temporal and
hardware [2].

Many studies in literature like [10]-[12] provide
evaluation results within the scope of the architecture
proposed therein. However, it is essential that these similar
schemes be comprehensively compared using identical set of
experiments and conditions in order to have a meaningful
contrast. For any fault-tolerant architecture, the four merits
that are essential to be analyzed are its area, power and
performance overheads and most importantly its fault
tolerance capability. Among these four merits area, power
and performance can be evaluated using conventional circuit

analysis tools. Unlike these attributes of a fault-tolerant
architecture, fault tolerance capability cannot be evaluated
using standard circuit analysis methodologies, but only by
observing system behavior in the presence of faults [13].

In this paper, we present a comprehensive experimental
comparative study of four fault-tolerant architectures with
similar fault-tolerance capability in the context of spatial and
temporal characteristics of faults and the architectural cost
merits, which include area and power consumption. These
architectures include Partial Triple Modular Redundancy
(Partial-TMR) and Full Triple Modular Redundancy (Full-
TMR) [2], Hybrid Fault-Tolerant (HyFT) [14][15] and
improved Hybrid Fault-Tolerant (iHyFT) [16] architectures.
For assessing the merits of these fault-tolerant architectures,
we implement them on some ITC’99 benchmarks and use a
Gate-level simulation based fault-injection framework to
quantitatively assess and compare the fault tolerance
capability of these schemes.

The remaining parts of this paper are organized as
follows. Section 2 highlights the problematic of error
occurrences in combinational logics and storage elements.
Section 3 presents the fault-tolerant architectures under
comparison. Section 4 details the experimental methodology
while Section 5 gives results in terms of area, power,
performance and fault-tolerance capability. Finally, Section 6
concludes the paper and provides some perspectives.

II. PROBLEM STATEMENT
Lidén et al. in 1994 experimentally estimated that only

2% of bit flips in memory elements also known as Single
Event Upset (SEU) were caused by particle-induced
transients or Single Event Transients (SET) generated in and
propagated through Combinational Logic (CL). The rest
were due to direct particle strike in latches. Their
experiments involved using a 1µm CMOS process at 5MHz
[17]. Since then physical gate-length has downscaled up to
50 times, supply voltages have dropped to 0.9 V and
operating frequency has shown a thousand fold increase [1].
This massive change in technology has resulted in greater
sensitivity of memory elements to high-energy particle, but
the effects are more pronounced on CL networks [18]. A
more recent work uses a probability model to estimate that
the susceptibility to CL circuits to SET nearly doubles as the
technology scales from 45 nm to 16 nm [19]. As a result
research attention drawn towards developing techniques to
limit Soft Error Rate (SER) in CL is becoming comparable
to effort made in protecting state elements. Figure 1
symbolically illustrates the share and types of problems

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 9 / 54

arising from sequential logic and combinational logic parts
of digital circuit.

Figure 1. Error occurrences in combinational logics and storage elements

III. FAULT-TOLERANT ARCHITECTURES
Several hardware fault-tolerant architectures have been

proposed in the literature [20]. The classical hardware
redundancy architecture is the N Modular Redundancy
(NMR). A NMR structure is a fault-tolerant architecture
based on N modules performing the same function. The
outputs of these modules are compared by using a majority
voter. The case of N = 3 is called TMR and has been widely
studied and used in practical system applications [2][3].

(a)

(b)

Figure 2. TMR Architectures (a) Partial-TMR and (b) Full-TMR

There are different methods to implement TMR
architecture for logic circuits, depending on which part of
this circuit is triplicated. In Figures 2.a and 2.b, we present
two TMR structures that will be compared with the hybrid
fault-tolerant architecture. The first implementation (Partial-
TMR, Figure 2.a) consists of triplicating only Combinational
Logic (CL) part of the logic circuit while the second one

(Full-TMR, Figure 2.b) requires triplications of both
combinational and sequential parts.

While having smaller area overhead, the partial-TMR
solution cannot tolerate SEUs or permanent faults in pipeline
registers. This problem can be solved using full-TMR
solutions by triplicating the registers. Note that in full-TMR
input registers are also triplicated so that errors caused by
each register can be tolerated.

The second fault-tolerant architecture under comparison
is the HyFT scheme presented in [14, 15]. This architecture
employs information redundancy (duplication/comparison)
for the error detection, timing redundancy (re-computation)
for the transient error correction and hardware redundancy
(re-configuration) for the permanent error correction. As
presented in Figure 3.a, the hybrid architecture employs three
copies of CL (CL1, CL2 and CL3) modules. The input
demultiplexer and the output multiplexer are used to select
two running CL copies and to put the third CL copy in
standby mode.

(a)

(b)

Figure 3. HyFT Architectures (a) HyFT and (b) iHyFT

The HyFT architecture is driven by a control logic
module, which is divided in two parts. The first part consists
of a state-machine that controls different configurations of
the architecture, i.e., it decides which two CL copies to run
in parallel. The second part controls the comparator, pipeline
register, demultiplexer and multiplexer. For error detection it
uses the pseudo-dynamic comparator presented in [21]. It
combines a dynamic transition detector and a static
comparator in order to detect hard, soft and timing errors

1 P. Liden. et al, [FTC1994]
2 J. Velamala . et al, [DAC2011]

3/22

20th IEEE European Test Symposium

≈50%

D Q

 Q’

D Q

 Q’

≈50%

SET

Combinational Logic Storage
Elements

Soft Errors

Delay
Faults

Permanent
Fault

��

��
��

���
�	

��
�
��

����
�

����
�

����
�

��

�
��
��

���
�	

��
�
�

��

��

��
��

���
�	

��
�
��

��

��
��

���
�	

��
�
��

��

��
��

���
�	

��
�
��

��

�
��
��

���
�	

��
�
��

��

�
��
��

���
�	

��
�
��

��

�
��
��

���
�	

��
�
��

����
�

����
�

����
�

��

��

���������������
���	�

��

��
��

���
�
���
��
��

��
���

���
�

��

���
�	
��
� ����

�

����
�

����
�

��	�������

��

������	��
	�

�
��
��

���
�
���
��
�

��

���������������
���	�

��

��
��

���
�
���
��
��

��
���

���
�

��

���
�	
��
� ����

�

����
�

����
�

��	�������

��

������	��
	�

�
��
��

���
�
���
��
�

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 10 / 54

during a comparison-window as shown in the timing diagram
of Figure 4.a. The comparison takes place only during these
brief intervals of time represented as red shaded regions with
doted outline in Figure 4. The timing of comparison-window
is defined by the high phase of a delayed clock signal ‘dc’.

(a)

(b)

Figure 4. Comparison-window timing for (a) HyFT and (b) iHyFT

Figure 3.b presents the improved version of the HyFT
(iHyFT) architecture, which resulted as an attempt to
improve the error detection capability and to reduce the
performance overhead [16]. This improved scheme achieves
aforementioned objectives by using a comparison-window
across the setup-hold window as shown in Figure 4.b. With
this comparison timing it can intrinsically detect erroneous
signal transients that are more likely to be captured in the
output register. The comparison-window timing was made
possible by changing the placement of the comparator such
that the comparator compares the output of two running CL
copies directly from the multiplexer as shown in Figure 3.b.
The ability to act against only the potentially fatal SETs not
only reduces the number of fail-silent faults but also
improves the performance.

IV. EXPERIMENT METHODOLOGY
Experiments are performed to compare the merits of the

four fault-tolerant architectures presented in Section III. Each
architecture is applied to a few of the ITC’99 benchmark
circuits and are synthesized using NanGate 45nm Open Cell
Library [22]. The area figures are obtained from the
synthesized designs and power estimates are obtained by
taking into account the switching activity generated by back-
annotated gate-level simulations. The workload for
simulation is a set of patterns optimized for stuck-at fault
detection. The reason for using such a workload is to obtain
switching activity distributed in all parts of the circuit.

The performance overhead is evaluated in two different
aspects. Firstly, in terms of temporal performance
degradation, which is basically the additional delay in the
data-path due to the fault-tolerant architecture (e.g., voter

delay in TMR), and secondly in terms of error recovery
penalty under a certain fault rate.

The fault-tolerance capability of the four schemes is
estimated by performing fault injection in the combinational
logic parts of the circuits, by using a gate-level simulation
based fault-injection framework. The framework uses the
switching activity file to extract the list of all possible fault-
locations. From this list it randomly selects a subset of
locations for fault-injection. To each fault location in this
subset, it randomly assigns a fault-injection time within the
limits of simulation time duration and a SET duration also
randomly selected from the range of typically anticipated
SET pulses, i.e. from 0.25ns to 1.25ns [23]. Once the fault
list is prepared, fault injection campaigns that comprise a
number of simulations are run. Either a single SETs or a
permanent stuck-at fault is injected per simulation by
forcing the signals at the specified location, at the
corresponding time indicated by the fault list.

During the fault injection campaign a fault-injection
report is generated which contains the cycle-by-cycle
outcome of each simulation. At the end of fault-injection
campaign the fault-injection report is analyzed to classify
the faults according to the fault effects into three categories:

1. Silent faults: the faults that have no impact on the
workload computation nor are detected by the fault-
tolerant architecture.

2. Corrected faults: the faults that are detected and
corrected by the fault- architecture in place.

3. Fail-Silent fault: the faults, which result in a wrong
computed result but are not detected by the fault-
tolerant architecture.

The ratio of the number of fail-silent faults to the
number of total injected faults gives us a figure to compare
the fault tolerance capability of the four different schemes.

V. COMPARATIVE ANALYSIS

A. Area and Power Overhead
Table I gives the average area and power for the

BaseLine (BL) circuits and the fault-tolerant schemes based
on the results of their implementation on six ITC’99
benchmark circuits. It also gives their associated overheads
of area and power with the BL circuits as reference.

TABLE I. AREA AND POWER ESTIMATION RESULTS

Avg
Area
(µm2)

Avg Area
overhead

(%)

Avg Power
(µW)

Avg Power
overhead

(%)
BL 1231.00 0 351.50 0

Partial-TMR 3141.59 155.02 971.66 173.32
Full-TMR 3781.32 206.93 1077.74 206.09

HyFT 3739.43 213.24 859.67 157.36
iHyFT 3739.43 213.24 856.49 156.83

The most obvious area and power overhead figures are

those of Full-TMR. As it is based on triplicating the CL

� �

��
�������
�������

dc�
� �

clk�
�
�
�

�������	��
�������

��
�������
�������

� �

dc�

clk�
�
�
�

�������	��
�������

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 11 / 54

blocks and also the registers, it occupies a little more than
three times the area and consumes a few microwatts over
BL. This extra area and power is due to the voter in the Full-
TMR scheme.

The average percentage of area overhead values in Table
I show that the partial-TMR implementation consumes less
in terms of area that is about 155%. The two most expensive
architectures in terms of area are HyFT and iHyFT with an
average overhead of around 213% on average for the
considered set of benchmark circuits.

 As far as the power consumption is concerned HyFT and
iHyFT architectures are most efficient based on the average
power overhead figure of about 157% in Table I. Partial-
TMR stands at 173%, making Full-TMR the least power
efficient scheme. This high power consumption is accounted
to the triplication of sequential elements. On the other hand
HyFT and iHyFT save power by having one CL copy in
stand-by all the time.

The graphs in Figure 5 show the percentage increase in
area (Figure 5.a) and power (Figure 5.b) of the BL circuits to
implement the four fault-tolerant architectures discussed in
Section III. Note that the benchmark circuits are arranged in
ascending order of their size from left to right on X-axis to
illustrate the impact of the size of CL block on the area and
power overheads. The dotted lines in Figure 5 represent the
average percentage figures of area and power overheads for
the corresponding fault-tolerant architecture implementation.

(a)

(b)

Figure 5. Impact of CL block size on (a) Area and (b) Power Overhead

An important observation that can be made in the graphs
of Figure 5 is that, the area and power overheads of both
partial and full-TMR are relatively independent of the size of
CL block to which they are applied. However, these
overheads for HyFT and iHyFT change with different sizes
of benchmarks such that the area and power overheads of
HyFT and iHyFT decrease with the larger benchmarks. This
observation also gives an idea of the anticipated impact on
the area and power overheads for CL blocks larger than the
benchmarks considered in this study. Although the average
area overhead of HyFT and iHyFT is higher than other
considered fault-tolerant architectures but with large CL
blocks we can expect it to decrease. Where as the power
overhead of HyFT and iHyFT, which is already the
minimum, tends to further reduce with larger CL blocks.

B. Performance
The first evaluated measure of performance is the

temporal performance degradation. In partial-TMR and full-
TMR, it is defined by the delay of voter circuit in the data-
path. In case of HyFT and iHyFT it is due to the delay of
shadow latch multiplexers in input register responsible for
rollback and the reconfiguration multiplexer and
demultiplexer. The comparator being outside the critical path
does not contribute to the temporal performance degradation.
Using static timing analysis the temporal performance
degradation for partial-TMR and full-TMR was estimated to
be 0.73% for a 100MHz operation. The same for HyFT and
iHyFT was found to be 9.7% without any design
optimization.

The figures that can give us a measure of the second
considered performance aspect, i.e. the error recovery
penalty, can be interpreted from the transient fault injection
results presented in Table II. These results are obtained by
injecting transient faults at an average rate of 250K
faults/second.

TABLE II. TRANSIENT FAULT INJECTION EXPRIMENT RESULTS
SUMMARY

 Avg % of
Silent faults

Avg % of
Corrected faults

Avg % of
Fail-silent faults

BL 92.51% 0.00% 7.49%
Partial-TMR 99.97% 0.00% 0.03%
Full-TMR 100% 0.00% 0.00%

HyFT 92.46% 7.26% 0.28%
iHyFT 94.10% 5.86% 0.04%

It can be observed in Table II that for partial-TMR and

full-TMR the percentage of corrected faults is zero. This is
because; TMR is an error masking technique rather than an
error detection and correction one and does not indicate the
presence of error. With no provision of identifying the
corrected faults, they are kept within the category of silent
faults in our analysis. It also indicates that the error recovery
penalty for TMR is zero as it corrects errors by masking
them instead of undergoing a reconfiguration and re-
computation cycle. It can also be seen in Table II that HyFT
corrected on average 7.26% of injected faults. For each
detected and corrected SET the HyFT undergoes a recovery

����!�&� ����#�&�

��#�!�&�

��#���&�
������&� �� �#"&�

�� �!�&� �� �!�&� ��!���&�
�� ��#&� �� �"�&�

��!�#�&�

��"���&�

��"���&�

������&�

������&� ����#!&�
�#��"�&�

������!!�� &�

�������"�# &�
������� ��!&�

������&�

������&�

�!����&�

�#����&�

������&�

������&�

������&�

���
���
� �
�"�
���
���

��
��
��
��
��
��
��
�&

��

������������
����������������������������	�����������	������
����������

�	��	������

���������

�����

�����

����	���

� !��!&�
� ����&�

�!!���&�

�!���#&�

�!#��#&�
�!"� �&�

�� ��"&�

����!�&�

�� �� &�

���� �&�

����"�&�

�� ���&������ &�

� #��#&�

������&�

����"�&�

��!���&�
�� �� &�

�����#&�

� ��! &�

���� �&�

��"���&� ����"�&�

������&�

����� %"�""*�

�����!�$��'*�

����� #%�"$*�

����� #$�&"*�

������&�

������&�

������&�

������&�

� ����&�

�!����&�

�"����&�

�#����&�

������&�

������&�

������&�

���
���
� �
�"�
���
���

��
�
	�
��
�	
�
	�
��
�*

��

�	��������
�������	��������	���������	���
��	�����	��
�����	�����������

�	��	������

���������

�����

�����

����	���

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 12 / 54

phase that takes 2 additional cycles [14]. According to these
figures, HyFT spends around 14.52% of total computation
time on recovering from potentially erroneous states. On the
other side, iHyFT spends 11.72% of time in recovery phase
under the same fault rate.

C. Fault-tolerance capability
1) Quantitative analysis

To compare the fault-tolerance capability of different
architectures we analyze them in terms of the percentage of
faults that resulted in a fail-silent outcome among the total
number of injected faults. Table III gives the transient fault-
injection experiment results.

TABLE III. TRANSIENT FAULT INJECTION RESULTS

Percentage of fail-silent faults (%)

BL Partial-
TMR Full-TMR HyFT iHyFT

b01 7.49 0.00 0.00 0.37 0.12
b02 8.11 0.11 0.00 0.28 0.11
b03 8.18 0.03 0.00 0.26 0.03
b05 7.11 0.02 0.00 0.21 0.00
b06 7.07 0.04 0.00 0.33 0.09
b08 7.45 0.05 0.00 0.33 0.08

Average 7.56% 0.03% 0.00% 0.28% 0.04%

Table III shows that the incorporation of each fault-

tolerant architecture into the BL circuit reduces the
percentage of fail-silent faults to a different extent. The
percentage of fail-silent faults that was originally 7.56% in
BL is brought down to 0.03% by partial-TMR. A through
analysis of the fault-injection report revealed that these
0.03% faults were among those which were injected at the
inputs of CL blocks and effected all the three TMR copies in
the same way, thus resulted in a common-mode failure. Full-
TMR on the other hand did not encounter this problem
because of it construction and turned out to be the most
effective by tolerating the effects of all the injected transient
faults.

In case of HyFT 0.28% of injected faults escaped
detection and effected the results. With further investigation
we found out that these fail-silent outcomes were not linked
to a specific location as in case of partial-TMR, but escaped
detection due to their specific timing characteristics. Static
timing analysis showed that these 0.28% fail-silent faults
were among those that were injected at a time such that their
effects appeared at the inputs of register during the clock
setup-hold window. Since in HyFT the comparison-window
does not overlap the setup-hold window as discussed in
Section III and shown in Figure 4.a, these transient faults
managed to affect the data during captured but escaped
detection by missing the comparison-window. This problem
of non-overlapping setup-hold window and comparison-
window was solved by iHyFT and therefore significant
reduction in the percentage of fail-silent faults is observed in
iHyFT of about 0.04%.

Similar observations can be made form the permanent
fault injection results shown in Table IV. An average 1.36%
of faults injected in partial-TMR result in fail-silent outcome,

mainly due to the common-mode effect. Full-TMR and
iHyFT show nearly complete tolerance against permanent
faults and in HyFT 0.08% faults escaped detection mainly
due to the setup-hold window and comparison-window
separation.

TABLE IV. PERMANENT FAULT INJECTION RESULTS

 Percentage of fail-silent faults (%)
BL Partial-TMR Full-TMR HyFT iHyFT

b01 98.37 2.37 0.00 0.15 0.02
b02 96.28 2.03 0.00 0.06 0.00
b03 98.15 1.38 0.00 0.06 0.00
b05 97.84 0.50 0.00 0.08 0.00
b06 97.23 0.66 0.00 0.13 0.00
b08 98.03 2.34 0.00 0.07 0.00

Average 98.03% 1.36% 0.00% 0.08% 0.00%

2) Qualitative analysis
Some aspects of fault-tolerance capability that have an

implication on the lifetime reliability of the circuit cannot be
inferred from the fault injection experiment result discussed
in the previous section. Therefore, we analyze them
qualitatively in this section.

When a circuit enters into the wear-out phase of it’s
lifetime, most of the wear-out mechanisms show early
symptoms as increasing signal propagation latency prior to
inducing permanent device failures [24]. The ability of the
HyFT and iHyFT architectures to detect these early
symptoms and act upon by causing reconfigurations reduces
the aging effects on the system by distributing the stress on
two of the three CL copies. The capability of selective
sparing helps reduce the rate of failures and increase the life
span of circuit parts that embed such fault-tolerant
architecture.

Another qualitative aspect of fault-tolerance capability is
fault accumulation effect that distinguishes both considered
versions of TMR from HyFT and iHyFT. TMR is an error
masking architecture that does not indicate the presence of
error, instead just corrects them until only one computational
copy exhibits an error. When faults accumulate due to wear-
out and multiple copies start getting affected, TMR fails to
correct them and the lack of any provision of indicating error
ends up in fail-silent outcomes. Whereas HyFT and iHyFT
are able to correct errors until two faulty copies manifest the
effect of fault at the output in a same way at the same time,
which is very less likely. In all other possible scenarios
HyFT and iHyFT, if cannot correct can at least indicate the
presence of error and continue fail-safe operation.

VI. CONCLUSION
In order to produce a meaningful comparison of the state-

of-art fault-tolerant architectures, we present herein an
experimental analysis based on standard circuit analysis tools
and a simulation based fault-injection framework to obtain
results in terms area, power and performance overheads and
fault tolerance capability. The results show that the improved
Hybrid fault-tolerant architecture saves notable amount of
power, while offering similar robustness improvements as

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 13 / 54

TMR. In addition it’s lifetime reliability improvement and
ability to deal with fault accumulation effect makes it
feasible for low-power mission critical applications.

We intend to continue the analysis with larger benchmark
circuits to validate the projected effectiveness of HyFT and
iHyFT when used with larger combinational logic blocks.
We also aim to perform multiple fault injection campaigns to
quantitatively access the lifetime reliability improvement and
the fault accumulation effects in different fault-tolerant
architectures.

ACKNOWLEDGMENT
This work has been partially funded by “National Centre

for Scientific Research” (CNRS) under the framework of
“International Associated Laboratory - French-Italian
research Laboratory on hardware-software Integrated
Systems” (LIA - LAFISI).

REFERENCES
[1] Semiconductor Industry Association, “International

Technology Roadmap for Semiconductors (ITRS) 2013”,
Retrieved Aug, 2015 from
http://www.itrs.net/reports.html2013.

[2] I. Koren, and C. Krishna, “Fault Tolerant Systems”, Morgan
Kauffman Publisher, 2007.

[3] R. E. Lyons and W. Vanderkulk, “The Use of Triple-Modular
Redundancy to Improve Computer Reliability,” IBM Journal
of Research and Development, Vol. 6, Issue 2, April 1962, pp.
200-209.

[4] J. Vial, A. Bosio, P. Girard, C. Landrault, S.
Pravossoudovitch, and A.Virazel, “Using TMR Architectures
for Yield Improvement,” Int. Symp. on Defect and Fault-
tolerance in VLSI Systems, Oct 2008, pp. 7-15.

[5] J. Vial, A. Virazel, A. Bosio, P. Girard, C. Landrault, and
S.Pravossoudovitch, “Is TMR Suitable for Yield
Improvement?,” IET Computers and Digital Techniques, vol.
3, No 6, Nov 2009, pp. 581-592.

[6] M. Zhang et al., “Sequential element design with built-in soft
error resilience,” IEEE Transactions on Very Large Scale
Integration Systems, Vol. 14, No. 12, Dec 2006, pp. 1368–
1378.

[7] D. Ernst et al., “Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation,” Proc. of the 36th Annual
IEEE/ACM Int. Sym. on Microarchitecture, Dec 2003, pp. 7-
18.

[8] S. Das et al., “Razor II: In Situ Error Detection and Correction
for PVT and SER Tolerance,” IEEE J. of Solid-State Circuits,
Vol. 44, Issue 1, Jan 2009, pp. 32-48.

[9] M. E. Imhof, and H.-J. Wunderlich, “Soft Error Correction in
Embedded Storage Elements,” Int. On-Line Testing Symp.,
July 2011, pp. 169-174.

