
VALID 2018

The Tenth International Conference on Advances in System Testing and Validation

Lifecycle

ISBN: 978-1-61208-671-2

October 14 - 18, 2018

Nice, France

VALID 2018 Editors

Jos van Rooyen, Identify - Software Quality Services, the Netherlands

 1 / 26

VALID 2018

Forward

The Tenth International Conference on Advances in System Testing and Validation Lifecycle
(VALID 2018), held on October 14 - 18, 2018- Nice, France, continued a series of events focusing on
designing robust components and systems with testability for various features of behavior and
interconnection.

Complex distributed systems with heterogeneous interconnections operating at different
speeds and based on various nano- and micro-technologies raise serious problems of testing,
diagnosing, and debugging. Despite current solutions, virtualization and abstraction for large scale
systems provide less visibility for vulnerability discovery and resolution, and make testing tedious,
sometimes unsuccessful, if not properly thought from the design phase.

The conference on advances in system testing and validation considered the concepts,
methodologies, and solutions dealing with designing robust and available systems. Its target covered
aspects related to debugging and defects, vulnerability discovery, diagnosis, and testing.

The conference provided a forum where researchers were able to present recent research
results and new research problems and directions related to them. The conference sought contributions
presenting novel result and future research in all aspects of robust design methodologies, vulnerability
discovery and resolution, diagnosis, debugging, and testing.

We welcomed technical papers presenting research and practical results, position papers
addressing the pros and cons of specific proposals, such as those being discussed in the standard forums
or in industry consortiums, survey papers addressing the key problems and solutions on any of the
above topics, short papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the VALID 2018 technical
program committee as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and efforts to contribute to VALID 2018. We truly believe
that thanks to all these efforts, the final conference program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the VALID 2018 organizing
committee for their help in handling the logistics and for their work that is making this professional
meeting a success. We gratefully appreciate to the technical program committee co-chairs that
contributed to identify the appropriate groups to submit contributions.

We hope the VALID 2018 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in system testing and
validation. We also hope Nice provided a pleasant environment during the conference and everyone
saved some time for exploring this beautiful city.

VALID 2018 Steering Committee

Andrea Baruzzo, IDS Interaction Design Solutions, Italy
Tadashi Dohi, Hiroshima University, Japan

 2 / 26

Roy Oberhauser, Aalen University, Germany
Patrick Girard, LIRMM / CNRS, France
Stefan Wagner, University of Stuttgart, Germany
Hiroyuki Sato, University of Tokyo, Japan
Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany
Hironori Washizaki, Waseda University, Japan

VALID 2018 Industry/Research Advisory Committee

Xinli Gu, Huawei, USA
Sigrid Eldh, Ericsson AB, Sweden
Jos van Rooyen, Identify - Software Quality Services, the Netherlands
Miroslav N. Velev, Aries Design Automation, USA
Philipp Helle, Airbus Group Innovations, Germany

 3 / 26

VALID 2018

Committee

VALID Steering Committee
Andrea Baruzzo, IDS Interaction Design Solutions, Italy
Tadashi Dohi, Hiroshima University, Japan
Roy Oberhauser, Aalen University, Germany
Patrick Girard, LIRMM / CNRS, France
Stefan Wagner, University of Stuttgart, Germany
Hiroyuki Sato, University of Tokyo, Japan
Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany
Hironori Washizaki, Waseda University, Japan

VALID Industry/Research Advisory Committee
Xinli Gu, Huawei, USA
Sigrid Eldh, Ericsson AB, Sweden
Jos van Rooyen, Identify - Software Quality Services, the Netherlands
Miroslav N. Velev, Aries Design Automation, USA
Philipp Helle, Airbus Group Innovations, Germany

VALID 2018 Technical Program Committee

Wasif Afzal, Mälardalen University, Sweden
Amir Alimohammad, San Diego State University, USA
María Alpuente, Technical University of Valencia (UPV), Spain
Moussa Amrani, Namur Digital Institute, Belgium
Aitor Arrieta, University of Mondragon, Spain
Sebastien Bardin, CEA LIST | Paris Saclay, France
Cesare Bartolini, ISTI - CNR, Pisa, Italy
Andrea Baruzzo, IDS Interaction Design Solutions, Italy
Saddek Bensalem, Université Grenoble Alpes/Verimag, France
Ateet Bhalla, Independent Consultant, India
Bruno Blaskovic, University of Zagreb, Croatia
Sergiy Bogomolov, Australian National University, Australia
Mohamed Boussaa, University of Rennes 1 | INRIA, France
Mark Burgin, University of California Los Angeles (UCLA), USA
Samuele Buro, University of Verona, Italy
Vinicius Cardoso Garcia, Universidade Federal de Pernambuco, Brazil
Adnan Causevic, Mälardalen University, Sweden
Federico Ciccozzi, Mälardalen University, Sweden
Bruce Cockburn, University of Alberta, Canada
Hichem Debbi, University of Mohamed Boudiaf-M'sila, Algeria
Gulsen Demiroz, Sabanci University, Istanbul, Turkey
Stefano Di Carlo, Politecnico di Torino, Italy

 4 / 26

Dario Di Nucci, Vrije Universiteit Brussel, Belgium
Luigi Dilillo, LIRMM (Laboratoire de Informatique Robotique et Microélectronique de Montpellier),
France
Tadashi Dohi, Hiroshima University, Japan
Dimitris Dranidis, CITY College | International Faculty of the University of Sheffield, Greece
Rolf Drechsler, University of Bremen/DFKI, Germany
Lydie du Bousquet, Université Grenoble-Alpes (UGA), France
Sigrid Eldh, Ericsson AB, Sweden
Marie Farrell, University of Liverpool, UK
Hermann Felbinger, Graz University of Technology / AVL List GmbH, Austria
Jicheng Fu, University of Central Oklahoma, USA
Gregory Gay, University of South Carolina, USA
Patrick Girard, LIRMM / CNRS, France
Xinli Gu, Huawei, USA
Bidyut Gupta, Southern Illinois University, Carbondale, USA
Kazumi Hatayama, Gunma University, Japan
Philipp Helle, Airbus Group Innovations, Germany
Lom Messan Hillah, Université Paris Nanterre / Sorbonne Université / CNRS - Laboratoire d'Informatique
de Paris 6 - LIP6, France
Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Hassan Ibrahim, Université Paris Sud, Université Paris Saclay, France
Daisuke Ishii, University of Fukui, Japan
David Kaeli, Northeastern University, Boston , USA
Ahmed Kamel, Offutt School of Business | Concordia College, USA
Marouane Kessentini, University of Michigan - Dearborn, USA
Narges Khakpour, Linnaeus University, Sweden
Takashi Kitamura, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Diego Kreutz, University of Luxembourg, Luxembourg / Federal University of Pampa, Brazil
Moez Krichen, Al-Baha University, Saudi Arabia / University of Sfax, Tunisia
Herbert Kuchen, University of Münster, Germany
Maurizio Leotta, University of Genova, Italy
Bruno Lima, University of Porto / INESC TEC, Portugal
Francesca Lonetti, ISTI-CNR, Italy
Lei Ma, Harbin Institute of Technology, China
Libero Maesano, Simple Engineering, France
Hans Manhaeve, Ridgetop Europe nv. / Ridgetop Group inc., Belgium
Eda Marchetti, CNR-ISTI, Pisa, Italy
Abel Marrero, Bombardier Transportation Signal Germany GmbH, Germany
Mieke Massink, CNR-ISTI, Pisa, Italy
Rivalino Matias Jr., Federal University of Uberlandia, Brazil
Amin Milani Fard, Simon Fraser University, Vancouver, Canada
Andreas Morgenstern, Fraunhofer Institute for Software Engineering (IESE), Germany
Roy Oberhauser, Aalen University, Germany
Pablo Oliveira Antonino, Fraunhofer IESE, Germany
Yassine Ouhammou, LIAS/ISAE-ENSMA, France
Giovanni Pau, Sorbonne Universitè, Paris, France
Adriano Peron, University of Naples "Federico II", Italy
Roberto Pietrantuono, Università di Napoli Federico II, Italy

 5 / 26

Pasqualina Potena, RISE SICS Västerås, Sweden
Paolo Prinetto, Politecnico di Torino, Italy
Claudia Raibulet, University of Milano-Bicocca, Italy
Oliviero Riganelli, University of Milano Bicocca, Italy
Nima Roohi, University of Pennsylvania, USA
Mehrdad Saadatmand, RISE SICS Västerås, Sweden
Giedre Sabaliauskaite, iTrust Centre for Research in Cyber Security | Singapore University of Technology
and Design, Singapore
Hiroyuki Sato, University of Tokyo, Japan
Josep Silva Galiana, Technical University of Valencia, Spain
Marjan Sirjani, Mälardalen University, Sweden / Reykjavik University, Iceland
Maria Spichkova, RMIT University, Australia
Andrea Stocco, University of British Columbia - Vancouver, Canada
Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany
Salvador Tamarit, Universitat Politècnica de València, Spain
Bedir Tekinerdogan, Wageningen University, The Netherlands
Spyros Tragoudas, Southern Illinois University, USA
Jos van Rooyen, Identify - Software Quality Services, the Netherlands
Miroslav N. Velev, Aries Design Automation, USA
Arnaud Virazel, LIRMM - University of Montpellier/CNRS, France
Stefan Wagner, University of Stuttgart, Germany
Neil Walkinshaw, University of Leicester, UK
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
John Wiegley, BAE Systems, UK
Kristian Wiklund, Ericsson AB, Sweden
Robert Wille, Johannes Kepler University Linz, Austria
Cemal Yilmaz, Sabanci University, Istanbul, Turkey
Haibo Yu, Shanghai Jiao Tong University, China

 6 / 26

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 26

Table of Contents

System Debug and Validation: Use case Based Perspective
Bhushan Naware, Arun Pai, and Ravinder Singh

1

Learning to Categorize Bug Reports With LSTM Networks
Kaushikkumar D. Gondaliya, Jan Peters, and Elmar Rueckert

7

Improving Testability of Software Systems that Include a Learning Feature
Lydie du Bousquet and Masahide Nakamura

13

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 26

System Debug and Validation: Use case Based Perspective

 Bhushan Naware Arun A Pai Ravinder Singh

 MIG, Intel Technologies India WSS, Intel Technologies India WSS, Intel Technologies India

 Pvt Limited Pvt Limited Pvt Limited

Bangalore 560103 India Bangalore 560103 India Bangalore 560103 India

Email: bhushan.g.naware@intel.com Email: arun.a.pai@intel.com Email: ravinder.m.singh@intel.com

 Abstract – Concept and Design of systems with sheer

complexity at various abstraction levels is becoming tedious and

time consuming process. To comply with the expected

requirements, subsequent validation and verification becomes

even more time consuming and expensive. When it comes to

platform level validation and debug, there are various fronts

that are to be looked at with great depth. In case of

laptops/desktops the system stack includes hardware, silicon,

firmware, bios, operating system, various drivers and

applications. In complex systems, finding root cause of issues

caught at platform validation is challenging and increases debug

throughput. In this paper, we will introduce a methodology for

validation and debug that could be applied across similar

systems. This methodology is bound to shorten the life span of

test plan creation, early identification, debug and root cause of

issues. This will result in cost saving and shorter time to market.

