
VALID 2024

The Sixteenth International Conference on Advances in System Testing and

Validation Lifecycle

ISBN: 978-1-68558-199-2

September 29 - October 03, 2024

Venice, Italy

VALID 2024 Editors

Jos van Rooyen, Huis voor softwarekwaliteit, Nederland

Luigi Lavazza, Universita` degli Studi dell'Insubria, Italy

 1 / 29

VALID 2024

Forward

The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle
(VALID 2024), held on September 29 – October 3, 2024 in Venice, Italy, continued a series of events
focusing on designing robust components and systems with testability for various features of behavior
and interconnection.

Complex distributed systems with heterogeneous interconnections operating at different
speeds and based on various nano- and micro-technologies raise serious problems of testing,
diagnosing, and debugging. Despite current solutions, virtualization and abstraction for large scale
systems provide less visibility for vulnerability discovery and resolution, and make testing tedious,
sometimes unsuccessful, if not properly thought from the design phase.

The conference on advances in system testing and validation considered the concepts,
methodologies, and solutions dealing with designing robust and available systems. Its target covered
aspects related to debugging and defects, vulnerability discovery, diagnosis, and testing.

The conference provided a forum where researchers were able to present recent research
results and new research problems and directions related to them. The conference sought contributions
presenting novel result and future research in all aspects of robust design methodologies, vulnerability
discovery and resolution, diagnosis, debugging, and testing.

We welcomed technical papers presenting research and practical results, position papers
addressing the pros and cons of specific proposals, such as those being discussed in the standard forums
or in industry consortiums, survey papers addressing the key problems and solutions on any of the
above topics, short papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the VALID 2024 technical
program committee as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and efforts to contribute to VALID 2024. We truly believe
that thanks to all these efforts, the final conference program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the VALID 2024 organizing
committee for their help in handling the logistics and for their work that is making this professional
meeting a success. We gratefully appreciate to the technical program committee co-chairs that
contributed to identify the appropriate groups to submit contributions.

We hope the VALID 2024 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in system testing and
validation. We also hope that Venice provided a pleasant environment during the conference and
everyone saved some time for exploring this beautiful city

VALID 2024 Steering Committee

Lorena Parra Boronat, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario and

Universitat Politecnica de Valencia, Spain

Yan-Fu Li, Tsinghua University, China

 2 / 29

Jos van Rooyen, huis voor software kwaliteit, the Netherlands

Zhaobo Zhang, Futurewei Technologies, USA

Pedro Vicente Mauri, IMIDRA, España

VALID 2024 Publicity Chairs

Lorena Parra Boronat, Universitat Politecnica de Valencia, Spain

Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

Jose Miguel Jimenez, Universitat Politecnica de Valencia, Spain

Francisco Javier Díaz Blasco, Universitat Politecnica de Valencia, Spain

Ali Ahmad, Universitat Politecnica de Valencia, Spain

 3 / 29

VALID 2024

Committee

VALID 2024 Steering Committee

Lorena Parra Boronat, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario and

Universitat Politecnica de Valencia, Spain

Yan-Fu Li, Tsinghua University, China

Jos van Rooyen, huis voor software kwaliteit, the Netherlands

Zhaobo Zhang, Futurewei Technologies, USA

Pedro Vicente Mauri, IMIDRA, España

VALID 2024 Publicity Chairs

Lorena Parra Boronat, Universitat Politecnica de Valencia, Spain

Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

Jose Miguel Jimenez, Universitat Politecnica de Valencia, Spain

Francisco Javier Díaz Blasco, Universitat Politecnica de Valencia, Spain

Ali Ahmad, Universitat Politecnica de Valencia, Spain

VALID 2024 Technical Program Committee

Bestoun S. Ahmed, Karlstad University, Sweden
Lilas Alrahis, New York University Abu Dhabi (NYUAD), United Arab Emirates
Francesco Angione, Politecnico di Torino, Italy
Sajid Anwer, Griffith University, Brisbane, Australia
Vincenzo Arceri, University of Parma, Italy
Sadia Azam, University of Verona, Italy
Deepika Badampudi, Blekinge Institute of Technology, Sweden
Sebastien Bardin, CEA LIST, France
Andrea Baruzzo, Interaction Design Solutions / University of Udine, Italy
Davide Basile, ISTI CNR Pisa, Italy
Ateet Bhalla, Independent Consultant, India
Bruno Blaskovic, University of Zagreb, Croatia
Gabriele Boschi, Intel, Italy
Hanifa Boucheneb, École Polytechnique de Montréal, Canada
Laura Brandán Briones, FaMAF | Univ. de Córdoba, Argentina
Mark Burgin, University of California Los Angeles (UCLA), USA
Jaganmohan Chandrasekaran, Virginia Tech Research Center, USA
Arjun Chaudhuri, Duke University, USA
Peter Clarke, Florida International University, USA
Bruce Cockburn, University of Alberta, Canada

 4 / 29

Andrei-Marian Dan, Hitachi Energy Research, Switzerland
Hichem Debbi, University of M'sila, Algeria
Giorgio Di Natale, TIMA - CNRS / Université Grenoble-Alpes / Grenoble INP UMR 5159, France
Luigi Dilillo, CNRS - IES (Institut d'Electronique et des Systèmes) - University of Montpellier, France
Amelia Dobis, ETH Zürich, Switzerland
Pengcheng Fang, Johns Hopkins University, USA
Marie-Lise Flottes, CNRS | Université de Montpellier, France
Nikos Foutris, The University of Manchester, UK
Jicheng Fu, University of Central Oklahoma, USA
Gregory Gay, Chalmers and the University of Gothenburg, Sweden
Vishal Gupta, University of Rome “Tor Vergata”, Italy
Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Yu Huang, HiSilicon Co. Ltd, China
Ahmed Kamel, Concordia College, Moorhead, USA
Basel Katt, Norwegian University of Science and Technology, Norway
Richard Kuhn, National Institute of Standards & Technology, USA
Maurizio Leotta, University of Genova, Italy
Guanpeng Li, University of Iowa, USA
Yan-Fu Li, Tsinghua University, China
Chu-Ti Lin, National Chiayi University, Taiwan
Eda Marchetti, ISTI-CNR, Pisa, Italy
Abel Marrero Perez, Alstom SA, Germany
Pedro V. Mauri Ablanque, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario
(IMIDRA) Spain
Cyan Mishra, The Pennsylvania State University, USA
Vadim Mutilin, Ivannikov Institute for System Programming of the RAS (ISPRAS), Moscow, Russia
Luca Negrini, University of Venice, Italy
Roy Oberhauser, Aalen University, Germany
Luca Olivieri, University of Verona, Italy
Rasha Osman, The Higher Technological Institute, Egypt
Sujay Pandey, Georgia Institute of Technology, USA
Adriano Peron, University of Napoli "Federico II", Italy
Nuno Pombo, Universidade da Beira Interior, Portugal
Michele Portolan, Grenoble-Institute of Technology, France
Pasqualina Potena, RISE Research Institutes of Sweden AB, Sweden
Claudia Raibulet, University of Milano-Bicocca, Italy
Kristin Yvonne Rozier, Iowa State University, USA
Annachiara Ruospo, Politecnico di Torino, Italy
Hassan Sartaj, National University of Computer and Emerging Sciences, Islamabad, Pakistan
Hiroyuki Sato, University of Tokyo, Japan
Josep Silva, Universitat Politècnica de València, Spain
Maria Spichkova, RMIT University, Australia
Madhusudan Srinivasan, East Carolina University, USA
Jonti Talukdar, Duke University, USA
Salvador Tamarit, PFS Group, Spain
Bedir Tekinerdogan, Wageningen University, The Netherlands
Spyros Tragoudas, Southern Illinois University, USA
Tugkan Tuglular, Izmir Institute of Technology, Turkey

 5 / 29

Ana Turlea, University of Bucharest, Romania
Faqeer ur Rehman, Intel, USA
Visa Vallivaara, NIST - National Institute of Standards and Technology | VTT - Technical Research Centre
of Finland | University of Oulu, Finland
Jos van Rooyen, Huis voor Software Kwaliteit | Advisor Identify, Netherlands
Miroslav N. Velev, Aries Design Automation, USA
Pedro Vicente Mauri, IMIDRA, España
Arnaud Virazel, Université de Montpellier / LIRMM, France
Jingyi Wang, Zhejiang University, China
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
Dietmar Winkler, Institute for Information Systems Engineering | TU Wien, Austria
Xiaofei Xie, Nanyang Technological University, Singapore
Haibo Yu, Kyushu Sangyo University, Japan
Pavol Zavarsky, Framatome, Canada
Jiyang Zhang, University of Texas at Austin, USA

 6 / 29

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 29

Table of Contents

Analysis of Test Smell Impact on Test Code Quality
Ismail Cebeci and Tugkan Tuglular

1

Precise Code Fragment Clone Detection
Mariam Arutunian, Matevos Mehrabyan, Sevak Sargsyan, and Hayk Aslanyan

7

Addressing EvoSuite’s Limitations: Method-Specific Test Case Generation and Execution in Controlled
Environments
Carlos Galindo, Manuel Gregorio, and Josep Silva

15

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 29

Analysis of Test Smell Impact on Test Code Quality

Ismail Cebeci and Tugkan Tuglular
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkiye

e-mail: {ismailcebeci|tugkantuglular}@iyte.edu.tr

Abstract—Software testing is a crucial component of the
software development life-cycle, playing a key role in ensuring the
quality and robustness of software products. However, test code,
like production code, is susceptible to poor design choices or "test
smells", which can compromise its effectiveness and maintainabil-
ity. This article investigates the prevalence and impact of various
test smells across open-source software projects, using advanced
detection tools such as JNose and TestSmellDetector. The research
highlights that certain test smells, such as "Assertion Roulette,"
"Magic Number Test," and "Lazy Test," are notably prevalent.
The study also examines the co-occurrence of different test
smells, providing understanding of how these issues interrelate.
Additionally, the article compares the effectiveness of JNose and
TestSmellDetector in detecting test smells, providing insights into
their strengths and limitations.

Keywords-Test Smells; Software Testing; Empirical Software
Engineering.

I. INTRODUCTION

Software testing is a fundamental part of the software de-
velopment process and has significant importance in ensuring
the quality of software [1]. Test cases exhibit a crucial role
in the early detection of software bugs during the software
development process.

The quality of the test suite is measured with test coverage
analysis where the number of different structural components
(functions, instructions, branches, and lines of code) included
in the test suite is considered [2]. Nevertheless, despite having
a large amount of code coverage, the test code may still
contain design choices that are not well-executed, known as
test smells. The inclusion of smells in test code has the
potential to affect the overall quality of test suites, hence
impacting the quality of the production code.

The motivation behind this research stems from the ob-
servation that despite the critical role of testing in software
development, test smells are often overlooked. Developers and
testers may inadvertently introduce these smells into the test
code, not through a lack of skill, but due to pressures of
deadlines, lack of awareness, or inadequate tool support.

This study contributes to the field by providing empirical
data on the detection and impact of test smells across a
broad spectrum of open-source software projects. It leverages
modern test smell detection tools-JNose [3] and TestSmellDe-
tector [4] tools-to gather insights into the prevalence and co-
occurrence of different smells, thereby offering a granular
understanding of how these smells interrelate and the potential
for cascading effects within the test code. Moreover, for
these two tools, a comparison was made on issues such as

the differences between them, which test smells are detected
better, which device detects more test smells.

The structure of this thesis is organized as follows: Follow-
ing this introduction, Section II reviews STATE OF THE ART
in the field, laying a theoretical foundation for understanding
test smells. Section III describes the TOOL INFRASTRUC-
TURE used in the study, including a detailed examination of
the JNose and TestSmellDetector tools. Section IV presents
a CASE STUDY analysis, where these tools are applied to
a dataset of software projects to identify and analyze test
smells. Section V shows the observed RESULTS and Section
VI concludes findings and directions for future research.

II. STATE OF THE ART

Modern studies are going in the direction of discovering,
defining, and eliminating various categories of code smells,
and explaining their origins and influence on the overall
program quality. Such studies utilize several approaches, in-
cluding empirical analysis of open-source software projects
and constructing and testing elaborate security tools.

A study by Silva Junior et al. [5], the researchers exam-
ined the awareness of test practitioners and the unknowingly
incorporation of smells to test code development. A survey
is conducted with 60 chosen professionals from different
organizations to investigate the frequency and situations in
which they encounter smells, particularly 14 types of test
smells, which are frequently used in cutting-edge test smell
detection tools.

