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The Tenth International Conference on Advances in Vehicular Systems, Technologies and
Applications (VEHICULAR 2021) continued a series of events considering the state-of-the-art
technologies for information dissemination in vehicle-to-vehicle and vehicle-to-infrastructure and
focusing on advances in vehicular systems, technologies and applications.

Mobility brought new dimensions to communication and networking systems, making possible new
applications and services in vehicular systems. Wireless networking and communication between
vehicles and with infrastructure have specific characteristics from other conventional wireless
networking systems and applications (rapidly-changing topology, specific road direction of vehicle
movements, etc.). These led to specific constraints and optimizations techniques; for example, power
efficiency is not as important for vehicle communications as it is for traditional ad hoc networking.
Additionally, vehicle applications demand strict communications performance requirements that are not
present in conventional wireless networks. Services can range from time-critical safety services, traffic
management, to infotainment and local advertising services. They are introducing critical and subliminal
information. Subliminally delivered information, unobtrusive techniques for driver’s state detection, and
mitigation or regulation interfaces enlarge the spectrum of challenges in vehicular systems.
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members of the VEHICULAR 2021 organizing committee for their help in handling the logistics of this
event.
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Hack The Automotive Simulator 

Setting Up a Simulation Environment for Carrying Out Hacking Attacks on CAN Bus Systems

Dirk Labudde1, Heiko Polster2 and Markus Straßburg3 
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Hochschule Mittweida – University of Applied Sciences Mittweida, Germany 

Email: 1dirk.labudde@hs-mittweida.de, 2heiko.polster@hs-mittweida.de, 3markus.strassburg@hs-mittweida.de

 

 
Abstract— The paper describes a digital simulation 

environment to reproduce and test attacks on Controller Area 

Network (CAN) bus systems. Security researchers repeatedly 

find vulnerabilities in different software components of 

networked vehicles.  Since investigations on the real system seem 

too costly, various vehicle functions are to be tested and 

analysed during attacks with the help of a CAN bus simulator. 

This simulation environment can also be used to conduct on-site 

and remote training. For the simulation environment, we use the 

software Vector CANoe as well as CANUTILS to control and 

analyse the CAN bus systems. In order to be able to analyse the 

effects and thus the interrelationships and make them 

comprehensible, a CAN bus simulator was built in the form of a 

model car. The connection to the model is realised by means of 

two ESP32-EVB development boards configured as WLAN 

CAN gateways and a VN1610 CAN-USB interface. In the model, 

an AT90CAN128 development board functions as a control unit, 

which controls the motors and the lighting on the model car. The 

procedure for setting up a CAN bus simulation environment 

and using it to analyse and evaluate hacker attacks on 

automotive bus systems is described. The application 

possibilities show that the simulation environment can not only 

be used on-site, but in combination with web conferencing 

systems for theoretical knowledge transfer with a remote 

connection for solving practical tasks. It represents the most 

effective methodology for imparting knowledge in the field of 

car forensics online. Technological obstacles make it difficult to 

easily integrate practical tasks on real CAN bus systems into 

conferencing tools, as this requires a connection to the 

simulation hardware used. Therefore, this paper also shows 

how, in addition to the BigBlueButton web conferencing system, 

the AnyDesk remote maintenance software can be used to 

establish a remote connection to the control machine. Audio-

visual feedback is helpful to clarify the effects of the CAN 

commands sent. Here, webcams are used to control the model 

car and a remote connection is used to enter the commands. 

 
Keywords-cyberattacks; car forensics; can-bus; demonstrator; 

remote seminar. 

I. INTRODUCTION 

Today's motor vehicles are no longer controlled by the 

driver himself using wire ropes, levers or hydraulics, but via 

digitally networked computer systems. A depressed brake 

pedal no longer necessarily means that the brakes are actually 

applied. In modern vehicles, the software systems decide 

whether this actually happens. Additionally, cars are 

becoming increasingly networked, both internally and in 

relation to the outside world. This makes it possible for 

hackers to locate cars from the network and penetrate their 

systems. In the worst case, this will make them able to take 

control of important control systems [21]. Meanwhile, 32% 

of vehicles in the US are connected to the Internet [1]. In 

terms of new registrations of the ten largest car brands in the 

US, 95% are connected cars. By 2020, the three largest 

manufacturers - General Motors, Toyota and Ford - which 

together represent almost half of the US car market, had set 

themselves the goal of installing hardware for connected 

services in every sold vehicle [2]. 

In recent years, more and more software vulnerabilities 

have been found [16]. As software is continously becoming 

an integral component in modern cars, especially in the area 

of networked services, it can be assumed that more software 

vulnerabilities can also be found in vehicles [1][3]. In most 

cases, attackers penetrate the infotainment centre of vehicles 

via mobile wireless connections (e.g. for location or 

emergency call systems), where most security vulnerabilities 

can be found [2]. From there, it is sometimes possible to 

penetrate the control electronics. The biggest challenge here 

is to send vehicle data to the infotainment system without 

allowing data flow in the other direction [19][20].In this 

context, the question arises as to what data is actually stored 

and transmitted in the vehicle? This can be location data, 

stored routes, telephone data, error messages, time stamps, 

kilometre statuses or even exact parking locations of a vehicle 

at a defined point in time [19]. 

This raises additional questions: which electronic systems 

are installed in the vehicle under consideration, which 

interfaces do the various systems have, how can these 

systems be addressed or evaluated forensically, which 

hacking and analysis tools enable data evaluation? 

Furthermore, data is sent to the respective backend with the 

help of manufacturer-specific online or remote services. This 

data is not only of great interest to authorities, insurance 

companies and service providers, but can also help in 

investigations. The derived information can be assigned to a 

crime and thus, if necessary, to a person. "Forensic is related 

to scientific methods of solving crimes, involving examining 

the objects or substances that are involved in the crime." [22]. 

1Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-879-2
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The purpose of car forensics is to assist in solving crimes and 

to find data in vehicle systems that provide conclusions about 

the use or manipulation of the vehicles. 
The motor vehicle and the automotive industry are 

undergoing a noticeable transformation: electric drives, 
autonomous driving and smart mobility require 
comprehensive networking of the vehicle with its 
environment. According to estimates, there will be 775 
million connected vehicles in 2023, which will be connected 
by means of in-vehicle telematics or via a smartphone app [3]. 
The number of cyberattacks on motor vehicles is steadily 
increasing. For example, 73 attacks on vehicles were recorded 
in the whole of 2018 and 71 vehicles have been the victims of 
attacks in the first four months of 2019 [4]. 

Due to the considerable increase in possible attack vectors 
resulting from the networking of vehicles and the serious 
security deficiencies in the implementation of the CAN bus 
protocol, a subdivision must be made based on the access 
possibilities [17]. For this purpose, the following 
classification was established for the differentiation of attacks: 
direct, short-range and longe-range. It matters how these can 
be carried out by the attacker. Figure 1 shows a summary of 
the most frequent attack targets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Distribution of attack targets on motor vehicles in descending 
order of occurrence. Green are the attack targets on which this paper  

focuses. [5] 

In this work, attacks targeting Electronic Control Units 
(ECU) and in-vehicle network are specifically addressed. 
However, the represented simulation environment shows the 
opportunities to address further attack targets. The distance 
between the attacker and the vehicle plays a decisive role in 
the attack targets. Therefore, the attacks are classified 
according to the distance between the attacker and the vehicle. 
Direct attacks require direct physical access. The attacker 
must expose himself to the danger of implementing his attack 
directly, even if sometimes only briefly, on the vehicle itself. 
In addition, an attacker cannot determine the timing of the 
attack himself, but is rather dependent on the behaviour of the 
vehicle owner. This further limits the potential for direct 
attacks. Short-range attacks, on the other hand, allow the 
attacker to keep a certain distance from the vehicle by 

compromising those interfaces of the vehicle that operate 
wirelessly within a radius (from a few metres for Bluetooth 
and Tyre Pressure Monitoring System (TPMS) to approx. 
100m for WLAN or remote opening systems). Long-range 
attacks allow the attacker to connect to the vehicle from any 
point, via the Internet or the mobile network, and carry out an 
attack. Since the attacker no longer needs to be in the 
immediate vicinity of a vehicle to be attacked, this greatly 
increases the chances that a vehicle can be attacked (see 
Figure 2). Thus, short- and long-range attacks can be carried 
out remotely. In 2019, 82% of all attacks on motor vehicles 
were carried out remotely (short-range and long-range) [5]. 
The number of attacks on motor vehicles increased 
significantly over the years from 2013 to 2019. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.  Comparison between physical and remote attacks [4] 

Due to cost considerations and the dangers of manipulating 

vehicle systems during real-world use, a simulator offers a 

viable alternative to conducting hacking attacks on 

automotive bus systems. CAN bus simulation provides a safe 

way to analyse what-if scenarios. For example, the effects of 

sending CAN bus commands via the On-board Diagnostics 

(OBD) socket can be tested. 