Keywords: Test Plan; Use case; Scenario; Win-DBG; JTAG;

Silicon Debug.

I. INTRODUCTION

 Every year the computing systems are becoming more

complex and as a result there is an increase in overall product

life cycle time starting from concept, design, development

and validation. The validation and platform debug needs to

be very efficient and test cases needs to be derived from real

use cases in-order to exercise all corner scenarios. The other

possibilities can also include stress testing of the systems that

has to be done with existing and newer features. Stress and

Stability testing consumes the maximum duration of

validation as the test duration spans across days, these test

increases the workload of the platform validation teams

exponentially due to sporadic failures which takes more time

to repro. The methodology that is proposed in this paper can

be used by extensive number of teams/customers that are

working on platform validation; be it original design

manufacturer or original equipment manufacturer or the in-

house validation teams that are responsible for product

readiness and deployment. This paper provides an

introduction to the concept of use cases as one of the obelisk

of validation metric in order to scale the validation and also

make the entire coverage robust and more adaptive. Using the

concept of use cases to bolster the system validation, there is

a preeminent advantage in the issue debugging and also

gauging of coverage across platform which can provide status

for overall product readiness with respect to the quality

requirements.

 Currently the state of the art validation methodologies

that are used by original equipment manufacturers and

original device manufacturers and also the in-house

validation teams is based on feature based approaches and the

one proposed here currently is being used for the first time in

broad system level context.

 The paper is outlined as follows. In section II, the concept

of use cases is explained. In section III the generic approach

of platform testing and debug via use cases is proposed. In

section IV with one of the running examples the concept of

use case and usage revelation is brought forward, also ease of

debugging of issue is explained in section V. The paper

finishes with conclusion in section VI.

II. HYPOTHESIS

The conventional way in which the system validation is

performed revolves around the new feature debut, in a

particular platform whether it is a hardware or software, then

checking if the standalone operation of feature matrix is

proper, and if the answer to that is yes; then subsequently it

has to be validated and substantiated for the different flows at

the platform level. Considering there is sprouting feature list

and also the new evolutions of system use patterns; platform

test plan intricacy & validation cycle time increases

multifold.

In order to mitigate and get the details on the above list

of features sorted out, there is a need of mechanism that

would give us portable and more systematic way of tracking

features at platform, which would eventually touch all the

underlying sub-features. Hence, instead of looking at the

system from new features standpoint we look at the system

from the usage scenarios.

The end-user when aims to use the system, what is the

way in which the system is used. Complexity of such flows

1Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 9 / 26

is taken into account and once that use case list is in place,

we have more or less a constant feature list that would cover

a particular domain. Once the list of use cases is fairly

constant platform over platform there is more transparency in

terms of tracking. Further to that depending on a new feature

introduction, be it architectural or any software dependent it

can be knit into the particular use case; solving both the

purposes, keeping the main test tracking list constant and also

incorporating the new testing scenarios. We are following the

inverted edifice approach to solve the test case intricacy and

other allied issues.

New platform features: Silicon to Software

User manifestations & system interactions

Figure. 1 Inverted edifice: use case vs feature based

approach.

Right hand side of Figure 1 represents the Conventional

mode while the left side represent the proposed methodology.

As paper progresses, it would be more relevant and clear how

can we have ease of validation and debug addressed by new

use case based approach.

III. TEST AND DEBUG TRIGGERED VIA USE CASE

 Having understood the use case approach, we need to

check the details on the usage of the same with respect to the

validation and debug on real world platform. The following

section takes a look at both the validation and debug of

platform spanning out with the use case based approach from

an idealist system standpoint. In-order to understand about

applicability of use case approach for debug and validation

strategies, we need to first observe on type of abstraction

layers we have and then pertaining to abstraction layers, what

kind of validation problems and debugging complexities can

precede. Identification of problem, with anticipated

complexities & trying to address it with proposed approach

would help, in reduction of both the validation as well as

debugging related issues. This is seen in the following section

with hibernate system state example.

 Taking into account the “outside in approach” we

normally see what a silicon (CPU) offers, after that we design

the features, as well as other supported customaries. When

we have the requisite hardware, i.e., silicon and board, it

comes to the BIOS, Firmware’s & device drivers. When all

these things are good, we then move towards the choice of

“OS” and the subsequent test requirements that are needed

in-order to perform our validation. From the representation in

Figure 2, it becomes much evident on what complex level the

System validation happens.

Figure. 2 Silicon to Software features depiction and traditional testing

methods

Validating a scenario with proper use case defined becomes

easier to test & articulate. Let us take a look at small example

to explain how a use case definition can help to ease the

complexity of validation. Goal is to validate system states that

a system under test supports, and see what the test coverage

is attached to the particular use case, map it back and get

information about supported power states. Using various

tools we can get re-confirmation that indeed these are the

power features that we are expecting on the system. Once the

existing use case is available amalgamating any new power

feature onto the system power state matrix, becomes quite a

simple task. Figure 3 provides an insight into one of the

systems and the various power states that it supports in

particular. This is a toned down version of multiple states via

which the system can navigate through in different phases of

validation and actual usage.

Figure. 3 System and corresponding supported and un-supported power

states.

 In addition to the validation strategies of available power

states & checking on the coverage gap of existing power

states or completely abstaining power state, we can also look

at the use case definition as one of the major pillars for debug.

Silicon
Board Readiness

BIOS Firmware and Driver readiness

OS readiness and SW stack checks

Sleeping

System Working
State (S 0)

Any Sleeping State
(S 1 - S 5)

Waking

2Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 10 / 26

 Consider one of the debugging scenarios here with

platform power policy and the way failure condition is

debugged. We expect S4 (Hibernate) state as a default

platform state present, but for some reason we have the S4

(Hibernate) not mentioned in the available states list. Then,

from the use case lists we can take starting point as absence

of S4 (Hibernate) state & what are the platform use cases that

would be hindered and in-turn what feature lists cannot be

tested. Then from Figure 2. Silicon to Software depiction, we

can check that what can be the probable cause of system state

failure, whether it maps to silicon abstraction layer or due to

any other failure. Once the leads are generated the debug

process direction is decided accordingly. Say we have issue

with the OS then follow up software debugging is done and

subsequent resolutions would get us the issues sorted out.

Figure. 4 System power state details

IV. VALID USE CASE ANALYSIS

 This section demonstrates the usage of this model to get

more robust understanding of use case application. For

explanation purpose, system state Hibernate a.k.a. S4 is

considered. Validation plans & tests are derived from use

case scenarios. Various Combination and tests are planned

with S4 entry/exit criteria kept in mind. Coverage is

quantified with features planned and validation matrix

created subsequently for an end to end use case and flow.

 Basic understanding of Hibernate use case, provides

information such as the condition of system, power

consumption during hibernate, input wake mechanism, how

system should behave after wake and what to restore after

hibernate exit. Additionally various user scenarios which

include multi domain interactions are also covered. Table I

enlists some of the features/test that needs to be checked and

covered during Hibernate use case validation.

TABLE I. FEATURE/TEST CASE CHECKS DURING HIBERNATE

USE CASE

SI

No

Condition in Hibernate

Scenario When

1 System in off condition Yes during entry

2 Power consumption

status

While in S4 system should measure

the lowest power

3 Wake scenario Wake using USB, LAN or any other

input source based on the system

feature.

4 Context Saving

While entry, hiber file should be

generated with all the active context

stored and on exit it should retrieve

all the context from the

Hiberfile.sys

5 Battery Management

System should trigger Hibernate

based on the amount of time the

system is in idle.

6 Responsiveness Involves Time taken for entry and

exit for hibernation

7 Memory Management Check System memory

Decomposition when resumed from

Hibernation

8 Video/Audio Resume

after Hibernation

Context shouldn’t be lost and user

should be able to resume the MM

content

9 Input Sequence

What type of input sequence need

to be planned for entry such as

power button, via OS , using scripts

etc.

 Understanding few of the scenarios would help in

gauging usage of this model on real system cases. Gradually

starting with the functional test then moving to inter

operational tests, stress test and finally to the reliability

checkouts is the methodology of this use case model.

 In every stage of checkouts, various tests are performed

and result is measured against expected outcome. Starting

with functional checks where the basic entry/exit of

hibernation is tested and expectation is to have all the

precondition met. Entry to S4 when initiated, triggers

following processes all apps drivers and services are notified,

all the system context is saved on the boot media.

Resumption from S4 is determined by OS boot manager by

detecting a valid hibernation file, after that it directs the

system to resume, restoring the contents of memory and all

architectural registers, the contents of the system memory are

read back in from the disk, decompressed, and restored back

to its original state [4].

3Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 11 / 26

After functional tests, few inter-operability scenarios are

run to make sure system memory is checked properly with all

active context saved and resumed. The example scenarios for

system memory check would be video player run resuming

from where it was paused or YouTube streaming window

reloaded and paused, etc. Consecutive Hibernate cycles, with

counts gradually increasing from 100, 500 to 1000 are

checked. This provides the overall stability and confidence

on the system reliability. Additionally inclusion of traffic

along with hibernate cycle is done where, scenarios such as

Bluetooth file transfer and S4 cycles simultaneously, are run

for multiple iterations.

TABLE II DIFFERENT HIBERNATION FILE BASED ON FAST

STARTUP OPTION

Hibernation File Type Default Size Supports

FULL 40% of physical

memory

Hibernate, Hybrid

Sleep, fast Startup

REDUCED 20% of physical

memory

Fast Startup

V. ISSUE DEBUG ON HIBERNATION

 Debugging any issue from platform remains challenging

and most troublesome due to the sheer number of variables

that can affect the flow. It becomes more tedious and

cumbersome process if any power flow is involved as there

are numerous transitions which increases failure probability

& debug complexities. Of the all power state flow Debug of

Hibernation use case remains is one of the toughest.