In another study [6] related to the severity of test smells
by Campos et al., a set of tests that cause problematic
consequences are targeted and the developers’ point of view
on the issue of test smells is mentioned. By working with its
developer participants from six open-source software projects
on GitHub, the study aims at characterizing to which extent
developers perceive test smells to affect the test code they
implement.

In a similar study by Davide Spadini et al. [7], sever-
ity thresholds for test smells are investigated. Using 1489
java projects from Apache and Eclipse ecosystems and
TestSmellDetector tool, they considered 4 test smells-
Assertion Roulette, Eager Test, Verbose Test, and Conditional
Test Logic-are higher thresholds than others.

In our study, with extending the total number of test smell
types, 21 types of test smells are used, and with using 500
open-source GitHub projects (more than 5000 Java test files),
"Magic Number Test" and "Assertion Roulette" are detected as

1Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 9 / 29

most frequent test smells. “Empty Test”, “Sleepy Test”, and
“Mystery Guest” are 3 of the 5 lowest test smells detected
using JNose tool [3] and TestSmellDetector tool [4].

Another study [8] by Michele Tufano et al. presented (i) a
survey among 19 developers is carried out to find out how they
rated test smells as design issues, and (ii) a huge empirical
study based on commit history of 152 open source projects
and focused on identifying aspects of both software systems
such as when test smells are introduced, how long they last
and their relationship with code smells affecting the classes
tested.

In our study, to detect test smells, we used two differ-
ent automated test smell detection tool "JNose Tool” and
TestSmellDetector Tool" and the results show that all test files
have at least one type of test smell, and to have better test
code quality, all test smells should be resolved by developers.

In another study [9] by Soares et al., an innovative way
to raise the quality of test code using the JUnit 5 features is
described. As part of this research, a mixed-method survey is
executed, covering 485 of the most widely used Java open-
source projects, finding out that JUnit 5 is used by only a tiny
share (15,9%).

In the paper [10] by Annibale Panichella et al., authors scru-
tinize test smells in the context of automatic test generation.
They critically examine whether such smell detection tools
work well on sets of tests generated by tool EVOSUITE that
test 100 classes of Java programs, in which there are 2340 test
cases. Two tools are used in the study. Static detection rules
are the first one among the tools suggested by Bavota et al.
[11], Grano et al. [12] also use this same tool to detect test
smells in test codes. The next tool is TestSmellDetector tool,
which is available on GitHub and can be used publicly. The
frequency of detection of test smells in Static Detection rules is
significantly lower if we compare the findings between Static
Detection rules and TestSmellDetector tool. The TestSmellDe-
tector tool demonstrates slightly superior outcomes. Martins et
al. [13] also use TestSmellDetector tool to detect test smells
and investigate co-occurrence values between different test
smells.

Benefiting from previous articles, in addition to similarities,
in this article, a research was conducted for the first time using
the two mentioned tools and 21 types of test smells with using
huge number of projects "around 500", and the results obtained
for both tools were compared. Additionally, the co-occurance
of the test smells for both tools were compared.

III. TOOL INFRASTRUCTURE

This section mainly explains the tool infrastructure used to
detect test smells, in which a detailed analysis about JNose
and TestSmellDetector tools are presented. It introduces the
working principles of these tools by detailing how they analyze
and recognize test smells in test code.

A. JNose Tool

The JNose Test tool enables testers to review the past
versions of the software projects and find the test coverage

Figure 1. High-level architecture of Jnose tool

and the test smells that often bother the code quality. This fact
enables us to compare various quality metrics of the project
over the course of its development process. There are three
crucial procedures in the JNose Test operation as shown in
Figure 1.

• Data Input: This part receives the input set of command
parameters for the tool execution, such as test smell
types of lists, analysis mode (code coverage, test smells
detection and evolution), and the project for analysis.

• Project Analysis: This component presents the analysis
of the program by choosing the analysis mode.

• Data Output: By this component, the status of the
execution is being rendered and the comma-separated
value (CSV) file containing the results of the analysis
is generated.

The JNose Tool offers the capability to detect and analyze
smells in various ways. Firstly, it can detect smells in a
specific test class using the TestClass method, which provides
information about the quantity of each type of smell detected
in the test class. Secondly, it can detect smells across multiple
project versions using the Evolution method, which provides
information about the authors and timestamps of the test
smell’s insertion in the test code. Lastly, the detection can
be used to identify the precise location of a test smell using
the TestSmell method, which returns the method location of
the smell for the purpose of analyzing the quality of the test
code.

In accordance with the GNU General Public License, the
JNose Test tool is licensed. The software tool is developed as
a Java project and consists of four packages: (i) core, which
is responsible for detecting test smells and coverage metrics;
(ii) page, which is responsible for displaying web pages and
their content; (iii) dto, which includes the classes used in data
transfer (Data Transfer Object); (iV) util, which is responsible
for identifying tests and production classes and saving results
into CSV files.

B. TestSmellDetector Tool

The objective of including TestSmellDetector tool is to
offer developers an automated methodology for enhancing the
quality of their test suites. The TestSmellDetector tool can

2Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 10 / 29

Figure 2. High-level architecture of TestSmellDetector tool

identify 19 smells present in Junit-based unit test files. The
TestSmellDetector tool software provides a comprehensive list
of detected smells, accompanied by their respective definitions
and detection algorithms. The algorithm receives software
project source code as input and initially distinguishes between
unit test files and production source files.

TestSmellDetector tool is a Java jar file that is open-
source and may be used as a command line program. The
implementation of TestSmellDetector tool as a self-contained
executable file, as opposed to a plugin, eliminates the need for
users to own a dedicated Integrated Development Environment
(IDE) on their system for the purpose of identifying smells in
their test code.

Figure 2 illustrates a comprehensive overview of the ar-
chitectural design of the TestSmellDetector tool. The project
structure is used in 1 and 2 to identify the test and production
files. TestSmellDetector tool determines whether test smells
are present in the test files in 3 and 4. The test smell detection
process findings are saved in 5.

IV. CASE STUDY

To understand test smell impaction of test code quality,
we used two different tools which are JNose Tool and
TestSmellDetector Tool then we analyzed the result of output
files of both tools using projects that they used from Test
Smells and Structural Metrics (TSSM) dataset [13].

Figure 3 shows an overview of our study. Mainly in this
study, there are four parts to get results to compare and to
answer our research questions.

• Project Selection and Preparations: to select projects and
preparations to use JNose and TestSmellDetector tools.

• Using TestSmellDetector tool: to follow a way to get
results after using TestSmellDetector tool.

• Using JNose tool: to follow a way to get results after
using JNose tool.

• Analyzing results: to obtain results to answer research
questions.

A. Project Selection

These procedures led to the collection of data from 13,703
open-source Java projects that make up the TSSM dataset.

Figure 3. High-level architecture of our study

500 distinct projects are randomly chosen from this collection
of open-source Java projects. These projects work with the
TestSmellDetector Tool as well as the JNose Tool. Java is
among the most common languages today [14] and contains a
large number of test codes. This gives us a lot of test code to
examine. Additionally, since the two tools used work on Java
codes, we decided to work with Java projects. Every project
is tested separately at first, and if it works successfully with
both tools, it is included in the list.

B. Implementation of Automated Scripts

In this study, four fundamental Python files were imple-
mented. We will do the explanation of these files’ roles and
functions in detail. Each file has the sole aim of automating
and facilitating a different aspect of testing smell analysis pro-
cess, which in turn makes the identification, comparison, and
understanding of test smells in many projects more efficient
and accurate.

1) Python File for Preparation of Using Tools: In this file,
six functions are created for preparation of using tools. These
functions simply do these steps:

• Picking out necessary column names from input CSV file.
• Creating empty folder with using GitHub projects’

names.
• Cloning GitHub projects into created empty folders one

by one.
• Testing files and their associated source files within

GitHub project folders.
• Removing the files, where the lines’ sole content are

comments.
• Creating a structured CSV file, which is originally named

with output.csv and it is specifically designed to meet the
given inputs of the TestSmellDetector application.

3Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 11 / 29

2) Python File for Using Tools: In this file, six functions
are created for using tools. These functions simply do these
steps:

• Executing TestSmellDetector Tool with ’output.csv’ as a
file input.

• Deleting files left over from past executions.
• Reading results clearly going through the created CSV

file after executing TestSmellDetector tool. Then, creating
txt file after reading CSV file.

• Reading results clearly going through the created CSV
files after executing JNose tool. Then, creating txt file
after reading all files.

• merging results by two different tools, into one conclusive
file titled. After merging, findings might not be next to
each other. Therefore, reorganizing findings after merg-
ing.

3) Python File for Comparing Results of Each Tools:
Comparing the results of different testing methods, which are
used in the detection of smells. Co-occurrence Analysis, Ratio
Calculation and Comparison and Visualization are done in this
file.

4) Python File for Connecting JNose Tool’s Website: To
accesses the webpage, which is related to Jnose Tool. It auto-
matically inputs GitHub project links into the local server ad-
dress "http://127.0.0.1:8080" and analyze each project. Then,
it downloads results in the CSV format.

V. RESULTS
In this analysis, we compare the effectiveness of two soft-

ware testing tools, JNose Tool and TestSmellDetector Tool,
in identifying several types of test smells within software
projects. Test smells play a critical role in ensuring the reliabil-
ity and efficacy of software testing procedures by identifying
any flaws in the test code that could undermine their quality
or effectiveness.

The JNose Tool detected 81773 test smells in total using all
files. The TestSmellDetector tool detected 89497 test smells
in total using all files.

Figure 4 shows a comparative analysis of file affectation by
test smells, the total number of files examined alongside those
unaffected by test smells as identified by two separate tools:
JNose and TestSmellDetector. It is evident that a comprehen-
sive set of 5478 files were subjected to the analysis. JNose Tool
identified 1550 files that exhibited no test smells, representing
a significant portion of the total, yet still suggesting that
many files could contain at least one form of test smell. In
contrast, the TestSmellDetector Tool demonstrated a higher
identification rate, with 1075 files reported as unaffected.
Intriguingly, the bar labeled ’No Affected (Both)’ is shown
at a value of zero, indicating that there were no files, which
both tools concurrently identified as free of test smells.

The data serves as a more encompassing and detailed
view of the detection capabilities of both tools as they work
across a range of test smells. The fact that different detection
rates for various test smells are shown by the two tools
indicates a noticeable difference as shown in Figure 5. The

Figure 4. Number of Affected and not Affected Files

Figure 5. Total Number of Test Smells with using JNose and TestSmellDe-
tector Tools in all files

TestSmellDetector Tool, for instance, is very effective in
identifying ’Magic Number Test’ smell with 28,443 instances
detected entirely outperforming the 11,264 instances detected
by the JNose Tool. The pattern of higher detection rates by
the TestSmellDetector Tool is also observed in the other types
of tests smells like ’Exception Catching Throwing’ and ’Lazy
Test’, which the tool detected 13,612 and 16,570 occurrences,
respectively and thus demonstrating its sensitivity towards
these particular smells.For ’Assertion Roulette, TestSmellDe-
tector Tool detected 10,488 occurence.

On the other hand, JNose Tool proved to be more ef-
fective than TestSmellDetector Tool in discovering the ’As-
sertion Roulette’ instances, which were 41,876 compared to
TestSmellDetector Tool, which discovered 10,488 instances as
shown in Figure 5. This revelation of the JNose Tool’s effec-
tiveness in this case indicates that it can be particularly useful
for scenarios where the tests contain multiple non-documented
assertions, resulting in unclear test outcomes. In addition, the
JNose Tool exhibits greater detection rates for various sorts
of test smells, such as the ’Magic Number Test’ and ’Lazy
Test’, with detection rates of 11,264 and 3984 occurrences,
respectively. This demonstrates the tool’s sensitivity towards
these specific smells. JNose tool also performed high detection
rates for ‘Eager Test’ with detection rate of 3692.

This analysis provides the absolute number of files affected

4Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 12 / 29

Figure 6. Number of Affected Files by Each Test Smells

by each test smell and allows an assessment of the extent of
testing and detection of smell testing for both tools across
various categories of test smell as shown in Figure 6.

By using the TestSmellDetector tool, highest numbers of
affected files by ’Magic Number Test’, ’Assertion Roulette’,
’Exception Catching Throwing’, ’Eager Test’, ’Lazy Test’, and
’Unknown Test’ are detected as 4222, 2503, 2463, 1126, 1070,
and 1030. On the other hand, by using the JNose tool, high-
est numbers of affected files by ’Assertion Roulette’, ’Lazy
Test’, ’Magic Number Test’, ’Exception Catching Throwing’,
’Unknown Test’, and ’Eager Test’ are detected as 3056, 1396,
1364, 969, and 905.

