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Forward

The Fourteenth International Conference on Advances in Vehicular Systems, Technologies and

Applications (VEHICULAR 2025), held between March 9th, 2025, and March 13th, 2025, in Lisbon,

Portugal, continued a series of international events considering the state-of-the-art technologies for

information dissemination in vehicle-to-vehicle and vehicle-to-infrastructure and focusing on advances

in vehicular systems, technologies and applications.

Mobility brought new dimensions to communication and networking systems, making possible new

applications and services in vehicular systems. Wireless networking and communication between

vehicles and infrastructure have specific characteristics from other conventional wireless networking

systems and applications (rapidly changing topology, specific road direction of vehicle movements, etc.).

These led to specific constraints and optimizations techniques; for example, power efficiency is not as

important for vehicle communications as it is for traditional ad hoc networking. Additionally, vehicle

applications demand strict communications performance requirements that are not present in

conventional wireless networks. Services can range from time-critical safety services, traffic

management, to infotainment and local advertising services. They introduce critical and subliminal

information. Subliminally delivered information, unobtrusive techniques for driver’s state detection, and

mitigation or regulation interfaces enlarge the spectrum of challenges in vehicular systems.

We take the opportunity to warmly thank all the members of the VEHICULAR 2025 technical program

committee, as well as all the reviewers. The creation of such a high-quality conference program would

not have been possible without their involvement. We also kindly thank all the authors who dedicated

much of their time and effort to contribute to VEHICULAR 2025. We truly believe that, thanks to all

these efforts, the final conference program consisted of top-quality contributions. We also thank the

members of the VEHICULAR 2025 organizing committee for their help in handling the logistics of this

event.

We hope that VEHICULAR 2025 was a successful international forum for the exchange of ideas and

results between academia and industry for the promotion of progress in the field of vehicular systems,

technologies, and applications.
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Context-Aware Collaborative Perception: Estimating Relevance through Knowledge
Representation

Romain Tessier 1,2, Oyunchimeg Shagdar2, Bruno Monsuez1

1U2IS, ENSTA, Institut Polytechnique de Paris, 828 Bd. des Maréchaux, Palaiseau, France
2Ampere Software Technology, 1 Av. du Golf, Guyancourt, France

Email: {romain.tessier, bruno.monsuez}@ensta.fr, oyunchimeg.shagdar@ampere.cars

Abstract—Automated driving systems have made significant
strides in real-time perception and response to complex driving
scenarios. However, these systems struggle when road users
are beyond sensor range or obstructed by obstacles, limiting
their ability to make informed decisions. Cooperative Intelligent
Transport Systems (C-ITS) offer a promising solution by en-
abling vehicles to share real-time data with nearby vehicles and
infrastructure. While this enhances collaborative perception, a
major challenge is managing the high volume of sensor data
exchanged, which are not always useful for the receiver. This
can lead to data congestion, latency, and misinterpretation. Our
solution addresses these issues by using an ontology to represent
a vehicle’s observable scene and assess information relevance.
Additionally, the ontology serves as a knowledge base, facilitating
semantic communication that allows more effective interpretation
of received messages. This approach aims to improve both the
safety and efficiency of cooperative systems in automated driving
environments.

Keywords-Collective Perception; V2X; Ontology; Context-aware;
Semantic-Communication.

I. INTRODUCTION

As the global number of vehicles on the road continues
to rise, ensuring road safety remains a critical concern. Ac-
cording to the World Health Organization [1], approximately
1.2 million people died in 2023 due to road traffic crashes,
with countless more suffering non-fatal injuries. In response
to these alarming statistics, the automotive industry faces
mounting pressure to improve vehicle safety systems aimed
at preventing accidents and reducing fatalities. Automated
driving technologies play a key role in this effort by en-
abling real-time perception, analysis, and response to complex
driving environments. Despite these advancements, automated
vehicles still face limitations when making decisions based
on their own perception of the environment, particularly in
scenarios where obstacles obstruct a vehicle’s line of sight or
where objects are out of sensor range [2][3]. To address these
limitations, C-ITS have emerged as a promising solution [4].
By facilitating real-time information exchange among vehicles,
infrastructure, and other road users, C-ITS enhances situa-
tional awareness beyond the capabilities of onboard sensors
alone. Leveraging Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communication, C-ITS enables vehicles
to access a broader array of information from nearby vehicles
or RoadSide Units (RSUs), allowing them to make more
informed decisions in critical situations. By sharing data on
traffic conditions, potential hazards, and road infrastructure,

C-ITS offers a proactive approach to accident prevention that
goes beyond the limitations of non connected autonomous
systems.

Integrating Collective Perception Services (CPS) within the
C-ITS framework represents a crucial step toward achiev-
ing safer and more efficient roadways [5][6]. CPS allows
vehicles to collaboratively perceive and interpret road users,
significantly improving their global perception. The Collective
Perception Message (CPM) is the standardized message format
used to transmit aggregated data which contain information
relative to the locally-detected elements. Particularly valuable
is the ability to share data about occluded or out of sensor
range objects in real time, which enhances a vehicle’s ca-
pacity to anticipate and respond to hidden dangers. However,
as the number of connected nodes—such as vehicles and
infrastructure—continues to grow, so does the volume of
data transmitted over communication channels. Given that
each CPM usually includes data on the perceived elements,
this exponential increase in data can lead to communication
congestion, resulting in latency, energy over-consumption, and
challenges in merging data across heterogeneous sources.

In the context of vehicular networks, effective communica-
tion hinges on the principle of transmitting relevant informa-
tion efficiently, as conceptualized by Shannon’s Information
Theory. According to Shannon, information is defined as the
reduction of uncertainty (entropy) [7][8]; thus, relevant data
in vehicular systems is the one that significantly contributes
to reducing uncertainty about the environment for the re-
ceiving vehicle. In this case, data relevance is not merely
about the volume of information but about the usefulness
of the transmitted data regarding the needs of the receiver.
In CPM, the relevance of information is closely tied to the
type of system consuming it and its specific context. For
instance, an Automatic Emergency Braking (AEB) system
requires highly precise data regarding very close predicted
object trajectories to make immediate safety interventions; An
Autonomous Driving (AD) system needs a broader under-
standing of the environment to plan longer-term maneuvers,
such as anticipating the pedestrian’s intention to cross the road.
The solution utilizes an ontology to represent the vehicle’s
observable scene, enabling it to assess the relevance of the
situation. This allows the system to adjust the frequency and
priority of message transmissions according to its criticity. By
enhancing semantic precision and contextual relevance, this

1Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-233-3
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approach aims to reduce data congestion, improve decision-
making efficiency, and ultimately advance the safety and
efficacy of C-ITS.

This paper is organized as follows: Section II provides an
overview of congestion mitigation in Collaborative Perception
and Semantic Communication. Section III presents a specific
use case to introduce the issues of contextual and informational
relevance. In Section IV, an ontology model is explored to
describe the vehicle’s knowledge base. Section V then dis-
cusses methods for using the ontology to assess the contextual
relevance of situations. Finally, Section VI demonstrates how
this knowledge can be shared among connected vehicles and
integrated into the vehicle’s C-ITS architecture.