 For any power flow it has two contexts, 1st being entry

and 2nd being exit or resume from concerned power state.

Issues mostly prevail among these two context. The issues

seen can be categorized into following failure buckets.

1. Context not getting saved after resuming from S4

a. The system is not taking the S4 flow and

entering into other alternative Power flow

path such as S3 or S5.

2. Devices not recognized after resuming from S4

a. Multiple devices gets lost or doesn’t detect

after resume such as storage devices like

USB, Yellow bangs to various modules

such as Connectivity modules, IO or any

controllers.

3. Soft Hangs

a. Recoverable Hangs which can be due to

issues in device driver loading after resume.

b. Unrecoverable Hangs or device lost while

resuming resulting in Memory dump such

as Blue Screen of Death (BSOD), Green

Screen of Death (GSOD).

4. Hard Hangs

a. Non Recoverable error or hang observed

resulting in system not responding towards

any of the user commands

b. These issues can be due to IP hangs or

Silicon hangs. Debugging done via Joint

Test Action Group (JTAG).

5. Responsiveness

a. Time taken to enter the Hibernate is more

compare to the Target specified.

b. Time taken to resume from Hibernate fails

to meet the target specified.

6. Auto Wake Issues

a. Systems wake as soon as it enters S4.

b. System wakes from S4 after certain

duration.

 All failure needs a different debug approach, in order to

achieve the best results. Each failure above needs dedicated

effort and support to root cause and narrow down upon the

exact problem causing component. At high level we can

understand the debug strategy using following flow chart

given in Figure 5 and aligning it with the use case based

model gives us the flexibility of getting things done at much

faster, organized and streamlined way. We start the debug to

check if it is a hard hang and if it is the case we need to use

hardware mechanisms and tool like JTAG to scan inside the

silicon using its Design for Test (DFT) capabilities. If there

are only soft hung seen, then we need to get it bucketed in

sub-category and pursue a different method of debug

regarding the same. This flow chart explains at a very high

level of abstraction of a well knitted and branched out debug

tree. With more and more defects the tree would fan out to

utmost complexities and that is where the use case scenarios

will come in handy to identify the feature dependencies and

debug them as applicable.

4Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 12 / 26

Figure. 5 Debug flow for Hibernation issues

 For any platform, the flow defined can help and pin point

what are the use cases impacted in power management

domain and also the effect of same on the corresponding

overlapping domains. Issue debug with the flow chart

provided helps in promptly resolving and nailing the issue.

This would get us also the details on the overall system

coverage. Also with the methodology that we are following,

it becomes easier for us to check for the hard hangs or soft

hang and also follow the proper bucketing procedure as stated

earlier.

 Let us take a peculiar example of failure and then map it

back in out flow chart and then subsequently take it further

down to the abstraction level where we see the failure being

pin pointed. After that we would also check for the

interpretations from the coverage viewpoint what can be

removed. As per the description from section IV the major

thing that we have failures with hibernate flow is entry and

exit from it.

Figure 6. Representation of iterative stress validation scenario

 We have a stress testing scenario as shown in Figure. 6

where there are back to back S4 cycles needed for

qualification of platform release. During overnight stress run

we see the failure, depicting a display off symptom, while

system has power and other peripherals are properly in place.

Then, we need to start debugging from the point where we

need to identify whether the failure was while resuming or

entering to the S4 state. After initial level of analysis as per

the debugging flow say we zero down to the conditions

saying it is soft hang with indication that while entering to

S4, system went into corrupt state. After some more analysis

we get to know that because of an issue with inbuilt OS

drivers we are having a suspected failure.

 Inferring from the above information at hand we can tell

that we do not have issues with the hardware per say, be it

silicon or board specific or any other third party hardware IP.

We could also say that there are bunch of probable causes

from the software side when we are in process of debugging.

Deeper dive in the debug can then in-turn reveal, what is the

exact component / entity failing and would help in getting

what features are blocked owing to this failure. Once that

information is available, we could then get a reduced

platform test coverage as the tests involving resuming from

S4 in any way would all get blocked. To quantify it we can

explicitly say approximately a test plan would see reduction

 For better understanding the Figure 7 depicts the

pictorial representation of the use case and also gives an idea

about inferences at various levels.

 Failing

Signature hard

hang?

Start

Debug VIA JTAG

interface

Yes

Debug via Win-Dbg or

Driver traces

Root Cause the failure

using failure signature

Stop

No

Implement the fix

System in S0 state (with stress) | System is S4 State

5Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 13 / 26

Figure 7. Observations and inference matrix generated from S4 fail analysis

 From a single issue we could get many inferences and

also a fair bit of idea as to what would be main features

blocked. In similar fashion we would be having information

from all issues coming in and giving the validation teams a

clear picture of what is status of platform health, where there

are more bugs and more focus is needed and also we could

get information on redundant tests that are not yielding bugs.

Basically dynamically changing the test plan. So all in all this

would emphasize and enhance the test plan quality and also

the way system validation is done providing all the necessary

aids and opportunities of improvement.

VI. RESULTS & CONCLUSION

 This paper discusses the methodology for alignment of

system test content and gauging of the details of system

coverage, how issues can be debugged efficiently and

effectively. The overall essence of paper is to move from the

feature centric validation and debug to the use case based

approach & intuitive debug of the issues targeting platform

agnosticism. The use case approach eventually helps in the

easier feature test additions and also the validation at system

level. Debugging and error categorization also becomes way

easier if we follow this methodology. The proposed

methodology can be extended to any of the systems use case

wherein we can perform the respective scaling of test plans

and other features checks depending on the user scenarios. A

running use case example and the debug fan outs for the

erroneous conditions are also presented as part of the paper.

 As part of deployment of this methodology internally we

have used the same approach for the previous two platforms

for validation and have seen 20% reduction in validation

cycle times overall. If we translate it to direct $$ savings it

would be around the 20% budget saving given for the

platform validation. This when clubbed with various OS

where individual platform validation cycle is performed

amounts for a considerable amount of money. Additionally

taking this methodology and furthermore AI based

algorithms we have developed tools internally which takes

the platform defects as inputs and provides us with the

requisite test plan generated dynamically, which is a reduced

set list depending on the defect trends seen in the earlier runs.

REFERENCES

[1] N. Kumar, "IoT architecture and system design for healthcare systems,"

2017 International Conference on Smart Technologies for Smart Nation

(SmartTechCon), Bengaluru, India, 2017.
[2] A. V. Ramesh, S. M. Reddy and D. K. Fitzsimmons, "Airplane system

design for reliability and quality," 2018 IEEE International Reliability

Physics Symposium (IRPS), Burlingame, CA, USA, 2018.
[3] Advanced Configuration and Power Interface Specification, Version 5.

November 2013.

[4] IEEE Standard for Test Access Port and Boundary-Scan Architecture -

Redline," in IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001)

- Redline, vol., no., pp.1-899, May 13 2013.
[5] J. Ryser, M. Glint A Scenario-Based Approach to Validating and

Testing Software Systems Using Statecharts

[6] I. Jacobson: Basic Use Case Modeling; Report on Object Analysis and

Design, vol. 1, n° 2, pp. 15-19, 1994

6Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 14 / 26

Learning to Categorize Bug Reports with LSTM Networks

Kaushikkumar D. Gondaliya

Intelligent Autonomous Systems Lab
Technical University Darmstadt, Germany

email:kaushik.gondaliya1@gmail.com

Jan Peters

Technical University Darmstadt
Max-Planck Institute Tuebingen

Darmstadt and Tuebingen, Germany
email:mail@jan-peters.net

Elmar Rueckert∗

Robotics and Cognitive Systems
University of Luebeck, Germany

∗ Corresponding author
email:rueckert@rob.uni-luebeck.de

Abstract—The manual routing of bug reports to specialized expert
teams is a time-consuming and expensive process. In this paper,
we investigated how this process can be automated by training
deep networks and state-of-the-art classifiers from thousands of
real bug reports from a software company. Different combinations
of the natural language processing methods lemmatization, pos
tagger, bigram and stopword removal were evaluated in the
classification algorithms Linear Support Vector Machines (SVMs),
multinomial naive Bayes, and Long Short Term Memory (LSTM)
networks. For feature processing we used the Term Frequency-
Inverse Document Frequency (TF-IDF) method. Best results were
obtained with a combination of the bigram method and linear
SVMs. Similar prediction performance values were observed
with LSTM networks that however promise to improve further
with larger datasets. The bug triage tool was implemented in a
microservice architecture using docker containers which allows
for extending individual components and simplifies applications
to other text classification problems.

Keywords–classification of text; bug reports; natural language
processing; long short term memory networks; support vector
machines.

I. INTRODUCTION

The demands of quality software products have rapidly
increased and a significant amount of cost is spent on support
and maintenance. Although various testing methods are used
to ensure a high quality of a software, it is almost never perfect
and needs to be maintained continuously. As a result software
developers and teams of experts are often confronted with a
stream of service requests or bug reports [1, 2]. By a bug
report, we refer to code errors or misbehaviour of a software
based on an error in a computer program.

These reports have to be resolved by a selected team or
expert. Due to the complexity of the reports, most software
companies rely on human experts to assign them. This is an
expensive task where for example the company who provided
us with the data for this research received more than 6.8
million service requests for a single product in 2013. In a study
of the Eclipse project conducted by Anvik et al. [3], it was
found that on average 37 bugs are submitted per day. Moreover,
three person-hours per day are required for performing the
bug report assignment manually. Therefore, an automatic and
efficient bug tracking tool is required to reduce human efforts
or to make a bug tracking process less time consuming.

Existing learning approaches applied to such problems are
based on training support vector machines or naive Bayes
classifiers [4, 5]. While both approaches were shown to

Figure 1. Overview of the Framework: Five docker containers are used for
automated bug tracking with LSTM networks.

produce good results on small datasets [6] or in binary clas-
sification tasks [7], their application to large datasets or to
online learning tasks is limited. For this problem domain, deep
learning algorithms such as Long Short Term Memory (LSTM)
networks [8, 9] are promising alternatives which have not been
used for classifying bug reports so far. We choose LSTMs
because they can be trained from small datasets with less
than thousand samples in contrast to alternative deep learning
approaches like [10]. This benefit was shown in our evaluation.

In this paper, we compare state-of-the-art bug assignment
approaches to approaches based on LSTM networks. We
present thorough results on datasets of real bug reports and
validate the models’ predictions with feedback collected from
experts responsible for resolving the bug reports. Our findings
and models can be easily extended and transferred to other
text categorization problems.