The analysis also highlights test smells that are most and
least prevalent in the datasets. ’Magic Number Test’, ’Asser-
tion Roulette’, ’Exception Catching Throwing’, ’Eager Test’,
’Lazy Test’, and ’Unknown Test’ are among the most affecting
test smells, with both tools identifying a considerable number
of affected files. In contrast, ’Constructor Initialization’, ’De-
fault Test’, and ’Dependent Test’ show minimal to no detection
across both tools.

The utilization of co-occurrence matrices serves as an
analytical cornerstone for uncovering the underlying patterns
of test smell interactions within software testing environments.
The matrices of The JNose Tool and TestSmellDetector Tool
explain these patterns, illustrating both pronounced and neg-
ligible relationships among various test smells. In the interest
of refining testing strategies, it becomes necessary to research
into the specifics of these relationships.

Results for the JNose Tool as shown Figure 7, the one,
which stands out the most is a correlation established between
’Conditional Test Logic’ and ’Eager Test’ with a co-occurrence
value of [1.00], indicating a strong likelihood of these issues
to arise simultaneously.

Similarly, the pairing of ’Exception Catching Throwing’
with ’Unknown Test’ and a high co-occurrence rate of [0.99]
of using JNose Tool shows a strong correlation.

Next strong correlations are the one observed between
’Sleepy Test’ and ’Constructor Initialization’, with a co-
occurrence value of [0.96] for the JNose Tool.

Figure 7. Co-occurrence Matrix for JNose Tool

Conversely for the JNose tool, a pair exposes relationships
that are markedly tenuous, as is the case between ’Magic
Number Test’ and ’Redundant Assertion’, with a negligible
co-occurrence rate of [0.01]. Another pair exhibiting minimal
interdependence comprises ’Mystery Guest’ and ’Assertion
Roulette’ and, ’Empty Test’ and ’Assertion Roulette’ where
the co-occurrence rate stands at [0.01] for both pairs.

Results for the TestSmellDetector Tool as shown in Figure
8, the notable correlation observed in this case is between
’Unknown Test’ and ’Eager Test’ and their co-occurrence
value of [0.97].

The pairing of ’Source Optimism’ with ’Mystery Guest’
also has a strong co-occurrence rate of [0.95] with using
TestSmellDetector Tool.

Conversely, the matrix unveils relationships that are
markedly tenuous, as is the case between ’Magic Number Test’
and ’Redundant Assertion’, ’Magic Number Test’ and ’Sleepy
Test’, ’Assertion Roulette’ and ’Empty Test’, ’Empty Test’
and ’Exception Catching Throwing’, ’Empty Test’ and ’Lazy
Test’, so on with a negligible co-occurrence rate of [0.01] with
using TestSmellDetector Tool.

VI. CONCLUSION AND FUTURE WORK

Testing is currently considered to be an essential process
for improving the quality of software. Unfortunately, past
literature has shown that test code can often be of low quality
and may contain design flaws, also known as test smells. This
paper presented a comparison of the results of the most well-
known test smell detector tools (JNose and TestSmellDetector)
using 500 distinct open-source GitHub projects. These results
give us (i) the number of detection of test smells by each tool,
(ii) the number of affected test code files by test smells, and
(iii) the co-occurrence rate of detected test smells with the
mentioned tools.

5Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 13 / 29

Figure 8. Co-occurrence Matrix for TestSmellDetector Tool

• (i) The ’Assertion Roulette’ is the most prevalent smell
in the JNose Tool with 41,876 detections. Like ’As-
sertion Roulette’, other common the test smells ’Magic
Number Test’ with 11264 detections, ’Lazy Test’ with
3984 detections, ’Eager Test’ with 3692 detections, ‘Con-
ditional Test Logic’ with 3679 detections, ‘Exception
Catching Throwing’ with 3236 detections, and ’Unknown
Test’ with 3202 detections. On the other hand, the
TestSmellDetector tool has found that the test smells
’Magic Number Test’ with 28443 detections and ’Lazy
Test’ with 16570 detections are the most frequently ob-
served. Furthermore, the test smells ’Exception Catching
Throwing’ with 13612 detections, ’Assertion Roulette’
with 10488 detections, ’General Fixture’ with 4274 detec-
tions, and ’Eager Test’ with 3780 detections are observed
in all files.

• (ii) The TestSmellDetector tool detected several files
affected by the test smells (’Magic Number Test’, ’As-
sertion Roulette’, ’Exception Catching Throwing’, ’Eager
Test’, ’Lazy Test’, and ’Unknown Test’), with respective
counts of 4222, 2503, 2463, 1126, 1070, and 1030. On
the other hand, the JNose tool detected several affected
files by ’Assertion Roulette’, ’Lazy Test’, ’Magic Number
Test’, ’Exception Catching Throwing’, ’Unknown Test’,
and ’Eager Test’ are detected as 3056, 1396, 1364, 969,
and 905.

• (iii) The JNose tool showed that there is a strong
correlation between the test smells ’Conditional Test
Logic’ and ’Eager Test’, as indicated by a co-occurrence
value of [1.00]. Furthermore, the JNose tool reveals a
strong relationship between the pairs ’Exception Catching
Throwing’ and ’Unknown Test’, as evidenced by a high
co-occurrence rate of [0.99]. In contrast, a high-rated

correlation was noticed in this significant relationship
between the test smells ’Unknown Test’ and ’Eager Test’,
with a co-occurrence value of [0.97] when using the
TestSmellDetector tool. Furthermore, the TestSmellDe-
tector Tool exhibited a combination of ’Source Optimism’
and ’Mystery Guest’, with a significant co-occurrence rate
of [0.95].
As future work, we plan to replicate this study with larger
projects, including a more extensive set of test smells. We
also plan to implement a new tool to detect test smells
and refactor them further. Then, we plan to compare these
three tools with larger projects and to show decreased
number of detected test smells after refactoring.

REFERENCES

[1] M. Aberdour, “Achieving quality in open-source software,”
IEEE Software, vol. 24, no. 1, pp. 58–64, 2007. DOI: 10.1109/
MS.2007.2.

[2] R. Gopinath, C. Jensen, and A. Groce, “Code coverage for
suite evaluation by developers,” ICSE 2014, pp. 72–82, 2014.
DOI: 10.1145/2568225.2568278.

[3] T. Virgínio et al., “Jnose: Java test smell detector,” SBES ’20,
pp. 564–569, 2020. DOI: 10.1145/3422392.3422499.

[4] A. Peruma et al., “Tsdetect: An open source test smells
detection tool,” ESEC/FSE 2020, pp. 1650–1654, 2020. DOI:
10.1145/3368089.3417921.

[5] N. S. Junior, L. Rocha, L. A. Martins, and I. Machado, “A
survey on test practitioners’ awareness of test smells,” 2020.
arXiv: 2003.05613.

[6] D. Campos, L. Rocha, and I. Machado, “Developers perception
on the severity of test smells: An empirical study,” 2021.
arXiv: 2107.13902.

[7] D. Spadini, M. Schvarcbacher, A.-M. Oprescu, M. Bruntink,
and A. Bacchelli, “Investigating severity thresholds for test
smells,” MSR ’20, pp. 311–321, 2020. DOI: 10.1145/3379597.
3387453.

[8] M. Tufano et al., “An empirical investigation into the nature
of test smells,” pp. 4–15, 2016.

[9] E. Soares et al., “Refactoring test smells: A perspective from
open-source developers,” SAST ’20, pp. 50–59, 2020. DOI:
10.1145/3425174.3425212.

[10] A. Panichella, S. Panichella, G. Fraser, A. A. Sawant, and V. J.
Hellendoorn, “Revisiting test smells in automatically generated
tests: Limitations, pitfalls, and opportunities,” pp. 523–533,
2020. DOI: 10.1109/ICSME46990.2020.00056.

[11] G. Bavota, A. Qusef, R. Oliveto, A. D. Lucia, and D. Binkley,
“Are test smells really harmful?” Empirical Software Engi-
neering, vol. 20, pp. 1052–1094, 2015. DOI: 10.1007/s10664-
014-9313-0.

[12] G. Grano, F. Palomba, D. Di Nucci, A. De Lucia, and H. C.
Gall, “Scented since the beginning: On the diffuseness of
test smells in automatically generated test code,” Journal of
Systems and Software, vol. 156, pp. 312–327, 2019, ISSN:
0164-1212. DOI: https://doi.org/10.1016/j.jss.2019.07.016.

[13] L. Martins, H. Costa, and I. Machado, “On the diffusion of
test smells and their relationship with test code quality of java
projects,” Journal of Software: Evolution and Process, vol. 36,
no. 4, e2532, 2024. DOI: https://doi.org/10.1002/smr.2532.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.
2532.

[14] IEEE Spectrum, “Top programming languages 2024,” 2024,
[Online]. Available: https : / / spectrum . ieee . org / top -
programming-languages-2024 (visited on 08/21/2024).

6Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 14 / 29

Precise Code Fragment Clone Detection

Mariam Arutunian

Center of Advanced Software Technologies

Russian-Armenian University

Yerevan, Armenia

mariam.arutunian@rau.am

Matevos Mehrabyan

Center of Advanced Software Technologies

Russian-Armenian University

Yerevan, Armenia

matevos.mehrabyan@rau.am

Sevak Sargsyan

Center of Advanced Software Technologies

Russian-Armenian University

Yerevan, Armenia
sevak.sargsyan@rau.am

Hayk Aslanyan

Center of Advanced Software Technologies

Russian-Armenian University

Yerevan, Armenia
hayk.aslanyan@rau.am

Abstract— Detecting duplicate code fragments referred as

"clones", is essential for various aspects of software

management, maintenance, and security. This article presents a

novel method for detecting code fragment clones, applicable to

source and binary code. The method addresses the limitations of

existing tools, which often focus on detecting clones of entire

functions and are typically specialized for either source or

binary code, but not both simultaneously. The developed

algorithm analyzes input code fragments against the target

project, and outputs all detected fragment clones. For fragment

clone detection, it uses program dependence graphs - a data

structure unifying data and control flow for the function. In the

first step source and binary code are converted to program

dependence graph representation. Then unified algorithm is

applied for maximal similar subgraphs detection. Code

fragments corresponding to detected similar subgraphs are

considered as clones. The experimental evaluation of the

proposed method demonstrates its effectiveness providing an

average 96.9% precision, 92.9% recall for binary code, and

96.5% precision, 93.8% recall for source code.

Keywords- code clones; program static analysis; binary code;

source code.

I. INTRODUCTION

Identifying copied code fragments, referred as fragment
clones, are vital for software management, maintenance, and
security. It can be applied for several purposes:

1. Software plagiarism detection: identifying copied
code helps ensure originality and protect intellectual property,

2. Malware detection and classification: researchers
can identify new malware variants by finding similar code
patterns of known malicious software fragments,

3. Finding known vulnerabilities and avoiding bug
propagation: Sometimes, code fragments containing bugs and
vulnerabilities are also copied, making the detection of these
fragments crucial for preventing the spread of bugs.

Beyond these specific applications, identifying and
managing code clones improves overall software quality and
reduces maintenance costs. Code clones can arise for a variety
of reasons. For instance, they can occur when software
developers copy-paste existing code fragments into their

projects with or without modifications. Studies [1] show that
about 20% of code is duplicated in software packages. In
binary code, compiler optimizations like inlining, and
transformations can also create clones.

Modern software projects highly use third-party packages
and libraries. A 2024 report by Synopsys [2] revealed that
over 96% of commercial software packages incorporate open-
source code. Another study of 7,800 open-source projects has
shown that 44% of them have at least one pair of identical
code fragments [3]. These studies reveal the extensive use of
code duplication in software development.

Despite the variety of code clone detection methods and
tools, only a few can detect clones of fragments rather than
whole functions. Besides, existing tools are focused either on
source or binary code clone detection. There is no unified
approach to detect both of them.

We propose a novel approach for accurate source and
binary code fragments’ clones’ detection. For accuracy
Program Dependence Graphs (PDGs) are utilized, which
capture most of the software semantics and robust to code
changes. Code clones are identified as maximum similar
subgraphs for corresponding source and binary code. The core
of the developed tools is the same for the source and binary
code clones’ detection, where the PDG creation parts are code
specific. We consider code fragments as a sequence of
instructions for binary or source code. A fragment can
correspond to a function, basic blocks, or sequences of
instructions in a function. Two code fragments are considered
clones if they are similar or identical. Section II gives more
strict definitions of both binary and source code fragment
clones. The proposed method is implemented as a tool named
Fragment Clone Detector (FCD) that takes as input a code
fragment, a project, and a percentage of similarity. The tool
then outputs all fragments from the target project that are
clones of the given fragment with the given percentage of
similarity.