This work focuses on the attack targets of in-vehicle 

network and ECU. Therefore, direct attacks on automotive 

systems are primarily carried out and analysed. Dongles on 

the CAN interface are simulated, which can be used to access 

CAN bus systems and manipulate their data. In this way, 

direct attack vectors can be reproduced. In order to be able to 

use the simulator in the context of remote training, e-learning 

possibilities are discussed and an environment is described in 

which participants can access a CAN bus simulator via a 

remote connection and realise direct connections to this 

system. A major disadvantage with regard to remote seminars 

is the lack of feedback for participants. For this reason, this 

paper additionally describes possibilities to test the effects of 

CAN commands on a model car using a real CAN interface. 

The simulation environment was further equipped with 

cameras that give the participants remote visual feedback on 

the effects of their CAN commands. To enable several 

participants to work together on a task, a solution is described 

that enables remote group work and exchange with experts. 

Section II presents the necessary tools that are used to 

implement the simulation environment. Section III describes 
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the use case and the concrete structure of the simulator. A 

conclusion and the outlook can be found in Section IV. 

 

II. TOOLS FOR CAN-SIMULATION 

A. Vector CANoe 

When developing new control units for motor vehicles, it 
is possible to simulate CAN bus systems using professional 
simulation environments. One of the tools used for this is 
CANoe from Vector [35]. In this tool, virtual ECUs can be 
tested in real CAN bus environments via a hardware interface, 
e.g. Vector VN1610. Within the environment, all valid CAN 
messages for the respective CAN system are stored in a 
database. These messages can be sent and received in the 
simulation by means of interactive generators or by virtual 
ECUs. The virtual ECUs are equipped with their special 
functionality using Communication Access Programming 
Language (CAPL). This type of programming is event-
oriented. The control of the environment is realised with 
panels in which corresponding control elements, such as 
buttons, switches, visual displays, etc., are used. Figure 3 
shows a CAN bus simulation of a virtual motor vehicle. 

 

 

Figure 3.  Exemplary representation of a CAN-Simulation with tool 

CANoe 

These controls can be linked to system variables or even 
message content. Extensive analysis tools are available within 
the environment.  Because of the possibility to freely program 
the virtual control units and the physical connection to real 
CAN bus systems, the operation of the CAN bus system can 
be used for the simulation of an attack. 

B. CANUTILS 

CANUTILS are available within Linux systems. With this 
toolset, it is possible to control and analyse virtual and real 
CAN bus systems. Figure 4 shows an example of an 
intersection of CAN traffic with CAN identifiers and 
corresponding data content. 

 

 

Figure 4.  Recoding of CAN traffic using cansniffer from the CANUTILS  

The following tools are integrated in the CANUTILS: 

• candump: with candump CAN data can be displayed, 
filtered, logged and saved in log files. 

• canplayer: CAN log files can be played back with 
canplayer. 

• cansend: this tool enables the transmission of 
individual CAN frames. 

• cangen: generates random CAN traffic. 

• cansniffer: with the cansniffer, the traffic on the bus 
can be displayed live. In addition, it is possible to 
filter out individual CAN frames from the data stream 

Within the simulation environment, the CANUTILS take care 
of the analysis of the CAN traffic. 
 

1) Linux with CAN 
A prerequisite for working with CAN systems under 

Linux is the installation of CANUTILS. To connect real CAN 
systems to the computer, a USB CAN interface is necessary. 
For example, the PCAN-USB [7] interface from Peak can be 
used for this. The installation of the corresponding drivers is 
necessary for use. Further information on this can be found 
under [25].  

 

2) Red Pitaya 

Red Pitaya STEMLAB is a grid-connected Field 

Programmable Gate Array (FPGA)-based test and 

measurement board. It can replace many measurement 

devices in an electronics lab by working as an oscilloscope, 

spectrum analyser, LCR meter (inductance, capacity, 

resistance), network analyser or other test and measurement 

application. Open source software is used and the operating 

system is based on Linux. Figure 5 shows the Red Pitaya 

hardware. An FPGA from Xilinx and an ARM Cortex-A 

processor are implemented on the board. The latter has a CAN 

interface on the hardware side, which is not activated in the 

basic configuration. However, this can be realised by means 

of devmem via the following commands: 

• devmem2 0xf8000728 w 0x1221 

• devmem2 0xf800072c w 0x1220 

3Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-879-2
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Figure 5.  Red Pitaya hardware, which provides the backend for 

generating and reconding CAN signals 

After that, the pins and CANTX (header E2 pins 3 and 4) 
of the CAN interface are available on the Red Pitaya board. 
A CAN transceiver (e.g. Microchip MCP2551) must be 
connected to these pins to generate the differential CAN 
signals. To use the CAN interface, the CANUTILS can also 
be used in this system, since the Red Pitaya works with a 
Linux system. With a self-implemented application, the CAN 
interface can be used after installing the CANUTILS. Figure 
6 shows an example of the data exchange between the Red 
Pitaya hardware and the frontend on a personal computer. 
 

 

Figure 6.  Scheme of data exchange between frontend and backend on the 

Red Pitaya System [8] 

The Red Pitaya Board is connected to a computer via a 
network interface. The frontend is accessible via a browser 
with a configured IP address. Figure 7 shows the graphical 
frontend of the developed Can Sniffer application, which is 
used to analyse CAN traffic and send individual CAN 
messages. 

 

 

Figure 7.  Recording of CAN traffic in  the self-created interface for the 

frontend of the Red Pitaya Systems 

The application itself is installed on the RedPitaya system and 
can be started via the frontend. Figure 7 shows a specially 
created interface for visualising CAN traffic on the CAN 
interface of the RedPitaya system. This interface 
communicates via the network with the RedPitaya application 

"CAN Sniffer". Via this interface, it is possible to analyse and 
generate traffic in the CAN simulator. Further information on 
the RedPitaya system can be found under the following: 
[13][14]. 

C. Bluetooth OBD-Dongle 

Private users can purchase various OBD Bluetooth 

adapters for vehicle diagnosis on the Internet. These are 

largely based on the OBD2 interpreter chip ELM327 [26]. 

This chip includes, among other things, communication via 

CAN with 11-bit and 29-bit identifier and supports the ISO 

15765-4 protocols with 500 kbps and 250 kbps. 

 

 

Figure 8.  Exemplary representation of a common OBD dongle [9] 

Figure 8 shows an OBD interface with Bluetooth interface, 
which makes vehicle data available with a smartphone 
application. These adapters can communicate with 
corresponding Android apps, for example to display current 
data on speed, acceleration, cooling water temperature, etc. in 
live operation. The technical description of the ELM327 can 
be found on the Elmelectronics website [11]. In this data sheet, 
the configuration variants of the chip are described, whereby 
one variant makes it possible to configure own baud rates for 
the interface and to send own CAN identifier with own data 
contents on a CAN bus. The ELM327 itself enables 
communication via a virtual RS-232 (Recommended Standard 
232), which is available on a computer via Bluetooth. Thus, 
the chip can be configured and controlled with a console 
application (Putty) and the AT commands described in the 
data sheet. 

D. Microcontroller 

Another variant of CAN communication can be seen in the 

use of microcontrollers with an integrated CAN interface. 

Preconfigured hardware can be purchased, for example, from 

Olimex. The AT90CAN128 development board, shown in 

Figure 9, is presented here as an example. 

 

 

Figure 9.  AT90CAN128 development board used to generate CAN 

messages [10] 
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The central element on the board is the microcontroller from 

Microchip ATMEL AT90CAN128. In addition to 128 kB of 

programmable memory and 4 kB of RAM, this controller 

offers a hardware-integrated CAN interface that is available 

to the user via a CAN transceiver MCP2551 and a Sub-D 9. 

Software libraries for controlling the CAN interface are 

available from a community [27]. By means of these libraries, 

it is possible to realise flexible configurations with regard to 

baud rates, CAN identifier and data contents. Firmware for 

the microcontroller can be created using Microchip Studio 

[34], which has an integrated C compiler. A JTAG interface 

is available on the development board as a programming 

interface, which can be controlled via the ATMEL ICE 

programmer [12]. The simulator uses this to generate its own 

messages on the CAN bus. 
CANoe, PCAN-USB, CANUTILS and the AT90CAN128 

development board with Microchip Studio were selected for 
practical use in the seminars. The decision to use these 
presented tools was made in order to achieve the fastest 
possible learning success for the seminar participants. The 
participants should be able to take part in the seminar without 
extensive programming knowledge. Seminar participants can 
thus quickly find their way around and only need one software 
for various functionalities. Furthermore, the CANoe tool is a 
standard tool in the automotive industry; the use of this tool 
should ensure practice-oriented teaching. This also results 
from the possibility of using these tools in a goal-oriented 
manner with regard to the subtasks to be solved in the seminar 
without major overhead for the participants. The aims of the 
seminar are:  

• Creation of a CAN bus simulation, 

• Analysis of CAN messages, 

• Control of a CAN demonstrator and 

• Compromising a CAN bus system. 
 
