NexTech 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • UBICOMM 2021, The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
  • ADVCOMP 2021, The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences
  • SEMAPRO 2021, The Fifteenth International Conference on Advances in Semantic Processing
  • AMBIENT 2021, The Eleventh International Conference on Ambient Computing, Applications, Services and Technologies
  • EMERGING 2021, The Thirteenth International Conference on Emerging Networks and Systems Intelligence
  • DATA ANALYTICS 2021, The Tenth International Conference on Data Analytics
  • GLOBAL HEALTH 2021, The Tenth International Conference on Global Health Challenges
  • CYBER 2021, The Sixth International Conference on Cyber-Technologies and Cyber-Systems

SoftNet 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • ICSEA 2021, The Sixteenth International Conference on Software Engineering Advances
  • ICSNC 2021, The Sixteenth International Conference on Systems and Networks Communications
  • CENTRIC 2021, The Fourteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services
  • VALID 2021, The Thirteenth International Conference on Advances in System Testing and Validation Lifecycle
  • SIMUL 2021, The Thirteenth International Conference on Advances in System Simulation
  • SOTICS 2021, The Eleventh International Conference on Social Media Technologies, Communication, and Informatics
  • INNOV 2021, The Tenth International Conference on Communications, Computation, Networks and Technologies
  • HEALTHINFO 2021, The Sixth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

NetWare 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • SENSORCOMM 2021, The Fifteenth International Conference on Sensor Technologies and Applications
  • SENSORDEVICES 2021, The Twelfth International Conference on Sensor Device Technologies and Applications
  • SECURWARE 2021, The Fifteenth International Conference on Emerging Security Information, Systems and Technologies
  • AFIN 2021, The Thirteenth International Conference on Advances in Future Internet
  • CENICS 2021, The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics
  • ICQNM 2021, The Fifteenth International Conference on Quantum, Nano/Bio, and Micro Technologies
  • FASSI 2021, The Seventh International Conference on Fundamentals and Advances in Software Systems Integration
  • GREEN 2021, The Sixth International Conference on Green Communications, Computing and Technologies

TrendNews 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • CORETA 2021, Advances on Core Technologies and Applications
  • DIGITAL 2021, Advances on Societal Digital Transformation

 


ThinkMind // International Journal On Advances in Systems and Measurements, volume 10, numbers 3 and 4, 2017 // View article sysmea_v10_n34_2017_16


GFSM: A Feature Selection Method For Improving Time Series Forecasting.

Authors:
Youssef Hmamouche
Piotr Przymus
Alain Casali
Lotfi Lakhal

Keywords: Time Series Forecasting; Feature Selection; Multi- variate prediction models; Artificial Neural Networks.

Abstract:
Handling time series forecasting with many predictors is a popular topic in the era of ”Big data”, where wast amounts of observed variables are stored and used in analytic processes. Classical prediction models face some limitations when applied to large-scale data. Using all the existing predictors increases the computational time and does not necessarily improve the forecast accuracy. The challenge is to extract the most relevant predictors contributing to the forecast of each target time series. We propose a causal-feature selection algorithm specific to multiple time series forecasting based on a clustering approach. Experiments are conducted on US and Australia macroeconomic datasets using different prediction models. We compare our method to some widely used dimension reduction and feature selection methods including principal component analysis PCA, Kernel PCA and factor analysis. The proposed algorithm improves the forecast accuracy compared to the evaluated methods on the tested datasets.

Pages: 255 to 264

Copyright: Copyright (c) to authors, 2017. Used with permission.

Publication date: December 31, 2017

Published in: journal

ISSN: 1942-261x

SERVICES CONTACT
2010 - 2017 © ThinkMind. All rights reserved.
Read Terms of Service and Privacy Policy.