In addition to evaluating the quality of the implemented
method, we have designed and implemented a testing system,
which generates tests, based on real-world projects. Then it
executes FCD and calculates precision, recall, and Root Mean
Square Error (RMSE) for it. The rest of the paper is organized

7Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 15 / 29

as follows: Section II defines code clone types for binary and
source code and describes PDG. Section III explores existing
research in the field. Sections IV and V detail the proposed
approach for detecting code fragment clones. The testing
system structure is presented in Section VI. Section VII of the
paper presents the results of the experimental evaluation. The
final section concludes the paper.

II. BACKGROUND

In this section main ideas used in the work are introduced:

code clone types and PDG. Both source and binary code

clone types are defined in the Subsection A. And the

Subsection B will cover the description of the PDG, its

components, and its uses.

A. Code clone types

It is accepted [4] that source code clones have four types.
While the definition of source code clones is well-established,
the definition of binary code clones has minor differences due
to its specifics. The definition of source code clone types:

 Type 1: Two source code fragments that are identical
except for variations in whitespaces and comments,

 Type 2: Two source code fragments that can differ
by identifiers, literals, and types. This type also
includes Type 1 clones,

 Type 3: Two source code fragments with additions,
deletions, or modifications of instructions. Includes
Type 2 clones too. Type 3 clones are also referred to
as non-exact clones,

 Type 4: Two source fragments that perform the same
calculations but use different instructions. Type 4
clones are also referred as semantic clones.

TABLE I. EXAMPLE OF SOURCE CODE CLONE TYPES.

Original code Type-1

float sum = 0.0;

 for (int i = 0; i<n; i++){

 sum = sum + F[i];

 }

 float sum = 0.0; // Comment

 for (int i = 0; i<n; i++){

 ___ sum = sum + F[i];

 }

Type-2 Type-3

 int sum1 = 0; // Comment

 for (int i = 0; i<n; i++){

 ___ sum1 = sum1 + F[i];

 }

 int prod = 1; // Comment

 for (int i = 0; i<n; i++) {

 ___ prod = prod * F[i];

 }

Type-4

int factorial_rec (int n) {

 if (n <= 1) {

 return 1;

 } else {

 return n * factorial_rec (n - 1);

 }

}

int factorial_iterative(int n) {

 int result = 1;

 for (int i = 1; i <= n; ++i) {

 result *= i;

 }

 return result;

}

As there are no comments and whitespaces in binary code,
a slightly different definition for binary code clone types is
used. Binary code clone types [5] are:

 Type 1: Two identical binary code fragments.

 Type 2: Two binary code fragments that can differ
by registers, literals, and operand sizes. This type
also includes Type 1 clones.

 Type 3: Two binary code fragments with additions,
deletions, or modifications of instructions. Includes
Type 2 clones too. Type 3 clones are also called non-
exact clones.

 Type 4: Two binary fragments that have the same
calculations but use different instructions.

TABLE I and TABLE II present examples of source and binary

clone types, respectively. In both tables, original code and all

clone types are presented.

TABLE II. EXAMPLE OF BINARY CODE CLONE TYPES.

Original code BinType-1

mov [ebp+var_1], 5

mov eax, [ebp+var_1]

iadd eax, [ebp+var_4]

mov [ebp+var_1], 5

mov eax, [ebp+var_1]

iadd eax, [ebp+var_4]

BinType-2 BinType-3

mov [ebp+var_1], 10

mov ecx, [ebp+var_1]

iadd ecx, [ebp+var_4]

mov [ebp+var_1], 10

mov ecx, [ebp+var_1]

iadd ecx, [ebp+var_4]

BinType-4

factorial_rec:

 pushq %rbp

 movq %rsp, %rbp

 subq $16, %rsp

 movl %edi, -4(%rbp)

 cmpl $1, -4(%rbp)

 jg .L2

 movl $1, %eax

 jmp .L3

.L2:

 movl -4(%rbp), %eax

 subl $1, %eax

 movl %eax, %edi

 call factorial_rec

 imull -4(%rbp), %eax

.L3:

 ret

factorial_O3:

 movl $1, %eax

 cmpl $1, %edi

 jle .L1

 .p2align 4,,10

 .p2align 3

.L2:

 movl %edi, %edx

 subl $1, %edi

 imull %edx, %eax

 cmpl $1, %edi

 jne .L2

.L1:

 ret

B. Program dependence graph

PDG is a directed graph that combines data and control

dependencies. The vertices of PDGs are program statements
and the edges are data and control dependencies between

them. PDGs are used in various applications, such as

compiler optimizations, program analysis, and software

engineering tasks (like refactoring, debugging). As PDG

makes explicit both the data and control dependencies

between operations of the program, that makes it useful for

understanding complex program behaviors and improving

software quality and efficiency.

III. RELATED WORK

There are many works related to code clone detection.

However, most of them can find only clones of a whole

function. Our method deals with every fragment of code
inside a function. Obviously, it also finds function clones.

8Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 16 / 29

Code clone detection techniques are divided into the

following groups: text-based, token-based, tree-based,

metrics-based, graph-based, and machine-learning based.

Also, there are numerous hybrid methods combining several

techniques for clone detection.
In the case of a text-based approach [6] [7] [8] [9], two

code fragments are compared in the form of text/strings. It

only finds Type 1 clones. In the case of a token-based

approach [10] [11] [12] [13], the entire code is transformed

into a sequence of tokens. It is more robust against code

changes than text-based techniques, which allows it to find

Type 1 and Type 2 clones.

Tree-based approaches [14] [15] [16] [17] use parse trees

or Abstract Syntax Trees (AST) of the analyzable code. Then,

similar subtrees are detected using tree-matching algorithms.

It can find all three types of clones. But as a rule, this

approach suffers in precision for Type 3 clone detection,
because instructions difference strongly changes the

underlying tree structure.

In the case of a metrics-based approach [18] [19] [20]

[21], different types of metrics are calculated for code

fragments. Then these metrics are compared to find similar

code fragments. Usually, for calculating different types of

metrics the code is converted into some graph representation,

such as AST or PDG. This approach suffers in precision and

produces many false positives.

In the case of a graph-based approach [22] [23] [24] [25],

a PDG or just a Control Flow Graph (CFG) is generated from
the code. Then maximal isomorphic or similar (it may be

defined differently for each method) subgraphs are searched.

PDG-based approaches are robust to the insertion and

deletion of code, reordered instructions, intertwined and non-

contiguous code. However, they have higher asymptotic

complexity and may not be scalable.

In the case of machine learning-based techniques [26]

[27] [28] [29], the focus is on training models to classify or

cluster similar code fragments. Patterns are learned from a

dataset containing examples of both similar and dissimilar

codes. Learning algorithms are well-suited for code clone

detection tasks because they can learn and identify complex
patterns. However, learning-based techniques need large and

clean datasets of code clones to work properly, but these are

not available for all programming languages. Many methods

rely on existing code clone detection tools to gather data for

machine learning, but these tools are often unreliable and

prone to errors.

In addition, there are hybrid methods, which combine

several techniques for clone detection. Some examples are

text-based and tree-based [30], token-based and tree-based

[31], metric-based and graph-based [32], tree-based and

learning-based [33] [34], etc. They addresses the challenge of
individual methods.

Thus, each of the discussed techniques has its advantages

and disadvantages. An appropriate method can be selected

based on the problem that needs to be solved.

IV. CODE FRAGMENT CLONE DETECTION

The developed algorithm takes a code fragment, a project,

and a percentage of similarity as its input. It analyzes all the

functions within the project and identifies clones of the

specified fragment. The identified clones must have at least the

specified percentage of similarity. It is important to note that

we assume the provided code fragment is within a single

function. Figure 1 provides architecture of the proposed

method. It has two primary components: the construction of

PDGs and the matching of these graphs.

A. Construction of PDGs

PDGs are constructed for the specified fragment and all
functions of the target program. Vertices of the PDG represent
instructions of Intermediate Representation (IR), and edges
are constructed based on data and control dependencies
between them. The construction process of PDGs varies for
binary and source code as the code representation differs, and
the specific details are outlined in the implementation section.
For the vertices of the PDG, instead of “original form”
instructions of IR are used, as it simplifies and standardizes
the code, allowing tools to be reused across different
languages and architectures.

To construct the PDG for the specified fragment, the PDG
for the entire function containing the fragment is first created.
Then, a subgraph corresponding to the specified fragment is
extracted to serve as the final PDG of the fragment. Basically,
it is the smallest induced subgraph of the entire function’s
PDG that includes all instructions of the specified fragment.
For simplicity, we will call it a fragment's PDG. The
constructed graphs are then utilized in the next step, where
instructions from the specified fragments are matched against
all instructions within the functions throughout the entire
project.

B. Graphs’ matching

Once the PDGs are constructed, the algorithm starts

matching the vertices of the fragment's PDG with the vertices

Figure 1. Architecture of the method.

9Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 17 / 29

of each function's PDG. It is important to note that within a

single function's PDG, there can be detected multiple

matches indicating the existence of several clones of the

specified fragment within that function.
Similarity percentage for the detected fragment clone is

calculated by the following formula:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑐𝑜𝑚𝑚𝑜𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑐𝑜𝑢𝑛𝑡

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑃𝐷𝐺′𝑠 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑐𝑜𝑢𝑛𝑡
∗ 100%

The matching algorithm between the fragment's and a

function's PDGs involves the following phases:

1. Construction of the set of initial matched vertex

pairs,

2. Iterative expansion of matched vertex pairs.

The first vertex of each pair is from the fragment’s PDG

and the second is from the function’s PDG. Corresponding

instructions for the vertices of each pair have the same

operation code. The algorithm then selects one of the

unconsidered pairs from the set to start expanding process.
From the selected pair, the algorithm temporarily matches

previously unmatched pairs of vertices using specific

subroutines. These subroutines match vertices based on their

features and adjacent edges, ensuring that vertices with

identical operation codes are paired. If the temporarily

matched vertices meet all specified conditions, they are

finally matched. This process is repeated for all vertices that

are not matched yet. The expanding phase stops when no new

temporarily matched pairs can be identified. The output of

this process is the list of sets, where each set contains

matched vertex pairs. Further details will be provided later in
the text. For simplicity, we will be using some notations that

are described below:

 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 - PDG of the given function,

 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 - PDG of the given fragment,

 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 - the set of initial pairs of vertices

(𝑣, 𝑣 ∗) , where 𝑣 ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 , 𝑣 ∗∈

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺,

 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 - the set of pairs

(𝑣, 𝑣 ∗) , where 𝑣 ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 , 𝑣 ∗∈
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺, which are temporarily matched, but

need to pass several checks before final matching,

 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 - the set of pairs (𝑣, 𝑣 ∗), where 𝑣 ∈

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 , 𝑣 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 , which are

finally matched,

 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝐺) – the set of finally matched vertices of

graph 𝐺,

 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 - the set of (𝑣, 𝑣 ∗)

incompatible pairs of vertices, where 𝑣 ∈
𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺, 𝑣 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺,

 𝑜𝑝𝑐𝑜𝑑𝑒(𝑣) - is an operation code corresponding to a

vertex 𝑣,

 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣)/ 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣) - the set of predecessor /

successor vertices of 𝑣 by control dependence,

 𝑝𝑟𝑒𝑑_𝑑𝑎𝑡𝑎(𝑣) / 𝑠𝑢𝑐𝑐_𝑑𝑎𝑡𝑎(𝑣) - the set of

predecessor / successor vertices of 𝑣 by data

dependence,

 𝑏𝑏(𝑣) - the list of vertices in the same basic block as

vertex 𝑣,

 𝑝𝑟𝑒𝑑_𝑏𝑏(𝑣)/ 𝑠𝑢𝑐𝑐_𝑏𝑏(𝑣) - the list of vertices in the

predecessor / successor basic blocks of vertex 𝑣.

1) Construction of the set of initial matched vertex pairs.

The phase of selecting initial pairs of vertices aims to find

such pairs of vertices from 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 and

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 , which are likely to be matched together.

Afterward, they are used as a starting point for the graphs’

matching process. The amount of such vertices should be as

small as possible for efficiency. To achieve this, the initial

vertices in PDGs are selected using various subroutines,

chosen based on their effectiveness during the experimental

evaluation.

The first subroutine selects all vertices (𝑣, 𝑣 ∗)with no

incoming edges in both PDGs, where 𝑣 ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺

and 𝑣 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 . These vertices typically

correspond to the first instructions of the specified fragment
and the function. Then, from the obtained sets of vertices, the

subroutine constructs all possible combinations of pairs,

where the corresponding instructions have the same

operation code, and adds them to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠.

The second subroutine collects vertices with the

maximum incoming data dependencies in 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺.

