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VALID 2024

Forward

The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle
(VALID 2024), held on September 29 – October 3, 2024 in Venice, Italy, continued a series of events
focusing on designing robust components and systems with testability for various features of behavior
and interconnection.

Complex distributed systems with heterogeneous interconnections operating at different
speeds and based on various nano- and micro-technologies raise serious problems of testing,
diagnosing, and debugging. Despite current solutions, virtualization and abstraction for large scale
systems provide less visibility for vulnerability discovery and resolution, and make testing tedious,
sometimes unsuccessful, if not properly thought from the design phase.

The conference on advances in system testing and validation considered the concepts,
methodologies, and solutions dealing with designing robust and available systems. Its target covered
aspects related to debugging and defects, vulnerability discovery, diagnosis, and testing.

The conference provided a forum where researchers were able to present recent research
results and new research problems and directions related to them. The conference sought contributions
presenting novel result and future research in all aspects of robust design methodologies, vulnerability
discovery and resolution, diagnosis, debugging, and testing.

We welcomed technical papers presenting research and practical results, position papers
addressing the pros and cons of specific proposals, such as those being discussed in the standard forums
or in industry consortiums, survey papers addressing the key problems and solutions on any of the
above topics, short papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the VALID 2024 technical
program committee as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and efforts to contribute to VALID 2024. We truly believe
that thanks to all these efforts, the final conference program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the VALID 2024 organizing
committee for their help in handling the logistics and for their work that is making this professional
meeting a success. We gratefully appreciate to the technical program committee co-chairs that
contributed to identify the appropriate groups to submit contributions.

We hope the VALID 2024 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in system testing and
validation. We also hope that Venice provided a pleasant environment during the conference and
everyone saved some time for exploring this beautiful city
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Analysis of Test Smell Impact on Test Code Quality

Ismail Cebeci and Tugkan Tuglular
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkiye

e-mail: {ismailcebeci|tugkantuglular}@iyte.edu.tr

Abstract—Software testing is a crucial component of the
software development life-cycle, playing a key role in ensuring the
quality and robustness of software products. However, test code,
like production code, is susceptible to poor design choices or "test
smells", which can compromise its effectiveness and maintainabil-
ity. This article investigates the prevalence and impact of various
test smells across open-source software projects, using advanced
detection tools such as JNose and TestSmellDetector. The research
highlights that certain test smells, such as "Assertion Roulette,"
"Magic Number Test," and "Lazy Test," are notably prevalent.
The study also examines the co-occurrence of different test
smells, providing understanding of how these issues interrelate.
Additionally, the article compares the effectiveness of JNose and
TestSmellDetector in detecting test smells, providing insights into
their strengths and limitations.

Keywords-Test Smells; Software Testing; Empirical Software
Engineering.

I. INTRODUCTION

Software testing is a fundamental part of the software de-
velopment process and has significant importance in ensuring
the quality of software [1]. Test cases exhibit a crucial role
in the early detection of software bugs during the software
development process.

The quality of the test suite is measured with test coverage
analysis where the number of different structural components
(functions, instructions, branches, and lines of code) included
in the test suite is considered [2]. Nevertheless, despite having
a large amount of code coverage, the test code may still
contain design choices that are not well-executed, known as
test smells. The inclusion of smells in test code has the
potential to affect the overall quality of test suites, hence
impacting the quality of the production code.

The motivation behind this research stems from the ob-
servation that despite the critical role of testing in software
development, test smells are often overlooked. Developers and
testers may inadvertently introduce these smells into the test
code, not through a lack of skill, but due to pressures of
deadlines, lack of awareness, or inadequate tool support.

This study contributes to the field by providing empirical
data on the detection and impact of test smells across a
broad spectrum of open-source software projects. It leverages
modern test smell detection tools-JNose [3] and TestSmellDe-
tector [4] tools-to gather insights into the prevalence and co-
occurrence of different smells, thereby offering a granular
understanding of how these smells interrelate and the potential
for cascading effects within the test code. Moreover, for
these two tools, a comparison was made on issues such as

the differences between them, which test smells are detected
better, which device detects more test smells.

The structure of this thesis is organized as follows: Follow-
ing this introduction, Section II reviews STATE OF THE ART
in the field, laying a theoretical foundation for understanding
test smells. Section III describes the TOOL INFRASTRUC-
TURE used in the study, including a detailed examination of
the JNose and TestSmellDetector tools. Section IV presents
a CASE STUDY analysis, where these tools are applied to
a dataset of software projects to identify and analyze test
smells. Section V shows the observed RESULTS and Section
VI concludes findings and directions for future research.

II. STATE OF THE ART

Modern studies are going in the direction of discovering,
defining, and eliminating various categories of code smells,
and explaining their origins and influence on the overall
program quality. Such studies utilize several approaches, in-
cluding empirical analysis of open-source software projects
and constructing and testing elaborate security tools.

A study by Silva Junior et al. [5], the researchers exam-
ined the awareness of test practitioners and the unknowingly
incorporation of smells to test code development. A survey
is conducted with 60 chosen professionals from different
organizations to investigate the frequency and situations in
which they encounter smells, particularly 14 types of test
smells, which are frequently used in cutting-edge test smell
detection tools.

In another study [6] related to the severity of test smells
by Campos et al., a set of tests that cause problematic
consequences are targeted and the developers’ point of view
on the issue of test smells is mentioned. By working with its
developer participants from six open-source software projects
on GitHub, the study aims at characterizing to which extent
developers perceive test smells to affect the test code they
implement.

In a similar study by Davide Spadini et al. [7], sever-
ity thresholds for test smells are investigated. Using 1489
java projects from Apache and Eclipse ecosystems and
TestSmellDetector tool, they considered 4 test smells-
Assertion Roulette, Eager Test, Verbose Test, and Conditional
Test Logic-are higher thresholds than others.

In our study, with extending the total number of test smell
types, 21 types of test smells are used, and with using 500
open-source GitHub projects (more than 5000 Java test files),
"Magic Number Test" and "Assertion Roulette" are detected as

1Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-199-2
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most frequent test smells. “Empty Test”, “Sleepy Test”, and
“Mystery Guest” are 3 of the 5 lowest test smells detected
using JNose tool [3] and TestSmellDetector tool [4].

Another study [8] by Michele Tufano et al. presented (i) a
survey among 19 developers is carried out to find out how they
rated test smells as design issues, and (ii) a huge empirical
study based on commit history of 152 open source projects
and focused on identifying aspects of both software systems
such as when test smells are introduced, how long they last
and their relationship with code smells affecting the classes
tested.

In our study, to detect test smells, we used two differ-
ent automated test smell detection tool "JNose Tool” and
TestSmellDetector Tool" and the results show that all test files
have at least one type of test smell, and to have better test
code quality, all test smells should be resolved by developers.

In another study [9] by Soares et al., an innovative way
to raise the quality of test code using the JUnit 5 features is
described. As part of this research, a mixed-method survey is
executed, covering 485 of the most widely used Java open-
source projects, finding out that JUnit 5 is used by only a tiny
share (15,9%).

In the paper [10] by Annibale Panichella et al., authors scru-
tinize test smells in the context of automatic test generation.
They critically examine whether such smell detection tools
work well on sets of tests generated by tool EVOSUITE that
test 100 classes of Java programs, in which there are 2340 test
cases. Two tools are used in the study. Static detection rules
are the first one among the tools suggested by Bavota et al.
[11], Grano et al. [12] also use this same tool to detect test
smells in test codes. The next tool is TestSmellDetector tool,
which is available on GitHub and can be used publicly. The
frequency of detection of test smells in Static Detection rules is
significantly lower if we compare the findings between Static
Detection rules and TestSmellDetector tool. The TestSmellDe-
tector tool demonstrates slightly superior outcomes. Martins et
al. [13] also use TestSmellDetector tool to detect test smells
and investigate co-occurrence values between different test
smells.

Benefiting from previous articles, in addition to similarities,
in this article, a research was conducted for the first time using
the two mentioned tools and 21 types of test smells with using
huge number of projects "around 500", and the results obtained
for both tools were compared. Additionally, the co-occurance
of the test smells for both tools were compared.

III. TOOL INFRASTRUCTURE

This section mainly explains the tool infrastructure used to
detect test smells, in which a detailed analysis about JNose
and TestSmellDetector tools are presented. It introduces the
working principles of these tools by detailing how they analyze
and recognize test smells in test code.

A. JNose Tool

The JNose Test tool enables testers to review the past
versions of the software projects and find the test coverage

Figure 1. High-level architecture of Jnose tool

and the test smells that often bother the code quality. This fact
enables us to compare various quality metrics of the project
over the course of its development process. There are three
crucial procedures in the JNose Test operation as shown in
Figure 1.

• Data Input: This part receives the input set of command
parameters for the tool execution, such as test smell
types of lists, analysis mode (code coverage, test smells
detection and evolution), and the project for analysis.

• Project Analysis: This component presents the analysis
of the program by choosing the analysis mode.

• Data Output: By this component, the status of the
execution is being rendered and the comma-separated
value (CSV) file containing the results of the analysis
is generated.

The JNose Tool offers the capability to detect and analyze
smells in various ways. Firstly, it can detect smells in a
specific test class using the TestClass method, which provides
information about the quantity of each type of smell detected
in the test class. Secondly, it can detect smells across multiple
project versions using the Evolution method, which provides
information about the authors and timestamps of the test
smell’s insertion in the test code. Lastly, the detection can
be used to identify the precise location of a test smell using
the TestSmell method, which returns the method location of
the smell for the purpose of analyzing the quality of the test
code.