[10] J. Yao et al., "DARA: A Low-Cost Reliable Architecture
Based on Unhardened Devices and Its Case Study of
Radiation Stress Test," IEEE Transactions on Nuclear
Science, Dec 2012, vol. 59, no. 6, pp. 2852-2858.

[11] V. Subramanian, and A.K. Somani, "Conjoined Pipeline:
Enhancing Hardware Reliability and Performance through
Organized Pipeline Redundancy," 14th IEEE Pacific Rim
International Symposium on Dependable Computing, Dec
2008, pp. 9-16.

[12] M. Mehrara, M. Attariyan, S. Shyam, K. Constantinides, V.
Bertacco, and T. Austin, “Low-Cost Protection for SER
Upsets and Silicon Defects,” Design, Automation & Test in
Europe Conference, April 2007, pp. 1-6.

[13] A. Benso, Alfredo, and P. Prinetto, “Fault Injection
Techniques and Tools for Embedded Systems Reliability
Evaluation,” Springer US, 2003.

[14] D. A. Tran, A. Virazel, A. Bosio, L. Dilillo, P. Girard, S.
Pravossoudovitch, and H.-J. Wunderlich, “A Hybrid Fault
Tolerant Architecture for Robustness Improvement of Digital
Circuits,” Asian Test Symposium, Nov 2011, pp. 136-141.

[15] I. Wali, A. Virazel, A. Bosio, L. Dilillo, and P. Girard, “An
Effective Hybrid Fault-Tolerant Architecture for Pipeline
Cores,” IEEE European Test Symposium, May 2015, pp. 1-6.

[16] I. Wali, A. Virazel, A. Bosio, P. Girard, and M. Sonza
Reorda, “Design Space Exploration and Optimization of a
Hybrid Fault-Tolerant Architecture,” to appear in Proc. of
IEEE Int. On-Line Test Symp., 2015.

[17] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson “On
Latching Probability of Particle Induced Transients in
Combinational Networks,” Symp. on Fault-Tolerant
Computing, June 1994, pp. 340–349.

[18] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger and L.
Alvisi, “Modeling the effect of technology trends on the soft
error rate of combinational logic,” Int. Conf. on Dependable
Systems and Networks, June 2002, pp. 389-398.

[19] J. Velamala, R. LiVolsi, M. Torres, and C. Yu, “Design
sensitivity of Single Event Transients in scaled logic circuits,”
48th Design Automation Conference, June 2011, pp. 694-699.

[20] P. K. Lala, “Self-Checking and Fault-Tolerant Digital
Design”, Morgan Kauffman Publisher, 2000.

[21] D. A. Tran, A. Virazel, A. Bosio, L. Dilillo, P. Girard, A.
Todri, M.E. Imhof, and H.-J. Wunderlich, “A Pseudo-
Dynamic Comparator for Error Detection in Fault Tolerant
Architectures,” VLSI Test Symposium, April 2012, pp. 50-55.

[22] NanGate FreePDK45 Open Cell Library, Retrieved Aug,
2015, from: http://www.nangate.com/?page_id=2325.

[23] G. Wirth, Kastensmidt, L. Fernanda, and I. Ribeiro, “Single
Event Transients in Logic Circuits_Load and Propagation
Induced Pulse Broadening,” IEEE Transactions on Nuclear
Science, Dec 2008, vol. 55, no. 6, pp. 2928-2935.

[24] J. A. Blome, S. Feng, S. Gupta, and S. Mahlke, “Online
timing analysis for wearout detection,” In Proc. of the 2nd
Workshop on Ar- chitectural Reliability, Dec 2006, pp. 51-60.

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 14 / 54

Mobile Application Validation through Virtualization

Cyril Dumont
1
 Steven Enten

2
 Fabrice Mourlin

2
 Laurent Nel

1

(1) Research department

Leuville Objects

Versailles, France

email : {cyril.dumont, laurent.nel}@leuville.com

(2) LACL

UPEC University

Créteil, France

email : {steven.enten, fabrice.mourlin}@u-pec.fr

Abstract—When several business applications use low level

libraries which are not installed in the firmware of the device;

a solution consists in building of a new firmware with the well-

chosen libraries. This afford to deploy only once for all the

business mobile applications. The complete adaptation of an

operating system to replace the Read-Only Memories

(currently called ROM) manufacturer, fundamentally changes

the kernel of an embedded system. This solution allows us to

offer regular and frequent custom firmware updates that

maintain business applications dedicated stability in time. By

creation of firmware, we leave out the space consuming trial

software. We may also leave out many of the included utilities,

letting our users add them back only if they need them. Often

we also strip out carrier specific versions of the launcher,

replacing them with Google’s original versions or a version we

prefer. After customizing a firmware, we focus on adding

business software in place to monitor the embedded device.

Thru, we use this firmware to virtualize an embedded device.

Thus, we collect information to determine whether the

firmware can be deployed on devices. The collected data are

about memory usages, threads, and resource access and energy

consumption. So, this reporting step sums up the validation of

our firmware, then they are validated to a deployment step on

mobile devices. Reports are delivered about the behaviors of

embedded software.

Keywords-embedded device; firmware custom; monitoring;

virtualization; state management.

I. INTRODUCTION

To cook a ROM (Read Only Memory) is the process of
modifying a firmware of an embedded device. It can be seen
as a kind of bridge between the applications and the actual
hardware of a device. When business applications need low
level libraries, the firmware has to be customized by the
company. For companies which need specifically designed
terminals to one or more trades, rhis new solution is called
the Read-Only Memories (currently called ROM) cooking.
Such approach is also useful when business applications have
to be added into a new kind of embedded device. Starting
from a base of operating system (such as Android) installed
on a smartphone or tablet, firmware, or operating system is
modified to fully meet demands without unnecessary
applications. Another motivation of firmware update
occurred when low level libraries have to be changed. There
are plenty of examples in companies: for instance a TV
application needs a specific library for video streaming; a

network application which encrypts its messages needs also
the use of a specific algorithm which is not necessary in a
standard distribution of the framework.

The firmware cooking, namely the complete adaptation
of an operating system to replace the firmware manufacturer,
fundamentally changes the kernel, the Android framework
and pre-installed applications for a completely clean system
to the company. This solution has the merit of offering and
customized the firmware of regular updates and more
frequent than the manufacturer's updates. This solution
provides better stability over time of business applications.
Android firmware is particularly suitable for customization
for several reasons. Embedded device manufacturers have a
process to build their own firmware. It is time consuming and
the update management is a difficulty regarding the set of
potential devices.

As an open system, developers have the source code
required to modify the Linux kernel. They rely for the rest on
the binary components manufacturer if their source codes
have not been distributed. These codes are commonly
referred to as hardware abstraction modules, for example for
the camera, Global Positioning System (GPS), sound and
graphics acceleration. Android is supported by a broad
spectrum of terminals, allowing a company to choose the
device ergonomics best suited to business constraints.

Finally, users are not disturbed because the Android
environment is familiar. A consumer product can perfectly
meet a Business to Business (B2B) demand. Experience has
shown that the porting of applications is now done without
difficulty, regardless of the changes made by Google's
Android versions, even a major evolution [1].

Some companies that have experience in customizing
firmware chose to integrate their approach, the staff
concerned. The selected spectrum of users participating in
the experiment, allowing finely define requirements and
content and gradually reflect on future developments as a
dedicated applications market. These companies are also
finding true motivation of their staff on these issues. Today,
in terms of support, initiatives are numerous: note of Android
Business Group, the sharing of experiences between large
accounts [2], the Data Android User Group [3], a monthly
meeting of developers, backed by Google and able to meet
many contributors. This contributes to the development of
firmware cooking into several companies.

The firmware cooking allows access to personal data
essential to their work wherever the end users are and the

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 15 / 54

company with materials and fully dedicated to their activities
such as information environments, training, home
automation, transportation, geolocation, security, etc.). When
new software is installed, the consequences on these data are
essential. Also, what are the disruptions caused by new
software on the host platform. In order to do this study, it is
important to be able to place a virtual machine under
observation. The goal is to validate by suitable tests that use
this virtual machine are safe. These observations are crucial
because the next step is the deployment of virtual machine on
mobile devices. And any error becomes serious
consequences for the users and the publishers [4].

We have structured our paper to present our approach to
firmware customization and also put in our firmware
monitoring controllers. So, the section 2 deals with the
monitoring of mobile applications, the nature of the data
collected but also how to make the collections to minimize
disruption to ongoing observations. In section 3, we discuss a
case of firmware manufacturing dedicated to the study of a
business application. We add measurement points dedicated
to the type of mobile platform. Then, we perform the data
collection and build the associated representations. In section
4, we explain the usefulness of such software architecture for
gathering information. Data analysis is also detailed. Finally,
we conclude on the implementation of our approach for
customizing firmware before deployment.

II. MOBILE APPLICATION MONITORING

Because new applications can involve conflicts between
the previously installed applications, it is essential to observe
the behavior of the mobile applications on a given device.
This is particularly crucial with applications which need root
permission or acquire some sensors such as a camera, etc.
Mobile monitoring is become a key step in the lifecycle of a
new mobile application. This step consists of looking at the
behavior of an application on an embedded platform.

A. Embedded system monitoring

1) Basic mobile application monitoring:
Some fraudulent mobile applications are malware, which

may capture personal information sent and received by the
device or make phantom calls to premium phone numbers,
while others may just be using a company name or logo
without prior authorization. Regardless of their intent, these
applications create a negative association in the mind of the
user, which tarnishes the company’s good reputation. This
type of bad behavior can be detected by a sufficiently long
period of observation commissioning of future embedded
platforms.

When a fraudulent application is detected, it has to be
immediately reported to a log along with a full report [5].
This contains developer information, number of downloads,
application screenshots, and a diagnostic as to why this
mobile application is believed it to be fraudulent. It provides
valuable intelligence data and can help support a criminal
investigation.

Today, manufacturer services give security operations
users an additional layer of protection, coupled with a new
data stream that includes more contextual information about

the specific and potential threats contained in fraudulent
mobile applications. This approach can be completed by ad
hoc tools, which collect data about runtime of applications
under observation. We have decided to build a tool chain for
building these data collections.

2) Adhoc monitoring.
Through the application monitoring feature a mobile

application can be studied in depth if the monitoring task is
developed in close relationship with the features of the given
mobile application. For instance, when a mobile application
uses Bluetooth protocol, then a monitoring task has to be
configured to control the packets, which are transferred on
this protocol, the collisions which occur, the availability of
the sensor, etc.

Tools such as Systrace tool, helps us to analyze the
performance of mobile applications by capturing and
displaying execution times of these applications processes
and other Android system processes [6]. This kind of tools
combines data from the Android kernel, such as the Central
Processing Unit (CPU) scheduler, disk activity, and
application threads to generate an Hypertext Markup
Language (HTML) report that shows an overall picture of an
Android device’s system processes for a given period of
time. Very often, such kind of tools is considered as
debugging tools because they are particularly useful in
diagnosing display problems where an application is slow to
draw or stutters while displaying motion or animation. But a
main drawback is the obligatory use of a USB debugging
connection.

We needed a way to get periodic screenshots of a mobile
device connected to a computer through a light protocol. On
Android Platform Dalvik Debug Monitor Server (DDMS)
has the ability to take screenshots on-demand, but not
automatically. It provides port forwarding services, screen
capture on the device, thread and heap information on the
device, etc. but the documentation is so poor that source code
of the library is the only information source. It uses an

Android Debug Bridge called adb. It allows us to
communicate with a connected device on the same WIFI
network.

On Android, every application run in their own process,
each of which runs in its own Virtual Machine (VM). Each
VM exposes a unique port that a debugger can attach to. We
have built a DDMS monitoring application for looking at the
embedded runtime of business applications. When we start

our DDMS application, it connects to adb. When a device is

connected, a VM monitoring service is created between adb
and our DDMS monitoring application, which notifies our
DDMS application when a VM on the device is started or
terminated. Once a VM is running, our DDMS application

retrieves the VM's process ID (pid), via adb, and opens a

connection to the VM, through the adb daemon (adbd) on
the device. Our DDMS application can then talk to the VM
using a custom wire protocol. The result is a data collection
about the behavior of the embedded business application.

This strategy can be translated within a hypervisor like

VirtualBox or VMWare. The adb daemon is called through
a virtual network mapping between the host platform and the

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 16 / 54

Android virtual machine. The main advantage of this
approach is to run the monitor on the host platform and the
mobile application (under observation) on a virtual machine
managed by a hypervisor. A second benefit is on the porting
of application. The hardware architecture constraints are
respected; only the configuration of our monitoring
application is updated and its network mapping.

B. Memory management

Our DDMS application allows us to view how much heap
memory a process is using. This information is useful in
tracking heap usage at a certain point of time during the
execution of business applications. Another feature of our
DDMS application is to track objects that are being allocated
to memory and to see which classes and threads are
allocating the objects. This allows us to track, in real time,
where objects are being allocated when we perform several
actions in our application. This information is valuable for
assessing memory usage that can affect application
performance. This happens when an application shares
preferences with another one.

The file system of the virtual machine is also an
information source. It is useful in looking at files that are
created by a mobile application or if we want to transfer files
to and from the virtual machine. This is also useful when the
size of the data collection is so large that it is suitable to filter
a part of the data before the transfer. This case occurs when
the mobile application uses the sensors such as the camera or
the microphone. The output format and the recording involve
often a large output file. Only a part of the data is useful for
the analysis. Also, we filter locally to the device a subset of
persistent data by the end of the monitoring scenario.

C. Time profiling

Method profiling is a means to track certain metrics about
a method in a program, such as number of calls, execution
time, and time spent executing the method. When we want
more granular control over where profiling data is collected,
it is possible to deep into the body of a method and to
compute other measures.

A difficulty of embedded operating systems such as
Android lies in its organizational changes between different

versions of the same operating system. So, depending on the
Android version, our DDMS application provides a summary
of what happened inside a given method. Also, we need to
generate log files containing the trace information we want to

analyze. We use the Debug class in our code and call its

methods such as startMethodTracing() and

stopMethodTracing(), to start and stop logging of
trace information to disk. This option is very precise because
we can specify exactly where to start and stop logging trace
data in our DDMS application. Our monitoring application
has necessary the permission to write to external storage.

To create the trace files, we include the Debug class and

we call one of the startMethodTracing() methods. In
the call, we specify a base name for the trace files that the
system generates. These methods start and stop method
tracing across the entire virtual machine. For example, we

could call startMethodTracing() in our activity's

onCreate() method, and by the end of the monitoring

stage, we call stopMethodTracing() in that activity's

onDestroy() method. When our application calls

startMethodTracing(), the system creates a file

called "trace2015-02-02" trace. This contains the full
method trace data and a mapping table with thread and
method names (see figure 1).

The system then begins buffering the generated trace

data, until our application calls stopMethodTracing(),
at which time it writes the buffered data to the output file. If
the system reaches the maximum buffer size before we call

stopMethodTracing(), the system stops tracing and
sends a notification to the console. This event can also trigger
the pulling of the technical data from the mobile device to the
workstation. We have also used the data exportation through
the use of RESTful remote monitoring application.

D. Profiling scenario

After a mobile application has run and our DDMS

application has created the trace files "traceyyyy-MM-

dd".trace on the device, we have to copy those files to the

host computer. We use adb pull to copy the files. As an

example, we copy a trace file, trace2015-02-02, from

the default location on the device to the /tmp directory on
the host machine via:

adb pull /sdcard/trace2015-02-02 /tmp

The format of the trace file is suitable to be parsed by

TraceView or TraceDump. This tool uses the

Graphviz Dot utility to create the graphical output, so we

need to install Graphviz before running this command. But
as we are going to explain in the fourth section, the data can
also be sent to a monitoring server where services parse the

Figure 2. top 5 of costly methods

Figure 1. Monitoring architecture

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 17 / 54

Figure 3. Android layer architecture

collected data and compute metrics about the execution [7].
As an example, the Figure 2 shows the most costly methods
into a bar graph representation.

III. CUSTOM STRATEGY FOR FIRMWARE COOKING

Firmware is the low level programming. They are also
often called firmware; they contain the operating system and
basic applications to make the phone work. For the iPhone
and iPad those firmware come from Apple and can typically
only be updated when Apple issues updates. But for Android
devices there are literally hundreds of developers working on
custom firmware for most common models of phones and
tablets, which they are proud to share with the community. In
our working context, we need to define firmware with
additional software. First, we need to add our DDMS
application for the future observations. This component is
important for local monitoring. Secondly, we want to install
business software which is under control during this
validation step.

A. From source to Virtual Machine

For building a new firmware, several choices have to be
done. So, it is essential to know the advantages or
disadvantages of using an Android Open Source Project
(AOSP) firmware versus a ROM stock. A ROM stock is the
firmware that comes with a device; the device is stocked with
that firmware by the manufacturer. Android is generally
customized by the manufacturer to some degree; at minimum
there needs to be device specific drivers for Android to work
on a particular device. The customizations may include a
custom theme, launcher, and default applications like
monitoring control panel does.

1) A large set of acronyms
An AOSP firmware is a ROM based on the Android

Open Source Project. In the purest sense, AOSP refers to
unmodified ROMs or code from Google. The name is often
co-opted for a custom firmware that is very close to the
original AOSP, since these firmware still need to be
customized; for example, we have downloaded and compiled
the Android source code and run it on a Samsung Galaxy S5
with doing a whole lot of customizations. For example,
monitoring libraries are installed with test suites. This means
that we have added source projects with configuration files
for building, testing.

Technically, ROM stocks are all AOSP firmware apart
from the versions of Android that has not been released yet.
Kitkat and Lollipop firmware are AOSP for a long time; the
source code is available at Android Web site. In the next case
studies, we will use Kitkat and Lollipop versions.

To further add to the confusion, a custom firmware does
not refer to customized firmware in general. That term
specifically refers to firmware that has been customized by
engineers or researchers which are not the manufacturers or
carriers. For example, CyanogenMod provides firmware [8]
which is modified under the constraint of the open source
community. Most AOSP firmware for a specific device is
ROM stocks that have been customized to remove some of
the manufacturer or carrier features and make them closer to
the pure AOSP experience. As an example, we can disable

PIE feature on any ROM stock or AOSP firmware. The
option is not even available in most ROM stocks. So our
solution is to modify the AOSP firmware source and then
build them into an updated firmware.

2) The benefits of firmware cooking:
First of all, the main thing to know is that messing with

the firmware of phone can be risky. We can potentially
damage a mobile phone so that it won’t be usable without
some major low-level hacking. This reason involves our need
to experiment new customized firmware behind a hypervisor.

The most basic benefit of custom firmware is getting rid
of unstable software of malware, spy application and so on.
These applications take up precious room on a mobile
device. Beyond simple fixes, custom firmware can also open
a whole world of new possibilities for new mobile devices. In
many cases newer versions of Android are available for the
devices as custom firmware, beyond what the carrier has
released or is planning to release. Custom firmware can also
include other pleasant features, like overclocking, themes,
private browsing support, and so on.

Our current objective was to isolate the minimum
Android operating system which can support our business
mobile applications and our monitoring tools. The
architecture of Android platform is defined to host new
software. The source codes provided by AOSP are also
organized to host new source projects, which have a
predefined structure. Android has layer architecture (Figure
3). This structure is understandable easily when we explore
the source code. For instance, we wanted to record, convert
and stream audio and video. We observed that, the OpenGL
library can be upgraded or completed by the add-on of

ffmpeg library. Also, we have added the source code
project with Android build file into the whole Android source
files. When a new build is launched, then this new library is
taken into account.

For our project, the main benefit was the enrichment of
the Android source distribution with the source codes of all
the boxes connected with the thick red line (Figure 3). The

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 18 / 54

box called “mobile app” plays the role of the test suites or the
mobile application we want to observe before validation.

Next, a benchmark step can start. Its duration depends on
the features, we want to observe. Software stability is a key
feature in the study of our business applications. Also, the
meantime declared by the manufacturers are used as test
limits

3) Our firmware cooking approach:
A firmware construction is a step by step process. First,

we define the software basement. Then, we prepare the build
of a new firmware, with the selection of the right add-ons.
Controls are done about the version numbers, compatibility
features, architecture definition and security permissions. We
have developed an embedded monitoring application for our
embedded devices that generates log files with technical data
about the runtime. In the future, new tracking tools will be
added about energy management, bandwidth network use.
So, if we imagine those applications always having to write
the machine code to get the monitoring to turn on. It would
be a lot of code duplication and would make an application
slow. Instead, for functions like the method profiler or thread
manager, we have packaged our own monitoring library.
These are pieces of codes that can be executed by calling
them through a method call. These are already pre-written
and ready to use. It saves a lot of coding work and keeps the
source code small. On the Android device, we have particular

libraries like ddms or ffmpeg libraries that can’t be absent,
or else the firmware won’t even be used in our studies.

On Figure 3, the red line highlights the dependencies
during a monitoring scenario. A mobile application is under
observation. Also, by the use of our monitoring application

(called ddms application), we collect behavioral data. They

are computed through the use of ddms library and logcat
library which already belongs to AOSP distribution.
Depending on the application domain of the mobile

application, the ffmpeg library plays a role of stream

observer. For instance, it contains ffprobe tool which
gathers information from multimedia streams and prints it in
human- and machine-readable fashion. For example, we use
it to check the format of the container used by a multimedia
stream and the format and type of each media stream

contained in it. We use ffprobe in combination with a
textual filter, which performs more sophisticated processing,

e.g., statistical processing and plotting. ffprobe output is
easily parsable by a textual filter, and consists of one or more
sections of a form defined by the selected writer, which is
specified by the print format option. The sections contain
other nested sections, and are identified by a unique name.
The metadata tags stored in the container or in the streams
are recognized and printed in the corresponding output
section. This means that we control the properties of the
video streams. Such abilities are essential in the case of audio
communication application, such as encoder/decoder audio
applications. Depending on the data size, the output files are
saved into a specific folder. Each of them respects a block
size limit.

B. Virtual Machines managed by hypervisor

The virtualization is a technology that allows resources to
be shared by a variety of physical outlets. Today,
virtualization is a topic, which is focused on the relatively
new concept of server virtualization. In this context, multiple
operating system and application sets are virtualized on a
single server, allowing it to be more efficiently and cost
effectively used. But, there are a multitude of virtualization
schemes addressing a spectrum of applications. We have
addressed new ideas around virtualization and applied their
uses and advantages to the virtualization of mobile devices.

1) Virtualization of platform.
The virtualization is an abstraction over physical

resources to make them shareable by a number of physical
users. Platform virtualization is what enables both server and
desktop virtualization. A platform in this context refers to the
hardware platform and its various components. This includes
not only the CPU, but also networking, storage and bus
attachments such as USB and serial ports, but also sensor
such as camera, microphone and even GPS or compass.

The key technology that makes this possible is called the
hypervisor. The hypervisor is the component that virtualizes
the platform, making the underlying physical resources
shareable and implementing the policies for sharing among
the multiple virtual machines. These ones can belong to
embedded systems like Android or IOS. They are an
aggregation of the operating system and application set
which contains our mobile applications. The VMs are
considered as a file in some format depending of the
hypervisor. The virtual disk used by the VM is another file
encapsulated within the VM.