Then it collects vertices from 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 that have an

equal or greater number of incoming data dependencies. Like

the first subroutine, this one also creates all possible
combinations of pairs from the obtained sets (ensuring that

the corresponding instructions have the same operation code)

and adds them to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 set.

The third subroutine identifies all the instructions from

the code fragment that have the maximum number of

corresponding IR instructions. It then selects instructions

from the function with the same number of corresponding IR

instructions. Subsequently, the subroutine collects vertices

corresponding to the first IR instructions of the mentioned

instructions. Finally, similar to other subroutines, it generates

all possible combinations of pairs from the obtained sets,
ensuring that the corresponding instructions have the same

operation code, and adds them to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 set.

2) Iterative expansion of matched vertex pairs.

The expanding phase temporarily matches unconsidered

vertices from 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 and the 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 .

Next, it checks temporarily matched vertices for conditions.

If a pair passes conditions checking, it is placed to

𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 list, otherwise it is placed to

𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 list. Expanding starts from

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 and iteratively matches vertices until no

temporarily matched vertices can be detected.

10Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 18 / 29

a) Temporarily matching.

The matching algorithm involves five temporary

matching subroutines. The results obtained from these

subroutines are then checked against several conditions

(described in the next section), and some of the temporarily
matched pairs may be filtered out. The matching process is

complete when no new pairs of vertices are temporarily

matched, meaning that the algorithm has exhausted all

possible matches between the fragment's PDG and the

function's PDG.

For each pair of vertices (𝑢, 𝑢 ∗) temporary matching

is allowed if 𝑜𝑝𝑐𝑜𝑑𝑒(𝑢) == 𝑜𝑝𝑐𝑜𝑑𝑒(𝑢 ∗) , the size

of 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑢) equals to the size of 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑢 ∗), and

the size of 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑢) equals to the size of 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑢 ∗),

where (𝑢, 𝑢 ∗) ∉ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 and (𝑢, 𝑢 ∗) ∉

𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠.

In all subroutines, two vertices (𝑣, 𝑣 ∗) can be

temporarily matched if (𝑣, 𝑣 ∗) ∉ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 ,
(𝑣, 𝑣 ∗) ∉ 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 and corresponding

instructions have the same opcode. The subroutines are

applied in the specific order, and if one of them temporarily
matches a pair, the others will not be applied. At the

beginning 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 ← ∅ . Below are

descriptions of five temporarily matching subroutines:

1. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠

temporarily match vertices (𝑢, 𝑢 ∗), where 𝑢 ∈
𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣) and 𝑢 ∗∈ 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣 ∗) sets, and add them

to 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 if temporary matching is

allowed. Do the same for vertices (𝑢, 𝑢 ∗) from

𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣) and 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣 ∗) sets. If

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 is not empty, go to

conditions checking phase.
2. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠

temporarily match vertices (𝑢, 𝑢 ∗), where 𝑢 ∈ 𝑏𝑏(𝑣) and

𝑢 ∗∈ 𝑏𝑏(𝑣 ∗) lists, and add them to

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 if temporary matching is

allowed. If 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 is not empty, go

to conditions checking phase.

3. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠

temporarily match vertices(𝑢, 𝑢 ∗), where 𝑢 ∈ 𝑝𝑟𝑒𝑑_𝑏𝑏(𝑣)

and 𝑢 ∗∈ 𝑝𝑟𝑒𝑑_𝑏𝑏(𝑣 ∗) lists, and add them to

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 if temporary matching is

allowed. Do the same for vertices from 𝑠𝑢𝑐𝑐_𝑏𝑏(𝑣) and

𝑠𝑢𝑐𝑐_𝑏𝑏(𝑣 ∗) . If 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 is not

empty, go to conditions checking phase.

4. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠

temporarily match vertices (𝑢, 𝑢 ∗) , where 𝑢 ∈
𝑝𝑟𝑒𝑑_𝑑𝑎𝑡𝑎(𝑣) and 𝑢 ∗∈ 𝑝𝑟𝑒𝑑_𝑑𝑎𝑡𝑎(𝑣 ∗) sets, and add to

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 if temporary matching is

allowed. Do the same for vertices from 𝑠𝑢𝑐𝑐_𝑑𝑎𝑡𝑎(𝑣) and

𝑠𝑢𝑐𝑐_𝑑𝑎𝑡𝑎(𝑣 ∗) sets. If 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 is

not empty, go to conditions checking phase.

5. Temporarily match pairs(𝑢, 𝑢 ∗) ∈ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 ,

and add to 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 , if (𝑢, 𝑢 ∗) ∉
𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 and (𝑢, 𝑢 ∗) ∉ 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠.

b) Conditions checking.

The next stage is the checking of temporarily matched

pairs. After each iteration of temporarily matching, each pair

(𝑣, 𝑣 ∗) ∈ 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 is checked for

conditions. If the pair satisfies all conditions, it is moved to

𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 , otherwise to 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 . The

conditions are described below:

1. 𝑝𝑟𝑒𝑑_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑣, 𝑣 ∗) returns 𝑓𝑎𝑙𝑠𝑒 if ∃𝑝 ∈

𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣) where 𝑝 ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺) and

∄𝑝 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 such that 𝑝 ∗∈ 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣 ∗) and

(𝑝, 𝑝 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠, otherwise returns 𝑡𝑟𝑢𝑒.

2. 𝑠𝑢𝑐𝑐_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑣, 𝑣 ∗) returns 𝑓𝑎𝑙𝑠𝑒 if ∃𝑠 ∈
𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣) where 𝑠 ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺) and

∄𝑠 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 such that 𝑠 ∗∈ 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣 ∗) and

(𝑠, 𝑠 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠, otherwise returns 𝑡𝑟𝑢𝑒.

V. IMPLEMENTATION

We implemented the proposed method in a tool called
FCD. It is a command-line tool, that receives the following
inputs:

1. The project path and the function name containing
the code fragment to be analyzed,

2. The boundaries of the code fragment: the start and
end line numbers for source code, the start and end memory
relative addresses for binary code,

3. The project in which to search for clones of the
specified fragment,

4. An optional minimum similarity percentage
parameter, which is used to filter out clones that are less
similar than the specified value. This parameter belongs to (0,
100], and has a default value of 90. The 90% similarity is
chosen to detect highly similar code fragments, which is more
of the interest to developers.

The process of PDG’s generation differs for source and
binary code, however, the matching parts are the same. For
source code PDG’s generation FCD uses LLVM intermediate
representation [35]. To get PDGs for source code a new pass
is added in LLVM, which uses control flow information, use-
def chains and alias analysis. For binary code PDGs
generation FCD uses REIL [36] intermediate representation.
At first, it uses IDA Pro [37] disassembler to restore assembler
and control flow graphs. Then the obtained assembler is
translated to the REIL intermediate language using Binnavi
[38]. Lastly, it uses Binside [39] to generate PDGs, which was
developed by our team previously.

Code fragment clone detection algorithm is implemented
in C++ language. The output of the tool consists of a set of
JSON files containing information about the detected clones.
This information includes functions’ names corresponding to
matched fragments, similarity percentage, all pairs of matched
instructions, and other relevant details.

11Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 19 / 29

VI. TESTING SYSTEM

To evaluate FCD algorithm, we have designed and
implemented a testing system, which generates tests, executes
FCD and calculates precision, recall, and Root Mean Square
Error (RMSE) to assess their effectiveness. Test generation is
done using PDGs of real-world projects. For each PDG, it
creates a duplicate, removes some vertices, and considers it as
fragment's PDG. It randomly selects a basic block and
removes corresponding vertices until the desired similarity
percentage is reached. After removing a vertex, its
predecessor vertices are connected with the successor ones. If
all vertices in the chosen basic block are removed and the
provided similarity is still not met, the system randomly
selects a new basic block and starts removing consecutive
vertices from that block. This process continues until the
required similarity percentage is not met.

It then runs the FCD algorithm on generated PDGs’ pairs
and compares the resulting similarity percentage with the one
specified to testing system. Ideally, the similarity percentages
of the created PDGs’ pairs by the testing system should match
with the results from the FCD algorithm. The testing system
saves information about the correspondence of the original
and the generated PDG vertices, which is used to calculate
precision, recall, and RMSE.

VII. RESULTS

FCD is tested with the discussed testing system on projects

OpenSSL, JasPer, c-ares, Rsync. Tables TABLE III and TABLE IV

present the results of source and binary code clone detection,

respectively. The results are averaged across similarity

thresholds 100%, 90%, 80%, and 70%.

The tool achieves perfect results when generated clones

are 100% similar. Furthermore, FCD consistently

demonstrated high accuracy across lower thresholds, as

reflected in the averaged results in the tables. However,

binary code clone detection’s speed is slow compared to
source code clone’s detection time, as for binary bigger

PDG’s are generated.

TABLE III. SOURCE CODE CLONE RESULTS

P
ro

je
c
t

C
/C

+
+

 c
o

d
e

li
n

e
s

P
re

c
is

io
n

R
e
c
a

ll

R
M

S
E

F
C

D
 s

p
e
e
d

c-ares

1.15.0
61087 97.5 95.2 6.1 0m 0.29s

jasper

1.900.1
28279 95.4 93 6 0m 15s

openssl

1.0.2t
310922 97 95.1 7.7 0m 2s

rsync

3.1.3
44832 96 91.9 10.7 0m 26s

On average, FCD has 96.5% precision, 93.8% recall and

7.6% RMSE for source code. And on average, FCD has

96.9% precision, 92.9% recall and 5.4% RMSE for binary

code. Despite high rates of the tool’s precision and recall,

there are still certain cases that the tool may not detect

correctly. This occurs when the copied code is modified by

adding a new instruction between each original instruction,

i.e., one instruction from the original code, followed by one

new instruction, then another from the original, and so on.
However, if the copied code is modified in such a way that a

whole basic block is added the tool identifies it correctly.

TABLE IV. BINARY CODE CLONE RESULTS

The tool is not compared with the related tools as there is

no common benchmark for evaluation. While there are some

benchmarks available for C/C++ languages, they include

only Type-4 clones, which our tool does not detect.

Additionally, each tool uses its own method to calculate

similarity levels, which results in inconsistent evaluations of

the same code fragments.

VIII. CONCLUSION

The study proposes a novel technique to identify

duplicated code fragments. It overcomes limitations of

existing clone detection tools, which typically target only full

functions and specialize in either source or binary code

analysis. Experimental evaluation on real-world software

projects demonstrates the high precision and effectiveness of

the proposed clone detection approach for source and binary

code. As conclusion we can clearly see that PDG captures

enough information for source and binary code to enable

accurate clone detection for both cases. Moreover, a unified

algorithm can be used for maximal similar subgraphs

detection in both cases.

P
ro

je
c
t

S
iz

e
 o

f
th

e

b
in

a
ry

A
rc

h
it

e
c
tu

re

P
re

c
is

io
n

R
e
c
a

ll

R
M

S
E

F
C

D
 s

p
e
e
d

libcares 2.3.0

(c-ares 1.15.0)

86

KiB
x86-64 98.9 95.6 4.6 0m 41s

libcares 2.3.0

(c-ares 1.15.0)

96

KiB
x86 97.9 93.4 5.5 0m 43s

libcares 2.3.0

(c-ares 1.15.0)

146

KiB
ARM 98.9 95.6 4.6 0m 49s

jasper 1.900.1
1.5

MiB
x86-64 96 92.1 5.4 3m 5s

jasper 1.900.1
368

KiB
x86 95 90 6.5 2m 1s

jasper 1.900.1
478

KiB
ARM 94.1 89.8 6.1 2m 8s

openssl 1.0.2t
536

KiB
x86-64 99.9 98.1 3.8 1m 10s

openssl 1.0.2t
507

KiB
x86 98.8 95.8 3.9 0m 57s

openssl 1.0.2t
634

KiB
ARM 97.9 95.6 4.4 1m 25s

rsync 1.3.2
1.7

MiB
x86-64 96 91 6.6 3m 34s

rsync 1.3.2
1.6

MiB
x86 94.9 88.9 6.7 3m 21s

rsync 1.3.2
1.8

MiB
ARM 94.1 88.8 7.4 3m 58

12Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 20 / 29

ACKNOWLEDGMENT

The work was supported by the Science Committee of RA,
in the frames of the research project 21SCG-1B003.

REFERENCES

[1] C. K. Roy and J. R. Cordy, "An empirical study of function clones

in open source software systems," in Proceedings of the 15th

Working Conference on Reverse Engineering, 2008, pp. 81-90.

[2] "Synopsis," 2024 Open Source Security and Risk Analysis Report,

[Online]. Available:

https://www.synopsys.com/content/dam/synopsys/sig-

assets/reports/rep-ossra-2024.pdf. [retrieved: 08.2024].