In accordance with the GNU General Public License, the
JNose Test tool is licensed. The software tool is developed as
a Java project and consists of four packages: (i) core, which
is responsible for detecting test smells and coverage metrics;
(ii) page, which is responsible for displaying web pages and
their content; (iii) dto, which includes the classes used in data
transfer (Data Transfer Object); (iV) util, which is responsible
for identifying tests and production classes and saving results
into CSV files.

B. TestSmellDetector Tool

The objective of including TestSmellDetector tool is to
offer developers an automated methodology for enhancing the
quality of their test suites. The TestSmellDetector tool can

2Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-199-2
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Figure 2. High-level architecture of TestSmellDetector tool

identify 19 smells present in Junit-based unit test files. The
TestSmellDetector tool software provides a comprehensive list
of detected smells, accompanied by their respective definitions
and detection algorithms. The algorithm receives software
project source code as input and initially distinguishes between
unit test files and production source files.

TestSmellDetector tool is a Java jar file that is open-
source and may be used as a command line program. The
implementation of TestSmellDetector tool as a self-contained
executable file, as opposed to a plugin, eliminates the need for
users to own a dedicated Integrated Development Environment
(IDE) on their system for the purpose of identifying smells in
their test code.

Figure 2 illustrates a comprehensive overview of the ar-
chitectural design of the TestSmellDetector tool. The project
structure is used in 1 and 2 to identify the test and production
files. TestSmellDetector tool determines whether test smells
are present in the test files in 3 and 4. The test smell detection
process findings are saved in 5.

IV. CASE STUDY

To understand test smell impaction of test code quality,
we used two different tools which are JNose Tool and
TestSmellDetector Tool then we analyzed the result of output
files of both tools using projects that they used from Test
Smells and Structural Metrics (TSSM) dataset [13].

Figure 3 shows an overview of our study. Mainly in this
study, there are four parts to get results to compare and to
answer our research questions.

• Project Selection and Preparations: to select projects and
preparations to use JNose and TestSmellDetector tools.

• Using TestSmellDetector tool: to follow a way to get
results after using TestSmellDetector tool.

• Using JNose tool: to follow a way to get results after
using JNose tool.

• Analyzing results: to obtain results to answer research
questions.

A. Project Selection

These procedures led to the collection of data from 13,703
open-source Java projects that make up the TSSM dataset.

Figure 3. High-level architecture of our study

500 distinct projects are randomly chosen from this collection
of open-source Java projects. These projects work with the
TestSmellDetector Tool as well as the JNose Tool. Java is
among the most common languages today [14] and contains a
large number of test codes. This gives us a lot of test code to
examine. Additionally, since the two tools used work on Java
codes, we decided to work with Java projects. Every project
is tested separately at first, and if it works successfully with
both tools, it is included in the list.

B. Implementation of Automated Scripts

In this study, four fundamental Python files were imple-
mented. We will do the explanation of these files’ roles and
functions in detail. Each file has the sole aim of automating
and facilitating a different aspect of testing smell analysis pro-
cess, which in turn makes the identification, comparison, and
understanding of test smells in many projects more efficient
and accurate.

1) Python File for Preparation of Using Tools: In this file,
six functions are created for preparation of using tools. These
functions simply do these steps:

• Picking out necessary column names from input CSV file.
• Creating empty folder with using GitHub projects’

names.
• Cloning GitHub projects into created empty folders one

by one.
• Testing files and their associated source files within

GitHub project folders.
• Removing the files, where the lines’ sole content are

comments.
• Creating a structured CSV file, which is originally named

with output.csv and it is specifically designed to meet the
given inputs of the TestSmellDetector application.

3Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-199-2
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2) Python File for Using Tools: In this file, six functions
are created for using tools. These functions simply do these
steps:

• Executing TestSmellDetector Tool with ’output.csv’ as a
file input.

• Deleting files left over from past executions.
• Reading results clearly going through the created CSV

file after executing TestSmellDetector tool. Then, creating
txt file after reading CSV file.

• Reading results clearly going through the created CSV
files after executing JNose tool. Then, creating txt file
after reading all files.

• merging results by two different tools, into one conclusive
file titled. After merging, findings might not be next to
each other. Therefore, reorganizing findings after merg-
ing.

3) Python File for Comparing Results of Each Tools:
Comparing the results of different testing methods, which are
used in the detection of smells. Co-occurrence Analysis, Ratio
Calculation and Comparison and Visualization are done in this
file.

4) Python File for Connecting JNose Tool’s Website: To
accesses the webpage, which is related to Jnose Tool. It auto-
matically inputs GitHub project links into the local server ad-
dress "http://127.0.0.1:8080" and analyze each project. Then,
it downloads results in the CSV format.

V. RESULTS
In this analysis, we compare the effectiveness of two soft-

ware testing tools, JNose Tool and TestSmellDetector Tool,
in identifying several types of test smells within software
projects. Test smells play a critical role in ensuring the reliabil-
ity and efficacy of software testing procedures by identifying
any flaws in the test code that could undermine their quality
or effectiveness.

The JNose Tool detected 81773 test smells in total using all
files. The TestSmellDetector tool detected 89497 test smells
in total using all files.

Figure 4 shows a comparative analysis of file affectation by
test smells, the total number of files examined alongside those
unaffected by test smells as identified by two separate tools:
JNose and TestSmellDetector. It is evident that a comprehen-
sive set of 5478 files were subjected to the analysis. JNose Tool
identified 1550 files that exhibited no test smells, representing
a significant portion of the total, yet still suggesting that
many files could contain at least one form of test smell. In
contrast, the TestSmellDetector Tool demonstrated a higher
identification rate, with 1075 files reported as unaffected.
Intriguingly, the bar labeled ’No Affected (Both)’ is shown
at a value of zero, indicating that there were no files, which
both tools concurrently identified as free of test smells.

The data serves as a more encompassing and detailed
view of the detection capabilities of both tools as they work
across a range of test smells. The fact that different detection
rates for various test smells are shown by the two tools
indicates a noticeable difference as shown in Figure 5. The

Figure 4. Number of Affected and not Affected Files

Figure 5. Total Number of Test Smells with using JNose and TestSmellDe-
tector Tools in all files

TestSmellDetector Tool, for instance, is very effective in
identifying ’Magic Number Test’ smell with 28,443 instances
detected entirely outperforming the 11,264 instances detected
by the JNose Tool. The pattern of higher detection rates by
the TestSmellDetector Tool is also observed in the other types
of tests smells like ’Exception Catching Throwing’ and ’Lazy
Test’, which the tool detected 13,612 and 16,570 occurrences,
respectively and thus demonstrating its sensitivity towards
these particular smells.For ’Assertion Roulette, TestSmellDe-
tector Tool detected 10,488 occurence.

On the other hand, JNose Tool proved to be more ef-
fective than TestSmellDetector Tool in discovering the ’As-
sertion Roulette’ instances, which were 41,876 compared to
TestSmellDetector Tool, which discovered 10,488 instances as
shown in Figure 5. This revelation of the JNose Tool’s effec-
tiveness in this case indicates that it can be particularly useful
for scenarios where the tests contain multiple non-documented
assertions, resulting in unclear test outcomes. In addition, the
JNose Tool exhibits greater detection rates for various sorts
of test smells, such as the ’Magic Number Test’ and ’Lazy
Test’, with detection rates of 11,264 and 3984 occurrences,
respectively. This demonstrates the tool’s sensitivity towards
these specific smells. JNose tool also performed high detection
rates for ‘Eager Test’ with detection rate of 3692.

This analysis provides the absolute number of files affected
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Figure 6. Number of Affected Files by Each Test Smells

by each test smell and allows an assessment of the extent of
testing and detection of smell testing for both tools across
various categories of test smell as shown in Figure 6.

By using the TestSmellDetector tool, highest numbers of
affected files by ’Magic Number Test’, ’Assertion Roulette’,
’Exception Catching Throwing’, ’Eager Test’, ’Lazy Test’, and
’Unknown Test’ are detected as 4222, 2503, 2463, 1126, 1070,
and 1030. On the other hand, by using the JNose tool, high-
est numbers of affected files by ’Assertion Roulette’, ’Lazy
Test’, ’Magic Number Test’, ’Exception Catching Throwing’,
’Unknown Test’, and ’Eager Test’ are detected as 3056, 1396,
1364, 969, and 905.

The analysis also highlights test smells that are most and
least prevalent in the datasets. ’Magic Number Test’, ’Asser-
tion Roulette’, ’Exception Catching Throwing’, ’Eager Test’,
’Lazy Test’, and ’Unknown Test’ are among the most affecting
test smells, with both tools identifying a considerable number
of affected files. In contrast, ’Constructor Initialization’, ’De-
fault Test’, and ’Dependent Test’ show minimal to no detection
across both tools.

The utilization of co-occurrence matrices serves as an
analytical cornerstone for uncovering the underlying patterns
of test smell interactions within software testing environments.
The matrices of The JNose Tool and TestSmellDetector Tool
explain these patterns, illustrating both pronounced and neg-
ligible relationships among various test smells. In the interest
of refining testing strategies, it becomes necessary to research
into the specifics of these relationships.

Results for the JNose Tool as shown Figure 7, the one,
which stands out the most is a correlation established between
’Conditional Test Logic’ and ’Eager Test’ with a co-occurrence
value of [1.00], indicating a strong likelihood of these issues
to arise simultaneously.

Similarly, the pairing of ’Exception Catching Throwing’
with ’Unknown Test’ and a high co-occurrence rate of [0.99]
of using JNose Tool shows a strong correlation.