In the following section, we review related work on au-
tomated bug tracking systems. In Section III, we discuss the
used methods and In Section IV, we evaluate them on two
datasets created from the bug reports provided by a software
company. We conclude in Section V.

II. RELATED WORK

Previous research investigated the detection of bug re-
ports [11, 12], bug prioritization [13, 14], bug categariza-
tion [4, 5, 6, 7] and severity [13, 15]. In this report, we only
focus on categorization and briefly review related approaches.

An important related by Xuan et al. [16] studied automatic
bug triage systems based on feature selection and decision
trees on the Mozilla [17] and the Eclipse [18] data sets. A
good overview over data preprocessing strategies and feature
modeling techniques is given. This work is based on a prior
study from [19]. The discussed natural language processing
techniques goes beyond the basic methods used here. However,

7Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 15 / 26

in contrast, we focused on the learning of the classifiers and
compared LSTM networks to state of the art naive Bayes and
SVMs.

In [4], the authors proposed an automatic routing system to
classify incoming bug reports. The goal was to develop a con-
tinuously running router with a low misclassification error. The
authors gathered around 6000 reports from a large software
system which were classified into eight different categories
by human experts. They compared several classification ap-
proaches like naive Bayes, Support Vector Machines (SVMs),
classification trees and k-nearest neighbor classification. Their
empirical results showed that the probabilistic models, i.e., the
k-nearest neighbor classification and the SVMs outperformed
the others. Furthermore, the accuracy improvement with an
increasing amount of training data. However, for natural lan-
guage processing only the stopword removal and stemming
method were evaluated.

In [5] SVMs were used to train classifiers from two
datasets, i.e., the open-source Eclipse [18] and open Fire-
fox [17] bug report collections. These datasets contained 8.655
and 9.752 bug reports. For the Firefox dataset, the developer
who submitted the last patch was used for labelling the bug
reports. For the Eclipse dataset, the developer’s name was
used for labelling the bug reports, one who marked the bug
report as ”resolved”. In a case of duplicates, a name of the
developer who resolved the original bug report was taken for
Eclipse and Firefox. They achieved an accuracy of 64% for
the Firefox dataset and a precision of 58% for the Eclipse
dataset. However, they obtained only a recall value of 3% for
the Firefox dataset and 10% for the Eclipse dataset. For feature
selection only the bag of words method and the stopwords
removal approach were evaluated.

In a related approach, [6] evaluated the approaches naive
Bayes, SVMs, Radial Basis Function (RBF) networks and
Random Forest on a dataset from Mozilla [17] containing 1.983
bug reports. They used a Term Frequency - Inverse Document
Frequency (TF-IDF) weighting scheme for feature extraction.
The best result obtained was a classification accuracy of
44.4%, a precision of 30% and a recall value of 28%.

In [7], the authors proposed using the TF-IDF feature
extraction method in combination with a naive Bayes classifier.
They evaluated their approach on a dataset containing 10.000
reports and classified them into security or non-security related
reports. On this binary classification problem, the authors
achieved an accuracy of 93.9% and a precision of 92.5%. In
this work however, we focus on multi-class assignments and
the results are not directly comparable.

[6] and [7] showed that the TD-IDF method improves
the results for classification tasks. Therefore we build on
these results and used the TD-IDF method as well. However,
in addition we trained Long Short Term Memory (LSTM)
networks [8, 9] and tested other natural language processing
methods such as lemmatization, pos tagger and bigram.

III. METHODS

In this section, we discuss the necessary parts of an
automated bug assignment system. These parts are (i) natural
language processing techniques that transform and normalize
text into a machine learning friendly form, (ii) feature ex-
traction approaches that convert text into vectors of numbers,

and (iii) classification algorithms. An overview of how these
methods are used for computing predictions of bug report
assignments is sketched in Figure 2.

Figure 2. Prediction model: Features are generated from the raw text using
the TF-IDF vectorizer method. Three classification algorithms, i.e., LSTM,

SVM and naive Bayes as prediction model.

A. Natural Language Processing Methods
Natural Language Processing (NLP) is used to analyze,

understand, and process meaning from human language. NLP
is used to perform tasks, such as automatic summarization,
translation, named entity recognition, relationship extraction,
sentiment analysis, speech recognition, or topic segmentation.
Some of the most important NLP methods, which are also used
in this study are discussed here. For a more detailed review,
we refer to [19, 16].

Tokenization.: Text is treated as a string that is chopped
into the pieces called tokens. For example, the string ’winter
is coming’ is tokenized into the terms ’winter’, ’is’, ’coming’.

Word Boundary.: It removes the extra white spaces
or punctuation from the text. However, this removal entirely
depends on the domain and for that reason in most cases
regular expressions are used. For example, punctuation in
terms like in ’M.Sc.’ might contain information depending on
the context.

Lemmatization or Stemming.: The document could
consist the same words in many forms such as infection,
derivation, etc. Due to grammatical reasons lemmatization and
stemming are used to convert different word variants into
similar canonical forms. For example, the different forms of
the words ’work’, ’works’, ’worked’ and ’working’ share a
same stem ’work’.

Stopword Removing.: Commonly used words like
’a’, ’the, ’of’ etc. normally do not contain any meaningful
information. So it is beneficial to remove these words from
the text.

Part-of-Speech Tagging.: The POS tagger method
reads the texts from the document and applies labels like
’noun’, ’verb’, etc. to them. For example, the string ’Heat water
in a large vessel’ will create the tags ’(heat,VB), (water,NN),
(in,IN), (a,DT), (large,JJ), (vessel,NN)’.

N-gram.: Sometimes, a group of words is more
beneficial than just a single word. Here, N is the number of
words in a group. When N=1 the approach is called unigram,
with N=2 it is called bigram, and with N=3 it is called trigram.
An example for a bigram of the string ’winter is coming’ is
’Winter is’, ’is coming’.

We evaluated two basic pre-processing strategies com-
monly used in the literature [19, 16]. These two approaches

8Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 16 / 26

Figure 3. Features: We evaluated two sequences of text pre-processing
techniques commonly used in text categorization.

are shown in Figure 3. The first strategy terminates the pre-
processing with the bigram method. In the second sequence
of applied NLP techniques, we end with the stopword removal
method. For the remaining part of this paper, we will denote
words in the pre-processed text by the variable w.

B. Feature Extraction

In NLP, the most widely used extraction methods are the
Term Frequency - Inverse Document Frequency (TF-IDF) [20],
the word 2 vector method [21] and the count vectorizer
approach [22]. We used the TF-IDF approach which was
shown to outperform the other techniques in related applica-
tions [6, 7].

The term TF in the TF-IDF approach denotes the frequency
count of keywords t which is weighted by its importance
denoted by the term IDF. Thus, a feature in the TF-IDF
approach results from the product of the TF count with the
IDF weight, i.e., TF-IDF(t) = TF(t, d) · IDF(t). The term-
frequency TF is defined as

TF(t, d) =
∑
w∈d

f(w, t),

where t denotes a keyword and w a word in text d. The
function f returns 1 for a match (t = x) and zero otherwise.
Now, given a dataset of K documents D = {d1, d2, . . . , dK},
the inverse document frequency (IDF) is defined as

IDF(t) = log
K

1 + | {d : t ∈ d} |
.

Here the term |{d : t ∈ d}| denotes the cardinality of docu-
ments, i.e., when the condition TF(t, d) 6= 0 is satisfied. Note
that 1 is added to the denominator to avoid a divide by zero
situation.

Finally, for each bug report in dataset D a feature vector for
classification x = [x1, x2, ..., xN]T is computed by evaluating
xn = TF-IDF(t) for each of the selected keywords denoted by
t.

C. Classification Algorithms for text

In this section, we discuss the commonly used naive Bayes
classifier, Linear Support Vector Machines and Long Short
Term Memory (LSTM) networks for text classification.

1) Naive Bayes Classifier: The naive Bayesian classifier is
a generative linear model based on the Bayes theorem [23, 24].
Important to note is that it relies on the assumption that all the
features are independent.

In the context of text classification, the probability that text
T belongs to a class C can be expressed as P (C|T), where

P (C|T) = P (C)P (T |C)

P (T)
.

The distribution P (C) denotes the prior probability of class C,
P (T) is the prior probability of text T and P (C|T) is posterior
probability that we need to compute. Given vectorized feature
representations of text of the form x =

[
x1, x2, ..., xN

]T
the

above equation can be interpreted as:

P (C|T) = P (C|x),
= P (C|x1, x2, ..., xN),

=
P (C)P (x1, x2, ..., xN |C)

P (x1, x2, ..., xN)
.

Assuming independent features for a given class the
posterior distribution above factorizes to P (C|T) ∝
P (C)

∏N
k=1 P (xk|C).

For a new document in a test dataset, we can compute class
labels using the maximum a posteriori decision rule [25],

Cmap = argmax
x∈C

P (C)

N∏
k=1

P (xk|C),

where P (C) is the prior probability of class which can be
estimated as follows:

P (C) =
of instances in this class

of instances in all classes
.

The presented naive Bayes approach is used for multi-class
classification in our experiments.

2) Linear Support Vector Machine: SVMs are powerful
and popular supervised learning approaches [26]. They can
be used for both classification and regression problems though
they are mostly used for classification problems. SVMs are
applicable for both linear and nonlinear classification problems
using kernels. However, according to related work, see for
example the discussion in [20], linear support vector machines
are sufficiently powerful for text classification problems.

For samples xk, with class labels ck ∈ {−1, 1} for
k = 1, ..., N , we compute a hyperplane which satisfies
v xk+b = 0. Here, v is a vector orthogonal to the hyperplane
and b is a perpendicular distance of the hyperplane to the ori-
gin. The canonical hyperplane is observed when the condition
ck(v xk + b) ≥ 1 ∀k is met.

For classification problems with more than two categories
the most frequent approaches are the One-vs.-Rest method
and the One-vs.-One method. In this paper, the One-vs.-Rest
classifier is used for multi-class classification.

D. Long Short Term Memory Networks
LSTMs are recurrent neural networks which were proposed

by Hochreiter et al. [8] to overcome the vanishing gradient
problem. The ability to capture temporal correlations over long
time horizons was exploited in many speech processing and
deep learning applications [9]. For text categorization however,
we are not aware of any study using LSTM networks for
computing multi-class label predictions.

9Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 17 / 26

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy

Number of layers

extended_nlp1 extended_nlp2 closed_nlp1 closed_nlp2

Figure 4. We tested different numbers of hidden layers for two
pre-processing strategies. Results are shown for a small dataset of

1215 bug reports and on an extended one with 7346 reports.