[3] R. Koschke and S. Bazrafshan, "Software-clone rates in open-source

programs written in c or c++," 2016 IEEE 23rd International

Conference on Software Analysis, Evolution, and Reengineering

(SANER), vol. 3, pp. 1-7, 2016.

[4] C. K. Roy, J. R. Cordy, and R. Koschke, "Comparison and

evaluation of code clone detection techniques and tools: A

qualitative approach," Science of Computer Programming, vol. 74,

no. 7, pp. 470-495, 2009.

[5] H. K. Aslanyan, "Effective and Accurate Binary Clone Detection,"

Mathematical Problems of Computer Science, vol. 48, pp. 64-73,

2017.

[6] D. Tukaram and U. Maheswari B, "Design and development of

software tool for code clone search, detection, and analysis," in 2019

3rd International conference on Electronics, Communication and

Aerospace Technology (ICECA), pp. 1002-1006, 2019.

[7] C. Ragkhitwetsagul and J. Krinke, "Using

compilation/decompilation to enhance clone detection," in 2017

IEEE 11th International Workshop on Software Clones (IWSC),

IEEE, pp. 1–7, 2017.

[8] T. Kamiya, "An execution-semantic and content-and-context-based

code-clone detection and analysis," in 2015 IEEE 9th International

Workshop on Software Clones, IWSC 2015 - Proceedings, pp. 1–7,

2015.

[9] J. Chen, M. H. Alalfi, T. R. Dean, and Y. Zou, "Detecting Android

malware using clone detection," Journal of Computer Science and

Technology, vol. 30, pp. 942-956, 2015.

[10] L. Yang, Y. Ren, J. Guan, B. Li, and J. Ma, "FastDCF: a partial index

based distributed and scalable near-miss code clone detection," in

Parallel and Distributed Computing, Applications and

Technologies: 22nd International Conference, PDCAT 2021, pp.

210-222, Guangzhou, China, 2021.

[11] Y.-L. Hung and S. Takada, "CPPCD: a token-based approach to

detecting potential clones," in IEEE 14th International Workshop on

Software Clones (IWSC), IEEE, pp. 26–32, 2020.

[12] Y. Wu et al., "SCDetector: software functional clone detection based

on semantic tokens analysis," in Proceedings of the 35th IEEE/ACM

International Conference on Automated Software Engineering, , pp.

821–833, New York, NY, USA: ACM, 2020.

[13] K. E. Rajakumari, "Comparison of token-based code clone method

with pattern mining technique and traditional," in Proceedings of

2019 3rd IEEE International Conference on Electrical, Computer

and Communication Technologies, ICECCT 2019, pp. 1–6, 2019.

[14] Y. Yu, Z. Huang, and G. Shen, "ASTENS-BWA: searching partial

syntactic similar regions between source code fragments via,"

Science of Computer Programming, vol. 222, p. 102839, 2022.

[15] W. Wen et. al., "Cross-project software defect prediction based on

class code similarity," IEEE Access, vol. 10, p. 105485–105495,

2022.

[16] Y. Gao et al., "TECCD: A Tree Embedding Approach for Code

Clone Detection," in 2019 IEEE International Conference on

Software Maintenance and Evolution, ICSME 2019, pp. 145–156,

2019.

[17] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, "DECKARD :

Scalable and accurate tree-based detection of code clones," in

Proceedings of the 29th International Conference on Software

Engineering, 2007.

[18] S. Parsa, M. Zakeri-Nasrabadi, and M. Ekht, "Method name

recommendation based on source code metrics," Journal of

Computer Languages, vol. 74, no. 101177, pp. 1-13, 2023.

[19] H. Jin, Z. Cui, S. Liu, and L. Zheng, "Improving code clone

detection accuracy and efficiency based on code complexity

analysis," in n 2022 9th International Conference on Dependable

Systems and Their Applications (DSA), IEEE, pp. 64–72, 2022.

[20] K. W. Nafi, T. S. Kar, B. Roy, C. K. Roy, and K. A. Schneider,

"CLCDSA: cross language code clone detection using syntactical

features and API documentation," in 2019 34th IEEE/ACM

International Conference on Automated Software Engineering, ASE

2019, pp. 1026–1037, 2019.

[21] M. Sudhamani and L. Rangarajan, "Code similarity detection

through control statement and program features," Expert Systems

with Applications, vol. 132, no. 15, pp. 63-75, 2019.

[22] W. Wen et al., "Cross-project software defect prediction based on

class code similarity," IEEE Access, vol. 10, pp. 105485-105495,

2022.

[23] H. K. Aslanyan, S. F. Kurmangaleev, V. G. Vardanya, M. S.

Arutunian, and S. S. Sargsyan, "Platform-independent and scalable

tool for binary code clone detection," in Proceedings of the Institute

for System Programming of the RAS, pp. 215-226, 2016.

[24] Z. Xue et al., "SEED: semantic graph based deep detection for type-

4 clones," in International Conference on Software and Software

Reuse, pp. 120–137, 2022.

[25] N. Mehrotra et al., "Modeling functional similarity in source code

with graph-based Siamese networks," IEEE Transactions on

Software Engineering, vol. 48, no. 10, pp. 3771-3789, 2022.

[26] A. Zhang et al., "Learn to align: a code alignment network for code

clone detection," in 2021 28th Asia-Pacific Software Engineering

Conference (APSEC), pp. 1-11, 2021.

[27] N. D. Q. Bui, Y. Yu, and L. Jiang, "InferCode: Self-Supervised

Learning of Code Representations by Predicting Subtrees," in 2021

IEEE/ACM 43rd International Conference on Software Engineering

(ICSE), pp. 1186-1197, 2021.

[28] Y. Li, C. Yu, and Y. Cui, "TPCaps: a framework for code clone

detection and localization based on improved CapsNet," Applied

Intelligence, vol. 53, p. 16594–16605, 2022.

[29] S. Patel and R. Sinha, "Combining holistic source code

representation with siamese neural networks for detecting code

clones," in IFIP International Conference on Testing Software and

Systems, pp. 148–159, 2022.

[30] A. Schafer, W. Amme, and T. S. Heinze, "Stubber: compiling source

code into bytecode without dependencies for Java code clone

detection," in 2021 IEEE 15th International Workshop on Software

Clones (IWSC), IEEE, pp. 29-35, Oct. 2021.

[31] W. Wang, Z. Deng, Y. Xue, and Y. Xu, "CCStokener: Fast yet

accurate code clone detection with semantic token," Journal of

Systems and Software, vol. 199, p. 111618, May 2023.

[32] H. Aslanyan et al., "Scalable Framework for Accurate Binary Code

Comparison," in 2017 Ivannikov ISPRAS Open Conference

(ISPRAS), pp. 34-38, 2017.

[33] A. Zhang, L. Fang, C. Ge, P. Li, and Z. Liu, "Efficient transformer

with code token learner for code clone detection," Journal of

Systems and Software, vol. 197, p. 111557, Mar. 2023.

[34] Y. Wu, S. Feng, D. Zou, and H. Jin, "Detecting semantic code clones

by building AST-based Markov chains model," in 37th IEEE/ACM

13Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 21 / 29

International Conference on Automated Software Engineering, pp.

1-13, New York, NY, USA, Oct. 2022.

[35] "The LLVM Compiler Infrastructure," [Online]. Available:

www.llvm.org. [retrieved: 08.2024].

[36] "REIL - The Reverse Engineering Intermediate Language.

Zynamics," [Online]. Available:

https://www.zynamics.com/binnavi/manual/html/reil_language.htm

. [retrieved: 08.2024].

[37] "IDA Pro," [Online]. Available: https://hex-rays.com/ida-pro/.

[retrieved: 08.2024].

[38] "BinNavi," [Online]. Available:

https://www.zynamics.com/binnavi.html. [retrieved: 08.2024].

[39] H. Aslanyan, M. Arutunian, G. Keropyan, S. Kurmangaleev, and V.

Vardanyan, "BinSide : Static Analysis Framework for Defects

Detection in Binary Code," in 2020 Ivannikov Memorial Workshop

(IVMEM), pp. 9-14, Orel, Russia, 2020.

14Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 22 / 29

Addressing EvoSuite’s Limitations: Method-Specific Test Case Generation and
Execution in Controlled Environments

Carlos Galindo, Manuel Gregorio, Josep Silva
Valencian Research Institute for Artificial Intelligence

Universitat Politècnica de València
Valencia, Spain

e-mail: {carlosgalindo,magre1,josilga}@upv.es

Abstract— Unit testing is crucial for ensuring software quality
and reliability. Although recent advancements in artificial
intelligence, particularly Large Language Models (LLMs),
offer promise for automating unit test generation, they often
struggle with compilation due to an insufficient understanding
of specific code rules and execution errors, primarily caused by
incorrect assertions. This paper focuses on EvoSuite, a leading
state-of-the-art Search-Based Software Testing (SBST) tool
that originated in academic research and has proven to be a
more reliable alternative for generating unit tests, particularly
in Java. EvoSuite excels by directly targeting code coverage
and optimizing test generation based on actual program
behavior, overcoming many challenges LLMs face. We share
our experiences and challenges with EvoSuite across various
projects, which have provided valuable insights for its
subsequent application in ASys, a system for automatically
evaluating Java code. The study explores challenges such as
generating tests for overloaded methods and running tests
across different environments. We also discuss solutions for
these challenges, including method-specific test generation
strategies and ensuring test execution compatibility. Our
findings highlight the limitations and potential improvements
for EvoSuite, offering valuable insights for developers and
researchers aiming to enhance automated unit test generation
in their projects.

Keywords- EvoSuite; automated test unit generation.

I. INTRODUCTION

Unit tests are a type of software testing that focuses on
verifying the functionality of the smallest unit of a program,
typically a single function or method. These tests are
fundamental in the software development process to ensure
the quality and reliability of systems. However, writing unit
tests can be complex and time-consuming, especially as
program complexity increases. With the advancement of
Artificial Intelligence (AI), particularly Large Language
Models (LLMs), new opportunities have emerged for
automating the generation of unit tests. Recent studies have
explored using ChatGPT [1] for this purpose, but the results
have shown that the generated tests often have numerous
compilation errors, mainly because the tool lacks a deep
understanding of specific code rules, such as access
restrictions and the proper use of abstract classes, and
execution errors, primarily caused by incorrect assertions due
to an inadequate grasp of the focal method's intention [2].
Tools like ChatTester [2] and ChatUnitTest [3] have been
developed to address these limitations, improving the

generated tests' accuracy. ChatUnitTest achieves this by
integrating with the ChatGPT API, albeit at an additional
cost.

Despite these advancements in AI, Search-Based
Software Testing (SBST) techniques [3] remain the most
effective solution for generating unit tests in Java. These
techniques, used by various tools, have demonstrated
superior results compared to LLMs, due to their specialized
focus on testing [4]. One of the most powerful and extended
techniques is EvoSuite [5], initially developed as an
academic research tool to advance automated unit test
generation techniques. EvoSuite has excelled in competitions
such as the SBST Tool Competition 2022 [6] and the SBFT
Tool Competition 2023 [7], demonstrating its effectiveness
and obtaining the highest overall mark despite challenges
related to usability and inherent limitations of the Java
language [8]. Due to its open-source licensing, EvoSuite has
not only become a cornerstone in academic research, where
its testing architecture has been widely adopted and extended
in various projects, but it has also been tested and applied in
industrial contexts. This includes experiments on large-scale
open-source projects and even some industrial systems,
confirming its potential in practical applications [9]. While
these industrial applications demonstrate the tool's
versatility, they also highlight challenges in scaling up to the
complexity of real-world systems, an area where continued
research and development are essential.

Nevertheless, EvoSuite has its own issues. Despite being
the leading tool in its field and having proven that individual
developers may not be able to find more faults than EvoSuite
[10], it faces challenges that reflect broader issues within
automated test generation tools. For instance, while
achieving a completely bug-free software might be
unrealistic, the focus remains on identifying and mitigating
specific challenges that can hinder fault detection. Studies,
such as [11], have pointed out that automatically generated
tests often struggle with issues like incorrect oracles and
unexpected exceptions, which can significantly impact their
effectiveness. Moreover, as highlighted in [12], although
high code coverage is correlated with an increased likelihood
of fault detection, it is not a definitive guarantee. In practice,
this means that while EvoSuite can achieve high coverage,
certain types of faults, particularly those related to more
complex software behaviors, might still go undetected. The
study shown in [13] further elaborates on this, indicating that
code coverage serves as a moderate indicator of fault
detection effectiveness, with its strength varying depending

15Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 23 / 29

on the testing profile. Similarly, [14] discusses the link
between coverage and software reliability, supporting the
notion that focusing on coverage is still a practical approach,
though not without its limitations.