II. RELATED WORK

Mitigating channel congestion has been the main concern
in a large number of research activities. For example, in [9],
vehicles reduce the CPM generation frequency in high-density
areas. Decentralized Congestion Control (DCC) techniques
have been proposed to allow individual nodes to autonomously
adjust their transmission rates based on channel congestion
level observed locally [10]–[13]. While these congestion con-
trol systems effectively alleviate network congestion, they of-
ten lack explicit consideration of context. In critical scenarios,
this can lead to potentially harmful information gaps. To ad-
dress this, some solutions incorporate context-awareness. For
example, [14] proposes limiting collaborative communication
to the most relevant nodes by creating a matching score be-
tween nodes. However, in C-ITS, where actors change rapidly,
this approach is incompatible with the handshake mechanism
explained in Who2Com [14]. Consequently, other studies
propose limiting communication within geographical zones to
ensure a level of relevance. In Direct-CP [15], collaborative
communication is monitored by infrastructure based on each
vehicle’s maneuver intent. In contrast, Where2Com [16] does
not rely on infrastructure to manage communication; instead,
it uses a spatial confidence map at each agent to facilitate prag-
matic compression, guiding agents on what to communicate,
with whom, and whose information to aggregate. Additionally,
[17] introduces a protocol that takes context into account
for CPM generation frequency by aggregating information
about the communication channel and environmental context
(e.g., other vehicles and road layout). However, these solutions
do not ensure that transmitted messages remain semantically
relevant to the receiver; in other words, they do not consider
what information will be efficiently consumed. Consequently,
the receiver must infer semantic information about the sender’s
context, which may lead to interpretation issues.

To tackle these challenges, recent studies advocate for
semantic communication between vehicles, which aims to
convey meaningful content with inherent contextual value.
For instance in [18], the authors implemented collaborative
perception by extracting semantic features that are gathered
and computed by an edge server. This concept of commu-
nicating high semantic-value information is also explored in
[19]–[22] where a semantic encoder/decoder achieves higher

transmission efficiency. This approach is demonstrated in [23]
for image segmentation: rather than sending a full image (6
MB), it can be advantageous to transmit only the semantic
interpretation of the image (30.5 KB). However, in seman-
tic communication, the data is not merely compressed; it
is reduced to the essential meaning. Thus, both the sender
and receiver must have some form of shared knowledge to
encode and decode the information effectively. This notion of
a knowledge base can be linked to situational context, as the
context forms part of the vehicle’s knowledge. Finally, [24]
provides initial steps for implementing semantic communica-
tion in V2X, introducing a new layer between the application
layer and the transport/network layer. The authors illustrate the
benefits of semantic communication through use cases such as
adaptive traffic light management and collaborative driving. In
this work, we aim to advance these efforts by (i) enhancing
context-awareness in collaborative perception to generate situ-
ationally relevant messages, and (ii) adding semantic precision
to collaborative messages, thereby minimizing interpretation
issues and improving decision-making capabilities.

III. ASSESSING RELEVANCE

Let us imagine a scenario as shown in Figure 1. A vehicle
(V1) is positioned on the left side of a straight road, while
a pedestrian (P1) crosses the road, and a vehicle (V2) on
the right is masked by a bus (O1). This "hidden pedestrian"
situation is critical for accident prevention [25], emphasizing
the need for collaborative perception between vehicles. In
traditional CPS, V1 continually generates CPMs without fully
accounting for the specific environmental context. While such
messages are situationally relevant, they usually include pre-
processed sensor data on all detected objects, such as their
positions, speeds, and types. Consequently, the message would

Figure 1. Use Case : Hidden Pedestrian Intending To Cross.

relay information about the pedestrian (P1), the bus (O1),
the vehicle (V2), data that may not be entirely relevant to
the vehicle (V2). This lack of context-awareness can lead to
the transmission of unnecessary data, potentially impacting
decision-making and response times. A more efficient solution
involves integrating formalized knowledge into both vehicles.
This way, the vehicle (V1) can communicate only the most
valuable and situationally relevant information, while the other
vehicle (V2), armed with a similar knowledge base, can
interpret the context and make quicker decisions.

IV. FORMALIZING KNOWLEDGE

Ontologies—structured models in knowledge representa-
tion—enable this level of contextual relevance by defining sets
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of concepts, their attributes, and relationships within a specific
domain [26]–[29]. Leveraging ontologies enables machines
to process and share information with enhanced semantic
precision. In autonomous vehicle systems, ontologies provide a
standardized framework for consistently interpreting and inte-
grating data across diverse systems—an essential capability for
effective inter-vehicular communication and decision-making.
Given the variety of data sources in autonomous driving,
from real-time sensors to camera feeds, ontological mapping
transforms raw data into semantically enriched formats. For
example, to resolve the relevance assessment in the masked
pedestrian scenario, an ontology must efficiently describe
the situation. Here, the Road-Segment comprises two Lanes
(Lane-Left and Lane-Right) and a Crossing-Path. Vehicle-1,
classified as a Car, isDriving on Lane-Right and hasDetected
Vehicle-2, Pedestrian-1, and Bus-1. Meanwhile, Pedestrian-1
intendToCross via the Crossing-Path. Vehicle-2, also a Car,
isDriving on Lane-Left and hasDetected Vehicle-1 and Bus-1
and also intendToCross via the Crossing-Path. This ontological

Road_
Segment

Car

Pedestrian

Lane

Vehicle

Crossing_
Path

Bus

Road_
User

isDriving

hasNotDetected

Subclass of

Subclass of

Subclass of

Subclass of

hasLane

hasCrossingPath

hasDetected

intendToCross

isRelevant

Figure 2. Example Ontology for Masked Pedestrian Use Case.

(Figure 2) representation of the scene allows the system to
capture structural properties (green arrows) and functional
properties (red arrows), supporting collaborative perception
and enhancing safety-critical decisions.

V. CONTEXTUAL RELEVANCE ESTIMATION

Relevance identification is performed by establishing a
set of rules in the Semantic Web Rule Language (SWRL)
format, which facilitates advanced reasoning over ontologies
to infer new knowledge from existing information. SWRL
rules consist of conditions and conclusions expressed in terms
of ontological classes and properties, allowing for the formal
representation of complex relationships and logical inferences.
These rules can adhere to theoretical principles, defining
relevance based on parameters, such as distance, state, or
type, thereby creating a structured approach to understanding
interactions within a given context. Alternatively, they can
be scenario-specific, tailored to reflect particular conditions

and requirements relevant to specific situations. Scenario-
based relevance can be derived from accidentology studies
that identify scenarios where the safety benefits of C-ITS
have been demonstrated [25]. The SECUR results distilled 15
high-risk scenarios, with safety benefits estimated for each.
Thus, relevance estimation can be achieved through scene
recognition by determining if the vehicle’s observable scene
falls within a high-risk scenario. Scenario-based relevance,
relies on predefined cases that may not generalize well to novel
or evolving traffic situations. This approach risks overlooking
edge cases or unexpected factor combinations that do not
neatly fit within established categories but still pose safety
concerns. Despite this, a scenario-specific definition ensures
that information is relevant within the identified use cases
but does not inherently imply irrelevance in other scenarios.
In practice, a message deemed crucial in one context may
still hold value in different, yet unaccounted-for, situations.
Thus, rather than strictly matching predefined cases, it may be
necessary to assess the degree to which the vehicle’s current
situation resembles known scenarios.

Another solution could be to find patterns from accidentol-
ogy databases itself by employing machine learning techniques
[27][26], to derive complex SWRL rules that are highly
specific and adaptive to real-world conditions (see Figure 3).
In this context, machine learning models not only facilitate the

Figure 3. Rules Extraction Based On Accidentology Database.

extraction of patterns and trends from historical accident data
but also enhance the precision of the SWRL rules generated.
This integration allows for a continuous improvement loop,
where the relevance criteria can evolve based on updated data
inputs. After a training phase, the vehicle becomes capable of
assessing the relevance of a situation in real time by using the
ontology, which is updated through vehicle’s perception layer,
and by applying the SWRL rules. For each road users instan-
tiated inside the knowledge base, the relevance is assessed in
relation to the other road users.