CANoe is also a standard tool for the development of 

automotive bus systems. In addition to the training version 
used in the seminar, a demo version with a limited range of 
functions is available. In this version, for example, no real 
hardware can be controlled. The advantages of the training 
version are the possibility of connecting real CAN bus 
systems, the diverse possibilities for visualising control 
interfaces and the extensive analysis tools in the tool itself. 
The tool thus combines various functionalities that could 
otherwise only be used with different tools.  

There are alternative adapters for the PCAN-USB adapter, 
e.g. USBtin [31] from the open source world or the isCAN 
USB from Thorsis Technologies GmbH [32], which is 
available for a fee. PCAN-USB was used in other projects and 
was therefore available. However, it will be examined later to 
use the USBtin adapter as an alternative solution. 

The Microchip Studio is a proprietary Integrated 
Development Environment (IDE) for Atmel microcontrollers. 
It includes the AVR Gnu C compiler (AVRGCC) and is 
provided free of charge by Microchip.  

The CANUTILS under Linux are open source and free to 
use. AVRStudio is an integrated C compiler and a graphical 
debugger. 

An alternative solution for CANoe is the tool PCAN-
Developer 4 from Peak [33], which is also available for a fee.  

For programming Atmel microcontrollers, a number of 
commercial IDEs are available for a fee. These are, for 
example, IAR Embedded Workbench for AVR, JumpStart C 
for AVR from Image Craft or CodeVisionAVR from HP 
InfoTech.  

The Red Pitaya system and the Bluetooth-OBD adapter 
are not used in the seminar. Both systems are only intended to 
show the possibility of compromising CAN bus systems at 
this point. They are currently to be classified as experimental 
status with a limited range of functions and thus cannot be 
used in a seminar. 

III. SIMULATIONS ENVIRONMENT AND USE CASES 

Challenges for the simulation environment were the 
integration of the different systems into the seminar, as these 
are to be used under the two operating systems Linux and 
Windows 10. Windows is used to run CANoe, while the 
ICSIM-VM is based on a Linux system. In addition, there was 
the challenge of being able to make the seminar, which was 
actually planned as a face-to-face seminar, available online as 
well. This section also looks at the effectiveness of delivery 
formats in e-learning and considers the scenario in which the 
simulator can be used. Furthermore, a form of live workshop 
is described, which can use special hardware in remote 
seminars to solve practical tasks with it. Private and official 
investigators are particularly conceivable target groups. 

First, various mediation formats are considered. The 

National Training Laboratories Institute for Applied 

Behavioural Science describes a learning pyramid on this 

topic, which shows the learning effect depending on the 

delivery format. The delivery formats range from a lecture to 

teaching other people. Figure 10 illustrates the learning 

pyramid [6]. In addition to the learning pyramid, there are a 

number of approaches to describing the learning process. 

David Kolb, for example, defines four different learning 

types and learning phases. In the first phase, practical 

experience is gained. The second phase involves mental 

observation and reflection. In the third phase, theory is 

introduced and problems are defined. Finally, in the fourth 

phase, the learned knowledge is tested for practical 

suitability. A solution approach is to be found through active 

trial and error in order to support the learning effect [28]. 

Furthermore, the importance of practical application and 

its feedback can be described with Phil Race's learning 

model. The five most important factors for successful 

learning according to Phil Race are as follows: 

1. want motivation, interest, enthusiasm 

2. need, survival, saving face  

3. practice, repetition, experience, trial and error. 

4. feedback on other people's reactions to see the 

results. 

5. it makes sense to deal with what you have learned. 

[29] 
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Figure 10.  Learning pyramid from National Training Laboratories [6]  

With the CAN bus simulator, it is possible to train the 
application of the learned knowledge on the topic of car 
forensics and CAN bus systems by means of practical 
exercises in addition to the classic lecture and discussions 
among the learners. The simulator can be used in physical 
presence as well as in online seminars. Remote live 
workshops offer users the opportunity to work on extensive 
tasks and solve complex issues. Furthermore, these 
workshops are characterised by the fact that different 
teaching formats are used. In addition to the live lecture to 
convey the theoretical content, the combination of meeting 
tools and remote connection options such as BigBlueButton 
and Remote Desktop Connections allow practical exercises 
to be carried out and the knowledge learned to be applied. In 
order to be able to expand practical modules in teaching with 
presence content, the transfer of the practical applications and 
exercises with an interface into the virtual environment is 
necessary. 

The real learning environment of the module is composed 
of stationary computer systems with a virtual machine, a 
development environment for CAN microcontrollers and 
special simulation software. 

 

Figure 11.   Structure of the virtual and real learning environment, for 

conducting remote seminars in the field of automotive CAN bus systems. 

The target group of the forensics seminars has the 

possibility to follow implemented tasks on the simulation 

software via web access. This creates a link between the 

virtual and the real environment between the learner and the 

development environment. Support is provided by the tutor, 

who is on site in the learning lab and can interact with the 

participants via a conference tool. BigBlueButton was used 

as the conference tool in this setup. Furthermore, the learners 

receive the theoretical content via the conference tool. Figure 

11 shows an approach in which a virtual machine is accessed 

via a remote connection. Using this virtual machine, the 

participants can send CAN commands to the model vehicle. 

The CAN commands are distributed by the CAN gateway to 

the individual ECUs and implemented by the hardware. The 

learner can observe the result of the output via a webcam and 

thus obtain a direct control of success. 

The AnyDesk software is particularly suitable, as 

different participants can access a desktop at the same time 

and thus work on a task as a group [36]. Alternatively, the 

remote software TeamViewer with the same functionality 

can be used. The remote desktop under Windows is not 

suitable, as only one user can log in and the on-site tutor has 

no access to the system. The need for at least two seminar 

participants and the lecturer to access a desktop is justified by 

the realisation of group work in the online seminar and the 

support of the individual groups by the lecturer.   

A Linux environment is absolutely necessary for the 

Instrumentation Cluster Simulator (ICSIM). For this purpose, 

a Virtual Machine (VM) in Oracle VitualBox was provided 

for the seminar. In this VM, the drivers for the PCAN-USB 

adapter, the CANUTILS and the ICSIM are pre-installed to 

realise a quick use of the tools. This VM can be controlled by 

the participants via the remote software. The Instrumentation 

Cluster Simulator (ICSIM) software, shown in Figure 12, is 

used as a simulation environment for the automotive CAN 

bus [15]. This simulator is used to display a virtual dashboard 

with speedometer, indicators and virtual doors, which can be 

controlled via a control interface. 

 

 
 

 
 

Figure 12.  Dashboard simulation for graphical representation of the 
transmitted CAN commands and control interface for transmitting CAN 

commands 

Lecture 5 %

Reading 10 %

Audiovisual 20 %

Demonstration 30 %

Discussion 50 %

Practical work 75 %

Explaing someone something 90 %
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The simulator can be run under Linux. Within the Linux 

environment, the CANUTILS are used. The CAN bus is 

configured in the first part as a virtual CAN bus with the 

following commands: 

• sudo modprobe can 

• sudo modprobe vcan 

• sudo ip link add dev vcan0 type vcan 

• sudo ip link set up vcan0 

 

The respective components of the simulator and the 

analysis software cansniffer are configured with the 

commands: 

• ./icsim vcan0 

• ./controls vcan0 

• cansniffer -c vcan0 
 

In the practical exercise, the development board 

AT90CAN128 from Olimex is connected to this PCAN-USB 

interface. At the start of the exercises, the firmware of the 

development board is programmed with a prefabricated 

firmware, which realises the control of the tachometer in the 

simulator dashboard. In the further course of the practical 

exercises, the prefabricated firmware is to be extended and 

tested with the CAN messages that were determined in the 

first part. These additional CAN messages can then be used, 

for example, to control the turn signals and also the doors in 

the simulation environment via the microcontroller board. 

Microchip Studio is used as the development environment at 

this point. This environment is used in the Windows 

environment of the practical computer, as it is easy and clear 

to create and debug the microcontroller firmware. 