Next strong correlations are the one observed between
’Sleepy Test’ and ’Constructor Initialization’, with a co-
occurrence value of [0.96] for the JNose Tool.

Figure 7. Co-occurrence Matrix for JNose Tool

Conversely for the JNose tool, a pair exposes relationships
that are markedly tenuous, as is the case between ’Magic
Number Test’ and ’Redundant Assertion’, with a negligible
co-occurrence rate of [0.01]. Another pair exhibiting minimal
interdependence comprises ’Mystery Guest’ and ’Assertion
Roulette’ and, ’Empty Test’ and ’Assertion Roulette’ where
the co-occurrence rate stands at [0.01] for both pairs.

Results for the TestSmellDetector Tool as shown in Figure
8, the notable correlation observed in this case is between
’Unknown Test’ and ’Eager Test’ and their co-occurrence
value of [0.97].

The pairing of ’Source Optimism’ with ’Mystery Guest’
also has a strong co-occurrence rate of [0.95] with using
TestSmellDetector Tool.

Conversely, the matrix unveils relationships that are
markedly tenuous, as is the case between ’Magic Number Test’
and ’Redundant Assertion’, ’Magic Number Test’ and ’Sleepy
Test’, ’Assertion Roulette’ and ’Empty Test’, ’Empty Test’
and ’Exception Catching Throwing’, ’Empty Test’ and ’Lazy
Test’, so on with a negligible co-occurrence rate of [0.01] with
using TestSmellDetector Tool.

VI. CONCLUSION AND FUTURE WORK

Testing is currently considered to be an essential process
for improving the quality of software. Unfortunately, past
literature has shown that test code can often be of low quality
and may contain design flaws, also known as test smells. This
paper presented a comparison of the results of the most well-
known test smell detector tools (JNose and TestSmellDetector)
using 500 distinct open-source GitHub projects. These results
give us (i) the number of detection of test smells by each tool,
(ii) the number of affected test code files by test smells, and
(iii) the co-occurrence rate of detected test smells with the
mentioned tools.

5Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

                            13 / 29



Figure 8. Co-occurrence Matrix for TestSmellDetector Tool

• (i) The ’Assertion Roulette’ is the most prevalent smell
in the JNose Tool with 41,876 detections. Like ’As-
sertion Roulette’, other common the test smells ’Magic
Number Test’ with 11264 detections, ’Lazy Test’ with
3984 detections, ’Eager Test’ with 3692 detections, ‘Con-
ditional Test Logic’ with 3679 detections, ‘Exception
Catching Throwing’ with 3236 detections, and ’Unknown
Test’ with 3202 detections. On the other hand, the
TestSmellDetector tool has found that the test smells
’Magic Number Test’ with 28443 detections and ’Lazy
Test’ with 16570 detections are the most frequently ob-
served. Furthermore, the test smells ’Exception Catching
Throwing’ with 13612 detections, ’Assertion Roulette’
with 10488 detections, ’General Fixture’ with 4274 detec-
tions, and ’Eager Test’ with 3780 detections are observed
in all files.

• (ii) The TestSmellDetector tool detected several files
affected by the test smells (’Magic Number Test’, ’As-
sertion Roulette’, ’Exception Catching Throwing’, ’Eager
Test’, ’Lazy Test’, and ’Unknown Test’), with respective
counts of 4222, 2503, 2463, 1126, 1070, and 1030. On
the other hand, the JNose tool detected several affected
files by ’Assertion Roulette’, ’Lazy Test’, ’Magic Number
Test’, ’Exception Catching Throwing’, ’Unknown Test’,
and ’Eager Test’ are detected as 3056, 1396, 1364, 969,
and 905.

• (iii) The JNose tool showed that there is a strong
correlation between the test smells ’Conditional Test
Logic’ and ’Eager Test’, as indicated by a co-occurrence
value of [1.00]. Furthermore, the JNose tool reveals a
strong relationship between the pairs ’Exception Catching
Throwing’ and ’Unknown Test’, as evidenced by a high
co-occurrence rate of [0.99]. In contrast, a high-rated

correlation was noticed in this significant relationship
between the test smells ’Unknown Test’ and ’Eager Test’,
with a co-occurrence value of [0.97] when using the
TestSmellDetector tool. Furthermore, the TestSmellDe-
tector Tool exhibited a combination of ’Source Optimism’
and ’Mystery Guest’, with a significant co-occurrence rate
of [0.95].
As future work, we plan to replicate this study with larger
projects, including a more extensive set of test smells. We
also plan to implement a new tool to detect test smells
and refactor them further. Then, we plan to compare these
three tools with larger projects and to show decreased
number of detected test smells after refactoring.
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Abstract— Detecting duplicate code fragments referred as 

"clones", is essential for various aspects of software 

management, maintenance, and security. This article presents a 

novel method for detecting code fragment clones, applicable to 

source and binary code. The method addresses the limitations of 

existing tools, which often focus on detecting clones of entire 

functions and are typically specialized for either source or 

binary code, but not both simultaneously. The developed 

algorithm analyzes input code fragments against the target 

project, and outputs all detected fragment clones. For fragment 

clone detection, it uses program dependence graphs - a data 

structure unifying data and control flow for the function. In the 

first step source and binary code are converted to program 

dependence graph representation. Then unified algorithm is 

applied for maximal similar subgraphs detection. Code 

fragments corresponding to detected similar subgraphs are 

considered as clones. The experimental evaluation of the 

proposed method demonstrates its effectiveness providing an 

average 96.9% precision, 92.9% recall for binary code, and 

96.5% precision, 93.8% recall for source code.  

Keywords- code clones; program static analysis; binary code; 

source code. 

I.  INTRODUCTION 

Identifying copied code fragments, referred as fragment 
clones, are vital for software management, maintenance, and 
security. It can be applied for several purposes: 

1. Software plagiarism detection: identifying copied 
code helps ensure originality and protect intellectual property, 

2. Malware detection and classification: researchers 
can identify new malware variants by finding similar code 
patterns of known malicious software fragments, 

3. Finding known vulnerabilities and avoiding bug 
propagation: Sometimes, code fragments containing bugs and 
vulnerabilities are also copied, making the detection of these 
fragments crucial for preventing the spread of bugs. 

Beyond these specific applications, identifying and 
managing code clones improves overall software quality and 
reduces maintenance costs. Code clones can arise for a variety 
of reasons. For instance, they can occur when software 
developers copy-paste existing code fragments into their 

projects with or without modifications. Studies [1] show that 
about 20% of code is duplicated in software packages. In 
binary code, compiler optimizations like inlining, and 
transformations can also create clones. 

Modern software projects highly use third-party packages 
and libraries. A 2024 report by Synopsys [2] revealed that 
over 96% of commercial software packages incorporate open-
source code. Another study of 7,800 open-source projects has 
shown that 44% of them have at least one pair of identical 
code fragments [3]. These studies reveal the extensive use of 
code duplication in software development. 

Despite the variety of code clone detection methods and 
tools, only a few can detect clones of fragments rather than 
whole functions. Besides, existing tools are focused either on 
source or binary code clone detection. There is no unified 
approach to detect both of them. 

We propose a novel approach for accurate source and 
binary code fragments’ clones’ detection. For accuracy 
Program Dependence Graphs (PDGs) are utilized, which 
capture most of the software semantics and robust to code 
changes. Code clones are identified as maximum similar 
subgraphs for corresponding source and binary code. The core 
of the developed tools is the same for the source and binary 
code clones’ detection, where the PDG creation parts are code 
specific. We consider code fragments as a sequence of 
instructions for binary or source code. A fragment can 
correspond to a function, basic blocks, or sequences of 
instructions in a function. Two code fragments are considered 
clones if they are similar or identical. Section II gives more 
strict definitions of both binary and source code fragment 
clones. The proposed method is implemented as a tool named 
Fragment Clone Detector (FCD) that takes as input a code 
fragment, a project, and a percentage of similarity. The tool 
then outputs all fragments from the target project that are 
clones of the given fragment with the given percentage of 
similarity. 

In addition to evaluating the quality of the implemented 
method, we have designed and implemented a testing system, 
which generates tests, based on real-world projects. Then it 
executes FCD and calculates precision, recall, and Root Mean 
Square Error (RMSE) for it. The rest of the paper is organized 
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as follows: Section II defines code clone types for binary and 
source code and describes PDG. Section III explores existing 
research in the field. Sections IV and V detail the proposed 
approach for detecting code fragment clones. The testing 
system structure is presented in Section VI. Section VII of the 
paper presents the results of the experimental evaluation. The 
final section concludes the paper. 

II. BACKGROUND 

In this section main ideas used in the work are introduced: 

code clone types and PDG. Both source and binary code 

clone types are defined in the Subsection A. And the 

Subsection B will cover the description of the PDG, its 

components, and its uses. 

A. Code clone types 

It is accepted [4] that source code clones have four types. 
While the definition of source code clones is well-established, 
the definition of binary code clones has minor differences due 
to its specifics. The definition of source code clone types: 

 Type 1: Two source code fragments that are identical 
except for variations in whitespaces and comments, 

 Type 2: Two source code fragments that can differ 
by identifiers, literals, and types. This type also 
includes Type 1 clones, 

 Type 3: Two source code fragments with additions, 
deletions, or modifications of instructions. Includes 
Type 2 clones too. Type 3 clones are also referred to 
as non-exact clones, 

 Type 4: Two source fragments that perform the same 
calculations but use different instructions. Type 4 
clones are also referred as semantic clones. 
 