For the pedestrian use case, we can define a simple SWRL
rule to infer the relevance of the situation.

RoadUser(?pedestrian) ∧ Car(?car)
∧ intendToCross(?pedestrian, ?crossing)
∧ intendToCross(?car, ?crossing)
∧ hasNotDetected(?car, ?pedestrian)
∧ speed(?car, ?carSpeed)
∧ swrlb:greaterThan(?carSpeed, SpeedThreshold)

→ isRelevantTo(?pedestrian, ?car)
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This set of rules defines when a road user is considered
relevant to a vehicle. Specifically, it evaluates whether both a
pedestrian and a vehicle intend to cross paths and ensures that
the vehicle has not yet detected the pedestrian. It also checks
the vehicle’s speed against a predefined threshold, indicating
that if the vehicle is already stationary, the information is
not relevant. If these conditions are satisfied, the pedestrian
data becomes relevant to the vehicle, prompting any vehicle
that has locally-detected both elements to include the relevant
information in a CPM.

VI. KNOWLEDGE SHARING

Knowledge sharing between vehicles can complement sen-
sor data by providing additional context, which is critical for
autonomous vehicles. Studies show that ontology and for-
malized knowledge representation improve decision-making
[28]–[30]. Semantic-aware messages can be used to share
knowledge between vehicles, adding valuable semantic details
about the environment [18]–[20][23][24]. For example, in this
use case, sender can generate a message about the pedestrian
not just with its position, speed, and timestamp but also
enriched with semantic details like "pedestrian on sidewalk,"
"pedestrian intending to cross," or "pedestrian hidden by bus."
This enriched information allows the receiver vehicle to fuse
data from multiple sources, such as RSUs and other vehicles,
recognizing that they have detected the same pedestrian, even
if the detection timing and precision differ.

Figure 4. Integration of Semantic Layer For CPM.

In this use case, the vehicle (V1) observes a pedestrian (P1)
crossing a straight road while a bus (O1) occludes another
vehicle (V2) on the opposite side. The process begins with
V1’s sensors detecting and classifying entities within its envi-
ronment. These entities—such as "Pedestrian", "Bus", “Cross-
ing path”, and "Vehicle"—are instantiated within the ontology
(Ontology Mapping, Figure 4), each associated with specific
properties like location, movement direction and link between
instances (Section IV). Once these instances and properties are
mapped in the ontology, an inference engine applies predefined
rules to evaluate the scenario, SWRL rules (Section V) specify
conditions under which an information relative to an element

is relevant to another element (Relevance Estimation, Fig-
ure 4). Following this, the Collective Perception Application
constructs a CPM containing only the relevant information,
specifically prioritizing details about the pedestrian due to
its potential impact on V2. Furthermore, the Collective Per-
ception Application (CPA) dynamically adjusts the message
transmission frequency based on the overall relevance of the
situation. Based on the ontology instances and the sensors
data, CPM message is enhanced with semantic properties like
"intending to cross" (Semantic Enhancement, Figure 4). Upon
receiving the enriched CPM, V2 utilizes its own ontological
model to interpret the semantic information embedded within
the message. This process allows the vehicle (V2) to integrate
the contextual details about the pedestrian with its existing
sensor data, effectively enhancing its understanding of the
environment. For instance, recognizing that a pedestrian is
"intending to cross" prompts the vehicle (V2) to prioritize its
own response strategy, potentially preparing to yield or adjust
speed. This capability to process semantic enrichment ensures
that the receiver vehicle can act promptly and appropriately,
even in complex driving conditions where visual information
is compromised. This approach improves situational awareness
and supports more accurate interpretation of the environment,
thereby enhancing the value of information.

VII. CONCLUSION

C-ITS and the integration of CPS mark a significant ad-
vancement in enhancing road safety. By fostering real-time
communication among vehicles and infrastructure, the pro-
posed solution addresses critical limitations associated with
traditional automated driving systems, particularly in terms
of situational awareness and decision-making. The utilization
of ontologies and semantic communication enables vehicles
to share contextually relevant and semantically enriched in-
formation, thereby reducing data congestion and improving
the accuracy of interpretations in dynamic environments. This
research underscores the importance of situational pertinence
and the value of information in collaborative perception,
paving the way for safer and more efficient transportation
systems.

In future work, relevance estimation will be implemented
within a simulation environment, leveraging ontologies to
support various consumers, such as Perception, Advanced
Driver Assistance Systems (ADAS), and Automated Driving.
This effort will involve the development of an ontology-based
framework and a comparative analysis of two distinct ap-
proaches to defining relevance. The first approach will utilize
machine learning algorithms for pattern extraction, employing
data-driven techniques to derive relevance rules. The second
approach will adopt a scenario-specific exploration, where
relevance is defined based on predefined scenarios and expert-
driven criteria tailored to specific use cases. By comparing
these methods, this study aims to uncover their respective
strengths, limitations, and areas of applicability, paving the
way for more adaptive and effective relevance estimation
strategies across diverse applications. Additionally, compar-
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isons will be made with methodologies presented in recent
literature [14][15][16] to benchmark and validate the proposed
approaches. It is also crucial to address the challenges posed
by ontology computation in real-time scenarios, ensuring its
feasibility and robustness in practical implementations.
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Abstract—The transportation sector, dominated by gas-powered
vehicles, is a major contributor to carbon dioxide emissions that
pose significant threats to both environmental and public health.
To address this issue, Electric Vehicles (EVs) have emerged as a
promising alternative aimed at achieving zero-carbon emissions.
However, EV adoption faces several challenges, including high
costs, insufficient charging infrastructure, range anxiety, and other
barriers. To promote EV adoption, authorities responsible for the
management of EVs have implemented various incentives, such as
tax reductions, credits, and support for charging infrastructure
programs. Despite these targeted management efforts, the adoption
of EVs remains a complex issue that requires extensive analysis to
understand the factors driving increases or decreases in adoption
rates. In this study, we employ a two-pronged approach to examine
EV adoption growth rates across counties in six U.S. states.
Our methodology integrates correlation network analysis and
statistical prediction-based analysis. The primary finding of these
analyzes highlights the critical role of geographical features and
practices of local management of EVs in influencing similar
patterns of EV adoption among counties. Additionally, we identify
two clusters exhibiting declines in EV adoption, underscoring the
need for further investigation into the management strategies and
underlying causes of these decreases.

Keywords- electric vehicle; charging stations; electric vehicle
adoption; graph modeling, correlation networks.

I. INTRODUCTION

The transportation sector is a major contributor to carbon
dioxide (CO2) emissions, which pose a significant threat to
life on Earth. For example, in the United States, 29% of CO2
emissions are caused by the transportation sector, which relies
heavily on greenhouse gases such as gasoline. Light vehicles
alone account for more than half of the transportation sector’s
emissions [1][2].

Electric Vehicles (EVs) are widely regarded as a replace-
ment for gasoline-powered vehicles. However, EV adoption
(represented by the number of EVs) faces several challenges,
including high costs, insufficient charging infrastructure, range
anxiety (i.e., the concern that the battery’s remaining charge
may not be sufficient to reach the next stop), and other barriers.
Consequently, significant managment efforts have been made
to transition the transportation sector toward electrification. For
instance, U.S. authorities manage EV adoption by offering
incentives such as tax reductions and credits for purchasing
EVs and supporting various programs to enhance charging
infrastructure.

Despite such management efforts to promote EV usage, the
EV adoption remains a complex issue that requires in-depth
investigation to provide insights into how adoption rates can be
increased based on the characteristics of targeted populations.