In principle, the Linux environment with integrated CAN 

simulator can be run independently on a computer as a ready-

made virtual machine for VirtualBox or VMware. The 

computer is made available to the user for an online practical 

course via remote software. This could be done using 

Windows Remote Desktop, but this way only one user is able 

to log in to the computer. However, the aim of the practical 

session is to enable group work consisting of at least 2 users, 

whereby the instructor on site should also have access to the 

desktop in order to be able to monitor the work of the 

respective groups. For this purpose, Teamviewer and 

Anydesk were evaluated as remote applications. Both 

applications enable the realisation of the described online 

learning scenario. 

To make the practical experience of CAN bus 

programming more tangible, a CAN bus demonstrator in the 

form of a remote-controlled model vehicle is used. The model 

car was developed for this simulation environment based on 

the Robot Car Kit from Joy-It. Figure 13 demonstrates the 

vehicle. 

 

Figure 13.  Schematic representation of the Robot Car Kit from Joy-It. [30] 

The basic framework for the realisation is the Robot Car 

Kit from Joy-It including four electric motors. In addition, 

there is an EVAL6207N evaluation board from 

STMicroelectronics. Since the demonstrator is to be equipped 

with a CAN bus, another microcontroller that can handle 

CAN is needed. With the AVR CAN board from Olimex, the 

EVAL6207N can receive signals for control. Headlights and 

turn signals that mimic those of a vehicle are to be added to 

the setup. The demonstrator is controlled by CANalyzer 

software, which is used to generate appropriate CAN 

messages. To transmit messages from a computer with the 

software to the control unit (AVRCAN board) of the 

demonstrator, the CAN interface VN1610 from Vector is 

required. The actual CAN bus exists between the CAN 

interface and the AVR CAN board. Figure 14 schematically 

represents the basic structure of the CAN demonstrator. 

 
 

Figure 14.  Schematic representation of the complete CAN-Demonstrator  

Using the CANoe tool, CAN commands can be sent to the 

demonstrator via the gateway on a specially created interface. 

After being received by the gateway, the CAN bus commands 

are forwarded by the AVR CAN board to the respective 

control units and implemented there. Figure 15 demonstrates 

the panel for the experimental setup. Figure 16 shows the 

complete CAN demonstrator hardware. 

 

Figure 15.  Interface to control the CAN-Demonstrators inside the CANoe-

Tool 
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Figure 16.  Complete model of the CAN-Demonstrators 

IV. CONCLUSION 

 
In this paper, it was shown that a real CAN system can 

be simulated with the help of the presented tools. In addition, 
it is possible to use this simulation environment to analyse 
and carry out cyberattacks on vehicle CAN bus systems. A 
methodology and a simulation environment were described 
which, in addition to the classical lecture and audiovisual 
media, also integrate the practical part with visual feedback. 
The simulation environment offers the possibility to 
manipulate the CAN bus of the model car from the outside. 
Students of general and digital forensics have already been 
able to test this setup. The feedback was consistently positive. 
In particular, solving practical tasks on the real CAN bus 
demonstrator was mentioned positively and motivated the 
participants to come up with creative solutions, despite the 
technological obstacles, when integrating it into an online 
learning environment. In addition to using this in the field of 
car forensics, it is conceivable that other subject areas can be 
applied with special hardware. Use in the area of IoT (Internet 
of Things) forensics is conceivable here. Furthermore, it is 
possible to use the setup to realise more attack vectors on 
automotive systems. For example, the CAN bus demonstrator 
can be equipped with a keyless go system, which would allow 
replay station attacks to be realised [18]. Additionally, it 
would be possible to implement an intrusion detection system 
to filter out malicious messages in the data stream of the CAN 
bus. With the solution shown, challenges could be solved to 
be able to integrate Windows and Linux tools in an online 
seminar.  
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Abstract—Traffic flow along signalized arterials is a dynamic, 

nonlinear, and stochastic system in which the relationship 

between the signal timing plan and traffic delays is too 

complicated to be modeled using first principles approaches. 

With advances in sensing technologies, various data sets are 

available, allowing effective data-driven modeling to be 

conducted for further controller design. In this keynote paper, 

a Hybrid Neural Network (HNN) is proposed to model the 

multiple intersections along a signalized arterial in Honolulu, in 

which both modeling structure and the relevant training 

algorithms have been developed. HNN modeling using real data 

has shown a set of promising results, with dynamic model 

performance assessed using model error Probability Density 

Function (PDF). A simple HNN model can easily be used as a 

starting point for an artificial intelligence–based closed-loop 

control design that controls the signal timing to reduce the 

traffic delay.  

Keywords - signalized intersections; modeling; neural 

networks; performance analysis; signalized arterials simulation. 

I. INTRODUCTION 

The nature of the traffic flow system in signalized arterials 
can be represented as a dynamic and stochastic system [2] – 
[5] for which the inputs are the traffic demand and signal 
timing at each intersection, and the outputs are the traffic flow 
status (e.g., travel delays, queue length, and traffic flow speed) 
and energy consumed when vehicles pass through the arterial. 
Since the traffic demand and traffic flows (number of vehicles 
and their compositions) are random, the system is stochastic 
in nature. This is a Multi-Input and Multi-Output (MIMO) 
stochastic dynamic system. If it is in the continuous-time 
domain, its solution is obtained using partial differential 
equations induced from the well-known Ito stochastic 
differential equations with random boundary conditions. The 
solution for such a complicated model is quite difficult to 
obtain, and it frequently must be solved using high-
performance computing, which generally cannot be used for 
real-time control design and implementation. Therefore, data-

driven modeling methods—in particular, those widely used in 
Artificial Intelligence (AI) technology—are regarded as 
effective ways to establish simple dynamic models between 
signal control and traffic flows so that system performance 
can be controlled and optimized in real time. The advantage 
of using AI-based models is that these models can be 
adaptively learned using evolving real-time data. As a result, 
the use of neural network modeling has been a subject of study 
for many years.             
 

Indeed, advances in wireless-driven vehicular 
communications have greatly facilitated modeling exercises, 
and emerging cooperative intelligent transportation control 
system operations have enabled many smart traffic control 
and management applications to improve traffic safety and 
operational efficiency [1]. Vehicle-to-Everything (V2X) 
communications allow vehicles to communicate with other 
vehicles (vehicle-to-vehicle); infrastructure (vehicle-to-
infrastructure); pedestrians, bicyclists, and devices (vehicle-
to-device); and internet through cellular networks and/or 
dedicated short-range communication technologies. The 
information exchanges supported by V2X communication 
systems can be used to effectively balance traffic demand 
distribution among traffic networks and facilitate traffic flow 
progression. With these new data available in a real-time 
format, it is now possible to further enhance AI-based 
modeling, and ultimately control, to optimally coordinate 
signal controls for traffic flow systems along arterials.  
 

In addition, for stochastic modeling of traffic flow systems, 
one of the important criteria is the reliability of and confidence 
in the obtained models for control and optimization. Thus, not 
only do the models need to be built using real-time input and 
output data, but also there is a need to ensure that the model 
so obtained is reliable and has a high level of confidence 
interval for users. In this context, the use of modeling error 
entropy, or its Probability Density Function (PDF), should be 
considered as the modeling objective function to be 
minimized. Ideally, a narrowly distributed modeling error 
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PDF centered at zero mean would indicate that the models 
obtained have high reliability and confidence intervals. This 
is exactly its novelty compared with existing AI-based models 
for transportation systems, in which only sum-squares-error 
has been used to judge whether the obtained model is good or 
not. The method of using modeling error entropy and PDF to 
perform online adaptive learning was established several 
years ago [1], and this approach can be applied in combination 
with the existing AI modeling tools to establish reliable and 
robust AI-based models for the traffic flow system.             

 
Based upon the above analysis, it can be seen that the 

following challenges remain in terms of AI-based modeling 
and control for signalized intersections along arterials and the 
urban grid road network:  

 

• Although the theory of AI-based modeling and control for 
signal control is maturing, the field testing and closed-loop 
control implementation for a large number of intersections 
is still limited because of the insufficient real-time data for 
fast feedback control realization.  

• The existing AI-based modeling for transportation systems 
cannot yet capture the nonlinear and dynamic stochastic 
nature with high reliability and robustness. 

• Guaranteed control performance for energy minimization 
is still lacking.  
 

In this effort, neural network modeling was studied for 
signalized intersections along an arterial in Honolulu using the 
real-time data from the system. A Hybrid Neural Network 
(HNN) model, which is a subset of neural networks, was 
constructed, and its learning algorithm was established. A 
comprehensive assessment of the modeling effort was 
conducted using least squares and gradient approaches.  

 
The rest of this paper is organized as follows. Section II 

summarized the literature review on traffic signal control 
problems with neural network models. Section III describes 
the system structure and the forms of dynamic models that 
represent the relationship between the traffic delays and signal 
timing plans. Section IV presents the linear modeling using 
recursive least squares to show the nonlinearities of the system. 
Section V addresses the formulation of HNN and defines its 
inputs and outputs together with the formulation of training 
algorithms for both linear and nonlinear parts. The modeling 
results and modeling performance analysis for an arterial with 
seven signalized intersections are also discussed in this section. 
The conclusions and acknowledgement close the article. 

