Table of Contents

The Hippocampus According to the Ouroboros Model, the "Expanding Memory Index Hypothesis" <i>Knud Thomsen</i>	1
Performance of Neural Clique Networks Subject to Synaptic Noise Eliott Coyac, Vincent Gripon, Charlotte Langlais, and Claude Berrou	4
The Implementation of Noradrenaline in the NeuCogAr Cognitive Architecture Max Talanov, Mariya Zagulova, Salvatore Distefano, Jordi Vallverdu, Boris Pinus, and Alexey Leukhin	10
A Neurochemical Framework to Stress and the Role of the Endogenous Opioid System in the Control of Heart Rate Variability for Cognitive Load Sergey Parin, Anna Polevaia, and Sofia Polevaia	16
Two-Component Scheme of Cognitive System Organization: the Hippocampus-Inspired Model <i>Ekaterina D. Kazimirova</i>	21
On the Possibility to Interpret Aesthetic Emotions and the Concept of Chef-D'oeuvre in an Artificial Cognitive System Olga Chernavskaya and Yaroslav Rozhylo	24
Enhancing Learning Objects for Digital Education Tiago Thompsen Primo	32
Estimating Student's Viewpoint to Learning from Lecture/Self-Evaluation Texts Toshiro Minami, Yoko Ohura, and Kensuke Baba	38
Skill Acquisition Model using Task Performance and Physiological Indices. Yoshimasa Ohmoto, Takahiro Matsuda, and Toyoaki Nishida	44
Learning by Building Cognitive Models that Reflect Cognitive Information Processing: A Preliminary Class Exercise Kazuhisa Miwa and Hitoshi Terai	50
Incremental Face Recognition by Tagged Neural Cliques Ehsan Sedgh Gooya and Dominique Pastor	54
Finding All Matches in a Database using Binary Neural Networks Ghouthi Boukli Hacene, Vincent Gripon, Nicolas Farrugia, Matthieu Arzel, and Michel Jezequel	59
A Study of Deep Learning Robustness Against Computation Failures Jean-Charles Vialatte and Francois Leduc-Primeau	65

Sparse Clustered Neural Networks for the Assignment Problem Said Medjkouh, Bowen Xue, and Ghouthi Boukli Hacene	69
An Intrinsic Difference Between Vanilla RNNs and GRU Models Tristan Sterin, Nicolas Farrugia, and Vincent Gripon	76
Conversational Homes Nick O'Leary, Dave Braines, Alun Preece, and Will Webberley	82
Towards A Distributed Federated Brain Architecture using Cognitive IoT Devices Dinesh Verma, Graham Bent, and Ian Taylor	90
Machine Intelligence and the Social Web: How to Get a Cognitive Upgrade <i>Paul Smart</i>	96