In this study, we focus on counties in the U.S. We conduct
our analysis at the county level rather than at the state or zip
code level because states are too broad, while zip codes are
too narrow to effectively capture differences in EV adoption
behavior across regions. Therefore, an essential first step in
addressing the complexity of EV adoption is to examine how
different counties across various states in the U.S. are working
to accelerate EV adoption.

We conducted two analyses as part of this effort: one using
Graph Theory and the other employing statistical prediction
analysis. Graph Theory has been applied in the EV domain
as a method to optimize the distribution of charging stations
[3]–[9]. On the other hand, statistical analyses have been used
in studies to investigate the impact of charging stations and
other factors on EV adoption [10]–[16]; however, these studies
typically focus on one to three cities.

In our Graph Theory analysis, we leveraged a correlation
network to build a network of counties and clustered them
based on their correlations of EV growth rates. This approach
identified several clusters of correlated counties. Counties
within the same cluster exhibited similar EV adoption behaviors,
opening avenues for future research to understand the reasons
behind these shared behaviors.

The second analysis involved building various prediction
models to forecast EV adoption in a county based on its
demographic features. The best-performing model was selected,
and further analyzed to identify significant features.

Our findings from the correlation network revealed that
counties within the same cluster often belong to the same state
and are geographically close to one another. This suggests
that local managements and neighboring areas may play a
significant role in EV adoption. Additionally, some clusters
showed declines in EV growth rates, prompting the need for
further studies to investigate the causes of these decreases.

In the statistical prediction-based analysis, the Gradient
Boosting model emerged as the best-performing prediction
model. Among the significant features identified in the best
prediction model, the geographical feature ’Federal Information
Processing Standards (FIPS)’ stood out, aligning with the
findings from the correlation network analysis. Hence, a local
management’s strategy for EV adoption may be influenced by
both the characteristics of their own region and the strategies
of neighboring regions in adopting EVs.

The remainder of this paper is organized as follows: Section
II discusses our approach for employing Graph Theory to build
the EV adoption correlation network and the development of
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TABLE I. NUMBER OF COMPLETED COUNTIES BY STATE

No. State No. of Counties

1 Colorado 20

2 Minnesota 3

3 Montana 2

4 New York 48

6 Texas 30

7 Virginia 34

8 Total 137

prediction models. Section III discusses the results, followed
by the conclusion and future work in Section IV.

II. METHODOLOGY

In this section, we describe the data collection process for
this study, the application of Graph Theory in our analysis,
and the development of prediction models.

A. Data Collection

1) EV Data: Atlas Hub [17] provides temporal data on
EV registrations at the zip code level for several states in the
U.S. For this study, we selected states that offered data from
2018 to 2023 and aggregated the data at the county level. We
chose this time range based on data availability, as increasing
the range results in a smaller number of states and counties,
while decreasing the range shortens the time series and may
negatively impact the analysis.

Consequently, we identified 137 counties from six states that
provided a complete 12 months of EV registration data for
each year within the study period. Table I presents the number
of counties per state.

This study includes all EVs registered in each state, regard-
less of their usage purpose, such as personal or commercial,
and whether they are light-duty or heavy-duty. The impact of
usage purpose on EV adoption is worth further investigation
in the future.

2) Charging Station Data: Charging station data is required
as a predictor in the statistical prediction models. We collected
the number of stations for each county of interest from the Al-
ternative Fueling Station Locator [18]. Using the establishment
dates for each station, we aggregated the number of stations
established annually in each county. For the analysis, we used
the number of stations as of 2022 to predict the number of
EVs in 2023 (as explained in II-C), incorporating a one-year
lag.

3) Demographic Data: This data was retrieved at the
county level from the official Census Bureau of the United
States [19]. The dataset, covering the period from 2017 to
2022, includes approximately 58 features categorized into
the following groups: Population, Age and Sex, Race and
Hispanic Origin, Population Characteristics, Housing, Families
Living Arrangements, Computer and Internet Use, Education,
Health, Economy, Transportation, Income Poverty, Business,
and Geography.

B. The Correlation Network Method

First, we computed the month-to-month growth rates for
each county in our study, resulting in 72 data points of growth
rates per county. These growth rates were calculated using the
equation:

Current Month− Previous Month

Previous Month

where Current Month means the cumulative number of EVs
until the current month, and Previous Month means the the
cumulative number of EVs until the previous month.

Next, since our data are not perfectly linear, we calculate
the Spearman correlation [20] between counties, resulting in a
137 × 137 correlation matrix. Using this matrix, we created a
correlation network where nodes represent counties and edges
represent correlations that exceed a specified threshold. After
testing several thresholds, we found that the optimal threshold
for our case study was 0.72, which yielded clusters of correlated
counties.

C. Statistical Prediction Analysis

Our second analysis leveraged the nature of our data, which
includes 137 counties across multiple U.S. states, to build
cross-sectional prediction models for estimating the number of
EVs at the county level for a specific year. Specifically, we
focused on predicting the number of EVs in 2023 using the
following approach:
1) The target variable was the number of EVs in 2023.
2) The features included demographic data from the Census

Bureau and the cumulative number of charging stations as
of 2022, reflecting a one-year effect of charging stations
on the number of EVs in 2023.

3) The statistical prediction models used included Linear
Regression, Random Forest, Gradient Boosting, Decision
Tree, Elastic Net, Lasso, and Ridge.

Finally, we identified the most significant features in the
best-performing prediction model.

III. RESULTS AND DISCUSSION

In this section, we present the outcomes of our analysis,
including the identification of clusters based on EV adoption
patterns and the evaluation of our prediction models. We
highlight the most significant features identified in our Gradient
Boosting model and discuss their implications.

A. Graph Theory Based Clustering

First, the number of counties meeting our correlation
threshold is 40 out of 137 counties. Among the correlations
between these counties, we identified four main clusters, as
shown in the correlation network in Figure. 1. Table III shows
the number of counties and their corresponding states for each
cluster in the resulting correlation network.

We observed that the correlated counties in each cluster
belong to a single state. For instance, the counties in clusters 1,
2, 3, and 4 are from Colorado, New York, Texas, and Minnesota,
respectively. Hence, our primary finding in this analysis is
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Figure 1. Correlation Network: Nodes represent counties, with labels indicating the county name appended with the state abbreviation, where colors distinguish
different states (e.g., Saratoga_NY represents Saratoga County in New York). Edges correspond to correlations exceeding 0.72.

Figure 2. Growth rates of counties in cluster 1 (Colorado). The X-axis represents 72 months, from January 2018 to December 2023.

TABLE II. THE SEVEN MOST SIGNFICANT FEATURES IN THE GRADIENT BOOSTING MODEL

Feature Group Importance

Nonminority-owned employer firms, Reference year 2017 Business 5.26e-01

Living in same house 1 year ago, percent of persons age 1 year+, 2018-2022 Families & Living Arrangements 2.02e-01

Station Counts Station data 4.96e-2

Total annual payroll Business 4.75e-2

Men-owned employer firms, Reference year 2017 Business 4.60e-2

Women-owned employer firms, Reference year 2017 Business 1.66e-2

FIPS Code Geography 1.05e-02
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Figure 3. Growth rates of counties in cluster 2 (New York). The X-axis represents 72 months, from January 2018 to December 2023.

Figure 4. Growth rates of counties in cluster 3 (Texas). The X-axis represents 72 months, from January 2018 to December 2023.

that correlated counties tend to cluster geographically within
individual states. Furthermore, beyond manual investigations,
these correlated counties often appear to be neighbors within
the same state. This suggests that the management strategies
of neighboring regions and the geographical characteristics of
counties may play a significant role in driving EV adoption.

