NexTech 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • UBICOMM 2021, The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
  • ADVCOMP 2021, The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences
  • SEMAPRO 2021, The Fifteenth International Conference on Advances in Semantic Processing
  • AMBIENT 2021, The Eleventh International Conference on Ambient Computing, Applications, Services and Technologies
  • EMERGING 2021, The Thirteenth International Conference on Emerging Networks and Systems Intelligence
  • DATA ANALYTICS 2021, The Tenth International Conference on Data Analytics
  • GLOBAL HEALTH 2021, The Tenth International Conference on Global Health Challenges
  • CYBER 2021, The Sixth International Conference on Cyber-Technologies and Cyber-Systems

SoftNet 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • ICSEA 2021, The Sixteenth International Conference on Software Engineering Advances
  • ICSNC 2021, The Sixteenth International Conference on Systems and Networks Communications
  • CENTRIC 2021, The Fourteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services
  • VALID 2021, The Thirteenth International Conference on Advances in System Testing and Validation Lifecycle
  • SIMUL 2021, The Thirteenth International Conference on Advances in System Simulation
  • SOTICS 2021, The Eleventh International Conference on Social Media Technologies, Communication, and Informatics
  • INNOV 2021, The Tenth International Conference on Communications, Computation, Networks and Technologies
  • HEALTHINFO 2021, The Sixth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

NetWare 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • SENSORCOMM 2021, The Fifteenth International Conference on Sensor Technologies and Applications
  • SENSORDEVICES 2021, The Twelfth International Conference on Sensor Device Technologies and Applications
  • SECURWARE 2021, The Fifteenth International Conference on Emerging Security Information, Systems and Technologies
  • AFIN 2021, The Thirteenth International Conference on Advances in Future Internet
  • CENICS 2021, The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics
  • ICQNM 2021, The Fifteenth International Conference on Quantum, Nano/Bio, and Micro Technologies
  • FASSI 2021, The Seventh International Conference on Fundamentals and Advances in Software Systems Integration
  • GREEN 2021, The Sixth International Conference on Green Communications, Computing and Technologies

TrendNews 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • CORETA 2021, Advances on Core Technologies and Applications
  • DIGITAL 2021, Advances on Societal Digital Transformation

 


ThinkMind // SPWID 2017, The Third International Conference on Smart Portable, Wearable, Implantable and Disability-oriented Devices and Systems // View article spwid_2017_1_30_78003


Deep on Edge: Opportunistic Road Damage Detection with City Official Vehicles

Authors:
Makoto Kawano
Takuro Yonezawa
Jin Nakazawa

Keywords: Smart City; Deep Learning; Edge Computing; Image Recognition;

Abstract:
How can we inspect city conditions at low costs? City infrastructures, such as roads, are elements of great importance in urban lives. Roads require constant inspection and repair due to deterioration, but it is expensive to do so with manual labor. Therefore, these works should be done automatically so that the cost of inspecting or repairing becomes cheap. While there are several works to address these road issues, our study focuses on official city vehicles, especially garbage trucks, to detect damaged lane markings (lines) which is the simplest case of road deterioration. Since our proposed system is implemented on an edge computer, it is easy to attach our system to vehicles. In addition, our system utilizes a camera, and since garbage trucks almost run through the entire area of a city every day, we can constantly obtain road images covering wide areas. Our model, which we call Deep on Edge (DoE), is a deep convolutional neural network which detects damaged lines from images. In our experiments, to evaluate our system, we first compared the accuracy of line damage detection of DoE with other baseline methods. Our results show that DoE outperforms previous approaches. Then, we investigate whether our system can detect the line damage on a running car. With this demonstration, we show that our system would be useful in practice.

Pages: 5 to 10

Copyright: Copyright (c) IARIA, 2017

Publication date: June 25, 2017

Published in: conference

ISSN: 2519-8440

ISBN: 978-1-61208-569-2

Location: Venice, Italy

Dates: from June 25, 2017 to June 29, 2017

SERVICES CONTACT
2010 - 2017 © ThinkMind. All rights reserved.
Read Terms of Service and Privacy Policy.