For text classification, the LSTM network is trained on
a sequence of feature vectors x1,x2, ...,xN that update the
internal hidden state denoted by hk. The corresponding output
is trained to fit ck. In this paper, we used sigmoid activation
functions for the input layer. We optimized for the optimal
number of hidden layers, i.e., 3 and 6 layers for the two
evaluated datasets as shown in the right panel in Figure 4.

For the experiments in this paper, we used an open-source
framework implementation (Keras) with a training batch size
of 32. The neural network model had two hidden layers with
64 neurons in the first layer and seven units with soft-max
activation functions in the output layer. A dropout regulariza-
tion of 25% was used to reduce the models complexity and to
prevent over-fitting. For training the categorical cross entropy
loss function was used.

IV. EXPERIMENTAL RESULTS

In this section, we present results of the classification
models on two datasets created from the bug reports provided
by a software company. We prepared a small dataset with
1215 reports and a large dataset with 7346 samples, which
is illustrated in Figure 5. The bug reports in the small dataset
were already processed by the expert teams and had therefore
labels or class assignments. For the large dataset we had to
generate labels. The denote this manual labelling process by
the keyword algorithm for the remainder of this paper.

Manual data labelling: To generate a larger dataset,
a keyword algorithm was used to manually generate labels.
As first step, experts assigned keywords to just submitted
and therefore unprocessed bug reports. The algorithm looks
for matches to fixed sets of keywords dedicated to each of
the specialized support teams. Labels were thereafter created
based on the maximum number of occurrences of experts’
keywords. In case of equal counts, a random team assignment
was generated.

Figure 5. Data preprocessing: The execution of a process on gathered data
results in ’closed’ and ’extended’ dataset.

We first present results evaluating the effect of the number
of features. Subsequently we discuss the effect of different

combinations of pre-processing and classification techniques
in the two datasets. We conclude by verifying the assumption
of the creation of the additional labels for the large dataset.
For that human experts rated the predictions of our models.
All presented statistics were obtained through running 100
experiments with 79% of the samples randomly selected as
training set and 21% as test set.

A. The effect of the number of used features
We used the Term Frequency-Inverse Document Frequency

(TF-IDF) method which is discussed in Section III-B for
feature selection. In Figure 6, we show the classification
performance values for the three classification methods SVM,
LSTM and naive Bayes (NB) for an increasing number of used
features. The stopwords removal and the bigram methods were
used for the pre-processing of the bug reports.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

200 1400 3300 7300 9600 20000 40000

A
cc

u
ra

cy

Number of features

SVM LSTM NB Baseline

Figure 6. Evaluation of the effect of the used number of features in three
classification methods. The baseline accuracy for a 7-class classification

problem is 1/7. The classifiers were trained on the small dataset.

According to Figure 6, we observe that a linear SVM
outperforms the multinomial naive Bayes and the LSTM
network in general. The best accuracy values for multinomial
naive Bayes, linear SVM and the LSTM network obtained
were 0.479, 0.574 and 0.529 with 600, 7900 and 6700 features
respectively.

B. Comparison of the Prediction Models
On the small dataset all three classification methods cor-

rectly classified 47.9 → 57.2% of the test samples. Note that
these results are significantly better than random assignments
(14.3% for seven classes). For the large dataset the perfor-
mances ranged from 68.6→ 77.6%. For this experiments the
optimal number of features for each classifier was used as
evaluated in the previous subsection.

We also evaluated the effect of two commonly used pre-
processing approaches that were discussed in Subsection III-B.
With the term ’nlp1’ we denote the application of the stop-
words removal and the bigram methods and with the term
’nlp2’ we denote the the combination of the pos tagger, lemma-
tization and stopword removal methods. As shown in Figure 7,
no significant difference in the classification performance could
be found. However, the orchestration of methods denoted by
’nlp2’ is favoured because of computational reasons.

C. Verification of the automatically labeled bug reports
The ’large dataset’ relied on the assumption that correct la-

bels could be automatically created using a keyword algorithm.
The keywords were provided by experienced support engineers
who were also asked to validate the predictions of our three
trained classifiers. A feedback engine was implemented and

10Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 18 / 26

10%

20%

30%

40%

50%

60%

70%

80%

90%

SVM+nlp1 SVM+nlp2 NB+nlp1 NB+nlp2 LSTM+nlp1 LSTM+nlp2

Accuracy Precision Recall

(a) Results for the small dataset.

10%

20%

30%

40%

50%

60%

70%

80%

90%

SVM+nlp1 SVM+nlp2 NB+nlp1 NB+nlp2 LSTM+nlp1 LSTM+nlp2

Accuracy Precision Recall

(b) Results for the large dataset.
Figure 7. Shown are the classification performances for the combination of linear SVM, multinomial naive Bayes, and LSTM networks with different

pre-processing approaches. The terms ’nlp1’ and ’nlp2’ denote two commonly used preprocessing strategies, see the text for details.

the experts rated our models’ predictions of additional 132
bug reports which were not used for training.

70.23%

67.94%

62.60%

42.75%

SVM

LSTM

NB

Keyword

Figure 8. The experts’ feedback values for the linear SVM, multinomial
naive Bayes, and LSTM networks and ’keyword algorithm’.

The results are shown in Figure 8. For SVMs 70.23% of
these new reports were correctly assigned to one of the seven
teams. For LSTMs 67.94% of the assignments were correct.
The naive Bayes approach generated 62.6% of correct labels.
Note that the predictions of the keyword algorithm could only
classify 42.75% of the reports correctly. These predictions and
results were perceived as very helpful and will safe substantial
resources in the future for performing bug report assignments.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

200 1400 3300 7300 9600 20000 40000

A
cc

u
ra

cy

Number of features

SVM LSTM NB Baseline

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

200 1400 3300 7300 9600 20000 40000

A
cc

u
ra

cy

Number of features

SVM LSTM NB Baseline

Figure 9. The prediction accuracy improves with the number of used
features. Left: ’nlp1’ and right ’nlp2’ preprocessing approach.

D. Specific Feature Selection.

We also evaluated accuracy values for different number
of features by applying Term Frequency-Inverse Document
Frequency (TF-IDF) method. For the ’large dataset’ the results
are shown in Figure 9.

V. CONCLUSION

Every year software companies receive millions of service
requests that have to be resolved by specialized expert teams.
The assignment of the requests is traditionally done by human
experts. First attempts in automatic routing of service requests
are based on training Support Vector Machines (SVMs) and
naive Bayes multi-class classifier [4, 3, 7]. However, these
approaches are computationally and memory demanding for
large datasets and thus of limited practical use for large
software companies.

In this work, we investigated the performance of Long
Short Term Memory (LSTM) networks which can be trained
from millions of samples. We evaluated different combinations
of natural language processing methods such as lemmatization,
pos tagger, N-gram and stopword removal and tested different
numbers of features ranging from 200 to 40.000. We found
that for small datasets with 1215 reports, SVMs achieved
the best classification performance. Out of 256 bug reports
of a test set, 57.2 ± 0.028% were correctly assigned to
one of the seven expert teams. In contrast with LSTMs only
52.9 ± 0.026% were correctly assigned. Here, the ± symbol
denotes the standard deviation computed from 100 runs.

Interestingly, with an increasing number of training sam-
ples LSTM networks achieved similar classification results.
This was shown in training from a larger dataset with 7346
samples. Here SVMs correctly classified 77.6 ± 0.009% and
LSTM 75.3 ± 0.009%. Given that LSTM networks were
used with millions of samples in deep learning approaches we
expect them to outperform SVMs with larger datasets. This
assumption will be tested in near future as the framework is
constantly used to collect new service requests, i.e., during the
time writing this report 2000 additional request were obtained.
Moreover, we plan to compare our pre-processing methods,
feature extraction strategies and deep network classifier to
different text categorization problems.

11Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 19 / 26

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation program under
grant agreements No 713010 (GOAL-Robots) and No 640554
(SKILLS4ROBOTS). The authors also thank the software
company who provided the data.

REFERENCES

[1] G. Sharma, S. Sharma, and S. Gujral, “A novel way
of assessing software bug severity using dictionary of
critical terms,” Procedia Computer Science, vol. 70, pp.
632 – 639, 2015.

[2] B. Beizer, Software Testing Tech-
niques. Dreamtech, 2003. [Online]. Available:
https://books.google.co.in/books?id=Ixf97h356zcC

[3] J. Anvik, “Automating bug report assignment,” in
Proceedings of the 28th International Conference on
Software Engineering, ser. ICSE ’06. New York, NY,
USA: ACM, 2006, pp. 937–940. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134457

[4] G. A. Di Lucca, M. Di Penta, and S. Gradara, “An
approach to classify software maintenance requests,” in
Software Maintenance, 2002. Proceedings. International
Conference on. IEEE, 2002, pp. 93–102.

[5] J. Anvik, L. Hiew, and G. C. Murphy, “Who should
fix this bug?” in Proceedings of the 28th International
Conference on Software Engineering, ser. ICSE ’06.
New York, NY, USA: ACM, 2006, pp. 361–370. [Online].
Available: http://doi.acm.org/10.1145/1134285.1134336

[6] S. N. Ahsan, J. Ferzund, and F. Wotawa, “Automatic
software bug triage system (bts) based on latent
semantic indexing and support vector machine,”
in Proceedings of the 2009 Fourth International
Conference on Software Engineering Advances, ser.
ICSEA ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 216–221. [Online]. Available:
http://dx.doi.org/10.1109/ICSEA.2009.92

[7] D. Behl, S. Handa, and A. Arora, “A bug mining tool to
identify and analyze security bugs using naive bayes and
tf-idf,” in 2014 International Conference on Reliability
Optimization and Information Technology (ICROIT), Feb
2014, pp. 294–299.

[8] S. Hochreiter and J. Schmidhuber, “Long short-
term memory,” Neural Comput., vol. 9, no. 8,
pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[9] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural networks, vol. 61, pp. 85–117, 2015.

[10] Q. Le and T. Mikolov, “Distributed representations of
sentences and documents,” in International Conference
on Machine Learning, 2014, pp. 1188–1196.