Furthermore, we visualized the growth rates of the counties in
Colorado cluster, Texas cluster, and New York cluster in Figures.
2, 4, and 3, respectively (we ignored the Minnesota cluster since
it only contained three counties). These visualizations reveal
the strength of correlations within each cluster. Interestingly,
the growth rates in Colorado and New York tend to decline,
highlighting the need for further investigation to understand
the underlying causes in these counties. Such insights could
help local authorities manage and address this decline in EV
adoption more effectively.

TABLE III. THE FOUR CLUSTERS FOUND IN THE CORRELATION NETWORK,
HOW MANY COUNTIES IN EACH CLUSTER, AND THE STATES OF THESE

COUNTIES

Cluster Code No. of Counties States
Cluster 1 11 Colorado
Cluster 2 12 New York
Cluster 3 14 Texas
Cluster 4 3 Minnesota

TABLE IV. COMPARISON OF SEVERAL ML MODELS IN PREDICTING EV
ADOPTION

Model MSRE R-Squared
Linear Regression 101850027.5567 0.5377
Random Forest 69206289.8 0.6859
Gradient Boosting 58108466.13 0.7362
Decision Tree 141672157.654 0.357
Elastic Net 122403797.77 0.444
Lasso 98257697.207 0.554
Ridge 96591486.7415 0.5616
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B. Prediction models

We applied statistical prediction models to predict the number
of EVs at the county level. These models were evaluated
using metrics such as mean squared regression error (MSRE)
and adjusted R-squared. The models tested include Linear
Regression, Random Forest, Gradient Boosting, Decision
Tree, Elastic Net, Lasso, and Ridge Regression. Table IV
compares the performance of these models, with Gradient
Boosting emerging as the best performer. It achieved MSRE
of 58108466.13, and adjusted R-squared of 0.7362, explaining
73.62% of the variability in EV numbers.

Finally, we prioritized features based on their importance
in the Gradient Boosting model and identified the top seven
features, as shown in Table II. Among these, the FIPS feature
emerged as one of the most significant predictors of EV adop-
tion at the county level. The FIPS feature, being geographical
in nature, aligns with our findings in the correlation network,
where counties from the same state tend to cluster together.
This highlights the influence of local authorities and geographic
location on EV adoption behavior.

IV. CONCLUSION AND FUTURE DIRECTIONS

We presented a two-pronged analysis of EV adoption in
counties across six U.S. states. The first approach utilized a
correlation network from Graph Theory, where nodes represent
counties and edges indicate correlations in their EV growth
rates. We then clustered the counties based on these correlations.
The second approach involved developing various statistical
prediction models to forecast EV adoption in 2023 using
demographic and charging station data as predictors. The best-
performing model was selected and further analyzed to identify
significant features.

Our key finding is that the geographical characteristics of
counties, such as the state in which a county is located and its
neighboring counties, play a significant role in EV adoption.
This is evident in the correlation network, where counties within
the same state exhibit similar EV growth rate patterns, and in
the prediction model, where the FIPS feature (a geographical
identifier) emerges as one of the most significant predictors in
the best-performing model.

Additionally, we identified two clusters with declining EV
growth rates, highlighting the need for further investigation
into their underlying causes. Future research could enhance
prediction models by incorporating political, environmental,
and climatic factors while also expanding the dataset to cover
more counties across states. More specifically, an in-depth
exploration of how gas prices interact with EV adoption remains
a promising area of study. Lastly, distinguishing between
different types of EVs in future adoption analyses may yield
valuable insights.
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Abstract—An accurate vehicle model is essential for effectively 

representing vehicle behaviour, particularly in the study of ride 

and handling dynamics. This work focuses on developing a 

comprehensive vehicle model to analyse vehicle behaviour in 

various driving conditions. A 12-Degrees-Of-Freedom (DOF) 

vehicle model is derived, incorporating ride, handling, and tire 

dynamics. Two types of tire models—Linear and Nonlinear 

(Magic Formula)—are implemented in Simulink, and their 

performance is evaluated by comparing simulation results with 

ADAMS outputs. The tire model that best aligns with the 

ADAMS results is integrated into the 12-DOF vehicle model. All 

assumptions considered in the model development are detailed. 

The proposed vehicle model is validated using an instrumented 

vehicle under different steering inputs. The deviations between 

simulated and experimental results, particularly in yaw rate, 

lateral acceleration, roll angle, and individual tire slip angles, 

are analysed and discussed.  

Keywords - Vehicle dynamics; Multibody simulation; Three 

wheeler; Constat radius cornering. 

I.  INTRODUCTION  

A three-wheeled vehicle features a single front wheel, 
similar to a two-wheeler, and two rear wheels, resembling a 
four-wheeler. This unique configuration combines the 
advantages of both vehicle types, offering compactness and 
enhanced maneuverability in congested traffic and narrow 
roads. However, this design also introduces certain challenges 
in terms of stability and dynamic performance. 

One of the primary concerns with three-wheeled vehicles 
is their inherently lower rollover stability compared to four-
wheeled vehicles due to their asymmetric weight distribution 
and reduced lateral support [1][2]. The current design employs 
a trailing arm suspension at the rear, which maintains a fixed 
roll axis at ground level. Since there is no variation in camber 
or toe during wheel travel, the roll axis remains significantly 
lower than the Vehicle’s Center of Gravity (CG). This results 
in a high roll moment, making the vehicle more susceptible to 
lateral instability and rollover, especially during sharp turns or 
evasive maneuvers [3]. 

Furthermore, the absence of an independent suspension 
system in most three-wheeled vehicles limits their ability to 
adapt to uneven road surfaces, affecting ride comfort and 
handling characteristics. The distribution of roll stiffness 
between the front and rear also plays a crucial role in the 
vehicle's dynamic behaviour, influencing parameters, such as 
understeer, oversteer, and load transfer. These factors must be 

carefully analysed to optimize the stability and safety of three-
wheeled vehicles under various driving conditions. 

The following sections of this paper are structured as 
follows: Section II presents the analytical formulation of a 12-
Degrees-Of-Freedom (DOF) three-wheeled vehicle model, 
including the derivation of roll dynamics and an analytical 
representation of the tire model. Section III introduces a 
multibody dynamic model, incorporating flexible body 
dynamics for enhanced fidelity, and discusses the simulation 
of a step-steer maneuver and Constant Radius Cornering 
(CRC) simulation, with corresponding results plotted. Section 
IV details the experimental validation, where a physical 
prototype instrumented with sensors is used to measure key 
vehicle dynamics parameters, and a comparative analysis 
between experimental and simulation results is performed, 
with correlation graphs presented. Finally, Section V outlines 
the future work, highlighting planned improvements, further 
analysis, and potential extensions to refine the proposed 
models. 

II. SCOPE OF THE WORK 

Existing research papers primarily emphasize analytical 
expressions for evaluating vehicle dynamics, often neglecting 
the critical correlation between physical and virtual simulation 
results. Analytical models, due to their inherent 
simplifications, frequently yield results that underestimate 
experimental findings. In contrast, this study integrates three 
fundamental approaches: analytical modelling, 3D virtual 
simulation, and instrumented experimental testing. By 
incorporating all three dimensions, a stronger correlation 
between virtual and physical results is achieved, leading to 
more accurate vehicle dynamics assessments.  

The developed virtual Multi-Body Dynamics (MBD) 
model includes real-time flexible body integration, replicating 
physical vehicle components with higher fidelity compared to 
conventional 2D analytical models. This enhancement 
significantly improves result accuracy, ensuring that the 
simulation model aligns closely with real-world vehicle 
behavior. 