TABLE I. EXAMPLE OF SOURCE CODE CLONE TYPES. 

Original code Type-1 

float sum = 0.0; 

  for (int i = 0; i<n; i++){ 

    sum = sum + F[i]; 

  } 

 float sum = 0.0; // Comment 

  for (int i = 0; i<n; i++){ 

   ___ sum = sum + F[i]; 

  } 

Type-2 Type-3 

 int sum1 = 0; // Comment 

  for (int i = 0; i<n; i++){ 

   ___ sum1 = sum1 + F[i]; 

  } 

 int prod = 1; // Comment 

  for (int i = 0; i<n; i++) {  

    ___ prod = prod * F[i]; 

  } 

Type-4 

int factorial_rec (int n) { 

  if (n <= 1) { 

    return 1; 

  } else { 

    return n * factorial_rec (n - 1); 

  } 

} 

int factorial_iterative(int n) { 

  int result = 1; 

  for (int i = 1; i <= n; ++i) { 

    result *= i; 

  } 

  return result; 

} 

As there are no comments and whitespaces in binary code, 
a slightly different definition for binary code clone types is 
used. Binary code clone types [5] are: 

 Type 1: Two identical binary code fragments. 

 Type 2: Two binary code fragments that can differ 
by registers, literals, and operand sizes. This type 
also includes Type 1 clones. 

 Type 3: Two binary code fragments with additions, 
deletions, or modifications of instructions. Includes 
Type 2 clones too. Type 3 clones are also called non-
exact clones. 

 Type 4: Two binary fragments that have the same 
calculations but use different instructions. 

TABLE I and TABLE II present examples of source and binary 

clone types, respectively. In both tables, original code and all 

clone types are presented. 

 

TABLE II. EXAMPLE OF BINARY CODE CLONE TYPES. 

Original code BinType-1 

mov [ebp+var_1], 5 

mov eax, [ebp+var_1] 

iadd eax, [ebp+var_4] 

mov [ebp+var_1], 5 

mov eax, [ebp+var_1] 

iadd eax, [ebp+var_4] 

BinType-2 BinType-3 

mov [ebp+var_1], 10 

mov ecx, [ebp+var_1] 

iadd ecx, [ebp+var_4] 

mov [ebp+var_1], 10 

mov ecx, [ebp+var_1] 

iadd ecx, [ebp+var_4] 

BinType-4 

factorial_rec: 

        pushq   %rbp 

        movq    %rsp, %rbp 

        subq    $16, %rsp 

        movl    %edi, -4(%rbp) 

        cmpl    $1, -4(%rbp) 

        jg      .L2 

        movl    $1, %eax 

        jmp     .L3 

.L2: 

        movl    -4(%rbp), %eax 

        subl    $1, %eax 

        movl    %eax, %edi 

        call    factorial_rec 

        imull   -4(%rbp), %eax 

.L3: 

        ret 

factorial_O3: 

        movl    $1, %eax 

        cmpl    $1, %edi 

        jle     .L1 

        .p2align 4,,10 

        .p2align 3 

.L2: 

        movl    %edi, %edx 

        subl    $1, %edi 

        imull   %edx, %eax 

        cmpl    $1, %edi 

        jne     .L2 

.L1: 

        ret 

 

 

B. Program dependence graph 

PDG is a directed graph that combines data and control 

dependencies. The vertices of PDGs are program statements 
and the edges are data and control dependencies between 

them. PDGs are used in various applications, such as 

compiler optimizations, program analysis, and software 

engineering tasks (like refactoring, debugging). As PDG 

makes explicit both the data and control dependencies 

between operations of the program, that makes it useful for 

understanding complex program behaviors and improving 

software quality and efficiency. 

III. RELATED WORK 

There are many works related to code clone detection. 

However, most of them can find only clones of a whole 

function. Our method deals with every fragment of code 
inside a function. Obviously, it also finds function clones. 
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Code clone detection techniques are divided into the 

following groups: text-based, token-based, tree-based, 

metrics-based, graph-based, and machine-learning based. 

Also, there are numerous hybrid methods combining several 

techniques for clone detection.  
In the case of a text-based approach [6] [7] [8] [9], two 

code fragments are compared in the form of text/strings. It 

only finds Type 1 clones. In the case of a token-based 

approach [10] [11] [12] [13], the entire code is transformed 

into a sequence of tokens. It is more robust against code 

changes than text-based techniques, which allows it to find 

Type 1 and Type 2 clones. 

Tree-based approaches [14] [15] [16] [17] use parse trees 

or Abstract Syntax Trees (AST) of the analyzable code. Then, 

similar subtrees are detected using tree-matching algorithms. 

It can find all three types of clones. But as a rule, this 

approach suffers in precision for Type 3 clone detection, 
because instructions difference strongly changes the 

underlying tree structure.  

In the case of a metrics-based approach [18] [19] [20] 

[21], different types of metrics are calculated for code 

fragments. Then these metrics are compared to find similar 

code fragments. Usually, for calculating different types of 

metrics the code is converted into some graph representation, 

such as AST or PDG. This approach suffers in precision and 

produces many false positives. 

In the case of a graph-based approach [22] [23] [24] [25], 

a PDG or just a Control Flow Graph (CFG) is generated from 
the code. Then maximal isomorphic or similar (it may be 

defined differently for each method) subgraphs are searched. 

PDG-based approaches are robust to the insertion and 

deletion of code, reordered instructions, intertwined and non-

contiguous code. However, they have higher asymptotic 

complexity and may not be scalable. 

In the case of machine learning-based techniques [26] 

[27] [28] [29], the focus is on training models to classify or 

cluster similar code fragments. Patterns are learned from a 

dataset containing examples of both similar and dissimilar 

codes. Learning algorithms are well-suited for code clone 

detection tasks because they can learn and identify complex 
patterns. However, learning-based techniques need large and 

clean datasets of code clones to work properly, but these are 

not available for all programming languages. Many methods 

rely on existing code clone detection tools to gather data for 

machine learning, but these tools are often unreliable and 

prone to errors. 

In addition, there are hybrid methods, which combine 

several techniques for clone detection. Some examples are 

text-based and tree-based [30], token-based and tree-based 

[31], metric-based and graph-based [32], tree-based and 

learning-based [33] [34], etc. They addresses the challenge of 
individual methods. 

Thus, each of the discussed techniques has its advantages 

and disadvantages. An appropriate method can be selected 

based on the problem that needs to be solved. 

IV. CODE FRAGMENT CLONE DETECTION 

The developed algorithm takes a code fragment, a project, 

and a percentage of similarity as its input. It analyzes all the 

functions within the project and identifies clones of the 

specified fragment. The identified clones must have at least the 

specified percentage of similarity. It is important to note that 

we assume the provided code fragment is within a single 

function. Figure 1 provides architecture of the proposed 

method. It has two primary components: the construction of 

PDGs and the matching of these graphs.  

A. Construction of PDGs 

PDGs are constructed for the specified fragment and all 
functions of the target program. Vertices of the PDG represent 
instructions of Intermediate Representation (IR), and edges 
are constructed based on data and control dependencies 
between them. The construction process of PDGs varies for 
binary and source code as the code representation differs, and 
the specific details are outlined in the implementation section. 
For the vertices of the PDG, instead of “original form” 
instructions of IR are used, as it simplifies and standardizes 
the code, allowing tools to be reused across different 
languages and architectures. 

To construct the PDG for the specified fragment, the PDG 
for the entire function containing the fragment is first created. 
Then, a subgraph corresponding to the specified fragment is 
extracted to serve as the final PDG of the fragment. Basically, 
it is the smallest induced subgraph of the entire function’s 
PDG that includes all instructions of the specified fragment. 
For simplicity, we will call it a fragment's PDG. The 
constructed graphs are then utilized in the next step, where 
instructions from the specified fragments are matched against 
all instructions within the functions throughout the entire 
project. 

B. Graphs’ matching 

Once the PDGs are constructed, the algorithm starts 

matching the vertices of the fragment's PDG with the vertices 

Figure 1. Architecture of the method. 
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of each function's PDG. It is important to note that within a 

single function's PDG, there can be detected multiple 

matches indicating the existence of several clones of the 

specified fragment within that function. 
Similarity percentage for the detected fragment clone is 

calculated by the following formula: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑐𝑜𝑚𝑚𝑜𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑐𝑜𝑢𝑛𝑡

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑃𝐷𝐺′𝑠 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑐𝑜𝑢𝑛𝑡
∗ 100% 

The matching algorithm between the fragment's and a 

function's PDGs involves the following phases: 

1. Construction of the set of initial matched vertex 

pairs, 

2. Iterative expansion of matched vertex pairs. 

The first vertex of each pair is from the fragment’s PDG 

and the second is from the function’s PDG. Corresponding 

instructions for the vertices of each pair have the same 

operation code. The algorithm then selects one of the 

unconsidered pairs from the set to start expanding process. 
From the selected pair, the algorithm temporarily matches 

previously unmatched pairs of vertices using specific 

subroutines. These subroutines match vertices based on their 

features and adjacent edges, ensuring that vertices with 

identical operation codes are paired. If the temporarily 

matched vertices meet all specified conditions, they are 

finally matched. This process is repeated for all vertices that 

are not matched yet. The expanding phase stops when no new 

temporarily matched pairs can be identified. The output of 

this process is the list of sets, where each set contains 

matched vertex pairs. Further details will be provided later in 
the text. For simplicity, we will be using some notations that 

are described below: 

 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 - PDG of the given function, 

 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 - PDG of the given fragment, 

 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠  - the set of initial pairs of vertices 