II. RELATED WORK                  

Traffic system modeling aims to establish linear or 
nonlinear relationships between traffic states—e.g., traffic 
volume, travel time (travel delay), and travel speed—given 
spatiotemporal traffic information. Most studies leverage a 
single data source. For example, the objective is to predict 
near-term traffic flow given historical traffic flow data. Other 
studies using multiple data sources need to capture dominant 
dependencies between different features. For example, Ke et 

al. [6] developed a model to predict lane-based traffic speed 
based on speed and traffic volume data. Transportation system 
modeling techniques can be divided into two categories: non-
learning based and learning based methods [7]. For example, 
classical non-learning-based methods include autoregressive 
integrated moving average [8] and K-nearest neighbors [9]. 
These models are usually more interpretable but cannot 
capture the spatial correlations of traffic states. Moreover, 
they are not appropriate for nonstationary data. Traditional 
learning-based methods include regression [10], Kalman 
filter [11], and support vector machine [12]. These methods 
are generally more effective than non-learning-based models. 
However, they usually fail to capture the nonlinear 
spatiotemporal correlations of traffic data. Nowadays, we 
have more data sources and increasing computational power, 
so more advanced learning-based methods, e.g., different 
types of neural networks, have shown promising performance. 
The most commonly used neural networks for transportation 
system modeling include Artificial Neural Networks (ANN) 
[13], Long Short-Term Memory (LSTM) [14], Convolutional 
Neural Networks (CNNs) [6], and Graph-based Neural 
Networks (GNN) [15]. Compared with ANNs, CNNs and 
LSTMs have advantages in capturing nonlinear spatial and 
temporal dependencies of traffic features. However, their 
limitations become obvious when the transportation network 
is very large. GNNs are proved to be powerful tools for large-
scale traffic signal control systems. GNNs can extract features 
from graph-structured data and predict future traffic states in 
an efficient and effective manner.  

 
With the established dynamic stochastic models for 

transportation system, the next step is to develop real-time 
optimal control strategies to reduce travel delay and energy 
consumptions. Conventional traffic control methods for 
multiple intersections in a network, such as SCOOT [16], 
GreenWave [17], SOTL [18], Max-pressure [19], and SCATS 
[20], usually assumed a simplified traffic conditions with 
complete traffic information available, e.g., pre-defined traffic 
flows and driving behaviors. Hence, they are not applicable 
for real-world traffic control for multiple intersections.   

 
For a large-scale traffic system, it is usually a difficult task 

to predict the effects of modifying signal timing parameters 
due to the nonlinear and stochastic nature in a traffic network. 
Comparing to the conventional signal control methods, Neural 
Network (NN)-based signal control methods can address the 
challenges on traffic system modeling and traffic signal 
optimization.  The studies from [21][22] tested a NN-based 
controller for single intersections. Both studies applied the 
concept of fuzzy logic and their NNs are five-layer type, e.g., 
input, fuzzification, inference, consequence, and 
defuzzification. They used number of vehicles passing the 
intersection and number of vehicles waiting in the queues as 
inputs and the outputs are the traffic signal plans. In [22], 
reinforcement learning and gradient descent method were 
applied to update the shape of fuzzy membership functions by 
computing the weights of the NN. The advantages of NN 
models are more obvious in a larger network.  Srinivasan et al. 
[23] developed a distributed unsupervised traffic responsive 
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signal control method for traffic signal control and 
coordination. Each agent is a local traffic controller for one 
intersection. They integrated the simultaneous perturbation 
stochastic approximation theorem in fuzzy NN. Stochastic 
approximation is a commonly used technique in stochastic 
optimization for online wight updates in NN. It is usually 
preferable when the gradient of the loss function is not readily 
available. The proposed model was tested in a traffic network 
with 25 intersection in Singapore. The results demonstrated 
that the model could be used to obtain the controller that 
reduces significant amount of travel delay. Choy and 
Srinivasan [24] further improved the study [23] by developing 
a HNN model with multistage online learning process to solve 
the distributed traffic signal control problem with an infinite 
horizon. It is challenging to calculate the analytical optimal 
solution for the distributed control problems. This study 
applied an approximation technique, receding-horizon 
limited-memory, for to approximate optimal solution. Each 
local signal controller was made up of a five-layered fuzzy 
NN that aimed at computing the optimal signal plans. 
Experiment results suggested that HNN model was effective 
and efficient in solving the large-scale traffic signal control 
problem in a distributed control manner. There are several 
limitations in NN-based traffic signal control algorithms. First, 
as mentioned by [22], NN learning is not efficient under 
complex continuous system because of lack of stochastic 
exploration. Second, learning process is usually too long to be 
implemented in real time in the field. 

 
Recently, Reinforcement Learning (RL) models have been 

studied extensively and made impressive progress in traffic 
control domains. RL can learn from observed data and adapt 
to real-time changes of traffic demands. RL is a trail-and-error 
learning process without making any unrealistic assumptions 
on traffic system modeling. There are four key components in 
Decentralized Reinforcement Learning (DRL): agent, 
environment, state, and reward. In transportation system, 
environment is often defined as traffic conditions and state is 
a feature representation of the environment. DRL will have an 
agent for each intersection to learn a model and predict 
whether current signal phase should be changed or not. The 
decision will be implemented in the environment and the 
reward (travel delay, vehicle throughput, or energy efficiency) 
is sent back to the agent to help it improve the decision-
making process. The key challenges in RL are (i) how to 
describe the environment quantitively, (ii) how to model the 
relationships between decision (signal timings) and reward 
(traffic states) due to its exponentially expanding complexities; 
and (iii) how to implement coordination and information 
sharing between multiple agents/intersections. There are 
generally two categories of RL: model-free and model-based 
RL. To successively apply model-based approach, the 
transition function (predict next state given current action) 
must be known. However, it is usually difficult to obtain it in 
real-world. Model-free RL directly estimate the reward given 
state-action pairs and select the optimal action accordingly 
[32]. Hence, model-free RL, e.g., Q-learning and SARSA, are 
commonly used in traffic signal control problems. For model-
free RL, exploration is required to gain knowledge by 

sampling. Model-free RL can be categorized as value-based 
and policy-based methods [33]. Value-based RL learning the 
value function (or a generalization called the Q-function) and 
policy-based methods directly learn the optimal policy or 
approximate optimal policy.  Comparing to the traditional 
reinforcement learning approach whose states need to be 
discretized and low-dimensional, DRL can handle high 
dimensional input data, e.g., image, and learn functions to 
extract useful information and approximate policy from input 
states. By combining deep learning with reinforcement 
learning, it addresses the “curse of dimensionality” issue, 
helps to improve the model scalability, and reduce learning 
time.  Li et al. [25] set up a Deep Neural Network (DNN) to 
learn the Q-function of DRL from the sampled traffic states 
(inputs) and the corresponding traffic conditions (outputs). 
The objective is formulated as a Q-function which aims to 
maximize the future rewards given the current state and action. 
Instead of relying on a conventional Q-table, they used the 
deep Stacked Autoencoders (SAE) neural network to estimate 
Q-function. Comparing to the conventional reinforcement 
learning approaches, their DRL can reduce delay by 14% and 
largely reduce number of vehicles stops at intersections. Wei 
et al. [26] developed a DRL model for traffic signal control 
with real-world large data set. In their method, traffic 
condition is extracted from an image. The image is directly 
used as an input for a CNN model to supplement other hand-
crafted traffic features (queue length, waiting time, and 
number of vehicles) of environment. They applied an offline 
model to test different signal timing plans and collect data 
samples of signal timings and traffic conditions. After that, an 
online model will determine the optimal action to take (change 
signal status or not). Their model was tested on a large-scale 
real traffic dataset from surveillance cameras. Motivated by 
Max Pressure (MP) control, Wei et al. [27] developed a 
reinforcement learning approach for large-scale road network. 
In RL, the objective is to maximize the long-term rewards by 
trial-and-error search while MP aims at minimizing pressure 
by greedy algorithm. This study set the reward function in RL 
the same as the objective of ML so that they can achieve the 
same result as MP to maximize vehicle throughput. As 
claimed by the authors, this is the first study that applies 
individual RL model and achieves coordination without any 
prior knowledge. Chen et al. [28] designed a DLR model for 
a city-level network with more a thousand intersections. DRL 
for multi-intersection control and coordination is quite a 
difficult problem due to the scalability and data feasibility. 
They incorporated DRL agent design with pressure, e.g., 
different of queue length at downstream and upstream 
intersections. The DRL agent aims at balancing the 
distribution of vehicles in the traffic network and maximize 
the system throughput. They tested their proposed model with 
Manhattan dataset containing signalized 2510 traffic lights. 
Comparing to other state-of-the-art signal control methods 
including fixed time, max pressure, and different variations of 
reinforcement learning methods, their proposed model was 
proved to generate shorter travel time and larger vehicle 
throughput.  
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Based on the literature, most studies used average queue 
length, average waiting time, average speed, and vehicle 
throughput as reward to evaluate an action in RL. There are 
various kinds of measures to describe environment states, e.g., 
queue length, waiting time, speed, and signal phases for each 
lane or for a road segment. Traditional RL use a tabular or 
linear model to approximate the state function to improve 
efficiency [31]. However, the state space in real world is 
usually very large which limit the capability of traditional RL. 
With the development of deep learning, DRL models can 
handle the large state space. For example, recent studies use 
images as state where vehicle trajectories and queue length 
can be extracted [26][27] for state representation.  The action 
in RL relates to signal phases changes. It can be the ratio of 
signal phase duration over the total cycle length  [31] or an 
indicator to decide if an different signal phase should be 
activated to green  [26].  Most of the traffic signal control 
studies with RL use value-based methods which usually 
requires discrete actions. The model takes the state 
presentation as input and parameterized by neural networks.  