The high-fidelity MBD model considers key structural 
flexibilities, including suspension components, such as 
trailing arms, control arms, steering system elasticity, such as 
steering column compliance, axle housing deformation, and 
body-in-white stiffness properties. Virtual simulations 
account for real-world material properties by iteratively 
refining stiffness and damping parameters based on actual test 
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data. A scaling factor is applied to material properties to 
ensure consistency with physical test results, improving the 
predictive capabilities of the model.  

The primary goal of this work is to establish a complete 
3D virtual simulation framework for comprehensive vehicle 
dynamics testing. This enables early-stage vehicle dynamics 
target setting, with parameter cascading down to the 
subsystem level, ultimately accelerating product development 
cycles. By reducing dependency on physical prototypes, both 
time and cost constraints associated with mule vehicle 
manufacturing are significantly minimized. Initial validation 
of the simulation model against physical test results provides 
confidence in early-stage vehicle performance assessment. 

To enhance the reliability of virtual simulations, key 
assumptions are incorporated, including equivalent stiffness 
values for springs, dampers, and bushings, as well as realistic 
flexibility properties of major structural components. Material 
properties are iteratively refined using real-world data, 
ensuring an accurate representation of actual vehicle 
dynamics. 

 In this study, Step steer manoeuvring and Constant 
Radius Cornering (CRC) tests have been utilized for 
validation. However, additional dynamic test scenarios, such 
as fishhook, free steer, slalom, and ramp steer tests along with 
dynamics control systems are planned as future work to 
further reinforce simulation accuracy and reliability. 
Expanding the range of test cases will enhance confidence in 
virtual simulations, reducing dependency on physical testing 
while ensuring robust vehicle handling performance 
predictions. 

 

III. THREE WHEELER VEHICLE MODEL 

The vehicle dynamic model for a three-wheeled vehicle is 
developed as a nonlinear system with 12-Degrees-Of-
Freedom (DOF). This model consists of both sprung and 
unsprung masses, with the vehicle body having six DOF: 
translational motions along the x, y, and z axes, and rotational 
motions (roll, pitch, and yaw) about these axes. Specifically, 
the roll, pitch, and yaw motions represent the rotations about 
the x, y, and z axes, respectively. Each wheel is modeled with 
translational motion in the vertical (z) direction and wheel 
spins about the y-axis. Additionally, the front wheel is capable 
of steering about the z-axis, which contributes to the vehicle's 
overall maneuverability. 

In this study, the dynamic model of a typical three-
wheeled passenger vehicle is developed, as shown in Figure 
1. The model is constructed using Lagrangian mechanics, 
where the Equations Of Motion (EOM) are derived to describe 
the complex interactions between the sprung and unsprung 
masses. The coordinate system for the vehicle follows the 
Society of Automotive Engineers (SAE) International 
convention, and the relevant sign conventions are shown in 
Figure 2. The developed model incorporates both vehicle 
dynamics and the interaction between the vehicle body and 
the wheel assemblies, enabling a detailed analysis of the ride 
and handling characteristics of three-wheeled vehicles. 

A. Equations of Motion 

     Governing equations of the Longitudinal, Lateral, and 

Vertical, Roll, Pitch and Yaw motions can be expressed as 

[2]: 

 

Equation of motion for longitudinal motion 

𝑀𝑡�̈� = 𝐹𝑥,𝑓+  𝐹𝑥,𝑟𝑙+ 𝐹𝑥,𝑟𝑟 

𝑀𝑡(𝑣�̇� + �̇�𝑣𝑧 − 𝑣𝑦�̇�) = 𝐹𝑥,𝑓+  𝐹𝑥,𝑟𝑙+ 𝐹𝑥,𝑟𝑟     (1) 

 

Equation of motion for lateral motion 

 

𝑀𝑡�̈� = 𝐹𝑦,𝑓+  𝐹𝑦,𝑟𝑙+ 𝐹𝑦,𝑟𝑟 

𝑀𝑡(𝑣�̇� + 𝑣𝑥�̇� − �̇�𝑣𝑧) = 𝐹𝑦,𝑟+  𝐹𝑦,𝑟𝑙+ 𝐹𝑦,𝑟𝑟       (2) 

 

 
Figure 1. Six DOF Horizontal vehicle model. 

 

 
       Figure 2. Six DOF Vertical vehicle model. 
 

Equation of motion for sprung mass vertical motion 

 

𝑀𝑠�̈� = 𝐹𝑧,𝑓+  𝐹𝑧,𝑟𝑙+ 𝐹𝑧,𝑟𝑟 

𝑀𝑠(𝑣�̇� + 𝑣𝑥�̇� − �̇�𝑣𝑧) = 𝐹𝑧,𝑟+  𝐹𝑧,𝑟𝑙+ 𝐹𝑧,𝑟𝑟  (3) 

 

Equation of motion for sprung mass roll motion 

 

𝑀𝑥 = 𝐼𝑠𝑥𝑥�̈� − (𝐼𝑠𝑦𝑦 − 𝐼𝑠𝑧𝑧)�̇��̇� =  𝐹𝑧,𝑟𝑙− 𝐹𝑧,𝑟𝑟 (4) 

 

Equation of motion for sprung mass pitch motion 

 

𝑀𝑦 = 𝐼𝑠𝑦𝑦�̈� − (𝐼𝑠𝑧𝑧 − 𝐼𝑠𝑥𝑥)�̇��̇� = 

 (𝐹𝑧,𝑟𝑙+ 𝐹𝑧,𝑟𝑟 )𝑏 − 𝐹𝑧,𝑓 𝑎 − ((𝐹𝑥,𝑓+ 𝐹𝑥,𝑟𝑙+ 𝐹𝑥,𝑟𝑟 )   (5) 

12Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-233-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VEHICULAR 2025 : The Fourteenth International Conference on Advances in Vehicular Systems, Technologies and Applications

                            22 / 27



Equation of motion for sprung mass yaw motion 

 

𝑀𝑧 = 𝐼𝑧𝑧�̈� − (𝐼𝑥𝑥 − 𝐼𝑦𝑦)�̇��̇� = 

 (𝐹𝑥,𝑟𝑙− 𝐹𝑥,𝑟𝑟 )𝑡/2 − (𝐹𝑦,𝑟𝑙+ 𝐹𝑦,𝑟𝑟 )𝑏 + (𝐹𝑦,𝑓 𝑎 )  (6) 

 

where:  

 a = Length between the CG and front tire patch           

 V = Vehicle velocity vector 

 b = Length between the CG and rear tire patch            

 Vf = Front tire velocity vector 

 δ= Steer angle                                                             

 Vr = Rear tire velocity vector 

 FY= Tire lateral forces                                                   

 Vx = Vehicle velocity in the x-axis 

 ᴪ= Yaw angle                                                                 

 Vy = Vehicle velocity in the y-axis 

 I zz Vertical axis moment inertia 

 ax, ay=Longitudinal and Lateral acceleration 

 
The horizontal vehicle model receives lateral and 

longitudinal forces from the tire model, which are crucial 
inputs for the vertical dynamics of the vehicle. Based on these 
forces, a 6 Degrees-Of-Freedom (DOF) vertical vehicle model 
is developed, as illustrated in Figures 1 and 2. The model 
incorporates a two-dimensional vertical dynamic system, 
representing a half-track vehicle model for pitch dynamics 
and a two-track half-vehicle model for roll dynamics. This 
approach allows for three DOF associated with the vehicle's 
mass center (vertical, roll, and pitch dynamics), along with 
three DOF for each wheel, focusing on the vertical dynamics 
of the wheels. 

