NexTech 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • UBICOMM 2021, The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
  • ADVCOMP 2021, The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences
  • SEMAPRO 2021, The Fifteenth International Conference on Advances in Semantic Processing
  • AMBIENT 2021, The Eleventh International Conference on Ambient Computing, Applications, Services and Technologies
  • EMERGING 2021, The Thirteenth International Conference on Emerging Networks and Systems Intelligence
  • DATA ANALYTICS 2021, The Tenth International Conference on Data Analytics
  • GLOBAL HEALTH 2021, The Tenth International Conference on Global Health Challenges
  • CYBER 2021, The Sixth International Conference on Cyber-Technologies and Cyber-Systems

SoftNet 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • ICSEA 2021, The Sixteenth International Conference on Software Engineering Advances
  • ICSNC 2021, The Sixteenth International Conference on Systems and Networks Communications
  • CENTRIC 2021, The Fourteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services
  • VALID 2021, The Thirteenth International Conference on Advances in System Testing and Validation Lifecycle
  • SIMUL 2021, The Thirteenth International Conference on Advances in System Simulation
  • SOTICS 2021, The Eleventh International Conference on Social Media Technologies, Communication, and Informatics
  • INNOV 2021, The Tenth International Conference on Communications, Computation, Networks and Technologies
  • HEALTHINFO 2021, The Sixth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

NetWare 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • SENSORCOMM 2021, The Fifteenth International Conference on Sensor Technologies and Applications
  • SENSORDEVICES 2021, The Twelfth International Conference on Sensor Device Technologies and Applications
  • SECURWARE 2021, The Fifteenth International Conference on Emerging Security Information, Systems and Technologies
  • AFIN 2021, The Thirteenth International Conference on Advances in Future Internet
  • CENICS 2021, The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics
  • ICQNM 2021, The Fifteenth International Conference on Quantum, Nano/Bio, and Micro Technologies
  • FASSI 2021, The Seventh International Conference on Fundamentals and Advances in Software Systems Integration
  • GREEN 2021, The Sixth International Conference on Green Communications, Computing and Technologies

TrendNews 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • CORETA 2021, Advances on Core Technologies and Applications
  • DIGITAL 2021, Advances on Societal Digital Transformation

 


ThinkMind // International Journal On Advances in Internet Technology, volume 1, number 1, 2008 // View article inttech_v1_n1_2008_2


Real-time Network Traffic Management using the Modified BPTraSha Algorithm

Authors:
Karim Mohammed Rezaul
Vic Grout

Keywords: Self-similarity, LRD, ACF, QoS, Shaping, BPTraSha.

Abstract:
Various researchers have reported that traffic measurements demonstrate considerable burstiness on several time scales, with properties of self-similarity. Also, the rapid development of technologies has widened the scope of network and Internet applications and, in turn, increased traffic. The self-similar nature of this data traffic may exhibit spikiness and burstiness on large scales with such behaviour being caused by strong dependence characteristics in data: that is, large values tend to come in clusters and clusters of clusters and so on. Several studies have shown that TCP, the dominant network (Internet) transport protocol, contributes to the propagation of self-similarity. Bursty traffic can affect the Quality of Service of all traffic on the network by introducing inconsistent latency. It is easier to manage the workloads under less bursty (i.e. smoother) conditions. This paper continues the work published in [1], which introduced a novel algorithm for traffic shaping to smooth out the traffic burstiness. It was named as the Bursty Packet Traffic Shaper (BPTraSha). Experimental results show that this approach allows significant traffic control by smoothing the incoming traffic. BPTraSha can be implemented on the distribution router buffer so that the traffic’s bursty nature can be modified before it is transmitted over the core network (e.g., Internet). A modified BPTraSha algorithm is proposed in this research, which can be shown to be more dynamic, and therefore responsive, than the previous one. In this case, the dynamic variation of link speed can lead to further reducing the long-range dependence of network traffic.

Pages: 12 to 19

Copyright: Copyright (c) to authors, 2008. Used with permission.

Publication date: February 24, 2009

Published in: journal

ISSN: 1942-2652

SERVICES CONTACT
2010 - 2017 © ThinkMind. All rights reserved.
Read Terms of Service and Privacy Policy.