(𝑣, 𝑣 ∗) , where 𝑣 ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 , 𝑣 ∗∈

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺, 

 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  - the set of pairs 

(𝑣, 𝑣 ∗) , where 𝑣 ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 , 𝑣 ∗∈
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺, which are temporarily matched, but 

need to pass several checks before final matching, 

 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 - the set of pairs (𝑣, 𝑣 ∗), where 𝑣 ∈

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 , 𝑣 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 , which are 

finally matched,  

 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝐺) – the set of finally matched vertices of 

graph 𝐺, 

 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠  - the set of (𝑣, 𝑣 ∗) 

incompatible pairs of vertices, where 𝑣 ∈
𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺, 𝑣 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺, 

 𝑜𝑝𝑐𝑜𝑑𝑒(𝑣) - is an operation code corresponding to a 

vertex 𝑣, 

 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣)/ 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣) - the set of predecessor / 

successor vertices of 𝑣 by control dependence, 

 𝑝𝑟𝑒𝑑_𝑑𝑎𝑡𝑎(𝑣) / 𝑠𝑢𝑐𝑐_𝑑𝑎𝑡𝑎(𝑣)  - the set of 

predecessor / successor vertices of 𝑣  by data 

dependence, 

 𝑏𝑏(𝑣) - the list of vertices in the same basic block as 

vertex 𝑣, 

 𝑝𝑟𝑒𝑑_𝑏𝑏(𝑣)/ 𝑠𝑢𝑐𝑐_𝑏𝑏(𝑣) - the list of vertices in the 

predecessor / successor basic blocks of vertex 𝑣. 

1) Construction of the set of initial matched vertex pairs. 

The phase of selecting initial pairs of vertices aims to find 

such pairs of vertices from 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺  and 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 , which are likely to be matched together. 

Afterward, they are used as a starting point for the graphs’ 

matching process. The amount of such vertices should be as 

small as possible for efficiency. To achieve this, the initial 

vertices in PDGs are selected using various subroutines, 

chosen based on their effectiveness during the experimental 

evaluation. 

The first subroutine selects all vertices (𝑣, 𝑣 ∗)with no 

incoming edges in both PDGs, where 𝑣 ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 

and 𝑣 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 . These vertices typically 

correspond to the first instructions of the specified fragment 
and the function. Then, from the obtained sets of vertices, the 

subroutine constructs all possible combinations of pairs, 

where the corresponding instructions have the same 

operation code, and adds them to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠. 

The second subroutine collects vertices with the 

maximum incoming data dependencies in 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺. 

Then it collects vertices from 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 that have an 

equal or greater number of incoming data dependencies. Like 

the first subroutine, this one also creates all possible 
combinations of pairs from the obtained sets (ensuring that 

the corresponding instructions have the same operation code) 

and adds them to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 set. 

The third subroutine identifies all the instructions from 

the code fragment that have the maximum number of 

corresponding IR instructions. It then selects instructions 

from the function with the same number of corresponding IR 

instructions. Subsequently, the subroutine collects vertices 

corresponding to the first IR instructions of the mentioned 

instructions. Finally, similar to other subroutines, it generates 

all possible combinations of pairs from the obtained sets, 
ensuring that the corresponding instructions have the same 

operation code, and adds them to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 set. 

2) Iterative expansion of matched vertex pairs.  

The expanding phase temporarily matches unconsidered 

vertices from 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺  and the 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 . 

Next, it checks temporarily matched vertices for conditions. 

If a pair passes conditions checking, it is placed to 

𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  list, otherwise it is placed to 

𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 list. Expanding starts from 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠  and iteratively matches vertices until no 

temporarily matched vertices can be detected. 
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a) Temporarily matching. 

The matching algorithm involves five temporary 

matching subroutines. The results obtained from these 

subroutines are then checked against several conditions 

(described in the next section), and some of the temporarily 
matched pairs may be filtered out. The matching process is 

complete when no new pairs of vertices are temporarily 

matched, meaning that the algorithm has exhausted all 

possible matches between the fragment's PDG and the 

function's PDG. 

For each pair of vertices (𝑢, 𝑢 ∗) temporary matching 

is allowed if 𝑜𝑝𝑐𝑜𝑑𝑒(𝑢) == 𝑜𝑝𝑐𝑜𝑑𝑒(𝑢 ∗) , the size 

of 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑢) equals to the size of 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑢 ∗), and 

the size of 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑢) equals to the size of 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑢 ∗), 

where (𝑢, 𝑢 ∗) ∉ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  and (𝑢, 𝑢 ∗) ∉

𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠. 

In all subroutines, two vertices (𝑣, 𝑣 ∗)  can be 

temporarily matched if (𝑣, 𝑣 ∗) ∉ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 , 
(𝑣, 𝑣 ∗) ∉ 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠  and corresponding 

instructions have the same opcode. The subroutines are 

applied in the specific order, and if one of them temporarily 
matches a pair, the others will not be applied. At the 

beginning 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 ← ∅ . Below are 

descriptions of five temporarily matching subroutines: 

1. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 

temporarily match vertices (𝑢, 𝑢 ∗),  where 𝑢 ∈
𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣) and 𝑢 ∗∈ 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣 ∗) sets, and add them 

to 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 if temporary matching is 

allowed. Do the same for vertices (𝑢, 𝑢 ∗)  from 

𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣)  and 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣 ∗)  sets. If 

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  is not empty, go to 

conditions checking phase. 
2. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 

temporarily match vertices  (𝑢, 𝑢 ∗), where 𝑢 ∈ 𝑏𝑏(𝑣) and 

𝑢 ∗∈ 𝑏𝑏(𝑣 ∗) lists, and add them to 

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  if temporary matching is 

allowed. If 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 is not empty, go 

to conditions checking phase. 

3. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 

temporarily match vertices(𝑢, 𝑢 ∗), where 𝑢 ∈ 𝑝𝑟𝑒𝑑_𝑏𝑏(𝑣) 

and 𝑢 ∗∈ 𝑝𝑟𝑒𝑑_𝑏𝑏(𝑣 ∗)  lists, and add them to 

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  if temporary matching is 

allowed. Do the same for vertices from 𝑠𝑢𝑐𝑐_𝑏𝑏(𝑣)  and 

𝑠𝑢𝑐𝑐_𝑏𝑏(𝑣 ∗) . If 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  is not 

empty, go to conditions checking phase. 

4. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 

temporarily match vertices  (𝑢, 𝑢 ∗) , where 𝑢 ∈
𝑝𝑟𝑒𝑑_𝑑𝑎𝑡𝑎(𝑣) and 𝑢 ∗∈ 𝑝𝑟𝑒𝑑_𝑑𝑎𝑡𝑎(𝑣 ∗)  sets, and add to 

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  if temporary matching is 

allowed. Do the same for vertices from 𝑠𝑢𝑐𝑐_𝑑𝑎𝑡𝑎(𝑣) and 

𝑠𝑢𝑐𝑐_𝑑𝑎𝑡𝑎(𝑣 ∗)  sets. If 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  is 

not empty, go to conditions checking phase. 

5. Temporarily match pairs(𝑢, 𝑢 ∗) ∈ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 , 

and add to 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 , if (𝑢, 𝑢 ∗) ∉
𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 and (𝑢, 𝑢 ∗) ∉ 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠. 

b) Conditions checking. 

The next stage is the checking of temporarily matched 

pairs. After each iteration of temporarily matching, each pair 

(𝑣, 𝑣 ∗) ∈ 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  is checked for 

conditions. If the pair satisfies all conditions, it is moved to 

𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 , otherwise to 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 . The 

conditions are described below: 

1. 𝑝𝑟𝑒𝑑_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑣, 𝑣 ∗)  returns 𝑓𝑎𝑙𝑠𝑒  if ∃𝑝 ∈

𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣)  where 𝑝 ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺)  and 

∄𝑝 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 such that  𝑝 ∗∈ 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣 ∗)  and 

(𝑝, 𝑝 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠, otherwise returns 𝑡𝑟𝑢𝑒. 

2. 𝑠𝑢𝑐𝑐_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑣, 𝑣 ∗)  returns 𝑓𝑎𝑙𝑠𝑒  if ∃𝑠 ∈
𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣)  where 𝑠 ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺)  and 

∄𝑠 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 such that 𝑠 ∗∈ 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣 ∗)  and 

(𝑠, 𝑠 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠, otherwise returns 𝑡𝑟𝑢𝑒. 

V. IMPLEMENTATION 

We implemented the proposed method in a tool called 
FCD. It is a command-line tool, that receives the following 
inputs: 

1. The project path and the function name containing 
the code fragment to be analyzed, 

2. The boundaries of the code fragment: the start and 
end line numbers for source code, the start and end memory 
relative addresses for binary code, 

3. The project in which to search for clones of the 
specified fragment, 

4. An optional minimum similarity percentage 
parameter, which is used to filter out clones that are less 
similar than the specified value. This parameter belongs to (0, 
100], and has a default value of 90. The 90% similarity is 
chosen to detect highly similar code fragments, which is more 
of the interest to developers. 

The process of PDG’s generation differs for source and 
binary code, however, the matching parts are the same. For 
source code PDG’s generation FCD uses LLVM intermediate 
representation [35]. To get PDGs for source code a new pass 
is added in LLVM, which uses control flow information, use-
def chains and alias analysis. For binary code PDGs 
generation FCD uses REIL [36] intermediate representation. 
At first, it uses IDA Pro [37] disassembler to restore assembler 
and control flow graphs. Then the obtained assembler is 
translated to the REIL intermediate language using Binnavi 
[38]. Lastly, it uses Binside [39] to generate PDGs, which was 
developed by our team previously.  