An Android VM as a file in a host system like a
hypervisor has some interesting benefits: we can back up the
full virtual machine and its configuration in one hit rather
than backing up at file level within the server. As a file, it's
easy to manage a VM as a template. It's also simple to move
a VM from one host system to another, as the process is
nothing more than a file copy. As we expected with the
virtualization concept, there are a variety of ways in which
virtualization can be achieved. For platform virtualization,
there are two primary models, called full virtualization and
para-virtualization. Both are suitable depending on the kind
of architecture of the mobile device ARM or x86. The last
case corresponds to full virtualization; the former one
exploits an intermediate layer.

2) Managed VM through a hypervisor .
The hardware of mobile devices has multiple features;

this concerns not only the processor but also the sensors and
even the pluggable add-ons. The usage of VM involves
several approaches depending on the architecture of the
physical server. In our project, we use AMD architecture
servers (64 bits). This means that we apply the full
virtualization when we test and validate software for AMD
mobile devices. This kind of virtualization provides a
sufficient emulation of the underlying platform that a guest
operating system and application set can run unmodified and
unaware that their platform is being virtualized. But, the most
widespread kind of processor is ARM, a solution is to make

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 19 / 54

the guest operating system aware that it's being virtualized.
With this knowledge, the guest operating system can short
circuit its drivers to minimize the overhead of
communicating with physical devices.

We use Qemu, which emulates a full system, including a
processor and various peripherals [9]. A number of specific
emulator features are enabled in both the Android kernel and
Android user space environment when run in an emulated
environment. These features allow a smooth and complete
user experience resembling using a real Android device, on
laptop and desktop workstations. With the introduction of the
ARMv8-A architecture and Android support for 64-bit ARM
platforms, this need is more important than ever because it
allows us to begin adapting our applications to an ARM 64-
bit based mobile ecosystem prior to hardware being
available. All of our tests are based on the use of Qemu and
the exposition of our own custom firmware via a graphical
interface.

C. Testbed of mobile business applications

Testing functionality is typically a matter of enumerating
the functions that an application should support, then
defining a set of tests that exercise those functions, with
pass/fail results. Problems that we encounter running
functional tests are input to evaluating usability. For
usability, we want to have several mobile end users with
different skill levels attempting to accomplish a given set of
business goals, producing subjective ratings that indicate
how easy or hard the task was. Performance test results are
easier to quantify, but can be very difficult to interpret. For
example, wireless throughput is always higher in the lab
under ideal conditions than in real life, so be very careful
about the conclusions we draw from performance tests.

To test failure modes in components, we enumerate a
number of possible failure conditions and simulate them. We
must also identify what we are measuring. For example,
when measuring time to establish the connection in the event
of network loss of signal, do us measure network connection
resumption or mobile application connection resumption.

IV. CUSTOM APPROACH OF MOBILE APPLICATION

MONITORING

Based on the build of our own kernel and the enrichment
of the AOSP sourced, we have built our own custom
firmware. Our results are presented as log reports and
numerical measures.

A. Monitoring architecture for mobile applications

When a mobile business application is running under
monitoring, all events are saved through the use of a local
monitoring application (as explained previously). Huge
amount of data, even for relatively small programs are
recorded in the local file system. Then, these data are
exported to a server. The main events are class load, or
unload, compiled method load, and unload, GC start, finish,
method entry and exit, thread start and end, etc. We assign
IDs to objects, classes, methods, etc. And our monitoring
application is responsible for keeping track of IDs. They are
assigned through defining events (e.g., class load). As a small

part of an example of output trace, the following sequence of
event trace in table I.

TABLE I. EVENT TRACE OF METHOD CALLINTENT

public int callIntent(int);

46: iload_1

47: iconst_2

48: irem

49: iconst_1

50: if_icmpne 54

51: iconst_2

52: istore_2

53: goto 56

54: iconst_5

55: istore_2

56: iload_2

57: ireturn

Other information about performance is also collected.
They are about the method execution measure and also class
loading and checking. As an example, the table II shows a
first level of information about time measures. The size of
these data depends on the number of samples per time unit.

TABLE II. DATA TIME COLLECTION

Capture.callIntent 2015-03-08 14:59:30.252,

Capture.update 2015-03-08 14:59:30.254,

Model.get 2015-03-08 14:59:30.255,

Capture.setProps 2015-03-08 14:59:30.258 …

All the timestamps allow tester to display the events of
the garbage collector at runtime.

B. Interaction between monitor and mobile application

Our message exchange protocol is packet based and is
not stateful. There are two basic packet types: command
packets and reply packets. Command packets may be sent by
either the ddms application or the target VM. They are used
by the ddms application to request information from the
target VM, or to control program execution. Command
packets are sent by the target VM to notify the ddms
application of some event in the target VM such as a
breakpoint or exception. A reply packet is sent only in
response to a command packet and always provides
information success or failure of the command. Reply
packets may also carry data requested in the command (for
example, the value of a field or property). Currently, events
sent from the target VM do not require a response packet
from the ddms application.

Our monitoring protocol is asynchronous; multiple
command packets may be sent before the first reply packet is
received. The layout of each packet looks like in table III:

TABLE III. COMMAND PACKET LAYOUT

Header

length (4 bytes)

id (4 bytes)

flags (1 byte)

command set (1 byte)

command (1 byte)

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 20 / 54

data (Variable)

All fields and data sent via our monitoring protocol
should be in big-endian format. It means the big-end is first.
In other words, we store the most significant byte in the
smallest address

TABLE IV. REPLY PACKET LAYOUT

Header

length (4 bytes)

id (4 bytes)

flags (1 byte)

error code (2 bytes)

data (Variable)

The length field is the size, in bytes, of the entire packet,
including the length field in table IV. The id field is used to
uniquely identify each packet command/reply pair. Flags are
used to alter how any command is queued and processed and
to tag command packets that originate from the target VM.
The command set is useful as a means for grouping
commands in a meaningful way. The error code field is used
to indicate if the command packet that is being replied too
was successfully processed.

This command field identifies a particular command in a
command set. This field, together with the command set
field, is used to indicate how the command packet should be
processed. The data field of a command or reply packet is an
abstraction of a group of multiple fields that define the
command or reply data. As an example of data type:
threadID uniquely identifies an object in the target VM that
is known to be a thread. Another example is methodID,
which must uniquely identify the method within its
class/interface or any of its subclasses. A methodID is not
necessarily unique on its own; it is always paired with a
referenceTypeID to uniquely identify one method. The
referenceTypeID can identify either the declaring type of the
method or a subtype.

C. Validation process of mobile application

The list of all the data types is not exhaustive here but all
element of a runtime program can be referenced and tracked.
So, based on these results, we are able to decide whether the
source codes of mobile applications can be added into the
source.

The validation process takes into account response time
of applications and our monitoring protocol helps us to
collect internal data from each application under test. For
instance, when response time is greater than 20% of the
expected response time, we can conclude that there are
perturbations from the runtime context towards the
application sunder test.

Another test case is about the management of the
memory by the virtual machine which runs a business
application. We can compare the used memory with the first
benchmarks of the applications under test. When the
difference exceeds 25% then if means that the application
cannot be deployed on the future firmware.

If we do not respect such rules, we could build unstable
firmware and the consequences will be more serious. For
instance, after flashing the firmware a phone works fine for
one or two weeks. But soon this phone starts crashing more
often. The phone starts rebooting every now and then it
becomes useless. The most difficult point is the loss of
working time. Also, by applying the reference measurement
definition tested is crucial for our validation process

The validation by the use of virtualization has the
advantage of using virtual devices instead of concrete smart
device. The flash of firmware is a dangerous operation for
the hardware and we preserve the hardware by previously
testing our custom firmware. Another approach need a
deployment on a smart device with a rooted firmware.

In the opposite side, the build of firmware involves new
drawbacks after the deployment step. A first one is a legal
issue. This means that the manufacturer guarantee is
cancelled when a free firmware is installed. A second one is
about the telecom provider checks. When several tools of a
given telecom provider are already installed, then exceptions
are raised by these applications when the underlying
firmware is changed. Also, it is often useful to change a
whole toolkit of software when new firmware is built by
ourselves.

V. CONCLUSION

As we explained in the first section, we need to prepare
our own firmware because of the change of libraries which
are essential for our business applications. Also, the choice of
validation before deployment explains our use of virtual
machine. In this paper, we have presented our approach of
the monitoring of mobile business applications. It is based on
a perfect configuration of all the ROM stock and its build.
We have shown that it is preferable to have a local
monitoring instead of a remote monitoring application. The
impact of its actions is less in the case of embedded systems.

We have described briefly our stateless protocol between
the VM of the business application and our monitoring
embedded application. We want to enrich this protocol and
then observe new kinds of property.

The data collected are exported to a server where they
can be parsed and aggregated with other simulations. Next
new reports can be built and published onto a Web server if
the monitoring data are public. We think that our approach is
an adaptation of a monitoring strategy from Web domain into
the domain of mobile applications. We consider our
pragmatic study as a validation of our concepts and our next
step will be to automatize as much as possible all the steps
described in the document. And so, our experience could be
transferred to other development teams.

Our approach reduces the effort of deployment on a large
set of devices. Moreover, we reduce also the number of
anomalies by increasing the observation time when some
expected benchmarks are not achieved

REFERENCES

[1] “The Android Source Code: Governance Philosophy”,

source.android.com, January 25, 2015.

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 21 / 54

[2] M. Isacc, “A deep-dive tour of Ice Cream Sandwich with
Android's chief engineer”, Ars Technica, September 15, 2012.

[3] A. Shah, “Google's Android 4.0 ported to x86 processors”,
Computerworld, International Data Group, February 20, 2012.

[4] R. Whitwam, “HTC Posts Android 4.4 Kernel Source And
Framework Files For One Google Play Edition, OTA Update
Can't Be Far Off”, androidpolice.com, December 2, 2013.

[5] “Exclusive: Inside Android 4.2's powerful new security
system | Computerworld Blogs”, Blogs.computerworld.com,
November 9, 2012.

[6] “AppAnalysis.org: Real Time Privacy Monitoring on
Smartphones”, February 21, 2012.

[7] E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo, “A
technique for drawing directed graphs”, IEEE-TSE, March
1993.

[8] E. Tyler and W. Verduzco, “XDA Developers: Android
Hacker's Toolkit: The Complete Guide to Rooting, ROMs and
Theming”, Wiley edition, May 2012.

[9] R. Warnke and T. Ritzau, “Qemu”, Paperback, March 10,
2009.

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 22 / 54

Variability in Test Systems: Review and Challenges

Aitor Arrieta, Goiuria Sagardui, Leire Etxeberria

Computer and Electronics Department
Mondragon Goi Eskola Politeknikoa
Goiru 2, Arrasate-Mondragon, Spain

Email: {aarrieta, gsagardui, letxeberria}@mondragon.edu

Abstract—Customizable products are increasing in our society,
which creates a need on software systems, embedded systems
and cyber-physical systems to handle variability. In addition,
many companies are moving towards continuous integration and
deployment and as a result, an automated solution to testing the
relevant configurations is needed. Thus, variability appears in
different stages of the product life-cycle. When validating these
configurable systems, the test framework has to deal with their
variability in order to test different system variants. Modelling
variability in the test systems is an elegant solution to test
and validate variability-intensive systems. This paper studies
some test systems that handle variability and compares their
characteristics and limitations, which can help test engineers
needing a variability handling test system to choose among
different approaches.

Keywords–Test Systems; Test Architecture; Variability; Valida-
tion

I. INTRODUCTION

Variability is the ability to change or customize a system
[1], and it can be understood as configurability or modifiability
[2]. In the case of configurability, the variability appears in the
product space, whereas in the case of modifiability, variability
appears in the time space. The discipline of representing
variability in models that describe the common and variable
characteristics of a product is named variability modelling [3].

The different demands of the society and the users are
some of the causes for customized products. As a consequence,
variability in different points of the products, systems and
development phases is increasing. Variability-intensive systems
can be configured into thousands or millions of system vari-
ants. From one system variant to another, variability can appear
not only in the product itself, but also in the elements in charge
of testing the product, i.e., test system.

When testing different system variants, the test system has
to be configured and adapted as well in order to test them. Due
to this issue, modelling variability in the test system can be an
interesting approach for testing variability-intensive systems,
such as software product lines (SPLs), configurable embedded
systems or configurable Cyber-Physical Systems (CPSs).

Most of the reviews and surveys in the field of variability
modelling focus on the variability of the system itself, e.g.,
[4], or the use of variability modelling in industrial practice,
e.g., [3], where the different notations used for modelling
variability are analysed. This paper presents a review of
variability-handling test systems. To carry out this study, we
have systematically reviewed the documented approaches.

The rest of the paper is structured as follows: A brief
introduction about the background of test systems is presented
in Section II. Section III explains the methodology that has
been used to systematically review the documented approaches
in journals and conference papers. Section IV presents the
obtained results after applying the search methodology; the
documented approaches are explained and a discussion and
analysis is provided. Section V defines a set of open challenges
about variability modelling in test systems. Finally, Section VI
summarizes the obtained conclusions.

II. TEST SYSTEMS

A test system is a set of components that interact with
the objective of testing the System Under Test (SUT). The
complexity of a test system can vary depending on the overall
test objectives and type of testing. Some of the tests are
performed in simulation, e.g., Model-in-the-Loop (MiL) or
Software-in-the-Loop (SiL) simulation, whereas other tests are
performed in emulation, where additional hardware is needed,
e.g., Hardware-in-the-Loop (HiL). Other test systems support
test automation, where a test scheduler that decides which test
case to execute is mandatory.

The organization of the group of components comprising
the test system is called the test architecture [5], which
specifies the interaction among the different elements of the
test system and the SUT. A test architecture is a necessary
artefact in test and validation activities so that verification and
validation activities can be systematic, and it allows the reuse
of test cases along the different test phases [5].

Test cases are part of the test system and provide informa-
tion about the test execution. In Model-Based Testing (MBT),
test cases are automatically generated either from the System
Model, i.e., from the model of the SUT or from a test model
[6]. When the test cases are executed, the test results have to
be determined. This is typically performed by other elements
of the test system, such as test oracles, which are mechanisms
that analyse the SUT output and are able to decide the test
result [6].

Modelling variability in the elements of the test systems al-
low the execution of tests under different conditions. Moreover,
requirements of a configurable system varies from a system
variant to another, and the test system has to be adapted in
order to test different system variants, thus, variability in the
components of the test system can help to achieve this goal.

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 23 / 54

III. SEARCH METHOD

This paper collects the results of a systematically developed
state of the art study about variability-handling test systems.
To carry out this study systematically, the guideline presented
in [7] has been taken as a base, which follows the presented
steps below:

• Definition of the research questions

• Search process

• Inclusion and exclusion criteria

• Data collection

• Data analysis

A. Definition of Research Questions

As mentioned above, the scope of this study is to analyse
the current state of the art in the field of variability handling
test systems. The Research Questions (RQs) to carry out the
goal were the following:

• RQ1: Which are the approaches documented that take
into account variability in test systems?

• RQ2: Which kind of systems are tested with the
selected approaches?

• RQ3: Which are the used modelling or programming
languages?

• RQ4: Which are the used test strategies?

• RQ5: Which is the variability modelling approach?

B. Search Process

The search process has been a manual search by using
search strings on different scientific databases with the aim of
identifying conference proceedings and journal papers since
2008. The used databases have been IEEE Xplore, ACM digital
library, Science Direct and Springer. Other places and sources
such as proceeding of VALID 2014 or relevant PhD theses
available on the Internet have been also used. Once identified
some conference papers, journal papers and PhD theses on
these databases, some references of the selected studies have
also been used to detect new papers that are not available on
the proposed databases.

With respect to search strings, the following keywords were
used in order to find new papers:

• (“Variability” OR “Variant” OR “Modifiability” OR
“Configurable”) AND (“Test System” OR “Validation
Environments”)

C. Inclusion and Exclusion Criteria

The inclusion criteria for selecting a paper was the follow-
ing:

• The publication should be “journal”, “conference pro-
ceeding”, or “PhD Thesis”.

• The reader should clearly deduce that the test system
or architecture handles variability.

The exclusion criteria for excluding a paper was the
following:

• The publication is not written in English.

D. Data Collection

The data extracted from each selected study was:

• Full reference (authors, title, journal or conference and
year)

• Institution or institutions of the authors

• Characteristics and limitations of the proposed ap-
proach

E. Data Analysis

The data analysed once extracted the needed information
was the following:

• Which is the main characteristic of the approach

• Which kind of systems are tested with the proposed
approach

• Modelling tools used for the development of the test
system

• Which are the main limitations of the selected ap-
proaches

• Variability points in the test system

• Variability modelling approach

F. Search Result

After applying the search strings in the aforementioned
scientific databases, it concluded with 87 publications in IEEE,
12 in ACM, 1 in VALID 2014 and 1 known PhD thesis.
However, most of the publications did not offer the expected
overview. After following the inclusion and exclusion criteria,
nine publications have been selected for the review, which are
explained below. The selected publications are the following
(addressing RQ1): [5][8][9][10][11][12][13][14].

IV. VARIABILITY IN TEST SYSTEMS

Testing variability-intensive systems is a very time and
resource consuming activity due to the high number of possible
variants. When a specific system variant has to be tested,
the test system in charge of testing it has to be configured.
The variability among the different system variants affects the
test system, where different test cases have to be executed
to validate a specific system configuration, and as a result,
variability in the test model is required [15].

Variability handling systems appear in a wide range of
systems, such as SPLs, embedded software and systems,
mobile applications, CPSs, etc. The variability-handling test
system approaches presented in the selected publications are
used to test the following kind of systems (addressing RQ2):

• Non configurable Embedded Systems: [8][9]

• Variability handling systems (e.g., SPLs, highly con-
figurable CPSs, etc.): [11][12][13][14][5]

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 24 / 54

TABLE I. COMPARATIVE TABLE OF THE SELECTED TEST SYSTEMS

Ref. Modelling
Language

SUT Test Strategy Variability Points Variability Manage-
ment

Variability Modelling

[8] Messina Embedded Systems Evolutionary Evolutionary algorithm configu-
ration variables, target configu-
ration

Not considered Not used

[9] Simulink Embedded and
CPSs

Functional Testing In test stimuli generation Not considered Uniform variability

[5] Simulink Configurable CPSs Functional Testing SUT, Test oracles and Test data
generator

Feature Models Variant of negative
variability

[11] UML and UTP SPLs Not specified SUT, Test context, Test cases,
test component, data pool, data
partition and data selector

UML sequence dia-
grams and a proposed
UTP extension

UTP extension

[12] UML and UTP SPLs Not specified SUT, SUT interface, test con-
text, data pool, data partition

OVM, UML and UTP UTP extension

[13] State Machines SPLs Regression testing SUT, Test model, test goals, test
suite and test plan

Not considered Delta modelling

[14] State Machines SPLs Incremental testing SUT, Requirements, test model,
test goals, test suite and test plan

Not considered Delta modelling

[10] Home-grown General purpose
software

Not specified User interface, test control, code
generator, information system
and gateway

Not considered Not used

• General Purpose Software: [10]

In addition, there are different tools, modelling or pro-
gramming languages for developing these kind of systems. As
a consequence, the modelling languages used for developing
variability-handling test systems differ (addressing RQ3):

• MATLAB/Simulink: [9][5]

• State machines combined with delta modelling: [13]
[14]

• UML-UTP: [11][12]

• Messina: [8]

• Home-grown: [10]

Other characteristics of test systems are the test strategies
used to test the SUT. In the selected approaches, we have
detected different test strategies (addressing RQ4): In [8]
evolutionary testing is used, in [9] and [5] functional testing, in
[13] regression testing and in [14] incremental testing. Other
approaches do not consider the test strategy or it is not clear
for the reader, e.g., [10].

With regard to variability modelling (addressing RQ5),
different approaches are considered: Zander-Nowicka uses
uniform variability modelling in [9]. Lity et al. [13] and
Dukaczewski et al. [14] use delta modelling. Perez et al. use
UML and UTP extension to model variability in [11] and
[12]. In our previous work, we generate a skeleton model
that acts as a core model, and when configuring a specific
variant, the selected components of the skeleton model are
replaced by models stored in a Simulink library, and the non
selected are removed [5]. Other approaches ([10][8]) do not
model variability. Table I summarizes the main characteristics
of each approach.

A. Variability Handling Test Systems

The approach presented in [8] shows an evolutionary test
system, primarily based on the MESSINA tool, that tests
functional and non-functional properties of embedded systems.
An evolutionary algorithm is an optimization technique based

on the principles of the Darwinian theory of evolution, where
a set of candidate solutions called individuals are selected. The
fitness of these individuals are evaluated by the evolutionary
algorithm by executing a problem-specific fitness function. The
proposed approach by Kruse et al. in [8] supports MiL, SiL,
Processor-in-the-Loop (PiL) or Hardware-in-the-Loop (HiL)
test platforms, and allows the reuse of test cases across them. In
the case of MiL and SiL test system configurations, MESSINA
supports different tools, e.g., MATLAB/Simulink, ASCET
models, etc. In the case of HiL, MESSINA is connected to
modularHiL, a universal HiL test system developed by Berner
& Mattner. The main variability points of this approach can
be found in the configuration variables for the evolutionary
algorithm, (e.g., mutation rate, crossover rate, etc.) as well as
the test system target configuration, i.e., MiL, SiL, PiL or HiL.

Model-in-the-Loop for Embedded Systems Test (MiLEST)
is a toolbox for MATLAB/ Simulink developed by Zander-
Nowicka in [9]. This test system is designed towards the val-
idation of automotive real-time embedded systems in Model-
in-the-Loop (MiL). The hierarchy of MiLEST is divided into
four abstraction levels: Test Harness level, Test Requirement
level, Test Case level and Feature level. Although the ap-
proach in [9] proposes mechanisms for modelling variants, as
shown in Figure 1, the test system itself is not designed for
the validation of variability-handling systems. The proposed
modelling technique is uniform variability. This variability
modelling technique allocates all the components in the mod-
elling framework, i.e., Simulink, and the variability is bound
with different mechanisms, e.g., switch and constants. As there
are unused components allocated in the simulation framework
while simulation is running, simulation time is increased as
explained in [16].

Our previous work [5] presents a configurable test ar-
chitecture for the automatic validation of variability-intensive
CPSs, together with a model-based process (Figure 2) for
the systematic validation of these kind of systems. Variability
of the test system is managed using the tool FeatureIDE
[17] and saved into a *.xml file. This file is read by a test
architecture generator that semi-automatically generates the
skeleton of the test system. The tool FeatureIDE also allows
generating different product configurations either automatically

17Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 25 / 54

Figure 1. Variability Modelling Mechanism of MiLEST [9]

(using pair-wise or t-wise techniques) or manually. These
configurations are saved into a *.config file, which is read
by the test configurator. The test configurator automatically
configures the test system for the selected system configura-
tion. Finally, the work describes the different variability points
of the components of the test architecture: variability of the
SUT, variability of the test data generator, variability of the
test oracles and test control.

Test Feature
Model

.xml

Test Architecture
Generator

Simulation
Framework

Test Configurator

Test Case
Library

HW Model
Library

Test Historic
Database

1
2

3

5

7

6
Configurations

Library .config
4

SW Model
Library

Domain Engineering

Application Engineering

Figure 2. Model-Based Testing process for the systematic
validation of variability-intensive CPSs [5]

A product line of validation environments with variability
to test different applications in different domains and technolo-
gies is proposed in [10]. The study presents a validation en-
vironment able to test different SUTs from different domains,
used programming languages, etc. Different elements of the
validation system are identified (Figure 3) and the variability
points together with variability requirements are identified and
classified in a table.