The primary dynamics analysed in this study are the yaw 
and roll motions, which play a crucial role in vehicle stability 
and handling. The yaw motion is essential for understanding 
the vehicle's directional control, while roll dynamics influence 
the lateral stability, particularly in cornering and evasive 
maneuvers [2]. These factors are critical for evaluating the 
overall ride and handling characteristics of the vehicle. 

B. Roll Model 

The roll equations are derived by decomposing the vehicle 
into sprung and unsprung masses within the y-z plane, as 
illustrated in Figures 3 and 4. Newton’s Second Law, 
formulated for rigid body dynamics, is applied to analyze the 
roll motion. In this context, "inside" and "outside" refer to the 
respective sides of the vehicle relative to the direction of a 
turn. 

The steady state roll model has been derived, by setting 
the acceleration and velocity dynamic states to zero. This 
simplification allows the roll angle to be expressed as a linear 
function of lateral acceleration. The approach assumes that the 
total roll stiffness remains linear and that the parameter d1 is 
constant, based on the small-angle linearization technique. 
Under these conditions, the roll response of the vehicle is 
primarily governed by lateral load transfer, roll stiffness, and 
suspension characteristics. This linearized formulation 
provides insights into the steady-state roll behavior, aiding in 
the evaluation of vehicle stability and handling performance. 

 

 
 Figure 3. Roll FBD Sprung Mass. 
 
 

 
  Figure 4. Roll FBD Un-Sprung Mass. 
 

        

The forces, moment, and lengths in Figures 3 and 4 are 

defined as: 

 

 CGM = Sprung mass center of gravity  

 Marb = Anti-roll bar moment 

 CGm = Un-sprung mass center of gravity  

 Φ= Roll angle 

 d1 = Length between the rc and CGM  

 rc = Roll center 

 Fb = Damper force (o – outside, i – inside) 

 Ry = Reaction force in the y-axis 

 Fk= spring force (o – outside, i – inside) 

 Rz = Reaction force in the z-axis 

 Fy= Tire lateral force  

 S = Length between the springs and dampers 

 Fz = Tire normal force, 

 t = Track width 
 
The resulting roll angle equation, given by Equation (7), 

serves as a fundamental expression for analyzing roll 
dynamics in steady-state cornering conditions. 
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𝛷𝑠𝑠 =
𝑀𝑠𝑑1

𝑘𝛷𝑡−𝑀𝑠𝑑1
. 𝑎𝑦   (7) 

where: 

  𝑎𝑦= Lateral acceleration                                      

   𝑘𝛷𝑡= Total roll stiffness 

  𝑀𝑠= Total sprung mass 

 

      
                   Figure 5. Rollover speed Vs Radius of turn. 

 

C. Tire Model 

In this study, the Pacejka Magic Formula [6] is used to 
model tire forces based on existing experimental data for the 
vehicle, as summarized in Table I. This widely used semi-
empirical tire model captures the nonlinear behavior of tires 
by defining lateral and longitudinal forces as functions of slip 
angle and slip ratio, respectively [5]. Figure 6 illustrates the 
differences between the linear and nonlinear Magic Formula 
tire models. 

TABLE I. PACEJKA PARAMETERS 

 
The general form of the Pacejka Magic Formula for 

longitudinal, lateral, and aligning moment forces is expressed 
as [5]: 

 

  𝑦 = 𝐷 sin  (𝐶 𝑡𝑎𝑛−1  (𝐵𝑥 − 𝐸(𝐵𝑥 − 𝑡𝑎𝑛−1(𝐵𝑥))))     (8) 

 

Where: 

 𝑦 - represents the force or moment  

 𝑥 - represents the slip parameter  

 B - is the stiffness factor, controlling the shape of 

        the curve 

 C - is the shape factor, determining the curvature 

       D - is the peak factor, representing the maximum   

        force value 

       E - is the curvature factor, adjusting the asymmetry 

       of the curve 

 

The linear tire model assumes constant tire cornering 

stiffness with no saturation, meaning the lateral force 

increases proportionally with slip angle. In contrast, the 

Pacejka model accounts for non-linearities by varying the 

cornering stiffness dynamically. 

 

           
Figure 6. Comparison of Linear vs. Nonlinear Pacejka '89 and '94 Tire 

Models under a Normal Force of 1.5 kN. 

 
As the slip angle increases, the lateral tire force initially 

rises, reaching a peak before gradually decreasing due to tire 
saturation. This behavior accurately represents real-world tire 
dynamics, particularly during aggressive cornering and limit-
handling scenarios. The linear tire model provides a 
reasonable approximation of the nonlinear Pacejka model for 
small slip angles [5]. However, as shown in Table II, this 
approximation becomes increasingly inaccurate as the slip 
angle grows. The linear model assumes a constant cornering 
stiffness, leading to an overestimation of lateral force at high 
slip angles.  

TABLE II. LINEAR TIRE MODEL VS. NON-LINEAR PACEJKA TIRE MODEL 

Tire Slip Angle, α , [deg] 2.5º 5 º 7 º 

Lateral Force difference between 

Linear and Non-Linear Tire  
Pacejka ‘89’ Model 

4% 33% 65% 

Lateral Force difference between 

Linear and Non-Linear Tire  

Pacejka ‘94’ Model 

14% 25% 40% 

 
In contrast, the nonlinear Pacejka model accounts for tire 

saturation, capturing the peak lateral force and the subsequent 
reduction in force beyond this point. This distinction is critical 
for accurately predicting vehicle behavior in high-speed 
maneuvers, limit-handling conditions, and dynamic stability 
analysis.  

The peak lateral force generated by a tire is influenced by 
both slip angle and normal load. However, as the normal load 
increases, a saturation point is reached beyond which 
additional load no longer results in a proportional increase in 
lateral force.  

a0    =        0.5; 

a1    =        -1300; 

a2    =        2400; 
a3    =       -250; 

a4    =       -3; 

a5    =      -0.0024; 
a6    =       -1.6; 

a7    =       1.6; 
a8    =       0.0; 

a9    =     0.0; 

a10   =    0.0; 

a11   =    0.0; 
a12   =    0.0; 

a13   =    0.0; 

a14   =    0.0; 
a15   =    -0.1; 

a16   =    0.0; 
a17   =     0.2 
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Figure 7. Non-Linear Tire Model with Varying Normal Forces. 

 
This nonlinear relationship, depicted in Figure 7, 

highlights how both cornering stiffness and peak lateral force 
vary with changes in normal load. In the Pacejka tire model, 
the primary inputs are the tire slip angle and normal force, 
while the output is the resulting lateral force. The model 
captures the nonlinear behavior of tire forces, showing that 
while an increase in normal load initially enhances lateral grip, 
excessive loading can lead to diminishing returns due to tire 
deformation and structural limitations. Understanding this 
interaction is crucial for optimizing vehicle dynamics, 
particularly in suspension tuning and load transfer 
management. 

IV. VIRTUAL VEHICLE MODEL AND SIMULATION 

A three-wheeled MBD flexible model, as shown in Figure 
8, has been developed using ADAMS CAR. The system is 
represented as two primary subsystems: Rear frame: Includes 
the rider, engine, chassis, body, seat, and rear wheels. Front 
frame: Comprises the front fork, handlebar, and front wheel.  

 

        
Figure 8. Three-Wheeler MBD Model. 