[11] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun,
“An approach to detecting duplicate bug reports
using natural language and execution information,” in
Proceedings of the 30th International Conference on
Software Engineering, ser. ICSE ’08. New York, NY,
USA: ACM, 2008, pp. 461–470. [Online]. Available:
http://doi.acm.org/10.1145/1368088.1368151

[12] A. Sureka and P. Jalote, “Detecting duplicate bug report
using character n-gram-based features,” in Proceedings of
the 2010 Asia Pacific Software Engineering Conference,

ser. APSEC ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 366–374. [Online].
Available: http://dx.doi.org/10.1109/APSEC.2010.49

[13] K. Chaturvedi and V. Singh, “Determining bug severity
using machine learning techniques,” in Software Engi-
neering (CONSEG), 2012 CSI Sixth International Con-
ference on. IEEE, 2012, pp. 1–6.

[14] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy,
“Characterizing and predicting which bugs get fixed: An
empirical study of microsoft windows,” in Proceedings
of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ser. ICSE ’10. New
York, NY, USA: ACM, 2010, pp. 495–504. [Online].
Available: http://doi.acm.org/10.1145/1806799.1806871

[15] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals,
“Predicting the severity of a reported bug,” in 2010 7th
IEEE Working Conference on Mining Software Reposito-
ries (MSR 2010), May 2010, pp. 1–10.

[16] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, and
X. Wu, “Towards effective bug triage with software data
reduction techniques,” IEEE transactions on knowledge
and data engineering, 2014.

[17] I. mozilla.org contributors, “Bugzilla dataset,”
https://bugzilla.mozilla.org/, 19982017, retrieved:
Aug,, 2018.

[18] T. E. Foundation, “Eclipse dataset,”
http://www.eclipse.org, retrieved: Aug,, 2018.

[19] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer pri-
oritization in bug repositories,” in Software Engineering
(ICSE), 2012 34th International Conference on. IEEE,
2012, pp. 25–35.

[20] T. Joachims, “Text categorization with suport vector
machines: Learning with many relevant features,” in
Proceedings of the 10th European Conference on
Machine Learning, ser. ECML ’98. London, UK, UK:
Springer-Verlag, 1998, pp. 137–142. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645326.649721

[21] J. Pennington, R. Socher, and C. D. Manning, “Glove:
Global vectors for word representation.” in EMNLP,
vol. 14, 2014, pp. 1532–43.

[22] A. Tripathy, A. Agrawal, and S. K. Rath, “Classifi-
cation of sentimental reviews using machine learning
techniques,” Procedia Computer Science, vol. 57, pp.
821–829, 2015.

[23] R. O. Duda and P. E. Hart, Pattern classification and
scene analysis. New York: John Wiley, 1973.

[24] P. Langley, W. Iba, and, and K. Thomp-
son, “An analysis of bayesian classifiers,” in
Proceedings of the Tenth National Conference
on Artificial Intelligence, ser. AAAI’92. AAAI
Press, 1992, pp. 223–228. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1867135.1867170

[25] C. D. Manning, P. Raghavan, and H. Schutze, “Text clas-
sification and naive bayes,” Introduction to information
retrieval, vol. 1, p. 6, 2008.

[26] V. N. Vapnik, The Nature of Statistical Learning Theory.
New York, NY, USA: Springer-Verlag New York, Inc.,
1995.

12Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 20 / 26

Improving Testability of Software Systems
that Include a Learning Feature

Lydie du Bousquet
Univ. Grenoble Alpes,

CNRS, Grenoble INP, LIG,
38000 Grenoble, France

email: Lydie.du-Bousquet@imag.fr

Masahide Nakamura
Graduate School of System Informatics,

Kobe University, Japan,
RIKEN AIP.japan

email: masa-n@cs.kobe-u.ac.jp

Abstract—In this article, we describe the work we did to
validate a case study application that includes a learning feature.
Our objective was to express properties that can be used for
testing or monitoring the quality of the application, taking to
account the learning dimension. To express relevant properties,
we had to modify the architecture of the application to add
supplementary outputs. They indicate whether the learning phase
is achieved or not, and if the system notices some significant
changes in the environmental conditions. Here, we report on the
lessons learnt about this process.

Index Terms—Learning System; Validation; Testability; Design
for Testing

I. INTRODUCTION

Nowadays, Artificial Intelligence (AI) is becoming more
and more important in software systems. Learning ability for
new apps or systems is a promise of a personalised experience
for every user based on individual preferences. Thus, the user’s
satisfaction is expected to be improved.

For example, authentication facilities are now offered for
smart-phones that learn and recognise the user’s face [1].
Virtual personal assistants are able to learn the user voice to
satisfy the voice commands. AI systems send recommenda-
tions for shopping [2]. Self-driving cars are travelling more
and more kilometres.

However, safety or security problems are regularly reported
for those applications. For example, researchers were able to
send secret audio instructions undetectable to the human ear
to Apples Siri, Amazons Alexa and Googles Assistant [3].
Tay, a chatbot created for 18- to 24- year-olds in the U.S.
for entertainment purposes, caused subsequent controversy
when the bot began to post inflammatory and offensive tweets
through its Twitter account, forcing Microsoft to shut down
the service only 16 hours after its launch [4] [5]. A woman
was killed by a self-driving car in Arizona in March 2018 [6].

Those reported problems make AI more suspicious for
users and increase the need for validation, verification, and
even certification. However, learning features make software
system much more difficult to validate [7]. Indeed, while
learning the user’s habits or the environmental characteristics,
the system behaviour is evolving in an unpredictable way
[5]. Specification becomes somehow tricky to express, which
impacts the validation procedures.

In this article, we report the lessons learnt from the valida-
tion of a case study application that includes a learning feature.
To be able to express properties that can be used for testing
or monitoring, we had to modify the design of the systems.
In Section II, we first report on some related works dedicated
to the validation of machine learning algorithms and systems
that include such algorithms. We then detail our case study
(Section III) and the expression of properties (Section IV).
We discuss the lessons learnt in Section V.

II. MACHINE LEARNING AND VALIDATION

In this section, we successively consider the validation of
Machine Learning algorithms, the validation at the system
level and the testability point of view.

A. Validation of the algorithms

There is a large variety of Machine Learning (ML) al-
gorithms dedicated to different applications. For example,
classification ones are used for classifying discrete inputs into
predefined categories. Clustering algorithms are used to group
similar inputs (into clusters). Regression analysis is used for
prediction and forecasting.

A ML algorithm is expected to predict well after training.
This property is called generalisation. The first step of the vali-
dation is thus to check the quality of the prediction, also called
performance of the ML algorithm. This can be compared to
the functional validation step in software engineering, which
aims to ensure that a program is doing well what it is supposed
to do.

Performance measures are specific to the algorithm class
that is considered. For pattern recognition and binary classifi-
cation, it is evaluated through precision, recall and F-measure
(the weighted harmonic mean of precision and recall) [8].
They are based on the count of true/false positive/negative
verdicts. True (resp. False) verdict are used to differentiate
when the answer of the system recognises (or not) the input.
Positive (resp. negative) verdict states whether the answer
is correct or not. For algorithms such as classification and
regression, generalisation error can be evaluated to measure
how accurately the algorithms are able to predict outcome
values for previously unseen data [9].

13Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 21 / 26

Other properties can also be expected for ML algorithms.
Stability evaluates how much a ML algorithm is perturbed
by small changes to its inputs: the predictions of a stable
algorithm will not be very affected if the inputs change just
a little bit [10]. For a large class of learning algorithms,
notably empirical risk minimisation algorithms, certain types
of stability ensure good generalisation. Training speed,
efficiency, compactness are also dimensions that can be
evaluated, especially to compare different algorithms.

Several methods are proposed to evaluate the quality of the
algorithms. In holdout evaluation, data available for training
are split into two sets, one for the training itself, the second
one for the validation [11]. This can be done randomly or may
involve more complex sampling methods.

Cross-validation denotes a set of more sophisticated valida-
tion methods. Basically, they consist in dividing the dataset
into equally sized groups of instances (called folds). The
learning algorithm is then applied several times, each time
using the union of all subsets but one, which is used as a test
set [12]. The cross-validation methods are different from one
another by the way to build the folds and to use them. To
produce the learning set, some test methods can be applied
[13] [14].

Learning and validation with cross-validation approaches
can give very good results. However, they are mainly dedicated
to situations “in the lab”. For “in the wild” cases, i.e., for real-
world situations where applications learn from the final user
after installation, simpler approaches might have to be applied
due to lack of time or data. Poorer results are observed [15].
For this reason, it is necessary to consider also the quality of
the final system considered as a whole.

B. Validation of the final system

Validation of a system that includes some learning feature is
difficult. As said previously, the final usage of the application
is not easily predictable since it varies with respect to the
environment. Sometime, even for one specific user, her needs
may evolve with the time. This makes specification impossible
to express with precision [7] [16] . For the same reasons, it is
usually not possible to assess the environment characteristics
of the final system precisely.

In [17], authors use simulations to evaluate the quality of
an online adaptive system for electric wheelchairs that learn
to avoid obstacles. For this specific application, some safety
properties are easy to express, e.g., the wheelchair should not
enter in collision with any obstacles. However, the quality of
the learning is more difficult to assess with a property. So,
the authors evaluated the path smoothness of the wheelchair
manually in different environments, based on a comparison of
two algorithms.

In [18], authors focus on the validation of learning features
embedded in applications dedicated to intelligent inhabited
environments. They performed experiments in which an in-
telligent application learned and adapted itself to the user
behaviour, while she stayed in a real equipped flat for five

days. Here again, the quality of the learning feature is assessed
by a comparison of the results of different algorithms.

Model-checking approach has been used in [19]. Authors
focus on the safety and robustness validation of vision systems
that can be used for self-driving cars. One of the considered
safety properties is that “self-driving cars steering angle should
not change significantly for the same road under different
lighting conditions”. To evaluate this invariant, authors propose
a framework that transforms a given image with different
transformation functions (e.g., rotation). The objective is to
assess the quality of the final application (after learning) by
analysing how often the invariant is violated.

In [20], authors advocate the usage of quantitative verifi-
cation at run-time to identify and even predict requirement
violations, in addition to off-line verification for the self-
adaptive feature, but it is not clear how to adapt them for
specifying properties on learning.

In [21], authors advocate the usage of metamorphic testing
to ease the problem of the oracle expression ML applications.
Metamorphic testing aims at creating new test cases from the
existing ones thanks to a transformation. Well chosen, the
transformation approximates the expected outputs of the new
tests based on the expected outputs of the old ones.

Beyond the expression of the expected properties (and/or
the metamorphic relations), system testing remains difficult
to apply, especially because it requires to control the input
of the system [22]. For instance, testing an intelligent home
application that regulates the home temperature may require
to be able to modify the home temperature by other means, to
check that the system under test reacts correctly. Overheating
a room in winter to check that the air-conditioner can cool it
correctly is often unacceptable.