The validation system proposed by [10] works as follows:
The test engineer executes a test through the GUI, the GUI
sends the test command to the engine, and this transforms the
test command into the programming language that the SUT
understands. For this step, the engine communicates with the
database to obtain the correspondences between the source
and target languages. When the transformation is finished, the

Figure 3. Test Elements Composing the Validation System
[10]

command is sent to the SUT through the SUT interface, and
awaits the response to begin the process again. These steps are
shown in a UML sequence diagram depicted in Figure 4. The
variability points of this system includes the user interface, test
control, code generator, information system or gateway.

Figure 4. Interactions between the elements of the validation
system proposed in [10]

The study presented in [11] defines an extended architec-
ture for UTP to deal with variability in the test models, where
the meta-model is shown in Figure 5. The proposed extension
includes mechanisms to describe the behaviour of test cases
and other elements needed to support variability. An example
is illustrated in Figure 6.

The main variability in the proposed UTP extension is
included in the Test Context, Test Cases, Test Components,
UTP and Data Pool, Data Partition and Data Selector:

• TestContext: It is a class that organizes the test arti-
facts and contains test cases [11]. It can be stereotyped
with “Variation Point”, which means that the test cases
corresponding to the TestContext have variation points
[11].

• TestCase: A test case is represented with UML se-
quence diagram in [11]. A test case can also be stereo-
typed as “Variation Point” for testing a functionality
with variability [11].

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 26 / 54

Figure 5. Proposed Extension to the UTP meta-model for
handling variability [11]

• TestComponent: Test components interact with the
SUT with the aim of realizing the test behaviour [11].
In the proposed extension, a test component can be
stereotyped with “Variation Point” or “Variant”, which
means that the test component can encapsulate the
communication with the SUT, for the entire variation
point or just for one of its variants.

• SUT: It can be stereotyped as “Variant”, which means
that it realizes the functionality for its variant.

• DataPool, DataPartition and DataSelector: The Dat-
aPool contains the test data while the DataPartition the
equivalence classes and data sets [11]. The dataPool
can be stereotyped as “Variation Point”, which means
that contains specific data for a Variation point. The
DataPartition and the DataSelector are stereotyped as
“Variant”, which means that the DataPartition contains
the data associated with one of its variants and the
dataSelector selects the data in the DataPartition for a
specific variant.

Figure 6. Example of a Test Case Using the UTP Extention
proposed in [11]

In [12], a model-based method for the automatic generation
of test cases for the testing of SPLs is described using UML

2.0, the UML Testing Profile and the QVT language. The ap-
proach differentiates two main models: Platform Independent
Models (PIM) and Platform Independent Test Models (PIT).
Each of the models are separated for the domain engineering
layer (PIMD and PITD) or the application engineering (PIM
and PIT), as shown in Figure 7. Variability of the system
models are managed with an extension of the UML Testing
Profile. The proposed approach uses Orthogonal Variability
Model (OVM) for managing variability of the test system.
In this case, variability in the test system can be found in
the test case behaviour and in the test architecture. The test
case behaviour is modelled using sequence diagrams handling
variability, whereas the variability-handling test architecture
is modelled with UML class diagrams. The test model is
automatically transformed taking as source models the design
model and the variability model using QVT.

Figure 7. Model driven testing approach for SPLs [12]

A Model-Based SPL regression testing approach is pro-
posed in [13], where delta-oriented state machine as variable
test models are used to incrementally evolve test artifacts
by re-using artifacts of previously tested variants. Variability
is applied in test artifacts, which are composed of (1) Test
Models, (2) Test Goals, (3) Test Suite and (4) Test Plan. In
[13], products evolve by applying deltas. Following the idea of
Delta Modelling [18], a core model is developed and product
variants are represented by the core model and a set of deltas
that describe changes to be applied to this core model. From
the testing point of view, a test artifact is developed to test the
core system and deltas are applied to the test artifact in order
to test the rest of the products.

Delta-oriented testing is also used in [14]. In this approach,
Dukaczewski et al. propose a delta-oriented incremental testing
approach based on textual requirements, where the test cases
are directly associated to the requirements. Based on delta
modelling [18], a delta describes how the behaviour of two
system variants differs from each other. The main idea of
this approach is based on testing the core system exhaustively
and consider only the newly added or modified behaviour
of the previous sytem during testing when moving to the
next system variant [14]. Three steps are carried out to apply
the proposed delta-oriented testing approach: The first step
consist in selecting a core system, the requirements related
to the selected system are separated from the requirements of

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 27 / 54

all possible system variants and the selected core system is
tested exhaustively. In the second a variant system is selected,
deltas are applied to requirements to define changes between
the requirements of different system variants by adding or
removing requirements. Lastly, the test cases associated with
the requirements are classified. Depending on the delta, the
test cases are divided into four categories (Figure 8) [14]:

• Invalid: Test cases that become invalid for the new
system variants. Invalid test cases belong to removed
requirements.

• New: Test cases that are added to the new system
variant, which belong to added requirements.

• Reuse: Test cases from the previous system variant
that are not affected by the performed changes, which
can be obtained using model slicing techniques (e.g.
[19]). These test cases belong to unchanged require-
ments.

• Retest: Test cases from the previous system variant
that are affected by the changes and have to be
executed again. The test cases for retest are determined
by the following identified options [14]: Random,
Meta data, History/Statistics, Test expert and model.

Figure 8. Delta Test-Sets [14]

B. Discussion and Analysis

The previous section has introduced the different docu-
mented approaches for handling variability in test systems.
Each of these systems have their advantages and their lim-
itations. When modelling variability in test systems, several
characteristics are important, such as variability management,
test automation, variability in test cases, or the specification of
a test architecture. This section analyses the main limitations
of each approach.

Kruse et al. propose a configurable test system for evolu-
tionary testing of embedded systems in [8]. Variability in this
test system appears in some configuration variables used by
the evolutionary algorithm as well as the target configuration
of the test system, i.e., MiL, SiL, PiL or HiL. Although the
test system handles some variability points, it is not oriented
for the validation of variability-handling systems.

Simulink is also used to model variability of test systems
in two of the selected approaches ([9] [5]). This tool could be
one of the most interesting when testing embedded software

and CPSs, as it allows simulating the physical layer, as well
as the cyber-digital layers (embedded system, software, etc.).

MiLEST is a toolbox oriented for the validation of em-
bedded systems designed in [9], which can also be applied to
CPSs. Although this test system shows variability modelling
mechanisms, MiLEST is not designed for it. The variability
points in the test architecture are limited to the test stimuli
generator. Neither variability management tools nor automatic
generation and configuration of the architecture for variability-
intensive systems are used in this case. Another important
factor when testing configurable systems is the simulation
time. In this case, uniform variability is used as a variability
modelling technique, which enlarges simulation time [16].

In our previous work [5], we analysed the variability of
the test system and its components for the efficient validation
of highly configurable CPSs. The test system is modelled in
Simulink, and it is semi-automatically generated taking the
information of a Feature Model into account. Apart from the
SUT, variability can be found in the signals of the test data
generator, requirements, test cases, signals of the test oracle,
validation functions and validation function characteristics. In
addition, we propose a traceability strategy among the features
of the SUT and the test system. This strategy enables the
automatic configuration of the test system depending on the
selected SUT variant.

Apart from MATLAB/Simulink, other modelling languages
are widely used when modelling embedded software, e.g.,
UML. In the case of [11], UML together with its UTP
extension is used as a modelling tool. This approach analyses
variability in several points, e.g., test context, test cases, etc.
Moreover, some interesting concepts are provided that could be
used in other test system, especially when modelling variability
in test cases. In this case, variability is managed using UML
models.

This UTP extension is used by the same author in [12]. In
this case, the test models are generated automatically from the
model of the SPL using the QVT Language. The variability
modelling strategy of the test systems presented in [11] and
[12] are clearly identified. In both cases, the test architecture
is presented so that the interaction among the components of
the test systems and the SUT is provided.

Delta modelling is used to model variability in [13] and
[14]. In [13], Lity et al. propose a regression testing approach
to test SPLs. The variability points of the test system can be
found in test models, test goals, test suite and test plan. With
regard to the drawbacks of this approach, on the one hand, the
variability management of the test system is not specified. On
the other hand, a test architecture is not considered, and as a
consequence, the interaction among the components of the test
system and the SUT cannot be appreciated.

Dukaczewski et al. propose incremental testing for the
validation of SPLs in [14]. The way the test cases are clas-
sified in [14], “invalid”, “new”, “reuse” and “retest”, are an
interesting option when testing SPLs. However, the proposed
approach shows the same drawback as in [13], i.e., a variability
management tool to model variability of the test system is
not specified, and a test architecture showing the interactions
among the test system and test components is not provided.

20Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 28 / 54

In the case of [10], a product line of validation envi-
ronments is proposed. Although the interaction among the
elements of the validation systems seems interesting, the
analysed variability points of the systems are related to high-
level elements, i.e., it does not take into account variability in
test cases, test oracles, etc. Moreover, important characteristics
such as variability management or test automation are not
provided in this approach.

V. OPEN CHALLENGES

Variability is an issue that has to be considered across the
software-rich systems life cycle. In the previous section we
have selected eight approaches that consider variability in the
test systems. Nevertheless, there are still a lot of open questions
and challenges when developing variant-rich test systems.

One of the major challenges would be to integrate a
test system that could be able to test variant-rich systems
from different domains. However, this is a complex issue, as
different domains might need different kind of test systems.
Furthermore, this can be infeasible because of the use of Do-
main Specific Languages, which warrants the use of different
tools, e.g., SCADE for railway domain or MATLAB/Simulink
for the automotive domain. Not only that, many variability
points would have to be considered, as variability can appear
in several points depending on the system.

Some of the selected test systems proposed a testing
strategy. Depending on the validation phase, one test strategy
could be more appropriate than another. Considering variability
in the test strategy could be an interesting option, so that one
test strategy or another could be chosen depending on the test
needs and the validation stage.

A unified methodology that would warrant a systematic
validation process of variant-rich systems of different domains
could help test engineers with the validation activities. For
instance, our previous work [20] proposes a model-based
testing methodology for the validation of highly configurable
CPSs.

One of the major problems in the validation of variant-
rich systems is that as it is infeasible to test all the possible
product configurations, the notion of the achieved test coverage
is unclear. As a result, the analysis of new test metrics is a clear
challenge in this field.

VI. CONCLUSION

This paper presents the current trends when modelling
variability in test systems, issues that have to be considered as
well as future challenges. Most of the research in the field of
variability modelling of SPLs and variant-rich software focuses
on the system itself. With regard to testing and validating SPLs
and variant-rich software, most of the papers of the current
state of the art propose generation of efficient configurations of
the systems using different techniques such as combinatorial
interaction testing (CIT). Other research efforts in this field
consider the efficient test case generation for specific product
variants. Although the research efforts in the field of variability
modelling of test systems is not major, it is an important field
of validation of variant-rich systems.

The paper has presented different approaches for testing
different types of targets. In particular, the approaches pre-
sented in [9][8][5] are oriented to the testing and validation of
real time embedded systems, embedded software or CPSs. On
the other hand, the approaches presented in [11][12][13][14]
have as testing objectives SPLs.

Some of the selected works do not consider variability
management, e.g., [9][10]. This is not a problem if the test
system is not variant rich, but in the case there are many
variability points, the lack of a variability management tool
can become a problem. In addition, the variability management
tool can help to trace the variability of the test system with
the variability of the SUT, as proposed in [5].

The paper also shows that variability in test systems is not
just used to test variability-handling systems, but also general
purpose systems. Three of the selected approaches consider
variability in their test system although the SUT does not
present any variability point. In the case of [8] and [9], the
test systems are designed to test embedded systems, whereas
the approach presented in [10] tests general purpose software.

VII. ACKNOWLEDGEMENTS

This work has been developed by the embedded systems
group from Mondragon Goi Eskola Politeknikoa, supported by
the Department of Education, Universities and Research of the
Basque Government.

REFERENCES

[1] J. V. Gurp, J. Bosch, and M. Svahnberg, “On the notion of variability
in software product lines,” in Proceedings of the Working IEEE/IFIP
Conference on Software Architecture, ser. WICSA ’01. Washington,
DC, USA: IEEE Computer Society, 2001, pp. 45–54.

[2] S. Thiel and A. Hein, “Modelling and using product line variability in
automotive systems,” IEEE Software, vol. 19, no. 4, 2002, pp. 66 – 72.

[3] T. Berger, et al., “A survey of variability modeling in industrial practice,”
in Variability Modelling of Software-intensive Systems (VaMoS), 2013,
pp. 7:1–7:8.

[4] J. Weiland and P. Manhart, “A classification of modeling variability
in simulink,” in Proceedings of the Eighth International Workshop on
Variability Modelling of Software-Intensive Systems, ser. VaMoS ’14.
New York, NY, USA: ACM, 2014, pp. 7:1–7:8.

[5] A. Arrieta, G. Sagardui, and L. Etxeberria, “A configurable test ar-
chitecture for the automatic validation of variability-intensive cyber-
physical systems,” in VALID 2014: The Sixth International Conference
on Advances in System Testing and Validation Lifecycle, 2014, pp.
79–83.

[6] J. Zander-Nowicka, I. Schieferdecker, and P. J. Mosterman, A Tax-
onomy of Model-Based Testing for Embedded Systems from Multiple
Industry Domains. Model-Based Testing for Embedded Systems, 2011,
ch. 1, pp. 3–22.

[7] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey,
and S. Linkman, “Systematic literature reviews in software engineering
- a systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1,
Jan. 2009, pp. 7–15.

[8] P. M. Kruse, J. Wegener, and S. Wappler, “A highly configurable test
system for evolutionary black-box testing of embedded systems,” in
Proceedings of the 11th Annual Conference on Genetic and Evolution-
ary Computation, ser. GECCO ’09. New York, NY, USA: ACM, 2009,
pp. 1545–1552.

[9] J. Zander-Nowicka, “Model-based testing of real-time embedded sys-
tems in the automotive domain,” Ph.D. dissertation, Technical Univer-
sity Berlin, 2008.

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 29 / 54

[10] B. Magro, J. Garbajosa, and J. Perez, “A software product line definition
for validation environments,” in 12th International Software Product
Line Conference (SPLC), Piscataway, NJ, USA, 2008, pp. 45 – 54.

[11] B. Pérez, M. Polo, and M. Piattini, “Towards an automated testing
framework to manage variability using the uml testing profile,” in AST,
2009, pp. 10–17.

[12] B. Pérez, M. Polo, and I. Garcı́a, “Model-driven testing in software
product lines,” in Proceedings of the 2009 IEEE International Confer-
ence on Software Maintenance (ICSM 2009), 2009, pp. 511 – 514.

[13] S. Lity, M. Lochau, I. Schaefer, and U. Goltz, “Delta-oriented model-
based spl regression testing,” in 3rd International Workshop on Product
LinE Approaches in Software Engineering, PLEASE 2012, Piscataway,
NJ, USA, 2012, pp. 53 – 6.

[14] M. Dukaczewski, I. Schaefer, R. Lachmann, and M. Lochau,
“Requirements-based delta-oriented spl testing,” in 4th International
Workshop on Product LinE Approaches in Software Engineering,
PLEASE 2013, San Francisco, CA, United states, 2013, pp. 49 – 52.

[15] D. Streitferdt et al., “Model-based testing of highly configurable em-
bedded systems in the automation domain,” International Journal of
Embedded and Real-Time Communication Systems, 2011, pp. 22–41.

[16] A. Arrieta, G. Sagardui, and L. Etxeberria, “A comparative on variability
modelling and management approaches in simulink for embedded
systems,” in V Jornadas de Computación Empotrada, ser. JCE 2014,
no. 26-33, 2014.

[17] T. Thuem, C. Kastner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich,
“Featureide: An extensible framework for feature-oriented software
development,” Science of Computer Programming, vol. 79, 2014, pp.
70 – 85.

[18] I. Schaefer, “Variability modelling for model-driven development of
software product lines,” in VaMoS, 2010, pp. 85–92.

[19] J. Kamischke, M. Lochau, and H. Baller, “Conditioned model slicing
of feature-annotated state machines,” in Proceedings of the 4th Interna-
tional Workshop on Feature-Oriented Software Development, ser. FOSD
’12. New York, NY, USA: ACM, 2012, pp. 9–16.

[20] A. Arrieta, G. Sagardui, and L. Etxeberria, “A model-based testing
methodology for the systematic validation of highly configurable cyber-
physical systems,” in VALID 2014: The Sixth International Conference
on Advances in System Testing and Validation Lifecycle, 2014, pp.
66–72.

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 30 / 54

Automatic Test Set Generator with Numeric Constraints Abstraction for Embedded

Reactive Systems: AUTSEG V2

Mariem Abdelmoula, Daniel Gaffé, and Michel Auguin

LEAT, University of Nice-Sophia Antipolis, CNRS
Email: Mariem.Abdelmoula@unice.fr

Email: Daniel.Gaffe@unice.fr
Email: Michel.Auguin@unice.fr

Abstract—AUTSEG is an automatic test set generator for embed-
ded reactive systems. It automatically generates exhaustive test
sets and allows to check safety properties of the tested system. A
first version of AUTSEG has been initially designed for programs
dealing with Boolean inputs and outputs. We present in this
paper an extension of this tool called AUTSEG V2 to handle
symbolic numeric data processing that provides more expressive
and concrete tests of the system. To this end, we have developed
a new library called superior linear decision diagrams (SupLDD)
built on top of linear decision diagrams (LDD) library. This allows
symbolic computation of system data while improving system
verification (Determinism, Death sequences) and identifying all
possible test cases. Our tool characterizes the system precondi-
tions by numeric constraints to derive automatically the symbolic
test cases using a backtracking operation. We demonstrate the
application of AUTSEG V2 on an industrial example.

Keywords–Test Sets; Synchronous Model; Pre-conditions; Nu-
meric Data Processing; Backtrack; AUTSEG V2; SupLDD.

I. INTRODUCTION

Systems verification receives a particular interest today,
especially for embedded reactive systems which have complex
behaviors over time and which require long test sequences.
This kind of systems is increasingly dominating safety critical
domains such as nuclear industry, health insurance, banking,
chemical industry, mining, avionics and online payment where
failure could be disastrous. A practical solution in industry is
to proceed using intensive test patterns in order to discover
bugs, and increase confidence in the system, while researchers
concentrate their efforts rather on formal verification. However,
testing is obviously non exhaustive and formal verification is
impracticable on real systems because of the combinatorial
explosion nature of the states space.

AUTSEG [1] combines these two approaches to provide an
automatic test set generator where formal verification ensures
the automation in all phases of design, execution and test
evaluation and help on get confidence in the consistency
and relevance of tests. In a first version of AUTSEG, only
Boolean inputs and outputs were supported while most of ac-
tual systems handle numeric data. Numeric data manipulation
represents a big challenge for most of existing test generation
tools due to the difficulty to express formal properties on
those data using a concise representation. In our approach, we
consider symbolic test sets which are thereby more expressive,
safe and less complex than the concrete ones.

Therefore, we develop in this paper a new version of
AUTSEG to take into account numeric data manipulation in
addition to Boolean data manipulation. This was achieved
by developing a new library for data manipulation called
SupLDD. Prior automatic test sets generation methods have
been consequently extended and adapted to this new numeric
context. Symbolic data manipulations in AUTSEG V2 allow
not only symbolic data calculations but also system verifica-
tion (Determinism, Death sequences), and identification of all
possible test cases without requiring the coverage of all the
system states and transitions. Therefore, our approach bypasses
in numerous cases the states space explosion problem. We
besides defined a backtrack operation to exhibit significant test
sets of the target system.

In the remainder of this paper, we briefly recall the princi-
ples of AUTSEG V1 and introduce the new version AUTSEG
V2. The principles of data manipulation and its capabilities on
tests generation and verification are presented in Section II. A
case study is presented in Section III. We show in Section IV
experimental results. Finally, we conclude the paper in Section
V with some directions for future works.

II. AUTSEG V2 DESCRIPTION

A. Architectural Test Overview
We introduce in this section the principles of our automatic

testing approach including data manipulation. Figure 1 shows
five main operations including: i) the design of a global model
of the system under test, ii) a quasi-flattening operation, iii)
a compilation process, iv) a generation process of symbolic
sequences mainly related to the symbolic data manipulation
entity, v) and finally the backtrack operation to generate all
possible test cases.

In this paper, we particularly focus on verification of
embedded software controlling reactive systems behavior. The
conception of such systems is generally based on the syn-
chronous approach [2] that presents clear semantics to ex-
ceptions, delays and actions suspension. This notably reduces
the programming complexity and favors the application of
verification methods. In this context, we present the global
model by hierarchical and parallel concurrent Finite States
Machines (FSMs) based on the synchronous approach. The
hierarchical machine describes the global system behavior,
while parallel automata act as observers for control data of

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 31 / 54

Figure 1. Global test process.

the hierarchical automaton. Our approach allows to test many
types of a system at once. In fact, we present a single generic
model for all types of the system, the specification of tests can
be done later using particular Boolean variables called system
preconditions (type of system, system mode, etc.). Hence, a
specific test generation could be done at the end of test process
through analysis of the system preconditions. This prevents to
generate as many models as system types, which can highly
limit the legibility and increase the risk of specification bugs.

A straightforward way to analyze a hierarchical machine is
to flatten it first (by recursively substituting in a hierarchical
FSM each super state with its associated FSM) and then
apply on the resulting FSM a verification tool such as a
model cheking tool. However, to analyze the global model, a
full flattening of the hierarchical FSM is not required. Only
the sequential hierarchical automata is flattened, the global
structure remains parallel. In fact, flattening parallel FSMs
explodes usually in number of states. Thus there is no need
to flatten them, as we can compile them separately thanks
to the synchronous approach [2], then concatenate them with
the flat model retrieved at the end of the compilation process.
This quasi-flattening operation allows to flatten the hierarchical
automata and maintain the parallelism. This offers a simpler
model, a faster compilation, and brings more flexibility to
identify all possible evolutions of the system as detailed in
the following steps.

Resulting flat automata and concurrent automata are then
compiled separately into explicit Mealy machines, implicitly
represented by a set of Boolean equations. Compilation results
of these automata are concatenated at the end of this process.
They are represented by a union of sorted equations rather
than a Cartesian product of graphs to support the synchronous
parallel operation and instantaneous diffusion of signals as
required by the synchronous approach. Accordingly, a sub-
stantial reduction is brought on the size of the system model.
Our compilation requires only log2(nbstates) registers, while
classical works uses one register per state [3]. It allows also
checking the determinism of all automata which ensures the
persistence of the system behavior.

To supply numeric data manipulation in our tests, we devel-
oped SupLDD library offering symbolic means to characterize
several preconditions by numeric constraints. It is sorely based

on the potency of LDD library [4]. The symbolic representation
of these preconditions shows an important role in the following
operations of sequences symbolic generation and test cases
generation ”Backtrack”. It evenly enhances system security by
analyzing the constraints computations.