Code fragment clone detection algorithm is implemented 
in C++ language. The output of the tool consists of a set of 
JSON files containing information about the detected clones. 
This information includes functions’ names corresponding to 
matched fragments, similarity percentage, all pairs of matched 
instructions, and other relevant details. 
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VI. TESTING SYSTEM 

To evaluate FCD algorithm, we have designed and 
implemented a testing system, which generates tests, executes 
FCD and calculates precision, recall, and Root Mean Square 
Error (RMSE) to assess their effectiveness. Test generation is 
done using PDGs of real-world projects. For each PDG, it 
creates a duplicate, removes some vertices, and considers it as 
fragment's PDG. It randomly selects a basic block and 
removes corresponding vertices until the desired similarity 
percentage is reached. After removing a vertex, its 
predecessor vertices are connected with the successor ones. If  
all vertices in the chosen basic block are removed and the 
provided similarity is still not met, the system randomly 
selects a new basic block and starts removing consecutive 
vertices from that block. This process continues until the 
required similarity percentage is not met. 

It then runs the FCD algorithm on generated PDGs’ pairs 
and compares the resulting similarity percentage with the one 
specified to testing system. Ideally, the similarity percentages 
of the created PDGs’ pairs by the testing system should match 
with the results from the FCD algorithm. The testing system 
saves information about the correspondence of the original 
and the generated PDG vertices, which is used to calculate 
precision, recall, and RMSE. 

VII. RESULTS 

FCD is tested with the discussed testing system on projects 

OpenSSL, JasPer, c-ares, Rsync. Tables TABLE III and TABLE IV 

present the results of source and binary code clone detection, 

respectively. The results are averaged across similarity 

thresholds 100%, 90%, 80%, and 70%. 

The tool achieves perfect results when generated clones 

are 100% similar. Furthermore, FCD consistently 

demonstrated high accuracy across lower thresholds, as 

reflected in the averaged results in the tables. However, 

binary code clone detection’s speed is slow compared to 
source code clone’s detection time, as for binary bigger 

PDG’s are generated. 

TABLE III. SOURCE CODE CLONE RESULTS 
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c-ares 

1.15.0 
61087 97.5 95.2 6.1 0m 0.29s 

jasper 

1.900.1 
28279 95.4 93 6 0m 15s 

openssl 

1.0.2t 
310922 97 95.1 7.7 0m 2s 

rsync 

3.1.3 
44832 96 91.9 10.7 0m 26s 

On average, FCD has 96.5% precision, 93.8% recall and 

7.6% RMSE for source code. And on average, FCD has 

96.9% precision, 92.9% recall and 5.4% RMSE for binary 

code. Despite high rates of the tool’s precision and recall, 

there are still certain cases that the tool may not detect 

correctly. This occurs when the copied code is modified by 

adding a new instruction between each original instruction, 

i.e., one instruction from the original code, followed by one 

new instruction, then another from the original, and so on. 
However, if the copied code is modified in such a way that a 

whole basic block is added the tool identifies it correctly. 

TABLE IV. BINARY CODE CLONE RESULTS 

The tool is not compared with the related tools as there is 

no common benchmark for evaluation. While there are some 

benchmarks available for C/C++ languages, they include 

only Type-4 clones, which our tool does not detect. 

Additionally, each tool uses its own method to calculate 

similarity levels, which results in inconsistent evaluations of 

the same code fragments. 

VIII. CONCLUSION 

The study proposes a novel technique to identify 

duplicated code fragments. It overcomes limitations of 

existing clone detection tools, which typically target only full 

functions and specialize in either source or binary code 

analysis. Experimental evaluation on real-world software 

projects demonstrates the high precision and effectiveness of 

the proposed clone detection approach for source and binary 

code. As conclusion we can clearly see that PDG captures 

enough information for source and binary code to enable 

accurate clone detection for both cases. Moreover, a unified 

algorithm can be used for maximal similar subgraphs 

detection in both cases. 
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libcares 2.3.0 

(c-ares 1.15.0) 

86 

KiB 
x86-64 98.9 95.6 4.6 0m 41s 

libcares 2.3.0 

(c-ares 1.15.0) 

96 

KiB 
x86 97.9 93.4 5.5 0m 43s 

libcares 2.3.0 

(c-ares 1.15.0) 

146

KiB 
ARM 98.9 95.6 4.6 0m 49s 

jasper 1.900.1 
1.5 

MiB 
x86-64 96 92.1 5.4 3m 5s 

jasper 1.900.1 
368

KiB 
x86 95 90 6.5 2m 1s 

jasper 1.900.1 
478

KiB 
ARM 94.1 89.8 6.1 2m 8s  

openssl 1.0.2t 
536

KiB 
x86-64 99.9 98.1 3.8 1m 10s 

openssl 1.0.2t 
507

KiB 
x86 98.8 95.8 3.9 0m 57s 

openssl 1.0.2t 
634 

KiB 
ARM 97.9 95.6 4.4 1m 25s 

rsync 1.3.2 
1.7 

MiB 
x86-64 96 91 6.6 3m 34s 

rsync 1.3.2 
1.6 

MiB 
x86 94.9 88.9 6.7 3m 21s 

rsync 1.3.2 
1.8 

MiB 
ARM 94.1 88.8 7.4 3m 58 
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Abstract— Unit testing is crucial for ensuring software quality 
and reliability. Although recent advancements in artificial 
intelligence, particularly Large Language Models (LLMs), 
offer promise for automating unit test generation, they often 
struggle with compilation due to an insufficient understanding 
of specific code rules and execution errors, primarily caused by 
incorrect assertions. This paper focuses on EvoSuite, a leading 
state-of-the-art Search-Based Software Testing (SBST) tool
that originated in academic research and has proven to be a 
more reliable alternative for generating unit tests, particularly 
in Java. EvoSuite excels by directly targeting code coverage 
and optimizing test generation based on actual program 
behavior, overcoming many challenges LLMs face. We share 
our experiences and challenges with EvoSuite across various 
projects, which have provided valuable insights for its 
subsequent application in ASys, a system for automatically 
evaluating Java code. The study explores challenges such as 
generating tests for overloaded methods and running tests 
across different environments. We also discuss solutions for 
these challenges, including method-specific test generation 
strategies and ensuring test execution compatibility. Our 
findings highlight the limitations and potential improvements 
for EvoSuite, offering valuable insights for developers and 
researchers aiming to enhance automated unit test generation 
in their projects. 

Keywords- EvoSuite; automated test unit generation. 

I. INTRODUCTION

Unit tests are a type of software testing that focuses on 
verifying the functionality of the smallest unit of a program, 
typically a single function or method. These tests are 
fundamental in the software development process to ensure 
the quality and reliability of systems. However, writing unit 
tests can be complex and time-consuming, especially as 
program complexity increases. With the advancement of 
Artificial Intelligence (AI), particularly Large Language 
Models (LLMs), new opportunities have emerged for 
automating the generation of unit tests. Recent studies have 
explored using ChatGPT [1] for this purpose, but the results 
have shown that the generated tests often have numerous 
compilation errors, mainly because the tool lacks a deep 
understanding of specific code rules, such as access 
restrictions and the proper use of abstract classes, and 
execution errors, primarily caused by incorrect assertions due 
to an inadequate grasp of the focal method's intention [2].  
Tools like ChatTester [2] and ChatUnitTest [3] have been 
developed to address these limitations, improving the 

generated tests' accuracy. ChatUnitTest achieves this by 
integrating with the ChatGPT API, albeit at an additional 
cost. 

Despite these advancements in AI, Search-Based 
Software Testing (SBST) techniques [3] remain the most 
effective solution for generating unit tests in Java. These 
techniques, used by various tools, have demonstrated 
superior results compared to LLMs, due to their specialized 
focus on testing [4]. One of the most powerful and extended 
techniques is EvoSuite [5], initially developed as an 
academic research tool to advance automated unit test 
generation techniques. EvoSuite has excelled in competitions 
such as the SBST Tool Competition 2022 [6] and the SBFT 
Tool Competition 2023 [7], demonstrating its effectiveness 
and obtaining the highest overall mark despite challenges 
related to usability and inherent limitations of the Java 
language [8]. Due to its open-source licensing, EvoSuite has 
not only become a cornerstone in academic research, where 
its testing architecture has been widely adopted and extended 
in various projects, but it has also been tested and applied in 
industrial contexts. This includes experiments on large-scale 
open-source projects and even some industrial systems, 
confirming its potential in practical applications [9]. While 
these industrial applications demonstrate the tool's 
versatility, they also highlight challenges in scaling up to the 
complexity of real-world systems, an area where continued 
research and development are essential. 

Nevertheless, EvoSuite has its own issues. Despite being 
the leading tool in its field and having proven that individual 
developers may not be able to find more faults than EvoSuite 
[10], it faces challenges that reflect broader issues within 
automated test generation tools. For instance, while 
achieving a completely bug-free software might be 
unrealistic, the focus remains on identifying and mitigating 
specific challenges that can hinder fault detection. Studies, 
such as [11], have pointed out that automatically generated 
tests often struggle with issues like incorrect oracles and 
unexpected exceptions, which can significantly impact their 
effectiveness. Moreover, as highlighted in [12], although 
high code coverage is correlated with an increased likelihood 
of fault detection, it is not a definitive guarantee. In practice, 
this means that while EvoSuite can achieve high coverage, 
certain types of faults, particularly those related to more 
complex software behaviors, might still go undetected. The 
study shown in [13] further elaborates on this, indicating that 
code coverage serves as a moderate indicator of fault 
detection effectiveness, with its strength varying depending 
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on the testing profile. Similarly, [14]  discusses the link 
between coverage and software reliability, supporting the 
notion that focusing on coverage is still a practical approach, 
though not without its limitations. 