 
 Although DRL model improves traffic signal control in 

the complex transportation systems, it treats neighboring 
intersections as the same and fail to model the spatial 
dependencies of traffic flows. Different intersections should 
be modeled carefully in realistic transportation network. To 
address the issue mentioned above, graph neural networks are 
proved to be an effective tool to capture the traffic dynamics 
in large-scale transportation network. The transportation 
system can be model by a graph consisting of nodes and edges. 
GNN can handle inputs given on general graphs. Wei et al.  
[29] proposed a model, CoLight, to control traffic signals on a 
large-scale road network with hundreds of intersections. They 
applied a graph attentional network to facilitate 
communication between intersections and consider the 
temporal and spatial influences of neighboring intersections. 
The model leverages the attention mechanism to model the 
influence of upstream and downstream intersections on the 

target intersection by learning different weights for different 
intersections. Extensive experiments have been conducted 
using synthetic and real-world data. Their proposed model 
outperformed other state-of-the-art methods in terms of 
reducing average travel time. Zhong et al. [30] developed a 
probabilistic graph neural network for traffic signal control 
and cooperation. They used decentralized reinforcement 
learning to model the transportation system. A graph attention 
module was then applied to learn dependencies of neighboring 
intersections. Finally, a graph inference model was proposed 
to learn the latent representations of adjacent intersections by 
considering traffic uncertainties. Their model can characterize 
the posterior with respect to latent variables and allow 
Bayesian inference. The rationality of model design can be 
explained by transportation theory. 

 
Coordination is essential for large-scale transportation 

system with multiple intersections. Wei et al. [34] categorized 
traffic signal control and coordination problems into three 
categories: joint action learners, independent (distributed) 
learners without communication and distributed learner with 
communication. Joint learners use a single centralized agent 
to control all intersections [34]. This approach could lead to 
the curse of dimensionality that the state-action space will 
grow exponentially as the number of intersections increases. 
Unlike joint agent, each distributed agent control one 
intersection. If communication does not exist between 
distrusted agent, each agent observes its own local 
environment. This method usually does not perform well 
when the environment becomes complicated. Distributed 
learning with communication allows agent to share 
information on their observations. Graph-based NN model for 
traffic signal control problems can learn the communication 
from the message passing on the graph. TABLE I summarizes 
the representative NN-based traffic signal control studies 
based on a few characteristics we discussed above.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

TABLE I.  REPRESENTATIVE NN-BASED TRAFFIC SIGNAL CONTROL STUDIES 

Reference Method Traffic features Coordination 
Road 

Network 

# of 

Intersections 

Wei and Zhang [21] Fuzzy neural network # of vehicles; queue length No communication Synthetic 1 

Bingham [22] Neurofuzzy traffic controller # of vehicles; queue length No communication Synthetic 1 

Srinivasan et al. [23] 

Fuzzy neural network with 

stochastic approximation 
theorem 

Traffic flow; occupancy 

Distributed control 

with 
communication 

Real (CBD 

Singapore) 
25 

Choy et al. [24] 

HNN with reinforcement 

learning and evolutionary 

algorithm 

Traffic flow; occupancy 

Distributed control 

with 

communication 

Real (CBD 

Singapore) 
25 

Li et al. [25] 
Value-based reinforcement 

learning  
Queue length No communication Synthetic 1 

Wei et al. [26] 
Value-based reinforcement 

learning  

Queue length; # of 

vehicles; waiting time; 
Image  

No communication Synthetic 1 

Wei et al. [27] 

Value-based reinforcement 

learning with max pressure 
control 

# of vehicles No communication 
Real (New 

York City) 
16 

Chen et al. [28] 
Value-based reinforcement 

learning  
# of vehicles No communication 

Real (New 

York City) 
2510 

Wei et al. [29] 
Graph attention network for 
cooperation 

Queue length 
With 
communication 

Real (New 
York City) 

196 

Zhong et al. [30]  
Probabilistic graph neural 

network 
Queue length, # of vehicles 

With 

communication 

Real 

(Hangzhou) 
16 
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In addition, the research team at the University of Hawaii 

has extensively developed machine learning-based 

approaches address various traffic data analysis and 

formulation issues. For example, we to estimate vehicle 

classification volumes based on single-loop detector outputs 

[36]. The proposed ANN has three layers with back-

propagation architecture. Vehicle classification categories 

employed by this study were consistent with the four-bin 

classification system currently used by the Washington State 

Department of Transportation (WSDOT) dual-loop detection 

system. To achieve the best bin volume estimates, a specific 

neural network is designed and configured for each vehicle 

category. The proposed ANN is trained and tested using data 

collected from loop detector stations on I-5 in the greater 

Seattle area. Our test results indicate that the proposed ANN 

method worked stably and effectively for the studied stations. 

The estimated bin volumes were reasonably accurate and can 

be applied to transportation practice. The temporal and spatial 

transferability tests showed that the proposed ANN is robust 

and can be applied to estimate bin volumes during different 

time periods and at different loop stations on I-5 without 

introducing significant errors. 

 

Work in [37] conducted a study to develop a Deep 

Learning (DL) framework to predict the taxi-passenger 

demand while the spatial, the temporal, and external 

dependencies were considered simultaneously. The proposed 

DL framework combined a modified density-based spatial 

clustering algorithm with noise (DBSCAN) and a conditional 

generative adversarial network (CGAN) model. More 

specifically, the modified DBSCAN model was applied to 

produce a number of sub-networks considering the spatial 

correlation of taxi pick-up events in the road network. And 

the CGAN model, fed with the historical taxi passenger 

demand and other conditional information, was capable to 

predict the taxi-passenger demands. The proposed CGAN 

model was composed of two LSTM neural networks, which 

are termed as the generative network G and the discriminative 

network D, respectively. Adversarial training process was 

conducted to the two LSTMs. In the numerical experiment, 

different model layouts were compared. It was found that 

different network layouts provided reasonable accuracy. With 

limited training data, more LSTM layers in the generator 

network resulted in not only higher accuracy, but also more 

difficulties in training. Comparisons were also conducted 

between the proposed prediction model and four typical 

approaches, including the moving average method, the 

autoregressive integrated moving method, the neural network 

model, and the LSTM neural network model. The 

comparison results showed that the proposed model 

outperformed all the other methods.  

 

Another research effort undertaken in [38] is to 

investigate how the integration of clustering models and deep 

learning approaches can learn and extract the network-wide 

taxi hotspots in both temporal and spatial dimensions. A 

Density Based Spatiotemporal Clustering Algorithm with 

Noise (DBSTCAN) was established to extract the historical 

taxi hotspots, which changed with time. A conditional 

generative adversarial network with Long Short-term 

Memory Structure (LSTM-CGAN) model was proposed for 

taxi hotspot prediction, which is capable of capturing the 

spatial and temporal variations of taxi hotspots 

simultaneously. Specifically, the DBSTCAN was applied to 

process the large-scaled geo-coded taxi pickup data into time-

varying historical hotspot information. The proposed LSTM-

CGAN model was then trained by the network-wide hotspot 

data. As illustrated in the numerical tests, it was found that 

the proposed LSTM-CGAN model provided comparable 

results with different model layouts and model with 4 LSTM 

layers in both generator and discriminator performed best. 

The comparison results indicated that the proposed LSTM-

CGAN model outperformed all these benchmark methods 

and demonstrated great potential to enable many shared 

mobility applications.  