During the sequences symbolic generation operation, we
automatically extract necessary preconditions which lead to
specific, significant states of the system from generated se-
quences. Having defined the optimal preconditions for re-
stricting the states space, we work locally on significant
subspaces. This sequences generation process relies on the
effective representation of the global model and the robustness
of numeric data processing to generate the exhaustive list of
possible sequences, avoiding therefore the manual and explicit
presentation of all possible combinations of system commands.

Finally, the verification of the whole system behavior is
performed by the manipulation of extracted preconditions from
each significant subspace. Namely, we verify the execution
context of each significant subspace. This verification is per-
formed by the backtrack operation. It generates all possible
test cases of the system under test. Specifically, it identifies all
paths satisfying each final critical state preconditions to reach
the root state.

We have already detailed in [1] the principles of the
global model conception, the quasi-flattening operation and the
compilation process. We will rather focus in the rest of this
paper on the presentation of symbolic data manipulations and
their capabilities to carry the symbolic sequences generation
and the backtrack operation.

B. Symbolic data manipulation
1) Related work: Since 1986, Binary Decision Diagrams

(BDDs) have successfully emerged to represent Boolean func-
tions for formal verification of systems with large states space.
BDDs, however, cannot represent quantitative information such
as integers and real numbers. Variations of BDDs have been
proposed thereafter to support symbolic data manipulations
that are required for verification and performance analysis of
systems with numeric variables. For example, Multi-Terminal
Binary Decision Diagrams (MTBDDs) [5] are a generalization
of BDDs in which there can be multiple terminal nodes, each
labeled by an arbitrary value. However, the size of nodes in
an MTBDD can be exponential (2n) for systems with large
range of values. To support a larger number of values, Yung-
Te Lai has developed Edge-Valued Binary Decision Diagrams
(EVBDDs) [6] as an alternative to MTBDDs to offer a more
compact form. EVBDDs associate multiplicative weights with
the true edges of an EVBDD function graph to allow an
optimal sharing of subgraphs. This suggests a linear evolution
of non-terminal nodes size rather than an exponential one for
MTBDDs. However, EVBDDs are limited to relatively simple
calculations units, such as adders and comparators, implying a
high cost per node for complex calculations such as (X × Y)
or (2X).

To overcome this exponential growth, Binary Moment
Diagrams (BMDs) [7], another variation of BDDs, have been
specifically developed for arithmetic functions considered as
linear functions with Boolean inputs and integer outputs to
perform a compact representation for integer encodings and
operations. They integrate a moment decomposition principle
giving way to two sub-functions representing the two moments

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 32 / 54

(constant and linear) of the function, instead of a decision.
This representation was later extended to Multiplicative Bi-
nary Moment Diagrams (*BMDs) [8] to include weights on
edges allowing to share common sub-expressions. These edges
weights are multiplicatively combined in a *BMD, in contrast
to the principle of addition in an EVBDD. Thus, the following
arithmetic functions X + Y , X − Y , X × Y , 2X show
representations of linear size. Despite their significant success
in several cases, handling edges weights in BMDs and *BMDs
is a costly task. Moreover, BMDs are unable to verify the
satisfiability property, and functions outputs are non divisible
integers to separate bits, causing a problem for applications
with output bit analysis. BMDs and MTBDDs were combined
by Clarke and Zhao in Hybrid Decision Diagrams (HDDs) [9].
But, all of these diagrams are restricted to materials arithmetic
circuits check and not suitable for the verification of software
systems specifications.

Within the same context of arithmetic circuits check, Taylor
Expansion Diagrams (TEDs) [10] have been introduced to
supply a new formalism for multi-values polynomial functions
providing a more abstract, standard and compact design rep-
resentation, with integer or discrete inputs and outputs values.
For an optimal fixed order of variables, the resulting graph is
canonical and reduced. Unlike the above data structures, TED
is defined on a non-binary tree. In other words, the number of
child nodes depends on the degree of the relevant variable.
This makes TED a complex data structure for particular
functions such as (ax). In addition, the representation of the
function (x < y) is an important issue in TED. This is
particularly challenging for the verification of most software
systems specifications. In this context, Decision Diagrams
for Difference logic (DDDs) [11] have been proposed to
present functions of first order logic by inequalities of the
form {x − y ≤ c} or {x − y < c} with integer or real
variables. The key idea is to present these logical formulas
as BDD nodes labeled with atomic predicates. For a fixed
variables order, a DDD representing a formula f is no larger
than a BDD of a propositional abstraction of f. It supports as
well dynamic programming by integrating an algorithm called
QELIM based on Fourier-Motzkin elimination [12]. Despite
their proved efficiency in verifying timed systems [13], the
difference logic in DDDs is too restrictive in many program
analysis tasks. Even more, dynamic variable ordering (DVO)
is not supported in DDDs. To address those limitations, LDDs
[4] extend DDDs to full Linear Arithmetic by supporting an
efficient scheduling algorithm and a QELIM quantification.
They are BDDs with non terminal nodes labeled by linear
atomic predicates satisfying a scheduling theory and local
constraints reduction. Data structures in LDDs are optimally
ordered and reduced by considering the several implications of
all atomic predicates. LDDs have the possibility of computing
arguments that are not fully reduced or canonical for most
LDD operations. This suggests the use of various reduction
heuristics that trade off reduction potency for calculations cost.

2) SupLDD: We summarize from the above data structures
that LDD is the most relevant work for data manipulation
in our context. We present in this section a new library for
data manipulation called SupLDD founded on LDD basis.
Figure 2 shows an example of representation in SupLDD of
the arithmetic formula F1 = {(x ≥ 5) ∧ (y ≥ 10) ∧ (x+ y ≥
25)} ∨ {(x < 5) ∧ (z > 3)}. Nodes of this structure are

labeled by the linear predicates {(x < 5); (y < 10); (x+ y <
25); (−z < −3)} of formula F1, where the right branch
evaluates its predicates to 1 and the left branch evaluates its
predicates to 0. In fact, the choice of a particular comparison
operator within the 4 possible operators {<,≤, >,≥} is not
important since the 3 other operators can always be expressed
from the chosen operator: {x < y} ⇔ {NEG(x ≥ y)}; {x <
y} ⇔ {−x > −y} and {x < y} ⇔ {NEG(−x ≤ −y)}.

Figure 2. Representation in SupLDD of F1.

We show in Figure 2.b that the representation of F1 in
SupLDD has the same structure as a representation in BDD
that labels its nodes by the corresponding Boolean variables
{C0;C1;C2;C3} to each SupLDD predicate. But, a repre-
sentation in SupLDD is more advantageous. In particular, it
ensures the numeric data evaluation and manipulation of all
predicates along the decision diagram. This furnishes a more
accurate and expressive representation in Figure 2.c than the
original BDD representation. Namely, the Boolean variable C3
is replaced by EC3 which evaluates the corresponding node to
{x+y < 15} instead of {x+y < 25} taking into account prior
predicates {x < 5} and {y < 10}. Besides, SupLDD relies
on an efficient T-atomic scheduling algorithm [4] that makes
compact and non-redundant diagrams for SupLDD where a
node labeled for example by {x ≤ 15} never appears as a
right child of a node labeled by {x ≤ 10}. As well, nodes are
ordered by set of atoms {x, y, etc.} where a node labeled by
{y < 2} never appears between two nodes labeled by {x < 0}
and {x < 13}. Further, SupLDD diagrams are optimally
reduced including the LDD reduction rules. First, the QELIM
quantification introduced in LDDs allows the elimination of
multiples variables: For example, the QELIM quantification of
the expression {(x−y ≤ 3)∧(x−t ≥ 8)∧(y−z ≤ 6)∧(t−k ≥
2)} eliminates the intermediate variables y and t and generates
the simplified expression {(x − z ≤ 9) ∧ (x − k ≥ 10)}.
Second, the LDD high implication [4] rule allows to get the
smallest geometric space: For example the simplification of the
expression {(x ≤ 3) ∧ (x ≤ 8)} in high implication turns to
the single term {x ≤ 3}. Finally, the LDD low implication [4]
rule generates the largest geometric space where the expression
{(x ≤ 3) ∧ (x ≤ 8)} becomes {x ≤ 8}.

SupLDD operations- SupLDD operations are primarily
generated from basic LDD operations [4]. They are simpler and
more adapted to our needs. We present functions to manipulate
inequalities of the form {

∑
aixi ≤ c}; {

∑
aixi < c};

{
∑

aixi ≥ c}; {
∑

aixi > c}; where {ai, xi, c ∈ Z}. Given
two inequalities I1 and I2, the main operations in SupLDD
include:

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 33 / 54

• SupLDD conjunction (I1, I2): This absolutely corre-
sponds to the intersection on Z of sub-spaces repre-
senting I1 and I2.

• SupLDD disjunction (I1, I2): As well, this operation
absolutely corresponds to the union on Z of sub-spaces
representing I1 and I2.

Accordingly, all the space Z can be represented by a union
of two inequalities {x ≤ a} ∪ {x > a}. As well, the empty
set can be inferred from the intersection of inequalities {x ≤
a} ∩ {x > a}.
• Equality operator {

∑
aixi = c}: It is defined by the

intersection of two inequalities {
∑

aixi ≤ c} and
{
∑

aixi ≥ c}.
• Resolution operator: It simplifies arithmetic expres-

sions using QELIM quantification, and both low and
high implication rules introduced in LDD. For exam-
ple, the QELIM resolution of {(x−y ≤ 3)∧ (x− t ≥
8) ∧ (y − z ≤ 6) ∧ (x − t ≥ 2)} gives the simplified
expression {(x− z ≤ 9)∧ (x− t ≥ 8)∧ (x− t ≥ 2)}.
This expression can be more simplified to {(x− z ≤
9) ∧ (x − t ≥ 8)} in case of high implication and to
{(x−z ≤ 9)∧(x−t ≥ 2)} in case of low implication.

• Reduction operator: It solves an expression A with
respect to an expression B. In other words, if A implies
B, then the reduction of A with respect to B is the
projection of A when B is true. For example, the
projection of A {(x− y ≤ 5)∧ (z ≥ 2)∧ (z− t ≤ 2)}
with respect to B {x − y ≤ 7} gives the reduced set
{(z ≥ 2) ∧ (z − t ≤ 2)}.

We report in this paper on the performance of these
functions to enhance our tests. More specifically, by means
of SupLDD library, we present next an extension of Se-
quences Symbolic Generation operation initially presented in
AUTSEG V1 to integrate data manipulation and generate
more significant and expressive sequences. Moreover, we track
and analyze tests execution to spot the situations where the
program violates its properties. In the other hand, our library
ensures the analyze of generated sequences context to carry
the backtrack operation and generate all possible test cases.

C. Sequences Symbolic Generation (SSG)
In this version, we take into account data calculations

within the sequences generation process. Let’s recall the princi-
ples of SSG in AUTSEG V1. In fact, our approach is primarily
designed to test systems running iterative commands. In this
context, we confine only on significant sub-spaces representing
each command of the system instead of considering all the
states space. Indeed, we test all the system commands, but
one command is tested at once. This restriction was done by
characterizing all preconditions defining the execution context
in each subspace. Hence, the major complex calculation is
intended to be locally done in each significant subspace avoid-
ing the states space combinatorial explosion problem. Figure
3 shows this efficient representation of the system behavior.
It presents a repetition of a subspace pattern representing a
specific system command instead of an infinite tree if we
typically imagine all possible combinations of the system
iterative commands.

Each state in the subspace is specified by 3 main variables:
symbolic values of the program variables, path condition

Figure 3. AUTSEG V2 Model Representation.

and command parameters (next byte-code to be executed).
The path condition represents preconditions that should be
satisfied by the symbolic values to successfully progress the
execution of the current path. We particularly define two types
of preconditions:

• Boolean global preconditions that define the execution
context of a given command. They states the list of
commands that should be executed before. They arise
as command output if this latter is properly executed.

• Numeric local preconditions that define numeric con-
straints on commands parameters. They are presented
and manipulated by SupLDD functions.

We have explained in details in the first version of AUT-
SEG the SSG operation. We have applied BDD-analysis to
generate all possible paths from a Local Initial state (LI)
to reach Local Final states (LF) of the tested subspace. As
well, necessary preconditions are extracted from this subspace
check. We extend in this paper the SSG operation to integrate
data manipulations. We apply SupLDD analysis on numeric
local preconditions to check if the tested system is safe. We
firstly check if there are erroneous sequences. To this end,
we apply the SupLDD conjunction function on all extracted
numeric preconditions within the analyzed path. If the result
of this conjunction is null, the analyzed sequence is then
impossible and should be rectified! Second, we check the
determinism of the system behavior. To this end, we verify
if the SupLDD conjunction of all outgoing transitions from
each state is empty. In other words, we verify if the SupLDD
disjunction of all outgoing transitions from each state is equal
to all the space covering all possible system behaviors.

Contrary to the classical sequences generator, our tool
constantly generates a tree of pure future states, thus preventing
loops from occurring. Namely, previous states always converge
to the global initial state. This approach easily favors the
backtrack execution.

D. Backtrack operation
Once the necessary preconditions are extracted, a next step

is to backtrack paths from each final critical state until the
initial state finding the sequence fulfilling these preconditions.
This operation is carried by robust calculations on SupLDD
and the compilation process which kept enough knowledge to
find later the previous states. It includes two main actions:
a global backtrack and a local backtrack. Let’s consider the
SSG representation in Figure 3, if we take into account LF
as a critical final state FS of the tested system, the global

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 34 / 54

backtrack operation is to find the list of commands that should
be executed before the tested command. Figure 4 details this
operation: Given the global extracted preconditions (GP1,GP2,
etc.) from the SSG operation at this level (Final state FS of
command C1), we search in the global actions table for actions
(Commands C2 and C3) that emit each parsed global precon-
dition. Next, we put on a list SL the states that trigger each
identified action (SL= {C2, C3}). This operation is iteratively
executed on all found states (C2,C3) until reaching the root
state I with zero preconditions (C4 with zero preconditions).

Figure 4. Global Backtrack.

As many commands can share the same global precon-
ditions (C1 and C3 share the same precondition GP1), the
identified states can be repeated on SL (C2 and C4 are repeated
on SL). To manage this redundancy, we allocate a priority P to
each found state where each state of priority P should precede
the state of priority P+1. More specifically, if an identified
state already exists in SL, then its priority is incremented by
1 (Priority of C2 and C4 are incremented by 1). By the end
of this operation, we obtain the list SL (SL= { C3,C2,C4 })
of final states refering to subspaces that should be traced to
reach I.

A next step is to execute a local backtrack on each
identified subspace (C1,C3, C2,C4) starting from the state with
the lowest priority and so on to trace the final path from FS
to I. The sequence from I to FS is an example of a good
test set. Figure 5 presents an example of local backtrack in
command C3. In fact, during the SSG operation each state
S was labeled by (1) a Local numeric Precondition (LP)
presenting numeric constraints that should be satisfied on its
ongoing transition and (2) a Total Local numeric precondition
(TL) that presents the conjunction of all LP along the executed
path from I to S. To execute the local backtrack, we start from
the ongoing transition PT to FS to find a path that satisfy
the backtrack precondition BP initially defined by TL. If the
backtrack precondition is satisfied by the total precondition
{TL ≥ BP}, then if the local precondition LP of the tested
transition is not null, So we remove this verified precondition
LP from BP by applying the SupLDD projection function.
Next, we move to the amount state of PT and test its ongoing
transitions, etc. However, if {TL < BP}, we move to the test
of other ongoing transitions to find the transition from which
BP can be satisfied. This operation is iteratively executed until
reaching the initial state on which the backtrack precondition

Figure 5. Local Backtrack.

is null (fully satisfied). In short, if the context is verified, the
generated sequence is considered correct. At the end of this
process, we join all identified paths from each traced subspace
according to the given priority order from the global backtrack
operation.

III. USE CASE

To illustrate our approach, we studied the case of a con-
tactless smart card for the transportation sector manufactured
by ASK company [14], a world leader in contactless smart
card technology. We specifically target the verification of the
card’s functionality and security features. Overall, security
of such systems is critical: it can concern cards for access
security, banking, ID, etc. Cards complexity makes it difficult
for a human to identify all possible sensitive situations or to
validate it by classical methods. We need approximately 500
000 years to test the first 8 bytes if we consider a classical
Intel processor able to generate 1000 test sets per second. As
well, combinatorial explosion of possible modes of operation
makes it nearly impossible to attempt a comprehensive simu-
lation. The problem is exacerbated when the system integrates
numeric data processing. We have already studied this use case
within the first version of AUTSEG, but processing numeric
variables was ignored. We rather show in this section real tests
with AUTSEG V2 taking into account the complexity of data
manipulation.

The smart card operation is defined by a transport standard
called Calypso that presents 33 commands. The succession
of these commands (e.g., Open Session, SV Debit, Get Data,
Change Pin) gives the possible scenarios of card operation.
We designed the generic model of the studied card by 52
interconnected automata including 765 states. Forty three of
them form a hierarchical structure. The remaining automata
operate in parallel and act as observers to control the global
context of hierarchical automaton (Closed Session, Verified
PIN, etc.). We choose to use Light Esterel (light version of
SyncChart) [15], a synchronous graphical model that integrates
high-level concepts of synchronous languages in an expressive
graphical formalism. We show in Figure 6 a small part of
our model representing the command Open Session. Each

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 35 / 54

command in Calypso is presented by an APDU (Application
Protocol Data Unit) that presents the next byte-code to be
executed (CLA,INS,P1,P2, etc.). We expressed these parame-
ters by SupLDD local preconditions on various transitions. For
instance, AUTSEGINT(h10 < P1 < h1E) means that the cor-
responding transition can only be executed if (10 < P1 < 30).
Back-Autseg-Open-Session and Back-Autseg-Verify-PIN are
examples of global preconditions that appear as outputs of
respectively Open Session and Verify PIN commands when
they are correctly executed. They appear also as inputs for
other commands as SV Debit command to denote that the card
can be debited only if the PIN code is correct and a session is
already open. Autseg-Contact-mode is an example of system
precondition specifying that Open Session command should
be executed in a Contactless Mode.

Figure 6. Open Session command.

IV. EXPERIMENTAL RESULTS

In this section, we show experimental results of applying
our tool to the contactless transportation card. We intend to
test the security of all possible combinations of 33 commands
of the Calypso standard. This validation process is extremely
important to determine whether the card correctly meets
its specifications. Each command in the Calypso standard
is encoded on a minimum of 8 bytes. We conducted our
experiments on a PC with Intel Dual Core Processor, 2 GHz
and 8 GB RAM. We have already shown in a previous work
[1] the successful application of our quasi-flattening process
on the smart card hierarchical model. Compared to classical
works, we have moved from 9.6 1024 states in the designed
model to only 256 per branch of parallel. Then, due to the
compilation process, we have moved from 477 registers to
only 22.

We present in this paper more interesting results on se-
quences generation and test coverage with data processing.

The curve denoted C1 in Figure 7 shows an exponential
evolution of the number of generated sequences versus the
number of tested bytes. This corresponds to a classical testing
method that browses all possible paths of the card model
without any restriction. We are not even able to test more
than 2 commands of the model. Our model explodes by 13
bytes generating 3,993,854,132 possible sequences. A second
test applies AUTSEG V1 on the card model represented in
the same manner as Figure 3. Results shows in curve C2 a
lower evolution that stabilizes at 10 steps and 1784 paths,
allowing for coverage of all states of the tested model. More
interesting results are shown in curve C3 by AUTSEG V2
tests. Our approach enables coverage of the global model in
a substantially short time (few seconds). It allows separately
testing 33 commands (all the system commands) in only
21 steps, generating a total of solely 474 paths. Covering
all states in only 21 steps, our results demonstrate that we
test separately one command (8 bytes) at once in our ap-
proach thanks to the backtrack operation. The additional steps
(13 bytes) correspond to the test of system preconditions
(e.g., Autseg-Contact-mode, etc.), global preconditions (Back-
Autseg-Open-Session, etc.) and other local preconditions (e.g.,
AUTSEGINT(h00 ≤ buffer−size ≤ hFF)). Whereas, only
fewer additional steps (2 bytes) are required within the first
version of AUTSEG that stabilizes at 10 steps. This difference
proves a complete evaluation of system constraints by our new
version of AUTSEG performing therefore more expressive and
reel tests: we integrate a better knowledge of the system.

Figure 7. SSG evolutions.

Curve C4 in Figure 8 exhibits results of AUTSEG V2 tests
simulated with 3 anomalies on the smart card model. We note
less generated sequences by the 5 steps. We obtain a total of
460 sequences instead of 474 at the end of tests. 14 sequences
are removed since they are unfeasible (dead sequences) by Su-
pLDD calculations. Indeed, the SupLDD conjunction of parsed
local preconditions AUTSEGINT(01h ≤ RecordNumber ≤
31h) and AUTSEGINT(RecordNumber ≥ FFh) within a
same path is null presenting an over-specification example
(anomaly) of the Calypso standard that should be revised.

We show in Figure 9 an excerpt of generated sequences

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 36 / 54

Figure 8. AUTSEG V2 SSG evolutions.

by AUTSEG V2 detecting another type of anomaly: an under-
specification in the card behavior. The Incomplete Behavior
message reports a missing action on a tested state of Update-
Binary command. Indeed, two actions are defined (Tag =
54h) and (Tag = 03h) at this state. All states where Tag is
different from 84 and 3 are missing. We can automatically
spot such problems by checking for each parsed state if the
union SupLDD-Or of all outgoing transitions is equal to all
the space. Once, this property is always true, then the smart
card behavior is proved deterministic.

Figure 9. Smart Card Under-specification.

As explained before, we get the execution context of each
generated sequence at the end of this operation. The next step
is then to backtrack all critical states of the Calypso standard
(all final states of 33 commands). We show in Figure 10
a detailed example of backtrack from the final state of SV
Undebit command that emit SW6200 code.

We identify from the global extracted preconditions Back-
Autseg-Open-Session and Back-Autseg-Get-SV the list of
commands (Open Secure Session and SV Get) to be executed
before. Then, we look recursively for all global preconditions

Figure 10. SV Undebit Backtrack.

of each identified command to trace the complete path to the
initial state of Start command. We observe from the results
that Verify PIN command should proceed the Open Secure
Session command. So, the final backtrack path is to trace
(local backtrack) the identified commands respectively SV
Undebit, SV Get, Open Secure Session et Verify PIN using
local preconditions of each command.

At the end of this process, we generate automatically 5456
test sets that cover the entire behavior of the studied smart
card. While, industrials take much more time to solely generate
manually 520 test sets covering 9,5% of our tests as shown in
Figure 11.

Figure 11. Tests Coverage.

V. CONCLUSION

We have proposed an extension of AUTSEG to integrate
data manipulations. For this purpose, we have developed a new
library called SupLDD that supplies numeric data manipula-
tions and takes advantages of the symbolic encoding scheme
of BDDs. This library allows not only symbolic calculations of
system data but also the verification of the system behavior.
Our method is practical and performs well, even with large
models where the risk of combinatorial explosion of states
space is important. Our experiments confirm that our tool

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 37 / 54

provides more expressive and significant tests covering all
possible system evolutions in a short time. More generally,
our tool including the SupLDD calculations can be applied to
many numeric systems as they could be modeled by FSMs
handling integer variables.

Since SupLDD is implemented on top of a simple BDD
package. We aim in a future work to rebuild SupLDD on
top of an efficient implementation of BDDs with complement
edges [16] to get a better optimization of our library. Another
interesting contribution would be to integrate SupLDD in data
abstraction of CLEM [15]. More details about these future
works are presented in [17].

