NexTech 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • UBICOMM 2021, The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
  • ADVCOMP 2021, The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences
  • SEMAPRO 2021, The Fifteenth International Conference on Advances in Semantic Processing
  • AMBIENT 2021, The Eleventh International Conference on Ambient Computing, Applications, Services and Technologies
  • EMERGING 2021, The Thirteenth International Conference on Emerging Networks and Systems Intelligence
  • DATA ANALYTICS 2021, The Tenth International Conference on Data Analytics
  • GLOBAL HEALTH 2021, The Tenth International Conference on Global Health Challenges
  • CYBER 2021, The Sixth International Conference on Cyber-Technologies and Cyber-Systems

SoftNet 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • ICSEA 2021, The Sixteenth International Conference on Software Engineering Advances
  • ICSNC 2021, The Sixteenth International Conference on Systems and Networks Communications
  • CENTRIC 2021, The Fourteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services
  • VALID 2021, The Thirteenth International Conference on Advances in System Testing and Validation Lifecycle
  • SIMUL 2021, The Thirteenth International Conference on Advances in System Simulation
  • SOTICS 2021, The Eleventh International Conference on Social Media Technologies, Communication, and Informatics
  • INNOV 2021, The Tenth International Conference on Communications, Computation, Networks and Technologies
  • HEALTHINFO 2021, The Sixth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

NetWare 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • SENSORCOMM 2021, The Fifteenth International Conference on Sensor Technologies and Applications
  • SENSORDEVICES 2021, The Twelfth International Conference on Sensor Device Technologies and Applications
  • SECURWARE 2021, The Fifteenth International Conference on Emerging Security Information, Systems and Technologies
  • AFIN 2021, The Thirteenth International Conference on Advances in Future Internet
  • CENICS 2021, The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics
  • ICQNM 2021, The Fifteenth International Conference on Quantum, Nano/Bio, and Micro Technologies
  • FASSI 2021, The Seventh International Conference on Fundamentals and Advances in Software Systems Integration
  • GREEN 2021, The Sixth International Conference on Green Communications, Computing and Technologies

TrendNews 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • CORETA 2021, Advances on Core Technologies and Applications
  • DIGITAL 2021, Advances on Societal Digital Transformation

 


ThinkMind // International Journal On Advances in Systems and Measurements, volume 2, numbers 2 and 3, 2009 // View article sysmea_v2_n23_2009_9


K-Means on the Graphics Processor: Design And Experimental Analysis

Authors:
Mario Zechner
Michael Granitzer

Keywords: Parallelization, GPGPU, K-Means

Abstract:
Apart from algorithmic improvements many intensive machine learning algorithms can gain performance by parallelization. Programmable graphics processing units (GPU) offer a highly data parallel architecture that is suitable for many computational tasks in machine learning. We present an optimized k-means implementation on the graphics processing unit. NVIDIA’s Compute Unified Device Architecture (CUDA), available from the G80 GPU family onwards, is used as the programming environment. Emphasis is placed on optimizations directly targeted at this architecture to best exploit the computational capabilities available. Additionally drawbacks and limitations of previous related work, e.g. maximum instance, dimension and centroid count are addressed. The algorithm is realized in a hybrid manner, parallelizing distance calculations on the GPU while sequentially updating cluster centroids on the CPU based on the results from the GPU calculations. An empirical performance study on synthetic data is given, demonstrating a maximum 14x speed increase to a fully SIMD optimized CPU implementation. We present detailed empirical data on the runtime behavior of the various stages of the implementation, identify bottlenecks and investigate potential discrepancies arising from different rounding modes on the GPU and CPU based. We extend our previous work in [1] by giving a more in depth description of CUDA as well as including previously omitted experimental data.

Pages: 224 to 235

Copyright: Copyright (c) to authors, 2009. Used with permission.

Publication date: December 1, 2009

Published in: journal

ISSN: 1942-261x

SERVICES CONTACT
2010 - 2017 © ThinkMind. All rights reserved.
Read Terms of Service and Privacy Policy.