  
The rear and front frames are connected at the steering axis 

via a revolute joint, allowing relative rotation between the two 
sections. During motion, the tires are free to sideslip, 
generating lateral forces that depend on sideslip and camber 
angles. These lateral forces, from a dynamic perspective, act 
as restoring forces similar to those produced by springs, 
influencing vehicle stability and handling behavior. To 
enhance model accuracy, key parameters, such as mass 
properties, inertia, hard point locations, suspension 
characteristics (spring/damper properties, jounce, and 

rebound characteristics), and tire properties are updated based 
on experimental data. A complete vehicle model is 
constructed using modular templates with user-defined input 
data.  

For tire modeling, both the Pacejka '89 and '94 handling 
models are developed, with the Pacejka '94 model being 
implemented in simulations due to its improved accuracy in 
capturing tire behavior under dynamic conditions [5]. The use 
of this detailed MBD model allows for a comprehensive 
analysis of three-wheeled vehicle dynamics, particularly in 
evaluating stability, ride quality, and handling performance. 

A. MBD Simulation 

A full-vehicle MBD simulation has been conducted to 
analyze the handling characteristics of a three-wheeled 
vehicle. The simulations were performed using ADAMS/Car, 
which provides a driving machine module capable of 
executing various handling maneuvers [3]. These maneuvers 
are broadly classified into: Open-loop steering maneuvers: 
Driver-independent inputs, useful for evaluating fundamental 
vehicle dynamics. Closed-loop maneuvers: Driver-in-the-
loop simulations, considering control feedback mechanisms. 
In this research, the following handling analyses were 
performed, and their results were evaluated: 

Step Steer Maneuver – A sudden steering input is applied 
to examine the transient response of the vehicle, focusing on 
yaw rate, lateral acceleration, and roll stability. 

Constant Radius Cornering (CRC) – The vehicle is 
driven in a steady-state circular path to assess lateral grip, 
understeer/oversteer characteristics, and roll behavior at 
different speeds. This is shown in Figure 9.  

 

 
 Figure 9. CRC – MBD Simulation in ADAMS. 
 
These simulations provide critical insights into the 

stability, responsiveness, and overall handling performance of 
the three-wheeled vehicle under dynamic conditions. 

 

a)  Step Steer maneuver 
A step steer analysis yields time-domain transient-

response metrics. During a step steer analysis, ADAMS/Car 
increases the steering input from an initial value to a final 
value over a specified time. The most important quantities 
measured are shown in Figure 10. 
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Figure 10. Vehicle lateral acceleration, yaw rate, steering angle input, rear 

(left/right) spring forces, tire lateral forces. 

 

b) Constant radius cornering 
For constant-radius cornering analysis, the Driving 

Machine drives full vehicle down a straight road, turns onto a 
skidpad, and then gradually increases velocity to build up 
lateral acceleration. One common use for a constant radius 
cornering analysis is to determine the understeer 
characteristics of the full vehicle [2]. 

 

Figure 11. Vehicle CG longitudinal velocity, lateral acceleration (g). 
 

 
Figure 12. Rear Tire (left and right) normal forces. 

 

It is also useful to find out vehicle velocity at which roll-
over instability starts. From the Figure 10 and Figure 11 given 
below, it was observed that the vehicle stars to roll when its 
velocity reaches around 38 kmph for 30m radius. 

V. EXPERIMENTAL VALIDATION OF SIMULATION 

RESULTS 

An experimental study was conducted to validate the 
vehicle dynamics simulation results by performing real-world 
tests on a controlled test track shown in Figure 12. The test 
vehicle was driven in a steady-state circular maneuver on a 
track with a 30 m radius. The objective was to assess lateral 
acceleration, roll angle, and yaw velocity under varying speed 

conditions and determine the threshold at which wheel lift-off 
occurs [8]. 

The test was conducted across a range of speeds, 
beginning from the lowest feasible velocity and gradually 
increasing to the maximum possible speed before instability. 
The speed increment strategy was designed to ensure a 
systematic variation in lateral acceleration: 

• Up to 28 km/h, the speed was increased in steps 
that corresponded to an approximate lateral 
acceleration increment of 0.05 g. 

• Beyond 28 km/h, the speed was increased in 
fixed increments of 2 km/h until wheel lift-off 
was observed. 

The RT1003 Inertial Measurement Unit (IMU) and 
Steering Sensor is a high-precision system designed for 
vehicle dynamics analysis, capturing yaw, pitch, and roll rates 
using advanced gyroscopes, along with linear accelerations 
via high-accuracy accelerometers shown in Fig.13. It provides 
real-time roll and slip angle estimation, essential for stability 
control and performance evaluation. Integrated with a high-
resolution steering angle sensor and torque measurement 
capability, it enables detailed analysis of steering response and 
driver input [9]. 

 

   
   Figure 12. Constant Radius Cornering at Test rack. 

 
 

         
Figure 13. RT1003 IMU and Steering sensor for Vehicle dynamics 

Parameter Measurement. 

 

From the experimental results, it was observed that the 
onset of wheel lift-off occurred at approximately 40.38 km/h, 
indicating the point of critical lateral acceleration at which the 
vehicle’s roll stability limit was exceeded. The findings are 
graphically represented in Figure 14, illustrating the 
relationship between speed, lateral acceleration, and roll angle 
leading to the instability condition. 
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The test results provide valuable insight into the real-
world validation of vehicle stability limits and rollover 
tendencies, offering a critical comparison with the simulated 
predictions. These findings contribute to improving vehicle 
safety analysis and the refinement of suspension and stability 
control systems. 

 

 

 

  
Figure 14. Lateral accelerations, Speed and Roll angle.  

 

VI. CONCLUSION 

This study presents the development and validation of a 
12-Degrees-Of-Freedom (DOF) vehicle model to analyze ride 
and handling dynamics under various driving conditions. The 
integration of both linear and nonlinear (Magic Formula) tire 
models allowed for comparative analysis against Automated 
Dynamic Analysis of Mechanical Systems (ADAMS) 
simulation results, with the nonlinear model demonstrating 
superior alignment. 

The validation process included MBD simulations and 
experimental tests, focusing on key handling aspects, such as 
yaw rate, lateral acceleration, and roll stability. The results 
showed that the vehicle exhibited roll instability at 
approximately 38 km/h in simulations, closely aligning with 
the experimentally observed wheel lift-off at 40.38 km/h. 

The findings highlight the importance of incorporating 
high-fidelity tire models and validating vehicle dynamics 
through real-world testing to ensure accuracy. This research 
provides valuable insights into vehicle stability and rollover 

tendencies, which are crucial for improving suspension and 
stability control systems. 

VII. FUTURE WORK 

Future research can be extended to a wider range of road 
conditions, including asphalt, pave, and Belgian blocks, under 
varying friction (μ) levels to better understand their impact on 
vehicle dynamics. Additionally, investigations into diverse 
vehicle configurations, such as three-wheeled and 
unconventional architectures, will enable a more 
comprehensive assessment of dynamic behavior under real-
world operating conditions. This will facilitate the refinement 
of suspension kinematics, steering response, and stability 
control strategies, ultimately enhancing vehicle safety, ride 
comfort, and performance. 

Furthermore, the current model will be improved by 
incorporating a higher Degrees-Of-Freedom (DOF) and 
integrating structural compliances to better capture real-world 
dynamic behavior. Advanced analyses will be performed by 
incorporating roll stability detection and control. Wheel Force 
Transducer (WFT) data acquired from Road Load Data 
Acquisition (RLDA) to quantify component-level excitations. 
These excitations directly influence key vehicle dynamics 
parameters, including ride quality, handling characteristics, 
and structural durability, enabling a more precise evaluation 
of system-level interactions and optimization of vehicle 
performance. 
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