REFERENCES
[1] M. Abdelmoula, D. Gaffé, and M. Auguin, “Autseg: Automatic test

set generator for embedded reactive systems,” in Testing Software and
Systems, 26th IFIP International Conference,ICTSS, ser. Lecture Notes
in Computer Science. Madrid, Spain: springer, September 2014, pp.
97–112.

[2] C. André, “A synchronous approach to reactive system design,” in 12th
EAEEIE Annual Conf., Nancy (F), May 2001, pp. 349–353.

[3] I. Chiuchisan, A. D. Potorac, and A. Garaur, “Finite state machine
design and vhdl coding techniques,” in 10th International Conference
on development and application systems. Suceava, Romania: Faculty
of Electrical Engineering and Computer Science, 2010, pp. 273–278.

[4] S. Chaki, A. Gurfinkel, and O. Strichman, “Decision diagrams for linear
arithmetic.” in FMCAD. IEEE, 2009, pp. 53–60.

[5] M. Fujita, P. C. McGeer, and J. C.-Y. Yang, “Multi-terminal binary
decision diagrams: An efficient datastructure for matrix representation,”
Form. Methods Syst. Des., vol. 10, no. 2-3, Apr. 1997, pp. 149–169.

[6] Y.-T. Lai and S. Sastry, “Edge-valued binary decision diagrams
for multi-level hierarchical verification,” in Proceedings of the 29th
ACM/IEEE Design Automation Conference, ser. DAC’92. Los Alami-
tos, CA, USA: IEEE Computer Society Press, 1992, pp. 608–613.

[7] R. E. Bryant and Y.-A. Chen, “Verification of arithmetic circuits
with binary moment diagrams,” in Proceedings of the 32Nd Annual
ACM/IEEE Design Automation Conference, ser. DAC ’95. New York,
NY, USA: ACM, 1995, pp. 535–541.

[8] L. Arditi, “A bit-vector algebra for binary moment diagrams,” I3S,
Sophia-Antipolis, France, Tech. Rep. RR 95–68, 1995.

[9] E. Clarke and X. Zhao, “Word level symbolic model checking: A new
approach for verifying arithmetic circuits,” Pittsburgh, PA, USA, Tech.
Rep., 1995.

[10] M. Ciesielski, P. Kalla, and S. Askar, “Taylor expansion diagrams: A
canonical representation for verification of data flow designs,” IEEE
Transactions on Computers, vol. 55, no. 9, 2006, pp. 1188–1201.

[11] J. Møller and J. Lichtenberg, “Difference decision diagrams,” Master’s
thesis, Department of Information Technology, Technical University of
Denmark, Building 344, DK-2800 Lyngby, Denmark, Aug. 1998.

[12] A. J. C. Bik and H. A. G. Wijshoff, Implementation of Fourier-Motzkin
Elimination. Rijksuniversiteit Leiden. Valgroep Informatica, 1994.

[13] P. Bouyer, S. Haddad, and P.-A. Reynier, “Timed petri nets and
timed automata: On the discriminating power of zeno sequences,” Inf.
Comput., vol. 206, no. 1, Jan. 2008, pp. 73–107.

[14] “Ask,” [Retrieved: 16-October-2015]. [Online]. Available:
http://www.ask-rfid.com/

[15] A. Ressouche, D. Gaffé, and V. Roy, “Modular compilation of a
synchronous language,” in Soft. Eng. Research, Management and Ap-
plications, best 17 paper selection of the SERA’08 conference, R. Lee,
Ed., vol. 150. Prague: Springer-Verlag, August 2008, pp. 157–171.

[16] K. Brace, R. Rudell, and R. Bryant, “Efficient implementation of a bdd
package,” in Design Automation Conference, 1990. Proceedings., 27th
ACM/IEEE, June 1990, pp. 40–45.

[17] M. Abdelmoula, “Automatic test set generator with numeric constraints
abstraction for embedded reactive systems,” Ph.D. dissertation, Pub-
lished in ”Génération automatique de jeux de tests avec analyse sym-
bolique des données pour les systèmes embarqués”, Sophia Antipolis
University, France, 2014.

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 38 / 54

Identifying Error-Prone Transactions in Enterprise
Applications

Pavan Kumar Chittimalli, Sachin Patel, Vipul Shah
TCS Innovation Labs,

Tata Consultancy Services Limited,
Pune, India.

Email: {pavan.chittimalli, sachin.patel, v.shah}@tcs.com

Abstract—Independent testing teams use requirements as the
basis to develop test cases and automated test scripts. The projects
are executed under severe schedule constraints, due to which,
the testers have to focus their testing efforts on error-prone and
important features. Numerous source code based techniques for
identifying error-prone features/components have been developed.
However, they are based on source code analysis. Independent
testing teams rarely have access to source code and they find it
difficult to use code based techniques. In many cases, the domain
experts use Business Process Model and Notation (BPMN) to
represent the business requirements. In this paper, we propose
an approach to identify error-prone transactions in enterprise
applications using a BPMN. It helps in distinguishing between
source code errors and test script errors. We have adapted this
approach from an existing source code based technique. Our
experiments with the approach show that it can identify the
location of actual as well as seeded errors in both source code
and test scripts.

Keywords–Enterprise Application testing; BPMN; Stastical Bug
Isolation; Bug Localization

I. INTRODUCTION

Business systems evolve due to various reasons such as
correction of errors, adding new features, migrating to new
environments, and improving performance. These changes may
introduce infections [1], which propagate as the failure of the
test-case. Testers face severe schedule constraints and they
would like to spend their time on testing error-prone and
important features. This necessitates the use of prioritization
and fault localization techniques. There have been several fault
localization techniques [1][2][3][4], proposed based on cover-
age information of the program entities and test executions
logs. But teams which provide testing services do not have
access to the source code. The testing team gets requirements
in natural language or sometimes in formal notations like
BPMN [5]. They use these as the basis to develop test cases
and automated scripts [6]. In such scenarios, code based fault
localization techniques cannot be used. The automated test
scripts developed by testers are another source of error. It
is difficult to differentiate between a test script failure and a
source code failure. The manual trace analysis to identify test
script errors, takes considerable amount of time and requires
domain as well as technical expertise. This motivates us to
develop techniques [7] for identifying error-prone features and
test scripts of an application.

A. Motivating example

Listed below are two requirements of a billing application.
The business transaction assumes to create an order and
generate an invoice for it.

R1: If there Exists Promotions then apply the discount and
generate invoice. If there Exists No Promotion then
generate invoice without discount.

R2: In case of Full Payment, pay the generated invoice
amount. In case of Partial Payment, pay amount less
than generated invoice amount.

TABLE I. THE SAMPLE TEST-SCRIPTS FOR THE BILLING APPLICATION

Test Sequence

T1

1) Login
2) Create an order
3) If (promotions == 1) { apply discount generate invoice }
4) If (Payment Option==1) pay the amount
5) Logout

T2

1) Login
2) Create an order
3) If (promotions == 1) { apply discount generate invoice }
4) If (Payment Option==2) pay the partial amount
5) Logout

T3

1) Login
2) Create an order
3) If (promotions == 3) { generate invoice }
4) If (Payment Option==1) pay the amount
5) Logout

T4

1) Login
2) Create an order
3) If (promotions == 3) { generate invoice }
4) If (Payment Option==2) pay the partial amount
5) Logout

The tester has identified four test cases from these require-
ments. See test case T1 in Table 1. The first step is a Login with
customer details like name and password. In the second step,
Create an Order, displays the list of items to choose. The user
selects items from the specified list and creates an order. In the
third step, he checks for the option of any existing promotions
(i.e., promotions == 1). The corresponding discounts are
applied to the items ordered. Payment is done in the fourth
step. If the payment option is full payment (i.e., payment
option == 1) then pay the full amount and generate the
invoice accordingly. The last step is a Logout event, which
terminates the user session. Similarly, the other test-cases T2,
T3, and T4 are written as shown in Table 1 and executed with
corresponding test-data. The execution results in successful
execution (pass) for test-cases T1 and failed execution (fail)
for test-cases T2, T3, T4. The reason for the failure of test-
cases T3 and T4 is a script error at step 3. The script was

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 39 / 54

checking for promotions == 3 instead of promotions == 2,
which resulted in a failure of the test-case. The test-case T2

is failed because of source-code error in processing partial
payment task.

Analyzing such errors requires lot of effort and domain and
technical expertise. In this paper, we describe our technique
of adopting the existing source code based fault localization
techniques to a model based representation of the system
- BPMN. In Section 2, we describe the approach for fault
localization, followed by a description of two experimental
studies in Section 3. We conclude the paper with a discussion
of future work in Section 4.

II. OUR APPROACH

We choose BPMN as a representation for functional re-
quirements of the application. In this section, we first describe
the BPMN using our sample example and the later part of
the section will give the details of our approach based on
this representation. Our approach tries to address the following
research questions: 1) Can we adopt source code based fault
localization techniques to BPMN model entities? 2) Can we
distinguish between a script error and source code error?

The following subsections gives details about our approach.

A. Business Process Model

In BPMN terminology, a business process P is defined as:
P =< PE,F, s, E >. The process element (PE) in BPMN
representation can be a task, gateway, or a subprocess. A task
is used for defining a particular activity. The gateway is used
for decision making where each flow edge out of gateway
has a condition associated with it. There are or, nor, and, xor
variants of gateway exists as a representation. A subprocess is
a place-holder or callee point for another business process. A
flow element (an item of F) is an edge between two process
elements. s is the start element. An end can be normal end
of the process in which the return edge to callee exists. But
in the terminate end the called process never returns to callee
and ends the flow at that point.

For example, Figure 1 is a BPMN representation of the test
cases shown in Table 1.

B. Test case, Test script generation using BPMN

A scenario (si) in the process diagram is defined as a
path pai from start node s to end node e where e ∈ E.
A path is a sequence of process elements (pei) with flow
elements fi in between each of those process elements defines
a scenario si. Kholkar et al. [8] have proposed automating
functional testing using a BPMN representation of the business
application. We augment the standard BPMN representation
with pre and post test conditions to specify test conditions
and assertions. This results in a set of valid scenarios C for a
process representation. For each such valid scenario, a test-case
Ti is generated along with the scenario. For example, consider
BPMN shown in Figure 1 for the illustration. The model has
four feasible scenarios {s1, s2, s3, s4} resulting in four unique
test-cases {T1, T2, T3, T4}. The generated scenarios are shown
in the following Table 2.

Figure 1. Annotate the billing application using functional requirements.

TABLE II. THE SCENARIOS FOR THE EXAMPLE IN FIGURE 1.

Id Test Scenario
case

s1 T1 S → L → C → NPE → GI → FP → PrP1 → BZ → E
s2 T2 S → L → C → NPE → GI → PP → PrP2 → BU → E
s3 T3 S → L → C → PE → GI → FP → PrP1 → BZ → E
s4 T4 S → L → C → PE → GI → PP → PrP2 → BU → E

The test-case T1 is generated for the scenario s1 depicting
a scenario - “A registered user can create an order where
there no promotions exists, and generate an invoice with full
payment mode”. The same approach is described in our test
automation tool [9]. This end-to-end script generation using
BPMN representation of process diagrams are used in our
approach for test-script generation.

C. Test execution and Traceability matrix building

The test automation tool in [9] is capable of capturing
architectural, user interface, behavioral, and data models. This
test automation tool records execution sequences at entity level
for our process diagrams. The executions of these entities
are then mapped to the corresponding test-cases using the
execution traceability matrix. The empty cell in the traceability
matrix indicates that the test-case does not execute the entity
during the execution. The entry with a dark circle in the
traceability matrix indicates that the entity has been executed
during the test-case execution. The captured traceability matrix
can be used in various regression testing and debugging
activities [1][10][11]. The execution summary will result in
either success or failure of the test-case. This execution status
report (pass / fail information) and traceability matrix for the
example in Figure 1 is shown in Table 3.

D. Identifying error-prone transactions

During the execution of test-cases on the system results in
some failure and some successful executions. The cause of the
failure can not be located by looking only into the failure test-
cases [12]. In this subsection, we describe the adaptation of two
source-code based fault localization techniques for use with
BPMN. We first used Tarantula, a fault localization technique,
invented by Jim Jones et al. [1][11][12]. Tarantula utilizes the
pass / fail status of the test-case and the entities executed by
each of the test-case. The other fault localization technique we

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 40 / 54

used was Statistical Bug Isolation (SBI), a Liblit et al. [2]. In
our approach, we adapted Tarantula, SBI and extended them
to apply its metrics to entities in a BPMN model. Tarantula
has two metrics suspiciousness and confidence to locate the
error-prone entities in source code and hue and brightness to
visually locate them. SBI has a metric called Failure to locate
the error-prone entities in the source code. The suspiciousness
of an entity e is defined as the level of being faulty that caused
the failed test cases to fail. The value of suspiciousness metric
ranges from ‘0’ to ‘1’, where ‘0’, being least suspicious and ‘1’
being high suspicious. Given a test-suite T , the suspiciousness
metric for an entity e in Tarantula is defined as:

suspiciousness(e) =

failed(e)
#failed

passed(e)
#passed + failed(e)

#failed

=
%failed(e)

%passed(e) + %failed(e)
(1)

In (1), failed(e) represents the number of failed test-cases
in T that have been executed by the entity e and passed(e)
represents the number of passed test-cases in T that have
been executed by the entity e. #failed represents the total
number failed test-cases and #passed represents the total
number of passed test-cases in the test-suite T .The confidence
metric is defined to state the confidence of the suspiciousness
of the coverage entity that is being computed. The value of
confidence ranges from ‘0’ to ‘1’ where ‘0’ represents the
least confidence and ‘1’ represents the highest confidence, to
the suspiciousness value. The confidence metric of entity e is
defined as:

confidence(e) = max

(
passed(e)

#passed
,
failed(e)

#failed

)
= max

(
%passed(e)

100
,
%failed(e)

100

)
(2)

In (2), the variables are same as in (1). The max takes
the maximum value of fail/pass information available at that
entity.

The Failure of predicate P is defined as the probability
of an atomic predicate (P) is true for failing runs and false for
successful runs (i.e., Pr(Crash|P observed to be true)).

Failure(P) =
F (P)

S(P) + F (P)
(3)

The Failure(P) is expressed in the above equation where
S(P) denotes the number of successful runs in which P is
observed true, and F (P) denotes the failing runs in which P
is observed to be true.

For example, consider in the process model defined in
Figure 1. The test scenarios and test data are generated
from annotated business process models [8]. The test script
generation tool [13] is capable of capture and reply of the
application. It records the coverage information of the entities
in process model, which is used to build the traceability

TABLE III. TRACEABILITY MATRIX FOR THE TARANTULA
TECHNIQUE

Entity Name T1 T2 T3 T4 su
sp

ic
io

us
ne

ss

co
nfi

de
nc

e

Fa
ilu

re

Start (S) t t t t .5 1 –
Login (L) t t t t .5 1 –
CreateOrder (C) t t t t .5 1 –
gateway (G1) t t t t .5 1 –
NoPromotionsExist(NPE) t t 1 .6 .7
PromotionsExist (PE) t t .25 1 .3
GenerateInvoice (GI) t t t t .5 1 –
gateway (G2) t t t t .5 1 –
FullPayment (FP) t t .25 1 .3
PartialPayment(PP) t t 1 .6 .7
ProcessPayment (PrP1) t t .25 1 –
ProcessPayment (PrP2) t t 1 .6 –
BalanceZero (BZ) t t .25 1 –
BalanceUpdate (BU) t t 1 .6 –
End (E) t t t t .5 1 –

Execution Status P F F F√
× × ×

matrix. The matrix is used to calculate the suspiciousness and
confidence metrics. See the Table 3. In this case, test-case
{T1} has passed whereas {T2, T3, T4} have failed. Using the
coverage information and pass / fail information, the metrics
suspiciousness and confidence have been computed. The entity
Start (S) is executed by T1 (pass) , T2 (fail), T3 (fail), T4 (fail).
Using the Tarantula approach, we calculated the corresponding
suspiciousness for the Start entity as 0.5 and confidence as 1.
Similarly, Using SBI approach, we computed the metrics for all
other entities in the sample billing application. The rows 5, 10,
12, 14 in the Table 3 have the highest suspicious value ‘1’. For
entity NoPromotionsExist (NPE) (shown as suspicious in
row 5) has been written wrongly in the test-cases T3 and
T4 and categorized as test-script fault. The test-conditions
PartialPayments (in row 10) and BalanceUpdate (in row
14) are with highest suspiciousness value (1) with a confidence
value of 1. But the conditions do not have any faults so they are
not classified as errors and task processPayment (PrP2) (in
row 12) is categorized as source code error in implementation
of processing the payments. Similarly the rows 5 and 10 show
the highest Failure (SBI metric) as ‘.7’ in failing predicates.
The first predicate is failed due to test-script error and second
failed due to source-code error in processing payments.

While the metrics help in identifying the error-prone
BPMN entities, a visual representation would make it much
easier to locate [12]. To achieve this feature, we used the
color computing metric used in Tarantula. This technique uses
Hue, Saturation, and Brightness (HSB) from red to green color
range. We use hue metric to compute the color range specified
in equations shown below. The colorrange is defined as 0.33.

hue(e) = 1− suspiciousness(e)

=
%passed(e)

%passed(e) + %failed(e)
(4)

color(e) = color(red) + hue(e) ∗ colorrange (5)

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 41 / 54

For example, see the Figure 2. The entity colored in red
(NoPromotionsExist) is a highest suspicious entity. Analysis of
the BPMN and test scripts reveal that it is a test script error.
Instead of writing a test condition as promotions == 2, the
condition has been mentioned as promotions == 3. The test-
script and source code faults are shown in clouded area in
Figure 2.

Figure 2. Using Tarantula visualization technique on billing application given
in Figure 1.

The other suspicious entities shown in Figure 2 are Par-
tialPayments(PP), InvoiceBalanceUpdated(IBU), ProcessPay-
ments(PrP2). On the careful observation of entities PP and
IBU, we found that there is no script error exists. Hence the
suspicious task PrP2 is considered as source code error.

III. EXPERIMENTAL STUDIES

We evaluated the Tarantula [1] and Bin Liblit’s approach
[2] of SBI technique (Now, Co-operative Bug Isolation) along
with our test generation toolset [8][13][9]. The systems under
test were two open source enterprise applications, Jbilling and
Mercury. Jbilling is an open-source billing system. We have
configured it for a hardware construction material business.
The process model for this application has 10 processes and
108 entities. 30 test-cases have been identified for Jbilling.
The Mercury application is a online flight reservation system.
The process model for this application has 3 processes and 29
entities. 13 test-cases have been identified for Mercury. The
objective of our study is to 1) to locate parts of the business
process that are error-prone 2) to distinguish between a source-
code error and test-script error.

A. Study-1

We executed the identified test cases on the two applica-
tions. The results of the execution are shown in Table 4. In
Table 4, the first column represents the subject. The second
column shows the number of failures detected by Tarantula
and SBI techniques. The third column shows the number of
code failures detected by Tarantula and SBI. The fourth column
shows the test-script failures detected by Tarantula and SBI
respectively. The color coding provided by the tool helps locate
the errors in source code, as well as test scripts. A red colored
edge represents a test script error as this transition is caused
by the test script and not the source code. If a fault is not

test-script error then, we conclude it as a source-code error
and point to the corresponding task in the process model. We
located one such fault in the Jbilling application. Consider the
first row in Table 4 for Jbilling subject. Tarantula has detected
6 faults, of which, 5 failures are source code failures and 1
failure is a test-script failure. Similarly, SBI has detected the
same for Jbilling application.

TABLE IV. THE DETAILS OF THE STUDY-1 IN EXPERIMENTATION.

Subject Total Code Test-script
Failures Failures Failures

Tarantula SBI Tarantula SBI Tarantula SBI
Jbilling 6 6 1 1 5 5
Mercury 3 3 0 0 3 3

B. Study-2

In this study, we used seeded faults by generating more
test scenarios. These additional seeded faults are created by
mutating the operators in the process flow conditions of the
process diagrams. The edges (Flow Elements) in BPMN are
associated with the flow conditions. We have selectively taken
these conditions for seeding. We applied operator mutation on
relational operators (>,<,≥,≤), equality operators (=, 6=).
We modified the test scenario generation described in section
2-B to address this. The objective of this study is to see if the
mutants are killed or caught by the test scripts. We observed
that all mutants have been caught as shown in the Table 5.

IV. RELATED WORK

Most fault localization techniques in the literature have
been based on code coverage. The common method has been
to compare the coverage of failure runs and passing runs to de-
termine the location of the faults. Jim Jones et al. [1][11][12]
have done extensive research in the field of fault localization
based on coverage of failure and passing runs. Their tool
Tarantula uses the coverage information of entities at statement
level to compute suspiciousness, confidence, hue, and color
metrics. This tool is capable of showing the faults using
visualization. But this tool was developed to locate source code
faults. Liblit et al. [2] have proposed fault localization based
on the coverage of predicates in failing and passing runs by
sampling failure predicates. This is a lightweight technique
as it uses very little program instrumentation compared to
the Tarantula technique. Tarantula technique is more useful
in in-house debugging whereas the SBI technique can be
used in field debugging. Zeller et al. [4] have proposed a
light weight instrumentation technique to capture the method
call sequence coverage for locating the faults in java pro-
grams. Comparing the object-specific sequences predicts the
defects better than just simply comparing the coverage. Naoya
Maruyama and Satoshi Matsuoka [3] have proposed a fault
localization technique in large computing systems using traces
which capture function calls. They derive a model from the
traces and compare them with failure traces to find the defect
and computes suspect score to that failure.

In practice, the functional test teams carry out system and
regression tests as independent test teams, treating the systems
as a black box. Test teams prepare test plans and test scenarios
from functional requirements that are available informally in
natural language or sometimes semi-formally in notations like

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 42 / 54

TABLE V. THE DETAILS OF THE STUDY-2 IN EXPERIMENTATION.

Sub. No.of Total Code Test-script Mutants
Test Failures Failures Failures Caught
cases Tar SBI Tar SBI Tar SBI Tar SBI

1 50 26 26 1 1 25 25 20 20
2 21 3 3 0 0 11 11 8 8

BPMN. Test scripts are manually or automatically generated
from such models. The above fault localization techniques
[1][11][12] that take into account coverage information of the
program entities and test executions logs have been proposed.
Independent test teams however do not have access to code
nor the knowledge of the code to understand and interpret the
results provided by current techniques. One of the additional
challenges faced by the test teams, especially during the first
test run in each release, is that the new test scripts may be
faulty, or older test scripts may become out of sync with the
requirements. A significant amount of time and effort is spent
to determine if the faults are in the test scripts or source code.
Further, with the advances happening in model-based testing,
it is necessary to investigate if the code-based techniques
developed so far have an utility in the model-based world.
The work done in this paper is one such exploration.

V. CONCLUSIONS AND FUTURE WORK

The techniques applied in this paper have been extensively
used with source code entities. We have applied them for a
non-executable, model based representation. In this paper, we
proposed BPMN as a system representation and extended the
existing Tarantula, SBI techniques to identify error-prone trans-
actions in an enterprise application. We also used Tarantula’s
visualization metric to locate faults in BPMN representation
of the system.