Given these findings, while recognizing the limitations, 
our work continues to prioritize coverage in the use of 
EvoSuite, as it remains a practical and widely accepted 
measure of test suite effectiveness in detecting faults. 
However, we acknowledge that the ultimate goal is not 
solely to achieve high coverage but also to ensure that the 
generated tests effectively uncover real and critical bugs in 
the software. This dual focus on coverage and fault detection 
is crucial for improving the reliability of automated testing 
tools like EvoSuite. By refining these tools to better handle 
complex scenarios and enhance the accuracy of test oracles, 
we strive to contribute to the ongoing efforts in advancing 
automated testing practices, ultimately aiming for more 
dependable and effective software testing outcomes. 

The contributions of this paper include a detailed 
exploration of the practical application of EvoSuite in ASys 
[15], a system designed to grade Java programs 
automatically. ASys relies heavily on reflection to inspect 
the source code of the target program and discover its 
internal structure and dependencies. With the information 
gathered, ASys can modify the target program’s source code 
at runtime to facilitate the generation of white-box unit tests. 
In this context, unit tests are crucial in validating students' 
code submissions by providing precise and targeted feedback 
on individual functions or methods. This targeted validation 
aligns with ASys's educational objectives, ensuring that each 
aspect of the student's solution is thoroughly evaluated. To 
achieve this, ASys leverages EvoSuite, which is executed by 
ASys at runtime on the user’s machine. To facilitate this 
integration, we conducted numerous tests to explore the 
feasibility of most of the options and facilities offered by 
EvoSuite. ASys began as a desktop application but has 
evolved into a client-server architecture with a third 
component installed on the end user’s machine. This third 
component is responsible for grading and evaluating 
programming exercises and has been extended to also handle 
the generation and execution of unit tests using EvoSuite. As 
a result, ASys now poses challenges on EvoSuite, such as the 
need to distinguish test cases generated for overloaded 
methods and the need for running the test cases on different 
environments (the teacher and the student side). 

This paper aims to share our experience with EvoSuite, 
illustrating specific issues we identified, such as the 
insufficient handling of polymorphism and the lack of 
efficiency and effectiveness in generating tests for specific 
methods. While EvoSuite provides a solid foundation, our 
findings suggest that more advanced engines could 
incorporate features like improved static analysis and 
dynamic adaptability to better manage these challenges. 
Developing these new engines would enhance coverage 
accuracy, reduce the overhead of test generation, and offer 
more precise testing capabilities, ultimately providing a more 
robust solution for developers and researchers. We stressed 
EvoSuite and found errors in its core. Throughout our work, 
we encountered several challenges and limitations. In this 

paper, we highlight the problems faced, the solutions 
implemented, and the findings made. These findings cannot 
be found in the official tutorials [16], in the StackOverflow 
responses related to EvoSuite [17], or in the official GitHub 
repository for the tool [18]. We hope our experience will be a 
useful guide for future developers and researchers who wish 
to use EvoSuite in their projects. 

Section 2 outlines our discoveries and challenges. In 
Section 3, we conclude by summarizing our experiences with 
EvoSuite, highlighting solutions implemented and lessons 
learned. 

II. FINDINGS AND CHALLENGES

This section explains the main problems found when 
using EvoSuite in challenging contexts. It also describes 
some possible solutions to these problems.  

A. Producing tests for specific methods 

For many research and industrial tasks, e.g., to produce 
regression tests, it is necessary to generate unit tests for each 
method under study. Unfortunately, the default behavior of 
EvoSuite is to generate test files for each class in the 
application but not for each method. As a result, EvoSuite 
generates methods test00, test01… for a given class, and 
it is difficult to identify which specific methods are being 
tested by each generated test. This lack of clarity can 
significantly impact test coverage, hindering developers' 
ability to assess whether all relevant methods have been 
adequately tested. According to previous studies [19], well-
named unit tests are essential for understanding the purpose 
of a test and for navigating through a suite of tests. 
Descriptive names help developers quickly identify gaps in 
coverage and ensure that critical paths are thoroughly tested. 
To address the problem of identifying the methods being 
tested, we explored two different approaches within 
EvoSuite that allow for more granular test generation. Each 
approach comes with its own set of advantages and 
disadvantages. 

Name-based strategy. One strategy to identify the method 
targeted by a generated unit test is to use the -

Dtest_naming_strategy=COVERAGE property, which 
applies the algorithm proposed in [19]. This allows us to 
identify the tested method in scenarios where a class contains 
methods with distinct names, as shown in Table I. 

TABLE I. EVOSUITE-GENERATED TESTS’ NAMES FOR METHODS WITH 

DISTINCT NAMES. 

Method signature Test names 

boolean is9(int a) testIs9, testIs9WithNegative 

boolean is10(int a) 
testIs10, testIs10ReturningTrue, 
testIs10WithPositive 

boolean is11(int a) testIs11, testIs11ReturningTrue 

Nevertheless, our tests showed that polymorphism causes the 
generation of descriptive names to fail, especially when 
overloaded methods have the same name but different 
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signatures. In particular, when overloaded methods have at 
least two parameters with different types, the name 
generation becomes inaccurate, making it difficult to 
understand what is being tested (see Table II). Therefore, 
while this approach improves the identification of the 
methods under test in many cases, there are still limitations 
when dealing with polymorphism, and a complementary 
approach is needed. 

TABLE II. EVOSUITE-GENERATED TESTS’ NAMES FOR OVERLOADED 

METHODS (PROBLEMATIC POLYMORPHISM). 

Method signature Test names 

boolean is9(int a, int b) 
testIs9Taking2Ints, 
testIs9Taking2IntsReturningTrue 

boolean is9(int a, float b) 

testIs9Taking1And1ReturningTru
eAndIs9Taking1And1AndIs9Taki
ng1And1AndIs9Taking1And1Wit
hPositive0 

boolean is9(int a, String b) 

testIs9Taking1And1ReturningTru
eAndIs9Taking1And1AndIs9Taki
ng1And1AndIs9Taking1And1Wit
hPositive0, testIs9Taking1And1, 
testIs9Taking1And1WithEmptyStr
ing 

Target method. Another alternative is to use the -

Dtarget_method property, which requires the bytecode 
signature of the method to be tested [20]. Unlike relying on 
method names, which can sometimes be ambiguous or 
prone to changes, specifying the target method via its 
bytecode signature provides a precise and unambiguous 
identification. EvoSuite generates a separate test file for 
each method under test using this property.  

This approach eliminates the need to parse the method's 
name to understand which method is being tested, as each 
test file is explicitly associated with a specific method 
through its bytecode signature. Moreover, this method-based 
separation simplifies the organization and management of 
tests, making it easier to locate and maintain test cases for 
individual methods within a codebase. However, this 
approach also has limitations: as we show next, it can only 
be used under certain circumstances.  
1. In EvoSuite 1.0.6, the -Dtarget_method property is 

compatible only with the BRANCH, ONLYBRANCH, and 
INPUT coverage criteria. Otherwise, it is ignored. 
Therefore, we can only use it by forcing these three 
coverage criteria using -criterion argument. 

2. Another critical issue, reported in [21] but not resolved 
yet, affects EvoSuite 1.1.0 and 1.2.0 versions and 
produces a NullPointerException in a class within 
the library responsible for generating tests for the 
WEAKMUTATION and STRONGMUTATION coverage 
criterion. This library is invoked by the main class of the 
search algorithm that EvoSuite has been using since 
version 1.1.0, called DynaMOSA. Therefore, there are 
two ways to avoid this error. The first is to change 
EvoSuite's search algorithm using the -Dalgorithm
property. However, it is important to note that this 

algorithm is the most effective for generating unit tests 
[22]; so the cost of using this solution is a loss of 
coverage, ranging from -3% to -21% with single criteria, 
and from -8% to -36% with multiple criteria. Another 
solution to this problem is to keep using DynaMOSA but 
avoid using the weak and strong mutation coverage 
criterion. This can be done by specifying the default 
criteria with -Dcriterion and skipping the 
WEAKMUTATION and STRONGMUTATION criteria. In this 
case, the cost of this solution is a loss of mutation score 
of 0.04 with weak mutation and 0.17 with strong 
mutation [23]. 
Our tests have revealed that another problem can appear 

together with the previous one: EvoSuite 1.1.0 and 1.2.0 may 
struggle to achieve 100% branch coverage, which prevents 
reaching 100% in other coverage criteria. This problem 
occurs when methods work with arrays or objects that 
implement java.lang.Collection, as shown in Example 
1. 

Example 1: Low branch coverage in the presence of 
collections. Consider the following method: 

public boolean checkEmpty(java.util.List list) { 
if (list == null || list.isEmpty())  

return false; 
   else return true; 
} 

EvoSuite cannot achieve 100% branch coverage if we 
generate test cases for this method (i.e., using the 
target_method property). The else branch remains un-
covered, and EvoSuite times out while attempting to cover 
this branch. In such situations, it may be useful to consider 
reducing the timeout using -Dsearch_budget. 

To analyze this case, we conducted a small experiment 
using the code from Part 2 of the EvoSuite’s tutorial. The 
results are shown in Table III, where Target indicates 
whether tests are generated for each class or method. Version
is the EvoSuite version used. Coverage requested is the type 
of coverage that EvoSuite tries to maximize, and resulting 
coverage shows the results obtained. Finally, runtime
displays the time consumed with different timeouts for each 
target (15 and 60s). 

