NexTech 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • UBICOMM 2021, The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
  • ADVCOMP 2021, The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences
  • SEMAPRO 2021, The Fifteenth International Conference on Advances in Semantic Processing
  • AMBIENT 2021, The Eleventh International Conference on Ambient Computing, Applications, Services and Technologies
  • EMERGING 2021, The Thirteenth International Conference on Emerging Networks and Systems Intelligence
  • DATA ANALYTICS 2021, The Tenth International Conference on Data Analytics
  • GLOBAL HEALTH 2021, The Tenth International Conference on Global Health Challenges
  • CYBER 2021, The Sixth International Conference on Cyber-Technologies and Cyber-Systems

SoftNet 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • ICSEA 2021, The Sixteenth International Conference on Software Engineering Advances
  • ICSNC 2021, The Sixteenth International Conference on Systems and Networks Communications
  • CENTRIC 2021, The Fourteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services
  • VALID 2021, The Thirteenth International Conference on Advances in System Testing and Validation Lifecycle
  • SIMUL 2021, The Thirteenth International Conference on Advances in System Simulation
  • SOTICS 2021, The Eleventh International Conference on Social Media Technologies, Communication, and Informatics
  • INNOV 2021, The Tenth International Conference on Communications, Computation, Networks and Technologies
  • HEALTHINFO 2021, The Sixth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

NetWare 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • SENSORCOMM 2021, The Fifteenth International Conference on Sensor Technologies and Applications
  • SENSORDEVICES 2021, The Twelfth International Conference on Sensor Device Technologies and Applications
  • SECURWARE 2021, The Fifteenth International Conference on Emerging Security Information, Systems and Technologies
  • AFIN 2021, The Thirteenth International Conference on Advances in Future Internet
  • CENICS 2021, The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics
  • ICQNM 2021, The Fifteenth International Conference on Quantum, Nano/Bio, and Micro Technologies
  • FASSI 2021, The Seventh International Conference on Fundamentals and Advances in Software Systems Integration
  • GREEN 2021, The Sixth International Conference on Green Communications, Computing and Technologies

TrendNews 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • CORETA 2021, Advances on Core Technologies and Applications
  • DIGITAL 2021, Advances on Societal Digital Transformation

 


ThinkMind // International Journal On Advances in Software, volume 2, number 1, 2009 // View article soft_v2_n1_2009_9


From Supervised to Reinforcement Learning: a Kernel-based Bayesian Filtering Framework

Authors:
Matthieu Geist
Olivier Pietquin
Gabriel Fricout

Keywords: supervised learning; reinforcement learning; Bayesian filtering; kernel methods

Abstract:
In a large number of applications, engineers have to estimate a function linked to the state of a dynamic system. To do so, a sequence of samples drawn from this unknown function is observed while the system is transiting from state to state and the problem is to generalize these observations to unvisited states. Several solutions can be envisioned among which regressing a family of parameterized functions so as to make it fit at best to the observed samples. This is the first problem addressed with the proposed kernel-based Bayesian filtering approach, which also allows quantifying uncertainty reduction occurring when acquiring more samples. Classical methods cannot handle the case where actual samples are not directly observable but only a non linear mapping of them is available, which happens when a special sensor has to be used or when solving the Bellman equation in order to control the system. However the approach proposed in this paper can be extended to this tricky case. Moreover, an application of this indirect function approximation scheme to reinforcement learning is presented. A set of experiments is also proposed in order to demonstrate the efficiency of this kernel-based Bayesian approach.

Pages: 101 to 116

Copyright: Copyright (c) to authors, 2009. Used with permission.

Publication date: June 7, 2009

Published in: journal

ISSN: 1942-2628

SERVICES CONTACT
2010 - 2017 © ThinkMind. All rights reserved.
Read Terms of Service and Privacy Policy.