For this reason, the final system is often tested in a simulated
environment before deployment [23]. For a validation after
deployment, monitoring is often preferred [24] [25]. It consists
in observing the outputs of the system without controlling the
inputs.

C. A software engineering viewpoint of testability

Testability denotes the ability of a system to be tested [26].
Initially, testability was defined for hardware components. For
software systems, several definitions have been proposed. In
[27], testability is defined as the effort needed for testing. For
Binder, testability is the relative ease and expense of revealing
software faults [28]. Other definitions allow a quantitative eval-
uation of the testing effort [29] or represents the probability
to observe an error at the next execution if there is a fault in
the program [30].

Being able to characterise and to produce testable systems
has become a preoccupation more and more important for
software companies. It often means to increase the ability
to observe the internal behaviours of the system under test
(observability) and/or to increase the ability to control the
system under test (controllability).

The case study that follows was a source of reflection for the
expression of properties that can be used for testing oracle or

14Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 22 / 26

FIG. 1. ABSTRACT SOFTWARE LIFE-CYCLE OF
THE INTELLIGENT AIR-CONDITIONNER

monitoring. To express them, we had to modify the application
design. In the following, we first describe the case study. We
then show how the expression properties impacted the design.

III. CASE STUDY

In the following, we present the application under test and
the validation harness.

A. The application under test

Our case study is an “intelligent air-conditioner” (iAC).
It controls a traditional air-conditioner and offers a planning
functionality.

The traditional air-conditioner can be switched on and off.
It has three modes: Cooling, Heating and Idle. The
AC enters the Cooling mode if the observed temperature
is beyond the required temperature of more than one degree.
It enters in the Heating mode if the observed temperature
is below the required temperature of more than one degree. It
enters in the Idle mode when the observed temperature is
equal to the required one ± 0.5. The required temperature can
only be set between 17 and 27oC.

The planning functionality allows the user to set a timer
value above which the room temperature is expected to be
equals to a specified one. To make this possible, the system
includes an intelligent feature that learns how long it takes to
warm or to cool the room (room thermal inertia).

The life-cycle of the iAC software is depicted at an abstract
level in Figure 1. It is composed of two main phases, which
denote the time before and after the deployment of the
application, and called respectively development and operation
phases. The learning is carried out once the iAC is installed
in the user house, i.e. during the operation phase.

This case study is an example of a system “in the wild”:
it is not possible to achieve training on an pre-existing data
set nor is it possible to apply cross validation methods. It is
also difficult to achieve testing at system level (i.e., on a real
installation) because the environment of the system is hardly
controllable for the reasons given Section II-B.

Our objective is thus to achieve monitoring of the system
execution in order to check that the system behaviours are
adequate. By monitoring, we mean that an external program
will periodically check that the inputs and outputs of the
iAC satisfy the expected behaviours. We especially want to
detect if the learning phase carried out during operation leads
to inacceptable behaviours (to prevent situations such as Tay
chatbox [5]).

The difficulty relies in expressing what are the adequate
behaviours, i.e., to express the right specification/properties.
Intuitively, the user expects that the the planing functionality

FIG. 2. SIMPLIFIED TEST HARNESS

works correctly (the required temperature should be reached
on schedule). This means that the learning feature should learn
correctly the thermal inertia. Of course, at the beginning, the
system can fails, but the errors should be less and less with
the time. The user could expect that the learning does not
last too long. Another important requirement of the planning
functionality is that it is supposed to spend as less energy
as possible to achieve the chosen temperature: i.e., it should
switch-on the AC just on time w.r.t. the room thermal inertia.

B. The validation harness

As said previously, our case study aims at providing support
to express some expected properties of a system with learning
abilities. We use a simulation approach such as in [17] to
valid the properties. The validation harness thus consists
of a simulator and an environment component, which are
controlled by a JUnit test (see Figure 2).

The system under test is developed in Java. The learning
feature was implemented as an ad-hoc algorithm. It has no
importance by itself, since the system is considered as a black-
box for the validation point of view [22].

The environment component aims at simulating the room
temperature evolution, which is read by the temperature sen-
sors of AC and iAC. It is possible to modify the room inertia
rules during the simulation to fake some environment changes
(e.g., outside temperature, opened windows).

The simulator is responsible for the validation progress. It
includes:
• initialisation methods, to create, initialise and connect the

iAC, AC and environment components,
• property methods (also called oracle methods), in which

expected properties of the system under test are expressed
• a “step” method that deals with the evolution of the

system for a given time lapse. During one “step”, the
simulator checks the state of the AC and asks the envi-
ronment to update according to equation (1).

temp =

 temp+ δ1 if AC is On and Heating

temp− δ2 if AC is On and Cooling (1)
temp− δ3 if AC is Idle or Off

The simulator is solicited with a JUnit test file, in which it
is possible to specify a modification of δ1, δ2 and δ3 during
the simulation. In this test file, it is also possible to evaluate

15Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 23 / 26

the value of the oracle properties as JUnit assertions. Thus, if
one of these properties is violated during the simulation, JUnit
raises a Fail.

IV. EXPRESSING PROPERTIES

Our intelligent AC has to achieve the basic properties
expected for an AC. Informally, this means that when the
AC is On, “it should heat (resp. cool) the room when it is
in its Heating mode (resp. Cooling mode)”, and “it is
supposed to be in the Heating (resp. Cooling) mode when
the room temperature is substantially below (resp. above) the
expected one”. Besides, the iAC has to manage the timer
feature correctly: the expected temperature should be reached
on time. Moreover, it is supposed to spend as less energy as
possible to achieve the chosen temperature. In the following,
we focus on the validation of the intelligent feature.

Let us first consider P , a property stating that the room
temperature should be equal to the expected one when the
timer is elapsed. Considering the imprecision of the measure,
such a property can be expressed as:

(P) : iAC.timerElapsed⇒
| env.temp− iAC.requiredTemp | < 0.5

where iAC.timerElapsed is a Boolean variable that is
true exactly when the time is elapsed and false otherwise,
env.temp is the observed environment temperature, and
iAC.requiredTemp is the user required temperature. The
imprecision tolerance was arbitrary fixed to 0.5 here without
a loss of generality.

To check if the system spends as less energy as possible,
it is possible to monitor how often the AC switches from
the Idle state to an active one (Heating or Cooling),
from the moment where the timer is set until it is elapsed. To
compute this, we added the sim.iSwitch attribute in the
simulator component. It is computed like an observer property.
Ideally, sim.iSwitch value should be 0 when the time is
elapsed, but some flexibility could also be acceptable. Indeed
having too restrictive properties could provoke unnecessary
fail verdicts. For this reason, we chose the following property.

(Q) : iAC.timerElapsed ⇒ sim.iSwitch ≤ 1

Moreover, it would be inefficient from an energetic point of
view to cool the room just after heating it (or conversely). To
capture those situations, in an identical way than previously, it
is possible to monitor the number of switches from Heating
to Cooling states (and conversely), and to express a
property on the maximum number of changes while a timer
is active.

One problem with the previous properties is that they can
raise false negative verdicts, i.e., they can be violated even
if the system is correct. Three situations have been identified
during our tests: (1) the user tries to fix an unfeasible timer,
(2) the environmental characteristics have changed during the

execution (e.g., a door or window which had been left open),
or (3) the training of the system is not achieved.

To fix the situation (1), we modify the iAC program, to make
timer activation possible only when the system evaluates that
it has enough time to reach the required temperature within
the delay. If it has not, a notification is sent to the user, and
the AC is switched-on immediately. It has no impact on the
former properties because the timer is not activated in this
situation.

To fix situations (2) and (3), we need to know whether the
training is achieved and if the environmental conditions have
changed during the execution. To get that information, we
modify the system design to have two new Boolean outputs.
The first one, iAC.stillLearning, is true as long as the
system considers that its training is not achieved. The second
one, iAC.envModification, is true if the system no-
ticed significant changes in the environmental conditions while
it was trying to achieve the timer requirement, and false
otherwise.

Thanks to these two outputs, it is possible to rewrite P and
Q properties so that a failure occurs only if they are violated
after the training end and if the environmental characteristics
are the same as those which were learnt.

(P ′) : not P ⇒ (iAC.stillLearning ∨
iAC.envModification)

(Q′) : not Q ⇒ (iAC.stillLearning ∨
iAC.envModification)

It is worth noting that iAC.stillLearning is an im-
portant feedback about the system’s learning ability. It al-
lows expressing several properties about the quality of the
learning feature. For instance, if the system stays in the state
iAC.stillLearning after using the timer feature “a lot
of” times, it may denote a difficulty. Of course, the acceptable
learning time (i.e., number of activations) has to be defined.
Let iAC.nbActivation be the number of activations of
the timer since the iAC installation. The following L property
is a way to express a too long training process (5 being chosen
arbitrarily):

(L) : (iAC.nbActivation > 5) ∧ iAC.timerElapsed
⇒ not iAC.stillLearning

Similarly, iAC.envModification can be used to
evaluate the learning feature quality. If it is true “too
often”, it may denote that the system is not able to predict
the environment behaviours correctly. In the case of our
case-study, the room thermal inertia is susceptible to strongly
depends on the door’s state (i.e., if it is open or close). If
the system is not aware of the door status, it may be not
able to learn the thermal inertia properly. The analysis of the
iAC.envModification variations is a possible way to
detect such a situation.

It can be noticed that a system that refuses any timer will
be correct with respect to the previous properties (because
iAC.timerActivated will never be set to true). To

16Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 24 / 26

detect such behaviours, we modified the simulator. Each time
a timer is set, the simulator captures the notification of the
system (acceptance or rejection of the timer). If the system
accepts the timer, nothing is done: the previous properties will
catch abnormal situations. If the system refuses the timer, the
simulator starts a specific timer counter.

If the expected temperature is reached at
the end of the timer in normal conditions
(not (iAC.stillLearning ∨ iAC.envModification)), the
system may have been too pessimistic, and a counter value
is incremented. It is then possible to express a property that
is false if the pessimistic refusal rate is higher than a given
threshold.

V. LESSONS LEARNT

With this work, our objective was to assess the quality of
the learning feature when embedded in the final system. In
this context, the issue is to guarantee that the intelligent part
of the system does what exactly it is expected to do: i.e., to
provide the right indications to take decisions and/or that it
carries out the appropriate actions.

Being able to validate the learning feature is tricky because
it is not possible to anticipate the usage and the environmen-
tal conditions of the system under consideration. Moreover,
classical validation methods such as cross-validation or output
comparison of several algorithms may not be possible to
achieve. Monitoring the system behaviour is possible as long
as expected properties can be expressed.