Our preliminary experiments on in-house examples and
openly available subjects showed encouraging results and
caught all script and source code errors. These results have
been manually verified. However, we have not applied this
approach on a real-time project. A dependence fault, which
appears only after fixing root faults, is not handled in current
approach. Our assumption for locating source code fault has
not verified in presence of dependence faults. We would like
to apply this technique on bigger and more complex systems.
Another possibility is to use test execution history to guide the
test selection. Further studies will be required to understand
the relationship between code-based and model-based metrics.

REFERENCES

[1] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’05. New York, NY, USA: ACM, 2005, pp. 273–282.

[2] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’05. New York, NY, USA: ACM, 2005, pp. 15–26.

[3] N. Maruyama and S. Matsuoka, “Model-based fault localization in
large-scale computing systems,” in Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, April 2008, pp.
1–12.

[4] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight defect localization
for java,” in Proceedings of the 19th European Conference on Object-
Oriented Programming, ser. ECOOP’05. Berlin, Heidelberg: Springer-
Verlag, 2005, pp. 528–550.

[5] “Business Process Model And Notation (BPMN),”
http://www.omg.org/spec/BPMN/, [Online; accessed 04-July-2015].

[6] Q. Yuan, J. Wu, C. Liu, and L. Zhang, “A model driven approach toward
business process test case generation,” in Web Site Evolution, 2008.
WSE 2008. 10th International Symposium on, Oct 2008, pp. 41–44.

[7] P. K. Chittimalli and V. Shah, “Fault localization during system testing,”
in Proceedings of International Conference on Program Comprehension
(ICPC), May 2015.

[8] D. Kholkar, N. Goenka, and P. Gupta, “Automating functional testing
using business process flows,” in Proceedings of Workshop on Advances
in Model-Based Software Engineering, ser. ISEC (2011), 2011, pp. 102–
110.

[9] S. Patel, P. Gupta, and P. Surve, “Testdrive - A cost effective way to
create and maintain test scripts for web applications,” in Proceedings
of the 22nd International Conference on Software Engineering &
Knowledge Engineering (SEKE’2010), Redwood City, San Francisco
Bay, CA, USA, July 1 - July 3, 2010, 2010, pp. 474–476.

[10] P. K. Chittimalli and M. J. Harrold, “Regression test selection on system
requirements,” in Proceedings of the 1st India Software Engineering
Conference, ser. ISEC ’08. New York, NY, USA: ACM, 2008, pp.
87–96.

[11] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the 24th
International Conference on Software Engineering, ser. ICSE ’02. New
York, NY, USA: ACM, 2002, pp. 467–477.

[12] J. A. Jones, “Semi-automatic fault localization,” Ph.D. dissertation,
Georgia Institute of Technology, Atlanta, Georgia, USA, April 2008.

[13] P. Gupta and P. Surve, “Model based approach to assist test case
creation, execution, and maintenance for test automation,” in Proceed-
ings of the First International Workshop on End-to-End Test Script
Engineering, ser. ETSE ’11. New York, NY, USA: ACM, 2011, pp.
1–7.

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 43 / 54

Automatic Falsification of Java Assertions

Rafael Caballero Manuel Montenegro

Universidad Complutense, Facultad de Informática
Madrid, Spain

email: {rafacr,mmontene}@ucm.es

Herbert Kuchen Vincent von Hof

University of Münster, Institute of Information Systems
Münster, Germany

email: {kuchen,vincent.von.hof}@wi.uni-muenster.de

Abstract—We present an approach for the static detection of
possible assertion violations in Java. The main idea is to use an
existing test-case generator in combination with a new program
transformation. A possible assertion violation is indicated by a
generated specific test case. In addition, this test case specifies
the path in the program leading to the assertion violation. This
heuristic approach is a compromise between the usual but too
late detection of an assertion violation at runtime and an often
too expensive complete analysis based on a model checker.

Keywords–assertion; automatic test-case generation; program
transformation.

I. INTRODUCTION

Assertions are part of the Java language [1] and have
become part of the routine employed by Java programmers to
detect and correct bugs. They can be used e.g. for specifying
pre- and postconditions of methods or invariants of loops.
If an assertion is violated, this is detected at runtime and a
corresponding exception is thrown. A drawback is that it may
take a long time, until assertion violations occurring in rarely
executed code show up. Possibly, this can happen when the
code has already been deployed and assertions are turned off
[2, chapter 6]. Thus, the error can be difficult to detect and its
correction become very costly.

Callahan et al. [3] proposed the use of model checkers
for the automated generation of test cases. This model-based
testing approach has been a fruitful area of research in the last
years [4], and encompasses the creation of an abstract model
which is used to automatically create test cases. However,
using model checkers often requires more effort and expertise
than the simple introduction of assertions. Additionally, the
process of finding the assertion violation can still become a
hard, time-consuming task due to the typically huge search
space.

Our idea is to find some compromise between the two
mentioned approaches and use a test-case generator [5], [6]
to obtain test-cases for the considered code. If such a tool
generates a test-case aiming at producing an assertion vi-
olation, this indicates that such an assertion violation can
actually happen and that there is some corresponding bug in
the program. Test-case generators do not explore the complete
space of all possible computations as done by a model-checker.
Typically, they apply a heuristic based on a combination of
random search and symbolic evaluation in order to generate
a set of test cases which cover the control- and/or data-
flow of a program systematically [5], [7], [8], [9], [10], [11].
This approach cannot guarantee to find all possible assertion

violations. Nevertheless, it works quite well and it is helpful
in practice.

As mentioned before, a violation of a Java assertion causes
an exception to be thrown. Unfortunately, test-case generators
often have difficulties to cover exception handling well. Thus,
our approach does not just rely on an existing test-case
generator. Before using it, we apply a program transformation,
which replaces assertions and the corresponding exception
handling by “ordinary control structures”. As we will show,
this improves the coverage rate of test-case generators signifi-
cantly. In addition, it allows test-case generators such as jPET
[6] to be used, which do not support assertions.

Roughly, the approach presented here introduces new
boolean methods representing the paths leading to possible
assertion violations. In the case of methods including directly
assertions, the body of the new method is a copy of the method
where the assertion occurs, but replacing the assertion assert
e by return e. This converts assertion violations into first-
class citizens from the point of view of automated test-case
generators, which usually focus on methods and their results.

The new return statements often produce fragments of
unreachable code in the body of the new methods. These
fragments can be automatically removed, thus simplifying the
task of the test-case generator, and achieving a simple form
of static slicing, as computations which are not relevant for
assertions are not taken into account. This transformation is
simpler than the alternative approach presented in [12], where
every method is replaced by another one delivering a pair of
the original result and a value indicating whether an assertion
violation occurred. Propagating such violation information is
technically a bit clumsy and the mentioned slicing is not
obtained.

The paper is structured as follows. In Section II, we explain
our transformation based on a running example, while in
Section III, we present our transformation in detail. Section
IV contains some experimental results. Finally, in Section V
we summarize and point out future work.

II. RUNNING EXAMPLE

In order to get an overview of our transformation, let us
consider the classes shown in Figure 1, which contain an
implementation of the insertion-sort algorithm. An instance
of InsertionSort contains a reference to the array to
be sorted. This reference is initialised within the constructor,
which previously checks, whether it is given a non-null refer-
ence. The insert method receives a number n and performs
an ordered insertion of the element x[n] into the sub-array

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 44 / 54

public class InsertionSort {
private int[] x;

public InsertionSort(int[] x) {
assert x != null;
this.x = x; }

public void insert(int n) {
assert isSorted(n-1);
assert n <= x.length;
int i = n;
while (i >= 1 && x[i-1] > x[i]) {

int e = x[i-1];
x[i-1] = x[i];
x[i] = e;

}
assert isSorted(n); }

public void insertSort() {
for (int i = 1; i < x.length; i++)

insert(i); }

public boolean isSorted(int n) {
for (int i = 1; i < n; i++)

if (x[i-1] > x[i]) return false;
return true; }

}

public class Check {
public static void check(int []x) {

InsertionSort is = new InsertionSort(x);
is.insertSort(); }

}

Figure 1. Running example “insert sort”

x[0..n-1], which is assumed to be sorted. That is why we
include an assertion that calls the method isSorted, which
checks whether the array x is sorted up to the position given
as parameter, disregarding the elements after that position.
After the insertion, we check again (via another assert)
that the resulting sub-array x[0..n] is sorted. Notice that
there is a mistake in this method, as variable i should be
decremented at the end of each iteration. Otherwise, the loop
would always terminate either before the first iteration (if
x[n-1] <= x[n]) or before the second one (when x[n-1]
> x[n] holds before the first iteration, but not afterwards).

The insertionSort method calls insert as many
times as the length of the array indicates, successively per-
forming ordered insertions from the first element to the last
one. Finally, class Check represents any arbitrary application
class that employs an object of class InsertionSort. It
is clear that some possible inputs of Check.check can
trigger an assertion exception, exposing the existence of an
error in the code. Our goal is to find such input values
employing an automated test-case generator. In particular, it
would be great, if the test-case generator could pay special
attention to the assertions in the code, since any input data
producing an assertion falsification reveals a code bug. This
reduces the problem of checking the test-suite (known as the
oracle problem [13]), as we can focus first on those test-cases
producing assertion violations.

Input: A Java program P
Output: A Java program P0 for the testing assertions

P0 = P
for all method C.M ∈ P containing assertions do

Create a boolean copy C.M’ of C.M in P0

Let n be the number of assertions in C.M
Let aj ≡ assert ej be these assertions, where 1 ≤
j ≤ n, represents the textual order of occurrence of the
assertion in C.M
for i = 1 . . . n do

Create in P0 a new method C.M0
i as copy of C.M’

except for:
Assertion ai is replaced by return ei
Every aj ≡ assert ej , j < i is replaced by
boolean vj = ej , with vj a new variable name
Every assertion aj with j > i is removed.

end for
Remove C.M’

end for

Figure 2. Algorithm 1: Level 0, methods including assertions

However, some test-case generators, such as jPET [6] or
Muggl [11], do not support assertions. Others, like EvoSuite
[5] support assertions but have some problems when the
assertions are located in a different class. In our running
example, the three automated test-case generators find a test-
case corresponding to the case of null array input, but fail
to generate any test-case exposing the error in the code of
method insert. In the next section, we present the program
transformation that will change this situation.

III. TRANSFORMATION

Given a Java program including assertions, we introduce
new methods that return the value false whenever the
assertion property does not hold. Each method represents a
certain path to an assertion violation.

In the rest of the section, given a method C.M we use
the expression create a boolean copy C.M’ of method C.M to
indicate the creation a new method M’ in class C such that
C.M’ is a copy of C.M except for:

1) The return type of C.M’, which is boolean,
2) Statements return e; in C.M, which are replaced

by return true; in C.M’.
3) If the type of C.M was void, then return true;

is added as last statement of C.M’.
4) If C.M is a constructor, then add the access modifier

static to the declaration of C.M’.

First, we produce the methods that correspond directly to
methods containing assertions.

A. Methods including assertions
The first algorithm creates a transformed program P0 as a

copy of the initial P with some additional methods (see Figure
2).

Thus, a method C.M containing n assertions gives raise
to n new methods C.M0

1, . . . , C.M0
n, all of them with return

type boolean and each one checking a particular assertion.

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 45 / 54

The auxiliary method C.M’ is only introduced to facilitate the
generation of the new methods, and is removed at the end.

For instance, in the case of the method insert of our
running example, the C.M’ method is obtained by replacing the
return type by boolean and adding a new statement return
true; at the end:

public boolean insertPrime(int n) {
// same body as insert
....
return true; }

The method insert contains three assertions. Hence n =
3, and three new methods are included in the same class. The
method associated to the first assertion is:

public boolean insert1(int n) {
return isSorted(n-1);// assertion
int i = n;
// code of the while loop in insert
....
return true; }

Since the first statement is a return, any Java optimizer
will prune the rest of the code, as it is unreachable, compiling
instead:

public boolean insert1(int n) {
return isSorted(n-1); }

This is one of the main advantages of our approach: the
new methods are often much smaller than the original ones
and thus, the test-cases are obtained more easily. With respect
to insert_2, we obtain:

public boolean insert_2(int n) {
boolean _unused_1 = isSorted(n-1);
return n <= x.length; }

Although we are interested only in the second assertion of
insert, we still evaluate the condition of the first assertion,
since it may involve side effects that may affect the result of the
second one. The code of insert_3, the method associated
to the last assertion, can be found in Figure 3.

It is worth observing that the constructors can be consid-
ered as any other method (except for the introduction of the
static modifier), and no special treatment is needed. This
is an important difference with respect to [12], where a more
complicated treatment of constructors is necessary.

After this initial transformation, we can use our test-
case generator to look for values v1, . . . , vk such that
C.M0

i (v1, . . . , vk) produces the value false, indicating that
C.M(v1, . . . , vk) triggers assertion ai. However, we would like
to go one step beyond and consider if such a call can actually
occur in our application. This is the purpose of the algorithm
in the following subsection.

B. Indirect access to assertions
We say that the level of indirection of a method C.M is

zero, if the method contains an assertion (case considered in
the previous section), and l > 0, when it contains a call to

method C’.M’, and C’.M’ has a level of indirection l− 1 ≥ 0.
The idea behind this definition is that methods with levels
greater than zero can end triggering an assertion and must be
transformed as well. If a method does not contain an assertion
and it does not contain method calls (possibly indirectly)
leading to assertions, the level of indirection is undefined.

Notice that the same method can have different lev-
els of indirection related to different method calls. For
instance, method Check.check (Figure 1) has an indi-
rection level of 1 with respect to the call of constructor
InsertionSort that contains an assertion, but also level
2 with respect to the call is.insertSort, as method
InsertionSort.insertSort has indirection level 1. A
maximal level of indirection is assumed as an input parameter
of the following algorithm. It can either be obtained previously
by the tool analyzing the code of considered as an input
parameter fixed by the user to limit the number of methods
generated in case of large applications.

Our transformation creates new methods associated to each
level of indirection. We assume that it is possible to distinguish
the auxiliary methods created when processing a method at
a certain level of indirection. For instance, all the auxiliary
methods C.M0

i created by Algorithm 2 correspond to the
transformation at level 0 of their source method C.M.

Now, we apply the transformation to the
insertionSort method, which does not contain any
explicit assertion, but it may indirectly trigger an assertion
violation in insert. The call to insert occurs in a loop,
and hence first the loop is unfolded. Let us suppose that the
parameter Unfold takes value 2.

public void insertSortPrime() {
int i=1;
if (i<x.length) {

insert(i);
i++;
if (i<x.length)

insert(i); } }

In the algorithm, this means that p = 2 (two calls to insert)
and q = 3 (three versions of insert have been already
generated). Thus, we obtain a family of 2 × 3 = 6 methods
insertSort_i_j, with 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3. The
method insertSort_i_j checks whether the condition of
the j-th assertion executed within the i-th call of insert is
satisfied.

For instance, insertSort_1_3 in Figure 3 cor-
responds to the possibility that the first insert in
insertSortPrime falsifies the post-condition of insert
(its third assertion).

The transformation can also be applied to constructors, like
InsertionSort_1 prefix. Therefore, when transforming a
method that involves the instance creations of InsertSort,
we have to replace the new InsertSort(...) expres-
sions by calls to this static method in order to check the validity
of the assertions contained in the constructor. This is the case
of Check.check_1_1 in Figure 3.

The same figure includes a family of methods
check_2_i_j that reports the assertions being violated
by the indirect through the insertSort method. Each

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 46 / 54

.... // original methods

public static boolean
InsertionSort_1(int[] x) {
return x != null; }

public boolean insert_1(int n) {
return isSorted(n-1); }

public boolean insert_2(int n) {
boolean _unused_1 = isSorted(n-1);
return n <= x.length; }

public boolean insert_3(int n) {
boolean _unused_1 = isSorted(n-1);
boolean _unused_2 = n <= x.length;
int i = n;
while (i >= 1 && x[i-1] > x[i]) {

int e = x[i-1];
x[i-1] = x[i];
x[i] = e;

}
return isSorted(n); }

public boolean insertSort_1_1() {
int i = 1;
if (i < x.length)

return insert_1(i);
return true;}

public boolean insertSort_1_2() {
int i = 1;
if (i < x.length)

return insert_2(i);
return true; }

public boolean insertSort_1_3() {
int i = 1;
if (!(i < x.length))

return insert_3(i);
return true;}

public boolean insertSort_2_1() {
int i = 1;
if (i < x.length) {

insert(i);
i++;
if (i < x.length)
return insert_1(i);}

return true;}

public boolean insertSort_2_2() {
int i = 1;
if (i < x.length) {

insert(i);
i++;
if (i < x.length)
return insert_2(i);}

return true; }

public boolean insertSort_2_3() {
int i = 1;
if (i < x.length) {

insert(i);
i++;
if (i < x.length)

return insert_3(i);}
return true;}

public class Check {
public static boolean check_1_1(int []x) {
return InsertionSort.InsertionSort_1(x);}

public static boolean check_2_1_1(int []x) {
InsertionSort is = new InsertionSort(x);
return is.insertSort_1_1(); }

public static boolean check_2_1_2(int []x) {
InsertionSort is = new InsertionSort(x);
return is.insertSort_1_2();}

public static boolean check_2_1_3(int []x) {
InsertionSort is = new InsertionSort(x);
return is.insertSort_1_3();}

public static boolean check_2_2_1(int []x) {
InsertionSort is = new InsertionSort(x);
return is.insertSort_2_1();}

public static boolean check_2_2_2(int []x) {
InsertionSort is = new InsertionSort(x);
return is.insertSort_2_2();}

public static boolean check_2_2_3(int []x) {
InsertionSort is = new InsertionSort(x);
return is.insertSort_2_3();}}

Figure 3. Running example after the transformation

of these methods subsequently calls the corresponding
insertSort_i_j variant.

After the transformation and in order to check, whether an
assertion may be violated at runtime, we just have to invoke
a test-case generator on one of these generated methods and
look for those cases that yield false as a result. For instance,
when given the method check_2_2_3), jPET generates a

test case (an instance of InsertionSort containing the
array [−8,−9,−10]) which violates the third assertion exe-
cuted by the second call to insert. Analogously, EvoSuite
and Muggl also find an assertion violation associated with
check_2_2_3. Observe that the name of the method spec-
ifies a very detailed scenario: it indicates that with the given
input array, check causes an assertion falsification in its sec-

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 47 / 54

Input:
• Program P0: output of Algorithm 1
• Level: maximum level of indirection allowed (greater

than 0).
• Unfold: A positive number indicating the number of

iterations to unfold the loops in the body methods.
Output: PT : A Java program ready to be used to obtain the

test-cases falsifying the properties indicated in the asser-
tions.

PT = P 0

Mark PT methods containing assertions with level 0.
for l=1 . . . level do

for all method D.N in PT containing calls to methods
marked as level l − 1 do

Mark D.N as method of level l.
Create a boolean copy D.N’ of D.N in PT

if any call to a l − 1 method in D.N’ occurs in a loop
statement then

Unfold the loop in the copy D.N’ the number of
times specified by the algorithm input parameter
unfold.

end if
for all call T x = C.M(...); occurring in method
D.N’, with C.M marked as level l − 1 do

Let p be the number of calls to method C.M in D.N’
Let C.Ml−1

s1 , . . . , C.Ml−1
sq be the q auxiliary methods

created at level l − 1 for C.M
for i=1 . . . p, j = 1 . . . q do

Create a copy D.Nl
i,sj

of D.N’.
Replace in D.Nl

i,sj
the statement T x = C.M; by

return C.Ml−1
s1 ;.

end for
Delete D.N’

end for
end for

end for

Figure 4. Algorithm 2: Level of indirection greater than 0

ond call is.insertSort(); (first number 2). Moreover, it
also shows that insertSort causes the assertion falsification
in the second iteration of the loop (this is represented by the
second number 2 in the name), and the falsification occurs in
the last assertion of insert (final number 3).

By including the decrement instruction i--; at the end
of the loop within insert (as explained above), no assertion
violations are found.

IV. EXPERIMENTAL RESULTS

To observe the effects of the transformation, we have
utilized experimentation. In addition to the running example
shown above, we have investigated several additional examples
[14], ranging from the implementation of the binary tree
data structure, Kruskal’s algorithm, to Mergesort. Finally, we
used two examples representing a blood donation scenario
BloodDonor and a larger application, namely a library system,
where users can lend and return books. In the next step, we
have evaluated the examples with different test-case generators
with and without our program transformation.

TABLE I. DETECTING ASSERTION VIOLATIONS

EvoSuite jPet
Example Total P PT P PT

InsertionSort 4 3 4 0 4
CircleRadius 2 2 2 0 2
BloodDonor 2 1 2 0 2
InsertTree 2 1 2 0 2
Kruskal 1 1 1 0 1
Library 5 0 5 0 5
MergeSort 2 1 1 0 1
Numeric 2 2 2 0 2

We have used two test-case generators for exposing pos-
sible assertion violations. First of all, we can note that this
approach works. Moreover, we can note that our program
transformation typically improves the detection rate, as can
be seen in Table I. In this table, column Total displays for
each example the number of possible assertion violations that
can be raised for the method. Column P shows the number of
detected assertion violations using the test-case generator (0 in
the case of JPet because it does not handle assertions) and the
original program and column PT displays them after applying
the transformation. For instance in our running example four
assertion violations can be raised. Without the transformation,
three assertion violations are found by EvoSuite. With the
transformation, EvoSuite correctly detects all four assertion
violations. An improvement in the assertion violation detection
rate is observed for all examples. jPET does not consider
assertions in its current state, but can detect them after our
program transformation.

Thus both tools that do and do not support assertions
benefit from our program transformation. The runtime of our
analysis can range from a few seconds to several minutes.

V. CONCLUSION

Assertions constitute a useful, widely-used feature of the
Java language. They are widely used for detecting bugs in the
testing-phase. However, only those assertion violations actually
occurring at runtime can be detected.

Automated test-case generators can be situated somehow
in the middle of the very light-weight technique of run-time
checking Java assertions and the formal methods such as
model checking. They do not require the definition of abstract
models, but aim to cover as many executions as possible of the
program, yielding test-case suites that can be used to look for
possible errors. The main difficulty is to check the generated
test-suites looking for test-cases producing erroneous results.
This is known as the oracle problem [13]. In order to solve
this problem, [15] proposes including the assertions as part
of the code and use automated test-case generation to obtain
inputs that falsify the conditions. This approach was already
presented in [11] and has given rise to the so called assertion-
based software-testing technique.

In this paper, we have presented a proposal for transforming
a Java program including new boolean methods that help to
check the program assertions. Each of these methods returns
false, whenever its input parameters lead -directly or indirectly-
to a falsification of some assertion property. Moreover, the
name of the method contains a path to the assertion.

Some automated test-case generation tools do not consider
assertions. The presented transformation allows the user to

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 48 / 54

employ even such test-case generators to generate test-cases
exposing assertion violations. Moreover, we have seen that it
can also contribute to increase the completeness of the test-
cases obtained in some tools such as EvoSuite [5] that already
consider assertions. We also think that this proposal can be
useful during the development of new test-case generators
in order to include readily the possibility of dealing with
assertions. The advantage of our technique is that assertions
are replaced by standard code that can be analyzed using the
usual techniques.