 

Work in [39] reported a novel multi-agent reinforcement 

learning method, named as Knowledge Sharing Deep 

Deterministic Policy Gradient (KS-DDPG) to achieve 

optimal control by enhancing the cooperation between traffic 

signals. By introducing the knowledge-sharing enabled 

communication protocol, each agent can access to the 

collective representation of the traffic environment collected 

by all agents. The proposed method is evaluated through two 

experiments respectively using synthetic and real-world 

datasets. The comparison with state-of-the-art reinforcement 

learning-based and conventional transportation methods 

demonstrates the proposed KS-DDPG has significant 

efficiency in controlling large-scale transportation networks 

and coping with fluctuations in traffic flow.  

 

Based upon the above analysis, it can be seen that there 

are still following challenges on NN based modeling and 

control strategies for networked signal-timing control: 

 

1) The modeling using data driven reqires a good set of 

data in real-time; 

2) In therms of control strategies, there is a need to 

structure the control model so that it can be easily 

implemented in real-time. A affine type of dynamic model 

would be a choice.  This will be described in the following 

sections; 

3) Most studies have been focussed on simulations and 

real-time 24/7 implementation is lacking. 

 

These challenges constitute research questions to be 

answered and therefore in the following sections, a novel 

modeling and control, namely the HNN modeling and control 

developed by the authors, will be described that summarizes 

the authors recent work on multiple signalized intersection 

control. 
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III. TRAFFIC FLOW SYSTEM DESCRIPTION 

Figure 1 shows the signalized arterials to be modeled, 
where the input is the signal timing plan at each intersection 
and the output is the traffic delays of different phases (left 
turns, right turns and straight movements).  

 

 
 

Figure 1. The signalized arterial in Honolulu. 

 
The objective is to build up dynamic models that reflect 

the dynamics of the system; the data used were collected from 
Econolite systems. 

 
Taking 𝑢(𝑘) as the input and 𝑦(𝑘) as the output vector 

that is composed of the signal timing plan (i.e., green light 
time duration under fixed cycle length) and the traffic delays 
for each phase (i.e., through movements, left turns, and right 
turns) at an intersection respectively, the dynamics of the 
system can be generally modeled as follows 

 

 𝑦(𝑘 + 1) = 𝑓(𝑦(𝑘), 𝑢(𝑘), 𝜔(𝑘))                 (1) 

 
where 𝑓(… ) is the nonlinear vector function representing the 
system dynamics, 𝜔(𝑘) is the random noise term, and 𝑘 is the 
sample number, which can be a multiplication of cycle 
duration in signal timing control.  
 

IV. LINEAR MODELING 

       To perform the required data-driven modeling, it was 
imperative to first check whether the system could be truly 
represented as a nonlinear system. To answer that question, 
we performed linear modeling initially. Indeed, if the system 
was linear, then the modeling error should have a Gaussian-
like distribution. Otherwise, the system should be regarded as 
a nonlinear system in which neural network modeling and 
other nonlinear system modeling need to be considered to 
build reliable models for the system. 

A. Modeling structure  

When the system is linear, the following simple model can 
be assumed for each intersection 

 
 𝑦(𝑘 + 1) = 𝑎𝑦(𝑘) + 𝑏𝑢(𝑘) + 𝜔(𝑘)          (2) 

 

where {𝑎, 𝑏} are unknown parameters to be estimated, 𝜔(𝑘) 
is noise, and the modeling exercise is to use available data 
{𝑢(𝑘), 𝑦(𝑘)}  to estimate the parameters {𝑎, 𝑏} . This is a 
standard application of least squares estimation. For this 
purpose, denote  

 

 𝜃 = [
𝑎
𝑏

] , 𝜑(𝑘) =  [
𝑦(𝑘)

𝑢(𝑘)
]                       (3) 

 
Then, the following recursive least squares algorithm is 

used to estimate {𝑎,  𝑏}  using the data collected from the 
Econolite/University of Hawaii platform  

 

𝜃(𝑘 + 1) =  𝜃(𝑘) +  
𝑃(𝑘)𝜑(𝑘)𝜀(𝑘)

1 + 𝜑𝑇(𝑘)𝑃(𝑘)𝜑(𝑘)
 

𝜑𝑇(𝑘) = [𝑦(𝑘) 𝑢(𝑘)] 
𝜖(𝑘) = 𝑦(𝑘 + 1) −  𝜃𝑇(𝑘)𝜑(𝑘) 

𝑃−1(𝑘 + 1) =  𝑃−1(𝑘) +  𝜑(𝑘)𝜑(𝑘)𝑇  
 (4) 

where 𝜃(𝑘) is the estimate of 𝜃  at sample time 𝑘 (of every 
five cycles), 𝑃(𝑘)  is the variance matrix, with the initial 
conditions being 𝜃(0) = 0,  𝑃(0) = 100𝐼2×2.  
 
       It can be seen that (4) is a typical recursive least squares 
algorithm with the maximum forgetting factor as the linear 
modeling here is to just test whether the system in nonlinear 
or time varying so as to justify the use of nonlinear system 
model. A “less-than-one” forgetting factor can also be used in 
order to track time-varying feature of the system. This allows 
the estimation algorithm to be adaptive and robust with 
respect to changes of the system such as operational 
environmental changes or system parameter changes. In this 
case, standard modification is needed for the above algorithm. 

B. Modeling results showing the nonlinear feature 

The modeling results are shown in Figures 2–5. The 
original data are normalized between zero and one as shown 
in Figure 2, the estimated parameters are given in Figure 3, the 
modeling error is displayed in Figure 4, and the corresponding 
PDF of the modeling error is illustrated in Figure 5. It can be 
seen that the system is clearly not linear, as the modeling error 
PDF is not Gaussian. 

  
Figure 2. Original data—normalized to [0, 1]. 
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Figure 3. Estimated a and b. 

 

 
Figure 4. Modeling error—RLS residual signal 

 
Figure 5. Modeling error PDF. 

  
In addition, figures 6 and 7 show the validation results.  
 

 
 

Figure 6. Validation error showing a 30% error for the normalized data.  

 

 
 

Figure 7. PDF of the validation error showing a non-Gaussian shape. 

V. HYBRID NEURAL NETWORK 

As the system is nonlinear and non-Gaussian, HNN 
modeling is described in this section. In this context, a 
dynamic model was considered that reflected the relationship 
between the input and the output. Moreover, to improve the 
model, traffic volume was also considered as an extra input. 
Thus, the system had two input vectors (i.e., signal time plan 
and traffic volume) and one output vector, traffic delays. 

 
The system model was therefore assumed as follows: 
 

𝑦(𝑘 + 1) = 𝐴𝑦(𝑘) + 𝐵𝑢(𝑘) + 𝑓(𝑦(𝑘), 𝑢(𝑘 − 1), 𝑣(𝑘)) (5) 
 
where 𝑦(𝑘) and 𝑢(𝑘) denote average delay per vehicle and 
green time for multiple intersections at time index 𝑘. 𝑓(… ) is 
an unknown nonlinear vector function to be learnt and 𝜔(𝑘) 
is noise. {𝐴, 𝐵}}   are the weight matrices to be identified 
simultaneously with the estimate for the unknown nonlinear 
dynamics.  
 

        Let NN be used to approximate 𝑓(𝑦(𝑘), 𝑢(𝑘 − 1), 𝑣(𝑘)) 

by 𝑓(𝑦(𝑘), 𝑢(𝑘 − 1), 𝑣(𝑘), 𝜋) , where 𝑣(𝑘)  denotes traffic 
volume;  𝜋  groups all NN weights and biases. Then the 
training of the NN as well as the two matrices was to obtain 
accurate and reliable models for the traffic flow system. In this 
case, we considered seven intersections of an arterial all 
together, as indicated in the red box in Figure 1.  
 

The objective of training was to minimize the following 
performance function:  
 

Min 𝐽 =
1

2
(�̂�(𝑘 + 1) − 𝑦(𝑘 + 1))

2
              (6) 

 
which is basically a minimum variance error criteria, where it 
has been defined that  
 

�̂�(𝑘 + 1) = A𝑦(𝑘) + 𝐵𝑢(𝑘) + 𝑓(𝑦(𝑘), 𝑢(𝑘 − 1), 𝑣(𝑘),  𝜋)  
 (7) 

 
and {A, B, 𝜋 } are parameters to be trained. In the above 

equation, vectors �̂�(𝑘)  and 𝑓(… ) are the estimates of 𝑦(𝑘) 
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and 𝑓(… ) , respectively using the real-time data from 
Econolite Systems.  