Given these findings, while recognizing the limitations,
our work continues to prioritize coverage in the use of
EvoSuite, as it remains a practical and widely accepted
measure of test suite effectiveness in detecting faults.
However, we acknowledge that the ultimate goal is not
solely to achieve high coverage but also to ensure that the
generated tests effectively uncover real and critical bugs in
the software. This dual focus on coverage and fault detection
is crucial for improving the reliability of automated testing
tools like EvoSuite. By refining these tools to better handle
complex scenarios and enhance the accuracy of test oracles,
we strive to contribute to the ongoing efforts in advancing
automated testing practices, ultimately aiming for more
dependable and effective software testing outcomes.

The contributions of this paper include a detailed
exploration of the practical application of EvoSuite in ASys
[15], a system designed to grade Java programs
automatically. ASys relies heavily on reflection to inspect
the source code of the target program and discover its
internal structure and dependencies. With the information
gathered, ASys can modify the target program’s source code
at runtime to facilitate the generation of white-box unit tests.
In this context, unit tests are crucial in validating students'
code submissions by providing precise and targeted feedback
on individual functions or methods. This targeted validation
aligns with ASys's educational objectives, ensuring that each
aspect of the student's solution is thoroughly evaluated. To
achieve this, ASys leverages EvoSuite, which is executed by
ASys at runtime on the user’s machine. To facilitate this
integration, we conducted numerous tests to explore the
feasibility of most of the options and facilities offered by
EvoSuite. ASys began as a desktop application but has
evolved into a client-server architecture with a third
component installed on the end user’s machine. This third
component is responsible for grading and evaluating
programming exercises and has been extended to also handle
the generation and execution of unit tests using EvoSuite. As
a result, ASys now poses challenges on EvoSuite, such as the
need to distinguish test cases generated for overloaded
methods and the need for running the test cases on different
environments (the teacher and the student side).

This paper aims to share our experience with EvoSuite,
illustrating specific issues we identified, such as the
insufficient handling of polymorphism and the lack of
efficiency and effectiveness in generating tests for specific
methods. While EvoSuite provides a solid foundation, our
findings suggest that more advanced engines could
incorporate features like improved static analysis and
dynamic adaptability to better manage these challenges.
Developing these new engines would enhance coverage
accuracy, reduce the overhead of test generation, and offer
more precise testing capabilities, ultimately providing a more
robust solution for developers and researchers. We stressed
EvoSuite and found errors in its core. Throughout our work,
we encountered several challenges and limitations. In this

paper, we highlight the problems faced, the solutions
implemented, and the findings made. These findings cannot
be found in the official tutorials [16], in the StackOverflow
responses related to EvoSuite [17], or in the official GitHub
repository for the tool [18]. We hope our experience will be a
useful guide for future developers and researchers who wish
to use EvoSuite in their projects.

Section 2 outlines our discoveries and challenges. In
Section 3, we conclude by summarizing our experiences with
EvoSuite, highlighting solutions implemented and lessons
learned.

II. FINDINGS AND CHALLENGES

This section explains the main problems found when
using EvoSuite in challenging contexts. It also describes
some possible solutions to these problems.

A. Producing tests for specific methods

For many research and industrial tasks, e.g., to produce
regression tests, it is necessary to generate unit tests for each
method under study. Unfortunately, the default behavior of
EvoSuite is to generate test files for each class in the
application but not for each method. As a result, EvoSuite
generates methods test00, test01… for a given class, and
it is difficult to identify which specific methods are being
tested by each generated test. This lack of clarity can
significantly impact test coverage, hindering developers'
ability to assess whether all relevant methods have been
adequately tested. According to previous studies [19], well-
named unit tests are essential for understanding the purpose
of a test and for navigating through a suite of tests.
Descriptive names help developers quickly identify gaps in
coverage and ensure that critical paths are thoroughly tested.
To address the problem of identifying the methods being
tested, we explored two different approaches within
EvoSuite that allow for more granular test generation. Each
approach comes with its own set of advantages and
disadvantages.

Name-based strategy. One strategy to identify the method
targeted by a generated unit test is to use the -

Dtest_naming_strategy=COVERAGE property, which
applies the algorithm proposed in [19]. This allows us to
identify the tested method in scenarios where a class contains
methods with distinct names, as shown in Table I.

TABLE I. EVOSUITE-GENERATED TESTS’ NAMES FOR METHODS WITH

DISTINCT NAMES.

Method signature Test names

boolean is9(int a) testIs9, testIs9WithNegative

boolean is10(int a)
testIs10, testIs10ReturningTrue,
testIs10WithPositive

boolean is11(int a) testIs11, testIs11ReturningTrue

Nevertheless, our tests showed that polymorphism causes the
generation of descriptive names to fail, especially when
overloaded methods have the same name but different

16Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 24 / 29

signatures. In particular, when overloaded methods have at
least two parameters with different types, the name
generation becomes inaccurate, making it difficult to
understand what is being tested (see Table II). Therefore,
while this approach improves the identification of the
methods under test in many cases, there are still limitations
when dealing with polymorphism, and a complementary
approach is needed.

TABLE II. EVOSUITE-GENERATED TESTS’ NAMES FOR OVERLOADED

METHODS (PROBLEMATIC POLYMORPHISM).

Method signature Test names

boolean is9(int a, int b)
testIs9Taking2Ints,
testIs9Taking2IntsReturningTrue

boolean is9(int a, float b)

testIs9Taking1And1ReturningTru
eAndIs9Taking1And1AndIs9Taki
ng1And1AndIs9Taking1And1Wit
hPositive0

boolean is9(int a, String b)

testIs9Taking1And1ReturningTru
eAndIs9Taking1And1AndIs9Taki
ng1And1AndIs9Taking1And1Wit
hPositive0, testIs9Taking1And1,
testIs9Taking1And1WithEmptyStr
ing

Target method. Another alternative is to use the -

Dtarget_method property, which requires the bytecode
signature of the method to be tested [20]. Unlike relying on
method names, which can sometimes be ambiguous or
prone to changes, specifying the target method via its
bytecode signature provides a precise and unambiguous
identification. EvoSuite generates a separate test file for
each method under test using this property.

This approach eliminates the need to parse the method's
name to understand which method is being tested, as each
test file is explicitly associated with a specific method
through its bytecode signature. Moreover, this method-based
separation simplifies the organization and management of
tests, making it easier to locate and maintain test cases for
individual methods within a codebase. However, this
approach also has limitations: as we show next, it can only
be used under certain circumstances.
1. In EvoSuite 1.0.6, the -Dtarget_method property is

compatible only with the BRANCH, ONLYBRANCH, and
INPUT coverage criteria. Otherwise, it is ignored.
Therefore, we can only use it by forcing these three
coverage criteria using -criterion argument.

2. Another critical issue, reported in [21] but not resolved
yet, affects EvoSuite 1.1.0 and 1.2.0 versions and
produces a NullPointerException in a class within
the library responsible for generating tests for the
WEAKMUTATION and STRONGMUTATION coverage
criterion. This library is invoked by the main class of the
search algorithm that EvoSuite has been using since
version 1.1.0, called DynaMOSA. Therefore, there are
two ways to avoid this error. The first is to change
EvoSuite's search algorithm using the -Dalgorithm
property. However, it is important to note that this

algorithm is the most effective for generating unit tests
[22]; so the cost of using this solution is a loss of
coverage, ranging from -3% to -21% with single criteria,
and from -8% to -36% with multiple criteria. Another
solution to this problem is to keep using DynaMOSA but
avoid using the weak and strong mutation coverage
criterion. This can be done by specifying the default
criteria with -Dcriterion and skipping the
WEAKMUTATION and STRONGMUTATION criteria. In this
case, the cost of this solution is a loss of mutation score
of 0.04 with weak mutation and 0.17 with strong
mutation [23].
Our tests have revealed that another problem can appear

together with the previous one: EvoSuite 1.1.0 and 1.2.0 may
struggle to achieve 100% branch coverage, which prevents
reaching 100% in other coverage criteria. This problem
occurs when methods work with arrays or objects that
implement java.lang.Collection, as shown in Example
1.

Example 1: Low branch coverage in the presence of
collections. Consider the following method:

public boolean checkEmpty(java.util.List list) {
if (list == null || list.isEmpty())

return false;
 else return true;
}

EvoSuite cannot achieve 100% branch coverage if we
generate test cases for this method (i.e., using the
target_method property). The else branch remains un-
covered, and EvoSuite times out while attempting to cover
this branch. In such situations, it may be useful to consider
reducing the timeout using -Dsearch_budget.

To analyze this case, we conducted a small experiment
using the code from Part 2 of the EvoSuite’s tutorial. The
results are shown in Table III, where Target indicates
whether tests are generated for each class or method. Version
is the EvoSuite version used. Coverage requested is the type
of coverage that EvoSuite tries to maximize, and resulting
coverage shows the results obtained. Finally, runtime
displays the time consumed with different timeouts for each
target (15 and 60s).

TABLE III. COMPARISON OF COVERAGE AND GENERATION TIMES FOR

DIFFERENT EVOSUITE CONFIGURATIONS AND VERSIONS.

Target Version
Coverage Resulting coverage Runtime
requested Cov. Type Cov. (60s) (15s)

Class
(default)

Any
Default

Output 97.00%

185 s 49 s
MethodNoEx. 93.75%

WeakMutation 98.25%

Others 100.00%

Branch Branch 100.00% 7 s 7 s

Method

1.0.6 Branch Branch 100.00% - 179 s

≥ 1.1.0 Branch Branch 82.92% - 224 s

≥ 1.1.0 Default

Line 93.45%

- 224 s
Branch 82.92%

MethodNoEx. 83.33%

WeakMutation 34.37%

17Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 25 / 29

CBranch 82.92%

Output 68.33%

Others 100.00%

When running EvoSuite with its default configuration,
we achieved 100% coverage in almost all default criteria
regardless of the version. However, as we did not reach
100% in all cases, EvoSuite continues attempting to do so
until the timeout expires. Reducing the timeout from 60 to 15
seconds produced the same results in less time. We achieved
100% coverage in just 7 seconds when generating tests using
only the branch criterion. In tests with target_method, we
used the default algorithm of EvoSuite 1.0.6
(MONOTONIC_GA). These tests were revealing, as
EvoSuite seems not to generate tests until the timeout
expires, significantly increasing the test generation time for
each method. Although versions higher than 1.0.6 support
various coverage criteria, achieving a good result is
challenging. In contrast, focusing solely on branch coverage
in version 1.0.6 may be more efficient and effective. This
complements the results of [24], which showed that Default
test case generation achieves better results (i.e., higher or
same coverage) than Branch testing. This can be explained
by the fact that in later versions, EvoSuite with the
target_method property struggles to achieve 100% branch
coverage, which it would obtain without using this property.
Even if we execute EvoSuite ≥ 1.1.0 focusing only on
branch coverage, version 1.0.6 achieves better results (better
coverage and less runtime). This highlights the importance of
considering older versions, such as 1.0.6, which, despite
lacking some newer features, offer better stability and
coverage performance under certain conditions.The observed
challenges in achieving 100% branch coverage, particularly
in more recent versions of EvoSuite when using the
target_method property, point to a broader concern regarding
the potential impact of reduced coverage on fault detection.
Studies have shown that higher code coverage generally
correlates with an increased likelihood of fault detection
[12]. However, as highlighted in [13], code coverage is only
a moderate indicator of fault detection across a test set, with
its effectiveness being more pronounced in exceptional test
cases. The drop in coverage, especially in complex scenarios
like those involving collections, may lead to undetected
faults, thus compromising the overall reliability of the
software. This risk underscores the importance of
maintaining high coverage levels where possible, while also
recognizing the need for complementary testing strategies to
address any gaps.

B. Controlled Environment Execution

Generating and executing unit tests in different systems
is not possible by default. The cause is that EvoSuite's
generated tests come with scaffolding that prepares the
EvoSuite environment using @Before/@After methods.
One such method is setSystemProperties, which sets
properties (e.g., user.dir) that depend on the machine
where the tests were generated and may differ from the
machine where they will be executed. This can be avoided
by disabling the sandboxing system with the properties -

Dsandbox=false and -Dfilter_sandbox_tests

=true, which, in turn, removes these dependences to the
generation environment. Nevertheless, disabling the sandbox
introduces security risks, as the test cases can execute
potentially malicious user code without the sandbox’s
protection [25].

To address the security risks, we have implemented an
architecture where the third component of ASys, installed on
the user’s machine (either teacher or student), handles the
generation and execution of unit tests. For teachers, this
component generates the tests using EvoSuite, ensuring they
are tailored to the specific programming exercises. For
students, the same component runs the tests against their
solutions, including both grading and evaluating their
submissions.