TABLE III. COMPARISON OF COVERAGE AND GENERATION TIMES FOR 

DIFFERENT EVOSUITE CONFIGURATIONS AND VERSIONS. 

Target Version
Coverage Resulting coverage Runtime 
requested Cov. Type Cov. (60s) (15s) 

Class 
(default)

Any 
Default 

Output   97.00%

185 s 49 s 
MethodNoEx. 93.75%

WeakMutation 98.25%

Others 100.00%

Branch Branch 100.00% 7 s 7 s 

Method 

1.0.6 Branch Branch 100.00% - 179 s 

≥ 1.1.0 Branch Branch 82.92% - 224 s 

≥ 1.1.0 Default 

Line 93.45%

- 224 s 
Branch 82.92%

MethodNoEx. 83.33%

WeakMutation 34.37%
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CBranch 82.92%

Output 68.33%

Others 100.00%

When running EvoSuite with its default configuration, 
we achieved 100% coverage in almost all default criteria 
regardless of the version. However, as we did not reach 
100% in all cases, EvoSuite continues attempting to do so 
until the timeout expires. Reducing the timeout from 60 to 15 
seconds produced the same results in less time. We achieved 
100% coverage in just 7 seconds when generating tests using 
only the branch criterion. In tests with target_method, we 
used the default algorithm of EvoSuite 1.0.6 
(MONOTONIC_GA). These tests were revealing, as 
EvoSuite seems not to generate tests until the timeout 
expires, significantly increasing the test generation time for 
each method. Although versions higher than 1.0.6 support 
various coverage criteria, achieving a good result is 
challenging. In contrast, focusing solely on branch coverage 
in version 1.0.6 may be more efficient and effective. This 
complements the results of [24], which showed that Default
test case generation achieves better results (i.e., higher or 
same coverage) than Branch testing. This can be explained 
by the fact that in later versions, EvoSuite with the 
target_method property struggles to achieve 100% branch 
coverage, which it would obtain without using this property. 
Even if we execute EvoSuite ≥ 1.1.0 focusing only on 
branch coverage, version 1.0.6 achieves better results (better 
coverage and less runtime). This highlights the importance of 
considering older versions, such as 1.0.6, which, despite 
lacking some newer features, offer better stability and 
coverage performance under certain conditions.The observed 
challenges in achieving 100% branch coverage, particularly 
in more recent versions of EvoSuite when using the 
target_method property, point to a broader concern regarding 
the potential impact of reduced coverage on fault detection. 
Studies have shown that higher code coverage generally 
correlates with an increased likelihood of fault detection 
[12]. However, as highlighted in [13], code coverage is only 
a moderate indicator of fault detection across a test set, with 
its effectiveness being more pronounced in exceptional test 
cases. The drop in coverage, especially in complex scenarios 
like those involving collections, may lead to undetected 
faults, thus compromising the overall reliability of the 
software. This risk underscores the importance of 
maintaining high coverage levels where possible, while also 
recognizing the need for complementary testing strategies to 
address any gaps. 

B. Controlled Environment Execution 

Generating and executing unit tests in different systems 
is not possible by default. The cause is that EvoSuite's 
generated tests come with scaffolding that prepares the 
EvoSuite environment using @Before/@After methods. 
One such method is setSystemProperties, which sets 
properties (e.g., user.dir) that depend on the machine 
where the tests were generated and may differ from the 
machine where they will be executed. This can be avoided 
by disabling the sandboxing system with the properties -

Dsandbox=false and -Dfilter_sandbox_tests 

=true, which, in turn, removes these dependences to the 
generation environment. Nevertheless, disabling the sandbox 
introduces security risks, as the test cases can execute 
potentially malicious user code without the sandbox’s 
protection [25].  

To address the security risks, we have implemented an 
architecture where the third component of ASys, installed on 
the user’s machine (either teacher or student), handles the 
generation and execution of unit tests. For teachers, this 
component generates the tests using EvoSuite, ensuring they 
are tailored to the specific programming exercises. For 
students, the same component runs the tests against their 
solutions, including both grading and evaluating their 
submissions. 

EvoSuite enhances security by isolating potentially 
harmful code through sandboxing mechanisms. However, 
ASys takes a different approach by performing the grading 
and test execution directly on the client side, specifically on 
the student’s machine. This strategy ensures that any risks 
associated with executing code are confined to the local 
environment, thus protecting the broader system 
infrastructure. This client-side grading not only secures the 
ASys infrastructure but also enhances performance, 
compatibility, and flexibility in a distributed system. 

III. RELATED WORK

The generation of tests for specific methods and their 
execution in different environments are topics that have 
received little attention in the literature. While the 
development of EvoSuite has been supported by numerous 
studies highlighting its challenges [8] and identifying its 
ineffectiveness in certain situations [11], most of this work 
focuses on the execution of EvoSuite at the project level, 
without clearly distinguishing the tested methods. This poses 
a significant problem because, even if tests successfully 
detect faults, it becomes difficult to contextualize these 
issues without tests being specifically documented for each 
method. 

One area that has been explored is the impact of 
parameter tuning on EvoSuite's performance. Studies like 
[26] have shown that appropriate parameter tuning can 
improve EvoSuite's performance, although, in most cases, 
default values are sufficient. However, these investigations 
do not address the granularity of test generation at the 
method level, leaving an important gap in the literature. 

The study in [19] partially addresses this issue by 
introducing an algorithm that attempts to assign descriptive 
names to the tested methods, improving the identification 
and contextualization of tests. Despite this advancement, 
there is still work to be done to achieve more effective 
documentation of the generated tests. 

Regarding the sandboxing employed by EvoSuite, 
developers have made significant efforts to use bytecode 
instrumentation to automatically separate code from its 
environmental dependencies and to set the state of the 
environment as part of the generated call sequences [27]. 
However, EvoSuite also implements a custom Security 
Manager that restricts many dangerous interactions with the 
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environment, while still allowing specific system 
configurations, such as user.dir, to ensure that tests execute 
consistently [9]. This explains why certain system properties 
remain set in the automatically generated tests, despite 
efforts to isolate the environment.  

Although there are autograding solutions in the literature 
that employ various security techniques, such as those 
mentioned in [25], there is no documented use of these 
techniques in combination with EvoSuite, particularly 
focusing on client-side security. This highlights a gap that 
our work addresses by implementing security at the client 
side in ASys. 

IV. CONCLUSIONS

Our experience with EvoSuite has been instrumental in 
identifying various challenges and solutions in configuring 
and generating automated unit tests. We have thoroughly 
explored the wide range of configurable parameters offered 
by EvoSuite, providing guidance on how to find the right 
values to solve problems and optimize test generation. 

One significant challenge we encountered was the 
generation of specific tests for individual methods. 
EvoSuite's default behavior of producing non-descriptive test 
names (e.g., test00, test01, etc.) complicates the 
identification of which specific methods are being tested, 
which can significantly impact test coverage. To address this, 
we explored two distinct approaches: a name-based strategy, 
which is a valid option when there is no method overloading. 
However, this approach is limited by issues related to 
polymorphism, particularly when overloaded methods are 
involved, leading to inaccurate or unclear test names. The 
second approach involves the use of the target_method
parameter, but we also encountered errors and limitations 
with this option, such as compatibility issues and difficulties 
in achieving full branch coverage, especially when methods 
involve java.lang.Collection. 

Moreover, while newer versions of EvoSuite offer 
additional features, our tests revealed that these versions 
sometimes struggle with issues like reduced branch coverage 
when using the target_method property with data 
structures like java.lang.Collection. In contrast, older 
versions, such as 1.0.6, demonstrated better stability and 
coverage performance under certain conditions. This 
highlights the importance of carefully selecting the version 
of EvoSuite based on the project's specific needs, even if it 
means foregoing some of the newer features. 

We also addressed the risk of dependencies produced in 
the generated test cases with the environment in which they 
were generated. This was particularly challenging in 
distributed environments where tests needed to be executed 
on multiple machines. By disabling EvoSuite's sandboxing 
system, we mitigated environment-specific dependencies, 
but this introduced security risks, as it allowed potentially 
malicious code to execute without the sandbox’s protection. 
To solve this, we implemented an architecture in ASys that 
allows tests to be generated on the teacher's machine and 
executed on the student's machine, thereby confining any 
risks to the local environment.  

In conclusion, our practical experience with EvoSuite 
provides useful knowledge for identifying common 
challenges in generating automated unit tests and offering 
practical solutions to overcome them. We are confident that 
our findings will benefit other development teams looking to 
leverage the capabilities of EvoSuite to the fullest in their 
software projects. 

Looking ahead, we plan to expand our experiments by 
applying the target_method parameter of EvoSuite to the 
SF100 benchmark, a statistically sound collection of Java 
projects from SourceForge [28]. This will allow us to 
evaluate our solutions in a more diverse and realistic 
environment, identifying opportunities for improving 
coverage and effectiveness in more complex contexts. 
Additionally, we aim to explore the generation of tests for 
scenarios involving inheritance and method overriding, 
addressing the challenges EvoSuite faces in these situations. 
This exploration will help us determine whether the issues 
encountered with overloaded methods also apply to inherited 
and overridden methods, ensuring a more comprehensive 
understanding of EvoSuite’s capabilities and limitations in 
object-oriented programming contexts. By enhancing the 
tool's ability to manage these complexities, we hope to 
ensure more comprehensive and accurate testing across a 
wider range of software projects. 
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