A. Gradient rule for training 

Using gradient optimization, the following recursive 
estimation and training algorithm can be readily obtained to 
read  

�̂�(𝑘 + 1) = �̂�(𝑘) − 𝜆1
𝜕𝐽

𝜕𝐴
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
       (8) 

�̂�(𝑘 + 1) = �̂�(𝑘) − 𝜆2
𝜕𝐽

𝜕𝐵
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
       (9) 

�̂�(𝑘 + 1) = �̂�(𝑘) − 𝜆3
𝜕𝐽

𝜕𝜋
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
     (10) 

  
where 𝜆1, 𝜆2 and 𝜆3 are pre-specified positive learning rates 
which are typically selected to be less than 1.0, and the 
gradients are calculated from 
 

𝜕𝐽

𝜕𝐴
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
=  

 

(�̂�(𝑘 + 1) − 𝑦(𝑘 + 1))
𝜕�̂�

𝜕𝐴
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
= (�̂�(𝑘 + 1) 

−𝑦(𝑘 + 1)) 𝑦(𝑘)  (11) 
 
𝜕𝐽

𝜕𝐵
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
=  

 

(�̂�(𝑘 + 1) − 𝑦(𝑘 + 1))
𝜕�̂�

𝜕𝐵
 |

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
 = (�̂�(𝑘 + 1) 

−𝑦(𝑘 + 1)) 𝑢(𝑘)  (12) 
 
𝜕𝐽

𝜕𝜋
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
=  

 (�̂�(𝑘 + 1) − 𝑦(𝑘 + 1))
𝜕�̂�

𝜕𝜋
 |

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
  (13) 

  
where 𝑦(𝑘 + 1)  is the measured real-time data from the 
Econolite systems.  
 
       The selection of the learning rates are also critical here in 
order to ensure a good balance between the responsiveness of 
the learning and its stability in providing convergent neural 
network training. Using the second-order derivative analysis 
such as Jaccobian Matrices measure one can obtain the ranges 
for these learning rates.   
 
        The training algorithm described in (8) – (13) provides a 
set of simultaneous estimates for both linear parameters and 
neural network weights. Also, as the control input 𝑢(𝑘) to be 
designed is linearly involved in the model, the controller 
design using AI-techniques can be easily implemented as a 
direct inverse calculation so long as the matrix 𝐵 is of a full 
column rank. This approach effectively facilitates the real-
time implementation for the whole system. 

B. Data and their processing 

To model the system in (5), relevant data from the seven 
intersections were collected along the arterial as shown in 
Figure 1. In this context, the details of the data collected are 
as summarized in the Table II.  

TABLE II. DATA COLLECTION FOR HNN MODELING 

Study area Intersection 1-7 

Date collected March 3–5, 8–12, 15–19, 22–26, 29–31, April 
1–2 (23 weekdays) in 2021 

Time duration 4 pm – 7 pm 

Signal timing All phases of major and minor streets 

Traffic volume All movements 

Traffic delay All movements 

Sampling index Every five signal cycles (each cycle ≈180 s) 

 

C. Modeling results 

       Before the HNN model was trained, the raw data needed 

to be preprocessed to remove or reduce volatility, as shown 

in Figure 9. For traffic signal and traffic volume data, 

normalization was conducted to scale data between zero and 

one. For traffic delay data, after normalization, simple 

exponential smoothing was applied to further filter the data 

to remove noise, as shown in (14), where 𝑙(𝑘) is the filtered 

delay, 𝑦(𝑘)  is normalized delay, and 𝛼  is the smoothing 

factor between zero and one. As alpha decreases, the 

observation of delay at k has less impact on the output 𝑙(𝑘), 

indicating that the randomness of the delay measurements is 

reduced. After training of the HNN model, inverse 

normalization and inverse smoothing were applied to 

generate actual model output. This process is shown in Figure 

8. 

 

 
 

Figure 8. Data preprocessing. 

 

                𝑙(𝑘) = 𝛼𝑦(𝑘) + (1 − 𝛼)𝑙(𝑘 − 1)                    (14) 

 

The HNN model was trained by 78% of the total data 

points and was tested with data from March 22–26 (22% of 

total data). Figure 9 illustrates the HNN model structure 

applied in this study.  

 

The modeling results were evaluated by mean absolute 

percentage error (MAPE), rooted mean square error (RMSE), 

and mean absolute error (MAE) as in (15)–(17), where 

𝑦𝑛(𝑘) is the true delay at time k of phase n and �̂�𝑛(𝑘) is the 

predicted delay at time k of phase n. 

 

𝑀𝐴𝑃𝐸 =  
1

𝑁𝐾
∑ ∑ |

𝑦𝑛(𝑘) −�̂�𝑛(𝑘)

𝑦𝑛(𝑘)
|𝑁

𝑛=1
𝐾
𝑘=1             (15) 

𝑅𝑀𝑆𝐸 =  
1

𝑁𝐾
∑ ∑ √(𝑦𝑛(𝑘) − �̂�𝑛(𝑘))2𝑁

𝑛=1
𝐾
𝑘=1       (16) 

𝑀𝐴𝐸 =  
1

𝑁𝐾
∑ ∑ |𝑦𝑛(𝑘) − �̂�𝑛(𝑘)|𝑛=1𝑁

𝐾
𝑘=1         (17) 

 

Table III and Table IV show the prediction results for all 

phases of all seven intersections, the phases of main streets 

and side streets, and the phase of each intersection. Note that 

delay prediction at main streets is more accurate than at side 
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streets. The reason is that traffic volumes at side streets are 

much lower and more stochastic compared with main streets.  

 

 
  

Figure 9. HNN model structure.             

TABLE III. TRAINING AND TESTING RESULTS 

 
Training 

(all) 

Testing 

(all) 

Testing 
(main 

streets) 

Testing 

(side streets) 

MAPE 6.3% 6.5% 5.6% 6.9% 

RMSE 9.6 s 10.1 s 4.1 s 12.3 s 
MAE 6.7 s 6.9 s 3.0 s 9.2 s 

 

TABLE IV. TESTING RESULTS AT EACH INTERSECTION 

Intersection 1 2 3 4 

MAPE 4.0% 5.0% 5.7% 7.7% 

RMSE 3.7 s 5.7 s 10.7 s 11.0 s 
MAE 2.2 s  4.3 s 6.6 s 8.7 s 

    

Intersection 5 6 7 

MAPE 7.7% 6.7% 6.1% 

RMSE 12.6 s 8.8 s 10.3 s 
MAE 9.1 s 6.2 s 7.6 s 

 

Figure 10 and Figure 11 show the distribution and PDF of 

training errors. Training errors are roughly symmetrically 

distributed along the horizontal axis.  

  
Figure 10. Training error.  

 

 
Figure 11. Training error PDF. 

 

Figure 12 and Figure 13 show distribution and PDF of 

testing errors.  

 

 
Figure 12. Testing error.  

 

 
Figure 13. Training error PDF. 

 
Figure 14 shows comparisons of predicted delay from the 

HNN model and the true delay of each phase at intersection 1. 
There are four phases at intersection 1. Figure 14 (a-d) shows 
the delay comparisons of each phase, respectively. 
 

 
(a) Phase 1: Westbound left turning movement 
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(b) Phase 2: Eastbound through movement 

 

 
(c) Phase 4: Northbound through + left turning movements 

 

 
(d) Phase 6: Westbound through movement 
Figure 14. Delay Comparisons at Intersection 1. 

VI. CONCLUSIONS    

This keynote paper starts with a survey on the current 
neural network and Artificial Intelligent based modeling and 
control for signalized intersections. This is then followed by a 
study which developed a MIMO HNN model for multiple 
intersections along a corridor. The model can capture both the 
linear and nonlinear stochastic natures of multiple traffic 
features, i.e., traffic signal timings, traffic flows, and travel 
delays. The proposed model was validated by real-world data 
extracted from an Econolite system. The MAPE for delay 
prediction was 6.5% and the MAE was 6.9 s for all 
movements. The experimental results also suggested that the 
delay prediction for major streets was more accurate than that 
for minor streets.             

 
This study demonstrated a first step for the 

implementation of AI-based transportation system modeling 
and control. For future work, we will continue to collect data 
from more intersections and further refine the HNN model. 

When the model is ready, we will develop an AI-based 
optimal traffic control system based on the model to minimize 
entire system costs, including travel delay and energy 
consumption.             

 
Once a reliable system model is obtained, AI-based 

control design is required to establish a real-time closed-loop 
feedback control system that uses the traffic flow state as 
feedback [40][41]. This approach controls the signal timing 
intelligently at intersections so that the resulting traffic flow 
can be made smoother with minimized energy consumption. 
This control method requires controller design using AI 
techniques. Because of the random nature of traffic flow 
systems, stochastic optimal control in a multi-objective 
Bayesian framework will be investigated in the future.             
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