EvoSuite enhances security by isolating potentially
harmful code through sandboxing mechanisms. However,
ASys takes a different approach by performing the grading
and test execution directly on the client side, specifically on
the student’s machine. This strategy ensures that any risks
associated with executing code are confined to the local
environment, thus protecting the broader system
infrastructure. This client-side grading not only secures the
ASys infrastructure but also enhances performance,
compatibility, and flexibility in a distributed system.

III. RELATED WORK

The generation of tests for specific methods and their
execution in different environments are topics that have
received little attention in the literature. While the
development of EvoSuite has been supported by numerous
studies highlighting its challenges [8] and identifying its
ineffectiveness in certain situations [11], most of this work
focuses on the execution of EvoSuite at the project level,
without clearly distinguishing the tested methods. This poses
a significant problem because, even if tests successfully
detect faults, it becomes difficult to contextualize these
issues without tests being specifically documented for each
method.

One area that has been explored is the impact of
parameter tuning on EvoSuite's performance. Studies like
[26] have shown that appropriate parameter tuning can
improve EvoSuite's performance, although, in most cases,
default values are sufficient. However, these investigations
do not address the granularity of test generation at the
method level, leaving an important gap in the literature.

The study in [19] partially addresses this issue by
introducing an algorithm that attempts to assign descriptive
names to the tested methods, improving the identification
and contextualization of tests. Despite this advancement,
there is still work to be done to achieve more effective
documentation of the generated tests.

Regarding the sandboxing employed by EvoSuite,
developers have made significant efforts to use bytecode
instrumentation to automatically separate code from its
environmental dependencies and to set the state of the
environment as part of the generated call sequences [27].
However, EvoSuite also implements a custom Security
Manager that restricts many dangerous interactions with the

18Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 26 / 29

environment, while still allowing specific system
configurations, such as user.dir, to ensure that tests execute
consistently [9]. This explains why certain system properties
remain set in the automatically generated tests, despite
efforts to isolate the environment.

Although there are autograding solutions in the literature
that employ various security techniques, such as those
mentioned in [25], there is no documented use of these
techniques in combination with EvoSuite, particularly
focusing on client-side security. This highlights a gap that
our work addresses by implementing security at the client
side in ASys.

IV. CONCLUSIONS

Our experience with EvoSuite has been instrumental in
identifying various challenges and solutions in configuring
and generating automated unit tests. We have thoroughly
explored the wide range of configurable parameters offered
by EvoSuite, providing guidance on how to find the right
values to solve problems and optimize test generation.

One significant challenge we encountered was the
generation of specific tests for individual methods.
EvoSuite's default behavior of producing non-descriptive test
names (e.g., test00, test01, etc.) complicates the
identification of which specific methods are being tested,
which can significantly impact test coverage. To address this,
we explored two distinct approaches: a name-based strategy,
which is a valid option when there is no method overloading.
However, this approach is limited by issues related to
polymorphism, particularly when overloaded methods are
involved, leading to inaccurate or unclear test names. The
second approach involves the use of the target_method
parameter, but we also encountered errors and limitations
with this option, such as compatibility issues and difficulties
in achieving full branch coverage, especially when methods
involve java.lang.Collection.

Moreover, while newer versions of EvoSuite offer
additional features, our tests revealed that these versions
sometimes struggle with issues like reduced branch coverage
when using the target_method property with data
structures like java.lang.Collection. In contrast, older
versions, such as 1.0.6, demonstrated better stability and
coverage performance under certain conditions. This
highlights the importance of carefully selecting the version
of EvoSuite based on the project's specific needs, even if it
means foregoing some of the newer features.

We also addressed the risk of dependencies produced in
the generated test cases with the environment in which they
were generated. This was particularly challenging in
distributed environments where tests needed to be executed
on multiple machines. By disabling EvoSuite's sandboxing
system, we mitigated environment-specific dependencies,
but this introduced security risks, as it allowed potentially
malicious code to execute without the sandbox’s protection.
To solve this, we implemented an architecture in ASys that
allows tests to be generated on the teacher's machine and
executed on the student's machine, thereby confining any
risks to the local environment.

In conclusion, our practical experience with EvoSuite
provides useful knowledge for identifying common
challenges in generating automated unit tests and offering
practical solutions to overcome them. We are confident that
our findings will benefit other development teams looking to
leverage the capabilities of EvoSuite to the fullest in their
software projects.

Looking ahead, we plan to expand our experiments by
applying the target_method parameter of EvoSuite to the
SF100 benchmark, a statistically sound collection of Java
projects from SourceForge [28]. This will allow us to
evaluate our solutions in a more diverse and realistic
environment, identifying opportunities for improving
coverage and effectiveness in more complex contexts.
Additionally, we aim to explore the generation of tests for
scenarios involving inheritance and method overriding,
addressing the challenges EvoSuite faces in these situations.
This exploration will help us determine whether the issues
encountered with overloaded methods also apply to inherited
and overridden methods, ensuring a more comprehensive
understanding of EvoSuite’s capabilities and limitations in
object-oriented programming contexts. By enhancing the
tool's ability to manage these complexities, we hope to
ensure more comprehensive and accurate testing across a
wider range of software projects.

ACKNOWLEDGEMENT

This work has been partially supported by the Spanish
MCIN/AEI under grant PID2019-104735RB-C41 and by
Generalitat Valenciana under grant CIPROM/2022/6
(Fasslow). Carlos Galindo was partially supported by the
Spanish Ministerio de Universidades under grant
FPU20/03861.

REFERENCES

[1] OpenAI, “Introducing ChatGPT.” Accessed: May
26, 2024. [Online]. Available:
https://openai.com/chatgpt/

[2] Z. Yuan et al., “No More Manual Tests? Evaluating
and Improving ChatGPT for Unit Test Generation,”
2024.

[3] M. Harman, S. A. Mansouri, and Y. Zhang,
“Search-based software engineering: Trends,
techniques and applications,” ACM Comput. Surv.,
vol. 45, no. 1, Dec. 2012, doi:
10.1145/2379776.2379787.

[4] Y. Tang, Z. Liu, Z. Zhou, and X. Luo, “ChatGPT vs
SBST: A Comparative Assessment of Unit Test
Suite Generation,” 2023.

[5] G. Fraser and A. Arcuri, “EvoSuite: Automatic test
suite generation for object-oriented software,” in
SIGSOFT/FSE 2011 - Proceedings of the 19th ACM
SIGSOFT Symposium on Foundations of Software
Engineering, Oct. 2011, pp. 416–419. doi:
10.1145/2025113.2025179.

19Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 27 / 29

[6] A. Gambi, G. Jahangirova, V. Riccio, and F.
Zampetti, “SBST Tool Competition 2022,” in 2022
IEEE/ACM 15th International Workshop on Search-
Based Software Testing (SBST), 2022, pp. 25–32.
doi: 10.1145/3526072.3527538.

[7] G. Jahangirova and V. Terragni, “SBFT Tool
Competition 2023 - Java Test Case Generation
Track,” in 2023 IEEE/ACM International Workshop
on Search-Based and Fuzz Testing (SBFT), IEEE,
May 2023, pp. 61–64. doi:
10.1109/SBFT59156.2023.00025.

[8] G. Fraser and A. Arcuri, “Evosuite: On the
challenges of test case generation in the real world,”
in 2013 IEEE sixth international conference on
software testing, verification and validation, 2013,
pp. 362–369.

[9] G. Fraser and A. Arcuri, “A Large-Scale Evaluation
of Automated Unit Test Generation Using
EvoSuite,” ACM Trans. Softw. Eng. Methodol., vol.
24, no. 2, Dec. 2014, doi: 10.1145/2685612.

[10] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F.
Padberg, “Does automated white-box test generation
really help software testers?,” in Proceedings of the
2013 International Symposium on Software Testing
and Analysis, in ISSTA 2013. New York, NY,
USA: Association for Computing Machinery, 2013,
pp. 291–301. doi: 10.1145/2483760.2483774.

[11] Z. Fan, “A Systematic Evaluation of Problematic
Tests Generated by EvoSuite,” in 2019 IEEE/ACM
41st International Conference on Software
Engineering: Companion Proceedings (ICSE-
Companion), 2019, pp. 165–167. doi:
10.1109/ICSE-Companion.2019.00068.

[12] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P.
McMinn, and A. Arcuri, “Do Automatically
Generated Unit Tests Find Real Faults? An
Empirical Study of Effectiveness and Challenges
(T),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering
(ASE), 2015, pp. 201–211. doi:
10.1109/ASE.2015.86.

[13] X. Cai and M. R. Lyu, “The effect of code coverage
on fault detection under different testing profiles,”
SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–7,
May 2005, doi: 10.1145/1082983.1083288.

[14] F. Del Frate, P. Garg, A. P. Mathur, and A.
Pasquini, “On the correlation between code
coverage and software reliability,” in Proceedings
of Sixth International Symposium on Software
Reliability Engineering. ISSRE’95, 1995, pp. 124–
132. doi: 10.1109/ISSRE.1995.497650.

[15] D. Insa, S. Pérez, J. Silva, and S. Tamarit,
“Semiautomatic generation and assessment of Java
exercises in engineering education,” Computer
Applications in Engineering Education, 2020, doi:
10.1002/cae.22356.

[16] G. Fraser, “A Tutorial on Using and Extending the
EvoSuite Search-Based Test Generator,” in Search-
Based Software Engineering, P. Colanzi Thelma
Elita and McMinn, Ed., Cham: Springer
International Publishing, 2018, pp. 106–130.

[17] “StackOverflow - EvoSuite questions.” Accessed:
May 26, 2024. [Online]. Available:
https://stackoverflow.com/questions/tagged/evosuite

[18] “EvoSuite GitHub repo.” Accessed: Jan. 01, 2024.
[Online]. Available:
https://github.com/EvoSuite/evosuite

[19] E. Daka, J. M. Rojas, and G. Fraser, “Generating
unit tests with descriptive names or: would you
name your children thing1 and thing2?,” in
Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and
Analysis, in ISSTA 2017. New York, NY, USA:
Association for Computing Machinery, 2017, pp.
57–67. doi: 10.1145/3092703.3092727.

[20] “JNI Types and Data Structures.” Accessed: Jun. 02,
2024. [Online]. Available:
https://docs.oracle.com/javase/7/docs/technotes/guid
es/jni/spec/types.html#wp276

[21] “EvoSuite Issues - Using EvoSuite target_method.”
Accessed: Jun. 02, 2024. [Online]. Available:
https://github.com/EvoSuite/evosuite/issues/439

[22] J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler,
and A. Arcuri, “An empirical evaluation of
evolutionary algorithms for unit test suite
generation,” Inf Softw Technol, vol. 104, pp. 207–
235, 2018, doi:
https://doi.org/10.1016/j.infsof.2018.08.010.

[23] G. Fraser and A. Arcuri, “Achieving scalable
mutation-based generation of whole test suites,”
Empir Softw Eng, vol. 20, no. 3, pp. 783–812, 2015,
doi: 10.1007/s10664-013-9299-z.

[24] G. Fraser and A. Arcuri, “Whole Test Suite
Generation,” IEEE Transactions on Software
Engineering, vol. 39, no. 2, pp. 276–291, 2013, doi:
10.1109/TSE.2012.14.

[25] P. Ihantola, T. Ahoniemi, V. Karavirta, and O.
Seppälä, “Review of recent systems for automatic
assessment of programming assignments,” in
Proceedings of the 10th Koli Calling International
Conference on Computing Education Research,
New York, NY, USA: ACM, Oct. 2010, pp. 86–93.
doi: 10.1145/1930464.1930480.

[26] A. Arcuri and G. Fraser, “Parameter tuning or
default values? An empirical investigation in search-
based software engineering,” Empir Softw Eng, vol.
18, no. 3, pp. 594–623, 2013, doi: 10.1007/s10664-
013-9249-9.

[27] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated
unit test generation for classes with environment
dependencies,” in Proceedings of the 29th
ACM/IEEE International Conference on Automated

20Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

 28 / 29

Software Engineering, in ASE ’14. New York, NY,
USA: Association for Computing Machinery, 2014,
pp. 79–90. doi: 10.1145/2642937.2642986.

[28] G. Fraser and A. Arcuri, “Sound empirical evidence
in software testing,” in 2012 34th International
Conference on Software Engineering (ICSE), 2012,
pp. 178–188. doi: 10.1109/ICSE.2012.6227195.

21Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

Powered by TCPDF (www.tcpdf.org)

 29 / 29

http://www.tcpdf.org