To evaluate what kind of properties it is possible to express
to qualify learning, we carried out a case study. Beyond the
specificity of the considered application, it has been possible
to elaborate general lessons.

The system is supposed to learn from its environment and/or
from its users, but sometimes, conditions are changing, either
occasionally or for a long time. It is essential to design the
system in such a way that it can (1) detect those changes and
(2) provide feedback when they occur.

This has two advantages. First, it is possible to use this
feedback to express more accurate properties, and thus limit
the number of false negative verdicts in the process of testing
or monitoring. Second, it is possible to use this feedback to
detect the inappropriate behaviour of the learning feature (for
instance when training lasts too long or when the system
always concludes that the conditions are changing).

Thus, designing a system with learning feature should not
consist only in inserting an algorithm upon an existing system.
One has to think about what kind of properties the new
feature has to satisfy, after what the design should include
the outputs necessary to evaluate them. This is necessary not
only for the validation step but also to achieve transparency
and accountability of the system [31]. This approach is called
“design for testability” in software engineering [32].

The reader should note that providing feedback about
learning achievement and environment evolution is something
that goes beyond adding outputs. Learning features are often
packed into independent modules that do not offer these

outputs by default. So “design for testability” impacts the
design of the learning features, before the system by itself.

Moreover, to judge the quality of a learning feature, it seems
to us that safety and liveness property were a little bit too
restrictive. We needed to be able to consider the evolution of
different attributes during a period, from a statistical point of
view, to capture suspicious behaviours. Typically, one could
observe by this means the user satisfaction. As underlined
in [16], the user might be the only possible oracle to judge
the quality of the system outputs. If the user satisfaction is
also collected, it will be possible to detect when it is mostly
negative, and thus denote some learning troubles or inadequacy
of the system w.r.t. the needs.

VI. CONCLUSION AND PERSPECTIVES

In this article, we report on a case study carried out
to evaluate how a learning feature can be validated when
embedded in a more global system. We chose to apply a
monitoring approach, consisting in observing the outputs of the
system during the execution to detect inconsistent behaviours.
The difficulty was to express properties able to detect relevant
failures related to the learning process.

The most important conclusion we have from this work is
that the expected properties of the system should be considered
during the design. While doing that, outputs necessary to eval-
uate those properties have to be included, otherwise, the final
validation would be difficult. This impact the learning features
by themselves, which, most of the time, provide results in a
non-transparent way. Being able to provide feedback on the
internal learning algorithm behaviour is the key to be able to
validate the system, and to debug it if needed.

The work presented here has been carried out on a simple
example. As perspective, we will validate other real systems
that include learning feature, such as [33].

Notes and Comments: This work has been funded by
the project CNRS-PICS 6999 and LIG emergence iCASATE
project.

REFERENCES

[1] M. deAgonia, “Apple’s Face ID [The iPhone X’s facial
recognition tech] explained,” Computerworld, 11 2017,
https://www.computerworld.com/article/3235140/apple-ios/apples-
face-id-the-iphone-xs-facial-recognition-tech-explained.html[Retrieved
August, 2018].

[2] NewsDesk, “NTT develops AI system to match books
with kids,” Asian News Network, 23rd April 2018,
http://annx.asianews.network/content/ntt-develops-ai-system-match-
books-kids-71412 [Retrieved August, 2018].

[3] C. S. Smith, “Alexa and Siri Can Hear This Hidden
Command. You Cant,” New York Times, 10th May 2018,
https://www.nytimes.com/2018/05/10/technology/alexa-siri-hidden-
command-audio-attacks.html [Retrieved August, 2018].

[4] J. Wakefield, “Microsoft chatbot is taught to swear on Twitter,”
BBC News, 24th March 2016, https://www.bbc.com/news/technology-
35890188 [Retrieved August, 2018].

[5] P. Lee, “Learning from Tays introduction,” Official Microsoft Blog,
25th May 2017, https://blogs.microsoft.com/blog/2016/03/25/learning-
tays-introduction/ [Retrieved August, 2018].

[6] D. Wakabayashi, “Self-Driving Uber Car Kills Pedestrian in
Arizona, Where Robots Roam,” New York Times, 19th March
2018, https://www.nytimes.com/2018/03/19/technology/uber-driverless-
fatality.html [Retrieved August, 2018].

17Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 25 / 26

[7] SOGETI, “Testing of Artificial Intelligence - AI Quality Engineering
skills - An introduction,” Dec. 2017, https://www.sogeti.com/
globalassets/global/downloads/reports/testing-of-artificial-intelligence
sogeti-report 11 12 2017-.pdf [Retrieved August, 2018].

[8] T. J. Lee, J. Gottschlich, N. Tatbul, E. Metcalf, and S. Zdonik,
“Precision and recall for range-based anomaly detection,” CoRR, vol.
abs/1801.03175, 2018.

[9] D. Mahajan, V. Gupta, S. S. Keerthi, S. Sellamanickam, S. Narayana-
murthy, and R. Kidambi, “Efficient estimation of generalization error and
bias-variance components of ensembles,” CoRR, vol. abs/1711.05482,
2017.

[10] S. Mukherjee, P. Niyogi, T. A. Poggio, and R. M. Rifkin, “Learning the-
ory: stability is sufficient for generalization and necessary and sufficient
for consistency of empirical risk minimization,” Adv. Comput. Math.,
vol. 25, no. 1-3, pp. 161–193, 2006.

[11] C. Sammut and G. I. Webb, Eds., Holdout Evaluation. Boston, MA:
Springer US, 2017, pp. 624–624.

[12] ——, Cross-Validation. Boston, MA: Springer US, 2017, pp. 306–306.
[13] A. Ramanathan, L. L. Pullum, F. Hussain, D. Chakrabarty, and S. K.

Jha, “Integrating symbolic and statistical methods for testing intelligent
systems: Applications to machine learning and computer vision,” in
DATE. IEEE, 2016, pp. 786–791.

[14] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated test-
ing of deep-neural-network-driven autonomous cars,” CoRR, vol.
abs/1708.08559, 2017.

[15] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, R. State, and Y. L. Traon,
“Empirical assessment of machine learning-based malware detectors
for android - measuring the gap between in-the-lab and in-the-wild
validation scenarios,” Empirical Software Engineering, vol. 21, no. 1,
pp. 183–211, 2016.

[16] A. Groce, T. Kulesza, C. Zhang, S. Shamasunder, M. M. Burnett,
W. Wong, S. Stumpf, S. Das, A. Shinsel, F. Bice, and K. McIntosh,
“You are the only possible oracle: Effective test selection for end users
of interactive machine learning systems,” IEEE Trans. Software Eng.,
vol. 40, no. 3, pp. 307–323, 2014.

[17] R. Kurozumi, K. Tsuji, S. Ito, K. Sato, S. Fujisawa, and T. Yamamoto,
“Experimental validation of an online adaptive and learning obstacle
avoiding support system for the electric wheelchairs,” in SMC. IEEE,
2010, pp. 92–99.

[18] F. Doctor, H. Hagras, and V. Callaghan, “A fuzzy embedded agent-
based approach for realizing ambient intelligence in intelligent inhabited
environments,” IEEE Trans. Systems, Man, and Cybernetics, Part A,
vol. 35, no. 1, pp. 55–65, 2005.

[19] K. Pei, Y. Cao, J. Yang, and S. Jana, “Towards practical verification of
machine learning: The case of computer vision systems,” CoRR, vol.
abs/1712.01785, 2017.

[20] R. Calinescu, C. Ghezzi, M. Z. Kwiatkowska, and R. Mirandola, “Self-
adaptive software needs quantitative verification at runtime,” Commun.
ACM, vol. 55, no. 9, pp. 69–77, 2012.

[21] C. Murphy, G. E. Kaiser, L. Hu, and L. Wu, “Properties of machine
learning applications for use in metamorphic testing,” in SEKE. Knowl-
edge Systems Institute Graduate School, 2008, pp. 867–872.

[22] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2008.

[23] L. du Bousquet, M. Nakamura, B. Yan, and H. Igaki, “Using formal
methods to increase confidence in a home network system implementa-
tion: a case study,” ISSE, vol. 5, no. 3, pp. 181–196, 2009.

[24] G. Boracchi, M. P. Michaelides, and M. Roveri, “A cognitive monitoring
system for detecting and isolating contaminants and faults in intelli-
gent buildings,” IEEE Trans. Systems, Man, and Cybernetics: Systems,
vol. 48, no. 3, pp. 433–447, 2018.

[25] S. Yerramalla, B. Cukic, M. Mladenovski, and E. Fuller, “Stability
monitoring and analysis of learning in an adaptive system,” in DSN.
IEEE Computer Society, 2005, pp. 70–79.

[26] V. Garousi, M. Felderer, and F. N. Kilicaslan, “What we know about
software testability: a survey,” CoRR, vol. abs/1801.02201, 2018.

[27] R. Bache and M. Mullerburg, “Measures of testability as a basis for
quality assurance,” Software Engineering Journal, vol. 5, no. 2, pp. 86–
92, 1990.

[28] R. V. Binder, “Design for testability in object-oriented systems,” Com-
munications of the ACM, vol. 37, no. 9, pp. 87–101, Sep. 1994.

[29] Institute of Electrical and Electronics Engineers, “IEEE Standard Com-
puter Dictionary: A Compilation of IEEE Standard Computer Glos-
saries,” IEEE, New York, USA, Tech. Rep., 1990.

[30] A. Bertolino and L. Strigini, “On the use of testability measures for
dependability assessment.” IEEE Trans. Software Eng., vol. 22, no. 2,
pp. 97–108, 1996.

[31] V. Dignum, “Accountability, responsibility, transparency - the ART of
AI,” in ICAART (1). SciTePress, 2018, p. 7.

[32] R. V. Binder, “Design for testability in object-oriented systems,” Com-
mun. ACM, vol. 37, no. 9, pp. 87–101, 1994.

[33] K. Tamamizu, S. Sakakibara, S. Saiki, M. Nakamura, and K. Yasuda,
“Capturing activities of daily living for elderly at home based on
environment change and speech dialog,” in 8th International Conference
Digital Human Modeling. Applications in Health, Safety, Ergonomics,
and Risk Management: Health and Safety (DHM), ser. Lecture Notes in
Computer Science, vol. 10287. Springer, 2017, pp. 183–194.

18Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

Powered by TCPDF (www.tcpdf.org)

 26 / 26

http://www.tcpdf.org