It is worth observing that using our transformation, the test-
cases corresponding to assertions are easy to distinguish, since
they correspond to new auxiliary methods returning false.
Thus, it is possible to implement readily an automatic tool that
extracts from the test-suite the test-cases falsifying assertions.

The main limitations of the proposal are:

1) The necessity of unfolding the loop statements where
assertions are included. Since the unfolding is done
a fixed number of times, this can reduce the effective
covering of the test-cases.

2) The combinatorial explosion in the number of meth-
ods. We have seen in the description of the transfor-
mation that if a method contains n assertions and is
called m times by other methods, we need to generate
n auxiliary methods for the first one and n × m
auxiliary methods for the second one.

The unfolding (or ‘unrolling’) of the loops containing
methods using assertions is not a very severe restriction in
practice, because most automated test-case generators do the
same internally. Moreover, we have found that most errors
show up after just two iterations, like in the running example
of this paper. Anyway they can add more incompleteness to
the results.

The positive part of unfolding the loops is that errors found
are very precise. In our running example we can check that
all the methods leading to assertion violations require two
iterations of the loop. This points out the updating of variables
at the end of the loop as a possible cause of the bug, which
is indeed the case. To the best of our knowledge, no test-case
generator can provide such detailed information.

The combinatorial explosion in the number of auxiliary
methods can become an issue for large programs with many
assertions. We have found that processing each assertion
separately instead of all the assertions at the same time results
in a considerable speed-up. Anyway, it is worth observing that
the process is automatic and requires no user-interaction once
it has been started.

As future work, we plan to finish a prototype that automa-
tizes both the transformation and its connection with different
test-case generators. An important part of the prototype is the
decodification of the auxiliary method names once an assertion
falsification has been found, in order to show to the user a
detailed information about the source of the bug. We also
plan to extend the framework to the case of inheritance and
polymorphism. Our preliminary results in this sense indicate
that the same technique can be applied in the presence of
polymorphism with the creation of ‘dummy’ auxiliary methods
in the ancestor classes of the class hierarchy to ensure that the
method exists and can be used also in polymorphic contexts.

ACKNOWLEDGMENT

This work has been supported by the German Aca-
demic Exchange Service (DAAD, 2014 Competitive call
Ref. 57049954), the Spanish MINECO project CAVI-
ART (TIN2013-44742-C4-3-R), Madrid regional project N-
GREENS Software-CM (S2013/ICE-2731) and UCM grant
GR3/14-910502.

REFERENCES
[1] Oracle, “Programming With Assertions,”

http://docs.oracle.com/javase/6/docs/technotes/guides/language/assert.
html, retrieved: August, 2015.

[2] G. Travis, JDK 1.4 Tutorial. Manning Publications, 2002.
[3] J. Callahan, F. Schneider, and S. Easterbrook, Eds., Automated software

testing using model-checking, 1996, proceedings 2nd SPIN workshop.
[4] M. Shafique and Y. Labiche, “A systematic review of state-based

test tools,” Int. J. Softw. Tools Technol. Transf., vol. 17, no. 1,
Feb. 2015, pp. 59–76. [Online]. Available: http://dx.doi.org/10.1007/
s10009-013-0291-0

[5] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation
for object-oriented software,” in Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ser. ESEC/FSE ’11. New
York, NY, USA: ACM, 2011, pp. 416–419. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025179

[6] E. Albert, I. Cabanas, A. Flores-Montoya, M. Gómez-Zamalloa, and
S. Gutierrez, “jPET: An automatic test-case generator for Java,” in 18th
Working Conference on Reverse Engineering, WCRE 2011, Limerick,
Ireland, October 17-20, 2011, 2011, pp. 441–442.

[7] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving search-based test
suite generation with dynamic symbolic execution,” in IEEE Interna-
tional Symposium on Software Reliability Engineering (ISSRE). IEEE,
2013, pp. 360–369.

[8] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation,
Chicago, IL, USA, June 12-15, 2005, 2005, pp. 213–223. [Online].
Available: http://doi.acm.org/10.1145/1065010.1065036

[9] M. Gómez-Zamalloa, E. Albert, and G. Puebla, “Test case generation
for object-oriented imperative languages in CLP,” TPLP, vol. 10, no.
4-6, 2010, pp. 659–674. [Online]. Available: http://dx.doi.org/10.1017/
S1471068410000347

[10] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
ser. ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 263–272.
[Online]. Available: http://doi.acm.org/10.1145/1081706.1081750

[11] M. Ernsting, T. A. Majchrzak, and H. Kuchen, “Dynamic solution
of linear constraints for test case generation,” in Sixth International
Symposium on Theoretical Aspects of Software Engineering, TASE
2012, 4-6 July 2012, Beijing, China, 2012, pp. 271–274. [Online].
Available: http://dx.doi.org/10.1109/TASE.2012.39

[12] R. Caballero, M. Montenegro, H. Kuchen, and V. von Hof,
“Checking java assertions using automated test-case generation,” in
25th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR 2015), 2015, retrieved: August, 2015.
[Online]. Available: https://gpd.sip.ucm.es/rafa/papers/lopstr15.pdf

[13] E. Barr, M. Harman, P. McMinn, M. Shabaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE Transactions on Software
Engineering, vol. PP, no. 99, 2014, pp. 1–1.

[14] R. Caballero, M. Montenegro, H. Kuchen, and V. von Hof, “Exam-
ples used,” https://github.com/wwu-ucm/valid-15-examples, retrieved:
August, 2015.

[15] B. Korel and A. M. Al-Yami, “Assertion-oriented automated test data
generation,” in Proceedings of the 18th International Conference on
Software Engineering, ser. ICSE ’96. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 71–80.

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 49 / 54

RDTA – Repository Driven Test Automation

A new look into reuse of test automation artifacts

Dani Almog, Hadas Schwartz Chassidim, and Shlomo Mark

Dept. of Software Engineering

Sami Shamoon College

Beer Sheva, Israel

e-mail: Almog.dani@gmail.com, hadasch@sce.ac.il, marks@sce.ac.il

Yaron Tsubery

R&D Operations

Enghouse Interactive

9th Nehar Prat St., Giva'at-Ze'ev, Israel

 yaron.tsubery@gmail.com

Abstract— Repository Driven Test Automation (RDTA) is an

approach to the buildup process of test automation

infrastructure which proposes reuse of testing artifacts as a

fundamental principle for the creation of test automation. Our

research was motivated by a two-fold inquiry: Can testing

automation artifacts be reused? If so, how? These inquiries led

us to a new concept for the formulation of test automation.

The term software repository here refers to a storage location

from which software packages or artifacts may be retrieved for

reuse in other systems or software products, preferably - as is.

This conceptual paper explores different aspects of the reuse of

software test automation artifacts and elaborates on several

practical implications and changes that arise from the

implementation of this new paradigm in a software

development organization.

Keywords-testing; test automation; software reuse; repository

driven automation.

I. INTRODUCTION

Testing is perhaps the most expensive task in a software

project. Large portions of testing costs are derived from the

need to assure that none of the newly introduced changes in

the code have damaged previous quality – testing for

regression is a repetitive activity. Regression testing is an

expensive activity that can account for a large proportion of

the software maintenance budget [1]. Software engineers

add tests into test suites as software evolves, and by this

increase the test suite size, the revalidation of the software

but, also the testing costs. Special techniques to reduce the

regression tests costs by selecting, prioritizing and reducing

the number of regression tests and costs, have been

proposed [1,2]. However, it can be expensive to employ

these techniques and therefore it might not reduce the

overall regression testing costs. A survey of practitioners

[2] shows that the main benefits of test automation are:

reusability, repeatability and effort saved in test executions.

Automation can be applied to parts of the testing processes

by entrusting repetitive tasks to a test automation system.

The main motivation of RDTA is to reduce the overall

expenses and efforts in the implementation of test

automation by addressing test automation artifacts and the

creation process itself [3]. Today, many commercial and

open source tools are used for test automation. Large

portions of these tools are highly specialized solutions for

specific aspects of testing, are focused on different

technologies, or are based on particular test paradigms.

There is a large variety of specialized test tools for test case

generation, test management, test execution, and so forth.

There is limited support for combining the numerous

specialized tools in an integrated solution except for the

provision of technical interfaces between single tools.

The objective of our work is the development of test

automation infrastructure rooted in the concept of reusing

testing artifacts. In Section II, we briefly revisit the general

reuse concepts, including some heuristics [4], and

elaborating on some needed architectures, and testing

artifacts and other dimensions of test automation. RDTA is

introduced in Section III, discussing what, where and how

to store the different artifacts. We conclude with conceptual

insights into the implications of RDTA in today's modern

software development arena (e.g., Unit test, agile,

integration, Service-Oriented Architecture (SOA)).

II. BACKGROUND: REUSE OF ARTIFACTS

Analyzing our day-to-day testing activities, we may ask:

how much of every action, operation, thinking, doing – is

actually uniquely new? When attempting to explain the

nature of the reusability concept, we may be challenged by

the argument that this has all been done before and,

therefore, that there is nothing new to contribute in this field.

These notions are almost right: most new contribution stems

from context and interpretation. For example, when

designing a new test case for a certain application, memory

and past experience are utilized to rearrange old knowledge

into a new pattern to create a new test case that ought to

answer the new aspects we are testing. So from a conceptual

standpoint, we are reusing. In this paper we will examine

how much reuse is done with regard to testing artifacts. In

addition, we review the extent to which we are aware of the

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 50 / 54

reusable nature of our work when designing a testing artifact.

Our day-to-day manual testing work flow is built out of

|context| –> |concept| –> |build| –> |use|. We will also review

how much of a software engineer’s attention/awareness is

focused on the issue of reuse [5].

The reuse of artifacts is usually derived from the desire to

take advantage of previously developed components and

capabilities. In previous scholarship [6], a distinction was

made between Development with Reuse (DWR), which

focuses on benefits gained from the utilization of reusable

resources, and Development for Reuse (DFR), which aims at

the creation of reusable products for the benefit of future

usage. A generalized reuse model for system development

was formulated, suggesting a future quantitative evaluation

of reuse in a comprehensive manner [6].

A. Reuse Heuristics

Fortue and Valerdi [4] Addressing the topic of reuse from

a systems engineering perspective, a generalized framework

for the reuse of systems engineering products has been

proposed. This approach is based on reuse heuristics (the

following is a partial list selected from the original study)

[7]:

 Heuristic a: Reuse is not free, upfront investment is

required.

 Heuristic b: Reuse should be planed from the

conceptualization phase of programs.

 Heuristic c: Most project related products can be

reused.

 Heuristic d: Reuse, in large part, is also an

organizational issue.

 Heuristic e: Higher reuse opportunities exist when

there is a match between the diversity and volatility

of a product line and its associated supply chain.

 Heuristic f: Bottom-up (individual elements where

make or buy decisions are made) and top-down

(where product line reuse is made) reuse require

fundamentally different strategies.

 Heuristic g: Reuse applicability is often time

dependent.

 Heuristic h: The economic benefits of reuse can be

described in terms of either improvement (in

quality, risk identification) or reduction (of defects,

cost/effort, and time to market).

The ability to recompose reusable parts is an important

requirement for reuse [8]. Anticipating future reuse scenarios

make reusable parts easier to compose. Khusidman and

Bridgeland [9] presented a framework of reuse and cloning

techniques in software development. This work analyzed

different aspects of reuse and cloning by utilizing a

classification framework to define a matrix of reuse

scenarios aimed at efficient reuse. A distinction may be

made between “formal” reuse of object code that does not

require any customization, and the “opportunistic” “cut-and-

paste” reuse achieved by using and modifying fragments of

existing solutions [9]. In the following sections, we will

attempt to generalize a reuse framework and apply its

principles to test automation.

B. Systems Reuse Framework

It has been said that "reuse can increase your productivity

by nearly half if you avoid the common pitfalls that derail

many reuse programs" [10]. This idea was made clear from

the analysis of the outcome of trends in Source Lines of

Code (SLOC) of Department of Defense (DoD) software and

DoD cost in dollars per SLOC between 1950 and 2000 [10].

However, reuse in software development and testing

may present some abuse dangers, such as the propagation of

errors in subsequent versions of the software [11]. Lengthy

research on reuse of a test case in a safety critical system

(for a heart pacemaker) [12] concluded that, conceptually,

this approach to reuse is simple, but to implement it in a real

project with hundreds of thousands of lines of code,

recognizing the commonalities among the test cases, and
implementing a mechanism for systematic reuse, is a huge

task. Applying reuse techniques at the testing stage of a real

project that involved the development of a cardiac rhythm

management system led to significantly reduced efforts

required to test systems. More recent studies relates

reusability to Software Product Line Testing (SPLT) [13]

[14] [15]. The strategy of reuse of core assets in SPLT can

reduce software testing efforts during development, improve

software quality, and potentially decrease the time-to-

market of products and services.

C. Reuse of Testing Artifacts

Tiwari and Goel [16], the authors of a wide survey of the

literature about the reduction of testing effort through reuse

have argued that although there are many systematic studies

that deal with quality assurance techniques, virtually no

literature or survey exists on reuse-oriented testing

approaches. RDTA deals with the reuse of testing

automation artifacts using a comprehensive multi-level

reuse approach.

III. RDTA: A NOVEL APPROACH

In this section, we present our contribution to the reuse

classification framework by laying out the organizational

structure for the different levels, types and candidates of

storage repositories. The classification system presented

here is preliminary and may be further expanded and

adapted to different technologies and software development

infrastructures.

Even before we consider test automation, we are

obligated to store and maintain the testing artifacts. In

addition to the Gupta test repository classifications [17],

previous research and papers provide a useful resource for

testing item classifications, for example, verification items

[18]. Complimentary to the Gupta classifications, and in

accordance to the research of most of experts in the test

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 51 / 54

automation industry, we propose this preliminary list of

subjects be stored:

• Requirements Repository (a)

• Business Story Repository (b)

• Test Cases Storage (c)

• Basic Operational Element Repository (d)

• Unit Test Repository (e)

• Testing Business Element Repository (f)

Other repositories may be introduced as the result of this

research project. All these repositories support reuse when

transmitted to, and prorogated among, organizations and

teams.

A. Business and Testing Requirements

The RDTA approach suggests the requirement for a

source link for most testing artifacts. It RDTA samples a

subset of configurations to be tested based on environment

modeling, requirement analysis and systematic traceability.

RDTA distinguishes between higher Business

requirements and their breakdown into functional

requirements and nonfunctional requirements.

Therefore, it is imperative that there be a depository

where the entirety of the testing requirements are stored,

maintained and controlled. Additionally, today many test

management tools contain their own storage of test

requirements and are linked and traceable to the software

requirements as well as to the rest of the testing artifacts.

B. Business Story Repository

Derived directly from the store of software testing

requirements is a depository of testing business stories.

These should be as tightly aggregated as possible. Different

aggregation levels may be represented in a repository for

these testing stories or business story fragments. For

example, "The customer should be able to access the

application from most popular interfaces (mobile, pc,

remote interface etc.) using a login procedure".

C. Test Cases Storage

The test cases repository should derive from the test

business stories depository. Please note that test cases are

very much application/functionality oriented and therefore

require storage in different hierarchies that allow for

different affiliations or relationships to be exposed and

identified. Figure 1 presents a possible traceability matrix

that demonstrates the need for documentation as well as

management and control at all items during the

testing/fixing operation. Each column presents repository

categories containing other testing artifacts. The arrows hint

to a possible dependency between the elements.

These types of coverage matrices enable tractability [15],

and may help may reveal the importance of keeping track

of, and documenting, all business and testing artifacts.

D. Basic Operational Element Repository

In order to facilitate test automation needs, we must be able

to execute and operate all developed applications under

conditions of control and isolation. This can be performed

during the development phase or in an integration

workplace until installation. RDTA divides these

repositories into two categories:

1) Operational infrastructure, architectural foundation

related storage, and application.

2) Business related storage.

The reusable quality of the items stems from the

similarity in the basic application of the actual business

behavior in the software.

Each of these artifacts may be used, operated, stored,

maintained and manipulated during the testing project. More

items may be added and specifically modified. The use of

these artifacts is limited by resource constraints and time

horizons.

E. Unit Test Repository

In order to maintain productive reuse of unit test

artifacts, isolated and single purpose (used mostly by

developers) unit tests need to be transformed into integrated

parts of reusable testing artifacts that are used by all levels

of development and quality assurance teams [19].

F. Testing Business Element Repository

The need for the reuse of the same generic test case as

part of a project scenario that has a different categorical

affiliation can be satisfied in most of the existing testing

Figure 1. suggested test coverage metrix. Figure 2. Principal RDTA testing repositories build up

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 52 / 54

tools by duplicating the same formation and storing it

separately. The RDTA approach will store another level of

artifacts that relate to the test case business context (see

Figure 2).

 To facilitate easy access and usage of reusable testing

artifacts, the RDTA approach mandates adding another

merged level: one that stores, uses and maintains another

practical set of testing items. Business artifacts may be

related to each element (or object) of the testing artifacts

that can be treated as a business portion (as opposed to

technical, architectural or other such element).

RDTA will recommend storing and maintaining the

actual full context testing scripts so that during subsequent

use, the user will have full control of all operational and

functional aspects to be tested.

G. Maintaining the Integrity of the Specifications

The RTDA approach suggests a framework where each
of the elements is categorized as a service – so it can be
recalled and operated independently during the progression
of the testing levels. Such a complex, interconnected, and
affiliated storage system must be formulated in a very
practical manner. Therefore, how and where to store objects
are critical issues.

H. How to Store Repositories

Reflecting on the operational practical needs for the
storage requirements, the following list of storage
requirements has yet to be fully researched and evaluated:

 Easy & efficient storage & retrieval (Ease of use)

 Support for all types of items (from single data

items to complex executable modules)

 Support for version control

 Ability to follow complex associations between the

items

 Support for dynamic hierarchy relationships

 Discoverable and presentable on multiple layers and

dimensions

 Easy to maintain

 Ability to follow security requirements

 Unlimited size.

I. RDTA and the Test Automation Creation Work Process

Adapting the RDTA approach mandates a new four step
work process.

1. Analysis of project artifacts and the creation of a

project repository.

2. Mapping the affiliations of project artifacts to

existing reusable artifacts.

3. Acquiring test artifacts from the common repository

for insertion into the project repository.

4. Designing missing test artifacts at the project

repository and operation of automatic upload of the new test

artifacts to the common repository.

J. Implementing RDTA

Implementing RDTA may prove to be a hard and
complicated task in light of the variability and complexity of
infrastructure, organizational cultures, standards and new
quality measurements. One can foresee two different
approaches for implementation:

 Top to bottom – where management dictates,

supervises and imposes changes in production.

 Bottom up –where change develops from the bottom

through limited experimental trials of one of the test

automation teams and subsequently percolates up

and spreads gradually through the organization.

IV. CONCLUSION

This paper presents a new conceptual approach to test
automation – RDTA. This approach focuses on the reuse
principle for test automation artifacts. In order to transition
from concept to practice, each subject and proposition
presented here should be addressed and developed into an
organizational strategy and framework to reduce costs. More
broadly, we envision the creation of international sharing
schemes for the purpose of resource and performance
amplification. Further development of the criteria for the
selection of services and the evaluation of RDTA benefits
are required.

REFERENCES

 [1] , A. G. Malishevsky, G. Rothermel and S. Elbaum, “Modeling

the cost-benefits tradeoffs for regression testing techniques”.

Software Maintenance. Proc. International Conference on,

IEEE, pp 204-213, 2002.

[2] D. M. Rafi,. K. R. K. Moses, K. Petersen, and M.V.

Mäntylä,.“Benefits and limitations of automated software

testing: Systematic literature review and practitioner survey”.

Proc. of the 7th International Workshop on Automation of

Software Test, IEEE Press, pp. 36-42, June 2012.

[3] D. Almog and Y. Tsubery, “How the Repository Driven Test

Automation (RDTA) will make test automation more efficient,

easier & maintainable”. Proceedings of the 8th India Software

Engineering Conference. Bangalore, India, ACM: 196-197,

Feb 2015.

[4] J. Fortue and R. Valerdi,, “A Framework for Reusing Systems

Engineering Products,” Syst. Eng. vol. 16, no. 3, pp 304-312,

2013.

[5] J. Parsons and C. Saunders, “Cognitive Heuristics in Software

Engineering Applying and Extending Anchoring and

Adjustment to Artifact Reuse,” IEEE Trans. Softw. Eng., vol.

30, no. 12, pp. 873-888, Dec 2012.

[6] G. Wang and J. Rice, “Considerations for a Generalized Reuse

Framework for System Development.” Proc. 21st INCOSE Int.

Symp., June 2011.

[7] C. E. Cagdas, K. Bhattacharya, J. Su, “Static Analysis of

Business Artifact-centric Operational Models,” 2007 IEEE Int.

Conf. on Serv. Oriented Comput. and Appl., June 2007, pp.

133-140.

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 53 / 54

 [8] A. H. Bagge, M. Bravenboer, K. T. Kalleberg, K. Muilwijk, E.

Visser, “Adaptive Code Reuse by Aspects, Cloning and

Renaming,” Tech. Rep. UU-CS, issue: 2005-031 (2005).

[9] V. Khusidman and D. M. Bridgeland: “A Classification

Framework for Software Reuse”, J. of Object Technol., vol. 5,

no. 6, pp. 43-61, July - August 2006.

[10] B. Boehm,. “Managing Software Productivity and

Reuse,” Computer, vol. 32, no. 9, pp. 111-113 1999.

[11] E. J. Weyuker, “Testing Component-Based Software: A

Cautionary Tale”. IEEE Softw., Vol. 15, No. 5: pp. 54-59,

1998.

[12] M. Poonawala, S. Subramanian, W. T. Tsai, R. Vishnuvajjala,

R. Mojdehbakhsh, L. Elliott, “Testing Safety-Critical Systems-

A Reuse-Oriented Approach” Proc. 9th Int. Conf. on SEKE,

June, 1997, pp. 271-278.

[13] J. McGregor, “Testing a Software Product Line,” Testing

Techn. in Softw. Eng. Springer Berlin Heidelberg, 2010.

 [14] J. Bosch, Design and Use of Software Architecture: Adopting

and Evolving a Product-Line Approach, Addison-Wesley,

2000.

[15] Condron. “A Domain Approach to Test Automation of

Product Lines,” Int. Workshop on Softw. Product Line Testing.

p 27, (2004).

[16] R. Tiwari. and N. Goel, “Reuse: Reducing Test Effort ACM,”

SIGSOFT Softw. Eng. Notes, pp 1-11, March 2013

[17] M. Gupta and M. Prakash, “Possibility of Reuse in Software

Testing,” 6th Annu. Int. Softw. Testing Conf. in India., 2006.

[18] D. Almog and T. Heart, "Developing the Basic Verification

Action (BVA) Structure Towards Test Oracle

Automation," IEEE 2010 Conf. on Computational Intell. and

Soft. Eng. (CiSE), 2010, pp. 1-4.

 [19] D. Almog and Y. Tesubery, “Reuse of Unit Test Artifacts –

Allow Us to Dream,” Agile Rec. Issue 16 pp. 49 – 52, Nov.

2013.

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

Powered by TCPDF (www.tcpdf.org)

 54 / 54

http://www.tcpdf.org

